MyArxiv
Computation and Language 76
☆ Requirements Elicitation Follow-Up Question Generation
Interviews are a widely used technique in eliciting requirements to gather stakeholder needs, preferences, and expectations for a software system. Effective interviewing requires skilled interviewers to formulate appropriate interview questions in real time while facing multiple challenges, including lack of familiarity with the domain, excessive cognitive load, and information overload that hinders how humans process stakeholders' speech. Recently, large language models (LLMs) have exhibited state-of-the-art performance in multiple natural language processing tasks, including text summarization and entailment. To support interviewers, we investigate the application of GPT-4o to generate follow-up interview questions during requirements elicitation by building on a framework of common interviewer mistake types. In addition, we describe methods to generate questions based on interviewee speech. We report a controlled experiment to evaluate LLM-generated and human-authored questions with minimal guidance, and a second controlled experiment to evaluate the LLM-generated questions when generation is guided by interviewer mistake types. Our findings demonstrate that, for both experiments, the LLM-generated questions are no worse than the human-authored questions with respect to clarity, relevancy, and informativeness. In addition, LLM-generated questions outperform human-authored questions when guided by common mistakes types. This highlights the potential of using LLMs to help interviewers improve the quality and ease of requirements elicitation interviews in real time.
comment: 13 pages, 2 figures, accepted at the 33rd IEEE International Requirements Engineering 2025
☆ Answer Matching Outperforms Multiple Choice for Language Model Evaluation
Multiple choice benchmarks have long been the workhorse of language model evaluation because grading multiple choice is objective and easy to automate. However, we show multiple choice questions from popular benchmarks can often be answered without even seeing the question. These shortcuts arise from a fundamental limitation of discriminative evaluation not shared by evaluations of the model's free-form, generative answers. Until recently, there appeared to be no viable, scalable alternative to multiple choice--but, we show that this has changed. We consider generative evaluation via what we call answer matching: Give the candidate model the question without the options, have it generate a free-form response, then use a modern language model with the reference answer to determine if the response matches the reference. To compare the validity of different evaluation strategies, we annotate MMLU-Pro and GPQA-Diamond to obtain human grading data, and measure the agreement of each evaluation approach. We find answer matching using recent models--even small ones--achieves near-perfect agreement, in the range of inter-annotator agreement. In contrast, both multiple choice evaluation and using LLM-as-a-judge without reference answers aligns poorly with human grading. Improving evaluations via answer matching is not merely a conceptual concern: the rankings of several models change significantly when evaluating their free-form responses with answer matching. In light of these findings, we discuss how to move the evaluation ecosystem from multiple choice to answer matching.
comment: 34 pages, Code is available at https://github.com/nikhilchandak/answer-matching
☆ MOTIF: Modular Thinking via Reinforcement Fine-tuning in LLMs
Recent advancements in the reasoning capabilities of large language models (LLMs) show that employing group relative policy optimization (GRPO) algorithm for reinforcement learning (RL) training allows the models to use more thinking/reasoning tokens for generating better responses. However, LLMs can generate only a finite amount of tokens while maintaining attention to the previously generated tokens. This limit, also known as the context size of an LLM, is a bottleneck in LLM reasoning with arbitrarily large number of tokens. To think beyond the limit of context size, an LLM must employ a modular thinking strategy to reason over multiple rounds. In this work, we propose $\textbf{MOTIF: Modular Thinking via Reinforcement Finetuning}$ -- an RL training method for generating thinking tokens in multiple rounds, effectively allowing the model to think with additional context size. We trained the open-source model Qwen2.5-3B-Instruct on GSM8K dataset via parameter efficient fine-tuning and tested its accuracy on MATH500 and AIME2024 benchmarks. Our experiments show 3.8\% and 3.3\% improvements over vanilla GRPO based training in the respective benchmarks. Furthermore, this improvement was achieved with only 15\% of samples, thus demonstrating sample efficiency of MOTIF. Our code and models are available at https://github.com/purbeshmitra/MOTIF and https://huggingface.co/purbeshmitra/MOTIF, respectively.
LLM Hypnosis: Exploiting User Feedback for Unauthorized Knowledge Injection to All Users
We describe a vulnerability in language models (LMs) trained with user feedback, whereby a single user can persistently alter LM knowledge and behavior given only the ability to provide prompts and upvote / downvote feedback on LM outputs. To implement the attack, the attacker prompts the LM to stochastically output either a "poisoned" or benign response, then upvotes the poisoned response or downvotes the benign one. When feedback signals are used in a subsequent preference tuning behavior, LMs exhibit increased probability of producing poisoned responses even in contexts without malicious prompts. We show that this attack can be used to (1) insert factual knowledge the model did not previously possess, (2) modify code generation patterns in ways that introduce exploitable security flaws, and (3) inject fake financial news. Our finding both identifies a new qualitative feature of language model preference tuning (showing that it even highly restricted forms of preference data can be used to exert fine-grained control over behavior), and a new attack mechanism for LMs trained with user feedback (extending work on pretraining-time data poisoning and deployment-time prompt injection).
☆ Legal Requirements Translation from Law
Software systems must comply with legal regulations, which is a resource-intensive task, particularly for small organizations and startups lacking dedicated legal expertise. Extracting metadata from regulations to elicit legal requirements for software is a critical step to ensure compliance. However, it is a cumbersome task due to the length and complex nature of legal text. Although prior work has pursued automated methods for extracting structural and semantic metadata from legal text, key limitations remain: they do not consider the interplay and interrelationships among attributes associated with these metadata types, and they rely on manual labeling or heuristic-driven machine learning, which does not generalize well to new documents. In this paper, we introduce an approach based on textual entailment and in-context learning for automatically generating a canonical representation of legal text, encodable and executable as Python code. Our representation is instantiated from a manually designed Python class structure that serves as a domain-specific metamodel, capturing both structural and semantic legal metadata and their interrelationships. This design choice reduces the need for large, manually labeled datasets and enhances applicability to unseen legislation. We evaluate our approach on 13 U.S. state data breach notification laws, demonstrating that our generated representations pass approximately 89.4% of test cases and achieve a precision and recall of 82.2 and 88.7, respectively.
comment: 13 pages, 7 figures, Accepted at the 33rd IEEE International Requirements Engineering 2025
☆ Visual Contextual Attack: Jailbreaking MLLMs with Image-Driven Context Injection
With the emergence of strong visual-language capabilities, multimodal large language models (MLLMs) have demonstrated tremendous potential for real-world applications. However, the security vulnerabilities exhibited by the visual modality pose significant challenges to deploying such models in open-world environments. Recent studies have successfully induced harmful responses from target MLLMs by encoding harmful textual semantics directly into visual inputs. However, in these approaches, the visual modality primarily serves as a trigger for unsafe behavior, often exhibiting semantic ambiguity and lacking grounding in realistic scenarios. In this work, we define a novel setting: visual-centric jailbreak, where visual information serves as a necessary component in constructing a complete and realistic jailbreak context. Building on this setting, we propose the VisCo (Visual Contextual) Attack. VisCo fabricates contextual dialogue using four distinct visual-focused strategies, dynamically generating auxiliary images when necessary to construct a visual-centric jailbreak scenario. To maximize attack effectiveness, it incorporates automatic toxicity obfuscation and semantic refinement to produce a final attack prompt that reliably triggers harmful responses from the target black-box MLLMs. Specifically, VisCo achieves a toxicity score of 4.78 and an Attack Success Rate (ASR) of 85% on MM-SafetyBench against GPT-4o, significantly outperforming the baseline, which performs a toxicity score of 2.48 and an ASR of 22.2%. The code is available at https://github.com/Dtc7w3PQ/Visco-Attack.
comment: 16 pages
☆ StepHint: Multi-level Stepwise Hints Enhance Reinforcement Learning to Reason
Reinforcement learning with verifiable rewards (RLVR) is a promising approach for improving the complex reasoning abilities of large language models (LLMs). However, current RLVR methods face two significant challenges: the near-miss reward problem, where a small mistake can invalidate an otherwise correct reasoning process, greatly hindering training efficiency; and exploration stagnation, where models tend to focus on solutions within their ``comfort zone,'' lacking the motivation to explore potentially more effective alternatives. To address these challenges, we propose StepHint, a novel RLVR algorithm that utilizes multi-level stepwise hints to help models explore the solution space more effectively. StepHint generates valid reasoning chains from stronger models and partitions these chains into reasoning steps using our proposed adaptive partitioning method. The initial few steps are used as hints, and simultaneously, multiple-level hints (each comprising a different number of steps) are provided to the model. This approach directs the model's exploration toward a promising solution subspace while preserving its flexibility for independent exploration. By providing hints, StepHint mitigates the near-miss reward problem, thereby improving training efficiency. Additionally, the external reasoning pathways help the model develop better reasoning abilities, enabling it to move beyond its ``comfort zone'' and mitigate exploration stagnation. StepHint outperforms competitive RLVR enhancement methods across six mathematical benchmarks, while also demonstrating superior generalization and excelling over baselines on out-of-domain benchmarks.
☆ ExPO: Unlocking Hard Reasoning with Self-Explanation-Guided Reinforcement Learning
Recent advances in large language models have been driven by reinforcement learning (RL)-style post-training, which improves reasoning by optimizing model outputs based on reward or preference signals. GRPO-style approaches implement this by using self-generated samples labeled by an outcome-based verifier. However, these methods depend heavily on the model's initial ability to produce positive samples. They primarily refine what the model already knows (distribution sharpening) rather than enabling the model to solve problems where it initially fails. This limitation is especially problematic in early-stage RL training and on challenging reasoning tasks, where positive samples are unlikely to be generated. To unlock reasoning ability in such settings, the model must explore new reasoning trajectories beyond its current output distribution. Such exploration requires access to sufficiently good positive samples to guide the learning. While expert demonstrations seem like a natural solution, we find that they are often ineffective in RL post-training. Instead, we identify two key properties of effective positive samples: they should (1) be likely under the current policy, and (2) increase the model's likelihood of predicting the correct answer. Based on these insights, we propose $\textbf{Self-Explanation Policy Optimization (ExPO)}$-a simple and modular framework that generates such samples by conditioning on the ground-truth answer. ExPO enables efficient exploration and guides the model to produce reasoning trajectories more aligned with its policy than expert-written CoTs, while ensuring higher quality than its own (incorrect) samples. Experiments show that ExPO improves both learning efficiency and final performance on reasoning benchmarks, surpassing expert-demonstration-based methods in challenging settings such as MATH level-5, where the model initially struggles the most.
☆ Generalizing Verifiable Instruction Following
A crucial factor for successful human and AI interaction is the ability of language models or chatbots to follow human instructions precisely. A common feature of instructions are output constraints like ``only answer with yes or no" or ``mention the word `abrakadabra' at least 3 times" that the user adds to craft a more useful answer. Even today's strongest models struggle with fulfilling such constraints. We find that most models strongly overfit on a small set of verifiable constraints from the benchmarks that test these abilities, a skill called precise instruction following, and are not able to generalize well to unseen output constraints. We introduce a new benchmark, IFBench, to evaluate precise instruction following generalization on 58 new, diverse, and challenging verifiable out-of-domain constraints. In addition, we perform an extensive analysis of how and on what data models can be trained to improve precise instruction following generalization. Specifically, we carefully design constraint verification modules and show that reinforcement learning with verifiable rewards (RLVR) significantly improves instruction following. In addition to IFBench, we release 29 additional new hand-annotated training constraints and verification functions, RLVR training prompts, and code.
comment: 11 pages
☆ SynapseRoute: An Auto-Route Switching Framework on Dual-State Large Language Model
With the widespread adoption of large language models (LLMs) in practical applications, selecting an appropriate model requires balancing not only performance but also operational cost. The emergence of reasoning-capable models has further widened the cost gap between "thinking" (high reasoning) and "non-thinking" (fast, low-cost) modes. In this work, we reveal that approximately 58% of medical questions can be accurately answered by the non-thinking mode alone, without requiring the high-cost reasoning process. This highlights a clear dichotomy in problem complexity and suggests that dynamically routing queries to the appropriate mode based on complexity could optimize accuracy, cost-efficiency, and overall user experience. Based on this, we further propose SynapseRoute, a machine learning-based dynamic routing framework that intelligently assigns input queries to either thinking or non-thinking modes. Experimental results on several medical datasets demonstrate that SynapseRoute not only improves overall accuracy (0.8390 vs. 0.8272) compared to the thinking mode alone but also reduces inference time by 36.8% and token consumption by 39.66%. Importantly, qualitative analysis indicates that over-reasoning on simpler queries can lead to unnecessary delays and even decreased accuracy, a pitfall avoided by our adaptive routing. Finally, this work further introduces the Accuracy-Inference-Token (AIT) index to comprehensively evaluate the trade-offs among accuracy, latency, and token cost.
☆ Multimodal Mathematical Reasoning with Diverse Solving Perspective
Recent progress in large-scale reinforcement learning (RL) has notably enhanced the reasoning capabilities of large language models (LLMs), especially in mathematical domains. However, current multimodal LLMs (MLLMs) for mathematical reasoning often rely on one-to-one image-text pairs and single-solution supervision, overlooking the diversity of valid reasoning perspectives and internal reflections. In this work, we introduce MathV-DP, a novel dataset that captures multiple diverse solution trajectories for each image-question pair, fostering richer reasoning supervision. We further propose Qwen-VL-DP, a model built upon Qwen-VL, fine-tuned with supervised learning and enhanced via group relative policy optimization (GRPO), a rule-based RL approach that integrates correctness discrimination and diversity-aware reward functions. Our method emphasizes learning from varied reasoning perspectives and distinguishing between correct yet distinct solutions. Extensive experiments on the MathVista's minitest and Math-V benchmarks demonstrate that Qwen-VL-DP significantly outperforms prior base MLLMs in both accuracy and generative diversity, highlighting the importance of incorporating diverse perspectives and reflective reasoning in multimodal mathematical reasoning.
comment: 8 pages
☆ Is Reasoning All You Need? Probing Bias in the Age of Reasoning Language Models
Reasoning Language Models (RLMs) have gained traction for their ability to perform complex, multi-step reasoning tasks through mechanisms such as Chain-of-Thought (CoT) prompting or fine-tuned reasoning traces. While these capabilities promise improved reliability, their impact on robustness to social biases remains unclear. In this work, we leverage the CLEAR-Bias benchmark, originally designed for Large Language Models (LLMs), to investigate the adversarial robustness of RLMs to bias elicitation. We systematically evaluate state-of-the-art RLMs across diverse sociocultural dimensions, using an LLM-as-a-judge approach for automated safety scoring and leveraging jailbreak techniques to assess the strength of built-in safety mechanisms. Our evaluation addresses three key questions: (i) how the introduction of reasoning capabilities affects model fairness and robustness; (ii) whether models fine-tuned for reasoning exhibit greater safety than those relying on CoT prompting at inference time; and (iii) how the success rate of jailbreak attacks targeting bias elicitation varies with the reasoning mechanisms employed. Our findings reveal a nuanced relationship between reasoning capabilities and bias safety. Surprisingly, models with explicit reasoning, whether via CoT prompting or fine-tuned reasoning traces, are generally more vulnerable to bias elicitation than base models without such mechanisms, suggesting reasoning may unintentionally open new pathways for stereotype reinforcement. Reasoning-enabled models appear somewhat safer than those relying on CoT prompting, which are particularly prone to contextual reframing attacks through storytelling prompts, fictional personas, or reward-shaped instructions. These results challenge the assumption that reasoning inherently improves robustness and underscore the need for more bias-aware approaches to reasoning design.
☆ From Long Videos to Engaging Clips: A Human-Inspired Video Editing Framework with Multimodal Narrative Understanding
The rapid growth of online video content, especially on short video platforms, has created a growing demand for efficient video editing techniques that can condense long-form videos into concise and engaging clips. Existing automatic editing methods predominantly rely on textual cues from ASR transcripts and end-to-end segment selection, often neglecting the rich visual context and leading to incoherent outputs. In this paper, we propose a human-inspired automatic video editing framework (HIVE) that leverages multimodal narrative understanding to address these limitations. Our approach incorporates character extraction, dialogue analysis, and narrative summarization through multimodal large language models, enabling a holistic understanding of the video content. To further enhance coherence, we apply scene-level segmentation and decompose the editing process into three subtasks: highlight detection, opening/ending selection, and pruning of irrelevant content. To facilitate research in this area, we introduce DramaAD, a novel benchmark dataset comprising over 800 short drama episodes and 500 professionally edited advertisement clips. Experimental results demonstrate that our framework consistently outperforms existing baselines across both general and advertisement-oriented editing tasks, significantly narrowing the quality gap between automatic and human-edited videos.
☆ Self-Correction Bench: Revealing and Addressing the Self-Correction Blind Spot in LLMs
Although large language models (LLMs) have become transformative, they still make mistakes and can explore unproductive reasoning paths. Self-correction is an important capability for a trustworthy LLM, particularly an autoregressive LLM. While LLMs can identify error in user input, they exhibit a systematic 'Self-Correction Blind Spot' - failing to correct identical error in their own outputs. To systematically study this phenomenon, we introduce Self-Correction Bench, a systematic framework to measure this phenomenon through controlled error injection at three complexity levels. Testing 14 models, we find an average 64.5% blind spot rate. We find multiple evidences that this limitation relates to training data composition: human training demonstrations predominantly show error-free responses rather than error-correction sequences, unlike RL-trained models that learn error correction through outcome feedback. Remarkably, simply appending "Wait" reduces blind spots by 89.3%, suggesting that the capability exists but requires activation. Our work highlights a critical limitation in current LLMs and offers potential avenues for improving their reliability and trustworthiness.
comment: 31 pages, 18 figures
☆ DeSTA2.5-Audio: Toward General-Purpose Large Audio Language Model with Self-Generated Cross-Modal Alignment
We introduce DeSTA2.5-Audio, a general-purpose Large Audio Language Model (LALM) designed for robust auditory perception and instruction-following, without requiring task-specific audio instruction-tuning. Recent LALMs typically augment Large Language Models (LLMs) with auditory capabilities by training on large-scale, manually curated or LLM-synthesized audio-instruction datasets. However, these approaches have often suffered from the catastrophic forgetting of the LLM's original language abilities. To address this, we revisit the data construction pipeline and propose DeSTA, a self-generated cross-modal alignment strategy in which the backbone LLM generates its own training targets. This approach preserves the LLM's native language proficiency while establishing effective audio-text alignment, thereby enabling zero-shot generalization without task-specific tuning. Using DeSTA, we construct DeSTA-AQA5M, a large-scale, task-agnostic dataset containing 5 million training samples derived from 7,000 hours of audio spanning 50 diverse datasets, including speech, environmental sounds, and music. DeSTA2.5-Audio achieves state-of-the-art or competitive performance across a wide range of audio-language benchmarks, including Dynamic-SUPERB, MMAU, SAKURA, Speech-IFEval, and VoiceBench. Comprehensive comparative studies demonstrate that our self-generated strategy outperforms widely adopted data construction and training strategies in both auditory perception and instruction-following capabilities. Our findings underscore the importance of carefully designed data construction in LALM development and offer practical insights for building robust, general-purpose LALMs.
comment: Model and code available at: https://github.com/kehanlu/DeSTA2.5-Audio
☆ Measurement of the Granularity of Vowel Production Space By Just Producible Different (JPD) Limens
A body of work over the past several decades has demonstrated that the complex and coordinated articulatory movements of human vowel production are governed (at least in part)by control mechanisms whose targets are regions of auditory space. Within the target region control at the sub-phonemic level has also been demonstrated. But the degree of accuracy of that control is unknown. The current work investigates this question by asking how far apart must two vowel stimuli lie in auditory space in order to yield reliably different imitations? This distance is termed 'Just Producible Difference' (JPD). The current study uses a vowel mimicry paradigm to derive the first measurement of JPD among two sets of English speakers during front vowel production. JPD is estimated at between 14 and 51 mels in F1 X F2 space. This finding has implications for episodic theories of speech production. It also clarifies the possible structures of human vowel systems, by setting a theoretical lower bound for how close two vowel phonemes may be in a speaker's formant space, and hence a psychophysical explanation of observed trends in number and patterns of possible vowel phonemes.
☆ Early Signs of Steganographic Capabilities in Frontier LLMs
Monitoring Large Language Model (LLM) outputs is crucial for mitigating risks from misuse and misalignment. However, LLMs could evade monitoring through steganography: Encoding hidden information within seemingly benign generations. In this paper, we evaluate the steganography capabilities in frontier LLMs to better understand the risk they pose. We focus on two types of steganography: passing encoded messages and performing encoded reasoning. We find that current models are unable to encode short messages in their outputs without a monitor noticing under standard affordances. They can succeed, however, if given additional affordances such as using an unmonitored scratchpad and coordinating on what encoding scheme to use. We additionally find early signs that models can perform basic encoded reasoning in a simple state-tracking problem. This includes some ability to reason with their own and pre-defined schemes, including encoding schemes such as Hexadecimal. Despite this, they can rarely hide reasoning subtly within a cover task to fool a monitor. Overall, our results indicate that current LLMs exhibit nascent steganographic capabilities. While these capabilities are likely insufficient to bypass well-designed monitors at present, this could change in the future.
☆ Can LLMs Identify Critical Limitations within Scientific Research? A Systematic Evaluation on AI Research Papers
Peer review is fundamental to scientific research, but the growing volume of publications has intensified the challenges of this expertise-intensive process. While LLMs show promise in various scientific tasks, their potential to assist with peer review, particularly in identifying paper limitations, remains understudied. We first present a comprehensive taxonomy of limitation types in scientific research, with a focus on AI. Guided by this taxonomy, for studying limitations, we present LimitGen, the first comprehensive benchmark for evaluating LLMs' capability to support early-stage feedback and complement human peer review. Our benchmark consists of two subsets: LimitGen-Syn, a synthetic dataset carefully created through controlled perturbations of high-quality papers, and LimitGen-Human, a collection of real human-written limitations. To improve the ability of LLM systems to identify limitations, we augment them with literature retrieval, which is essential for grounding identifying limitations in prior scientific findings. Our approach enhances the capabilities of LLM systems to generate limitations in research papers, enabling them to provide more concrete and constructive feedback.
☆ Exploring Gender Bias Beyond Occupational Titles
In this work, we investigate the correlation between gender and contextual biases, focusing on elements such as action verbs, object nouns, and particularly on occupations. We introduce a novel dataset, GenderLexicon, and a framework that can estimate contextual bias and its related gender bias. Our model can interpret the bias with a score and thus improve the explainability of gender bias. Also, our findings confirm the existence of gender biases beyond occupational stereotypes. To validate our approach and demonstrate its effectiveness, we conduct evaluations on five diverse datasets, including a Japanese dataset.
comment: Work in progress
☆ ASDA: Audio Spectrogram Differential Attention Mechanism for Self-Supervised Representation Learning
In recent advancements in audio self-supervised representation learning, the standard Transformer architecture has emerged as the predominant approach, yet its attention mechanism often allocates a portion of attention weights to irrelevant information, potentially impairing the model's discriminative ability. To address this, we introduce a differential attention mechanism, which effectively mitigates ineffective attention allocation through the integration of dual-softmax operations and appropriately tuned differential coefficients. Experimental results demonstrate that our ASDA model achieves state-of-the-art (SOTA) performance across multiple benchmarks, including audio classification (49.0% mAP on AS-2M, 41.5% mAP on AS20K), keyword spotting (98.3% accuracy on SPC-2), and environmental sound classification (96.1% accuracy on ESC-50). These results highlight ASDA's effectiveness in audio tasks, paving the way for broader applications.
comment: Accepted at Interspeech2025
☆ OmniDraft: A Cross-vocabulary, Online Adaptive Drafter for On-device Speculative Decoding
Speculative decoding generally dictates having a small, efficient draft model that is either pretrained or distilled offline to a particular target model series, for instance, Llama or Qwen models. However, within online deployment settings, there are two major challenges: 1) usage of a target model that is incompatible with the draft model; 2) expectation of latency improvements over usage and time. In this work, we propose OmniDraft, a unified framework that enables a single draft model to operate with any target model and adapt dynamically to user data. We introduce an online n-gram cache with hybrid distillation fine-tuning to address the cross-vocabulary mismatch across draft and target models; and further improve decoding speed by leveraging adaptive drafting techniques. OmniDraft is particularly suitable for on-device LLM applications where model cost, efficiency and user customization are the major points of contention. This further highlights the need to tackle the above challenges and motivates the \textit{``one drafter for all''} paradigm. We showcase the proficiency of the OmniDraft framework by performing online learning on math reasoning, coding and text generation tasks. Notably, OmniDraft enables a single Llama-68M model to pair with various target models including Vicuna-7B, Qwen2-7B and Llama3-8B models for speculative decoding; and additionally provides up to 1.5-2x speedup.
☆ Decoupled Planning and Execution: A Hierarchical Reasoning Framework for Deep Search
Complex information needs in real-world search scenarios demand deep reasoning and knowledge synthesis across diverse sources, which traditional retrieval-augmented generation (RAG) pipelines struggle to address effectively. Current reasoning-based approaches suffer from a fundamental limitation: they use a single model to handle both high-level planning and detailed execution, leading to inefficient reasoning and limited scalability. In this paper, we introduce HiRA, a hierarchical framework that separates strategic planning from specialized execution. Our approach decomposes complex search tasks into focused subtasks, assigns each subtask to domain-specific agents equipped with external tools and reasoning capabilities, and coordinates the results through a structured integration mechanism. This separation prevents execution details from disrupting high-level reasoning while enabling the system to leverage specialized expertise for different types of information processing. Experiments on four complex, cross-modal deep search benchmarks demonstrate that HiRA significantly outperforms state-of-the-art RAG and agent-based systems. Our results show improvements in both answer quality and system efficiency, highlighting the effectiveness of decoupled planning and execution for multi-step information seeking tasks. Our code is available at https://github.com/ignorejjj/HiRA.
comment: 9 pages
☆ Strategic Intelligence in Large Language Models: Evidence from evolutionary Game Theory
Are Large Language Models (LLMs) a new form of strategic intelligence, able to reason about goals in competitive settings? We present compelling supporting evidence. The Iterated Prisoner's Dilemma (IPD) has long served as a model for studying decision-making. We conduct the first ever series of evolutionary IPD tournaments, pitting canonical strategies (e.g., Tit-for-Tat, Grim Trigger) against agents from the leading frontier AI companies OpenAI, Google, and Anthropic. By varying the termination probability in each tournament (the "shadow of the future"), we introduce complexity and chance, confounding memorisation. Our results show that LLMs are highly competitive, consistently surviving and sometimes even proliferating in these complex ecosystems. Furthermore, they exhibit distinctive and persistent "strategic fingerprints": Google's Gemini models proved strategically ruthless, exploiting cooperative opponents and retaliating against defectors, while OpenAI's models remained highly cooperative, a trait that proved catastrophic in hostile environments. Anthropic's Claude emerged as the most forgiving reciprocator, showing remarkable willingness to restore cooperation even after being exploited or successfully defecting. Analysis of nearly 32,000 prose rationales provided by the models reveals that they actively reason about both the time horizon and their opponent's likely strategy, and we demonstrate that this reasoning is instrumental to their decisions. This work connects classic game theory with machine psychology, offering a rich and granular view of algorithmic decision-making under uncertainty.
comment: 29 pages, 27 tables, 4 figures
☆ MPF: Aligning and Debiasing Language Models post Deployment via Multi Perspective Fusion ICML 2025
Multiperspective Fusion (MPF) is a novel posttraining alignment framework for large language models (LLMs) developed in response to the growing need for easy bias mitigation. Built on top of the SAGED pipeline, an automated system for constructing bias benchmarks and extracting interpretable baseline distributions, MPF leverages multiperspective generations to expose and align biases in LLM outputs with nuanced, humanlike baselines. By decomposing baseline, such as sentiment distributions from HR professionals, into interpretable perspective components, MPF guides generation through sampling and balancing of responses, weighted by the probabilities obtained in the decomposition. Empirically, we demonstrate its ability to align LLM sentiment distributions with both counterfactual baselines (absolute equality) and the HR baseline (biased for Top Univeristy), resulting in small KL divergence, reduction of calibration error and generalization to unseen questions. This shows that MPF offers a scalable and interpretable method for alignment and bias mitigation, compatible with deployed LLMs and requiring no extensive prompt engineering or finetuning.
comment: Accepted at ICML 2025 AIW Workshop
☆ Revisiting Active Learning under (Human) Label Variation
Access to high-quality labeled data remains a limiting factor in applied supervised learning. While label variation (LV), i.e., differing labels for the same instance, is common, especially in natural language processing, annotation frameworks often still rest on the assumption of a single ground truth. This overlooks human label variation (HLV), the occurrence of plausible differences in annotations, as an informative signal. Similarly, active learning (AL), a popular approach to optimizing the use of limited annotation budgets in training ML models, often relies on at least one of several simplifying assumptions, which rarely hold in practice when acknowledging HLV. In this paper, we examine foundational assumptions about truth and label nature, highlighting the need to decompose observed LV into signal (e.g., HLV) and noise (e.g., annotation error). We survey how the AL and (H)LV communities have addressed -- or neglected -- these distinctions and propose a conceptual framework for incorporating HLV throughout the AL loop, including instance selection, annotator choice, and label representation. We further discuss the integration of large language models (LLM) as annotators. Our work aims to lay a conceptual foundation for HLV-aware active learning, better reflecting the complexities of real-world annotation.
☆ WebSailor: Navigating Super-human Reasoning for Web Agent
Transcending human cognitive limitations represents a critical frontier in LLM training. Proprietary agentic systems like DeepResearch have demonstrated superhuman capabilities on extremely complex information-seeking benchmarks such as BrowseComp, a feat previously unattainable. We posit that their success hinges on a sophisticated reasoning pattern absent in open-source models: the ability to systematically reduce extreme uncertainty when navigating vast information landscapes. Based on this insight, we introduce WebSailor, a complete post-training methodology designed to instill this crucial capability. Our approach involves generating novel, high-uncertainty tasks through structured sampling and information obfuscation, RFT cold start, and an efficient agentic RL training algorithm, Duplicating Sampling Policy Optimization (DUPO). With this integrated pipeline, WebSailor significantly outperforms all opensource agents in complex information-seeking tasks, matching proprietary agents' performance and closing the capability gap.
☆ IndianBailJudgments-1200: A Multi-Attribute Dataset for Legal NLP on Indian Bail Orders
Legal NLP remains underdeveloped in regions like India due to the scarcity of structured datasets. We introduce IndianBailJudgments-1200, a new benchmark dataset comprising 1200 Indian court judgments on bail decisions, annotated across 20+ attributes including bail outcome, IPC sections, crime type, and legal reasoning. Annotations were generated using a prompt-engineered GPT-4o pipeline and verified for consistency. This resource supports a wide range of legal NLP tasks such as outcome prediction, summarization, and fairness analysis, and is the first publicly available dataset focused specifically on Indian bail jurisprudence.
comment: 9 pages, 9 figures, 2 tables. Dataset available at Hugging Face and GitHub. Submitted to arXiv for open access
☆ A Cookbook for Community-driven Data Collection of Impaired Speech in LowResource Languages
This study presents an approach for collecting speech samples to build Automatic Speech Recognition (ASR) models for impaired speech, particularly, low-resource languages. It aims to democratize ASR technology and data collection by developing a "cookbook" of best practices and training for community-driven data collection and ASR model building. As a proof-of-concept, this study curated the first open-source dataset of impaired speech in Akan: a widely spoken indigenous language in Ghana. The study involved participants from diverse backgrounds with speech impairments. The resulting dataset, along with the cookbook and open-source tools, are publicly available to enable researchers and practitioners to create inclusive ASR technologies tailored to the unique needs of speech impaired individuals. In addition, this study presents the initial results of fine-tuning open-source ASR models to better recognize impaired speech in Akan.
comment: This version has been reviewed and accepted for presentation at the InterSpeech 2025 conference to be held in Rotterdam from 17 to 21 August. 5 pages and 3 tables
☆ Benchmarking Akan ASR Models Across Domain-Specific Datasets: A Comparative Evaluation of Performance, Scalability, and Adaptability
Most existing automatic speech recognition (ASR) research evaluate models using in-domain datasets. However, they seldom evaluate how they generalize across diverse speech contexts. This study addresses this gap by benchmarking seven Akan ASR models built on transformer architectures, such as Whisper and Wav2Vec2, using four Akan speech corpora to determine their performance. These datasets encompass various domains, including culturally relevant image descriptions, informal conversations, biblical scripture readings, and spontaneous financial dialogues. A comparison of the word error rate and character error rate highlighted domain dependency, with models performing optimally only within their training domains while showing marked accuracy degradation in mismatched scenarios. This study also identified distinct error behaviors between the Whisper and Wav2Vec2 architectures. Whereas fine-tuned Whisper Akan models led to more fluent but potentially misleading transcription errors, Wav2Vec2 produced more obvious yet less interpretable outputs when encountering unfamiliar inputs. This trade-off between readability and transparency in ASR errors should be considered when selecting architectures for low-resource language (LRL) applications. These findings highlight the need for targeted domain adaptation techniques, adaptive routing strategies, and multilingual training frameworks for Akan and other LRLs.
comment: This version has been reviewed and accepted for presentation at the Future Technologies Conference (FTC) 2025, to be held on 6 & 7 November 2025 in Munich, Germany. 17 pages, 4 figures, 1 table
☆ JoyTTS: LLM-based Spoken Chatbot With Voice Cloning
JoyTTS is an end-to-end spoken chatbot that combines large language models (LLM) with text-to-speech (TTS) technology, featuring voice cloning capabilities. This project is built upon the open-source MiniCPM-o and CosyVoice2 models and trained on 2000 hours of conversational data. We have also provided the complete training code to facilitate further development and optimization by the community. On the testing machine seed-tts-zh, it achieves a SS (speaker similarity) score of 0.73 and a WER (Word Error Rate) of 5.09. The code and models, along with training and inference scripts, are available at https://github.com/jdh-algo/JoyTTS.git.
☆ Efficient Code LLM Training via Distribution-Consistent and Diversity-Aware Data Selection
Recent advancements in large language models (LLMs) have significantly improved code generation and program comprehension, accelerating the evolution of software engineering. Current methods primarily enhance model performance by leveraging vast amounts of data, focusing on data quantity while often overlooking data quality, thereby reducing training efficiency. To address this, we introduce an approach that utilizes a parametric model for code data selection, aimed at improving both training efficiency and model performance. Our method optimizes the parametric model to ensure distribution consistency and diversity within the selected subset, guaranteeing high-quality data. Experimental results demonstrate that using only 10K samples, our method achieves gains of 2.4% (HumanEval) and 2.3% (MBPP) over 92K full-sampled baseline, outperforming other sampling approaches in both performance and efficiency. This underscores that our method effectively boosts model performance while significantly reducing computational costs.
☆ QFFN-BERT: An Empirical Study of Depth, Performance, and Data Efficiency in Hybrid Quantum-Classical Transformers
Parameterized quantum circuits (PQCs) have recently emerged as promising components for enhancing the expressibility of neural architectures. In this work, we introduce QFFN-BERT, a hybrid quantum-classical transformer where the feedforward network (FFN) modules of a compact BERT variant are replaced by PQC-based layers. This design is motivated by the dominant parameter contribution of FFNs, which account for approximately two-thirds of the parameters within standard Transformer encoder blocks. While prior studies have primarily integrated PQCs into self-attention modules, our work focuses on the FFN and systematically investigates the trade-offs between PQC depth, expressibility, and trainability. Our final PQC architecture incorporates a residual connection, both $R_Y$ and $R_Z$ rotations, and an alternating entanglement strategy to ensure stable training and high expressibility. Our experiments, conducted on a classical simulator, on the SST-2 and DBpedia benchmarks demonstrate two key findings. First, a carefully configured QFFN-BERT achieves up to 102.0% of the baseline accuracy, surpassing its classical counterpart in a full-data setting while reducing FFN-specific parameters by over 99%. Second, our model exhibits a consistent and competitive edge in few-shot learning scenarios, confirming its potential for superior data efficiency. These results, supported by an ablation study on a non-optimized PQC that failed to learn, confirm that PQCs can serve as powerful and parameter-efficient alternatives to classical FFNs when co-designed with foundational deep learning principles.
☆ Coling-UniA at SciVQA 2025: Few-Shot Example Retrieval and Confidence-Informed Ensembling for Multimodal Large Language Models ACL 2025
This paper describes our system for the SciVQA 2025 Shared Task on Scientific Visual Question Answering. Our system employs an ensemble of two Multimodal Large Language Models and various few-shot example retrieval strategies. The model and few-shot setting are selected based on the figure and question type. We also select answers based on the models' confidence levels. On the blind test data, our system ranks third out of seven with an average F1 score of 85.12 across ROUGE-1, ROUGE-L, and BERTS. Our code is publicly available.
comment: Accepted at 5th Workshop on Scholarly Document Processing @ ACL 2025
☆ DoMIX: An Efficient Framework for Exploiting Domain Knowledge in Fine-Tuning ACL 2025
Domain-Adaptive Pre-training (DAP) has recently gained attention for its effectiveness in fine-tuning pre-trained models. Building on this, continual DAP has been explored to develop pre-trained models capable of incrementally incorporating different domain datasets. However, existing continual DAP methods face several limitations: (1) high computational cost and GPU memory usage during training; (2) sensitivity to incremental data order; and (3) providing a single, generalized model for all end tasks, which contradicts the essence of DAP. In this paper, we propose DoMIX, a novel approach that addresses these challenges by leveraging LoRA modules, a representative parameter-efficient fine-tuning (PEFT) method. Our approach enables efficient and parallel domain-adaptive pre-training that is robust to domain order and effectively utilizes accumulated knowledge to provide tailored pre-trained models for specific tasks. We also demonstrate that our method can be extended beyond the DAP setting to standard LLM fine-tuning scenarios. Code is available at https://github.com/dohoonkim-ai/DoMIX.
comment: 22 pages, 5 figures, ACL 2025 Main
☆ Seeing Through Green: Text-Based Classification and the Firm's Returns from Green Patents
This paper introduces Natural Language Processing for identifying ``true'' green patents from official supporting documents. We start our training on about 12.4 million patents that had been classified as green from previous literature. Thus, we train a simple neural network to enlarge a baseline dictionary through vector representations of expressions related to environmental technologies. After testing, we find that ``true'' green patents represent about 20\% of the total of patents classified as green from previous literature. We show heterogeneity by technological classes, and then check that `true' green patents are about 1\% less cited by following inventions. In the second part of the paper, we test the relationship between patenting and a dashboard of firm-level financial accounts in the European Union. After controlling for reverse causality, we show that holding at least one ``true'' green patent raises sales, market shares, and productivity. If we restrict the analysis to high-novelty ``true'' green patents, we find that they also yield higher profits. Our findings underscore the importance of using text analyses to gauge finer-grained patent classifications that are useful for policymaking in different domains.
☆ MemAgent: Reshaping Long-Context LLM with Multi-Conv RL-based Memory Agent
Despite improvements by length extrapolation, efficient attention and memory modules, handling infinitely long documents with linear complexity without performance degradation during extrapolation remains the ultimate challenge in long-text processing. We directly optimize for long-text tasks in an end-to-end fashion and introduce a novel agent workflow, MemAgent, which reads text in segments and updates the memory using an overwrite strategy. We extend the DAPO algorithm to facilitate training via independent-context multi-conversation generation. MemAgent has demonstrated superb long-context capabilities, being able to extrapolate from an 8K context trained on 32K text to a 3.5M QA task with performance loss < 5% and achieves 95%+ in 512K RULER test.
comment: Project Page: https://memagent-sialab.github.io/
☆ GDC Cohort Copilot: An AI Copilot for Curating Cohorts from the Genomic Data Commons
Motivation: The Genomic Data Commons (GDC) provides access to high quality, harmonized cancer genomics data through a unified curation and analysis platform centered around patient cohorts. While GDC users can interactively create complex cohorts through the graphical Cohort Builder, users (especially new ones) may struggle to find specific cohort descriptors across hundreds of possible fields and properties. However, users may be better able to describe their desired cohort in free-text natural language. Results: We introduce GDC Cohort Copilot, an open-source copilot tool for curating cohorts from the GDC. GDC Cohort Copilot automatically generates the GDC cohort filter corresponding to a user-input natural language description of their desired cohort, before exporting the cohort back to the GDC for further analysis. An interactive user interface allows users to further refine the generated cohort. We develop and evaluate multiple large language models (LLMs) for GDC Cohort Copilot and demonstrate that our locally-served, open-source GDC Cohort LLM achieves better results than GPT-4o prompting in generating GDC cohorts. Availability and implementation: The standalone docker image for GDC Cohort Copilot is available at https://quay.io/repository/cdis/gdc-cohort-copilot. Source code is available at https://github.com/uc-cdis/gdc-cohort-copilot. GDC Cohort LLM weights are available at https://huggingface.co/uc-ctds.
comment: 11 pages, 1 figure, 7 tables
☆ SciGA: A Comprehensive Dataset for Designing Graphical Abstracts in Academic Papers
Graphical Abstracts (GAs) play a crucial role in visually conveying the key findings of scientific papers. While recent research has increasingly incorporated visual materials such as Figure 1 as de facto GAs, their potential to enhance scientific communication remains largely unexplored. Moreover, designing effective GAs requires advanced visualization skills, creating a barrier to their widespread adoption. To tackle these challenges, we introduce SciGA-145k, a large-scale dataset comprising approximately 145,000 scientific papers and 1.14 million figures, explicitly designed for supporting GA selection and recommendation as well as facilitating research in automated GA generation. As a preliminary step toward GA design support, we define two tasks: 1) Intra-GA recommendation, which identifies figures within a given paper that are well-suited to serve as GAs, and 2) Inter-GA recommendation, which retrieves GAs from other papers to inspire the creation of new GAs. We provide reasonable baseline models for these tasks. Furthermore, we propose Confidence Adjusted top-1 ground truth Ratio (CAR), a novel recommendation metric that offers a fine-grained analysis of model behavior. CAR addresses limitations in traditional ranking-based metrics by considering cases where multiple figures within a paper, beyond the explicitly labeled GA, may also serve as GAs. By unifying these tasks and metrics, our SciGA-145k establishes a foundation for advancing visual scientific communication while contributing to the development of AI for Science.
comment: 21 pages, 15 figures, 4 tables. Project Page: https://iyatomilab.github.io/SciGA/
♻ ☆ Improved Unbiased Watermark for Large Language Models ACL 2025
As artificial intelligence surpasses human capabilities in text generation, the necessity to authenticate the origins of AI-generated content has become paramount. Unbiased watermarks offer a powerful solution by embedding statistical signals into language model-generated text without distorting the quality. In this paper, we introduce MCmark, a family of unbiased, Multi-Channel-based watermarks. MCmark works by partitioning the model's vocabulary into segments and promoting token probabilities within a selected segment based on a watermark key. We demonstrate that MCmark not only preserves the original distribution of the language model but also offers significant improvements in detectability and robustness over existing unbiased watermarks. Our experiments with widely-used language models demonstrate an improvement in detectability of over 10% using MCmark, compared to existing state-of-the-art unbiased watermarks. This advancement underscores MCmark's potential in enhancing the practical application of watermarking in AI-generated texts.
comment: ACL 2025 Main Conference
♻ ☆ From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents
Information retrieval is a cornerstone of modern knowledge acquisition, enabling billions of queries each day across diverse domains. However, traditional keyword-based search engines are increasingly inadequate for handling complex, multi-step information needs. Our position is that Large Language Models (LLMs), endowed with reasoning and agentic capabilities, are ushering in a new paradigm termed Agentic Deep Research. These systems transcend conventional information search techniques by tightly integrating autonomous reasoning, iterative retrieval, and information synthesis into a dynamic feedback loop. We trace the evolution from static web search to interactive, agent-based systems that plan, explore, and learn. We also introduce a test-time scaling law to formalize the impact of computational depth on reasoning and search. Supported by benchmark results and the rise of open-source implementations, we demonstrate that Agentic Deep Research not only significantly outperforms existing approaches, but is also poised to become the dominant paradigm for future information seeking. All the related resources, including industry products, research papers, benchmark datasets, and open-source implementations, are collected for the community in https://github.com/DavidZWZ/Awesome-Deep-Research.
♻ ☆ GPAS: Accelerating Convergence of LLM Pretraining via Gradient-Preserving Activation Scaling
Modern Large Language Models, such as the LLaMA, Qwen and DeepSeek series, predominantly adopt the Pre-LayerNorm (Pre-LN) Transformer architecture. While being stable during pretraining and scalable to large model sizes, Pre-LN suffers from an exponential growth in activation variance across layers, causing the shortcut to dominate over sub-layer outputs in the residual connection and limiting the learning capacity of deeper layers. To mitigate this issue, we propose Gradient-Preserving Activation Scaling (GPAS), a simple technique that can be used in combination with existing approaches. GPAS works by scaling down the intermediate activations while keeping their gradients unchanged. This leaves information in the activations intact, and avoids the gradient vanishing problem associated with gradient downscaling. Extensive experiments across various model sizes from 71M to 1B show that GPAS achieves consistent performance gains. Beyond enhancing Pre-LN Transformers, GPAS also shows promise in improving alternative architectures such as Sandwich-LN and DeepNorm, demonstrating its versatility and potential for improving training dynamics in a wide range of settings. Our code is available at https://github.com/dandingsky/GPAS.
♻ ☆ Enhancing Clinical Multiple-Choice Questions Benchmarks with Knowledge Graph Guided Distractor Generation
Clinical tasks such as diagnosis and treatment require strong decision-making abilities, highlighting the importance of rigorous evaluation benchmarks to assess the reliability of large language models (LLMs). In this work, we introduce a knowledge-guided data augmentation framework that enhances the difficulty of clinical multiple-choice question (MCQ) datasets by generating distractors (i.e., incorrect choices that are similar to the correct one and may confuse existing LLMs). Using our KG-based pipeline, the generated choices are both clinically plausible and deliberately misleading. Our approach involves multi-step, semantically informed walks on a medical knowledge graph to identify distractor paths-associations that are medically relevant but factually incorrect-which then guide the LLM in crafting more deceptive distractors. We apply the designed knowledge graph guided distractor generation (KGGDG) pipline, to six widely used medical QA benchmarks and show that it consistently reduces the accuracy of state-of-the-art LLMs. These findings establish KGGDG as a powerful tool for enabling more robust and diagnostic evaluations of medical LLMs.
♻ ☆ Batch-Max: Higher LLM Throughput using Larger Batch Sizes and KV Cache Compression
Several works have developed eviction policies to remove key-value (KV) pairs from the KV cache for more efficient inference. The focus has been on compressing the KV cache after the input prompt has been processed for faster token generation. In settings with limited GPU memory, and when the input context is longer than the generation length, we show that by also compressing the KV cache during the input processing phase, larger batch sizes can be used resulting in significantly higher throughput while still maintaining the original model's accuracy.
♻ ☆ Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge
Agentic search such as Deep Research systems-where agents autonomously browse the web, synthesize information, and return comprehensive citation-backed answers-represents a major shift in how users interact with web-scale information. While promising greater efficiency and cognitive offloading, the growing complexity and open-endedness of agentic search have outpaced existing evaluation benchmarks and methodologies, which largely assume short search horizons and static answers. In this paper, we introduce Mind2Web 2, a benchmark of 130 realistic, high-quality, and long-horizon tasks that require real-time web browsing and extensive information synthesis, constructed with over 1000 hours of human labor. To address the challenge of evaluating time-varying and complex answers, we propose a novel Agent-as-a-Judge framework. Our method constructs task-specific judge agents based on a tree-structured rubric design to automatically assess both answer correctness and source attribution. We conduct a comprehensive evaluation of ten frontier agentic search systems and human performance, along with a detailed error analysis to draw insights for future development. The best-performing system, OpenAI Deep Research, can already achieve 50-70% of human performance while spending half the time, highlighting its great potential. Altogether, Mind2Web 2 provides a rigorous foundation for developing and benchmarking the next generation of agentic search systems.
comment: Project Homepage: https://osu-nlp-group.github.io/Mind2Web-2/
♻ ☆ On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability
We study language generation in the limit - introduced by Kleinberg and Mullainathan [KM24] - building on classical works of Gold [Gol67] and Angluin [Ang79]. [KM24]'s main result is an algorithm for generating from any countable language collection in the limit. While their algorithm eventually generates unseen strings from the target language $K$, it sacrifices coverage or breadth, i.e., its ability to generate a rich set of strings. Recent work introduces different notions of breadth and explores when generation with breadth is possible, leaving a full characterization of these notions open. Our first set of results settles this by characterizing generation for existing notions of breadth and their natural extensions. Interestingly, our lower bounds are very flexible and hold for many performance metrics beyond breadth - for instance, showing that, in general, it is impossible to train generators which achieve a higher perplexity or lower hallucination rate for $K$ compared to other languages. Next, we study language generation with breadth and stable generators - algorithms that eventually stop changing after seeing an arbitrary but finite number of strings - and prove unconditional lower bounds for such generators, strengthening the results of [KMV25] and demonstrating that generation with many existing notions of breadth becomes equally hard, when stability is required. This gives a separation for generation with approximate breadth, between stable and unstable generators, highlighting the rich interplay between breadth, stability, and consistency in language generation.
comment: v2 improves exposition and simplifies proofs
♻ ☆ Next-Token Prediction Task Assumes Optimal Data Ordering for LLM Training in Proof Generation
In the field of large language model (LLM)-based proof generation, despite extensive training on large datasets such as ArXiv, LLMs still exhibit only modest performance on proving tasks of moderate difficulty. We believe that this is partly due to the widespread presence of suboptimal ordering within the data for each proof used in training. For example, published proofs often follow a purely logical order, where each step logically proceeds from the previous steps based on the deductive rules. This order is designed to facilitate the verification of the proof's soundness, rather than to help people and models learn the discovery process of the proof. In proof generation, we argue that the optimal order for one training data sample occurs when the relevant intermediate supervision for a particular proof step in the proof is always positioned to the left of that proof step. We call such order the intuitively sequential order. We validate our claims using two tasks: intuitionistic propositional logic theorem-proving and digit multiplication. Our experiments verify the order effect and provide support for our explanations. We demonstrate that training is most effective when the proof is in the intuitively sequential order. Moreover, the order effect and the performance gap between models trained on different data orders can be substantial -- with an 11 percent improvement in proof success rate observed in the propositional logic theorem-proving task, between models trained on the optimal order compared to the worst order. Lastly, we define a common type of order issue in advanced math proofs and find that 17.3 percent of theorems with nontrivial proofs in the first two chapters of a widely used graduate-level mathematics textbook suffer from this issue. A detailed list of those proofs is provided in the appendix.
♻ ☆ Code2Logic: Game-Code-Driven Data Synthesis for Enhancing VLMs General Reasoning NeurIPS 2025
Visual-language Chain-of-Thought (CoT) data resources are relatively scarce compared to text-only counterparts, limiting the improvement of reasoning capabilities in Vision Language Models (VLMs). However, high-quality vision-language reasoning data is expensive and labor-intensive to annotate. To address this issue, we leverage a promising resource: game code, which naturally contains logical structures and state transition processes. Therefore, we propose Code2Logic, a novel game-code-driven approach for multimodal reasoning data synthesis. Our approach leverages Large Language Models (LLMs) to adapt game code, enabling automatic acquisition of reasoning processes and results through code execution. Using the Code2Logic approach, we developed the GameQA dataset to train and evaluate VLMs. GameQA is cost-effective and scalable, offers controllable difficulty gradation and is diverse with 30 games and 158 tasks. Surprisingly, despite training solely on game data, VLMs demonstrated out of domain generalization, specifically Qwen2.5-VL-7B improving performance by 2.33% across 7 diverse vision-language benchmarks. Our code, dataset and models are available at https://github.com/tongjingqi/Code2Logic.
comment: 63 pages, 23 figures, submitted to NeurIPS 2025
♻ ☆ Explainable Compliance Detection with Multi-Hop Natural Language Inference on Assurance Case Structure
Ensuring complex systems meet regulations typically requires checking the validity of assurance cases through a claim-argument-evidence framework. Some challenges in this process include the complicated nature of legal and technical texts, the need for model explanations, and limited access to assurance case data. We propose a compliance detection approach based on Natural Language Inference (NLI): EXplainable CompLiance detection with Argumentative Inference of Multi-hop reasoning (EXCLAIM). We formulate the claim-argument-evidence structure of an assurance case as a multi-hop inference for explainable and traceable compliance detection. We address the limited number of assurance cases by generating them using large language models (LLMs). We introduce metrics that measure the coverage and structural consistency. We demonstrate the effectiveness of the generated assurance case from GDPR requirements in a multi-hop inference task as a case study. Our results highlight the potential of NLI-based approaches in automating the regulatory compliance process.
♻ ☆ Direct Preference Optimization Using Sparse Feature-Level Constraints
The alignment of large language models (LLMs) with human preferences remains a key challenge. While post-training techniques like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) have achieved notable success, they often introduce computational inefficiencies and training instability. In this paper, we propose Feature-level constrained Preference Optimization (FPO), a novel method designed to simplify the alignment process while ensuring stability. FPO leverages pre-trained Sparse Autoencoders (SAEs) and introduces feature-level constraints, allowing for efficient, sparsity-enforced alignment. Our approach enjoys efficiency by using sparse features activated in a well-trained sparse autoencoder and the quality of sequential KL divergence by using the feature-level offline reference. Experimental results on benchmark datasets demonstrate that FPO achieves a 5.08% absolute improvement in win rate with much lower computational cost compared to state-of-the-art baselines, making it a promising solution for efficient and controllable LLM alignments.
♻ ☆ Symbolic or Numerical? Understanding Physics Problem Solving in Reasoning LLMs
Navigating the complexities of physics reasoning has long been a difficult task for Large Language Models (LLMs), requiring a synthesis of profound conceptual understanding and adept problem-solving techniques. In this study, we investigate the application of advanced instruction-tuned reasoning models, such as Deepseek-R1, to address a diverse spectrum of physics problems curated from the challenging SciBench benchmark. Our comprehensive experimental evaluation reveals the remarkable capabilities of reasoning models. Not only do they achieve state-of-the-art accuracy in answering intricate physics questions, but they also generate distinctive reasoning patterns that emphasize on symbolic derivation. Furthermore, our findings indicate that even for these highly sophisticated reasoning models, the strategic incorporation of few-shot prompting can still yield measurable improvements in overall accuracy, highlighting the potential for continued performance gains.
♻ ☆ MedAide: Information Fusion and Anatomy of Medical Intents via LLM-based Agent Collaboration
In healthcare intelligence, the ability to fuse heterogeneous, multi-intent information from diverse clinical sources is fundamental to building reliable decision-making systems. Large Language Model (LLM)-driven information interaction systems currently showing potential promise in the healthcare domain. Nevertheless, they often suffer from information redundancy and coupling when dealing with complex medical intents, leading to severe hallucinations and performance bottlenecks. To this end, we propose MedAide, an LLM-based medical multi-agent collaboration framework designed to enable intent-aware information fusion and coordinated reasoning across specialized healthcare domains. Specifically, we introduce a regularization-guided module that combines syntactic constraints with retrieval augmented generation to decompose complex queries into structured representations, facilitating fine-grained clinical information fusion and intent resolution. Additionally, a dynamic intent prototype matching module is proposed to utilize dynamic prototype representation with a semantic similarity matching mechanism to achieve adaptive recognition and updating of the agent's intent in multi-round healthcare dialogues. Ultimately, we design a rotation agent collaboration mechanism that introduces dynamic role rotation and decision-level information fusion across specialized medical agents. Extensive experiments are conducted on four medical benchmarks with composite intents. Experimental results from automated metrics and expert doctor evaluations show that MedAide outperforms current LLMs and improves their medical proficiency and strategic reasoning.
comment: LLM-based Multi-Agent Collaboration for Medical Applications
♻ ☆ AI Flow: Perspectives, Scenarios, and Approaches
Pioneered by the foundational information theory by Claude Shannon and the visionary framework of machine intelligence by Alan Turing, the convergent evolution of information and communication technologies (IT/CT) has created an unbroken wave of connectivity and computation. This synergy has sparked a technological revolution, now reaching its peak with large artificial intelligence (AI) models that are reshaping industries and redefining human-machine collaboration. However, the realization of ubiquitous intelligence faces considerable challenges due to substantial resource consumption in large models and high communication bandwidth demands. To address these challenges, AI Flow has been introduced as a multidisciplinary framework that integrates cutting-edge IT and CT advancements, with a particular emphasis on the following three key points. First, device-edge-cloud framework serves as the foundation, which integrates end devices, edge servers, and cloud clusters to optimize scalability and efficiency for low-latency model inference. Second, we introduce the concept of familial models, which refers to a series of different-sized models with aligned hidden features, enabling effective collaboration and the flexibility to adapt to varying resource constraints and dynamic scenarios. Third, connectivity- and interaction-based intelligence emergence is a novel paradigm of AI Flow. By leveraging communication networks to enhance connectivity, the collaboration among AI models across heterogeneous nodes achieves emergent intelligence that surpasses the capability of any single model. The innovations of AI Flow provide enhanced intelligence, timely responsiveness, and ubiquitous accessibility to AI services, paving the way for the tighter fusion of AI techniques and communication systems.
comment: Authors are with Institute of Artificial Intelligence (TeleAI), China Telecom, China. Author names are listed alphabetically by surname. This work was conducted at TeleAI, facilitated by Dr. Jiawei Shao (e-mail: shaojw2@chinatelecom.cn) under the leadership of Prof. Xuelong Li. The corresponding author is Prof. Xuelong Li (e-mail: xuelong li@ieee.org), the CTO and Chief Scientist of China Telecom
♻ ☆ Traveling Across Languages: Benchmarking Cross-Lingual Consistency in Multimodal LLMs
The rapid evolution of multimodal large language models (MLLMs) has significantly enhanced their real-world applications. However, achieving consistent performance across languages, especially when integrating cultural knowledge, remains a significant challenge. To better assess this issue, we introduce two new benchmarks: KnowRecall and VisRecall, which evaluate cross-lingual consistency in MLLMs. KnowRecall is a visual question answering benchmark designed to measure factual knowledge consistency in 15 languages, focusing on cultural and historical questions about global landmarks. VisRecall assesses visual memory consistency by asking models to describe landmark appearances in 9 languages without access to images. Experimental results reveal that state-of-the-art MLLMs, including proprietary ones, still struggle to achieve cross-lingual consistency. This underscores the need for more robust approaches that produce truly multilingual and culturally aware models.
comment: https://github.com/nlp-waseda/traveling-across-languages
♻ ☆ Self-Guided Process Reward Optimization with Redefined Step-wise Advantage for Process Reinforcement Learning
Process Reinforcement Learning~(PRL) has demonstrated considerable potential in enhancing the reasoning capabilities of Large Language Models~(LLMs). However, introducing additional process reward models incurs substantial computational overhead, and there is no unified theoretical framework for process-level advantage estimation. To bridge this gap, we propose \textbf{S}elf-Guided \textbf{P}rocess \textbf{R}eward \textbf{O}ptimization~(\textbf{SPRO}), a novel framework that enables process-aware RL through two key innovations: (1) we first theoretically demonstrate that process rewards can be derived intrinsically from the policy model itself, and (2) we introduce well-defined cumulative process rewards and \textbf{M}asked \textbf{S}tep \textbf{A}dvantage (\textbf{MSA}), which facilitates rigorous step-wise action advantage estimation within shared-prompt sampling groups. Our experimental results demonstrate that SPRO outperforms vaniila GRPO with 3.4x higher training efficiency and a 17.5\% test accuracy improvement. Furthermore, SPRO maintains a stable and elevated policy entropy throughout training while reducing the average response length by approximately $1/3$, evidencing sufficient exploration and prevention of reward hacking. Notably, SPRO incurs no additional computational overhead compared to outcome-supervised RL methods such as GRPO, which benefit industrial implementation.
♻ ☆ Robustness of Misinformation Classification Systems to Adversarial Examples Through BeamAttack
We extend BeamAttack, an adversarial attack algorithm designed to evaluate the robustness of text classification systems through word-level modifications guided by beam search. Our extensions include support for word deletions and the option to skip substitutions, enabling the discovery of minimal modifications that alter model predictions. We also integrate LIME to better prioritize word replacements. Evaluated across multiple datasets and victim models (BiLSTM, BERT, and adversarially trained RoBERTa) within the BODEGA framework, our approach achieves over a 99\% attack success rate while preserving the semantic and lexical similarity of the original texts. Through both quantitative and qualitative analysis, we highlight BeamAttack's effectiveness and its limitations. Our implementation is available at https://github.com/LucK1Y/BeamAttack
comment: 12 pages main text, 27 pages total including references and appendices. 13 figures, 10 tables. Accepted for publication in the LNCS proceedings of CLEF 2025 (Best-of-Labs track)
♻ ☆ Task Prompt Vectors: Effective Initialization through Multi-Task Soft-Prompt Transfer
Prompt tuning is an efficient solution for training large language models (LLMs). However, current soft-prompt-based methods often sacrifice multi-task modularity, requiring the training process to be fully or partially repeated for each newly added task. While recent work on task vectors applied arithmetic operations on full model weights to achieve the desired multi-task performance, a similar approach for soft-prompts is still missing. To this end, we introduce Task Prompt Vectors, created by element-wise difference between weights of tuned soft-prompts and their random initialization. Experimental results on 12 NLU datasets show that task prompt vectors can be used in low-resource settings to effectively initialize prompt tuning on similar tasks. In addition, we show that task prompt vectors are independent of the random initialization of prompt tuning on 2 different language model architectures. This allows prompt arithmetics with the pre-trained vectors from different tasks. In this way, we provide a competitive alternative to state-of-the-art baselines by arithmetic addition of task prompt vectors from multiple tasks.
♻ ☆ Crafting Hanzi as Narrative Bridges: An AI Co-Creation Workshop for Elderly Migrants
This paper explores how older adults, particularly aging migrants in urban China, can engage AI-assisted co-creation to express personal narratives that are often fragmented, underrepresented, or difficult to verbalize. Through a pilot workshop combining oral storytelling and the symbolic reconstruction of Hanzi, participants shared memories of migration and recreated new character forms using Xiaozhuan glyphs, suggested by the Large Language Model (LLM), together with physical materials. Supported by human facilitation and a soft AI presence, participants transformed lived experience into visual and tactile expressions without requiring digital literacy. This approach offers new perspectives on human-AI collaboration and aging by repositioning AI not as a content producer but as a supportive mechanism, and by supporting narrative agency within sociotechnical systems.
comment: A version of this manuscript has been submitted to the [IASDR 2025 Conference](https://iasdr2025.org/) and is currently under review
♻ ☆ Delving into LLM-assisted writing in biomedical publications through excess vocabulary
Large language models (LLMs) like ChatGPT can generate and revise text with human-level performance. These models come with clear limitations: they can produce inaccurate information, reinforce existing biases, and be easily misused. Yet, many scientists use them for their scholarly writing. But how wide-spread is such LLM usage in the academic literature? To answer this question for the field of biomedical research, we present an unbiased, large-scale approach: we study vocabulary changes in over 15 million biomedical abstracts from 2010--2024 indexed by PubMed, and show how the appearance of LLMs led to an abrupt increase in the frequency of certain style words. This excess word analysis suggests that at least 13.5% of 2024 abstracts were processed with LLMs. This lower bound differed across disciplines, countries, and journals, reaching 40% for some subcorpora. We show that LLMs have had an unprecedented impact on scientific writing in biomedical research, surpassing the effect of major world events such as the Covid pandemic.
comment: v5: Reverting to v3
♻ ☆ AIn't Nothing But a Survey? Using Large Language Models for Coding German Open-Ended Survey Responses on Survey Motivation
The recent development and wider accessibility of LLMs have spurred discussions about how they can be used in survey research, including classifying open-ended survey responses. Due to their linguistic capacities, it is possible that LLMs are an efficient alternative to time-consuming manual coding and the pre-training of supervised machine learning models. As most existing research on this topic has focused on English-language responses relating to non-complex topics or on single LLMs, it is unclear whether its findings generalize and how the quality of these classifications compares to established methods. In this study, we investigate to what extent different LLMs can be used to code open-ended survey responses in other contexts, using German data on reasons for survey participation as an example. We compare several state-of-the-art LLMs and several prompting approaches, and evaluate the LLMs' performance by using human expert codings. Overall performance differs greatly between LLMs, and only a fine-tuned LLM achieves satisfactory levels of predictive performance. Performance differences between prompting approaches are conditional on the LLM used. Finally, LLMs' unequal classification performance across different categories of reasons for survey participation results in different categorical distributions when not using fine-tuning. We discuss the implications of these findings, both for methodological research on coding open-ended responses and for their substantive analysis, and for practitioners processing or substantively analyzing such data. Finally, we highlight the many trade-offs researchers need to consider when choosing automated methods for open-ended response classification in the age of LLMs. In doing so, our study contributes to the growing body of research about the conditions under which LLMs can be efficiently, accurately, and reliably leveraged in survey research.
comment: to appear in Survey Research Methods
♻ ☆ Improving the Robustness of Distantly-Supervised Named Entity Recognition via Uncertainty-Aware Teacher Learning and Student-Student Collaborative Learning ACL 2024
Distantly-Supervised Named Entity Recognition (DS-NER) is widely used in real-world scenarios. It can effectively alleviate the burden of annotation by matching entities in existing knowledge bases with snippets in the text but suffer from the label noise. Recent works attempt to adopt the teacher-student framework to gradually refine the training labels and improve the overall robustness. However, these teacher-student methods achieve limited performance because the poor calibration of the teacher network produces incorrectly pseudo-labeled samples, leading to error propagation. Therefore, we propose: (1) Uncertainty-Aware Teacher Learning that leverages the prediction uncertainty to reduce the number of incorrect pseudo labels in the self-training stage; (2) Student-Student Collaborative Learning that allows the transfer of reliable labels between two student networks instead of indiscriminately relying on all pseudo labels from its teacher, and further enables a full exploration of mislabeled samples rather than simply filtering unreliable pseudo-labeled samples. We evaluate our proposed method on five DS-NER datasets, demonstrating that our method is superior to the state-of-the-art DS-NER methods.
comment: ACL 2024 (Findings)
♻ ☆ Incorporating LLMs for Large-Scale Urban Complex Mobility Simulation
This study presents an innovative approach to urban mobility simulation by integrating a Large Language Model (LLM) with Agent-Based Modeling (ABM). Unlike traditional rule-based ABM, the proposed framework leverages LLM to enhance agent diversity and realism by generating synthetic population profiles, allocating routine and occasional locations, and simulating personalized routes. Using real-world data, the simulation models individual behaviors and large-scale mobility patterns in Taipei City. Key insights, such as route heat maps and mode-specific indicators, provide urban planners with actionable information for policy-making. Future work focuses on establishing robust validation frameworks to ensure accuracy and reliability in urban planning applications.
comment: 8 pages, 8 figures. This paper is reviewed and accepted by the CUPUM (Computational Urban Planning and Urban Management) Conference held by University College London (UCL) in 2025
♻ ☆ Decision-Oriented Text Evaluation
Natural language generation (NLG) is increasingly deployed in high-stakes domains, yet common intrinsic evaluation methods, such as n-gram overlap or sentence plausibility, weakly correlate with actual decision-making efficacy. We propose a decision-oriented framework for evaluating generated text by directly measuring its influence on human and large language model (LLM) decision outcomes. Using market digest texts--including objective morning summaries and subjective closing-bell analyses--as test cases, we assess decision quality based on the financial performance of trades executed by human investors and autonomous LLM agents informed exclusively by these texts. Our findings reveal that neither humans nor LLM agents consistently surpass random performance when relying solely on summaries. However, richer analytical commentaries enable collaborative human-LLM teams to outperform individual human or agent baselines significantly. Our approach underscores the importance of evaluating generated text by its ability to facilitate synergistic decision-making between humans and LLMs, highlighting critical limitations of traditional intrinsic metrics.
♻ ☆ Token Prepending: A Training-Free Approach for Eliciting Better Sentence Embeddings from LLMs ACL 2025
Extracting sentence embeddings from large language models (LLMs) is a promising direction, as LLMs have demonstrated stronger semantic understanding capabilities. Previous studies typically focus on prompt engineering to elicit sentence embeddings from LLMs by prompting the model to encode sentence information into the embedding of the last token. However, LLMs are mostly decoder-only models with causal attention and the earlier tokens in the sentence cannot attend to the latter tokens, resulting in biased encoding of sentence information and cascading effects on the final decoded token. To this end, we propose a novel Token Prepending (TP) technique that prepends each layer's decoded sentence embedding to the beginning of the sentence in the next layer's input, allowing earlier tokens to attend to the complete sentence information under the causal attention mechanism. The proposed TP technique is a plug-and-play and training-free technique, which means it can be seamlessly integrated with various prompt-based sentence embedding methods and autoregressive LLMs. Extensive experiments on various Semantic Textual Similarity (STS) tasks and downstream classification tasks demonstrate that our proposed TP technique can significantly improve the performance of existing prompt-based sentence embedding methods across different LLMs, while incurring negligible additional inference cost.
comment: Accept to ACL 2025 (Oral). Code are available on https://github.com/fuyuchenIfyw/token_prepending.git
♻ ☆ Layered Insights: Generalizable Analysis of Authorial Style by Leveraging All Transformer Layers
We propose a new approach for the authorship attribution task that leverages the various linguistic representations learned at different layers of pre-trained transformer-based models. We evaluate our approach on three datasets, comparing it to a state-of-the-art baseline in in-domain and out-of-domain scenarios. We found that utilizing various transformer layers improves the robustness of authorship attribution models when tested on out-of-domain data, resulting in new state-of-the-art results. Our analysis gives further insights into how our model's different layers get specialized in representing certain stylistic features that benefit the model when tested out of the domain.
♻ ☆ Skywork-Reward-V2: Scaling Preference Data Curation via Human-AI Synergy
Despite the critical role of reward models (RMs) in reinforcement learning from human feedback (RLHF), current state-of-the-art open RMs perform poorly on most existing evaluation benchmarks, failing to capture the spectrum of nuanced and sophisticated human preferences. Even approaches that incorporate advanced training techniques have not yielded meaningful performance improvements. We hypothesize that this brittleness stems primarily from limitations in preference datasets, which are often narrowly scoped, synthetically labeled, or lack rigorous quality control. To address these challenges, we present a large-scale preference dataset comprising 40 million preference pairs, named SynPref-40M. To enable data curation at scale, we design a human-AI synergistic two-stage pipeline that leverages the complementary strengths of human annotation quality and AI scalability. In this pipeline, humans provide verified annotations, while large language models perform automatic curation based on human guidance. Training on this preference mixture, we introduce Skywork-Reward-V2, a suite of eight reward models ranging from 0.6B to 8B parameters, trained on a carefully curated subset of 26 million preference pairs from SynPref-40M. We demonstrate that Skywork-Reward-V2 is versatile across a wide range of capabilities, including alignment with human preferences, objective correctness, safety, resistance to stylistic biases, and best-of-N scaling, achieving state-of-the-art performance across seven major reward model benchmarks. Ablation studies confirm that the effectiveness of our approach stems not only from data scale but also from high-quality curation. The Skywork-Reward-V2 series represents substantial progress in open reward models, highlighting the untapped potential of existing preference datasets and demonstrating how human-AI curation synergy can unlock significantly higher data quality.
♻ ☆ Aligning Frozen LLMs by Reinforcement Learning: An Iterative Reweight-then-Optimize Approach
Aligning large language models (LLMs) with human preferences usually requires fine-tuning methods such as RLHF and DPO. These methods directly optimize the model parameters, so they cannot be used in test-time to improve model performance, nor are they applicable when the model weights are not accessible. In contrast, test-time methods sidestep weight updates by leveraging reward functions to guide and improve output quality. However, they incur high inference costs, and their one-shot guidance is often based on imperfect reward or value functions, leading to suboptimal outputs. In this work, we present a method named Iterative Reweight-then-Optimize (IRO), a reinforcement learning (RL) framework that performs RL-style alignment of the (frozen) base model without touching its parameters. During training, each iteration (i) samples candidates from the base model, (ii) resamples using current value functions, and (iii) trains a new lightweight value function that guides the next decoding pass. At test time, the value functions are used to guide the base model generation via a search-based optimization process. Notably, users can apply IRO to align a model on their own dataset, similar to OpenAI's reinforcement fine-tuning (RFT), but without requiring access to the model weights.
♻ ☆ Fast-dLLM: Training-free Acceleration of Diffusion LLM by Enabling KV Cache and Parallel Decoding
Diffusion-based large language models (Diffusion LLMs) have shown promise for non-autoregressive text generation with parallel decoding capabilities. However, the practical inference speed of open-sourced Diffusion LLMs often lags behind autoregressive models due to the lack of Key-Value (KV) Cache and quality degradation when decoding multiple tokens simultaneously. To bridge this gap, we introduce a novel block-wise approximate KV Cache mechanism tailored for bidirectional diffusion models, enabling cache reuse with negligible performance drop. Additionally, we identify the root cause of generation quality degradation in parallel decoding as the disruption of token dependencies under the conditional independence assumption. To address this, we propose a confidence-aware parallel decoding strategy that selectively decodes tokens exceeding a confidence threshold, mitigating dependency violations and maintaining generation quality. Experimental results on LLaDA and Dream models across multiple LLM benchmarks demonstrate up to \textbf{27.6$\times$ throughput} improvement with minimal accuracy loss, closing the performance gap with autoregressive models and paving the way for practical deployment of Diffusion LLMs.
♻ ☆ Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient ACL2025
Recent Large-Language Models (LLMs) pruning methods typically operate at the post-training phase without the expensive weight finetuning, however, their pruning criteria often rely on heuristically hand-crafted metrics, potentially leading to suboptimal performance. We instead propose a novel optimization-based structural pruning that learns the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model. To preserve efficiency, our method eliminates the back-propagation through the LLM per se during optimization, requiring only the forward pass of the LLM. We achieve this by learning an underlying Bernoulli distribution to sample binary pruning masks, where we decouple the Bernoulli parameters from LLM loss, facilitating efficient optimization via policy gradient estimator without back-propagation. Thus, our method can 1) support global and heterogeneous pruning (i.e., automatically determine different redundancy for different layers), and 2) optionally initialize with a metric-based method (for our Bernoulli distributions). Extensive experiments conducted on LLaMA, LLaMA-2, LLaMA-3, Vicuna, and Mistral models using the C4 and WikiText2 datasets demonstrate the promising performance of our method in efficiency and effectiveness. Code is available at https://github.com/ethanygao/backprop-free_LLM_pruning.
comment: ACL2025 Main Accepted
♻ ☆ REINFORCE++: An Efficient RLHF Algorithm with Robustness to Both Prompt and Reward Models
Large Language Models (LLMs) fine-tuned via Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) significantly improve the alignment of human-AI values and further raise the upper bound of AI capabilities, particularly in reasoning-intensive, long-context Chain-of-Thought (long-CoT) tasks. However, existing RLHF (or RLVR) frameworks commonly face challenges such as inference bottlenecks and complexity barriers, restricting their accessibility for newcomers. To bridge this gap, we introduce \textbf{OpenRLHF}, a user-friendly, scalable, and easy-to-learn open-source RLHF framework built upon Ray, vLLM, DeepSpeed, and HuggingFace Transformers, featuring a simplified design, clear code structure, and comprehensive documentation to facilitate entry for researchers and practitioners. Experimental results show that OpenRLHF achieves superior training efficiency with speedups ranging from 1.22x to 1.68x across different model sizes compared to state-of-the-art frameworks, while requiring significantly fewer lines of code for implementation. OpenRLHF is publicly available at https://github.com/OpenRLHF/OpenRLHF, and has already been adopted by leading institutions to accelerate RLHF research and learning.
comment: fix typo
♻ ☆ Commander-GPT: Fully Unleashing the Sarcasm Detection Capability of Multi-Modal Large Language Models
Sarcasm detection, as a crucial research direction in the field of Natural Language Processing (NLP), has attracted widespread attention. Traditional sarcasm detection tasks have typically focused on single-modal approaches (e.g., text), but due to the implicit and subtle nature of sarcasm, such methods often fail to yield satisfactory results. In recent years, researchers have shifted the focus of sarcasm detection to multi-modal approaches. However, effectively leveraging multi-modal information to accurately identify sarcastic content remains a challenge that warrants further exploration. Leveraging the powerful integrated processing capabilities of Multi-Modal Large Language Models (MLLMs) for various information sources, we propose an innovative multi-modal Commander-GPT framework. Inspired by military strategy, we first decompose the sarcasm detection task into six distinct sub-tasks. A central commander (decision-maker) then assigns the best-suited large language model to address each specific sub-task. Ultimately, the detection results from each model are aggregated to identify sarcasm. We conducted extensive experiments on MMSD and MMSD 2.0, utilizing four multi-modal large language models and six prompting strategies. Our experiments demonstrate that our approach achieves state-of-the-art performance, with a 19.3% improvement in F1 score, without necessitating fine-tuning or ground-truth rationales.
comment: Our original goal was to use Commander-GPT: Dividing and Routing for Multimodal Sarcasm Detection (arXiv:2506.19420) to replace Commander-GPT: Fully Unleashing the Sarcasm Detection Capability of Multi-Modal Large Language Models (arXiv:2503.18681). Due to various reasons, both versions were released, so we would like to withdraw the latter
♻ ☆ Prompt-Guided Turn-Taking Prediction
Turn-taking prediction models are essential components in spoken dialogue systems and conversational robots. Recent approaches leverage transformer-based architectures to predict speech activity continuously and in real-time. In this study, we propose a novel model that enables turn-taking prediction to be dynamically controlled via textual prompts. This approach allows intuitive and explicit control through instructions such as "faster" or "calmer" adapting dynamically to conversational partners and contexts. The proposed model builds upon a transformer-based voice activity projection (VAP) model, incorporating textual prompt embeddings into both channel-wise transformers and a cross-channel transformer. We evaluated the feasibility of our approach using over 950 hours of human-human spoken dialogue data. Since textual prompt data for the proposed approach was not available in existing datasets, we utilized a large language model (LLM) to generate synthetic prompt sentences. Experimental results demonstrated that the proposed model improved prediction accuracy and effectively varied turn-taking timing behaviors according to the textual prompts.
comment: This paper has been accepted for presentation at SIGdial Meeting on Discourse and Dialogue 2025 (SIGDIAL 2025) and represents the author's version of the work
♻ ☆ Optimal strategies to perform multilingual analysis of social content for a novel dataset in the tourism domain
The rising influence of social media platforms in various domains, including tourism, has highlighted the growing need for efficient and automated Natural Language Processing (NLP) strategies to take advantage of this valuable resource. However, the transformation of multilingual, unstructured, and informal texts into structured knowledge still poses significant challenges, most notably the never-ending requirement for manually annotated data to train deep learning classifiers. In this work, we study different NLP techniques to establish the best ones to obtain competitive performances while keeping the need for training annotated data to a minimum. To do so, we built the first publicly available multilingual dataset (French, English, and Spanish) for the tourism domain, composed of tourism-related tweets. The dataset includes multilayered, manually revised annotations for Named Entity Recognition (NER) for Locations and Fine-grained Thematic Concepts Extraction mapped to the Thesaurus of Tourism and Leisure Activities of the World Tourism Organization, as well as for Sentiment Analysis at the tweet level. Extensive experimentation comparing various few-shot and fine-tuning techniques with modern language models demonstrate that modern few-shot techniques allow us to obtain competitive results for all three tasks with very little annotation data: 5 tweets per label (15 in total) for Sentiment Analysis, 30 tweets for Named Entity Recognition of Locations and 1K tweets annotated with fine-grained thematic concepts, a highly fine-grained sequence labeling task based on an inventory of 315 classes. We believe that our results, grounded in a novel dataset, pave the way for applying NLP to new domain-specific applications, reducing the need for manual annotations and circumventing the complexities of rule-based, ad-hoc solutions.
♻ ☆ Causal Representation Learning with Generative Artificial Intelligence: Application to Texts as Treatments
In this paper, we demonstrate how to enhance the validity of causal inference with unstructured high-dimensional treatments like texts, by leveraging the power of generative Artificial Intelligence (GenAI). Specifically, we propose to use a deep generative model such as large language models (LLMs) to efficiently generate treatments and use their internal representation for subsequent causal effect estimation. We show that the knowledge of this true internal representation helps disentangle the treatment features of interest, such as specific sentiments and certain topics, from other possibly unknown confounding features. Unlike existing methods, the proposed GenAI-Powered Inference (GPI) methodology eliminates the need to learn causal representation from the data, and hence produces more accurate and efficient estimates. We formally establish the conditions required for the nonparametric identification of the average treatment effect, propose an estimation strategy that avoids the violation of the overlap assumption, and derive the asymptotic properties of the proposed estimator through the application of double machine learning. Finally, using an instrumental variables approach, we extend the proposed methodology to the settings in which the treatment feature is based on human perception. The proposed GPI methodology is also applicable to text reuse where an LLM is used to regenerate existing texts. We conduct simulation and empirical studies, using the generated text data from an open-source LLM, Llama 3, to illustrate the advantages of our estimator over state-of-the-art causal representation learning algorithms.
♻ ☆ SMARTe: Slot-based Method for Accountable Relational Triple extraction
Relational Triple Extraction (RTE) is a fundamental task in Natural Language Processing (NLP). However, prior research has primarily focused on optimizing model performance, with limited efforts to understand the internal mechanisms driving these models. Many existing methods rely on complex preprocessing to induce specific interactions, often resulting in opaque systems that may not fully align with their theoretical foundations. To address these limitations, we propose SMARTe: a Slot-based Method for Accountable Relational Triple extraction. SMARTe introduces intrinsic interpretability through a slot attention mechanism and frames the task as a set prediction problem. Slot attention consolidates relevant information into distinct slots, ensuring all predictions can be explicitly traced to learned slot representations and the tokens contributing to each predicted relational triple. While emphasizing interpretability, SMARTe achieves performance comparable to state-of-the-art models. Evaluations on the NYT and WebNLG datasets demonstrate that adding interpretability does not compromise performance. Furthermore, we conducted qualitative assessments to showcase the explanations provided by SMARTe, using attention heatmaps that map to their respective tokens. We conclude with a discussion of our findings and propose directions for future research. Our code is available at https://github.com/Chen-XueWen/SMARTe.
♻ ☆ Circuit-tuning: A Mechanistic Approach for Identifying Parameter Redundancy and Fine-tuning Neural Networks
The study of mechanistic interpretability aims to reverse-engineer a model to explain its behaviors. While recent studies have focused on the static mechanism of a certain behavior, the learning dynamics inside a model remain to be explored. In this work, we develop an interpretable fine-tuning method for analyzing the mechanism behind learning. We first introduce the concept of node-level intrinsic dimensionality to describe the learning process of a model in a computational graph. Based on our theory, we propose circuit-tuning, a two-stage algorithm that iteratively builds the minimal subgraph for a specific task and updates the key parameters in a heuristic way. Experimental results confirm the existence of the intrinsic dimensionality at the node level and demonstrate the effectiveness of our method for transparent and interpretable fine-tuning. We visualize and analyze the circuits before, during, and after fine-tuning, providing new insights into the self-organization mechanism of a neural network in the learning process.
♻ ☆ Mixture of Reasonings: Teach Large Language Models to Reason with Adaptive Strategies
Large language models (LLMs) excel in complex tasks through advanced prompting techniques like Chain-of-Thought (CoT) and Tree-of-Thought (ToT), but their reliance on manually crafted, task-specific prompts limits adaptability and efficiency. We introduce Mixture of Reasoning (MoR), a training framework that embeds diverse reasoning strategies into LLMs for autonomous, task-adaptive reasoning without external prompt engineering. MoR has two phases: Thought Generation, creating reasoning chain templates with models like GPT-4o, and SFT Dataset Construction, pairing templates with benchmark datasets for supervised fine-tuning. Our experiments show that MoR significantly enhances performance, with MoR150 achieving 0.730 (2.2% improvement) using CoT prompting and 0.734 (13.5% improvement) compared to baselines. MoR eliminates the need for task-specific prompts, offering a generalizable solution for robust reasoning across diverse tasks.
Computer Vision and Pattern Recognition 100
☆ MultiGen: Using Multimodal Generation in Simulation to Learn Multimodal Policies in Real
Robots must integrate multiple sensory modalities to act effectively in the real world. Yet, learning such multimodal policies at scale remains challenging. Simulation offers a viable solution, but while vision has benefited from high-fidelity simulators, other modalities (e.g. sound) can be notoriously difficult to simulate. As a result, sim-to-real transfer has succeeded primarily in vision-based tasks, with multimodal transfer still largely unrealized. In this work, we tackle these challenges by introducing MultiGen, a framework that integrates large-scale generative models into traditional physics simulators, enabling multisensory simulation. We showcase our framework on the dynamic task of robot pouring, which inherently relies on multimodal feedback. By synthesizing realistic audio conditioned on simulation video, our method enables training on rich audiovisual trajectories -- without any real robot data. We demonstrate effective zero-shot transfer to real-world pouring with novel containers and liquids, highlighting the potential of generative modeling to both simulate hard-to-model modalities and close the multimodal sim-to-real gap.
☆ Point3R: Streaming 3D Reconstruction with Explicit Spatial Pointer Memory
Dense 3D scene reconstruction from an ordered sequence or unordered image collections is a critical step when bringing research in computer vision into practical scenarios. Following the paradigm introduced by DUSt3R, which unifies an image pair densely into a shared coordinate system, subsequent methods maintain an implicit memory to achieve dense 3D reconstruction from more images. However, such implicit memory is limited in capacity and may suffer from information loss of earlier frames. We propose Point3R, an online framework targeting dense streaming 3D reconstruction. To be specific, we maintain an explicit spatial pointer memory directly associated with the 3D structure of the current scene. Each pointer in this memory is assigned a specific 3D position and aggregates scene information nearby in the global coordinate system into a changing spatial feature. Information extracted from the latest frame interacts explicitly with this pointer memory, enabling dense integration of the current observation into the global coordinate system. We design a 3D hierarchical position embedding to promote this interaction and design a simple yet effective fusion mechanism to ensure that our pointer memory is uniform and efficient. Our method achieves competitive or state-of-the-art performance on various tasks with low training costs. Code is available at: https://github.com/YkiWu/Point3R.
comment: Code is available at: https://github.com/YkiWu/Point3R
☆ LiteReality: Graphics-Ready 3D Scene Reconstruction from RGB-D Scans
We propose LiteReality, a novel pipeline that converts RGB-D scans of indoor environments into compact, realistic, and interactive 3D virtual replicas. LiteReality not only reconstructs scenes that visually resemble reality but also supports key features essential for graphics pipelines -- such as object individuality, articulation, high-quality physically based rendering materials, and physically based interaction. At its core, LiteReality first performs scene understanding and parses the results into a coherent 3D layout and objects with the help of a structured scene graph. It then reconstructs the scene by retrieving the most visually similar 3D artist-crafted models from a curated asset database. Next, the Material Painting module enhances realism by recovering high-quality, spatially varying materials. Finally, the reconstructed scene is integrated into a simulation engine with basic physical properties to enable interactive behavior. The resulting scenes are compact, editable, and fully compatible with standard graphics pipelines, making them suitable for applications in AR/VR, gaming, robotics, and digital twins. In addition, LiteReality introduces a training-free object retrieval module that achieves state-of-the-art similarity performance on the Scan2CAD benchmark, along with a robust material painting module capable of transferring appearances from images of any style to 3D assets -- even under severe misalignment, occlusion, and poor lighting. We demonstrate the effectiveness of LiteReality on both real-life scans and public datasets. Project page: https://litereality.github.io; Video: https://www.youtube.com/watch?v=ecK9m3LXg2c
comment: Project Page: https://litereality.github.io; Video: https://www.youtube.com/watch?v=ecK9m3LXg2c&feature=youtu.be
☆ RefTok: Reference-Based Tokenization for Video Generation
Effectively handling temporal redundancy remains a key challenge in learning video models. Prevailing approaches often treat each set of frames independently, failing to effectively capture the temporal dependencies and redundancies inherent in videos. To address this limitation, we introduce RefTok, a novel reference-based tokenization method capable of capturing complex temporal dynamics and contextual information. Our method encodes and decodes sets of frames conditioned on an unquantized reference frame. When decoded, RefTok preserves the continuity of motion and the appearance of objects across frames. For example, RefTok retains facial details despite head motion, reconstructs text correctly, preserves small patterns, and maintains the legibility of handwriting from the context. Across 4 video datasets (K600, UCF-101, BAIR Robot Pushing, and DAVIS), RefTok significantly outperforms current state-of-the-art tokenizers (Cosmos and MAGVIT) and improves all evaluated metrics (PSNR, SSIM, LPIPS) by an average of 36.7% at the same or higher compression ratios. When a video generation model is trained using RefTok's latents on the BAIR Robot Pushing task, the generations not only outperform MAGVIT-B but the larger MAGVIT-L, which has 4x more parameters, across all generation metrics by an average of 27.9%.
☆ Less is Enough: Training-Free Video Diffusion Acceleration via Runtime-Adaptive Caching
Video generation models have demonstrated remarkable performance, yet their broader adoption remains constrained by slow inference speeds and substantial computational costs, primarily due to the iterative nature of the denoising process. Addressing this bottleneck is essential for democratizing advanced video synthesis technologies and enabling their integration into real-world applications. This work proposes EasyCache, a training-free acceleration framework for video diffusion models. EasyCache introduces a lightweight, runtime-adaptive caching mechanism that dynamically reuses previously computed transformation vectors, avoiding redundant computations during inference. Unlike prior approaches, EasyCache requires no offline profiling, pre-computation, or extensive parameter tuning. We conduct comprehensive studies on various large-scale video generation models, including OpenSora, Wan2.1, and HunyuanVideo. Our method achieves leading acceleration performance, reducing inference time by up to 2.1-3.3$\times$ compared to the original baselines while maintaining high visual fidelity with a significant up to 36% PSNR improvement compared to the previous SOTA method. This improvement makes our EasyCache a efficient and highly accessible solution for high-quality video generation in both research and practical applications. The code is available at https://github.com/H-EmbodVis/EasyCache.
comment: The code is made available at https://github.com/H-EmbodVis/EasyCache. Project page: https://h-embodvis.github.io/EasyCache/
☆ Bootstrapping Grounded Chain-of-Thought in Multimodal LLMs for Data-Efficient Model Adaptation ICCV2025
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in interpreting images using natural language. However, without using large-scale datasets for retraining, these models are difficult to adapt to specialized vision tasks, e.g., chart understanding. This problem is caused by a mismatch between pre-training and downstream datasets: pre-training datasets primarily concentrate on scenes and objects but contain limited information about specialized, non-object images, such as charts and tables. In this paper, we share an interesting finding that training an MLLM with Chain-of-Thought (CoT) reasoning data can facilitate model adaptation in specialized vision tasks, especially under data-limited regimes. However, we identify a critical issue within CoT data distilled from pre-trained MLLMs, i.e., the data often contains multiple factual errors in the reasoning steps. To address the problem, we propose Grounded Chain-of-Thought (GCoT), a simple bootstrapping-based approach that aims to inject grounding information (i.e., bounding boxes) into CoT data, essentially making the reasoning steps more faithful to input images. We evaluate our approach on five specialized vision tasks, which cover a variety of visual formats including charts, tables, receipts, and reports. The results demonstrate that under data-limited regimes our approach significantly improves upon fine-tuning and distillation.
comment: Accepted by ICCV2025
☆ AnyI2V: Animating Any Conditional Image with Motion Control ICCV 2025
Recent advancements in video generation, particularly in diffusion models, have driven notable progress in text-to-video (T2V) and image-to-video (I2V) synthesis. However, challenges remain in effectively integrating dynamic motion signals and flexible spatial constraints. Existing T2V methods typically rely on text prompts, which inherently lack precise control over the spatial layout of generated content. In contrast, I2V methods are limited by their dependence on real images, which restricts the editability of the synthesized content. Although some methods incorporate ControlNet to introduce image-based conditioning, they often lack explicit motion control and require computationally expensive training. To address these limitations, we propose AnyI2V, a training-free framework that animates any conditional images with user-defined motion trajectories. AnyI2V supports a broader range of modalities as the conditional image, including data types such as meshes and point clouds that are not supported by ControlNet, enabling more flexible and versatile video generation. Additionally, it supports mixed conditional inputs and enables style transfer and editing via LoRA and text prompts. Extensive experiments demonstrate that the proposed AnyI2V achieves superior performance and provides a new perspective in spatial- and motion-controlled video generation. Code is available at https://henghuiding.com/AnyI2V/.
comment: ICCV 2025, Project Page: https://henghuiding.com/AnyI2V/
☆ Visual Contextual Attack: Jailbreaking MLLMs with Image-Driven Context Injection
With the emergence of strong visual-language capabilities, multimodal large language models (MLLMs) have demonstrated tremendous potential for real-world applications. However, the security vulnerabilities exhibited by the visual modality pose significant challenges to deploying such models in open-world environments. Recent studies have successfully induced harmful responses from target MLLMs by encoding harmful textual semantics directly into visual inputs. However, in these approaches, the visual modality primarily serves as a trigger for unsafe behavior, often exhibiting semantic ambiguity and lacking grounding in realistic scenarios. In this work, we define a novel setting: visual-centric jailbreak, where visual information serves as a necessary component in constructing a complete and realistic jailbreak context. Building on this setting, we propose the VisCo (Visual Contextual) Attack. VisCo fabricates contextual dialogue using four distinct visual-focused strategies, dynamically generating auxiliary images when necessary to construct a visual-centric jailbreak scenario. To maximize attack effectiveness, it incorporates automatic toxicity obfuscation and semantic refinement to produce a final attack prompt that reliably triggers harmful responses from the target black-box MLLMs. Specifically, VisCo achieves a toxicity score of 4.78 and an Attack Success Rate (ASR) of 85% on MM-SafetyBench against GPT-4o, significantly outperforming the baseline, which performs a toxicity score of 2.48 and an ASR of 22.2%. The code is available at https://github.com/Dtc7w3PQ/Visco-Attack.
comment: 16 pages
☆ USAD: An Unsupervised Data Augmentation Spatio-Temporal Attention Diffusion Network
The primary objective of human activity recognition (HAR) is to infer ongoing human actions from sensor data, a task that finds broad applications in health monitoring, safety protection, and sports analysis. Despite proliferating research, HAR still faces key challenges, including the scarcity of labeled samples for rare activities, insufficient extraction of high-level features, and suboptimal model performance on lightweight devices. To address these issues, this paper proposes a comprehensive optimization approach centered on multi-attention interaction mechanisms. First, an unsupervised, statistics-guided diffusion model is employed to perform data augmentation, thereby alleviating the problems of labeled data scarcity and severe class imbalance. Second, a multi-branch spatio-temporal interaction network is designed, which captures multi-scale features of sequential data through parallel residual branches with 3*3, 5*5, and 7*7 convolutional kernels. Simultaneously, temporal attention mechanisms are incorporated to identify critical time points, while spatial attention enhances inter-sensor interactions. A cross-branch feature fusion unit is further introduced to improve the overall feature representation capability. Finally, an adaptive multi-loss function fusion strategy is integrated, allowing for dynamic adjustment of loss weights and overall model optimization. Experimental results on three public datasets, WISDM, PAMAP2, and OPPORTUNITY, demonstrate that the proposed unsupervised data augmentation spatio-temporal attention diffusion network (USAD) achieves accuracies of 98.84%, 93.81%, and 80.92% respectively, significantly outperforming existing approaches. Furthermore, practical deployment on embedded devices verifies the efficiency and feasibility of the proposed method.
☆ Confidence-driven Gradient Modulation for Multimodal Human Activity Recognition: A Dynamic Contrastive Dual-Path Learning Approach
Sensor-based Human Activity Recognition (HAR) is a core technology that enables intelligent systems to perceive and interact with their environment. However, multimodal HAR systems still encounter key challenges, such as difficulties in cross-modal feature alignment and imbalanced modality contributions. To address these issues, we propose a novel framework called the Dynamic Contrastive Dual-Path Network (DCDP-HAR). The framework comprises three key components. First, a dual-path feature extraction architecture is employed, where ResNet and DenseNet branches collaboratively process multimodal sensor data. Second, a multi-stage contrastive learning mechanism is introduced to achieve progressive alignment from local perception to semantic abstraction. Third, we present a confidence-driven gradient modulation strategy that dynamically monitors and adjusts the learning intensity of each modality branch during backpropagation, effectively alleviating modality competition. In addition, a momentum-based gradient accumulation strategy is adopted to enhance training stability. We conduct ablation studies to validate the effectiveness of each component and perform extensive comparative experiments on four public benchmark datasets.
☆ LangScene-X: Reconstruct Generalizable 3D Language-Embedded Scenes with TriMap Video Diffusion
Recovering 3D structures with open-vocabulary scene understanding from 2D images is a fundamental but daunting task. Recent developments have achieved this by performing per-scene optimization with embedded language information. However, they heavily rely on the calibrated dense-view reconstruction paradigm, thereby suffering from severe rendering artifacts and implausible semantic synthesis when limited views are available. In this paper, we introduce a novel generative framework, coined LangScene-X, to unify and generate 3D consistent multi-modality information for reconstruction and understanding. Powered by the generative capability of creating more consistent novel observations, we can build generalizable 3D language-embedded scenes from only sparse views. Specifically, we first train a TriMap video diffusion model that can generate appearance (RGBs), geometry (normals), and semantics (segmentation maps) from sparse inputs through progressive knowledge integration. Furthermore, we propose a Language Quantized Compressor (LQC), trained on large-scale image datasets, to efficiently encode language embeddings, enabling cross-scene generalization without per-scene retraining. Finally, we reconstruct the language surface fields by aligning language information onto the surface of 3D scenes, enabling open-ended language queries. Extensive experiments on real-world data demonstrate the superiority of our LangScene-X over state-of-the-art methods in terms of quality and generalizability. Project Page: https://liuff19.github.io/LangScene-X.
comment: Project page: https://liuff19.github.io/LangScene-X
☆ HyperGaussians: High-Dimensional Gaussian Splatting for High-Fidelity Animatable Face Avatars
We introduce HyperGaussians, a novel extension of 3D Gaussian Splatting for high-quality animatable face avatars. Creating such detailed face avatars from videos is a challenging problem and has numerous applications in augmented and virtual reality. While tremendous successes have been achieved for static faces, animatable avatars from monocular videos still fall in the uncanny valley. The de facto standard, 3D Gaussian Splatting (3DGS), represents a face through a collection of 3D Gaussian primitives. 3DGS excels at rendering static faces, but the state-of-the-art still struggles with nonlinear deformations, complex lighting effects, and fine details. While most related works focus on predicting better Gaussian parameters from expression codes, we rethink the 3D Gaussian representation itself and how to make it more expressive. Our insights lead to a novel extension of 3D Gaussians to high-dimensional multivariate Gaussians, dubbed 'HyperGaussians'. The higher dimensionality increases expressivity through conditioning on a learnable local embedding. However, splatting HyperGaussians is computationally expensive because it requires inverting a high-dimensional covariance matrix. We solve this by reparameterizing the covariance matrix, dubbed the 'inverse covariance trick'. This trick boosts the efficiency so that HyperGaussians can be seamlessly integrated into existing models. To demonstrate this, we plug in HyperGaussians into the state-of-the-art in fast monocular face avatars: FlashAvatar. Our evaluation on 19 subjects from 4 face datasets shows that HyperGaussians outperform 3DGS numerically and visually, particularly for high-frequency details like eyeglass frames, teeth, complex facial movements, and specular reflections.
comment: Project page: https://gserifi.github.io/HyperGaussians
☆ No time to train! Training-Free Reference-Based Instance Segmentation
The performance of image segmentation models has historically been constrained by the high cost of collecting large-scale annotated data. The Segment Anything Model (SAM) alleviates this original problem through a promptable, semantics-agnostic, segmentation paradigm and yet still requires manual visual-prompts or complex domain-dependent prompt-generation rules to process a new image. Towards reducing this new burden, our work investigates the task of object segmentation when provided with, alternatively, only a small set of reference images. Our key insight is to leverage strong semantic priors, as learned by foundation models, to identify corresponding regions between a reference and a target image. We find that correspondences enable automatic generation of instance-level segmentation masks for downstream tasks and instantiate our ideas via a multi-stage, training-free method incorporating (1) memory bank construction; (2) representation aggregation and (3) semantic-aware feature matching. Our experiments show significant improvements on segmentation metrics, leading to state-of-the-art performance on COCO FSOD (36.8% nAP), PASCAL VOC Few-Shot (71.2% nAP50) and outperforming existing training-free approaches on the Cross-Domain FSOD benchmark (22.4% nAP).
comment: Preprint
☆ RichControl: Structure- and Appearance-Rich Training-Free Spatial Control for Text-to-Image Generation
Text-to-image (T2I) diffusion models have shown remarkable success in generating high-quality images from text prompts. Recent efforts extend these models to incorporate conditional images (e.g., depth or pose maps) for fine-grained spatial control. Among them, feature injection methods have emerged as a training-free alternative to traditional fine-tuning approaches. However, they often suffer from structural misalignment, condition leakage, and visual artifacts, especially when the condition image diverges significantly from natural RGB distributions. By revisiting existing methods, we identify a core limitation: the synchronous injection of condition features fails to account for the trade-off between domain alignment and structural preservation during denoising. Inspired by this observation, we propose a flexible feature injection framework that decouples the injection timestep from the denoising process. At its core is a structure-rich injection module, which enables the model to better adapt to the evolving interplay between alignment and structure preservation throughout the diffusion steps, resulting in more faithful structural generation. In addition, we introduce appearance-rich prompting and a restart refinement strategy to further enhance appearance control and visual quality. Together, these designs enable training-free generation that is both structure-rich and appearance-rich. Extensive experiments show that our approach achieves state-of-the-art performance across diverse zero-shot conditioning scenarios.
☆ From Long Videos to Engaging Clips: A Human-Inspired Video Editing Framework with Multimodal Narrative Understanding
The rapid growth of online video content, especially on short video platforms, has created a growing demand for efficient video editing techniques that can condense long-form videos into concise and engaging clips. Existing automatic editing methods predominantly rely on textual cues from ASR transcripts and end-to-end segment selection, often neglecting the rich visual context and leading to incoherent outputs. In this paper, we propose a human-inspired automatic video editing framework (HIVE) that leverages multimodal narrative understanding to address these limitations. Our approach incorporates character extraction, dialogue analysis, and narrative summarization through multimodal large language models, enabling a holistic understanding of the video content. To further enhance coherence, we apply scene-level segmentation and decompose the editing process into three subtasks: highlight detection, opening/ending selection, and pruning of irrelevant content. To facilitate research in this area, we introduce DramaAD, a novel benchmark dataset comprising over 800 short drama episodes and 500 professionally edited advertisement clips. Experimental results demonstrate that our framework consistently outperforms existing baselines across both general and advertisement-oriented editing tasks, significantly narrowing the quality gap between automatic and human-edited videos.
☆ From Pixels to Damage Severity: Estimating Earthquake Impacts Using Semantic Segmentation of Social Media Images
In the aftermath of earthquakes, social media images have become a crucial resource for disaster reconnaissance, providing immediate insights into the extent of damage. Traditional approaches to damage severity assessment in post-earthquake social media images often rely on classification methods, which are inherently subjective and incapable of accounting for the varying extents of damage within an image. Addressing these limitations, this study proposes a novel approach by framing damage severity assessment as a semantic segmentation problem, aiming for a more objective analysis of damage in earthquake-affected areas. The methodology involves the construction of a segmented damage severity dataset, categorizing damage into three degrees: undamaged structures, damaged structures, and debris. Utilizing this dataset, the study fine-tunes a SegFormer model to generate damage severity segmentations for post-earthquake social media images. Furthermore, a new damage severity scoring system is introduced, quantifying damage by considering the varying degrees of damage across different areas within images, adjusted for depth estimation. The application of this approach allows for the quantification of damage severity in social media images in a more objective and comprehensive manner. By providing a nuanced understanding of damage, this study enhances the ability to offer precise guidance to disaster reconnaissance teams, facilitating more effective and targeted response efforts in the aftermath of earthquakes.
☆ Grounding Intelligence in Movement
Recent advances in machine learning have dramatically improved our ability to model language, vision, and other high-dimensional data, yet they continue to struggle with one of the most fundamental aspects of biological systems: movement. Across neuroscience, medicine, robotics, and ethology, movement is essential for interpreting behavior, predicting intent, and enabling interaction. Despite its core significance in our intelligence, movement is often treated as an afterthought rather than as a rich and structured modality in its own right. This reflects a deeper fragmentation in how movement data is collected and modeled, often constrained by task-specific goals and domain-specific assumptions. But movement is not domain-bound. It reflects shared physical constraints, conserved morphological structures, and purposeful dynamics that cut across species and settings. We argue that movement should be treated as a primary modeling target for AI. It is inherently structured and grounded in embodiment and physics. This structure, often allowing for compact, lower-dimensional representations (e.g., pose), makes it more interpretable and computationally tractable to model than raw, high-dimensional sensory inputs. Developing models that can learn from and generalize across diverse movement data will not only advance core capabilities in generative modeling and control, but also create a shared foundation for understanding behavior across biological and artificial systems. Movement is not just an outcome, it is a window into how intelligent systems engage with the world.
comment: 9 pages, 2 figures
☆ Partial Weakly-Supervised Oriented Object Detection
The growing demand for oriented object detection (OOD) across various domains has driven significant research in this area. However, the high cost of dataset annotation remains a major concern. Current mainstream OOD algorithms can be mainly categorized into three types: (1) fully supervised methods using complete oriented bounding box (OBB) annotations, (2) semi-supervised methods using partial OBB annotations, and (3) weakly supervised methods using weak annotations such as horizontal boxes or points. However, these algorithms inevitably increase the cost of models in terms of annotation speed or annotation cost. To address this issue, we propose:(1) the first Partial Weakly-Supervised Oriented Object Detection (PWOOD) framework based on partially weak annotations (horizontal boxes or single points), which can efficiently leverage large amounts of unlabeled data, significantly outperforming weakly supervised algorithms trained with partially weak annotations, also offers a lower cost solution; (2) Orientation-and-Scale-aware Student (OS-Student) model capable of learning orientation and scale information with only a small amount of orientation-agnostic or scale-agnostic weak annotations; and (3) Class-Agnostic Pseudo-Label Filtering strategy (CPF) to reduce the model's sensitivity to static filtering thresholds. Comprehensive experiments on DOTA-v1.0/v1.5/v2.0 and DIOR datasets demonstrate that our PWOOD framework performs comparably to, or even surpasses, traditional semi-supervised algorithms.
comment: 10 pages, 5 figures, 4 tables, source code: https://github.com/VisionXLab/PWOOD
☆ Linear Attention with Global Context: A Multipole Attention Mechanism for Vision and Physics ICCV 2025
Transformers have become the de facto standard for a wide range of tasks, from image classification to physics simulations. Despite their impressive performance, the quadratic complexity of standard Transformers in both memory and time with respect to the input length makes them impractical for processing high-resolution inputs. Therefore, several variants have been proposed, the most successful relying on patchification, downsampling, or coarsening techniques, often at the cost of losing the finest-scale details. In this work, we take a different approach. Inspired by state-of-the-art techniques in $n$-body numerical simulations, we cast attention as an interaction problem between grid points. We introduce the Multipole Attention Neural Operator (MANO), which computes attention in a distance-based multiscale fashion. MANO maintains, in each attention head, a global receptive field and achieves linear time and memory complexity with respect to the number of grid points. Empirical results on image classification and Darcy flows demonstrate that MANO rivals state-of-the-art models such as ViT and Swin Transformer, while reducing runtime and peak memory usage by orders of magnitude. We open source our code for reproducibility at https://github.com/AlexColagrande/MANO.
comment: Accepted at ECLR Workshop at ICCV 2025
☆ DexVLG: Dexterous Vision-Language-Grasp Model at Scale
As large models gain traction, vision-language-action (VLA) systems are enabling robots to tackle increasingly complex tasks. However, limited by the difficulty of data collection, progress has mainly focused on controlling simple gripper end-effectors. There is little research on functional grasping with large models for human-like dexterous hands. In this paper, we introduce DexVLG, a large Vision-Language-Grasp model for Dexterous grasp pose prediction aligned with language instructions using single-view RGBD input. To accomplish this, we generate a dataset of 170 million dexterous grasp poses mapped to semantic parts across 174,000 objects in simulation, paired with detailed part-level captions. This large-scale dataset, named DexGraspNet 3.0, is used to train a VLM and flow-matching-based pose head capable of producing instruction-aligned grasp poses for tabletop objects. To assess DexVLG's performance, we create benchmarks in physics-based simulations and conduct real-world experiments. Extensive testing demonstrates DexVLG's strong zero-shot generalization capabilities-achieving over 76% zero-shot execution success rate and state-of-the-art part-grasp accuracy in simulation-and successful part-aligned grasps on physical objects in real-world scenarios.
☆ Prompt learning with bounding box constraints for medical image segmentation
Pixel-wise annotations are notoriously labourious and costly to obtain in the medical domain. To mitigate this burden, weakly supervised approaches based on bounding box annotations-much easier to acquire-offer a practical alternative. Vision foundation models have recently shown noteworthy segmentation performance when provided with prompts such as points or bounding boxes. Prompt learning exploits these models by adapting them to downstream tasks and automating segmentation, thereby reducing user intervention. However, existing prompt learning approaches depend on fully annotated segmentation masks. This paper proposes a novel framework that combines the representational power of foundation models with the annotation efficiency of weakly supervised segmentation. More specifically, our approach automates prompt generation for foundation models using only bounding box annotations. Our proposed optimization scheme integrates multiple constraints derived from box annotations with pseudo-labels generated by the prompted foundation model. Extensive experiments across multimodal datasets reveal that our weakly supervised method achieves an average Dice score of 84.90% in a limited data setting, outperforming existing fully-supervised and weakly-supervised approaches. The code is available at https://github.com/Minimel/box-prompt-learning-VFM.git
comment: Accepted to IEEE Transactions on Biomedical Engineering (TMBE), 14 pages
☆ FairHuman: Boosting Hand and Face Quality in Human Image Generation with Minimum Potential Delay Fairness in Diffusion Models ICCV 2025
Image generation has achieved remarkable progress with the development of large-scale text-to-image models, especially diffusion-based models. However, generating human images with plausible details, such as faces or hands, remains challenging due to insufficient supervision of local regions during training. To address this issue, we propose FairHuman, a multi-objective fine-tuning approach designed to enhance both global and local generation quality fairly. Specifically, we first construct three learning objectives: a global objective derived from the default diffusion objective function and two local objectives for hands and faces based on pre-annotated positional priors. Subsequently, we derive the optimal parameter updating strategy under the guidance of the Minimum Potential Delay (MPD) criterion, thereby attaining fairness-ware optimization for this multi-objective problem. Based on this, our proposed method can achieve significant improvements in generating challenging local details while maintaining overall quality. Extensive experiments showcase the effectiveness of our method in improving the performance of human image generation under different scenarios.
comment: ICCV 2025
☆ UniMC: Taming Diffusion Transformer for Unified Keypoint-Guided Multi-Class Image Generation
Although significant advancements have been achieved in the progress of keypoint-guided Text-to-Image diffusion models, existing mainstream keypoint-guided models encounter challenges in controlling the generation of more general non-rigid objects beyond humans (e.g., animals). Moreover, it is difficult to generate multiple overlapping humans and animals based on keypoint controls solely. These challenges arise from two main aspects: the inherent limitations of existing controllable methods and the lack of suitable datasets. First, we design a DiT-based framework, named UniMC, to explore unifying controllable multi-class image generation. UniMC integrates instance- and keypoint-level conditions into compact tokens, incorporating attributes such as class, bounding box, and keypoint coordinates. This approach overcomes the limitations of previous methods that struggled to distinguish instances and classes due to their reliance on skeleton images as conditions. Second, we propose HAIG-2.9M, a large-scale, high-quality, and diverse dataset designed for keypoint-guided human and animal image generation. HAIG-2.9M includes 786K images with 2.9M instances. This dataset features extensive annotations such as keypoints, bounding boxes, and fine-grained captions for both humans and animals, along with rigorous manual inspection to ensure annotation accuracy. Extensive experiments demonstrate the high quality of HAIG-2.9M and the effectiveness of UniMC, particularly in heavy occlusions and multi-class scenarios.
☆ SIU3R: Simultaneous Scene Understanding and 3D Reconstruction Beyond Feature Alignment
Simultaneous understanding and 3D reconstruction plays an important role in developing end-to-end embodied intelligent systems. To achieve this, recent approaches resort to 2D-to-3D feature alignment paradigm, which leads to limited 3D understanding capability and potential semantic information loss. In light of this, we propose SIU3R, the first alignment-free framework for generalizable simultaneous understanding and 3D reconstruction from unposed images. Specifically, SIU3R bridges reconstruction and understanding tasks via pixel-aligned 3D representation, and unifies multiple understanding tasks into a set of unified learnable queries, enabling native 3D understanding without the need of alignment with 2D models. To encourage collaboration between the two tasks with shared representation, we further conduct in-depth analyses of their mutual benefits, and propose two lightweight modules to facilitate their interaction. Extensive experiments demonstrate that our method achieves state-of-the-art performance not only on the individual tasks of 3D reconstruction and understanding, but also on the task of simultaneous understanding and 3D reconstruction, highlighting the advantages of our alignment-free framework and the effectiveness of the mutual benefit designs.
☆ CanonSwap: High-Fidelity and Consistent Video Face Swapping via Canonical Space Modulation ICCV
Video face swapping aims to address two primary challenges: effectively transferring the source identity to the target video and accurately preserving the dynamic attributes of the target face, such as head poses, facial expressions, lip-sync, \etc. Existing methods mainly focus on achieving high-quality identity transfer but often fall short in maintaining the dynamic attributes of the target face, leading to inconsistent results. We attribute this issue to the inherent coupling of facial appearance and motion in videos. To address this, we propose CanonSwap, a novel video face-swapping framework that decouples motion information from appearance information. Specifically, CanonSwap first eliminates motion-related information, enabling identity modification within a unified canonical space. Subsequently, the swapped feature is reintegrated into the original video space, ensuring the preservation of the target face's dynamic attributes. To further achieve precise identity transfer with minimal artifacts and enhanced realism, we design a Partial Identity Modulation module that adaptively integrates source identity features using a spatial mask to restrict modifications to facial regions. Additionally, we introduce several fine-grained synchronization metrics to comprehensively evaluate the performance of video face swapping methods. Extensive experiments demonstrate that our method significantly outperforms existing approaches in terms of visual quality, temporal consistency, and identity preservation. Our project page are publicly available at https://luoxyhappy.github.io/CanonSwap/.
comment: ICCV Accepted
☆ APT: Adaptive Personalized Training for Diffusion Models with Limited Data CVPR 2025
Personalizing diffusion models using limited data presents significant challenges, including overfitting, loss of prior knowledge, and degradation of text alignment. Overfitting leads to shifts in the noise prediction distribution, disrupting the denoising trajectory and causing the model to lose semantic coherence. In this paper, we propose Adaptive Personalized Training (APT), a novel framework that mitigates overfitting by employing adaptive training strategies and regularizing the model's internal representations during fine-tuning. APT consists of three key components: (1) Adaptive Training Adjustment, which introduces an overfitting indicator to detect the degree of overfitting at each time step bin and applies adaptive data augmentation and adaptive loss weighting based on this indicator; (2)Representation Stabilization, which regularizes the mean and variance of intermediate feature maps to prevent excessive shifts in noise prediction; and (3) Attention Alignment for Prior Knowledge Preservation, which aligns the cross-attention maps of the fine-tuned model with those of the pretrained model to maintain prior knowledge and semantic coherence. Through extensive experiments, we demonstrate that APT effectively mitigates overfitting, preserves prior knowledge, and outperforms existing methods in generating high-quality, diverse images with limited reference data.
comment: CVPR 2025 camera ready. Project page: https://lgcnsai.github.io/apt
☆ Learning few-step posterior samplers by unfolding and distillation of diffusion models
Diffusion models (DMs) have emerged as powerful image priors in Bayesian computational imaging. Two primary strategies have been proposed for leveraging DMs in this context: Plug-and-Play methods, which are zero-shot and highly flexible but rely on approximations; and specialized conditional DMs, which achieve higher accuracy and faster inference for specific tasks through supervised training. In this work, we introduce a novel framework that integrates deep unfolding and model distillation to transform a DM image prior into a few-step conditional model for posterior sampling. A central innovation of our approach is the unfolding of a Markov chain Monte Carlo (MCMC) algorithm - specifically, the recently proposed LATINO Langevin sampler (Spagnoletti et al., 2025) - representing the first known instance of deep unfolding applied to a Monte Carlo sampling scheme. We demonstrate our proposed unfolded and distilled samplers through extensive experiments and comparisons with the state of the art, where they achieve excellent accuracy and computational efficiency, while retaining the flexibility to adapt to variations in the forward model at inference time.
comment: 28 pages, 16 figures, 10 tables
☆ Real-time Image-based Lighting of Glints
Image-based lighting is a widely used technique to reproduce shading under real-world lighting conditions, especially in real-time rendering applications. A particularly challenging scenario involves materials exhibiting a sparkling or glittering appearance, caused by discrete microfacets scattered across their surface. In this paper, we propose an efficient approximation for image-based lighting of glints, enabling fully dynamic material properties and environment maps. Our novel approach is grounded in real-time glint rendering under area light illumination and employs standard environment map filtering techniques. Crucially, our environment map filtering process is sufficiently fast to be executed on a per-frame basis. Our method assumes that the environment map is partitioned into few homogeneous regions of constant radiance. By filtering the corresponding indicator functions with the normal distribution function, we obtain the probabilities for individual microfacets to reflect light from each region. During shading, these probabilities are utilized to hierarchically sample a multinomial distribution, facilitated by our novel dual-gated Gaussian approximation of binomial distributions. We validate that our real-time approximation is close to ground-truth renderings for a range of material properties and lighting conditions, and demonstrate robust and stable performance, with little overhead over rendering glints from a single directional light. Compared to rendering smooth materials without glints, our approach requires twice as much memory to store the prefiltered environment map.
☆ MISCGrasp: Leveraging Multiple Integrated Scales and Contrastive Learning for Enhanced Volumetric Grasping
Robotic grasping faces challenges in adapting to objects with varying shapes and sizes. In this paper, we introduce MISCGrasp, a volumetric grasping method that integrates multi-scale feature extraction with contrastive feature enhancement for self-adaptive grasping. We propose a query-based interaction between high-level and low-level features through the Insight Transformer, while the Empower Transformer selectively attends to the highest-level features, which synergistically strikes a balance between focusing on fine geometric details and overall geometric structures. Furthermore, MISCGrasp utilizes multi-scale contrastive learning to exploit similarities among positive grasp samples, ensuring consistency across multi-scale features. Extensive experiments in both simulated and real-world environments demonstrate that MISCGrasp outperforms baseline and variant methods in tabletop decluttering tasks. More details are available at https://miscgrasp.github.io/.
comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2025
☆ Embedding-Based Federated Data Sharing via Differentially Private Conditional VAEs MICCAI 2025
Deep Learning (DL) has revolutionized medical imaging, yet its adoption is constrained by data scarcity and privacy regulations, limiting access to diverse datasets. Federated Learning (FL) enables decentralized training but suffers from high communication costs and is often restricted to a single downstream task, reducing flexibility. We propose a data-sharing method via Differentially Private (DP) generative models. By adopting foundation models, we extract compact, informative embeddings, reducing redundancy and lowering computational overhead. Clients collaboratively train a Differentially Private Conditional Variational Autoencoder (DP-CVAE) to model a global, privacy-aware data distribution, supporting diverse downstream tasks. Our approach, validated across multiple feature extractors, enhances privacy, scalability, and efficiency, outperforming traditional FL classifiers while ensuring differential privacy. Additionally, DP-CVAE produces higher-fidelity embeddings than DP-CGAN while requiring $5{\times}$ fewer parameters.
comment: Accepted to MICCAI 2025
☆ MEGANet-W: A Wavelet-Driven Edge-Guided Attention Framework for Weak Boundary Polyp Detection
Colorectal polyp segmentation is critical for early detection of colorectal cancer, yet weak and low contrast boundaries significantly limit automated accuracy. Existing deep models either blur fine edge details or rely on handcrafted filters that perform poorly under variable imaging conditions. We propose MEGANet-W, a Wavelet Driven Edge Guided Attention Network that injects directional, parameter free Haar wavelet edge maps into each decoder stage to recalibrate semantic features. Our two main contributions are: (1) a two-level Haar wavelet head for multi orientation edge extraction; and (2) Wavelet Edge Guided Attention (WEGA) modules that fuse wavelet cues with reverse and input branches. On five public polyp datasets, MEGANetW consistently outperforms existing methods, improving mIoU by up to 2.3% and mDice by 1.2%, while introducing no additional learnable parameters.
comment: 7 pages, 3 figures
☆ AIGI-Holmes: Towards Explainable and Generalizable AI-Generated Image Detection via Multimodal Large Language Models ICCV 2025
The rapid development of AI-generated content (AIGC) technology has led to the misuse of highly realistic AI-generated images (AIGI) in spreading misinformation, posing a threat to public information security. Although existing AIGI detection techniques are generally effective, they face two issues: 1) a lack of human-verifiable explanations, and 2) a lack of generalization in the latest generation technology. To address these issues, we introduce a large-scale and comprehensive dataset, Holmes-Set, which includes the Holmes-SFTSet, an instruction-tuning dataset with explanations on whether images are AI-generated, and the Holmes-DPOSet, a human-aligned preference dataset. Our work introduces an efficient data annotation method called the Multi-Expert Jury, enhancing data generation through structured MLLM explanations and quality control via cross-model evaluation, expert defect filtering, and human preference modification. In addition, we propose Holmes Pipeline, a meticulously designed three-stage training framework comprising visual expert pre-training, supervised fine-tuning, and direct preference optimization. Holmes Pipeline adapts multimodal large language models (MLLMs) for AIGI detection while generating human-verifiable and human-aligned explanations, ultimately yielding our model AIGI-Holmes. During the inference stage, we introduce a collaborative decoding strategy that integrates the model perception of the visual expert with the semantic reasoning of MLLMs, further enhancing the generalization capabilities. Extensive experiments on three benchmarks validate the effectiveness of our AIGI-Holmes.
comment: Accepted to ICCV 2025
☆ Fair Deepfake Detectors Can Generalize
Deepfake detection models face two critical challenges: generalization to unseen manipulations and demographic fairness among population groups. However, existing approaches often demonstrate that these two objectives are inherently conflicting, revealing a trade-off between them. In this paper, we, for the first time, uncover and formally define a causal relationship between fairness and generalization. Building on the back-door adjustment, we show that controlling for confounders (data distribution and model capacity) enables improved generalization via fairness interventions. Motivated by this insight, we propose Demographic Attribute-insensitive Intervention Detection (DAID), a plug-and-play framework composed of: i) Demographic-aware data rebalancing, which employs inverse-propensity weighting and subgroup-wise feature normalization to neutralize distributional biases; and ii) Demographic-agnostic feature aggregation, which uses a novel alignment loss to suppress sensitive-attribute signals. Across three cross-domain benchmarks, DAID consistently achieves superior performance in both fairness and generalization compared to several state-of-the-art detectors, validating both its theoretical foundation and practical effectiveness.
comment: 14 pages, version 1
☆ L-VAE: Variational Auto-Encoder with Learnable Beta for Disentangled Representation
In this paper, we propose a novel model called Learnable VAE (L-VAE), which learns a disentangled representation together with the hyperparameters of the cost function. L-VAE can be considered as an extension of \b{eta}-VAE, wherein the hyperparameter, \b{eta}, is empirically adjusted. L-VAE mitigates the limitations of \b{eta}-VAE by learning the relative weights of the terms in the loss function to control the dynamic trade-off between disentanglement and reconstruction losses. In the proposed model, the weight of the loss terms and the parameters of the model architecture are learned concurrently. An additional regularization term is added to the loss function to prevent bias towards either reconstruction or disentanglement losses. Experimental analyses show that the proposed L-VAE finds an effective balance between reconstruction fidelity and disentangling the latent dimensions. Comparisons of the proposed L-VAE against \b{eta}-VAE, VAE, ControlVAE, DynamicVAE, and {\sigma}-VAE on datasets, such as dSprites, MPI3D-complex, Falcor3D, and Isaac3D reveals that L-VAE consistently provides the best or the second best performances measured by a set of disentanglement metrics. Moreover, qualitative experiments on CelebA dataset, confirm the success of the L-VAE model for disentangling the facial attributes.
comment: The paper is under revision at Machine Vision and Applications
☆ Addressing Camera Sensors Faults in Vision-Based Navigation: Simulation and Dataset Development
The increasing importance of Vision-Based Navigation (VBN) algorithms in space missions raises numerous challenges in ensuring their reliability and operational robustness. Sensor faults can lead to inaccurate outputs from navigation algorithms or even complete data processing faults, potentially compromising mission objectives. Artificial Intelligence (AI) offers a powerful solution for detecting such faults, overcoming many of the limitations associated with traditional fault detection methods. However, the primary obstacle to the adoption of AI in this context is the lack of sufficient and representative datasets containing faulty image data. This study addresses these challenges by focusing on an interplanetary exploration mission scenario. A comprehensive analysis of potential fault cases in camera sensors used within the VBN pipeline is presented. The causes and effects of these faults are systematically characterized, including their impact on image quality and navigation algorithm performance, as well as commonly employed mitigation strategies. To support this analysis, a simulation framework is introduced to recreate faulty conditions in synthetically generated images, enabling a systematic and controlled reproduction of faulty data. The resulting dataset of fault-injected images provides a valuable tool for training and testing AI-based fault detection algorithms. The final link to the dataset will be added after an embargo period. For peer-reviewers, this private link is available.
comment: Submitted to Acta Astronautica
☆ AuroraLong: Bringing RNNs Back to Efficient Open-Ended Video Understanding ICCV 2025
The challenge of long video understanding lies in its high computational complexity and prohibitive memory cost, since the memory and computation required by transformer-based LLMs scale quadratically with input sequence length. We propose AuroraLong to address this challenge by replacing the LLM component in MLLMs with a linear RNN language model that handles input sequence of arbitrary length with constant-size hidden states. To further increase throughput and efficiency, we combine visual token merge with linear RNN models by reordering the visual tokens by their sizes in ascending order. Despite having only 2B parameters and being trained exclusively on public data, AuroraLong achieves performance comparable to Transformer-based models of similar size trained on private datasets across multiple video benchmarks. This demonstrates the potential of efficient, linear RNNs to democratize long video understanding by lowering its computational entry barrier. To our best knowledge, we are the first to use a linear RNN based LLM backbone in a LLaVA-like model for open-ended video understanding.
comment: Accepted to ICCV 2025
☆ Structure-aware Semantic Discrepancy and Consistency for 3D Medical Image Self-supervised Learning ICCV25
3D medical image self-supervised learning (mSSL) holds great promise for medical analysis. Effectively supporting broader applications requires considering anatomical structure variations in location, scale, and morphology, which are crucial for capturing meaningful distinctions. However, previous mSSL methods partition images with fixed-size patches, often ignoring the structure variations. In this work, we introduce a novel perspective on 3D medical images with the goal of learning structure-aware representations. We assume that patches within the same structure share the same semantics (semantic consistency) while those from different structures exhibit distinct semantics (semantic discrepancy). Based on this assumption, we propose an mSSL framework named $S^2DC$, achieving Structure-aware Semantic Discrepancy and Consistency in two steps. First, $S^2DC$ enforces distinct representations for different patches to increase semantic discrepancy by leveraging an optimal transport strategy. Second, $S^2DC$ advances semantic consistency at the structural level based on neighborhood similarity distribution. By bridging patch-level and structure-level representations, $S^2DC$ achieves structure-aware representations. Thoroughly evaluated across 10 datasets, 4 tasks, and 3 modalities, our proposed method consistently outperforms the state-of-the-art methods in mSSL.
comment: Accepted by ICCV25
☆ Parametric shape models for vessels learned from segmentations via differentiable voxelization
Vessels are complex structures in the body that have been studied extensively in multiple representations. While voxelization is the most common of them, meshes and parametric models are critical in various applications due to their desirable properties. However, these representations are typically extracted through segmentations and used disjointly from each other. We propose a framework that joins the three representations under differentiable transformations. By leveraging differentiable voxelization, we automatically extract a parametric shape model of the vessels through shape-to-segmentation fitting, where we learn shape parameters from segmentations without the explicit need for ground-truth shape parameters. The vessel is parametrized as centerlines and radii using cubic B-splines, ensuring smoothness and continuity by construction. Meshes are differentiably extracted from the learned shape parameters, resulting in high-fidelity meshes that can be manipulated post-fit. Our method can accurately capture the geometry of complex vessels, as demonstrated by the volumetric fits in experiments on aortas, aneurysms, and brain vessels.
comment: 15 pages, 6 figures
☆ Reconstructing Close Human Interaction with Appearance and Proxemics Reasoning
Due to visual ambiguities and inter-person occlusions, existing human pose estimation methods cannot recover plausible close interactions from in-the-wild videos. Even state-of-the-art large foundation models~(\eg, SAM) cannot accurately distinguish human semantics in such challenging scenarios. In this work, we find that human appearance can provide a straightforward cue to address these obstacles. Based on this observation, we propose a dual-branch optimization framework to reconstruct accurate interactive motions with plausible body contacts constrained by human appearances, social proxemics, and physical laws. Specifically, we first train a diffusion model to learn the human proxemic behavior and pose prior knowledge. The trained network and two optimizable tensors are then incorporated into a dual-branch optimization framework to reconstruct human motions and appearances. Several constraints based on 3D Gaussians, 2D keypoints, and mesh penetrations are also designed to assist the optimization. With the proxemics prior and diverse constraints, our method is capable of estimating accurate interactions from in-the-wild videos captured in complex environments. We further build a dataset with pseudo ground-truth interaction annotations, which may promote future research on pose estimation and human behavior understanding. Experimental results on several benchmarks demonstrate that our method outperforms existing approaches. The code and data are available at https://www.buzhenhuang.com/works/CloseApp.html.
☆ MoGe-2: Accurate Monocular Geometry with Metric Scale and Sharp Details
We propose MoGe-2, an advanced open-domain geometry estimation model that recovers a metric scale 3D point map of a scene from a single image. Our method builds upon the recent monocular geometry estimation approach, MoGe, which predicts affine-invariant point maps with unknown scales. We explore effective strategies to extend MoGe for metric geometry prediction without compromising the relative geometry accuracy provided by the affine-invariant point representation. Additionally, we discover that noise and errors in real data diminish fine-grained detail in the predicted geometry. We address this by developing a unified data refinement approach that filters and completes real data from different sources using sharp synthetic labels, significantly enhancing the granularity of the reconstructed geometry while maintaining the overall accuracy. We train our model on a large corpus of mixed datasets and conducted comprehensive evaluations, demonstrating its superior performance in achieving accurate relative geometry, precise metric scale, and fine-grained detail recovery -- capabilities that no previous methods have simultaneously achieved.
comment: Project page: https://wangrc.site/MoGe2Page/
☆ IMASHRIMP: Automatic White Shrimp (Penaeus vannamei) Biometrical Analysis from Laboratory Images Using Computer Vision and Deep Learning
This paper introduces IMASHRIMP, an adapted system for the automated morphological analysis of white shrimp (Penaeus vannamei}, aimed at optimizing genetic selection tasks in aquaculture. Existing deep learning and computer vision techniques were modified to address the specific challenges of shrimp morphology analysis from RGBD images. IMASHRIMP incorporates two discrimination modules, based on a modified ResNet-50 architecture, to classify images by the point of view and determine rostrum integrity. It is proposed a "two-factor authentication (human and IA)" system, it reduces human error in view classification from 0.97% to 0% and in rostrum detection from 12.46% to 3.64%. Additionally, a pose estimation module was adapted from VitPose to predict 23 key points on the shrimp's skeleton, with separate networks for lateral and dorsal views. A morphological regression module, using a Support Vector Machine (SVM) model, was integrated to convert pixel measurements to centimeter units. Experimental results show that the system effectively reduces human error, achieving a mean average precision (mAP) of 97.94% for pose estimation and a pixel-to-centimeter conversion error of 0.07 (+/- 0.1) cm. IMASHRIMP demonstrates the potential to automate and accelerate shrimp morphological analysis, enhancing the efficiency of genetic selection and contributing to more sustainable aquaculture practices.The code are available at https://github.com/AbiamRemacheGonzalez/ImaShrimp-public
comment: 14 pages, 7 figures
☆ Detecting Multiple Diseases in Multiple Crops Using Deep Learning
India, as a predominantly agrarian economy, faces significant challenges in agriculture, including substantial crop losses caused by diseases, pests, and environmental stress. Early detection and accurate identification of diseases across different crops are critical for improving yield and ensuring food security. This paper proposes a deep learning based solution for detecting multiple diseases in multiple crops, aimed to cover India's diverse agricultural landscape. We first create a unified dataset encompassing images of 17 different crops and 34 different diseases from various available repositories. Proposed deep learning model is trained on this dataset and outperforms the state-of-the-art in terms of accuracy and the number of crops, diseases covered. We achieve a significant detection accuracy, i.e., 99 percent for our unified dataset which is 7 percent more when compared to state-of-the-art handling 14 crops and 26 different diseases only. By improving the number of crops and types of diseases that can be detected, proposed solution aims to provide a better product for Indian farmers.
☆ Automatic Labelling for Low-Light Pedestrian Detection
Pedestrian detection in RGB images is a key task in pedestrian safety, as the most common sensor in autonomous vehicles and advanced driver assistance systems is the RGB camera. A challenge in RGB pedestrian detection, that does not appear to have large public datasets, is low-light conditions. As a solution, in this research, we propose an automated infrared-RGB labeling pipeline. The proposed pipeline consists of 1) Infrared detection, where a fine-tuned model for infrared pedestrian detection is used 2) Label transfer process from the infrared detections to their RGB counterparts 3) Training object detection models using the generated labels for low-light RGB pedestrian detection. The research was performed using the KAIST dataset. For the evaluation, object detection models were trained on the generated autolabels and ground truth labels. When compared on a previously unseen image sequence, the results showed that the models trained on generated labels outperformed the ones trained on ground-truth labels in 6 out of 9 cases for the mAP@50 and mAP@50-95 metrics. The source code for this research is available at https://github.com/BouzoulasDimitrios/IR-RGB-Automated-LowLight-Pedestrian-Labeling
☆ MC-INR: Efficient Encoding of Multivariate Scientific Simulation Data using Meta-Learning and Clustered Implicit Neural Representations
Implicit Neural Representations (INRs) are widely used to encode data as continuous functions, enabling the visualization of large-scale multivariate scientific simulation data with reduced memory usage. However, existing INR-based methods face three main limitations: (1) inflexible representation of complex structures, (2) primarily focusing on single-variable data, and (3) dependence on structured grids. Thus, their performance degrades when applied to complex real-world datasets. To address these limitations, we propose a novel neural network-based framework, MC-INR, which handles multivariate data on unstructured grids. It combines meta-learning and clustering to enable flexible encoding of complex structures. To further improve performance, we introduce a residual-based dynamic re-clustering mechanism that adaptively partitions clusters based on local error. We also propose a branched layer to leverage multivariate data through independent branches simultaneously. Experimental results demonstrate that MC-INR outperforms existing methods on scientific data encoding tasks.
comment: 5 pages
☆ Temporally-Aware Supervised Contrastive Learning for Polyp Counting in Colonoscopy MICCAI 2025
Automated polyp counting in colonoscopy is a crucial step toward automated procedure reporting and quality control, aiming to enhance the cost-effectiveness of colonoscopy screening. Counting polyps in a procedure involves detecting and tracking polyps, and then clustering tracklets that belong to the same polyp entity. Existing methods for polyp counting rely on self-supervised learning and primarily leverage visual appearance, neglecting temporal relationships in both tracklet feature learning and clustering stages. In this work, we introduce a paradigm shift by proposing a supervised contrastive loss that incorporates temporally-aware soft targets. Our approach captures intra-polyp variability while preserving inter-polyp discriminability, leading to more robust clustering. Additionally, we improve tracklet clustering by integrating a temporal adjacency constraint, reducing false positive re-associations between visually similar but temporally distant tracklets. We train and validate our method on publicly available datasets and evaluate its performance with a leave-one-out cross-validation strategy. Results demonstrate a 2.2x reduction in fragmentation rate compared to prior approaches. Our results highlight the importance of temporal awareness in polyp counting, establishing a new state-of-the-art. Code is available at https://github.com/lparolari/temporally-aware-polyp-counting.
comment: Accepted at MICCAI 2025
☆ MedFormer: Hierarchical Medical Vision Transformer with Content-Aware Dual Sparse Selection Attention
Medical image recognition serves as a key way to aid in clinical diagnosis, enabling more accurate and timely identification of diseases and abnormalities. Vision transformer-based approaches have proven effective in handling various medical recognition tasks. However, these methods encounter two primary challenges. First, they are often task-specific and architecture-tailored, limiting their general applicability. Second, they usually either adopt full attention to model long-range dependencies, resulting in high computational costs, or rely on handcrafted sparse attention, potentially leading to suboptimal performance. To tackle these issues, we present MedFormer, an efficient medical vision transformer with two key ideas. First, it employs a pyramid scaling structure as a versatile backbone for various medical image recognition tasks, including image classification and dense prediction tasks such as semantic segmentation and lesion detection. This structure facilitates hierarchical feature representation while reducing the computation load of feature maps, highly beneficial for boosting performance. Second, it introduces a novel Dual Sparse Selection Attention (DSSA) with content awareness to improve computational efficiency and robustness against noise while maintaining high performance. As the core building technique of MedFormer, DSSA is explicitly designed to attend to the most relevant content. In addition, a detailed theoretical analysis has been conducted, demonstrating that MedFormer has superior generality and efficiency in comparison to existing medical vision transformers. Extensive experiments on a variety of imaging modality datasets consistently show that MedFormer is highly effective in enhancing performance across all three above-mentioned medical image recognition tasks. The code is available at https://github.com/XiaZunhui/MedFormer.
comment: 13 pages, 9 figures, 9 tables
☆ CrowdTrack: A Benchmark for Difficult Multiple Pedestrian Tracking in Real Scenarios
Multi-object tracking is a classic field in computer vision. Among them, pedestrian tracking has extremely high application value and has become the most popular research category. Existing methods mainly use motion or appearance information for tracking, which is often difficult in complex scenarios. For the motion information, mutual occlusions between objects often prevent updating of the motion state; for the appearance information, non-robust results are often obtained due to reasons such as only partial visibility of the object or blurred images. Although learning how to perform tracking in these situations from the annotated data is the simplest solution, the existing MOT dataset fails to satisfy this solution. Existing methods mainly have two drawbacks: relatively simple scene composition and non-realistic scenarios. Although some of the video sequences in existing dataset do not have the above-mentioned drawbacks, the number is far from adequate for research purposes. To this end, we propose a difficult large-scale dataset for multi-pedestrian tracking, shot mainly from the first-person view and all from real-life complex scenarios. We name it ``CrowdTrack'' because there are numerous objects in most of the sequences. Our dataset consists of 33 videos, containing a total of 5,185 trajectories. Each object is annotated with a complete bounding box and a unique object ID. The dataset will provide a platform to facilitate the development of algorithms that remain effective in complex situations. We analyzed the dataset comprehensively and tested multiple SOTA models on our dataset. Besides, we analyzed the performance of the foundation models on our dataset. The dataset and project code is released at: https://github.com/loseevaya/CrowdTrack .
☆ Mesh Silksong: Auto-Regressive Mesh Generation as Weaving Silk
We introduce Mesh Silksong, a compact and efficient mesh representation tailored to generate the polygon mesh in an auto-regressive manner akin to silk weaving. Existing mesh tokenization methods always produce token sequences with repeated vertex tokens, wasting the network capability. Therefore, our approach tokenizes mesh vertices by accessing each mesh vertice only once, reduces the token sequence's redundancy by 50\%, and achieves a state-of-the-art compression rate of approximately 22\%. Furthermore, Mesh Silksong produces polygon meshes with superior geometric properties, including manifold topology, watertight detection, and consistent face normals, which are critical for practical applications. Experimental results demonstrate the effectiveness of our approach, showcasing not only intricate mesh generation but also significantly improved geometric integrity.
comment: 9 pages main text, 14 pages appendix, 23 figures
☆ Weakly-supervised Contrastive Learning with Quantity Prompts for Moving Infrared Small Target Detection
Different from general object detection, moving infrared small target detection faces huge challenges due to tiny target size and weak background contrast.Currently, most existing methods are fully-supervised, heavily relying on a large number of manual target-wise annotations. However, manually annotating video sequences is often expensive and time-consuming, especially for low-quality infrared frame images. Inspired by general object detection, non-fully supervised strategies ($e.g.$, weakly supervised) are believed to be potential in reducing annotation requirements. To break through traditional fully-supervised frameworks, as the first exploration work, this paper proposes a new weakly-supervised contrastive learning (WeCoL) scheme, only requires simple target quantity prompts during model training.Specifically, in our scheme, based on the pretrained segment anything model (SAM), a potential target mining strategy is designed to integrate target activation maps and multi-frame energy accumulation.Besides, contrastive learning is adopted to further improve the reliability of pseudo-labels, by calculating the similarity between positive and negative samples in feature subspace.Moreover, we propose a long-short term motion-aware learning scheme to simultaneously model the local motion patterns and global motion trajectory of small targets.The extensive experiments on two public datasets (DAUB and ITSDT-15K) verify that our weakly-supervised scheme could often outperform early fully-supervised methods. Even, its performance could reach over 90\% of state-of-the-art (SOTA) fully-supervised ones.
☆ IGDNet: Zero-Shot Robust Underexposed Image Enhancement via Illumination-Guided and Denoising
Current methods for restoring underexposed images typically rely on supervised learning with paired underexposed and well-illuminated images. However, collecting such datasets is often impractical in real-world scenarios. Moreover, these methods can lead to over-enhancement, distorting well-illuminated regions. To address these issues, we propose IGDNet, a Zero-Shot enhancement method that operates solely on a single test image, without requiring guiding priors or training data. IGDNet exhibits strong generalization ability and effectively suppresses noise while restoring illumination. The framework comprises a decomposition module and a denoising module. The former separates the image into illumination and reflection components via a dense connection network, while the latter enhances non-uniformly illuminated regions using an illumination-guided pixel adaptive correction method. A noise pair is generated through downsampling and refined iteratively to produce the final result. Extensive experiments on four public datasets demonstrate that IGDNet significantly improves visual quality under complex lighting conditions. Quantitative results on metrics like PSNR (20.41dB) and SSIM (0.860dB) show that it outperforms 14 state-of-the-art unsupervised methods. The code will be released soon.
comment: Submitted to IEEE Transactions on Artificial Intelligence (TAI) on Oct.31, 2024
☆ Red grape detection with accelerated artificial neural networks in the FPGA's programmable logic
Robots usually slow down for canning to detect objects while moving. Additionally, the robot's camera is configured with a low framerate to track the velocity of the detection algorithms. This would be constrained while executing tasks and exploring, making robots increase the task execution time. AMD has developed the Vitis-AI framework to deploy detection algorithms into FPGAs. However, this tool does not fully use the FPGAs' PL. In this work, we use the FINN architecture to deploy three ANNs, MobileNet v1 with 4-bit quantisation, CNV with 2-bit quantisation, and CNV with 1-bit quantisation (BNN), inside an FPGA's PL. The models were trained on the RG2C dataset. This is a self-acquired dataset released in open access. MobileNet v1 performed better, reaching a success rate of 98 % and an inference speed of 6611 FPS. In this work, we proved that we can use FPGAs to speed up ANNs and make them suitable for attention mechanisms.
comment: Submitted to ROBOT'2025
☆ F^2TTA: Free-Form Test-Time Adaptation on Cross-Domain Medical Image Classification via Image-Level Disentangled Prompt Tuning
Test-Time Adaptation (TTA) has emerged as a promising solution for adapting a source model to unseen medical sites using unlabeled test data, due to the high cost of data annotation. Existing TTA methods consider scenarios where data from one or multiple domains arrives in complete domain units. However, in clinical practice, data usually arrives in domain fragments of arbitrary lengths and in random arrival orders, due to resource constraints and patient variability. This paper investigates a practical Free-Form Test-Time Adaptation (F$^{2}$TTA) task, where a source model is adapted to such free-form domain fragments, with shifts occurring between fragments unpredictably. In this setting, these shifts could distort the adaptation process. To address this problem, we propose a novel Image-level Disentangled Prompt Tuning (I-DiPT) framework. I-DiPT employs an image-invariant prompt to explore domain-invariant representations for mitigating the unpredictable shifts, and an image-specific prompt to adapt the source model to each test image from the incoming fragments. The prompts may suffer from insufficient knowledge representation since only one image is available for training. To overcome this limitation, we first introduce Uncertainty-oriented Masking (UoM), which encourages the prompts to extract sufficient information from the incoming image via masked consistency learning driven by the uncertainty of the source model representations. Then, we further propose a Parallel Graph Distillation (PGD) method that reuses knowledge from historical image-specific and image-invariant prompts through parallel graph networks. Experiments on breast cancer and glaucoma classification demonstrate the superiority of our method over existing TTA approaches in F$^{2}$TTA. Code is available at https://github.com/mar-cry/F2TTA.
comment: This paper has been submitted to relevant journals
☆ AvatarMakeup: Realistic Makeup Transfer for 3D Animatable Head Avatars
Similar to facial beautification in real life, 3D virtual avatars require personalized customization to enhance their visual appeal, yet this area remains insufficiently explored. Although current 3D Gaussian editing methods can be adapted for facial makeup purposes, these methods fail to meet the fundamental requirements for achieving realistic makeup effects: 1) ensuring a consistent appearance during drivable expressions, 2) preserving the identity throughout the makeup process, and 3) enabling precise control over fine details. To address these, we propose a specialized 3D makeup method named AvatarMakeup, leveraging a pretrained diffusion model to transfer makeup patterns from a single reference photo of any individual. We adopt a coarse-to-fine idea to first maintain the consistent appearance and identity, and then to refine the details. In particular, the diffusion model is employed to generate makeup images as supervision. Due to the uncertainties in diffusion process, the generated images are inconsistent across different viewpoints and expressions. Therefore, we propose a Coherent Duplication method to coarsely apply makeup to the target while ensuring consistency across dynamic and multiview effects. Coherent Duplication optimizes a global UV map by recoding the averaged facial attributes among the generated makeup images. By querying the global UV map, it easily synthesizes coherent makeup guidance from arbitrary views and expressions to optimize the target avatar. Given the coarse makeup avatar, we further enhance the makeup by incorporating a Refinement Module into the diffusion model to achieve high makeup quality. Experiments demonstrate that AvatarMakeup achieves state-of-the-art makeup transfer quality and consistency throughout animation.
☆ Determination Of Structural Cracks Using Deep Learning Frameworks
Structural crack detection is a critical task for public safety as it helps in preventing potential structural failures that could endanger lives. Manual detection by inexperienced personnel can be slow, inconsistent, and prone to human error, which may compromise the reliability of assessments. The current study addresses these challenges by introducing a novel deep-learning architecture designed to enhance the accuracy and efficiency of structural crack detection. In this research, various configurations of residual U-Net models were utilized. These models, due to their robustness in capturing fine details, were further integrated into an ensemble with a meta-model comprising convolutional blocks. This unique combination aimed to boost prediction efficiency beyond what individual models could achieve. The ensemble's performance was evaluated against well-established architectures such as SegNet and the traditional U-Net. Results demonstrated that the residual U-Net models outperformed their predecessors, particularly with low-resolution imagery, and the ensemble model exceeded the performance of individual models, proving it as the most effective. The assessment was based on the Intersection over Union (IoU) metric and DICE coefficient. The ensemble model achieved the highest scores, signifying superior accuracy. This advancement suggests way for more reliable automated systems in structural defects monitoring tasks.
comment: This is the accepted version of the paper presented in IEEE CONIT 2025 held on 20th June 2025. This is not the camera-ready version. There are 6 pages in this paper and it contains 7 figures and 1 table
☆ Privacy-preserving Preselection for Face Identification Based on Packing
Face identification systems operating in the ciphertext domain have garnered significant attention due to increasing privacy concerns and the potential recovery of original facial data. However, as the size of ciphertext template libraries grows, the face retrieval process becomes progressively more time-intensive. To address this challenge, we propose a novel and efficient scheme for face retrieval in the ciphertext domain, termed Privacy-Preserving Preselection for Face Identification Based on Packing (PFIP). PFIP incorporates an innovative preselection mechanism to reduce computational overhead and a packing module to enhance the flexibility of biometric systems during the enrollment stage. Extensive experiments conducted on the LFW and CASIA datasets demonstrate that PFIP preserves the accuracy of the original face recognition model, achieving a 100% hit rate while retrieving 1,000 ciphertext face templates within 300 milliseconds. Compared to existing approaches, PFIP achieves a nearly 50x improvement in retrieval efficiency.
comment: This paper has been accepted for publication in SecureComm 2025
☆ 3D Heart Reconstruction from Sparse Pose-agnostic 2D Echocardiographic Slices
Echocardiography (echo) plays an indispensable role in the clinical practice of heart diseases. However, ultrasound imaging typically provides only two-dimensional (2D) cross-sectional images from a few specific views, making it challenging to interpret and inaccurate for estimation of clinical parameters like the volume of left ventricle (LV). 3D ultrasound imaging provides an alternative for 3D quantification, but is still limited by the low spatial and temporal resolution and the highly demanding manual delineation. To address these challenges, we propose an innovative framework for reconstructing personalized 3D heart anatomy from 2D echo slices that are frequently used in clinical practice. Specifically, a novel 3D reconstruction pipeline is designed, which alternatively optimizes between the 3D pose estimation of these 2D slices and the 3D integration of these slices using an implicit neural network, progressively transforming a prior 3D heart shape into a personalized 3D heart model. We validate the method with two datasets. When six planes are used, the reconstructed 3D heart can lead to a significant improvement for LV volume estimation over the bi-plane method (error in percent: 1.98\% VS. 20.24\%). In addition, the whole reconstruction framework makes even an important breakthrough that can estimate RV volume from 2D echo slices (with an error of 5.75\% ). This study provides a new way for personalized 3D structure and function analysis from cardiac ultrasound and is of great potential in clinical practice.
comment: 10 pages
☆ A Novel Tuning Method for Real-time Multiple-Object Tracking Utilizing Thermal Sensor with Complexity Motion Pattern
Multi-Object Tracking in thermal images is essential for surveillance systems, particularly in challenging environments where RGB cameras struggle due to low visibility or poor lighting conditions. Thermal sensors enhance recognition tasks by capturing infrared signatures, but a major challenge is their low-level feature representation, which makes it difficult to accurately detect and track pedestrians. To address this, the paper introduces a novel tuning method for pedestrian tracking, specifically designed to handle the complex motion patterns in thermal imagery. The proposed framework optimizes two-stages, ensuring that each stage is tuned with the most suitable hyperparameters to maximize tracking performance. By fine-tuning hyperparameters for real-time tracking, the method achieves high accuracy without relying on complex reidentification or motion models. Extensive experiments on PBVS Thermal MOT dataset demonstrate that the approach is highly effective across various thermal camera conditions, making it a robust solution for real-world surveillance applications.
☆ PosDiffAE: Position-aware Diffusion Auto-encoder For High-Resolution Brain Tissue Classification Incorporating Artifact Restoration
Denoising diffusion models produce high-fidelity image samples by capturing the image distribution in a progressive manner while initializing with a simple distribution and compounding the distribution complexity. Although these models have unlocked new applicabilities, the sampling mechanism of diffusion does not offer means to extract image-specific semantic representation, which is inherently provided by auto-encoders. The encoding component of auto-encoders enables mapping between a specific image and its latent space, thereby offering explicit means of enforcing structures in the latent space. By integrating an encoder with the diffusion model, we establish an auto-encoding formulation, which learns image-specific representations and offers means to organize the latent space. In this work, First, we devise a mechanism to structure the latent space of a diffusion auto-encoding model, towards recognizing region-specific cellular patterns in brain images. We enforce the representations to regress positional information of the patches from high-resolution images. This creates a conducive latent space for differentiating tissue types of the brain. Second, we devise an unsupervised tear artifact restoration technique based on neighborhood awareness, utilizing latent representations and the constrained generation capability of diffusion models during inference. Third, through representational guidance and leveraging the inference time steerable noising and denoising capability of diffusion, we devise an unsupervised JPEG artifact restoration technique.
comment: Published in IEEE Journal of Biomedical and Health Informatics (Early Access Available) https://ieeexplore.ieee.org/document/10989734
☆ Wildlife Target Re-Identification Using Self-supervised Learning in Non-Urban Settings
Wildlife re-identification aims to match individuals of the same species across different observations. Current state-of-the-art (SOTA) models rely on class labels to train supervised models for individual classification. This dependence on annotated data has driven the curation of numerous large-scale wildlife datasets. This study investigates self-supervised learning Self-Supervised Learning (SSL) for wildlife re-identification. We automatically extract two distinct views of an individual using temporal image pairs from camera trap data without supervision. The image pairs train a self-supervised model from a potentially endless stream of video data. We evaluate the learnt representations against supervised features on open-world scenarios and transfer learning in various wildlife downstream tasks. The analysis of the experimental results shows that self-supervised models are more robust even with limited data. Moreover, self-supervised features outperform supervision across all downstream tasks. The code is available here https://github.com/pxpana/SSLWildlife.
comment: Accepted for publication in IEEE Xplore and ISIF FUSION 2025 proceedings:
☆ TABNet: A Triplet Augmentation Self-Recovery Framework with Boundary-Aware Pseudo-Labels for Medical Image Segmentation
Background and objective: Medical image segmentation is a core task in various clinical applications. However, acquiring large-scale, fully annotated medical image datasets is both time-consuming and costly. Scribble annotations, as a form of sparse labeling, provide an efficient and cost-effective alternative for medical image segmentation. However, the sparsity of scribble annotations limits the feature learning of the target region and lacks sufficient boundary supervision, which poses significant challenges for training segmentation networks. Methods: We propose TAB Net, a novel weakly-supervised medical image segmentation framework, consisting of two key components: the triplet augmentation self-recovery (TAS) module and the boundary-aware pseudo-label supervision (BAP) module. The TAS module enhances feature learning through three complementary augmentation strategies: intensity transformation improves the model's sensitivity to texture and contrast variations, cutout forces the network to capture local anatomical structures by masking key regions, and jigsaw augmentation strengthens the modeling of global anatomical layout by disrupting spatial continuity. By guiding the network to recover complete masks from diverse augmented inputs, TAS promotes a deeper semantic understanding of medical images under sparse supervision. The BAP module enhances pseudo-supervision accuracy and boundary modeling by fusing dual-branch predictions into a loss-weighted pseudo-label and introducing a boundary-aware loss for fine-grained contour refinement. Results: Experimental evaluations on two public datasets, ACDC and MSCMR seg, demonstrate that TAB Net significantly outperforms state-of-the-art methods for scribble-based weakly supervised segmentation. Moreover, it achieves performance comparable to that of fully supervised methods.
☆ Beyond Spatial Frequency: Pixel-wise Temporal Frequency-based Deepfake Video Detection
We introduce a deepfake video detection approach that exploits pixel-wise temporal inconsistencies, which traditional spatial frequency-based detectors often overlook. Traditional detectors represent temporal information merely by stacking spatial frequency spectra across frames, resulting in the failure to detect temporal artifacts in the pixel plane. Our approach performs a 1D Fourier transform on the time axis for each pixel, extracting features highly sensitive to temporal inconsistencies, especially in areas prone to unnatural movements. To precisely locate regions containing the temporal artifacts, we introduce an attention proposal module trained in an end-to-end manner. Additionally, our joint transformer module effectively integrates pixel-wise temporal frequency features with spatio-temporal context features, expanding the range of detectable forgery artifacts. Our framework represents a significant advancement in deepfake video detection, providing robust performance across diverse and challenging detection scenarios.
comment: accepted by iccv 2025. code is will be available at https://github.com/rama0126/PwTF-DVD
♻ ☆ Towards autonomous photogrammetric forest inventory using a lightweight under-canopy robotic drone
Drones are increasingly used in forestry to capture high-resolution remote sensing data, supporting enhanced monitoring, assessment, and decision-making processes. While operations above the forest canopy are already highly automated, flying inside forests remains challenging, primarily relying on manual piloting. Inside dense forests, reliance on the Global Navigation Satellite System (GNSS) for localization is not feasible. Additionally, the drone must autonomously adjust its flight path to avoid collisions. Recently, advancements in robotics have enabled autonomous drone flights in GNSS-denied obstacle-rich areas. In this article, a step towards autonomous forest data collection is taken by building a prototype of a robotic under-canopy drone utilizing state-of-the-art open-source methods and validating its performance for data collection inside forests. Specifically, the study focused on camera-based autonomous flight under the forest canopy and photogrammetric post-processing of the data collected with the low-cost onboard stereo camera. The autonomous flight capability of the prototype was evaluated through multiple test flights at boreal forests. The tree parameter estimation capability was studied by performing diameter at breast height (DBH) estimation. The prototype successfully carried out flights in selected challenging forest environments, and the experiments showed excellent performance in forest 3D modeling with a miniaturized stereoscopic photogrammetric system. The DBH estimation achieved a root mean square error (RMSE) of 3.33 cm (12.79 \%) across all trees. For trees with a DBH less than 30 cm, the RMSE was 1.16 cm (5.74 \%). The results provide valuable insights into autonomous under-canopy forest mapping and highlight the critical next steps for advancing lightweight robotic drone systems for mapping complex forest environments.
comment: 36 pages, 11 Figures
♻ ☆ Thinking with Images for Multimodal Reasoning: Foundations, Methods, and Future Frontiers
Recent progress in multimodal reasoning has been significantly advanced by textual Chain-of-Thought (CoT), a paradigm where models conduct reasoning within language. This text-centric approach, however, treats vision as a static, initial context, creating a fundamental "semantic gap" between rich perceptual data and discrete symbolic thought. Human cognition often transcends language, utilizing vision as a dynamic mental sketchpad. A similar evolution is now unfolding in AI, marking a fundamental paradigm shift from models that merely think about images to those that can truly think with images. This emerging paradigm is characterized by models leveraging visual information as intermediate steps in their thought process, transforming vision from a passive input into a dynamic, manipulable cognitive workspace. In this survey, we chart this evolution of intelligence along a trajectory of increasing cognitive autonomy, which unfolds across three key stages: from external tool exploration, through programmatic manipulation, to intrinsic imagination. To structure this rapidly evolving field, our survey makes four key contributions. (1) We establish the foundational principles of the think with image paradigm and its three-stage framework. (2) We provide a comprehensive review of the core methods that characterize each stage of this roadmap. (3) We analyze the critical landscape of evaluation benchmarks and transformative applications. (4) We identify significant challenges and outline promising future directions. By providing this structured overview, we aim to offer a clear roadmap for future research towards more powerful and human-aligned multimodal AI.
comment: Preprint in progress. We maintain a real-time GitHub repository tracking progress at: https://github.com/zhaochen0110/Awesome_Think_With_Images
♻ ☆ PAD: Phase-Amplitude Decoupling Fusion for Multi-Modal Land Cover Classification
The fusion of Synthetic Aperture Radar (SAR) and RGB imagery for land cover classification remains challenging due to modality heterogeneity and underutilized spectral complementarity. Existing methods often fail to decouple shared structural features from modality-complementary radiometric attributes, causing feature conflicts and information loss. To address this, we propose Phase-Amplitude Decoupling (PAD), a frequency-aware framework that separates phase (modality-shared) and amplitude (modality-complementary) components in the Fourier domain, thus reinforcing shared structures while preserving complementary characteristics to improve fusion quality. Unlike prior approaches that overlook the distinct physical properties encoded in frequency spectra, PAD is the first to introduce explicit amplitude-phase decoupling for multi-modal fusion. Specifically, PAD comprises two key components: 1) Phase Spectrum Correction (PSC), which aligns cross-modal phase features via convolution-guided scaling to enhance geometric consistency; and 2) Amplitude Spectrum Fusion (ASF), which dynamically integrates high-frequency and low-frequency patterns using frequency-adaptive multilayer perceptrons, leveraging SAR's morphological sensitivity and RGB's spectral richness. Extensive experiments on WHU-OPT-SAR and DDHR-SK datasets demonstrate state-of-the-art performance. Our work establishes a new paradigm for physics-aware multi-modal fusion in remote sensing. The code will be available at https://github.com/RanFeng2/PAD.
comment: 13 pages, 8 figures
♻ ☆ CMD-HAR: Cross-Modal Disentanglement for Wearable Human Activity Recognition
Human Activity Recognition (HAR) is a fundamental technology for numerous human - centered intelligent applications. Although deep learning methods have been utilized to accelerate feature extraction, issues such as multimodal data mixing, activity heterogeneity, and complex model deployment remain largely unresolved. The aim of this paper is to address issues such as multimodal data mixing, activity heterogeneity, and complex model deployment in sensor-based human activity recognition. We propose a spatiotemporal attention modal decomposition alignment fusion strategy to tackle the problem of the mixed distribution of sensor data. Key discriminative features of activities are captured through cross-modal spatio-temporal disentangled representation, and gradient modulation is combined to alleviate data heterogeneity. In addition, a wearable deployment simulation system is constructed. We conducted experiments on a large number of public datasets, demonstrating the effectiveness of the model.
♻ ☆ MaizeField3D: A Curated 3D Point Cloud and Procedural Model Dataset of Field-Grown Maize from a Diversity Panel
The development of artificial intelligence (AI) and machine learning (ML) based tools for 3D phenotyping, especially for maize, has been limited due to the lack of large and diverse 3D datasets. 2D image datasets fail to capture essential structural details such as leaf architecture, plant volume, and spatial arrangements that 3D data provide. To address this limitation, we present MaizeField3D (https://baskargroup.github.io/MaizeField3D/), a curated dataset of 3D point clouds of field-grown maize plants from a diverse genetic panel, designed to be AI-ready for advancing agricultural research. Our dataset includes 1,045 high-quality point clouds of field-grown maize collected using a terrestrial laser scanner (TLS). Point clouds of 520 plants from this dataset were segmented and annotated using a graph-based segmentation method to isolate individual leaves and stalks, ensuring consistent labeling across all samples. This labeled data was then used for fitting procedural models that provide a structured parametric representation of the maize plants. The leaves of the maize plants in the procedural models are represented using Non-Uniform Rational B-Spline (NURBS) surfaces that were generated using a two-step optimization process combining gradient-free and gradient-based methods. We conducted rigorous manual quality control on all datasets, correcting errors in segmentation, ensuring accurate leaf ordering, and validating metadata annotations. The dataset also includes metadata detailing plant morphology and quality, alongside multi-resolution subsampled point cloud data (100k, 50k, 10k points), which can be readily used for different downstream computational tasks. MaizeField3D will serve as a comprehensive foundational dataset for AI-driven phenotyping, plant structural analysis, and 3D applications in agricultural research.
comment: Elvis Kimara and Mozhgan Hadadi contributed equally to this work
♻ ☆ Towards a Novel Measure of User Trust in XAI Systems
The increasing reliance on Deep Learning models, combined with their inherent lack of transparency, has spurred the development of a novel field of study known as eXplainable AI (XAI) methods. These methods seek to enhance the trust of end-users in automated systems by providing insights into the rationale behind their decisions. This paper presents a novel trust measure in XAI systems, allowing their refinement. Our proposed metric combines both performance metrics and trust indicators from an objective perspective. To validate this novel methodology, we conducted three case studies showing an improvement respect the state-of-the-art, with an increased sensitiviy to different scenarios.
♻ ☆ Modality-agnostic, patient-specific digital twins modeling temporally varying digestive motion
Objective: Clinical implementation of deformable image registration (DIR) requires voxel-based spatial accuracy metrics such as manually identified landmarks, which are challenging to implement for highly mobile gastrointestinal (GI) organs. To address this, patient-specific digital twins (DT) modeling temporally varying motion were created to assess the accuracy of DIR methods. Approach: 21 motion phases simulating digestive GI motion as 4D sequences were generated from static 3D patient scans using published analytical GI motion models through a semi-automated pipeline. Eleven datasets, including six T2w FSE MRI (T2w MRI), two T1w 4D golden-angle stack-of-stars, and three contrast-enhanced CT scans. The motion amplitudes of the DTs were assessed against real patient stomach motion amplitudes extracted from independent 4D MRI datasets. The generated DTs were then used to assess six different DIR methods using target registration error, Dice similarity coefficient, and the 95th percentile Hausdorff distance using summary metrics and voxel-level granular visualizations. Finally, for a subset of T2w MRI scans from patients treated with MR-guided radiation therapy, dose distributions were warped and accumulated to assess dose warping errors, including evaluations of DIR performance in both low- and high-dose regions for patient-specific error estimation. Main results: Our proposed pipeline synthesized DTs modeling realistic GI motion, achieving mean and maximum motion amplitudes and a mean log Jacobian determinant within 0.8 mm and 0.01, respectively, similar to published real-patient gastric motion data. It also enables the extraction of detailed quantitative DIR performance metrics and rigorous validation of dose mapping accuracy. Significance: The pipeline enables rigorously testing DIR tools for dynamic, anatomically complex regions enabling granular spatial and dosimetric accuracies.
comment: 7 Pages, 6 figures, 4 tables
♻ ☆ CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing
Computer Aided Design (CAD) is indispensable across various industries. \emph{Text-based CAD editing}, which automates the modification of CAD models based on textual instructions, holds great potential but remains underexplored. Existing methods primarily focus on design variation generation or text-based CAD generation, either lacking support for text-based control or neglecting existing CAD models as constraints. We introduce \emph{CAD-Editor}, the first framework for text-based CAD editing. To address the challenge of demanding triplet data with accurate correspondence for training, we propose an automated data synthesis pipeline. This pipeline utilizes design variation models to generate pairs of original and edited CAD models and employs Large Vision-Language Models (LVLMs) to summarize their differences into editing instructions. To tackle the composite nature of text-based CAD editing, we propose a locate-then-infill framework that decomposes the task into two focused sub-tasks: locating regions requiring modification and infilling these regions with appropriate edits. Large Language Models (LLMs) serve as the backbone for both sub-tasks, leveraging their capabilities in natural language understanding and CAD knowledge. Experiments show that CAD-Editor achieves superior performance both quantitatively and qualitatively. The code is available at \url {https://github.com/microsoft/CAD-Editor}.
♻ ☆ Enhancing Fetal Plane Classification Accuracy with Data Augmentation Using Diffusion Models
Ultrasound imaging is widely used in medical diagnosis, especially for fetal health assessment. However, the availability of high-quality annotated ultrasound images is limited, which restricts the training of machine learning models. In this paper, we investigate the use of diffusion models to generate synthetic ultrasound images to improve the performance on fetal plane classification. We train different classifiers first on synthetic images and then fine-tune them with real images. Extensive experimental results demonstrate that incorporating generated images into training pipelines leads to better classification accuracy than training with real images alone. The findings suggest that generating synthetic data using diffusion models can be a valuable tool in overcoming the challenges of data scarcity in ultrasound medical imaging.
♻ ☆ LUDO: Low-Latency Understanding of Deformable Objects using Point Cloud Occupancy Functions
Accurately determining the shape of deformable objects and the location of their internal structures is crucial for medical tasks that require precise targeting, such as robotic biopsies. We introduce LUDO, a method for accurate low-latency understanding of deformable objects. LUDO reconstructs objects in their deformed state, including their internal structures, from a single-view point cloud observation in under 30 ms using occupancy networks. LUDO provides uncertainty estimates for its predictions. Additionally, it provides explainability by highlighting key features in its input observations. Both uncertainty and explainability are important for safety-critical applications such as surgery. We evaluate LUDO in real-world robotic experiments, achieving a success rate of 98.9% for puncturing various regions of interest (ROIs) inside deformable objects. We compare LUDO to a popular baseline and show its superior ROI localization accuracy, training time, and memory requirements. LUDO demonstrates the potential to interact with deformable objects without the need for deformable registration methods.
comment: Published in IEEE Transactions on Robotics (T-RO)
♻ ☆ The Evolution of Dataset Distillation: Toward Scalable and Generalizable Solutions
Dataset distillation, which condenses large-scale datasets into compact synthetic representations, has emerged as a critical solution for training modern deep learning models efficiently. While prior surveys focus on developments before 2023, this work comprehensively reviews recent advances, emphasizing scalability to large-scale datasets such as ImageNet-1K and ImageNet-21K. We categorize progress into a few key methodologies: trajectory matching, gradient matching, distribution matching, scalable generative approaches, and decoupling optimization mechanisms. As a comprehensive examination of recent dataset distillation advances, this survey highlights breakthrough innovations: the SRe2L framework for efficient and effective condensation, soft label strategies that significantly enhance model accuracy, and lossless distillation techniques that maximize compression while maintaining performance. Beyond these methodological advancements, we address critical challenges, including robustness against adversarial and backdoor attacks, effective handling of non-IID data distributions. Additionally, we explore emerging applications in video and audio processing, multi-modal learning, medical imaging, and scientific computing, highlighting its domain versatility. By offering extensive performance comparisons and actionable research directions, this survey equips researchers and practitioners with practical insights to advance efficient and generalizable dataset distillation, paving the way for future innovations.
comment: Dr. Jiawei Du is the corresponding author
♻ ☆ HAPI: A Model for Learning Robot Facial Expressions from Human Preferences
Automatic robotic facial expression generation is crucial for human-robot interaction, as handcrafted methods based on fixed joint configurations often yield rigid and unnatural behaviors. Although recent automated techniques reduce the need for manual tuning, they tend to fall short by not adequately bridging the gap between human preferences and model predictions-resulting in a deficiency of nuanced and realistic expressions due to limited degrees of freedom and insufficient perceptual integration. In this work, we propose a novel learning-to-rank framework that leverages human feedback to address this discrepancy and enhanced the expressiveness of robotic faces. Specifically, we conduct pairwise comparison annotations to collect human preference data and develop the Human Affective Pairwise Impressions (HAPI) model, a Siamese RankNet-based approach that refines expression evaluation. Results obtained via Bayesian Optimization and online expression survey on a 35-DOF android platform demonstrate that our approach produces significantly more realistic and socially resonant expressions of Anger, Happiness, and Surprise than those generated by baseline and expert-designed methods. This confirms that our framework effectively bridges the gap between human preferences and model predictions while robustly aligning robotic expression generation with human affective responses.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Learning Traffic Anomalies from Generative Models on Real-Time Observations
Accurate detection of traffic anomalies is crucial for effective urban traffic management and congestion mitigation. We use the Spatiotemporal Generative Adversarial Network (STGAN) framework combining Graph Neural Networks and Long Short-Term Memory networks to capture complex spatial and temporal dependencies in traffic data. We apply STGAN to real-time, minute-by-minute observations from 42 traffic cameras across Gothenburg, Sweden, collected over several months in 2020. The images are processed to compute a flow metric representing vehicle density, which serves as input for the model. Training is conducted on data from April to November 2020, and validation is performed on a separate dataset from November 14 to 23, 2020. Our results demonstrate that the model effectively detects traffic anomalies with high precision and low false positive rates. The detected anomalies include camera signal interruptions, visual artifacts, and extreme weather conditions affecting traffic flow.
♻ ☆ HOI-Dyn: Learning Interaction Dynamics for Human-Object Motion Diffusion
Generating realistic 3D human-object interactions (HOIs) remains a challenging task due to the difficulty of modeling detailed interaction dynamics. Existing methods treat human and object motions independently, resulting in physically implausible and causally inconsistent behaviors. In this work, we present HOI-Dyn, a novel framework that formulates HOI generation as a driver-responder system, where human actions drive object responses. At the core of our method is a lightweight transformer-based interaction dynamics model that explicitly predicts how objects should react to human motion. To further enforce consistency, we introduce a residual-based dynamics loss that mitigates the impact of dynamics prediction errors and prevents misleading optimization signals. The dynamics model is used only during training, preserving inference efficiency. Through extensive qualitative and quantitative experiments, we demonstrate that our approach not only enhances the quality of HOI generation but also establishes a feasible metric for evaluating the quality of generated interactions.
comment: preprint
♻ ☆ RFWNet: A Lightweight Remote Sensing Object Detector Integrating Multiscale Receptive Fields and Foreground Focus Mechanism
Challenges in remote sensing object detection(RSOD), such as high interclass similarity, imbalanced foreground-background distribution, and the small size of objects in remote sensing images, significantly hinder detection accuracy. Moreover, the tradeoff between model accuracy and computational complexity poses additional constraints on the application of RSOD algorithms. To address these issues, this study proposes an efficient and lightweight RSOD algorithm integrating multiscale receptive fields and foreground focus mechanism, named robust foreground weighted network(RFWNet). Specifically, we proposed a lightweight backbone network receptive field adaptive selection network (RFASNet), leveraging the rich context information of remote sensing images to enhance class separability. Additionally, we developed a foreground-background separation module(FBSM)consisting of a background redundant information filtering module (BRIFM) and a foreground information enhancement module (FIEM) to emphasize critical regions within images while filtering redundant background information. Finally, we designed a loss function, the weighted CIoU-Wasserstein loss (LWCW),which weights the IoU-based loss by using the normalized Wasserstein distance to mitigate model sensitivity to small object position deviations. The comprehensive experimental results demonstrate that RFWNet achieved 95.3% and 73.2% mean average precision (mAP) with 6.0 M parameters on the DOTA V1.0 and NWPU VHR-10 datasets, respectively, with an inference speed of 52 FPS.
♻ ☆ Similarity Memory Prior is All You Need for Medical Image Segmentation
In recent years, it has been found that "grandmother cells" in the primary visual cortex (V1) of macaques can directly recognize visual input with complex shapes. This inspires us to examine the value of these cells in promoting the research of medical image segmentation. In this paper, we design a Similarity Memory Prior Network (Sim-MPNet) for medical image segmentation. Specifically, we propose a Dynamic Memory Weights-Loss Attention (DMW-LA), which matches and remembers the category features of specific lesions or organs in medical images through the similarity memory prior in the prototype memory bank, thus helping the network to learn subtle texture changes between categories. DMW-LA also dynamically updates the similarity memory prior in reverse through Weight-Loss Dynamic (W-LD) update strategy, effectively assisting the network directly extract category features. In addition, we propose the Double-Similarity Global Internal Enhancement Module (DS-GIM) to deeply explore the internal differences in the feature distribution of input data through cosine similarity and euclidean distance. Extensive experiments on four public datasets show that Sim-MPNet has better segmentation performance than other state-of-the-art methods. Our code is available on https://github.com/vpsg-research/Sim-MPNet.
♻ ☆ TurboReg: TurboClique for Robust and Efficient Point Cloud Registration ICCV-2025
Robust estimation is essential in correspondence-based Point Cloud Registration (PCR). Existing methods using maximal clique search in compatibility graphs achieve high recall but suffer from exponential time complexity, limiting their use in time-sensitive applications. To address this challenge, we propose a fast and robust estimator, TurboReg, built upon a novel lightweight clique, TurboClique, and a highly parallelizable Pivot-Guided Search (PGS) algorithm. First, we define the TurboClique as a 3-clique within a highly-constrained compatibility graph. The lightweight nature of the 3-clique allows for efficient parallel searching, and the highly-constrained compatibility graph ensures robust spatial consistency for stable transformation estimation. Next, PGS selects matching pairs with high SC$^2$ scores as pivots, effectively guiding the search toward TurboCliques with higher inlier ratios. Moreover, the PGS algorithm has linear time complexity and is significantly more efficient than the maximal clique search with exponential time complexity. Extensive experiments show that TurboReg achieves state-of-the-art performance across multiple real-world datasets, with substantial speed improvements. For example, on the 3DMatch+FCGF dataset, TurboReg (1K) operates $208.22\times$ faster than 3DMAC while also achieving higher recall. Our code is accessible at \href{https://github.com/Laka-3DV/TurboReg}{\texttt{TurboReg}}.
comment: ICCV-2025 Accepted Paper
♻ ☆ Weakly Supervised Segmentation Framework for Thyroid Nodule Based on High-confidence Labels and High-rationality Losses
Weakly supervised segmentation methods can delineate thyroid nodules in ultrasound images efficiently using training data with coarse labels, but suffer from: 1) low-confidence pseudo-labels that follow topological priors, introducing significant label noise, and 2) low-rationality loss functions that rigidly compare segmentation with labels, ignoring discriminative information for nodules with diverse and complex shapes. To solve these issues, we clarify the objective and references for weakly supervised ultrasound image segmentation, presenting a framework with high-confidence pseudo-labels to represent topological and anatomical information and high-rationality losses to capture multi-level discriminative features. Specifically, we fuse geometric transformations of four-point annotations and MedSAM model results prompted by specific annotations to generate high-confidence box, foreground, and background labels. Our high-rationality learning strategy includes: 1) Alignment loss measuring spatial consistency between segmentation and box label, and topological continuity within the foreground label, guiding the network to perceive nodule location; 2) Contrastive loss pulling features from labeled foreground regions while pushing features from labeled foreground and background regions, guiding the network to learn nodule and background feature distribution; 3) Prototype correlation loss measuring consistency between correlation maps derived by comparing features with foreground and background prototypes, refining uncertain regions to accurate nodule edges. Experimental results show that our method achieves state-of-the-art performance on the TN3K and DDTI datasets. The code is available at https://github.com/bluehenglee/MLI-MSC.
comment: 24 pages, 14 figures, 7 tables
♻ ☆ SURE-VQA: Systematic Understanding of Robustness Evaluation in Medical VQA Tasks
Vision-Language Models (VLMs) have great potential in medical tasks, like Visual Question Answering (VQA), where they could act as interactive assistants for both patients and clinicians. Yet their robustness to distribution shifts on unseen data remains a key concern for safe deployment. Evaluating such robustness requires a controlled experimental setup that allows for systematic insights into the model's behavior. However, we demonstrate that current setups fail to offer sufficiently thorough evaluations. To address this gap, we introduce a novel framework, called SURE-VQA, centered around three key requirements to overcome current pitfalls and systematically analyze VLM robustness: 1) Since robustness on synthetic shifts does not necessarily translate to real-world shifts, it should be measured on real-world shifts that are inherent to the VQA data; 2) Traditional token-matching metrics often fail to capture underlying semantics, necessitating the use of large language models (LLMs) for more accurate semantic evaluation; 3) Model performance often lacks interpretability due to missing sanity baselines, thus meaningful baselines should be reported that allow assessing the multimodal impact on the VLM. To demonstrate the relevance of this framework, we conduct a study on the robustness of various Fine-Tuning (FT) methods across three medical datasets with four types of distribution shifts. Our study highlights key insights into robustness: 1) No FT method consistently outperforms others in robustness, and 2) robustness trends are more stable across FT methods than across distribution shifts. Additionally, we find that simple sanity baselines that do not use the image data can perform surprisingly well and confirm LoRA as the best-performing FT method on in-distribution data. Code is provided at https://github.com/IML-DKFZ/sure-vqa.
comment: TMLR 07/2025
♻ ☆ PriOr-Flow: Enhancing Primitive Panoramic Optical Flow with Orthogonal View
Panoramic optical flow enables a comprehensive understanding of temporal dynamics across wide fields of view. However, severe distortions caused by sphere-to-plane projections, such as the equirectangular projection (ERP), significantly degrade the performance of conventional perspective-based optical flow methods, especially in polar regions. To address this challenge, we propose PriOr-Flow, a novel dual-branch framework that leverages the low-distortion nature of the orthogonal view to enhance optical flow estimation in these regions. Specifically, we introduce the Dual-Cost Collaborative Lookup (DCCL) operator, which jointly retrieves correlation information from both the primitive and orthogonal cost volumes, effectively mitigating distortion noise during cost volume construction. Furthermore, our Ortho-Driven Distortion Compensation (ODDC) module iteratively refines motion features from both branches, further suppressing polar distortions. Extensive experiments demonstrate that PriOr-Flow is compatible with various perspective-based iterative optical flow methods and consistently achieves state-of-the-art performance on publicly available panoramic optical flow datasets, setting a new benchmark for wide-field motion estimation. The code is publicly available at: https://github.com/longliangLiu/PriOr-Flow.
♻ ☆ Fairer Analysis and Demographically Balanced Face Generation for Fairer Face Verification
Face recognition and verification are two computer vision tasks whose performances have advanced with the introduction of deep representations. However, ethical, legal, and technical challenges due to the sensitive nature of face data and biases in real-world training datasets hinder their development. Generative AI addresses privacy by creating fictitious identities, but fairness problems remain. Using the existing DCFace SOTA framework, we introduce a new controlled generation pipeline that improves fairness. Through classical fairness metrics and a proposed in-depth statistical analysis based on logit models and ANOVA, we show that our generation pipeline improves fairness more than other bias mitigation approaches while slightly improving raw performance.
comment: Published in WACV2025
♻ ☆ DeltaEdit: Exploring Text-free Training for Text-Driven Image Manipulation
Text-driven image manipulation remains challenging in training or inference flexibility. Conditional generative models depend heavily on expensive annotated training data. Meanwhile, recent frameworks, which leverage pre-trained vision-language models, are limited by either per text-prompt optimization or inference-time hyper-parameters tuning. In this work, we propose a novel framework named \textit{DeltaEdit} to address these problems. Our key idea is to investigate and identify a space, namely delta image and text space that has well-aligned distribution between CLIP visual feature differences of two images and CLIP textual embedding differences of source and target texts. Based on the CLIP delta space, the DeltaEdit network is designed to map the CLIP visual features differences to the editing directions of StyleGAN at training phase. Then, in inference phase, DeltaEdit predicts the StyleGAN's editing directions from the differences of the CLIP textual features. In this way, DeltaEdit is trained in a text-free manner. Once trained, it can well generalize to various text prompts for zero-shot inference without bells and whistles.
comment: Code is available at https://github.com/Yueming6568/DeltaEdit
♻ ☆ Towards an Explainable Comparison and Alignment of Feature Embeddings
While several feature embedding models have been developed in the literature, comparisons of these embeddings have largely focused on their numerical performance in classification-related downstream applications. However, an interpretable comparison of different embeddings requires identifying and analyzing mismatches between sample groups clustered within the embedding spaces. In this work, we propose the \emph{Spectral Pairwise Embedding Comparison (SPEC)} framework to compare embeddings and identify their differences in clustering a reference dataset. Our approach examines the kernel matrices derived from two embeddings and leverages the eigendecomposition of the difference kernel matrix to detect sample clusters that are captured differently by the two embeddings. We present a scalable implementation of this kernel-based approach, with computational complexity that grows linearly with the sample size. Furthermore, we introduce an optimization problem using this framework to align two embeddings, ensuring that clusters identified in one embedding are also captured in the other model. We provide numerical results demonstrating the SPEC's application to compare and align embeddings on large-scale datasets such as ImageNet and MS-COCO. The project page is available at https://mjalali.github.io/SPEC/.
♻ ☆ Understanding-informed Bias Mitigation for Fair CMR Segmentation
Artificial intelligence (AI) is increasingly being used for medical imaging tasks. However, there can be biases in AI models, particularly when they are trained using imbalanced training datasets. One such example has been the strong ethnicity bias effect in cardiac magnetic resonance (CMR) image segmentation models. Although this phenomenon has been reported in a number of publications, little is known about the effectiveness of bias mitigation algorithms in this domain. We aim to investigate the impact of common bias mitigation methods to address bias between Black and White subjects in AI-based CMR segmentation models. Specifically, we use oversampling, importance reweighing and Group DRO as well as combinations of these techniques to mitigate the ethnicity bias. Second, motivated by recent findings on the root causes of AI-based CMR segmentation bias, we evaluate the same methods using models trained and evaluated on cropped CMR images. We find that bias can be mitigated using oversampling, significantly improving performance for the underrepresented Black subjects whilst not significantly reducing the majority White subjects' performance. Using cropped images increases performance for both ethnicities and reduces the bias, whilst adding oversampling as a bias mitigation technique with cropped images reduces the bias further. When testing the models on an external clinical validation set, we find high segmentation performance and no statistically significant bias.
♻ ☆ AI Flow: Perspectives, Scenarios, and Approaches
Pioneered by the foundational information theory by Claude Shannon and the visionary framework of machine intelligence by Alan Turing, the convergent evolution of information and communication technologies (IT/CT) has created an unbroken wave of connectivity and computation. This synergy has sparked a technological revolution, now reaching its peak with large artificial intelligence (AI) models that are reshaping industries and redefining human-machine collaboration. However, the realization of ubiquitous intelligence faces considerable challenges due to substantial resource consumption in large models and high communication bandwidth demands. To address these challenges, AI Flow has been introduced as a multidisciplinary framework that integrates cutting-edge IT and CT advancements, with a particular emphasis on the following three key points. First, device-edge-cloud framework serves as the foundation, which integrates end devices, edge servers, and cloud clusters to optimize scalability and efficiency for low-latency model inference. Second, we introduce the concept of familial models, which refers to a series of different-sized models with aligned hidden features, enabling effective collaboration and the flexibility to adapt to varying resource constraints and dynamic scenarios. Third, connectivity- and interaction-based intelligence emergence is a novel paradigm of AI Flow. By leveraging communication networks to enhance connectivity, the collaboration among AI models across heterogeneous nodes achieves emergent intelligence that surpasses the capability of any single model. The innovations of AI Flow provide enhanced intelligence, timely responsiveness, and ubiquitous accessibility to AI services, paving the way for the tighter fusion of AI techniques and communication systems.
comment: Authors are with Institute of Artificial Intelligence (TeleAI), China Telecom, China. Author names are listed alphabetically by surname. This work was conducted at TeleAI, facilitated by Dr. Jiawei Shao (e-mail: shaojw2@chinatelecom.cn) under the leadership of Prof. Xuelong Li. The corresponding author is Prof. Xuelong Li (e-mail: xuelong li@ieee.org), the CTO and Chief Scientist of China Telecom
♻ ☆ Lightweight Structure-Aware Attention for Visual Understanding
Attention operator has been widely used as a basic brick in visual understanding since it provides some flexibility through its adjustable kernels. However, this operator suffers from inherent limitations: (1) the attention kernel is not discriminative enough, resulting in high redundancy, and (2) the complexity in computation and memory is quadratic in the sequence length. In this paper, we propose a novel attention operator, called Lightweight Structure-aware Attention (LiSA), which has a better representation power with log-linear complexity. Our operator transforms the attention kernels to be more discriminative by learning structural patterns. These structural patterns are encoded by exploiting a set of relative position embeddings (RPEs) as multiplicative weights, thereby improving the representation power of the attention kernels. Additionally, the RPEs are approximated to obtain log-linear complexity. Our experiments and analyses demonstrate that the proposed operator outperforms self-attention and other existing operators, achieving state-of-the-art results on ImageNet-1K and other downstream tasks such as video action recognition on Kinetics-400, object detection \& instance segmentation on COCO, and semantic segmentation on ADE-20K.
comment: 12 pages, 4 figures
♻ ☆ RGE-GS: Reward-Guided Expansive Driving Scene Reconstruction via Diffusion Priors
A single-pass driving clip frequently results in incomplete scanning of the road structure, making reconstructed scene expanding a critical requirement for sensor simulators to effectively regress driving actions. Although contemporary 3D Gaussian Splatting (3DGS) techniques achieve remarkable reconstruction quality, their direct extension through the integration of diffusion priors often introduces cumulative physical inconsistencies and compromises training efficiency. To address these limitations, we present RGE-GS, a novel expansive reconstruction framework that synergizes diffusion-based generation with reward-guided Gaussian integration. The RGE-GS framework incorporates two key innovations: First, we propose a reward network that learns to identify and prioritize consistently generated patterns prior to reconstruction phases, thereby enabling selective retention of diffusion outputs for spatial stability. Second, during the reconstruction process, we devise a differentiated training strategy that automatically adjust Gaussian optimization progress according to scene converge metrics, which achieving better convergence than baseline methods. Extensive evaluations of publicly available datasets demonstrate that RGE-GS achieves state-of-the-art performance in reconstruction quality. Our source-code will be made publicly available at https://github.com/CN-ADLab/RGE-GS.
♻ ☆ BANet: Bilateral Aggregation Network for Mobile Stereo Matching ICCV 2025
State-of-the-art stereo matching methods typically use costly 3D convolutions to aggregate a full cost volume, but their computational demands make mobile deployment challenging. Directly applying 2D convolutions for cost aggregation often results in edge blurring, detail loss, and mismatches in textureless regions. Some complex operations, like deformable convolutions and iterative warping, can partially alleviate this issue; however, they are not mobile-friendly, limiting their deployment on mobile devices. In this paper, we present a novel bilateral aggregation network (BANet) for mobile stereo matching that produces high-quality results with sharp edges and fine details using only 2D convolutions. Specifically, we first separate the full cost volume into detailed and smooth volumes using a spatial attention map, then perform detailed and smooth aggregations accordingly, ultimately fusing both to obtain the final disparity map. Experimental results demonstrate that our BANet-2D significantly outperforms other mobile-friendly methods, achieving 35.3\% higher accuracy on the KITTI 2015 leaderboard than MobileStereoNet-2D, with faster runtime on mobile devices. Code: \textcolor{magenta}{https://github.com/gangweix/BANet}.
comment: Accepted by ICCV 2025
♻ ☆ ARTalk: Speech-Driven 3D Head Animation via Autoregressive Model
Speech-driven 3D facial animation aims to generate realistic lip movements and facial expressions for 3D head models from arbitrary audio clips. Although existing diffusion-based methods are capable of producing natural motions, their slow generation speed limits their application potential. In this paper, we introduce a novel autoregressive model that achieves real-time generation of highly synchronized lip movements and realistic head poses and eye blinks by learning a mapping from speech to a multi-scale motion codebook. Furthermore, our model can adapt to unseen speaking styles, enabling the creation of 3D talking avatars with unique personal styles beyond the identities seen during training. Extensive evaluations and user studies demonstrate that our method outperforms existing approaches in lip synchronization accuracy and perceived quality.
comment: More video demonstrations, code, models and data can be found on our project website: http://xg-chu.site/project_artalk/
♻ ☆ Stereo Any Video: Temporally Consistent Stereo Matching ICCV2025
This paper introduces Stereo Any Video, a powerful framework for video stereo matching. It can estimate spatially accurate and temporally consistent disparities without relying on auxiliary information such as camera poses or optical flow. The strong capability is driven by rich priors from monocular video depth models, which are integrated with convolutional features to produce stable representations. To further enhance performance, key architectural innovations are introduced: all-to-all-pairs correlation, which constructs smooth and robust matching cost volumes, and temporal convex upsampling, which improves temporal coherence. These components collectively ensure robustness, accuracy, and temporal consistency, setting a new standard in video stereo matching. Extensive experiments demonstrate that our method achieves state-of-the-art performance across multiple datasets both qualitatively and quantitatively in zero-shot settings, as well as strong generalization to real-world indoor and outdoor scenarios.
comment: Accepted at ICCV2025
♻ ☆ Traveling Across Languages: Benchmarking Cross-Lingual Consistency in Multimodal LLMs
The rapid evolution of multimodal large language models (MLLMs) has significantly enhanced their real-world applications. However, achieving consistent performance across languages, especially when integrating cultural knowledge, remains a significant challenge. To better assess this issue, we introduce two new benchmarks: KnowRecall and VisRecall, which evaluate cross-lingual consistency in MLLMs. KnowRecall is a visual question answering benchmark designed to measure factual knowledge consistency in 15 languages, focusing on cultural and historical questions about global landmarks. VisRecall assesses visual memory consistency by asking models to describe landmark appearances in 9 languages without access to images. Experimental results reveal that state-of-the-art MLLMs, including proprietary ones, still struggle to achieve cross-lingual consistency. This underscores the need for more robust approaches that produce truly multilingual and culturally aware models.
comment: https://github.com/nlp-waseda/traveling-across-languages
♻ ☆ Stronger, Steadier & Superior: Geometric Consistency in Depth VFM Forges Domain Generalized Semantic Segmentation ICCV 2025
Vision Foundation Models (VFMs) have delivered remarkable performance in Domain Generalized Semantic Segmentation (DGSS). However, recent methods often overlook the fact that visual cues are susceptible, whereas the underlying geometry remains stable, rendering depth information more robust. In this paper, we investigate the potential of integrating depth information with features from VFMs, to improve the geometric consistency within an image and boost the generalization performance of VFMs. We propose a novel fine-tuning DGSS framework, named DepthForge, which integrates the visual cues from frozen DINOv2 or EVA02 and depth cues from frozen Depth Anything V2. In each layer of the VFMs, we incorporate depth-aware learnable tokens to continuously decouple domain-invariant visual and spatial information, thereby enhancing depth awareness and attention of the VFMs. Finally, we develop a depth refinement decoder and integrate it into the model architecture to adaptively refine multi-layer VFM features and depth-aware learnable tokens. Extensive experiments are conducted based on various DGSS settings and five different datsets as unseen target domains. The qualitative and quantitative results demonstrate that our method significantly outperforms alternative approaches with stronger performance, steadier visual-spatial attention, and superior generalization ability. In particular, DepthForge exhibits outstanding performance under extreme conditions (e.g., night and snow). Code is available at https://github.com/anonymouse-xzrptkvyqc/DepthForge.
comment: Accepted by ICCV 2025
♻ ☆ Deep Transfer Learning for Kidney Cancer Diagnosis
Incurable diseases continue to pose major challenges to global healthcare systems, with their prevalence shaped by lifestyle, economic, social, and genetic factors. Among these, kidney disease remains a critical global health issue, requiring ongoing research to improve early diagnosis and treatment. In recent years, deep learning (DL) has shown promise in medical imaging and diagnostics, driving significant progress in automatic kidney cancer (KC) detection. However, the success of DL models depends heavily on the availability of high-quality, domain-specific datasets, which are often limited and expensive to acquire. Moreover, DL models demand substantial computational power and storage, restricting their real-world clinical use. To overcome these barriers, transfer learning (TL) has emerged as an effective approach, enabling the reuse of pre-trained models from related domains to enhance KC diagnosis. This paper presents a comprehensive survey of DL-based TL frameworks for KC detection, systematically reviewing key methodologies, their advantages, and limitations, and analyzing their practical performance. It further discusses challenges in applying TL to medical imaging and highlights emerging trends that could influence future research. This review demonstrates the transformative role of TL in precision medicine, particularly oncology, by improving diagnostic accuracy, lowering computational demands, and supporting the integration of AI-powered tools in healthcare. The insights provided offer valuable guidance for researchers and practitioners, paving the way for future advances in KC diagnostics and personalized treatment strategies.
♻ ☆ Anatomical Foundation Models for Brain MRIs
Deep Learning (DL) in neuroimaging has become increasingly relevant for detecting neurological conditions and neurodegenerative disorders. One of the most predominant biomarkers in neuroimaging is represented by brain age, which has been shown to be a good indicator for different conditions, such as Alzheimer's Disease. Using brain age for weakly supervised pre-training of DL models in transfer learning settings has also recently shown promising results, especially when dealing with data scarcity of different conditions. On the other hand, anatomical information of brain MRIs (e.g. cortical thickness) can provide important information for learning good representations that can be transferred to many downstream tasks. In this work, we propose AnatCL, an anatomical foundation model for brain MRIs that i.) leverages anatomical information in a weakly contrastive learning approach, and ii.) achieves state-of-the-art performances across many different downstream tasks. To validate our approach we consider 12 different downstream tasks for the diagnosis of different conditions such as Alzheimer's Disease, autism spectrum disorder, and schizophrenia. Furthermore, we also target the prediction of 10 different clinical assessment scores using structural MRI data. Our findings show that incorporating anatomical information during pre-training leads to more robust and generalizable representations. Pre-trained models can be found at: https://github.com/EIDOSLAB/AnatCL.
comment: Updated version; added ablation study
♻ ☆ Sequence-aware Pre-training for Echocardiography Probe Movement Guidance
Echocardiography is an essential medical technique for diagnosing cardiovascular diseases, but its high operational complexity has led to a shortage of trained professionals. To address this issue, we introduce a novel probe movement guidance algorithm that has the potential to be applied in guiding robotic systems or novices with probe pose adjustment for high-quality standard plane image acquisition.Cardiac ultrasound faces two major challenges: (1) the inherently complex structure of the heart, and (2) significant individual variations. Previous works have only learned the population-averaged structure of the heart rather than personalized cardiac structures, leading to a performance bottleneck. Clinically, we observe that sonographers dynamically adjust their interpretation of a patient's cardiac anatomy based on prior scanning sequences, consequently refining their scanning strategies. Inspired by this, we propose a novel sequence-aware self-supervised pre-training method. Specifically, our approach learns personalized three-dimensional cardiac structural features by predicting the masked-out image features and probe movement actions in a scanning sequence. We hypothesize that if the model can predict the missing content it has acquired a good understanding of personalized cardiac structure. Extensive experiments on a large-scale expert scanning dataset with 1.31 million samples demonstrate that our proposed sequence-aware paradigm can effectively reduce probe guidance errors compared to other advanced baseline methods. Our code will be released after acceptance.
comment: Tech Report
♻ ☆ ZeroStereo: Zero-Shot Stereo Matching from Single Images ICCV 2025
State-of-the-art supervised stereo matching methods have achieved remarkable performance on various benchmarks. However, their generalization to real-world scenarios remains challenging due to the scarcity of annotated real-world stereo data. In this paper, we propose ZeroStereo, a novel stereo image generation pipeline for zero-shot stereo matching. Our approach synthesizes high-quality right images from arbitrary single images by leveraging pseudo disparities generated by a monocular depth estimation model. Unlike previous methods that address occluded regions by filling missing areas with neighboring pixels or random backgrounds, we fine-tune a diffusion inpainting model to recover missing details while preserving semantic structure. Additionally, we propose Training-Free Confidence Generation, which mitigates the impact of unreliable pseudo labels without additional training, and Adaptive Disparity Selection, which ensures a diverse and realistic disparity distribution while preventing excessive occlusion and foreground distortion. Experiments demonstrate that models trained with our pipeline achieve state-of-the-art zero-shot generalization across multiple datasets with only a dataset volume comparable to Scene Flow. Code: https://github.com/Windsrain/ZeroStereo.
comment: Accepted to ICCV 2025
♻ ☆ Skip-Vision: Efficient and Scalable Acceleration of Vision-Language Models via Adaptive Token Skipping ICCV2025
Transformer-based models have driven significant advancements in Multimodal Large Language Models (MLLMs), yet their computational costs surge drastically when scaling resolution, training data, and model parameters. A key bottleneck stems from the proliferation of visual tokens required for fine-grained image understanding. We propose Skip-Vision, a unified framework addressing both training and inference inefficiencies in vision-language models. On top of conventional token compression approaches, our method introduces two complementary acceleration strategies. For training acceleration, we observe that Feed-Forward Network (FFN) computations on visual tokens induce marginal feature updates. This motivates our Skip-FFN strategy, which bypasses FFN layers for redundant visual tokens. For inference acceleration, we design a selective KV-cache removal mechanism that prunes the skipped key-value pairs during decoding while preserving model performance. Experimental results demonstrate that Skip-Vision reduces training time by up to 35\%, inference FLOPs by 75\%, and latency by 45\%, while achieving comparable or superior performance to existing methods. Our work provides a practical solution for scaling high-performance MLLMs with enhanced efficiency.
comment: Accepted by ICCV2025
♻ ☆ MTCNet: Motion and Topology Consistency Guided Learning for Mitral Valve Segmentationin 4D Ultrasound MICCAI 2025
Mitral regurgitation is one of the most prevalent cardiac disorders. Four-dimensional (4D) ultrasound has emerged as the primary imaging modality for assessing dynamic valvular morphology. However, 4D mitral valve (MV) analysis remains challenging due to limited phase annotations, severe motion artifacts, and poor imaging quality. Yet, the absence of inter-phase dependency in existing methods hinders 4D MV analysis. To bridge this gap, we propose a Motion-Topology guided consistency network (MTCNet) for accurate 4D MV ultrasound segmentation in semi-supervised learning (SSL). MTCNet requires only sparse end-diastolic and end-systolic annotations. First, we design a cross-phase motion-guided consistency learning strategy, utilizing a bi-directional attention memory bank to propagate spatio-temporal features. This enables MTCNet to achieve excellent performance both per- and inter-phase. Second, we devise a novel topology-guided correlation regularization that explores physical prior knowledge to maintain anatomically plausible. Therefore, MTCNet can effectively leverage structural correspondence between labeled and unlabeled phases. Extensive evaluations on the first largest 4D MV dataset, with 1408 phases from 160 patients, show that MTCNet performs superior cross-phase consistency compared to other advanced methods (Dice: 87.30%, HD: 1.75mm). Both the code and the dataset are available at https://github.com/crs524/MTCNet.
comment: Accepted by MICCAI 2025
♻ ☆ RGC-VQA: An Exploration Database for Robotic-Generated Video Quality Assessment
As camera-equipped robotic platforms become increasingly integrated into daily life, robotic-generated videos have begun to appear on streaming media platforms, enabling us to envision a future where humans and robots coexist. We innovatively propose the concept of Robotic-Generated Content (RGC) to term these videos generated from egocentric perspective of robots. The perceptual quality of RGC videos is critical in human-robot interaction scenarios, and RGC videos exhibit unique distortions and visual requirements that differ markedly from those of professionally-generated content (PGC) videos and user-generated content (UGC) videos. However, dedicated research on quality assessment of RGC videos is still lacking. To address this gap and to support broader robotic applications, we establish the first Robotic-Generated Content Database (RGCD), which contains a total of 2,100 videos drawn from three robot categories and sourced from diverse platforms. A subjective VQA experiment is conducted subsequently to assess human visual perception of robotic-generated videos. Finally, we conduct a benchmark experiment to evaluate the performance of 11 state-of-the-art VQA models on our database. Experimental results reveal significant limitations in existing VQA models when applied to complex, robotic-generated content, highlighting a critical need for RGC-specific VQA models. Our RGCD is publicly available at: https://github.com/IntMeGroup/RGC-VQA.
Machine Learning 176
☆ Point3R: Streaming 3D Reconstruction with Explicit Spatial Pointer Memory
Dense 3D scene reconstruction from an ordered sequence or unordered image collections is a critical step when bringing research in computer vision into practical scenarios. Following the paradigm introduced by DUSt3R, which unifies an image pair densely into a shared coordinate system, subsequent methods maintain an implicit memory to achieve dense 3D reconstruction from more images. However, such implicit memory is limited in capacity and may suffer from information loss of earlier frames. We propose Point3R, an online framework targeting dense streaming 3D reconstruction. To be specific, we maintain an explicit spatial pointer memory directly associated with the 3D structure of the current scene. Each pointer in this memory is assigned a specific 3D position and aggregates scene information nearby in the global coordinate system into a changing spatial feature. Information extracted from the latest frame interacts explicitly with this pointer memory, enabling dense integration of the current observation into the global coordinate system. We design a 3D hierarchical position embedding to promote this interaction and design a simple yet effective fusion mechanism to ensure that our pointer memory is uniform and efficient. Our method achieves competitive or state-of-the-art performance on various tasks with low training costs. Code is available at: https://github.com/YkiWu/Point3R.
comment: Code is available at: https://github.com/YkiWu/Point3R
☆ Answer Matching Outperforms Multiple Choice for Language Model Evaluation
Multiple choice benchmarks have long been the workhorse of language model evaluation because grading multiple choice is objective and easy to automate. However, we show multiple choice questions from popular benchmarks can often be answered without even seeing the question. These shortcuts arise from a fundamental limitation of discriminative evaluation not shared by evaluations of the model's free-form, generative answers. Until recently, there appeared to be no viable, scalable alternative to multiple choice--but, we show that this has changed. We consider generative evaluation via what we call answer matching: Give the candidate model the question without the options, have it generate a free-form response, then use a modern language model with the reference answer to determine if the response matches the reference. To compare the validity of different evaluation strategies, we annotate MMLU-Pro and GPQA-Diamond to obtain human grading data, and measure the agreement of each evaluation approach. We find answer matching using recent models--even small ones--achieves near-perfect agreement, in the range of inter-annotator agreement. In contrast, both multiple choice evaluation and using LLM-as-a-judge without reference answers aligns poorly with human grading. Improving evaluations via answer matching is not merely a conceptual concern: the rankings of several models change significantly when evaluating their free-form responses with answer matching. In light of these findings, we discuss how to move the evaluation ecosystem from multiple choice to answer matching.
comment: 34 pages, Code is available at https://github.com/nikhilchandak/answer-matching
☆ MOTIF: Modular Thinking via Reinforcement Fine-tuning in LLMs
Recent advancements in the reasoning capabilities of large language models (LLMs) show that employing group relative policy optimization (GRPO) algorithm for reinforcement learning (RL) training allows the models to use more thinking/reasoning tokens for generating better responses. However, LLMs can generate only a finite amount of tokens while maintaining attention to the previously generated tokens. This limit, also known as the context size of an LLM, is a bottleneck in LLM reasoning with arbitrarily large number of tokens. To think beyond the limit of context size, an LLM must employ a modular thinking strategy to reason over multiple rounds. In this work, we propose $\textbf{MOTIF: Modular Thinking via Reinforcement Finetuning}$ -- an RL training method for generating thinking tokens in multiple rounds, effectively allowing the model to think with additional context size. We trained the open-source model Qwen2.5-3B-Instruct on GSM8K dataset via parameter efficient fine-tuning and tested its accuracy on MATH500 and AIME2024 benchmarks. Our experiments show 3.8\% and 3.3\% improvements over vanilla GRPO based training in the respective benchmarks. Furthermore, this improvement was achieved with only 15\% of samples, thus demonstrating sample efficiency of MOTIF. Our code and models are available at https://github.com/purbeshmitra/MOTIF and https://huggingface.co/purbeshmitra/MOTIF, respectively.
LLM Hypnosis: Exploiting User Feedback for Unauthorized Knowledge Injection to All Users
We describe a vulnerability in language models (LMs) trained with user feedback, whereby a single user can persistently alter LM knowledge and behavior given only the ability to provide prompts and upvote / downvote feedback on LM outputs. To implement the attack, the attacker prompts the LM to stochastically output either a "poisoned" or benign response, then upvotes the poisoned response or downvotes the benign one. When feedback signals are used in a subsequent preference tuning behavior, LMs exhibit increased probability of producing poisoned responses even in contexts without malicious prompts. We show that this attack can be used to (1) insert factual knowledge the model did not previously possess, (2) modify code generation patterns in ways that introduce exploitable security flaws, and (3) inject fake financial news. Our finding both identifies a new qualitative feature of language model preference tuning (showing that it even highly restricted forms of preference data can be used to exert fine-grained control over behavior), and a new attack mechanism for LMs trained with user feedback (extending work on pretraining-time data poisoning and deployment-time prompt injection).
☆ MvHo-IB: Multi-View Higher-Order Information Bottleneck for Brain Disorder Diagnosis MICCAI-25
Recent evidence suggests that modeling higher-order interactions (HOIs) in functional magnetic resonance imaging (fMRI) data can enhance the diagnostic accuracy of machine learning systems. However, effectively extracting and utilizing HOIs remains a significant challenge. In this work, we propose MvHo-IB, a novel multi-view learning framework that integrates both pairwise interactions and HOIs for diagnostic decision-making, while automatically compressing task-irrelevant redundant information. MvHo-IB introduces several key innovations: (1) a principled method that combines O-information from information theory with a matrix-based Renyi alpha-order entropy estimator to quantify and extract HOIs, (2) a purpose-built Brain3DCNN encoder to effectively utilize these interactions, and (3) a new multi-view learning information bottleneck objective to enhance representation learning. Experiments on three benchmark fMRI datasets demonstrate that MvHo-IB achieves state-of-the-art performance, significantly outperforming previous methods, including recent hypergraph-based techniques. The implementation of MvHo-IB is available at https://github.com/zky04/MvHo-IB.
comment: Accepted by MICCAI-25, code is available at \url{https://github.com/zky04/MvHo-IB}
LLM-Driven Treatment Effect Estimation Under Inference Time Text Confounding
Estimating treatment effects is crucial for personalized decision-making in medicine, but this task faces unique challenges in clinical practice. At training time, models for estimating treatment effects are typically trained on well-structured medical datasets that contain detailed patient information. However, at inference time, predictions are often made using textual descriptions (e.g., descriptions with self-reported symptoms), which are incomplete representations of the original patient information. In this work, we make three contributions. (1) We show that the discrepancy between the data available during training time and inference time can lead to biased estimates of treatment effects. We formalize this issue as an inference time text confounding problem, where confounders are fully observed during training time but only partially available through text at inference time. (2) To address this problem, we propose a novel framework for estimating treatment effects that explicitly accounts for inference time text confounding. Our framework leverages large language models together with a custom doubly robust learner to mitigate biases caused by the inference time text confounding. (3) Through a series of experiments, we demonstrate the effectiveness of our framework in real-world applications.
☆ StepHint: Multi-level Stepwise Hints Enhance Reinforcement Learning to Reason
Reinforcement learning with verifiable rewards (RLVR) is a promising approach for improving the complex reasoning abilities of large language models (LLMs). However, current RLVR methods face two significant challenges: the near-miss reward problem, where a small mistake can invalidate an otherwise correct reasoning process, greatly hindering training efficiency; and exploration stagnation, where models tend to focus on solutions within their ``comfort zone,'' lacking the motivation to explore potentially more effective alternatives. To address these challenges, we propose StepHint, a novel RLVR algorithm that utilizes multi-level stepwise hints to help models explore the solution space more effectively. StepHint generates valid reasoning chains from stronger models and partitions these chains into reasoning steps using our proposed adaptive partitioning method. The initial few steps are used as hints, and simultaneously, multiple-level hints (each comprising a different number of steps) are provided to the model. This approach directs the model's exploration toward a promising solution subspace while preserving its flexibility for independent exploration. By providing hints, StepHint mitigates the near-miss reward problem, thereby improving training efficiency. Additionally, the external reasoning pathways help the model develop better reasoning abilities, enabling it to move beyond its ``comfort zone'' and mitigate exploration stagnation. StepHint outperforms competitive RLVR enhancement methods across six mathematical benchmarks, while also demonstrating superior generalization and excelling over baselines on out-of-domain benchmarks.
☆ ExPO: Unlocking Hard Reasoning with Self-Explanation-Guided Reinforcement Learning
Recent advances in large language models have been driven by reinforcement learning (RL)-style post-training, which improves reasoning by optimizing model outputs based on reward or preference signals. GRPO-style approaches implement this by using self-generated samples labeled by an outcome-based verifier. However, these methods depend heavily on the model's initial ability to produce positive samples. They primarily refine what the model already knows (distribution sharpening) rather than enabling the model to solve problems where it initially fails. This limitation is especially problematic in early-stage RL training and on challenging reasoning tasks, where positive samples are unlikely to be generated. To unlock reasoning ability in such settings, the model must explore new reasoning trajectories beyond its current output distribution. Such exploration requires access to sufficiently good positive samples to guide the learning. While expert demonstrations seem like a natural solution, we find that they are often ineffective in RL post-training. Instead, we identify two key properties of effective positive samples: they should (1) be likely under the current policy, and (2) increase the model's likelihood of predicting the correct answer. Based on these insights, we propose $\textbf{Self-Explanation Policy Optimization (ExPO)}$-a simple and modular framework that generates such samples by conditioning on the ground-truth answer. ExPO enables efficient exploration and guides the model to produce reasoning trajectories more aligned with its policy than expert-written CoTs, while ensuring higher quality than its own (incorrect) samples. Experiments show that ExPO improves both learning efficiency and final performance on reasoning benchmarks, surpassing expert-demonstration-based methods in challenging settings such as MATH level-5, where the model initially struggles the most.
☆ DNN-Based Precoding in RIS-Aided mmWave MIMO Systems With Practical Phase Shift
In this paper, the precoding design is investigated for maximizing the throughput of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems with obstructed direct communication paths. In particular, a reconfigurable intelligent surface (RIS) is employed to enhance MIMO transmissions, considering mmWave characteristics related to line-of-sight (LoS) and multipath effects. The traditional exhaustive search (ES) for optimal codewords in the continuous phase shift is computationally intensive and time-consuming. To reduce computational complexity, permuted discrete Fourier transform (DFT) vectors are used for finding codebook design, incorporating amplitude responses for practical or ideal RIS systems. However, even if the discrete phase shift is adopted in the ES, it results in significant computation and is time-consuming. Instead, the trained deep neural network (DNN) is developed to facilitate faster codeword selection. Simulation results show that the DNN maintains sub-optimal spectral efficiency even as the distance between the end-user and the RIS has variations in the testing phase. These results highlight the potential of DNN in advancing RIS-aided systems.
comment: 5 pages, 4 figures, 2 tables, accepted by IEEE Globecom 2024 Workshops
☆ SynapseRoute: An Auto-Route Switching Framework on Dual-State Large Language Model
With the widespread adoption of large language models (LLMs) in practical applications, selecting an appropriate model requires balancing not only performance but also operational cost. The emergence of reasoning-capable models has further widened the cost gap between "thinking" (high reasoning) and "non-thinking" (fast, low-cost) modes. In this work, we reveal that approximately 58% of medical questions can be accurately answered by the non-thinking mode alone, without requiring the high-cost reasoning process. This highlights a clear dichotomy in problem complexity and suggests that dynamically routing queries to the appropriate mode based on complexity could optimize accuracy, cost-efficiency, and overall user experience. Based on this, we further propose SynapseRoute, a machine learning-based dynamic routing framework that intelligently assigns input queries to either thinking or non-thinking modes. Experimental results on several medical datasets demonstrate that SynapseRoute not only improves overall accuracy (0.8390 vs. 0.8272) compared to the thinking mode alone but also reduces inference time by 36.8% and token consumption by 39.66%. Importantly, qualitative analysis indicates that over-reasoning on simpler queries can lead to unnecessary delays and even decreased accuracy, a pitfall avoided by our adaptive routing. Finally, this work further introduces the Accuracy-Inference-Token (AIT) index to comprehensively evaluate the trade-offs among accuracy, latency, and token cost.
☆ Measurement as Bricolage: Examining How Data Scientists Construct Target Variables for Predictive Modeling Tasks
Data scientists often formulate predictive modeling tasks involving fuzzy, hard-to-define concepts, such as the "authenticity" of student writing or the "healthcare need" of a patient. Yet the process by which data scientists translate fuzzy concepts into a concrete, proxy target variable remains poorly understood. We interview fifteen data scientists in education (N=8) and healthcare (N=7) to understand how they construct target variables for predictive modeling tasks. Our findings suggest that data scientists construct target variables through a bricolage process, involving iterative negotiation between high-level measurement objectives and low-level practical constraints. Data scientists attempt to satisfy five major criteria for a target variable through bricolage: validity, simplicity, predictability, portability, and resource requirements. To achieve this, data scientists adaptively use problem (re)formulation strategies, such as swapping out one candidate target variable for another when the first fails to meet certain criteria (e.g., predictability), or composing multiple outcomes into a single target variable to capture a more holistic set of modeling objectives. Based on our findings, we present opportunities for future HCI, CSCW, and ML research to better support the art and science of target variable construction.
☆ Replicable Distribution Testing
We initiate a systematic investigation of distribution testing in the framework of algorithmic replicability. Specifically, given independent samples from a collection of probability distributions, the goal is to characterize the sample complexity of replicably testing natural properties of the underlying distributions. On the algorithmic front, we develop new replicable algorithms for testing closeness and independence of discrete distributions. On the lower bound front, we develop a new methodology for proving sample complexity lower bounds for replicable testing that may be of broader interest. As an application of our technique, we establish near-optimal sample complexity lower bounds for replicable uniformity testing -- answering an open question from prior work -- and closeness testing.
comment: 39 pages
☆ In-Training Multicalibrated Survival Analysis for Healthcare via Constrained Optimization
Survival analysis is an important problem in healthcare because it models the relationship between an individual's covariates and the onset time of an event of interest (e.g., death). It is important for survival models to be well-calibrated (i.e., for their predicted probabilities to be close to ground-truth probabilities) because badly calibrated systems can result in erroneous clinical decisions. Existing survival models are typically calibrated at the population level only, and thus run the risk of being poorly calibrated for one or more minority subpopulations. We propose a model called GRADUATE that achieves multicalibration by ensuring that all subpopulations are well-calibrated too. GRADUATE frames multicalibration as a constrained optimization problem, and optimizes both calibration and discrimination in-training to achieve a good balance between them. We mathematically prove that the optimization method used yields a solution that is both near-optimal and feasible with high probability. Empirical comparisons against state-of-the-art baselines on real-world clinical datasets demonstrate GRADUATE's efficacy. In a detailed analysis, we elucidate the shortcomings of the baselines vis-a-vis GRADUATE's strengths.
☆ Learning to Coordinate Bidders in Non-Truthful Auctions
In non-truthful auctions such as first-price and all-pay auctions, the independent strategic behaviors of bidders, with the corresponding equilibrium notion -- Bayes Nash equilibria -- are notoriously difficult to characterize and can cause undesirable outcomes. An alternative approach to designing better auction systems is to coordinate the bidders: let a mediator make incentive-compatible recommendations of correlated bidding strategies to the bidders, namely, implementing a Bayes correlated equilibrium (BCE). The implementation of BCE, however, requires knowledge of the distribution of bidders' private valuations, which is often unavailable. We initiate the study of the sample complexity of learning Bayes correlated equilibria in non-truthful auctions. We prove that the BCEs in a large class of non-truthful auctions, including first-price and all-pay auctions, can be learned with a polynomial number $\tilde O(\frac{n}{\varepsilon^2})$ of samples from the bidders' value distributions. Our technique is a reduction to the problem of estimating bidders' expected utility from samples, combined with an analysis of the pseudo-dimension of the class of all monotone bidding strategies of bidders.
☆ Self-Steering Deep Non-Linear Spatially Selective Filters for Efficient Extraction of Moving Speakers under Weak Guidance
Recent works on deep non-linear spatially selective filters demonstrate exceptional enhancement performance with computationally lightweight architectures for stationary speakers of known directions. However, to maintain this performance in dynamic scenarios, resource-intensive data-driven tracking algorithms become necessary to provide precise spatial guidance conditioned on the initial direction of a target speaker. As this additional computational overhead hinders application in resource-constrained scenarios such as real-time speech enhancement, we present a novel strategy utilizing a low-complexity tracking algorithm in the form of a particle filter instead. Assuming a causal, sequential processing style, we introduce temporal feedback to leverage the enhanced speech signal of the spatially selective filter to compensate for the limited modeling capabilities of the particle filter. Evaluation on a synthetic dataset illustrates how the autoregressive interplay between both algorithms drastically improves tracking accuracy and leads to strong enhancement performance. A listening test with real-world recordings complements these findings by indicating a clear trend towards our proposed self-steering pipeline as preferred choice over comparable methods.
comment: Accepted at IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA) 2025
☆ Understanding and Improving Length Generalization in Recurrent Models
Recently, recurrent models such as state space models and linear attention have become popular due to their linear complexity in the sequence length. Thanks to their recurrent nature, in principle they can process arbitrarily long sequences, but their performance sometimes drops considerably beyond their training context lengths-i.e. they fail to length generalize. In this work, we provide comprehensive empirical and theoretical analysis to support the unexplored states hypothesis, which posits that models fail to length generalize when during training they are only exposed to a limited subset of the distribution of all attainable states (i.e. states that would be attained if the recurrence was applied to long sequences). Furthermore, we investigate simple training interventions that aim to increase the coverage of the states that the model is trained on, e.g. by initializing the state with Gaussian noise or with the final state of a different input sequence. With only 500 post-training steps ($\sim 0.1\%$ of the pre-training budget), these interventions enable length generalization for sequences that are orders of magnitude longer than the training context (e.g. $2k\longrightarrow 128k$) and show improved performance in long context tasks, thus presenting a simple and efficient way to enable robust length generalization in general recurrent models.
☆ Self-Correction Bench: Revealing and Addressing the Self-Correction Blind Spot in LLMs
Although large language models (LLMs) have become transformative, they still make mistakes and can explore unproductive reasoning paths. Self-correction is an important capability for a trustworthy LLM, particularly an autoregressive LLM. While LLMs can identify error in user input, they exhibit a systematic 'Self-Correction Blind Spot' - failing to correct identical error in their own outputs. To systematically study this phenomenon, we introduce Self-Correction Bench, a systematic framework to measure this phenomenon through controlled error injection at three complexity levels. Testing 14 models, we find an average 64.5% blind spot rate. We find multiple evidences that this limitation relates to training data composition: human training demonstrations predominantly show error-free responses rather than error-correction sequences, unlike RL-trained models that learn error correction through outcome feedback. Remarkably, simply appending "Wait" reduces blind spots by 89.3%, suggesting that the capability exists but requires activation. Our work highlights a critical limitation in current LLMs and offers potential avenues for improving their reliability and trustworthiness.
comment: 31 pages, 18 figures
☆ KERAP: A Knowledge-Enhanced Reasoning Approach for Accurate Zero-shot Diagnosis Prediction Using Multi-agent LLMs
Medical diagnosis prediction plays a critical role in disease detection and personalized healthcare. While machine learning (ML) models have been widely adopted for this task, their reliance on supervised training limits their ability to generalize to unseen cases, particularly given the high cost of acquiring large, labeled datasets. Large language models (LLMs) have shown promise in leveraging language abilities and biomedical knowledge for diagnosis prediction. However, they often suffer from hallucinations, lack structured medical reasoning, and produce useless outputs. To address these challenges, we propose KERAP, a knowledge graph (KG)-enhanced reasoning approach that improves LLM-based diagnosis prediction through a multi-agent architecture. Our framework consists of a linkage agent for attribute mapping, a retrieval agent for structured knowledge extraction, and a prediction agent that iteratively refines diagnosis predictions. Experimental results demonstrate that KERAP enhances diagnostic reliability efficiently, offering a scalable and interpretable solution for zero-shot medical diagnosis prediction.
☆ Grounding Intelligence in Movement
Recent advances in machine learning have dramatically improved our ability to model language, vision, and other high-dimensional data, yet they continue to struggle with one of the most fundamental aspects of biological systems: movement. Across neuroscience, medicine, robotics, and ethology, movement is essential for interpreting behavior, predicting intent, and enabling interaction. Despite its core significance in our intelligence, movement is often treated as an afterthought rather than as a rich and structured modality in its own right. This reflects a deeper fragmentation in how movement data is collected and modeled, often constrained by task-specific goals and domain-specific assumptions. But movement is not domain-bound. It reflects shared physical constraints, conserved morphological structures, and purposeful dynamics that cut across species and settings. We argue that movement should be treated as a primary modeling target for AI. It is inherently structured and grounded in embodiment and physics. This structure, often allowing for compact, lower-dimensional representations (e.g., pose), makes it more interpretable and computationally tractable to model than raw, high-dimensional sensory inputs. Developing models that can learn from and generalize across diverse movement data will not only advance core capabilities in generative modeling and control, but also create a shared foundation for understanding behavior across biological and artificial systems. Movement is not just an outcome, it is a window into how intelligent systems engage with the world.
comment: 9 pages, 2 figures
☆ Contextual Online Pricing with (Biased) Offline Data
We study contextual online pricing with biased offline data. For the scalar price elasticity case, we identify the instance-dependent quantity $\delta^2$ that measures how far the offline data lies from the (unknown) online optimum. We show that the time length $T$, bias bound $V$, size $N$ and dispersion $\lambda_{\min}(\hat{\Sigma})$ of the offline data, and $\delta^2$ jointly determine the statistical complexity. An Optimism-in-the-Face-of-Uncertainty (OFU) policy achieves a minimax-optimal, instance-dependent regret bound $\tilde{\mathcal{O}}\big(d\sqrt{T} \wedge (V^2T + \frac{dT}{\lambda_{\min}(\hat{\Sigma}) + (N \wedge T) \delta^2})\big)$. For general price elasticity, we establish a worst-case, minimax-optimal rate $\tilde{\mathcal{O}}\big(d\sqrt{T} \wedge (V^2T + \frac{dT }{\lambda_{\min}(\hat{\Sigma})})\big)$ and provide a generalized OFU algorithm that attains it. When the bias bound $V$ is unknown, we design a robust variant that always guarantees sub-linear regret and strictly improves on purely online methods whenever the exact bias is small. These results deliver the first tight regret guarantees for contextual pricing in the presence of biased offline data. Our techniques also transfer verbatim to stochastic linear bandits with biased offline data, yielding analogous bounds.
comment: 47 pages, 4 figures
☆ Fast and Simplex: 2-Simplicial Attention in Triton
Recent work has shown that training loss scales as a power law with both model size and the number of tokens, and that achieving compute-optimal models requires scaling model size and token count together. However, these scaling laws assume an infinite supply of data and apply primarily in compute-bound settings. As modern large language models increasingly rely on massive internet-scale datasets, the assumption that they are compute-bound is becoming less valid. This shift highlights the need for architectures that prioritize token efficiency. In this work, we investigate the use of the 2-simplicial Transformer, an architecture that generalizes standard dot-product attention to trilinear functions through an efficient Triton kernel implementation. We demonstrate that the 2-simplicial Transformer achieves better token efficiency than standard Transformers: for a fixed token budget, similarly sized models outperform their dot-product counterparts on tasks involving mathematics, coding, reasoning, and logic. We quantify these gains by demonstrating that $2$-simplicial attention changes the exponent in the scaling laws for knowledge and reasoning tasks compared to dot product attention.
comment: 10 pages, with appendix 25 pages
☆ Linear Attention with Global Context: A Multipole Attention Mechanism for Vision and Physics ICCV 2025
Transformers have become the de facto standard for a wide range of tasks, from image classification to physics simulations. Despite their impressive performance, the quadratic complexity of standard Transformers in both memory and time with respect to the input length makes them impractical for processing high-resolution inputs. Therefore, several variants have been proposed, the most successful relying on patchification, downsampling, or coarsening techniques, often at the cost of losing the finest-scale details. In this work, we take a different approach. Inspired by state-of-the-art techniques in $n$-body numerical simulations, we cast attention as an interaction problem between grid points. We introduce the Multipole Attention Neural Operator (MANO), which computes attention in a distance-based multiscale fashion. MANO maintains, in each attention head, a global receptive field and achieves linear time and memory complexity with respect to the number of grid points. Empirical results on image classification and Darcy flows demonstrate that MANO rivals state-of-the-art models such as ViT and Swin Transformer, while reducing runtime and peak memory usage by orders of magnitude. We open source our code for reproducibility at https://github.com/AlexColagrande/MANO.
comment: Accepted at ECLR Workshop at ICCV 2025
☆ Early Signs of Steganographic Capabilities in Frontier LLMs
Monitoring Large Language Model (LLM) outputs is crucial for mitigating risks from misuse and misalignment. However, LLMs could evade monitoring through steganography: Encoding hidden information within seemingly benign generations. In this paper, we evaluate the steganography capabilities in frontier LLMs to better understand the risk they pose. We focus on two types of steganography: passing encoded messages and performing encoded reasoning. We find that current models are unable to encode short messages in their outputs without a monitor noticing under standard affordances. They can succeed, however, if given additional affordances such as using an unmonitored scratchpad and coordinating on what encoding scheme to use. We additionally find early signs that models can perform basic encoded reasoning in a simple state-tracking problem. This includes some ability to reason with their own and pre-defined schemes, including encoding schemes such as Hexadecimal. Despite this, they can rarely hide reasoning subtly within a cover task to fool a monitor. Overall, our results indicate that current LLMs exhibit nascent steganographic capabilities. While these capabilities are likely insufficient to bypass well-designed monitors at present, this could change in the future.
☆ Classification by Separating Hypersurfaces: An Entropic Approach
We consider the following classification problem: Given a population of individuals characterized by a set of attributes represented as a vector in ${\mathbb R}^N$, the goal is to find a hyperplane in ${\mathbb R}^N$ that separates two sets of points corresponding to two distinct classes. This problem, with a history dating back to the perceptron model, remains central to machine learning. In this paper we propose a novel approach by searching for a vector of parameters in a bounded $N$-dimensional hypercube centered at the origin and a positive vector in ${\mathbb R}^M$, obtained through the minimization of an entropy-based function defined over the space of unknown variables. The method extends to polynomial surfaces, allowing the separation of data points by more complex decision boundaries. This provides a robust alternative to traditional linear or quadratic optimization techniques, such as support vector machines and gradient descent. Numerical experiments demonstrate the efficiency and versatility of the method in handling diverse classification tasks, including linear and non-linear separability.
comment: 15 pages, 10 tables, 4 figures
☆ Bourbaki: Self-Generated and Goal-Conditioned MDPs for Theorem Proving
Reasoning remains a challenging task for large language models (LLMs), especially within the logically constrained environment of automated theorem proving (ATP), due to sparse rewards and the vast scale of proofs. These challenges are amplified in benchmarks like PutnamBench, which contains university-level problems requiring complex, multi-step reasoning. To address this, we introduce self-generated goal-conditioned MDPs (sG-MDPs), a new framework in which agents generate and pursue their subgoals based on the evolving proof state. Given this more structured generation of goals, the resulting problem becomes more amenable to search. We then apply Monte Carlo Tree Search (MCTS)-like algorithms to solve the sG-MDP, instantiating our approach in Bourbaki (7B), a modular system that can ensemble multiple 7B LLMs for subgoal generation and tactic synthesis. On PutnamBench, Bourbaki (7B) solves 26 problems, achieving new state-of-the-art results with models at this scale.
☆ Hierarchical Multi-Label Contrastive Learning for Protein-Protein Interaction Prediction Across Organisms
Recent advances in AI for science have highlighted the power of contrastive learning in bridging heterogeneous biological data modalities. Building on this paradigm, we propose HIPPO (HIerarchical Protein-Protein interaction prediction across Organisms), a hierarchical contrastive framework for protein-protein interaction(PPI) prediction, where protein sequences and their hierarchical attributes are aligned through multi-tiered biological representation matching. The proposed approach incorporates hierarchical contrastive loss functions that emulate the structured relationship among functional classes of proteins. The framework adaptively incorporates domain and family knowledge through a data-driven penalty mechanism, enforcing consistency between the learned embedding space and the intrinsic hierarchy of protein functions. Experiments on benchmark datasets demonstrate that HIPPO achieves state-of-the-art performance, outperforming existing methods and showing robustness in low-data regimes. Notably, the model demonstrates strong zero-shot transferability to other species without retraining, enabling reliable PPI prediction and functional inference even in less characterized or rare organisms where experimental data are limited. Further analysis reveals that hierarchical feature fusion is critical for capturing conserved interaction determinants, such as binding motifs and functional annotations. This work advances cross-species PPI prediction and provides a unified framework for interaction prediction in scenarios with sparse or imbalanced multi-species data.
☆ A Comprehensive Machine Learning Framework for Micromobility Demand Prediction
Dockless e-scooters, a key micromobility service, have emerged as eco-friendly and flexible urban transport alternatives. These services improve first and last-mile connectivity, reduce congestion and emissions, and complement public transport for short-distance travel. However, effective management of these services depends on accurate demand prediction, which is crucial for optimal fleet distribution and infrastructure planning. While previous studies have focused on analyzing spatial or temporal factors in isolation, this study introduces a framework that integrates spatial, temporal, and network dependencies for improved micromobility demand forecasting. This integration enhances accuracy while providing deeper insights into urban micromobility usage patterns. Our framework improves demand prediction accuracy by 27 to 49% over baseline models, demonstrating its effectiveness in capturing micromobility demand patterns. These findings support data-driven micromobility management, enabling optimized fleet distribution, cost reduction, and sustainable urban planning.
☆ A Forget-and-Grow Strategy for Deep Reinforcement Learning Scaling in Continuous Control
Deep reinforcement learning for continuous control has recently achieved impressive progress. However, existing methods often suffer from primacy bias, a tendency to overfit early experiences stored in the replay buffer, which limits an RL agent's sample efficiency and generalizability. In contrast, humans are less susceptible to such bias, partly due to infantile amnesia, where the formation of new neurons disrupts early memory traces, leading to the forgetting of initial experiences. Inspired by this dual processes of forgetting and growing in neuroscience, in this paper, we propose Forget and Grow (FoG), a new deep RL algorithm with two mechanisms introduced. First, Experience Replay Decay (ER Decay) "forgetting early experience", which balances memory by gradually reducing the influence of early experiences. Second, Network Expansion, "growing neural capacity", which enhances agents' capability to exploit the patterns of existing data by dynamically adding new parameters during training. Empirical results on four major continuous control benchmarks with more than 40 tasks demonstrate the superior performance of FoG against SoTA existing deep RL algorithms, including BRO, SimBa, and TD-MPC2.
☆ Fluid Democracy in Federated Data Aggregation ICML 2025
Federated learning (FL) mechanisms typically require each client to transfer their weights to a central server, irrespective of how useful they are. In order to avoid wasteful data transfer costs from clients to the central server, we propose the use of consensus based protocols to identify a subset of clients with most useful model weights at each data transfer step. First, we explore the application of existing fluid democracy protocols to FL from a performance standpoint, comparing them with traditional one-person-one-vote (also known as 1p1v or FedAvg). We propose a new fluid democracy protocol named viscous-retained democracy that always does better than 1p1v under the same assumptions as existing fluid democracy protocols while also not allowing for influence accumulation. Secondly, we identify weaknesses of fluid democracy protocols from an adversarial lens in terms of their dependence on topology and/ or number of adversaries required to negatively impact the global model weights. To this effect, we propose an algorithm (FedVRD) that dynamically limits the effect of adversaries while minimizing cost by leveraging the delegation topology.
comment: ICML 2025 Workshop on Collaborative and Federated Agentic Workflows
☆ Multi-Agent Reinforcement Learning for Dynamic Pricing in Supply Chains: Benchmarking Strategic Agent Behaviours under Realistically Simulated Market Conditions
This study investigates how Multi-Agent Reinforcement Learning (MARL) can improve dynamic pricing strategies in supply chains, particularly in contexts where traditional ERP systems rely on static, rule-based approaches that overlook strategic interactions among market actors. While recent research has applied reinforcement learning to pricing, most implementations remain single-agent and fail to model the interdependent nature of real-world supply chains. This study addresses that gap by evaluating the performance of three MARL algorithms: MADDPG, MADQN, and QMIX against static rule-based baselines, within a simulated environment informed by real e-commerce transaction data and a LightGBM demand prediction model. Results show that rule-based agents achieve near-perfect fairness (Jain's Index: 0.9896) and the highest price stability (volatility: 0.024), but they fully lack competitive dynamics. Among MARL agents, MADQN exhibits the most aggressive pricing behaviour, with the highest volatility and the lowest fairness (0.5844). MADDPG provides a more balanced approach, supporting market competition (share volatility: 9.5 pp) while maintaining relatively high fairness (0.8819) and stable pricing. These findings suggest that MARL introduces emergent strategic behaviour not captured by static pricing rules and may inform future developments in dynamic pricing.
☆ RLHGNN: Reinforcement Learning-driven Heterogeneous Graph Neural Network for Next Activity Prediction in Business Processes
Next activity prediction represents a fundamental challenge for optimizing business processes in service-oriented architectures such as microservices environments, distributed enterprise systems, and cloud-native platforms, which enables proactive resource allocation and dynamic service composition. Despite the prevalence of sequence-based methods, these approaches fail to capture non-sequential relationships that arise from parallel executions and conditional dependencies. Even though graph-based approaches address structural preservation, they suffer from homogeneous representations and static structures that apply uniform modeling strategies regardless of individual process complexity characteristics. To address these limitations, we introduce RLHGNN, a novel framework that transforms event logs into heterogeneous process graphs with three distinct edge types grounded in established process mining theory. Our approach creates four flexible graph structures by selectively combining these edges to accommodate different process complexities, and employs reinforcement learning formulated as a Markov Decision Process to automatically determine the optimal graph structure for each specific process instance. RLHGNN then applies heterogeneous graph convolution with relation-specific aggregation strategies to effectively predict the next activity. This adaptive methodology enables precise modeling of both sequential and non-sequential relationships in service interactions. Comprehensive evaluation on six real-world datasets demonstrates that RLHGNN consistently outperforms state-of-the-art approaches. Furthermore, it maintains an inference latency of approximately 1 ms per prediction, representing a highly practical solution suitable for real-time business process monitoring applications. The source code is available at https://github.com/Joker3993/RLHGNN.
comment: 15 pages, 7 figures. Business process prediction using reinforcement learning and heterogeneous graph neural networks
☆ Learning few-step posterior samplers by unfolding and distillation of diffusion models
Diffusion models (DMs) have emerged as powerful image priors in Bayesian computational imaging. Two primary strategies have been proposed for leveraging DMs in this context: Plug-and-Play methods, which are zero-shot and highly flexible but rely on approximations; and specialized conditional DMs, which achieve higher accuracy and faster inference for specific tasks through supervised training. In this work, we introduce a novel framework that integrates deep unfolding and model distillation to transform a DM image prior into a few-step conditional model for posterior sampling. A central innovation of our approach is the unfolding of a Markov chain Monte Carlo (MCMC) algorithm - specifically, the recently proposed LATINO Langevin sampler (Spagnoletti et al., 2025) - representing the first known instance of deep unfolding applied to a Monte Carlo sampling scheme. We demonstrate our proposed unfolded and distilled samplers through extensive experiments and comparisons with the state of the art, where they achieve excellent accuracy and computational efficiency, while retaining the flexibility to adapt to variations in the forward model at inference time.
comment: 28 pages, 16 figures, 10 tables
☆ Detection of Disengagement from Voluntary Quizzes: An Explainable Machine Learning Approach in Higher Distance Education
Students disengaging from their tasks can have serious long-term consequences, including academic drop-out. This is particularly relevant for students in distance education. One way to measure the level of disengagement in distance education is to observe participation in non-mandatory exercises in different online courses. In this paper, we detect student disengagement in the non-mandatory quizzes of 42 courses in four semesters from a distance-based university. We carefully identified the most informative student log data that could be extracted and processed from Moodle. Then, eight machine learning algorithms were trained and compared to obtain the highest possible prediction accuracy. Using the SHAP method, we developed an explainable machine learning framework that allows practitioners to better understand the decisions of the trained algorithm. The experimental results show a balanced accuracy of 91\%, where about 85\% of disengaged students were correctly detected. On top of the highly predictive performance and explainable framework, we provide a discussion on how to design a timely intervention to minimise disengagement from voluntary tasks in online learning.
☆ Embedding-Based Federated Data Sharing via Differentially Private Conditional VAEs MICCAI 2025
Deep Learning (DL) has revolutionized medical imaging, yet its adoption is constrained by data scarcity and privacy regulations, limiting access to diverse datasets. Federated Learning (FL) enables decentralized training but suffers from high communication costs and is often restricted to a single downstream task, reducing flexibility. We propose a data-sharing method via Differentially Private (DP) generative models. By adopting foundation models, we extract compact, informative embeddings, reducing redundancy and lowering computational overhead. Clients collaboratively train a Differentially Private Conditional Variational Autoencoder (DP-CVAE) to model a global, privacy-aware data distribution, supporting diverse downstream tasks. Our approach, validated across multiple feature extractors, enhances privacy, scalability, and efficiency, outperforming traditional FL classifiers while ensuring differential privacy. Additionally, DP-CVAE produces higher-fidelity embeddings than DP-CGAN while requiring $5{\times}$ fewer parameters.
comment: Accepted to MICCAI 2025
☆ Guided Generation for Developable Antibodies ICML 2025
Therapeutic antibodies require not only high-affinity target engagement, but also favorable manufacturability, stability, and safety profiles for clinical effectiveness. These properties are collectively called `developability'. To enable a computational framework for optimizing antibody sequences for favorable developability, we introduce a guided discrete diffusion model trained on natural paired heavy- and light-chain sequences from the Observed Antibody Space (OAS) and quantitative developability measurements for 246 clinical-stage antibodies. To steer generation toward biophysically viable candidates, we integrate a Soft Value-based Decoding in Diffusion (SVDD) Module that biases sampling without compromising naturalness. In unconstrained sampling, our model reproduces global features of both the natural repertoire and approved therapeutics, and under SVDD guidance we achieve significant enrichment in predicted developability scores over unguided baselines. When combined with high-throughput developability assays, this framework enables an iterative, ML-driven pipeline for designing antibodies that satisfy binding and biophysical criteria in tandem.
comment: Published in ICML 2025 GenBio Workshop
☆ OmniDraft: A Cross-vocabulary, Online Adaptive Drafter for On-device Speculative Decoding
Speculative decoding generally dictates having a small, efficient draft model that is either pretrained or distilled offline to a particular target model series, for instance, Llama or Qwen models. However, within online deployment settings, there are two major challenges: 1) usage of a target model that is incompatible with the draft model; 2) expectation of latency improvements over usage and time. In this work, we propose OmniDraft, a unified framework that enables a single draft model to operate with any target model and adapt dynamically to user data. We introduce an online n-gram cache with hybrid distillation fine-tuning to address the cross-vocabulary mismatch across draft and target models; and further improve decoding speed by leveraging adaptive drafting techniques. OmniDraft is particularly suitable for on-device LLM applications where model cost, efficiency and user customization are the major points of contention. This further highlights the need to tackle the above challenges and motivates the \textit{``one drafter for all''} paradigm. We showcase the proficiency of the OmniDraft framework by performing online learning on math reasoning, coding and text generation tasks. Notably, OmniDraft enables a single Llama-68M model to pair with various target models including Vicuna-7B, Qwen2-7B and Llama3-8B models for speculative decoding; and additionally provides up to 1.5-2x speedup.
☆ Fair Deepfake Detectors Can Generalize
Deepfake detection models face two critical challenges: generalization to unseen manipulations and demographic fairness among population groups. However, existing approaches often demonstrate that these two objectives are inherently conflicting, revealing a trade-off between them. In this paper, we, for the first time, uncover and formally define a causal relationship between fairness and generalization. Building on the back-door adjustment, we show that controlling for confounders (data distribution and model capacity) enables improved generalization via fairness interventions. Motivated by this insight, we propose Demographic Attribute-insensitive Intervention Detection (DAID), a plug-and-play framework composed of: i) Demographic-aware data rebalancing, which employs inverse-propensity weighting and subgroup-wise feature normalization to neutralize distributional biases; and ii) Demographic-agnostic feature aggregation, which uses a novel alignment loss to suppress sensitive-attribute signals. Across three cross-domain benchmarks, DAID consistently achieves superior performance in both fairness and generalization compared to several state-of-the-art detectors, validating both its theoretical foundation and practical effectiveness.
comment: 14 pages, version 1
☆ On Efficient Bayesian Exploration in Model-Based Reinforcement Learning
In this work, we address the challenge of data-efficient exploration in reinforcement learning by examining existing principled, information-theoretic approaches to intrinsic motivation. Specifically, we focus on a class of exploration bonuses that targets epistemic uncertainty rather than the aleatoric noise inherent in the environment. We prove that these bonuses naturally signal epistemic information gains and converge to zero once the agent becomes sufficiently certain about the environment's dynamics and rewards, thereby aligning exploration with genuine knowledge gaps. Our analysis provides formal guarantees for IG-based approaches, which previously lacked theoretical grounding. To enable practical use, we also discuss tractable approximations via sparse variational Gaussian Processes, Deep Kernels and Deep Ensemble models. We then outline a general framework - Predictive Trajectory Sampling with Bayesian Exploration (PTS-BE) - which integrates model-based planning with information-theoretic bonuses to achieve sample-efficient deep exploration. We empirically demonstrate that PTS-BE substantially outperforms other baselines across a variety of environments characterized by sparse rewards and/or purely exploratory tasks.
☆ High-Order Deep Meta-Learning with Category-Theoretic Interpretation
We introduce a new hierarchical deep learning framework for recursive higher-order meta-learning that enables neural networks (NNs) to construct, solve, and generalise across hierarchies of tasks. Central to this approach is a generative mechanism that creates \emph{virtual tasks} -- synthetic problem instances designed to enable the meta-learner to learn \emph{soft constraints} and unknown generalisable rules across related tasks. Crucially, this enables the framework to generate its own informative, task-grounded datasets thereby freeing machine learning (ML) training from the limitations of relying entirely on human-generated data. By actively exploring the virtual point landscape and seeking out tasks lower-level learners find difficult, the meta-learner iteratively refines constraint regions. This enhances inductive biases, regularises the adaptation process, and produces novel, unanticipated tasks and constraints required for generalisation. Each meta-level of the hierarchy corresponds to a progressively abstracted generalisation of problems solved at lower levels, enabling a structured and interpretable learning progression. By interpreting meta-learners as category-theoretic \emph{functors} that generate and condition a hierarchy of subordinate learners, we establish a compositional structure that supports abstraction and knowledge transfer across progressively generalised tasks. The category-theoretic perspective unifies existing meta-learning models and reveals how learning processes can be transformed and compared through functorial relationships, while offering practical design principles for structuring meta-learning. We speculate this architecture may underpin the next generation of NNs capable of autonomously generating novel, instructive tasks and their solutions, thereby advancing ML towards general artificial intelligence.
☆ Medical Data Pecking: A Context-Aware Approach for Automated Quality Evaluation of Structured Medical Data
Background: The use of Electronic Health Records (EHRs) for epidemiological studies and artificial intelligence (AI) training is increasing rapidly. The reliability of the results depends on the accuracy and completeness of EHR data. However, EHR data often contain significant quality issues, including misrepresentations of subpopulations, biases, and systematic errors, as they are primarily collected for clinical and billing purposes. Existing quality assessment methods remain insufficient, lacking systematic procedures to assess data fitness for research. Methods: We present the Medical Data Pecking approach, which adapts unit testing and coverage concepts from software engineering to identify data quality concerns. We demonstrate our approach using the Medical Data Pecking Tool (MDPT), which consists of two main components: (1) an automated test generator that uses large language models and grounding techniques to create a test suite from data and study descriptions, and (2) a data testing framework that executes these tests, reporting potential errors and coverage. Results: We evaluated MDPT on three datasets: All of Us (AoU), MIMIC-III, and SyntheticMass, generating 55-73 tests per cohort across four conditions. These tests correctly identified 20-43 non-aligned or non-conforming data issues. We present a detailed analysis of the LLM-generated test suites in terms of reference grounding and value accuracy. Conclusion: Our approach incorporates external medical knowledge to enable context-sensitive data quality testing as part of the data analysis workflow to improve the validity of its outcomes. Our approach tackles these challenges from a quality assurance perspective, laying the foundation for further development such as additional data modalities and improved grounding methods.
comment: 18 pages, 4 figures (+ appendix)
☆ A Matrix Variational Auto-Encoder for Variant Effect Prediction in Pharmacogenes
Variant effect predictors (VEPs) aim to assess the functional impact of protein variants, traditionally relying on multiple sequence alignments (MSAs). This approach assumes that naturally occurring variants are fit, an assumption challenged by pharmacogenomics, where some pharmacogenes experience low evolutionary pressure. Deep mutational scanning (DMS) datasets provide an alternative by offering quantitative fitness scores for variants. In this work, we propose a transformer-based matrix variational auto-encoder (matVAE) with a structured prior and evaluate its performance on 33 DMS datasets corresponding to 26 drug target and ADME proteins from the ProteinGym benchmark. Our model trained on MSAs (matVAE-MSA) outperforms the state-of-the-art DeepSequence model in zero-shot prediction on DMS datasets, despite using an order of magnitude fewer parameters and requiring less computation at inference time. We also compare matVAE-MSA to matENC-DMS, a model of similar capacity trained on DMS data, and find that the latter performs better on supervised prediction tasks. Additionally, incorporating AlphaFold-generated structures into our transformer model further improves performance, achieving results comparable to DeepSequence trained on MSAs and finetuned on DMS. These findings highlight the potential of DMS datasets to replace MSAs without significant loss in predictive performance, motivating further development of DMS datasets and exploration of their relationships to enhance variant effect prediction.
comment: 12+8 pages
☆ L-VAE: Variational Auto-Encoder with Learnable Beta for Disentangled Representation
In this paper, we propose a novel model called Learnable VAE (L-VAE), which learns a disentangled representation together with the hyperparameters of the cost function. L-VAE can be considered as an extension of \b{eta}-VAE, wherein the hyperparameter, \b{eta}, is empirically adjusted. L-VAE mitigates the limitations of \b{eta}-VAE by learning the relative weights of the terms in the loss function to control the dynamic trade-off between disentanglement and reconstruction losses. In the proposed model, the weight of the loss terms and the parameters of the model architecture are learned concurrently. An additional regularization term is added to the loss function to prevent bias towards either reconstruction or disentanglement losses. Experimental analyses show that the proposed L-VAE finds an effective balance between reconstruction fidelity and disentangling the latent dimensions. Comparisons of the proposed L-VAE against \b{eta}-VAE, VAE, ControlVAE, DynamicVAE, and {\sigma}-VAE on datasets, such as dSprites, MPI3D-complex, Falcor3D, and Isaac3D reveals that L-VAE consistently provides the best or the second best performances measured by a set of disentanglement metrics. Moreover, qualitative experiments on CelebA dataset, confirm the success of the L-VAE model for disentangling the facial attributes.
comment: The paper is under revision at Machine Vision and Applications
☆ Lost in Latent Space: An Empirical Study of Latent Diffusion Models for Physics Emulation
The steep computational cost of diffusion models at inference hinders their use as fast physics emulators. In the context of image and video generation, this computational drawback has been addressed by generating in the latent space of an autoencoder instead of the pixel space. In this work, we investigate whether a similar strategy can be effectively applied to the emulation of dynamical systems and at what cost. We find that the accuracy of latent-space emulation is surprisingly robust to a wide range of compression rates (up to 1000x). We also show that diffusion-based emulators are consistently more accurate than non-generative counterparts and compensate for uncertainty in their predictions with greater diversity. Finally, we cover practical design choices, spanning from architectures to optimizers, that we found critical to train latent-space emulators.
☆ Alleviating Attack Data Scarcity: SCANIA's Experience Towards Enhancing In-Vehicle Cyber Security Measures
The digital evolution of connected vehicles and the subsequent security risks emphasize the critical need for implementing in-vehicle cyber security measures such as intrusion detection and response systems. The continuous advancement of attack scenarios further highlights the need for adaptive detection mechanisms that can detect evolving, unknown, and complex threats. The effective use of ML-driven techniques can help address this challenge. However, constraints on implementing diverse attack scenarios on test vehicles due to safety, cost, and ethical considerations result in a scarcity of data representing attack scenarios. This limitation necessitates alternative efficient and effective methods for generating high-quality attack-representing data. This paper presents a context-aware attack data generator that generates attack inputs and corresponding in-vehicle network log, i.e., controller area network (CAN) log, representing various types of attack including denial of service (DoS), fuzzy, spoofing, suspension, and replay attacks. It utilizes parameterized attack models augmented with CAN message decoding and attack intensity adjustments to configure the attack scenarios with high similarity to real-world scenarios and promote variability. We evaluate the practicality of the generated attack-representing data within an intrusion detection system (IDS) case study, in which we develop and perform an empirical evaluation of two deep neural network IDS models using the generated data. In addition to the efficiency and scalability of the approach, the performance results of IDS models, high detection and classification capabilities, validate the consistency and effectiveness of the generated data as well. In this experience study, we also elaborate on the aspects influencing the fidelity of the data to real-world scenarios and provide insights into its application.
☆ De-AntiFake: Rethinking the Protective Perturbations Against Voice Cloning Attacks ICML 2025
The rapid advancement of speech generation models has heightened privacy and security concerns related to voice cloning (VC). Recent studies have investigated disrupting unauthorized voice cloning by introducing adversarial perturbations. However, determined attackers can mitigate these protective perturbations and successfully execute VC. In this study, we conduct the first systematic evaluation of these protective perturbations against VC under realistic threat models that include perturbation purification. Our findings reveal that while existing purification methods can neutralize a considerable portion of the protective perturbations, they still lead to distortions in the feature space of VC models, which degrades the performance of VC. From this perspective, we propose a novel two-stage purification method: (1) Purify the perturbed speech; (2) Refine it using phoneme guidance to align it with the clean speech distribution. Experimental results demonstrate that our method outperforms state-of-the-art purification methods in disrupting VC defenses. Our study reveals the limitations of adversarial perturbation-based VC defenses and underscores the urgent need for more robust solutions to mitigate the security and privacy risks posed by VC. The code and audio samples are available at https://de-antifake.github.io.
comment: Accepted by ICML 2025
☆ Padé Approximant Neural Networks for Enhanced Electric Motor Fault Diagnosis Using Vibration and Acoustic Data
Purpose: The primary aim of this study is to enhance fault diagnosis in induction machines by leveraging the Pad\'e Approximant Neuron (PAON) model. While accelerometers and microphones are standard in motor condition monitoring, deep learning models with nonlinear neuron architectures offer promising improvements in diagnostic performance. This research addresses the question: Can Pad\'e Approximant Neural Networks (Pad\'eNets) outperform conventional Convolutional Neural Networks (CNNs) and Self-Organized Operational Neural Networks (Self-ONNs) in diagnosing electrical and mechanical faults using vibration and acoustic data? Methods: We evaluate and compare the diagnostic capabilities of three deep learning architectures: one-dimensional CNNs, Self-ONNs, and Pad\'eNets. These models are tested on the University of Ottawa's publicly available constant-speed induction motor datasets, which include both vibration and acoustic sensor data. The Pad\'eNet model is designed to introduce enhanced nonlinearity and is compatible with unbounded activation functions such as Leaky ReLU. Results and Conclusion: Pad\'eNets consistently outperformed the baseline models, achieving diagnostic accuracies of 99.96%, 98.26%, 97.61%, and 98.33% for accelerometers 1, 2, 3, and the acoustic sensor, respectively. The enhanced nonlinearity of Pad\'eNets, together with their compatibility with unbounded activation functions, significantly improves fault diagnosis performance in induction motor condition monitoring.
comment: Submitted to the Journal of Vibration Engineering & Technologies
☆ Revisiting Active Learning under (Human) Label Variation
Access to high-quality labeled data remains a limiting factor in applied supervised learning. While label variation (LV), i.e., differing labels for the same instance, is common, especially in natural language processing, annotation frameworks often still rest on the assumption of a single ground truth. This overlooks human label variation (HLV), the occurrence of plausible differences in annotations, as an informative signal. Similarly, active learning (AL), a popular approach to optimizing the use of limited annotation budgets in training ML models, often relies on at least one of several simplifying assumptions, which rarely hold in practice when acknowledging HLV. In this paper, we examine foundational assumptions about truth and label nature, highlighting the need to decompose observed LV into signal (e.g., HLV) and noise (e.g., annotation error). We survey how the AL and (H)LV communities have addressed -- or neglected -- these distinctions and propose a conceptual framework for incorporating HLV throughout the AL loop, including instance selection, annotator choice, and label representation. We further discuss the integration of large language models (LLM) as annotators. Our work aims to lay a conceptual foundation for HLV-aware active learning, better reflecting the complexities of real-world annotation.
☆ Scalable Interconnect Learning in Boolean Networks
Learned Differentiable Boolean Logic Networks (DBNs) already deliver efficient inference on resource-constrained hardware. We extend them with a trainable, differentiable interconnect whose parameter count remains constant as input width grows, allowing DBNs to scale to far wider layers than earlier learnable-interconnect designs while preserving their advantageous accuracy. To further reduce model size, we propose two complementary pruning stages: an SAT-based logic equivalence pass that removes redundant gates without affecting performance, and a similarity-based, data-driven pass that outperforms a magnitude-style greedy baseline and offers a superior compression-accuracy trade-off.
comment: 12 pages, 8 Figures
☆ Transformers Don't Need LayerNorm at Inference Time: Scaling LayerNorm Removal to GPT-2 XL and the Implications for Mechanistic Interpretability
Layer-wise normalization (LN) is an essential component of virtually all transformer-based large language models. While its effects on training stability are well documented, its role at inference time is poorly understood. Additionally, LN layers hinder mechanistic interpretability by introducing additional nonlinearities and increasing the interconnectedness of individual model components. Here, we show that all LN layers can be removed from every GPT-2 model with only a small increase in validation loss (e.g. +0.03 cross-entropy loss for GPT-2 XL). Thus, LN cannot play a substantial role in language modeling. We find that the amount of fine-tuning data needed for LN removal grows sublinearly with model parameters, suggesting scaling to larger models is feasible. We release a suite of LN-free GPT-2 models on Hugging Face. Furthermore, we test interpretability techniques on LN-free models. Direct logit attribution now gives the exact direct effect of individual components, while the accuracy of attribution patching does not significantly improve. We also confirm that GPT-2's "confidence neurons" are inactive in the LN-free models. Our work clarifies the role of LN layers in language modeling, showing that GPT-2-class models can function without LN layers. We hope that our LN-free analogs of the GPT-2 family of models will enable more precise interpretability research and improve our understanding of language models.
☆ AI Research Agents for Machine Learning: Search, Exploration, and Generalization in MLE-bench
AI research agents are demonstrating great potential to accelerate scientific progress by automating the design, implementation, and training of machine learning models. We focus on methods for improving agents' performance on MLE-bench, a challenging benchmark where agents compete in Kaggle competitions to solve real-world machine learning problems. We formalize AI research agents as search policies that navigate a space of candidate solutions, iteratively modifying them using operators. By designing and systematically varying different operator sets and search policies (Greedy, MCTS, Evolutionary), we show that their interplay is critical for achieving high performance. Our best pairing of search strategy and operator set achieves a state-of-the-art result on MLE-bench lite, increasing the success rate of achieving a Kaggle medal from 39.6% to 47.7%. Our investigation underscores the importance of jointly considering the search strategy, operator design, and evaluation methodology in advancing automated machine learning.
comment: Code: https://github.com/facebookresearch/aira-dojo
☆ Position: A Theory of Deep Learning Must Include Compositional Sparsity
Overparametrized Deep Neural Networks (DNNs) have demonstrated remarkable success in a wide variety of domains too high-dimensional for classical shallow networks subject to the curse of dimensionality. However, open questions about fundamental principles, that govern the learning dynamics of DNNs, remain. In this position paper we argue that it is the ability of DNNs to exploit the compositionally sparse structure of the target function driving their success. As such, DNNs can leverage the property that most practically relevant functions can be composed from a small set of constituent functions, each of which relies only on a low-dimensional subset of all inputs. We show that this property is shared by all efficiently Turing-computable functions and is therefore highly likely present in all current learning problems. While some promising theoretical insights on questions concerned with approximation and generalization exist in the setting of compositionally sparse functions, several important questions on the learnability and optimization of DNNs remain. Completing the picture of the role of compositional sparsity in deep learning is essential to a comprehensive theory of artificial, and even general, intelligence.
☆ RetrySQL: text-to-SQL training with retry data for self-correcting query generation
The text-to-SQL task is an active challenge in Natural Language Processing. Many existing solutions focus on using black-box language models extended with specialized components within customized end-to-end text-to-SQL pipelines. While these solutions use both closed-source proprietary language models and coding-oriented open-source models, there is a lack of research regarding SQL-specific generative models. At the same time, recent advancements in self-correcting generation strategies show promise for improving the capabilities of existing architectures. The application of these concepts to the text-to-SQL task remains unexplored. In this paper, we introduce RetrySQL, a new approach to training text-to-SQL generation models. We prepare reasoning steps for reference SQL queries and then corrupt them to create retry data that contains both incorrect and corrected steps, divided with a special token. We continuously pre-train an open-source coding model with this data and demonstrate that retry steps yield an improvement of up to 4 percentage points in both overall and challenging execution accuracy metrics, compared to pre-training without retry data. Additionally, we confirm that supervised fine-tuning with LoRA is ineffective for learning from retry data and that full-parameter pre-training is a necessary requirement for that task. We showcase that the self-correcting behavior is learned by the model and the increase in downstream accuracy metrics is a result of this additional skill. Finally, we incorporate RetrySQL-trained models into the full text-to-SQL pipeline and showcase that they are competitive in terms of execution accuracy with proprietary models that contain orders of magnitude more parameters. RetrySQL demonstrates that self-correction can be learned in the text-to-SQL task and provides a novel way of improving generation accuracy for SQL-oriented language models.
☆ TFOC-Net: A Short-time Fourier Transform-based Deep Learning Approach for Enhancing Cross-Subject Motor Imagery Classification
Cross-subject motor imagery (CS-MI) classification in brain-computer interfaces (BCIs) is a challenging task due to the significant variability in Electroencephalography (EEG) patterns across different individuals. This variability often results in lower classification accuracy compared to subject-specific models, presenting a major barrier to developing calibration-free BCIs suitable for real-world applications. In this paper, we introduce a novel approach that significantly enhances cross-subject MI classification performance through optimized preprocessing and deep learning techniques. Our approach involves direct classification of Short-Time Fourier Transform (STFT)-transformed EEG data, optimized STFT parameters, and a balanced batching strategy during training of a Convolutional Neural Network (CNN). This approach is uniquely validated across four different datasets, including three widely-used benchmark datasets leading to substantial improvements in cross-subject classification, achieving 67.60% on the BCI Competition IV Dataset 1 (IV-1), 65.96% on Dataset 2A (IV-2A), and 80.22% on Dataset 2B (IV-2B), outperforming state-of-the-art techniques. Additionally, we systematically investigate the classification performance using MI windows ranging from the full 4-second window to 1-second windows. These results establish a new benchmark for generalizable, calibration-free MI classification in addition to contributing a robust open-access dataset to advance research in this domain.
☆ IndianBailJudgments-1200: A Multi-Attribute Dataset for Legal NLP on Indian Bail Orders
Legal NLP remains underdeveloped in regions like India due to the scarcity of structured datasets. We introduce IndianBailJudgments-1200, a new benchmark dataset comprising 1200 Indian court judgments on bail decisions, annotated across 20+ attributes including bail outcome, IPC sections, crime type, and legal reasoning. Annotations were generated using a prompt-engineered GPT-4o pipeline and verified for consistency. This resource supports a wide range of legal NLP tasks such as outcome prediction, summarization, and fairness analysis, and is the first publicly available dataset focused specifically on Indian bail jurisprudence.
comment: 9 pages, 9 figures, 2 tables. Dataset available at Hugging Face and GitHub. Submitted to arXiv for open access
☆ Continual Gradient Low-Rank Projection Fine-Tuning for LLMs ACL 2025
Continual fine-tuning of Large Language Models (LLMs) is hampered by the trade-off between efficiency and expressiveness. Low-Rank Adaptation (LoRA) offers efficiency but constrains the model's ability to learn new tasks and transfer knowledge due to its low-rank nature and reliance on explicit parameter constraints. We propose GORP (Gradient LOw Rank Projection) for Continual Learning, a novel training strategy that overcomes these limitations by synergistically combining full and low-rank parameters and jointly updating within a unified low-rank gradient subspace. GORP expands the optimization space while preserving efficiency and mitigating catastrophic forgetting. Extensive experiments on continual learning benchmarks demonstrate GORP's superior performance compared to existing state-of-the-art approaches. Code is available at https://github.com/Wcxwcxw/GORP.
comment: 15 pages, 6 figures, accepted by ACL 2025 main
☆ Online Conformal Prediction with Efficiency Guarantees
We study the problem of conformal prediction in a novel online framework that directly optimizes efficiency. In our problem, we are given a target miscoverage rate $\alpha > 0$, and a time horizon $T$. On each day $t \le T$ an algorithm must output an interval $I_t \subseteq [0, 1]$, then a point $y_t \in [0, 1]$ is revealed. The goal of the algorithm is to achieve coverage, that is, $y_t \in I_t$ on (close to) a $(1 - \alpha)$-fraction of days, while maintaining efficiency, that is, minimizing the average volume (length) of the intervals played. This problem is an online analogue to the problem of constructing efficient confidence intervals. We study this problem over arbitrary and exchangeable (random order) input sequences. For exchangeable sequences, we show that it is possible to construct intervals that achieve coverage $(1 - \alpha) - o(1)$, while having length upper bounded by the best fixed interval that achieves coverage in hindsight. For arbitrary sequences however, we show that any algorithm that achieves a $\mu$-approximation in average length compared to the best fixed interval achieving coverage in hindsight, must make a multiplicative factor more mistakes than $\alpha T$, where the multiplicative factor depends on $\mu$ and the aspect ratio of the problem. Our main algorithmic result is a matching algorithm that can recover all Pareto-optimal settings of $\mu$ and number of mistakes. Furthermore, our algorithm is deterministic and therefore robust to an adaptive adversary. This gap between the exchangeable and arbitrary settings is in contrast to the classical online learning problem. In fact, we show that no single algorithm can simultaneously be Pareto-optimal for arbitrary sequences and optimal for exchangeable sequences. On the algorithmic side, we give an algorithm that achieves the near-optimal tradeoff between the two cases.
☆ MC-INR: Efficient Encoding of Multivariate Scientific Simulation Data using Meta-Learning and Clustered Implicit Neural Representations
Implicit Neural Representations (INRs) are widely used to encode data as continuous functions, enabling the visualization of large-scale multivariate scientific simulation data with reduced memory usage. However, existing INR-based methods face three main limitations: (1) inflexible representation of complex structures, (2) primarily focusing on single-variable data, and (3) dependence on structured grids. Thus, their performance degrades when applied to complex real-world datasets. To address these limitations, we propose a novel neural network-based framework, MC-INR, which handles multivariate data on unstructured grids. It combines meta-learning and clustering to enable flexible encoding of complex structures. To further improve performance, we introduce a residual-based dynamic re-clustering mechanism that adaptively partitions clusters based on local error. We also propose a branched layer to leverage multivariate data through independent branches simultaneously. Experimental results demonstrate that MC-INR outperforms existing methods on scientific data encoding tasks.
comment: 5 pages
☆ Variational Kolmogorov-Arnold Network
Kolmogorov Arnold Networks (KANs) are an emerging architecture for building machine learning models. KANs are based on the theoretical foundation of the Kolmogorov-Arnold Theorem and its expansions, which provide an exact representation of a multi-variate continuous bounded function as the composition of a limited number of univariate continuous functions. While such theoretical results are powerful, their use as a representation learning alternative to a multi-layer perceptron (MLP) hinges on the ad-hoc choice of the number of bases modeling each of the univariate functions. In this work, we show how to address this problem by adaptively learning a potentially infinite number of bases for each univariate function during training. We therefore model the problem as a variational inference optimization problem. Our proposal, called InfinityKAN, which uses backpropagation, extends the potential applicability of KANs by treating an important hyperparameter as part of the learning process.
comment: A preliminary (short paper) version presented at ComBayNS Workshop at IJCNN'25
☆ Red grape detection with accelerated artificial neural networks in the FPGA's programmable logic
Robots usually slow down for canning to detect objects while moving. Additionally, the robot's camera is configured with a low framerate to track the velocity of the detection algorithms. This would be constrained while executing tasks and exploring, making robots increase the task execution time. AMD has developed the Vitis-AI framework to deploy detection algorithms into FPGAs. However, this tool does not fully use the FPGAs' PL. In this work, we use the FINN architecture to deploy three ANNs, MobileNet v1 with 4-bit quantisation, CNV with 2-bit quantisation, and CNV with 1-bit quantisation (BNN), inside an FPGA's PL. The models were trained on the RG2C dataset. This is a self-acquired dataset released in open access. MobileNet v1 performed better, reaching a success rate of 98 % and an inference speed of 6611 FPS. In this work, we proved that we can use FPGAs to speed up ANNs and make them suitable for attention mechanisms.
comment: Submitted to ROBOT'2025
☆ Determination Of Structural Cracks Using Deep Learning Frameworks
Structural crack detection is a critical task for public safety as it helps in preventing potential structural failures that could endanger lives. Manual detection by inexperienced personnel can be slow, inconsistent, and prone to human error, which may compromise the reliability of assessments. The current study addresses these challenges by introducing a novel deep-learning architecture designed to enhance the accuracy and efficiency of structural crack detection. In this research, various configurations of residual U-Net models were utilized. These models, due to their robustness in capturing fine details, were further integrated into an ensemble with a meta-model comprising convolutional blocks. This unique combination aimed to boost prediction efficiency beyond what individual models could achieve. The ensemble's performance was evaluated against well-established architectures such as SegNet and the traditional U-Net. Results demonstrated that the residual U-Net models outperformed their predecessors, particularly with low-resolution imagery, and the ensemble model exceeded the performance of individual models, proving it as the most effective. The assessment was based on the Intersection over Union (IoU) metric and DICE coefficient. The ensemble model achieved the highest scores, signifying superior accuracy. This advancement suggests way for more reliable automated systems in structural defects monitoring tasks.
comment: This is the accepted version of the paper presented in IEEE CONIT 2025 held on 20th June 2025. This is not the camera-ready version. There are 6 pages in this paper and it contains 7 figures and 1 table
☆ S2FGL: Spatial Spectral Federated Graph Learning
Federated Graph Learning (FGL) combines the privacy-preserving capabilities of federated learning (FL) with the strong graph modeling capability of Graph Neural Networks (GNNs). Current research addresses subgraph-FL only from the structural perspective, neglecting the propagation of graph signals on spatial and spectral domains of the structure. From a spatial perspective, subgraph-FL introduces edge disconnections between clients, leading to disruptions in label signals and a degradation in the class knowledge of the global GNN. From a spectral perspective, spectral heterogeneity causes inconsistencies in signal frequencies across subgraphs, which makes local GNNs overfit the local signal propagation schemes. As a result, spectral client drifts occur, undermining global generalizability. To tackle the challenges, we propose a global knowledge repository to mitigate label signal disruption and a frequency alignment to address spectral client drifts. The combination of spatial and spectral strategies forms our framework S2FGL. Extensive experiments on multiple datasets demonstrate the superiority of S2FGL. The code is available at https://github.com/Wonder7racer/S2FGL.git.
☆ Benchmarking Akan ASR Models Across Domain-Specific Datasets: A Comparative Evaluation of Performance, Scalability, and Adaptability
Most existing automatic speech recognition (ASR) research evaluate models using in-domain datasets. However, they seldom evaluate how they generalize across diverse speech contexts. This study addresses this gap by benchmarking seven Akan ASR models built on transformer architectures, such as Whisper and Wav2Vec2, using four Akan speech corpora to determine their performance. These datasets encompass various domains, including culturally relevant image descriptions, informal conversations, biblical scripture readings, and spontaneous financial dialogues. A comparison of the word error rate and character error rate highlighted domain dependency, with models performing optimally only within their training domains while showing marked accuracy degradation in mismatched scenarios. This study also identified distinct error behaviors between the Whisper and Wav2Vec2 architectures. Whereas fine-tuned Whisper Akan models led to more fluent but potentially misleading transcription errors, Wav2Vec2 produced more obvious yet less interpretable outputs when encountering unfamiliar inputs. This trade-off between readability and transparency in ASR errors should be considered when selecting architectures for low-resource language (LRL) applications. These findings highlight the need for targeted domain adaptation techniques, adaptive routing strategies, and multilingual training frameworks for Akan and other LRLs.
comment: This version has been reviewed and accepted for presentation at the Future Technologies Conference (FTC) 2025, to be held on 6 & 7 November 2025 in Munich, Germany. 17 pages, 4 figures, 1 table
☆ Improving Consistency in Vehicle Trajectory Prediction Through Preference Optimization
Trajectory prediction is an essential step in the pipeline of an autonomous vehicle. Inaccurate or inconsistent predictions regarding the movement of agents in its surroundings lead to poorly planned maneuvers and potentially dangerous situations for the end-user. Current state-of-the-art deep-learning-based trajectory prediction models can achieve excellent accuracy on public datasets. However, when used in more complex, interactive scenarios, they often fail to capture important interdependencies between agents, leading to inconsistent predictions among agents in the traffic scene. Inspired by the efficacy of incorporating human preference into large language models, this work fine-tunes trajectory prediction models in multi-agent settings using preference optimization. By taking as input automatically calculated preference rankings among predicted futures in the fine-tuning process, our experiments--using state-of-the-art models on three separate datasets--show that we are able to significantly improve scene consistency while minimally sacrificing trajectory prediction accuracy and without adding any excess computational requirements at inference time.
comment: Accepted for publication at ITSC 2025
☆ Wildlife Target Re-Identification Using Self-supervised Learning in Non-Urban Settings
Wildlife re-identification aims to match individuals of the same species across different observations. Current state-of-the-art (SOTA) models rely on class labels to train supervised models for individual classification. This dependence on annotated data has driven the curation of numerous large-scale wildlife datasets. This study investigates self-supervised learning Self-Supervised Learning (SSL) for wildlife re-identification. We automatically extract two distinct views of an individual using temporal image pairs from camera trap data without supervision. The image pairs train a self-supervised model from a potentially endless stream of video data. We evaluate the learnt representations against supervised features on open-world scenarios and transfer learning in various wildlife downstream tasks. The analysis of the experimental results shows that self-supervised models are more robust even with limited data. Moreover, self-supervised features outperform supervision across all downstream tasks. The code is available here https://github.com/pxpana/SSLWildlife.
comment: Accepted for publication in IEEE Xplore and ISIF FUSION 2025 proceedings:
☆ TABNet: A Triplet Augmentation Self-Recovery Framework with Boundary-Aware Pseudo-Labels for Medical Image Segmentation
Background and objective: Medical image segmentation is a core task in various clinical applications. However, acquiring large-scale, fully annotated medical image datasets is both time-consuming and costly. Scribble annotations, as a form of sparse labeling, provide an efficient and cost-effective alternative for medical image segmentation. However, the sparsity of scribble annotations limits the feature learning of the target region and lacks sufficient boundary supervision, which poses significant challenges for training segmentation networks. Methods: We propose TAB Net, a novel weakly-supervised medical image segmentation framework, consisting of two key components: the triplet augmentation self-recovery (TAS) module and the boundary-aware pseudo-label supervision (BAP) module. The TAS module enhances feature learning through three complementary augmentation strategies: intensity transformation improves the model's sensitivity to texture and contrast variations, cutout forces the network to capture local anatomical structures by masking key regions, and jigsaw augmentation strengthens the modeling of global anatomical layout by disrupting spatial continuity. By guiding the network to recover complete masks from diverse augmented inputs, TAS promotes a deeper semantic understanding of medical images under sparse supervision. The BAP module enhances pseudo-supervision accuracy and boundary modeling by fusing dual-branch predictions into a loss-weighted pseudo-label and introducing a boundary-aware loss for fine-grained contour refinement. Results: Experimental evaluations on two public datasets, ACDC and MSCMR seg, demonstrate that TAB Net significantly outperforms state-of-the-art methods for scribble-based weakly supervised segmentation. Moreover, it achieves performance comparable to that of fully supervised methods.
☆ Posterior Transition Modeling for Unsupervised Diffusion-Based Speech Enhancement
We explore unsupervised speech enhancement using diffusion models as expressive generative priors for clean speech. Existing approaches guide the reverse diffusion process using noisy speech through an approximate, noise-perturbed likelihood score, combined with the unconditional score via a trade-off hyperparameter. In this work, we propose two alternative algorithms that directly model the conditional reverse transition distribution of diffusion states. The first method integrates the diffusion prior with the observation model in a principled way, removing the need for hyperparameter tuning. The second defines a diffusion process over the noisy speech itself, yielding a fully tractable and exact likelihood score. Experiments on the WSJ0-QUT and VoiceBank-DEMAND datasets demonstrate improved enhancement metrics and greater robustness to domain shifts compared to both supervised and unsupervised baselines.
☆ Sparse Gaussian Processes: Structured Approximations and Power-EP Revisited
Inducing-point-based sparse variational Gaussian processes have become the standard workhorse for scaling up GP models. Recent advances show that these methods can be improved by introducing a diagonal scaling matrix to the conditional posterior density given the inducing points. This paper first considers an extension that employs a block-diagonal structure for the scaling matrix, provably tightening the variational lower bound. We then revisit the unifying framework of sparse GPs based on Power Expectation Propagation (PEP) and show that it can leverage and benefit from the new structured approximate posteriors. Through extensive regression experiments, we show that the proposed block-diagonal approximation consistently performs similarly to or better than existing diagonal approximations while maintaining comparable computational costs. Furthermore, the new PEP framework with structured posteriors provides competitive performance across various power hyperparameter settings, offering practitioners flexible alternatives to standard variational approaches.
☆ Deep Reinforcement Learning-Based DRAM Equalizer Parameter Optimization Using Latent Representations
Equalizer parameter optimization for signal integrity in high-speed Dynamic Random Access Memory systems is crucial but often computationally demanding or model-reliant. This paper introduces a data-driven framework employing learned latent signal representations for efficient signal integrity evaluation, coupled with a model-free Advantage Actor-Critic reinforcement learning agent for parameter optimization. The latent representation captures vital signal integrity features, offering a fast alternative to direct eye diagram analysis during optimization, while the reinforcement learning agent derives optimal equalizer settings without explicit system models. Applied to industry-standard Dynamic Random Access Memory waveforms, the method achieved significant eye-opening window area improvements: 42.7\% for cascaded Continuous-Time Linear Equalizer and Decision Feedback Equalizer structures, and 36.8\% for Decision Feedback Equalizer-only configurations. These results demonstrate superior performance, computational efficiency, and robust generalization across diverse Dynamic Random Access Memory units compared to existing techniques. Core contributions include an efficient latent signal integrity metric for optimization, a robust model-free reinforcement learning strategy, and validated superior performance for complex equalizer architectures.
☆ Offline Reinforcement Learning with Penalized Action Noise Injection
Offline reinforcement learning (RL) optimizes a policy using only a fixed dataset, making it a practical approach in scenarios where interaction with the environment is costly. Due to this limitation, generalization ability is key to improving the performance of offline RL algorithms, as demonstrated by recent successes of offline RL with diffusion models. However, it remains questionable whether such diffusion models are necessary for highly performing offline RL algorithms, given their significant computational requirements during inference. In this paper, we propose Penalized Action Noise Injection (PANI), a method that simply enhances offline learning by utilizing noise-injected actions to cover the entire action space, while penalizing according to the amount of noise injected. This approach is inspired by how diffusion models have worked in offline RL algorithms. We provide a theoretical foundation for this method, showing that offline RL algorithms with such noise-injected actions solve a modified Markov Decision Process (MDP), which we call the noisy action MDP. PANI is compatible with a wide range of existing off-policy and offline RL algorithms, and despite its simplicity, it demonstrates significant performance improvements across various benchmarks.
☆ DeltaSHAP: Explaining Prediction Evolutions in Online Patient Monitoring with Shapley Values ICML 2025
This study proposes DeltaSHAP, a novel explainable artificial intelligence (XAI) algorithm specifically designed for online patient monitoring systems. In clinical environments, discovering the causes driving patient risk evolution is critical for timely intervention, yet existing XAI methods fail to address the unique requirements of clinical time series explanation tasks. To this end, DeltaSHAP addresses three key clinical needs: explaining the changes in the consecutive predictions rather than isolated prediction scores, providing both magnitude and direction of feature attributions, and delivering these insights in real time. By adapting Shapley values to temporal settings, our approach accurately captures feature coalition effects. It further attributes prediction changes using only the actually observed feature combinations, making it efficient and practical for time-sensitive clinical applications. We also introduce new evaluation metrics to evaluate the faithfulness of the attributions for online time series, and demonstrate through experiments on online patient monitoring tasks that DeltaSHAP outperforms state-of-the-art XAI methods in both explanation quality as 62% and computational efficiency as 33% time reduction on the MIMIC-III decompensation benchmark. We release our code at https://github.com/AITRICS/DeltaSHAP.
comment: Accepted to ICML 2025 Workshop on Actionable Interpretability. Code is available at https://github.com/AITRICS/DeltaSHAP
☆ Path Planning using a One-shot-sampling Skeleton Map
Path planning algorithms aim to compute a collision-free path, and many works focus on finding the optimal distance path. However, for some applications, a more suitable approach is to balance response time, safety of the paths, and path length. In this context, a skeleton map is a useful tool in graph-based schemes, as it provides an intrinsic representation of free configuration space. However, skeletonization algorithms are very resource-intensive, being primarily oriented towards image processing tasks. We propose an efficient path-planning methodology that finds safe paths within an acceptable processing time. This methodology leverages a Deep Denoising Auto-Encoder (DDAE) based on U-Net architecture to compute a skeletonized version of the navigation map, which we refer to as SkelUnet. The SkelUnet network facilitates exploration of the entire workspace through one-shot sampling (OSS), as opposed to the iterative process used by exact algorithms or the probabilistic sampling process. SkelUnet is trained and tested on a dataset consisting of 12,500 bi-dimensional dungeon maps. The motion planning methodology is evaluated in a simulation environment for an Unmanned Aerial Vehicle (UAV) using 250 previously unseen maps, and assessed with various navigation metrics to quantify the navigability of the computed paths. The results demonstrate that using SkelUnet to construct a roadmap offers significant advantages, such as connecting all regions of free workspace, providing safer paths, and reducing processing times. These characteristics make this method particularly suitable for mobile service robots in structured environments.
☆ Transformer-based EEG Decoding: A Survey
Electroencephalography (EEG) is one of the most common signals used to capture the electrical activity of the brain, and the decoding of EEG, to acquire the user intents, has been at the forefront of brain-computer/machine interfaces (BCIs/BMIs) research. Compared to traditional EEG analysis methods with machine learning, the advent of deep learning approaches have gradually revolutionized the field by providing an end-to-end long-cascaded architecture, which can learn more discriminative features automatically. Among these, Transformer is renowned for its strong handling capability of sequential data by the attention mechanism, and the application of Transformers in various EEG processing tasks is increasingly prevalent. This article delves into a relevant survey, summarizing the latest application of Transformer models in EEG decoding since it appeared. The evolution of the model architecture is followed to sort and organize the related advances, in which we first elucidate the fundamentals of the Transformer that benefits EEG decoding and its direct application. Then, the common hybrid architectures by integrating basic Transformer with other deep learning techniques (convolutional/recurrent/graph/spiking neural netwo-rks, generative adversarial networks, diffusion models, etc.) is overviewed in detail. The research advances of applying the modified intrinsic structures of customized Transformer have also been introduced. Finally, the current challenges and future development prospects in this rapidly evolving field are discussed. This paper aims to help readers gain a clear understanding of the current state of Transformer applications in EEG decoding and to provide valuable insights for future research endeavors.
comment: Submitted to IEEE Journals
☆ Improving Constrained Generation in Language Models via Self-Distilled Twisted Sequential Monte Carlo
Recent work has framed constrained text generation with autoregressive language models as a probabilistic inference problem. Among these, Zhao et al. (2024) introduced a promising approach based on twisted Sequential Monte Carlo, which incorporates learned twist functions and twist-induced proposals to guide the generation process. However, in constrained generation settings where the target distribution concentrates on outputs that are unlikely under the base model, learning becomes challenging due to sparse and uninformative reward signals. We show that iteratively refining the base model through self-distillation alleviates this issue by making the model progressively more aligned with the target, leading to substantial gains in generation quality.
☆ Holistic Continual Learning under Concept Drift with Adaptive Memory Realignment
Traditional continual learning methods prioritize knowledge retention and focus primarily on mitigating catastrophic forgetting, implicitly assuming that the data distribution of previously learned tasks remains static. This overlooks the dynamic nature of real-world data streams, where concept drift permanently alters previously seen data and demands both stability and rapid adaptation. We introduce a holistic framework for continual learning under concept drift that simulates realistic scenarios by evolving task distributions. As a baseline, we consider Full Relearning (FR), in which the model is retrained from scratch on newly labeled samples from the drifted distribution. While effective, this approach incurs substantial annotation and computational overhead. To address these limitations, we propose Adaptive Memory Realignment (AMR), a lightweight alternative that equips rehearsal-based learners with a drift-aware adaptation mechanism. AMR selectively removes outdated samples of drifted classes from the replay buffer and repopulates it with a small number of up-to-date instances, effectively realigning memory with the new distribution. This targeted resampling matches the performance of FR while reducing the need for labeled data and computation by orders of magnitude. To enable reproducible evaluation, we introduce four concept-drift variants of standard vision benchmarks: Fashion-MNIST-CD, CIFAR10-CD, CIFAR100-CD, and Tiny-ImageNet-CD, where previously seen classes reappear with shifted representations. Comprehensive experiments on these datasets using several rehearsal-based baselines show that AMR consistently counters concept drift, maintaining high accuracy with minimal overhead. These results position AMR as a scalable solution that reconciles stability and plasticity in non-stationary continual learning environments.
☆ DoMIX: An Efficient Framework for Exploiting Domain Knowledge in Fine-Tuning ACL 2025
Domain-Adaptive Pre-training (DAP) has recently gained attention for its effectiveness in fine-tuning pre-trained models. Building on this, continual DAP has been explored to develop pre-trained models capable of incrementally incorporating different domain datasets. However, existing continual DAP methods face several limitations: (1) high computational cost and GPU memory usage during training; (2) sensitivity to incremental data order; and (3) providing a single, generalized model for all end tasks, which contradicts the essence of DAP. In this paper, we propose DoMIX, a novel approach that addresses these challenges by leveraging LoRA modules, a representative parameter-efficient fine-tuning (PEFT) method. Our approach enables efficient and parallel domain-adaptive pre-training that is robust to domain order and effectively utilizes accumulated knowledge to provide tailored pre-trained models for specific tasks. We also demonstrate that our method can be extended beyond the DAP setting to standard LLM fine-tuning scenarios. Code is available at https://github.com/dohoonkim-ai/DoMIX.
comment: 22 pages, 5 figures, ACL 2025 Main
☆ Knowledge Graph-Based Explainable and Generalized Zero-Shot Semantic Communications
Data-driven semantic communication is based on superficial statistical patterns, thereby lacking interpretability and generalization, especially for applications with the presence of unseen data. To address these challenges, we propose a novel knowledge graph-enhanced zero-shot semantic communication (KGZS-SC) network. Guided by the structured semantic information from a knowledge graph-based semantic knowledge base (KG-SKB), our scheme provides generalized semantic representations and enables reasoning for unseen cases. Specifically, the KG-SKB aligns the semantic features in a shared category semantics embedding space and enhances the generalization ability of the transmitter through aligned semantic features, thus reducing communication overhead by selectively transmitting compact visual semantics. At the receiver, zero-shot learning (ZSL) is leveraged to enable direct classification for unseen cases without the demand for retraining or additional computational overhead, thereby enhancing the adaptability and efficiency of the classification process in dynamic or resource-constrained environments. The simulation results conducted on the APY datasets show that the proposed KGZS-SC network exhibits robust generalization and significantly outperforms existing SC frameworks in classifying unseen categories across a range of SNR levels.
☆ Prompt Disentanglement via Language Guidance and Representation Alignment for Domain Generalization
Domain Generalization (DG) seeks to develop a versatile model capable of performing effectively on unseen target domains. Notably, recent advances in pre-trained Visual Foundation Models (VFMs), such as CLIP, have demonstrated considerable potential in enhancing the generalization capabilities of deep learning models. Despite the increasing attention toward VFM-based domain prompt tuning within DG, the effective design of prompts capable of disentangling invariant features across diverse domains remains a critical challenge. In this paper, we propose addressing this challenge by leveraging the controllable and flexible language prompt of the VFM. Noting that the text modality of VFMs is naturally easier to disentangle, we introduce a novel framework for text feature-guided visual prompt tuning. This framework first automatically disentangles the text prompt using a large language model (LLM) and then learns domain-invariant visual representation guided by the disentangled text feature. However, relying solely on language to guide visual feature disentanglement has limitations, as visual features can sometimes be too complex or nuanced to be fully captured by descriptive text. To address this, we introduce Worst Explicit Representation Alignment (WERA), which extends text-guided visual prompts by incorporating an additional set of abstract prompts. These prompts enhance source domain diversity through stylized image augmentations, while alignment constraints ensure that visual representations remain consistent across both the original and augmented distributions. Experiments conducted on major DG datasets, including PACS, VLCS, OfficeHome, DomainNet, and TerraInc, demonstrate that our proposed method outperforms state-of-the-art DG methods.
☆ Content filtering methods for music recommendation: A review
Recommendation systems have become essential in modern music streaming platforms, shaping how users discover and engage with songs. One common approach in recommendation systems is collaborative filtering, which suggests content based on the preferences of users with similar listening patterns to the target user. However, this method is less effective on media where interactions are sparse. Music is one such medium, since the average user of a music streaming service will never listen to the vast majority of tracks. Due to this sparsity, there are several challenges that have to be addressed with other methods. This review examines the current state of research in addressing these challenges, with an emphasis on the role of content filtering in mitigating biases inherent in collaborative filtering approaches. We explore various methods of song classification for content filtering, including lyrical analysis using Large Language Models (LLMs) and audio signal processing techniques. Additionally, we discuss the potential conflicts between these different analysis methods and propose avenues for resolving such discrepancies.
comment: 13 pages and 9 figures
☆ It's Hard to Be Normal: The Impact of Noise on Structure-agnostic Estimation
Structure-agnostic causal inference studies how well one can estimate a treatment effect given black-box machine learning estimates of nuisance functions (like the impact of confounders on treatment and outcomes). Here, we find that the answer depends in a surprising way on the distribution of the treatment noise. Focusing on the partially linear model of \citet{robinson1988root}, we first show that the widely adopted double machine learning (DML) estimator is minimax rate-optimal for Gaussian treatment noise, resolving an open problem of \citet{mackey2018orthogonal}. Meanwhile, for independent non-Gaussian treatment noise, we show that DML is always suboptimal by constructing new practical procedures with higher-order robustness to nuisance errors. These \emph{ACE} procedures use structure-agnostic cumulant estimators to achieve $r$-th order insensitivity to nuisance errors whenever the $(r+1)$-st treatment cumulant is non-zero. We complement these core results with novel minimax guarantees for binary treatments in the partially linear model. Finally, using synthetic demand estimation experiments, we demonstrate the practical benefits of our higher-order robust estimators.
☆ NLP4Neuro: Sequence-to-sequence learning for neural population decoding
Delineating how animal behavior arises from neural activity is a foundational goal of neuroscience. However, as the computations underlying behavior unfold in networks of thousands of individual neurons across the entire brain, this presents challenges for investigating neural roles and computational mechanisms in large, densely wired mammalian brains during behavior. Transformers, the backbones of modern large language models (LLMs), have become powerful tools for neural decoding from smaller neural populations. These modern LLMs have benefited from extensive pre-training, and their sequence-to-sequence learning has been shown to generalize to novel tasks and data modalities, which may also confer advantages for neural decoding from larger, brain-wide activity recordings. Here, we present a systematic evaluation of off-the-shelf LLMs to decode behavior from brain-wide populations, termed NLP4Neuro, which we used to test LLMs on simultaneous calcium imaging and behavior recordings in larval zebrafish exposed to visual motion stimuli. Through NLP4Neuro, we found that LLMs become better at neural decoding when they use pre-trained weights learned from textual natural language data. Moreover, we found that a recent mixture-of-experts LLM, DeepSeek Coder-7b, significantly improved behavioral decoding accuracy, predicted tail movements over long timescales, and provided anatomically consistent highly interpretable readouts of neuron salience. NLP4Neuro demonstrates that LLMs are highly capable of informing brain-wide neural circuit dissection.
comment: 17 pages, 6 figures
☆ MemAgent: Reshaping Long-Context LLM with Multi-Conv RL-based Memory Agent
Despite improvements by length extrapolation, efficient attention and memory modules, handling infinitely long documents with linear complexity without performance degradation during extrapolation remains the ultimate challenge in long-text processing. We directly optimize for long-text tasks in an end-to-end fashion and introduce a novel agent workflow, MemAgent, which reads text in segments and updates the memory using an overwrite strategy. We extend the DAPO algorithm to facilitate training via independent-context multi-conversation generation. MemAgent has demonstrated superb long-context capabilities, being able to extrapolate from an 8K context trained on 32K text to a 3.5M QA task with performance loss < 5% and achieves 95%+ in 512K RULER test.
comment: Project Page: https://memagent-sialab.github.io/
☆ Uncertainty-aware Reward Design Process
Designing effective reward functions is a cornerstone of reinforcement learning (RL), yet it remains a challenging process due to the inefficiencies and inconsistencies inherent in conventional reward engineering methodologies. Recent advances have explored leveraging large language models (LLMs) to automate reward function design. However, their suboptimal performance in numerical optimization often yields unsatisfactory reward quality, while the evolutionary search paradigm demonstrates inefficient utilization of simulation resources, resulting in prohibitively lengthy design cycles with disproportionate computational overhead. To address these challenges, we propose the Uncertainty-aware Reward Design Process (URDP), a novel framework that integrates large language models to streamline reward function design and evaluation in RL environments. URDP quantifies candidate reward function uncertainty based on self-consistency analysis, enabling simulation-free identification of ineffective reward components while discovering novel reward components. Furthermore, we introduce uncertainty-aware Bayesian optimization (UABO), which incorporates uncertainty estimation to significantly enhance hyperparameter configuration efficiency. Finally, we construct a bi-level optimization architecture by decoupling the reward component optimization and the hyperparameter tuning. URDP orchestrates synergistic collaboration between the reward logic reasoning of the LLMs and the numerical optimization strengths of the Bayesian Optimization. We conduct a comprehensive evaluation of URDP across 35 diverse tasks spanning three benchmark environments. Our experimental results demonstrate that URDP not only generates higher-quality reward functions but also achieves significant improvements in the efficiency of automated reward design compared to existing approaches.
comment: 34 pages, 9 figures
☆ Listwise Preference Alignment Optimization for Tail Item Recommendation
Preference alignment has achieved greater success on Large Language Models (LLMs) and drawn broad interest in recommendation research. Existing preference alignment methods for recommendation either require explicit reward modeling or only support pairwise preference comparison. The former directly increases substantial computational costs, while the latter hinders training efficiency on negative samples. Moreover, no existing effort has explored preference alignment solutions for tail-item recommendation. To bridge the above gaps, we propose LPO4Rec, which extends the Bradley-Terry model from pairwise comparison to listwise comparison, to improve the efficiency of model training. Specifically, we derive a closed form optimal policy to enable more efficient and effective training without explicit reward modeling. We also present an adaptive negative sampling and reweighting strategy to prioritize tail items during optimization and enhance performance in tail-item recommendations. Besides, we theoretically prove that optimizing the listwise preference optimization (LPO) loss is equivalent to maximizing the upper bound of the optimal reward. Our experiments on three public datasets show that our method outperforms 10 baselines by a large margin, achieving up to 50% performance improvement while reducing 17.9% GPU memory usage when compared with direct preference optimization (DPO) in tail-item recommendation. Our code is available at https://github.com/Yuhanleeee/LPO4Rec.
☆ Transfer Learning for Matrix Completion
In this paper, we explore the knowledge transfer under the setting of matrix completion, which aims to enhance the estimation of a low-rank target matrix with auxiliary data available. We propose a transfer learning procedure given prior information on which source datasets are favorable. We study its convergence rates and prove its minimax optimality. Our analysis reveals that with the source matrices close enough to the target matrix, out method outperforms the traditional method using the single target data. In particular, we leverage the advanced sharp concentration inequalities introduced in \cite{brailovskaya2024universality} to eliminate a logarithmic factor in the convergence rate, which is crucial for proving the minimax optimality. When the relevance of source datasets is unknown, we develop an efficient detection procedure to identify informative sources and establish its selection consistency. Simulations and real data analysis are conducted to support the validity of our methodology.
comment: 37 pages, 1 figure
☆ Order Acquisition Under Competitive Pressure: A Rapidly Adaptive Reinforcement Learning Approach for Ride-Hailing Subsidy Strategies
The proliferation of ride-hailing aggregator platforms presents significant growth opportunities for ride-service providers by increasing order volume and gross merchandise value (GMV). On most ride-hailing aggregator platforms, service providers that offer lower fares are ranked higher in listings and, consequently, are more likely to be selected by passengers. This competitive ranking mechanism creates a strong incentive for service providers to adopt coupon strategies that lower prices to secure a greater number of orders, as order volume directly influences their long-term viability and sustainability. Thus, designing an effective coupon strategy that can dynamically adapt to market fluctuations while optimizing order acquisition under budget constraints is a critical research challenge. However, existing studies in this area remain scarce. To bridge this gap, we propose FCA-RL, a novel reinforcement learning-based subsidy strategy framework designed to rapidly adapt to competitors' pricing adjustments. Our approach integrates two key techniques: Fast Competition Adaptation (FCA), which enables swift responses to dynamic price changes, and Reinforced Lagrangian Adjustment (RLA), which ensures adherence to budget constraints while optimizing coupon decisions on new price landscape. Furthermore, we introduce RideGym, the first dedicated simulation environment tailored for ride-hailing aggregators, facilitating comprehensive evaluation and benchmarking of different pricing strategies without compromising real-world operational efficiency. Experimental results demonstrate that our proposed method consistently outperforms baseline approaches across diverse market conditions, highlighting its effectiveness in subsidy optimization for ride-hailing service providers.
☆ VERBA: Verbalizing Model Differences Using Large Language Models
In the current machine learning landscape, we face a "model lake" phenomenon: Given a task, there is a proliferation of trained models with similar performances despite different behavior. For model users attempting to navigate and select from the models, documentation comparing model pairs is helpful. However, for every $N$ models there could be $O(N^2)$ pairwise comparisons, a number prohibitive for the model developers to manually perform pairwise comparisons and prepare documentations. To facilitate fine-grained pairwise comparisons among models, we introduced $\textbf{VERBA}$. Our approach leverages a large language model (LLM) to generate verbalizations of model differences by sampling from the two models. We established a protocol that evaluates the informativeness of the verbalizations via simulation. We also assembled a suite with a diverse set of commonly used machine learning models as a benchmark. For a pair of decision tree models with up to 5% performance difference but 20-25% behavioral differences, $\textbf{VERBA}$ effectively verbalizes their variations with up to 80% overall accuracy. When we included the models' structural information, the verbalization's accuracy further improved to 90%. $\textbf{VERBA}$ opens up new research avenues for improving the transparency and comparability of machine learning models in a post-hoc manner.
☆ PhysicsCorrect: A Training-Free Approach for Stable Neural PDE Simulations
Neural networks have emerged as powerful surrogates for solving partial differential equations (PDEs), offering significant computational speedups over traditional methods. However, these models suffer from a critical limitation: error accumulation during long-term rollouts, where small inaccuracies compound exponentially, eventually causing complete divergence from physically valid solutions. We present PhysicsCorrect, a training-free correction framework that enforces PDE consistency at each prediction step by formulating correction as a linearized inverse problem based on PDE residuals. Our key innovation is an efficient caching strategy that precomputes the Jacobian and its pseudoinverse during an offline warm-up phase, reducing computational overhead by two orders of magnitude compared to standard correction approaches. Across three representative PDE systems -- Navier-Stokes fluid dynamics, wave equations, and the chaotic Kuramoto-Sivashinsky equation -- PhysicsCorrect reduces prediction errors by up to 100x while adding negligible inference time (under 5\%). The framework integrates seamlessly with diverse architectures including Fourier Neural Operators, UNets, and Vision Transformers, effectively transforming unstable neural surrogates into reliable simulation tools that bridge the gap between deep learning's computational efficiency and the physical fidelity demanded by practical scientific applications.
☆ DecoRTL: A Run-time Decoding Framework for RTL Code Generation with LLMs
As one of their many applications, large language models (LLMs) have recently shown promise in automating register transfer level (RTL) code generation. However, conventional LLM decoding strategies, originally designed for natural language, often fail to meet the structural and semantic demands of RTL, leading to hallucinated, repetitive, or invalid code outputs. In this paper, we first investigate the root causes of these decoding failures through an empirical analysis of token-level entropy during RTL generation. Our findings reveal that LLMs exhibit low confidence in regions of structural ambiguity or semantic complexity, showing that standard decoding strategies fail to differentiate between regions requiring determinism (syntax-critical regions) and those that benefit from creative exploratory variability (design-critical regions). Then, to overcome this, we introduce DecoRTL, a novel run-time decoding strategy, that is both syntax-aware and contrastive for RTL code generation. DecoRTL integrates two complementary components: (i) self-consistency sampling, which generates multiple candidates and re-ranks them based on token-level agreement to promote correctness while maintaining diversity; and (ii) syntax-aware temperature adaptation, which classifies tokens by their syntactical and functional roles and adjusts the sampling temperature accordingly, enforcing low temperature for syntax-critical tokens and higher temperature for exploratory ones. Our approach operates entirely at inference time without requiring any additional model fine-tuning. Through evaluations on multiple open-source LLMs using the VerilogEval benchmark, we demonstrate significant improvements in syntactic validity, functional correctness, and output diversity, while the execution overhead (performance overhead) is imperceptible.
comment: Accepted to the International Conference on Computer-Aided Design (ICCAD 2025)
☆ Metric Design != Metric Behavior: Improving Metric Selection for the Unbiased Evaluation of Dimensionality Reduction IEEE VIS 2025
Evaluating the accuracy of dimensionality reduction (DR) projections in preserving the structure of high-dimensional data is crucial for reliable visual analytics. Diverse evaluation metrics targeting different structural characteristics have thus been developed. However, evaluations of DR projections can become biased if highly correlated metrics--those measuring similar structural characteristics--are inadvertently selected, favoring DR techniques that emphasize those characteristics. To address this issue, we propose a novel workflow that reduces bias in the selection of evaluation metrics by clustering metrics based on their empirical correlations rather than on their intended design characteristics alone. Our workflow works by computing metric similarity using pairwise correlations, clustering metrics to minimize overlap, and selecting a representative metric from each cluster. Quantitative experiments demonstrate that our approach improves the stability of DR evaluation, which indicates that our workflow contributes to mitigating evaluation bias.
comment: IEEE VIS 2025 (short paper)
☆ Hybrid least squares for learning functions from highly noisy data
Motivated by the need for efficient estimation of conditional expectations, we consider a least-squares function approximation problem with heavily polluted data. Existing methods that are powerful in the small noise regime are suboptimal when large noise is present. We propose a hybrid approach that combines Christoffel sampling with certain types of optimal experimental design to address this issue. We show that the proposed algorithm enjoys appropriate optimality properties for both sample point generation and noise mollification, leading to improved computational efficiency and sample complexity compared to existing methods. We also extend the algorithm to convex-constrained settings with similar theoretical guarantees. When the target function is defined as the expectation of a random field, we extend our approach to leverage adaptive random subspaces and establish results on the approximation capacity of the adaptive procedure. Our theoretical findings are supported by numerical studies on both synthetic data and on a more challenging stochastic simulation problem in computational finance.
comment: 30 pages
☆ SciGA: A Comprehensive Dataset for Designing Graphical Abstracts in Academic Papers
Graphical Abstracts (GAs) play a crucial role in visually conveying the key findings of scientific papers. While recent research has increasingly incorporated visual materials such as Figure 1 as de facto GAs, their potential to enhance scientific communication remains largely unexplored. Moreover, designing effective GAs requires advanced visualization skills, creating a barrier to their widespread adoption. To tackle these challenges, we introduce SciGA-145k, a large-scale dataset comprising approximately 145,000 scientific papers and 1.14 million figures, explicitly designed for supporting GA selection and recommendation as well as facilitating research in automated GA generation. As a preliminary step toward GA design support, we define two tasks: 1) Intra-GA recommendation, which identifies figures within a given paper that are well-suited to serve as GAs, and 2) Inter-GA recommendation, which retrieves GAs from other papers to inspire the creation of new GAs. We provide reasonable baseline models for these tasks. Furthermore, we propose Confidence Adjusted top-1 ground truth Ratio (CAR), a novel recommendation metric that offers a fine-grained analysis of model behavior. CAR addresses limitations in traditional ranking-based metrics by considering cases where multiple figures within a paper, beyond the explicitly labeled GA, may also serve as GAs. By unifying these tasks and metrics, our SciGA-145k establishes a foundation for advancing visual scientific communication while contributing to the development of AI for Science.
comment: 21 pages, 15 figures, 4 tables. Project Page: https://iyatomilab.github.io/SciGA/
♻ ☆ Urban Region Pre-training and Prompting: A Graph-based Approach KDD 2025
Urban region representation is crucial for various urban downstream tasks. However, despite the proliferation of methods and their success, acquiring general urban region knowledge and adapting to different tasks remains challenging. Existing work pays limited attention to the fine-grained functional layout semantics in urban regions, limiting their ability to capture transferable knowledge across regions. Further, inadequate handling of the unique features and relationships required for different downstream tasks may also hinder effective task adaptation. In this paper, we propose a $\textbf{G}$raph-based $\textbf{U}$rban $\textbf{R}$egion $\textbf{P}$re-training and $\textbf{P}$rompting framework ($\textbf{GURPP}$) for region representation learning. Specifically, we first construct an urban region graph and develop a subgraph-centric urban region pre-training model to capture the heterogeneous and transferable patterns of entity interactions. This model pre-trains knowledge-rich region embeddings using contrastive learning and multi-view learning methods. To further refine these representations, we design two graph-based prompting methods: a manually-defined prompt to incorporate explicit task knowledge and a task-learnable prompt to discover hidden knowledge, which enhances the adaptability of these embeddings to different tasks. Extensive experiments on various urban region prediction tasks and different cities demonstrate the superior performance of our framework.
comment: Accepted at KDD 2025
♻ ☆ Evaluating Frontier Models for Stealth and Situational Awareness
Recent work has demonstrated the plausibility of frontier AI models scheming -- knowingly and covertly pursuing an objective misaligned with its developer's intentions. Such behavior could be very hard to detect, and if present in future advanced systems, could pose severe loss of control risk. It is therefore important for AI developers to rule out harm from scheming prior to model deployment. In this paper, we present a suite of scheming reasoning evaluations measuring two types of reasoning capabilities that we believe are prerequisites for successful scheming: First, we propose five evaluations of ability to reason about and circumvent oversight (stealth). Second, we present eleven evaluations for measuring a model's ability to instrumentally reason about itself, its environment and its deployment (situational awareness). We demonstrate how these evaluations can be used as part of a scheming inability safety case: a model that does not succeed on these evaluations is almost certainly incapable of causing severe harm via scheming in real deployment. We run our evaluations on current frontier models and find that none of them show concerning levels of either situational awareness or stealth.
♻ ☆ From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents
Information retrieval is a cornerstone of modern knowledge acquisition, enabling billions of queries each day across diverse domains. However, traditional keyword-based search engines are increasingly inadequate for handling complex, multi-step information needs. Our position is that Large Language Models (LLMs), endowed with reasoning and agentic capabilities, are ushering in a new paradigm termed Agentic Deep Research. These systems transcend conventional information search techniques by tightly integrating autonomous reasoning, iterative retrieval, and information synthesis into a dynamic feedback loop. We trace the evolution from static web search to interactive, agent-based systems that plan, explore, and learn. We also introduce a test-time scaling law to formalize the impact of computational depth on reasoning and search. Supported by benchmark results and the rise of open-source implementations, we demonstrate that Agentic Deep Research not only significantly outperforms existing approaches, but is also poised to become the dominant paradigm for future information seeking. All the related resources, including industry products, research papers, benchmark datasets, and open-source implementations, are collected for the community in https://github.com/DavidZWZ/Awesome-Deep-Research.
♻ ☆ Membership Inference Attacks as Privacy Tools: Reliability, Disparity and Ensemble
Membership inference attacks (MIAs) pose a significant threat to the privacy of machine learning models and are widely used as tools for privacy assessment, auditing, and machine unlearning. While prior MIA research has primarily focused on performance metrics such as AUC, accuracy, and TPR@low FPR - either by developing new methods to enhance these metrics or using them to evaluate privacy solutions - we found that it overlooks the disparities among different attacks. These disparities, both between distinct attack methods and between multiple instantiations of the same method, have crucial implications for the reliability and completeness of MIAs as privacy evaluation tools. In this paper, we systematically investigate these disparities through a novel framework based on coverage and stability analysis. Extensive experiments reveal significant disparities in MIAs, their potential causes, and their broader implications for privacy evaluation. To address these challenges, we propose an ensemble framework with three distinct strategies to harness the strengths of state-of-the-art MIAs while accounting for their disparities. This framework not only enables the construction of more powerful attacks but also provides a more robust and comprehensive methodology for privacy evaluation.
comment: 22 pages, To appear at ACM CCS 2025
♻ ☆ Transferrable Surrogates in Expressive Neural Architecture Search Spaces
Neural architecture search (NAS) faces a challenge in balancing the exploration of expressive, broad search spaces that enable architectural innovation with the need for efficient evaluation of architectures to effectively search such spaces. We investigate surrogate model training for improving search in highly expressive NAS search spaces based on context-free grammars. We show that i) surrogate models trained either using zero-cost-proxy metrics and neural graph features (GRAF) or by fine-tuning an off-the-shelf LM have high predictive power for the performance of architectures both within and across datasets, ii) these surrogates can be used to filter out bad architectures when searching on novel datasets, thereby significantly speeding up search and achieving better final performances, and iii) the surrogates can be further used directly as the search objective for huge speed-ups.
comment: Accepted at AutoML 25, Project page at: https://shiwenqin.github.io/TransferrableSurrogate/
♻ ☆ GPAS: Accelerating Convergence of LLM Pretraining via Gradient-Preserving Activation Scaling
Modern Large Language Models, such as the LLaMA, Qwen and DeepSeek series, predominantly adopt the Pre-LayerNorm (Pre-LN) Transformer architecture. While being stable during pretraining and scalable to large model sizes, Pre-LN suffers from an exponential growth in activation variance across layers, causing the shortcut to dominate over sub-layer outputs in the residual connection and limiting the learning capacity of deeper layers. To mitigate this issue, we propose Gradient-Preserving Activation Scaling (GPAS), a simple technique that can be used in combination with existing approaches. GPAS works by scaling down the intermediate activations while keeping their gradients unchanged. This leaves information in the activations intact, and avoids the gradient vanishing problem associated with gradient downscaling. Extensive experiments across various model sizes from 71M to 1B show that GPAS achieves consistent performance gains. Beyond enhancing Pre-LN Transformers, GPAS also shows promise in improving alternative architectures such as Sandwich-LN and DeepNorm, demonstrating its versatility and potential for improving training dynamics in a wide range of settings. Our code is available at https://github.com/dandingsky/GPAS.
♻ ☆ LLM-Powered Prediction of Hyperglycemia and Discovery of Behavioral Treatment Pathways from Wearables and Diet
Postprandial hyperglycemia, marked by the blood glucose level exceeding the normal range after consuming a meal, is a critical indicator of progression toward type 2 diabetes in people with prediabetes and in healthy individuals. A key metric for understanding blood glucose dynamics after eating is the postprandial area under the curve (AUC). Predicting postprandial AUC in advance based on a person's lifestyle factors, such as diet and physical activity level, and explaining the factors that affect postprandial blood glucose could allow an individual to adjust their lifestyle accordingly to maintain normal glucose levels. In this study, we developed an explainable machine learning solution, GlucoLens, that takes sensor-driven inputs and uses advanced data processing, large language models, and trainable machine learning models to predict postprandial AUC and hyperglycemia from diet, physical activity, and recent glucose patterns. We used data obtained from wearables in a five-week clinical trial of 10 adults who worked full-time to develop and evaluate the proposed computational model that integrates wearable sensing, multimodal data, and machine learning. Our machine learning model takes multimodal data from wearable activity and glucose monitoring sensors, along with food and work logs, and provides an interpretable prediction of the postprandial glucose pattern. Our GlucoLens system achieves a normalized root mean squared error (NRMSE) of 0.123 in its best configuration. On average, the proposed technology provides a 16% better performance level compared to the comparison models. Additionally, our technique predicts hyperglycemia with an accuracy of 73.3% and an F1 score of 0.716 and recommends different treatment options to help avoid hyperglycemia through diverse counterfactual explanations. Code available: https://github.com/ab9mamun/GlucoLens.
comment: 16 pages, 10 figures
♻ ☆ Avoiding Catastrophe in Online Learning by Asking for Help ICML 2025
Most learning algorithms with formal regret guarantees assume that all mistakes are recoverable and essentially rely on trying all possible behaviors. This approach is problematic when some mistakes are "catastrophic", i.e., irreparable. We propose an online learning problem where the goal is to minimize the chance of catastrophe. Specifically, we assume that the payoff in each round represents the chance of avoiding catastrophe in that round and try to maximize the product of payoffs (the overall chance of avoiding catastrophe) while allowing a limited number of queries to a mentor. We also assume that the agent can transfer knowledge between similar inputs. We first show that in general, any algorithm either queries the mentor at a linear rate or is nearly guaranteed to cause catastrophe. However, in settings where the mentor policy class is learnable in the standard online model, we provide an algorithm whose regret and rate of querying the mentor both approach 0 as the time horizon grows. Although our focus is the product of payoffs, we provide matching bounds for the typical additive regret. Conceptually, if a policy class is learnable in the absence of catastrophic risk, it is learnable in the presence of catastrophic risk if the agent can ask for help.
comment: Accepted to ICML 2025
♻ ☆ MaizeField3D: A Curated 3D Point Cloud and Procedural Model Dataset of Field-Grown Maize from a Diversity Panel
The development of artificial intelligence (AI) and machine learning (ML) based tools for 3D phenotyping, especially for maize, has been limited due to the lack of large and diverse 3D datasets. 2D image datasets fail to capture essential structural details such as leaf architecture, plant volume, and spatial arrangements that 3D data provide. To address this limitation, we present MaizeField3D (https://baskargroup.github.io/MaizeField3D/), a curated dataset of 3D point clouds of field-grown maize plants from a diverse genetic panel, designed to be AI-ready for advancing agricultural research. Our dataset includes 1,045 high-quality point clouds of field-grown maize collected using a terrestrial laser scanner (TLS). Point clouds of 520 plants from this dataset were segmented and annotated using a graph-based segmentation method to isolate individual leaves and stalks, ensuring consistent labeling across all samples. This labeled data was then used for fitting procedural models that provide a structured parametric representation of the maize plants. The leaves of the maize plants in the procedural models are represented using Non-Uniform Rational B-Spline (NURBS) surfaces that were generated using a two-step optimization process combining gradient-free and gradient-based methods. We conducted rigorous manual quality control on all datasets, correcting errors in segmentation, ensuring accurate leaf ordering, and validating metadata annotations. The dataset also includes metadata detailing plant morphology and quality, alongside multi-resolution subsampled point cloud data (100k, 50k, 10k points), which can be readily used for different downstream computational tasks. MaizeField3D will serve as a comprehensive foundational dataset for AI-driven phenotyping, plant structural analysis, and 3D applications in agricultural research.
comment: Elvis Kimara and Mozhgan Hadadi contributed equally to this work
♻ ☆ Quantifying the Cross-sectoral Intersecting Discrepancies within Multiple Groups Using Latent Class Analysis Towards Fairness
The growing interest in fair AI development is evident. The ''Leave No One Behind'' initiative urges us to address multiple and intersecting forms of inequality in accessing services, resources, and opportunities, emphasising the significance of fairness in AI. This is particularly relevant as an increasing number of AI tools are applied to decision-making processes, such as resource allocation and service scheme development, across various sectors such as health, energy, and housing. Therefore, exploring joint inequalities in these sectors is significant and valuable for thoroughly understanding overall inequality and unfairness. This research introduces an innovative approach to quantify cross-sectoral intersecting discrepancies among user-defined groups using latent class analysis. These discrepancies can be used to approximate inequality and provide valuable insights to fairness issues. We validate our approach using both proprietary and public datasets, including both EVENS and Census 2021 (England & Wales) datasets, to examine cross-sectoral intersecting discrepancies among different ethnic groups. We also verify the reliability of the quantified discrepancy by conducting a correlation analysis with a government public metric. Our findings reveal significant discrepancies both among minority ethnic groups and between minority ethnic groups and non-minority ethnic groups, emphasising the need for targeted interventions in policy-making processes. Furthermore, we demonstrate how the proposed approach can provide valuable insights into ensuring fairness in machine learning systems.
♻ ☆ Towards a Novel Measure of User Trust in XAI Systems
The increasing reliance on Deep Learning models, combined with their inherent lack of transparency, has spurred the development of a novel field of study known as eXplainable AI (XAI) methods. These methods seek to enhance the trust of end-users in automated systems by providing insights into the rationale behind their decisions. This paper presents a novel trust measure in XAI systems, allowing their refinement. Our proposed metric combines both performance metrics and trust indicators from an objective perspective. To validate this novel methodology, we conducted three case studies showing an improvement respect the state-of-the-art, with an increased sensitiviy to different scenarios.
♻ ☆ On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability
We study language generation in the limit - introduced by Kleinberg and Mullainathan [KM24] - building on classical works of Gold [Gol67] and Angluin [Ang79]. [KM24]'s main result is an algorithm for generating from any countable language collection in the limit. While their algorithm eventually generates unseen strings from the target language $K$, it sacrifices coverage or breadth, i.e., its ability to generate a rich set of strings. Recent work introduces different notions of breadth and explores when generation with breadth is possible, leaving a full characterization of these notions open. Our first set of results settles this by characterizing generation for existing notions of breadth and their natural extensions. Interestingly, our lower bounds are very flexible and hold for many performance metrics beyond breadth - for instance, showing that, in general, it is impossible to train generators which achieve a higher perplexity or lower hallucination rate for $K$ compared to other languages. Next, we study language generation with breadth and stable generators - algorithms that eventually stop changing after seeing an arbitrary but finite number of strings - and prove unconditional lower bounds for such generators, strengthening the results of [KMV25] and demonstrating that generation with many existing notions of breadth becomes equally hard, when stability is required. This gives a separation for generation with approximate breadth, between stable and unstable generators, highlighting the rich interplay between breadth, stability, and consistency in language generation.
comment: v2 improves exposition and simplifies proofs
♻ ☆ Gradient-Based Model Fingerprinting for LLM Similarity Detection and Family Classification
As Large Language Models (LLMs) become integral software components in modern applications, unauthorized model derivations through fine-tuning, merging, and redistribution have emerged as critical software engineering challenges. Unlike traditional software where clone detection and license compliance are well-established, the LLM ecosystem lacks effective mechanisms to detect model lineage and enforce licensing agreements. This gap is particularly problematic when open-source model creators, such as Meta's LLaMA, require derivative works to maintain naming conventions for attribution, yet no technical means exist to verify compliance. To fill this gap, treating LLMs as software artifacts requiring provenance tracking, we present TensorGuard, a gradient-based fingerprinting framework for LLM similarity detection and family classification. Our approach extracts model-intrinsic behavioral signatures by analyzing gradient responses to random input perturbations across tensor layers, operating independently of training data, watermarks, or specific model formats. TensorGuard supports the widely-adopted safetensors format and constructs high-dimensional fingerprints through statistical analysis of gradient features. These fingerprints enable two complementary capabilities: direct pairwise similarity assessment between arbitrary models through distance computation, and systematic family classification of unknown models via the K-Means clustering algorithm with domain-informed centroid initialization using known base models. Experimental evaluation on 58 models comprising 8 base models and 50 derivatives across five model families (Llama, Qwen, Gemma, Phi, Mistral) demonstrates 94% classification accuracy under our centroid-initialized K-Means clustering.
♻ ☆ HAPI: A Model for Learning Robot Facial Expressions from Human Preferences
Automatic robotic facial expression generation is crucial for human-robot interaction, as handcrafted methods based on fixed joint configurations often yield rigid and unnatural behaviors. Although recent automated techniques reduce the need for manual tuning, they tend to fall short by not adequately bridging the gap between human preferences and model predictions-resulting in a deficiency of nuanced and realistic expressions due to limited degrees of freedom and insufficient perceptual integration. In this work, we propose a novel learning-to-rank framework that leverages human feedback to address this discrepancy and enhanced the expressiveness of robotic faces. Specifically, we conduct pairwise comparison annotations to collect human preference data and develop the Human Affective Pairwise Impressions (HAPI) model, a Siamese RankNet-based approach that refines expression evaluation. Results obtained via Bayesian Optimization and online expression survey on a 35-DOF android platform demonstrate that our approach produces significantly more realistic and socially resonant expressions of Anger, Happiness, and Surprise than those generated by baseline and expert-designed methods. This confirms that our framework effectively bridges the gap between human preferences and model predictions while robustly aligning robotic expression generation with human affective responses.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Learning Traffic Anomalies from Generative Models on Real-Time Observations
Accurate detection of traffic anomalies is crucial for effective urban traffic management and congestion mitigation. We use the Spatiotemporal Generative Adversarial Network (STGAN) framework combining Graph Neural Networks and Long Short-Term Memory networks to capture complex spatial and temporal dependencies in traffic data. We apply STGAN to real-time, minute-by-minute observations from 42 traffic cameras across Gothenburg, Sweden, collected over several months in 2020. The images are processed to compute a flow metric representing vehicle density, which serves as input for the model. Training is conducted on data from April to November 2020, and validation is performed on a separate dataset from November 14 to 23, 2020. Our results demonstrate that the model effectively detects traffic anomalies with high precision and low false positive rates. The detected anomalies include camera signal interruptions, visual artifacts, and extreme weather conditions affecting traffic flow.
♻ ☆ Interpreting Graph Inference with Skyline Explanations
Inference queries have been routinely issued to graph machine learning models such as graph neural networks (GNNs) for various network analytical tasks. Nevertheless, GNNs outputs are often hard to interpret comprehensively. Existing methods typically compromise to individual pre-defined explainability measures (such as fidelity), which often leads to biased, ``one-sided'' interpretations. This paper introduces skyline explanation, a new paradigm that interprets GNN output by simultaneously optimizing multiple explainability measures of users' interests. (1) We propose skyline explanations as a Pareto set of explanatory subgraphs that dominate others over multiple explanatory measures. We formulate skyline explanation as a multi-criteria optimization problem, and establish its hardness results. (2) We design efficient algorithms with an onion-peeling approach, which strategically prioritizes nodes and removes unpromising edges to incrementally assemble skyline explanations. (3) We also develop an algorithm to diversify the skyline explanations to enrich the comprehensive interpretation. (4) We introduce efficient parallel algorithms with load-balancing strategies to scale skyline explanation for large-scale GNN-based inference. Using real-world and synthetic graphs, we experimentally verify our algorithms' effectiveness and scalability.
♻ ☆ Orientation-Aware Sparse Tensor PCA for Efficient Unsupervised Feature Selection
Recently, introducing Tensor Decomposition (TD) techniques into unsupervised feature selection (UFS) has been an emerging research topic. A tensor structure is beneficial for mining the relations between different modes and helps relieve the computation burden. However, while existing methods exploit TD to preserve the data tensor structure, they do not consider the influence of data orientation and thus have difficulty in handling orientation-specific data such as time series. To solve the above problem, we utilize the orientation-dependent tensor-tensor product from Tensor Singular Value Decomposition based on *M-product (T-SVDM) and extend the one-dimensional Sparse Principal Component Analysis (SPCA) to a tensor form. The proposed sparse tensor PCA model can constrain sparsity at the specified mode and yield sparse tensor principal components, enhancing flexibility and accuracy in learning feature relations. To ensure fast convergence and a flexible description of feature correlation, we develop a convex version specially designed for general UFS tasks and propose an efficient slice-by-slice algorithm that performs dual optimization in the transform domain. Experimental results on real-world datasets demonstrate the effectiveness and remarkable computational efficiency of the proposed method for tensor data of diverse structures over the state-of-the-art. When transform axes align with feature distribution patterns, our method is promising for various applications. The codes related to our proposed methods and the experiments are available at https://github.com/zjj20212035/STPCA.git.
♻ ☆ Down with the Hierarchy: The 'H' in HNSW Stands for "Hubs"
Driven by recent breakthrough advances in neural representation learning, approximate near-neighbor (ANN) search over vector embeddings has emerged as a critical computational workload. With the introduction of the seminal Hierarchical Navigable Small World (HNSW) algorithm, graph-based indexes have established themselves as the overwhelmingly dominant paradigm for efficient and scalable ANN search. As the name suggests, HNSW searches a layered hierarchical graph to quickly identify neighborhoods of similar points to a given query vector. But is this hierarchy even necessary? A rigorous experimental analysis to answer this question would provide valuable insights into the nature of algorithm design for ANN search and motivate directions for future work in this increasingly crucial domain. We conduct an extensive benchmarking study covering more large-scale datasets than prior investigations of this question. We ultimately find that a flat navigable small world graph graph retains all of the benefits of HNSW on high-dimensional datasets, with latency and recall performance essentially \emph{identical} to the original algorithm but with less memory overhead. Furthermore, we go a step further and study \emph{why} the hierarchy of HNSW provides no benefit in high dimensions, hypothesizing that navigable small world graphs contain a well-connected, frequently traversed ``highway" of hub nodes that maintain the same purported function as the hierarchical layers. We present compelling empirical evidence that the \emph{Hub Highway Hypothesis} holds for real datasets and investigate the mechanisms by which the highway forms. The implications of this hypothesis may also provide future research directions in developing enhancements to graph-based ANN search.
comment: 17 pages
♻ ☆ StructTransform: A Scalable Attack Surface for Safety-Aligned Large Language Models
In this work, we present a series of structure transformation attacks on LLM alignment, where we encode natural language intent using diverse syntax spaces, ranging from simple structure formats and basic query languages (e.g., SQL) to new novel spaces and syntaxes created entirely by LLMs. Our extensive evaluation shows that our simplest attacks can achieve close to a 90% success rate, even on strict LLMs (such as Claude 3.5 Sonnet) using SOTA alignment mechanisms. We improve the attack performance further by using an adaptive scheme that combines structure transformations along with existing content transformations, resulting in over 96% ASR with 0% refusals. To generalize our attacks, we explore numerous structure formats, including syntaxes purely generated by LLMs. Our results indicate that such novel syntaxes are easy to generate and result in a high ASR, suggesting that defending against our attacks is not a straightforward process. Finally, we develop a benchmark and evaluate existing safety-alignment defenses against it, showing that most of them fail with 100% ASR. Our results show that existing safety alignment mostly relies on token-level patterns without recognizing harmful concepts, highlighting and motivating the need for serious research efforts in this direction. As a case study, we demonstrate how attackers can use our attack to easily generate a sample malware and a corpus of fraudulent SMS messages, which perform well in bypassing detection.
♻ ☆ SURE-VQA: Systematic Understanding of Robustness Evaluation in Medical VQA Tasks
Vision-Language Models (VLMs) have great potential in medical tasks, like Visual Question Answering (VQA), where they could act as interactive assistants for both patients and clinicians. Yet their robustness to distribution shifts on unseen data remains a key concern for safe deployment. Evaluating such robustness requires a controlled experimental setup that allows for systematic insights into the model's behavior. However, we demonstrate that current setups fail to offer sufficiently thorough evaluations. To address this gap, we introduce a novel framework, called SURE-VQA, centered around three key requirements to overcome current pitfalls and systematically analyze VLM robustness: 1) Since robustness on synthetic shifts does not necessarily translate to real-world shifts, it should be measured on real-world shifts that are inherent to the VQA data; 2) Traditional token-matching metrics often fail to capture underlying semantics, necessitating the use of large language models (LLMs) for more accurate semantic evaluation; 3) Model performance often lacks interpretability due to missing sanity baselines, thus meaningful baselines should be reported that allow assessing the multimodal impact on the VLM. To demonstrate the relevance of this framework, we conduct a study on the robustness of various Fine-Tuning (FT) methods across three medical datasets with four types of distribution shifts. Our study highlights key insights into robustness: 1) No FT method consistently outperforms others in robustness, and 2) robustness trends are more stable across FT methods than across distribution shifts. Additionally, we find that simple sanity baselines that do not use the image data can perform surprisingly well and confirm LoRA as the best-performing FT method on in-distribution data. Code is provided at https://github.com/IML-DKFZ/sure-vqa.
comment: TMLR 07/2025
♻ ☆ SoccerDiffusion: Toward Learning End-to-End Humanoid Robot Soccer from Gameplay Recordings
This paper introduces SoccerDiffusion, a transformer-based diffusion model designed to learn end-to-end control policies for humanoid robot soccer directly from real-world gameplay recordings. Using data collected from RoboCup competitions, the model predicts joint command trajectories from multi-modal sensor inputs, including vision, proprioception, and game state. We employ a distillation technique to enable real-time inference on embedded platforms that reduces the multi-step diffusion process to a single step. Our results demonstrate the model's ability to replicate complex motion behaviors such as walking, kicking, and fall recovery both in simulation and on physical robots. Although high-level tactical behavior remains limited, this work provides a robust foundation for subsequent reinforcement learning or preference optimization methods. We release the dataset, pretrained models, and code under: https://bit-bots.github.io/SoccerDiffusion
♻ ☆ Towards an Explainable Comparison and Alignment of Feature Embeddings
While several feature embedding models have been developed in the literature, comparisons of these embeddings have largely focused on their numerical performance in classification-related downstream applications. However, an interpretable comparison of different embeddings requires identifying and analyzing mismatches between sample groups clustered within the embedding spaces. In this work, we propose the \emph{Spectral Pairwise Embedding Comparison (SPEC)} framework to compare embeddings and identify their differences in clustering a reference dataset. Our approach examines the kernel matrices derived from two embeddings and leverages the eigendecomposition of the difference kernel matrix to detect sample clusters that are captured differently by the two embeddings. We present a scalable implementation of this kernel-based approach, with computational complexity that grows linearly with the sample size. Furthermore, we introduce an optimization problem using this framework to align two embeddings, ensuring that clusters identified in one embedding are also captured in the other model. We provide numerical results demonstrating the SPEC's application to compare and align embeddings on large-scale datasets such as ImageNet and MS-COCO. The project page is available at https://mjalali.github.io/SPEC/.
♻ ☆ Fading memory and the convolution theorem
Several topological and analytical notions of continuity and fading memory for causal and time-invariant filters are introduced, and the relations between them are analyzed. A significant generalization of the convolution theorem that establishes the equivalence between the fading memory property and the availability of convolution representations of linear filters is proved. This result extends a previous similar characterization to a complete array of weighted norms in the definition of the fading memory property. Additionally, the main theorem shows that the availability of convolution representations can be characterized, at least when the codomain is finite-dimensional, not only by the fading memory property but also by the reunion of two purely topological notions that are called minimal continuity and minimal fading memory property. Finally, when the input space and the codomain of a linear functional are Hilbert spaces, it is shown that minimal continuity and the minimal fading memory property guarantee the existence of interesting embeddings of the associated reproducing kernel Hilbert spaces.
♻ ☆ Adaptive Probabilistic ODE Solvers Without Adaptive Memory Requirements
Despite substantial progress in recent years, probabilistic solvers with adaptive step sizes can still not solve memory-demanding differential equations -- unless we care only about a single point in time (which is far too restrictive; we want the whole time series). Counterintuitively, the culprit is the adaptivity itself: Its unpredictable memory demands easily exceed our machine's capabilities, making our simulations fail unexpectedly and without warning. Still, dropping adaptivity would abandon years of progress, which can't be the answer. In this work, we solve this conundrum. We develop an adaptive probabilistic solver with fixed memory demands building on recent developments in robust state estimation. Switching to our method (i) eliminates memory issues for long time series, (ii) accelerates simulations by orders of magnitude through unlocking just-in-time compilation, and (iii) makes adaptive probabilistic solvers compatible with scientific computing in JAX.
♻ ☆ Flow Matching on Lie Groups
Flow Matching (FM) is a recent generative modelling technique: we aim to learn how to sample from distribution $\mathfrak{X}_1$ by flowing samples from some distribution $\mathfrak{X}_0$ that is easy to sample from. The key trick is that this flow field can be trained while conditioning on the end point in $\mathfrak{X}_1$: given an end point, simply move along a straight line segment to the end point (Lipman et al. 2022). However, straight line segments are only well-defined on Euclidean space. Consequently, Chen and Lipman (2023) generalised the method to FM on Riemannian manifolds, replacing line segments with geodesics or their spectral approximations. We take an alternative point of view: we generalise to FM on Lie groups by instead substituting exponential curves for line segments. This leads to a simple, intrinsic, and fast implementation for many matrix Lie groups, since the required Lie group operations (products, inverses, exponentials, logarithms) are simply given by the corresponding matrix operations. FM on Lie groups could then be used for generative modelling with data consisting of sets of features (in $\mathbb{R}^n$) and poses (in some Lie group), e.g. the latent codes of Equivariant Neural Fields (Wessels et al. 2025).
comment: Accepted in the 7th International Conference on Geometric Science of Information
♻ ☆ Interleaved Gibbs Diffusion: Generating Discrete-Continuous Data with Implicit Constraints
We introduce Interleaved Gibbs Diffusion (IGD), a novel generative modeling framework for discrete-continuous data, focusing on problems with important, implicit and unspecified constraints in the data. Most prior works on discrete and discrete-continuous diffusion assume a factorized denoising distribution, which can hinder the modeling of strong dependencies between random variables in such problems. We empirically demonstrate a significant improvement in 3-SAT performance out of the box by switching to a Gibbs-sampling style discrete diffusion model which does not assume factorizability. Motivated by this, we introduce IGD which generalizes discrete time Gibbs sampling type Markov chain for the case of discrete-continuous generation. IGD allows for seamless integration between discrete and continuous denoisers while theoretically guaranteeing exact reversal of a suitable forward process. Further, it provides flexibility in the choice of denoisers, allows conditional generation via state-space doubling and inference time refinement. Empirical evaluations on three challenging generation tasks - molecule structures, layouts and tabular data - demonstrate state-of-the-art performance. Notably, IGD achieves state-of-the-art results without relying on domain-specific inductive biases like equivariant diffusion or auxiliary losses. We explore a wide range of modeling, and interleaving strategies along with hyperparameters in each of these problems.
♻ ☆ Offline Reinforcement Learning for Learning to Dispatch for Job Shop Scheduling
The Job Shop Scheduling Problem (JSSP) is a complex combinatorial optimization problem. While online Reinforcement Learning (RL) has shown promise by quickly finding acceptable solutions for JSSP, it faces key limitations: it requires extensive training interactions from scratch leading to sample inefficiency, cannot leverage existing high-quality solutions from traditional methods like Constraint Programming (CP), and require simulated environments to train in, which are impracticable to build for complex scheduling environments. We introduce Offline Learned Dispatching (Offline-LD), an offline reinforcement learning approach for JSSP, which addresses these limitations by learning from historical scheduling data. Our approach is motivated by scenarios where historical scheduling data and expert solutions are available or scenarios where online training of RL approaches with simulated environments is impracticable. Offline-LD introduces maskable variants of two Q-learning methods, namely, Maskable Quantile Regression DQN (mQRDQN) and discrete maskable Soft Actor-Critic (d-mSAC), that are able to learn from historical data, through Conservative Q-Learning (CQL). Moreover, we present a novel entropy bonus modification for d-mSAC, for maskable action spaces. Moreover, we introduce a novel reward normalization method for JSSP in an offline RL setting. Our experiments demonstrate that Offline-LD outperforms online RL on both generated and benchmark instances when trained on only 100 solutions generated by CP. Notably, introducing noise to the expert dataset yields comparable or superior results to using the expert dataset, with the same amount of instances, a promising finding for real-world applications, where data is inherently noisy and imperfect.
comment: Accepted in Machine Learning
♻ ☆ Higher-Order Singular-Value Derivatives of Rectangular Real Matrices
We present a theoretical framework for deriving the general $n$-th order Fr\'echet derivatives of singular values in real rectangular matrices, by leveraging reduced resolvent operators from Kato's analytic perturbation theory for self-adjoint operators. Deriving closed-form expressions for higher-order derivatives of singular values is notoriously challenging through standard matrix-analysis techniques. To overcome this, we treat a real rectangular matrix as a compact operator on a finite-dimensional Hilbert space, and embed the rectangular matrix into a block self-adjoint operator so that non-symmetric perturbations are captured. Applying Kato's asymptotic eigenvalue expansion to this construction, we obtain a general, closed-form expression for the infinitesimal $n$-th order spectral variations. Specializing to $n=2$ and deploying on a Kronecker-product representation with matrix convention yield the Hessian of a singular value, not found in literature. By bridging abstract operator-theoretic perturbation theory with matrices, our framework equips researchers with a practical toolkit for higher-order spectral sensitivity studies in random matrix applications (e.g., adversarial perturbation in deep learning).
comment: Adding authors; change title; change template
♻ ☆ Assessing Quantum Advantage for Gaussian Process Regression
Gaussian Process Regression is a well-known machine learning technique for which several quantum algorithms have been proposed. We show here that in a wide range of scenarios these algorithms show no exponential speedup. We achieve this by rigorously proving that the condition number of a kernel matrix scales at least linearly with the matrix size under general assumptions on the data and kernel. We additionally prove that the sparsity and Frobenius norm of a kernel matrix scale linearly under similar assumptions. The implications for the quantum algorithms runtime are independent of the complexity of loading classical data on a quantum computer and also apply to dequantised algorithms. We supplement our theoretical analysis with numerical verification for popular kernels in machine learning.
comment: 18 pages, 2 figures. Version 2 contains updated figures and a slightly revised discussion for additional clarity
♻ ☆ Ordinality in Discrete-level Question Difficulty Estimation: Introducing Balanced DRPS and OrderedLogitNN
Recent years have seen growing interest in Question Difficulty Estimation (QDE) using natural language processing techniques. Question difficulty is often represented using discrete levels, framing the task as ordinal regression due to the inherent ordering from easiest to hardest. However, the literature has neglected the ordinal nature of the task, relying on classification or discretized regression models, with specialized ordinal regression methods remaining unexplored. Furthermore, evaluation metrics are tightly coupled to the modeling paradigm, hindering cross-study comparability. While some metrics fail to account for the ordinal structure of difficulty levels, none adequately address class imbalance, resulting in biased performance assessments. This study addresses these limitations by benchmarking three types of model outputs -- discretized regression, classification, and ordinal regression -- using the balanced Discrete Ranked Probability Score (DRPS), a novel metric that jointly captures ordinality and class imbalance. In addition to using popular ordinal regression methods, we propose OrderedLogitNN, extending the ordered logit model from econometrics to neural networks. We fine-tune BERT on the RACE++ and ARC datasets and find that OrderedLogitNN performs considerably better on complex tasks. The balanced DRPS offers a robust and fair evaluation metric for discrete-level QDE, providing a principled foundation for future research.
comment: Published in the EvalLAC'25 workshop at AIED 2025
♻ ☆ A Square Peg in a Square Hole: Meta-Expert for Long-Tailed Semi-Supervised Learning ICML 2025
This paper studies the long-tailed semi-supervised learning (LTSSL) with distribution mismatch, where the class distribution of the labeled training data follows a long-tailed distribution and mismatches with that of the unlabeled training data. Most existing methods introduce auxiliary classifiers (experts) to model various unlabeled data distributions and produce pseudo-labels, but the expertises of various experts are not fully utilized. We observe that different experts are good at predicting different intervals of samples, e.g., long-tailed expert is skilled in samples located in the head interval and uniform expert excels in samples located in the medium interval. Therefore, we propose a dynamic expert assignment module that can estimate the class membership (i.e., head, medium, or tail class) of samples, and dynamically assigns suitable expert to each sample based on the estimated membership to produce high-quality pseudo-label in the training phase and produce prediction in the testing phase. We also theoretically reveal that integrating different experts' strengths will lead to a smaller generalization error bound. Moreover, we find that the deeper features are more biased toward the head class but with more discriminative ability, while the shallower features are less biased but also with less discriminative ability. We, therefore, propose a multi-depth feature fusion module to utilize different depth features to mitigate the model bias. Our method demonstrates its effectiveness through comprehensive experiments on the CIFAR-10-LT, STL-10-LT, and SVHN-LT datasets across various settings. The code is available at https://github.com/yaxinhou/Meta-Expert.
comment: The paper is accepted by ICML 2025
♻ ☆ Deep learning four decades of human migration
We present a novel and detailed dataset on origin-destination annual migration flows and stocks between 230 countries and regions, spanning the period from 1990 to the present. Our flow estimates are further disaggregated by country of birth, providing a comprehensive picture of migration over the last 35 years. The estimates are obtained by training a deep recurrent neural network to learn flow patterns from 18 covariates for all countries, including geographic, economic, cultural, societal, and political information. The recurrent architecture of the neural network means that the entire past can influence current migration patterns, allowing us to learn long-range temporal correlations. By training an ensemble of neural networks and additionally pushing uncertainty on the covariates through the trained network, we obtain confidence bounds for all our estimates, allowing researchers to pinpoint the geographic regions most in need of additional data collection. We validate our approach on various test sets of unseen data, demonstrating that it significantly outperforms traditional methods estimating five-year flows while delivering a significant increase in temporal resolution. The model is fully open source: all training data, neural network weights, and training code are made public alongside the migration estimates, providing a valuable resource for future studies of human migration.
♻ ☆ Self-Supervised Frameworks for Speaker Verification via Bootstrapped Positive Sampling
Recent developments in Self-Supervised Learning (SSL) have demonstrated significant potential for Speaker Verification (SV), but closing the performance gap with supervised systems remains an ongoing challenge. SSL frameworks rely on anchor-positive pairs, constructed from segments of the same audio utterance. Hence, positives have channel characteristics similar to those of their corresponding anchors, even with extensive data-augmentation. Therefore, this positive sampling strategy is a fundamental limitation as it encodes too much information regarding the recording source in the learned representations. This article introduces Self-Supervised Positive Sampling (SSPS), a bootstrapped technique for sampling appropriate and diverse positives in SSL frameworks for SV. SSPS samples positives close to their anchor in the representation space, assuming that these pseudo-positives belong to the same speaker identity but correspond to different recording conditions. This method consistently demonstrates improvements in SV performance on VoxCeleb benchmarks when applied to major SSL frameworks, including SimCLR, SwAV, VICReg, and DINO. Using SSPS, SimCLR and DINO achieve 2.57% and 2.53% EER on VoxCeleb1-O, respectively. SimCLR yields a 58% relative reduction in EER, getting comparable performance to DINO with a simpler training framework. Furthermore, SSPS lowers intra-class variance and reduces channel information in speaker representations while exhibiting greater robustness without data-augmentation.
comment: accepted for publication in IEEE TASLP
♻ ☆ Reconsidering the energy efficiency of spiking neural networks
Spiking Neural Networks (SNNs) promise higher energy efficiency over conventional Quantized Artificial Neural Networks (QNNs) due to their event-driven, spike-based computation. However, prevailing energy evaluations often oversimplify, focusing on computational aspects while neglecting critical overheads like comprehensive data movement and memory access. Such simplifications can lead to misleading conclusions regarding the true energy benefits of SNNs. This paper presents a rigorous re-evaluation. We establish a fair baseline by mapping rate-encoded SNNs with $T$ timesteps to functionally equivalent QNNs with $\lceil \log_2(T+1) \rceil$ bits. This ensures both models have comparable representational capacities, as well has similar hardware requirement, enabling meaningful energy comparisons. We introduce a detailed analytical energy model encompassing core computation and data movement (sparse and dense activations, weights). Using this model, we systematically explore a wide parameter space, including intrinsic network characteristics ($T$, spike rate $s_r$, QNN sparsity $\gamma$, model size $N$, weight bit-level) and hardware characteristics (memory system and network-on-chip). Our analysis identifies specific operational regimes where SNNs genuinely offer superior energy efficiency. For example, under typical neuromorphic hardware conditions, SNNs with moderate time windows ($T \in [5,10]$) require an average spike rate ($s_r$) below 6.4% to outperform equivalent QNNs. These insights guide the design of genuinely energy-efficient neural network solutions.
♻ ☆ Traveling Across Languages: Benchmarking Cross-Lingual Consistency in Multimodal LLMs
The rapid evolution of multimodal large language models (MLLMs) has significantly enhanced their real-world applications. However, achieving consistent performance across languages, especially when integrating cultural knowledge, remains a significant challenge. To better assess this issue, we introduce two new benchmarks: KnowRecall and VisRecall, which evaluate cross-lingual consistency in MLLMs. KnowRecall is a visual question answering benchmark designed to measure factual knowledge consistency in 15 languages, focusing on cultural and historical questions about global landmarks. VisRecall assesses visual memory consistency by asking models to describe landmark appearances in 9 languages without access to images. Experimental results reveal that state-of-the-art MLLMs, including proprietary ones, still struggle to achieve cross-lingual consistency. This underscores the need for more robust approaches that produce truly multilingual and culturally aware models.
comment: https://github.com/nlp-waseda/traveling-across-languages
♻ ☆ Self-Guided Process Reward Optimization with Redefined Step-wise Advantage for Process Reinforcement Learning
Process Reinforcement Learning~(PRL) has demonstrated considerable potential in enhancing the reasoning capabilities of Large Language Models~(LLMs). However, introducing additional process reward models incurs substantial computational overhead, and there is no unified theoretical framework for process-level advantage estimation. To bridge this gap, we propose \textbf{S}elf-Guided \textbf{P}rocess \textbf{R}eward \textbf{O}ptimization~(\textbf{SPRO}), a novel framework that enables process-aware RL through two key innovations: (1) we first theoretically demonstrate that process rewards can be derived intrinsically from the policy model itself, and (2) we introduce well-defined cumulative process rewards and \textbf{M}asked \textbf{S}tep \textbf{A}dvantage (\textbf{MSA}), which facilitates rigorous step-wise action advantage estimation within shared-prompt sampling groups. Our experimental results demonstrate that SPRO outperforms vaniila GRPO with 3.4x higher training efficiency and a 17.5\% test accuracy improvement. Furthermore, SPRO maintains a stable and elevated policy entropy throughout training while reducing the average response length by approximately $1/3$, evidencing sufficient exploration and prevention of reward hacking. Notably, SPRO incurs no additional computational overhead compared to outcome-supervised RL methods such as GRPO, which benefit industrial implementation.
♻ ☆ The Choice of Normalization Influences Shrinkage in Regularized Regression
Regularized models are often sensitive to the scales of the features in the data and it has therefore become standard practice to normalize (center and scale) the features before fitting the model. But there are many different ways to normalize the features and the choice may have dramatic effects on the resulting model. In spite of this, there has so far been no research on this topic. In this paper, we begin to bridge this knowledge gap by studying normalization in the context of lasso, ridge, and elastic net regression. We focus on binary features and show that their class balances (proportions of ones) directly influences the regression coefficients and that this effect depends on the combination of normalization and regularization methods used. We demonstrate that this effect can be mitigated by scaling binary features with their variance in the case of the lasso and standard deviation in the case of ridge regression, but that this comes at the cost of increased variance of the coefficient estimates. For the elastic net, we show that scaling the penalty weights, rather than the features, can achieve the same effect. Finally, we also tackle mixes of binary and normal features as well as interactions and provide some initial results on how to normalize features in these cases.
comment: 39 pages, 18 figures
♻ ☆ Reliability-Adjusted Prioritized Experience Replay
Experience replay enables data-efficient learning from past experiences in online reinforcement learning agents. Traditionally, experiences were sampled uniformly from a replay buffer, regardless of differences in experience-specific learning potential. In an effort to sample more efficiently, researchers introduced Prioritized Experience Replay (PER). In this paper, we propose an extension to PER by introducing a novel measure of temporal difference error reliability. We theoretically show that the resulting transition selection algorithm, Reliability-adjusted Prioritized Experience Replay (ReaPER), enables more efficient learning than PER. We further present empirical results showing that ReaPER outperforms PER across various environment types, including the Atari-10 benchmark.
♻ ☆ Deep Transfer Learning for Kidney Cancer Diagnosis
Incurable diseases continue to pose major challenges to global healthcare systems, with their prevalence shaped by lifestyle, economic, social, and genetic factors. Among these, kidney disease remains a critical global health issue, requiring ongoing research to improve early diagnosis and treatment. In recent years, deep learning (DL) has shown promise in medical imaging and diagnostics, driving significant progress in automatic kidney cancer (KC) detection. However, the success of DL models depends heavily on the availability of high-quality, domain-specific datasets, which are often limited and expensive to acquire. Moreover, DL models demand substantial computational power and storage, restricting their real-world clinical use. To overcome these barriers, transfer learning (TL) has emerged as an effective approach, enabling the reuse of pre-trained models from related domains to enhance KC diagnosis. This paper presents a comprehensive survey of DL-based TL frameworks for KC detection, systematically reviewing key methodologies, their advantages, and limitations, and analyzing their practical performance. It further discusses challenges in applying TL to medical imaging and highlights emerging trends that could influence future research. This review demonstrates the transformative role of TL in precision medicine, particularly oncology, by improving diagnostic accuracy, lowering computational demands, and supporting the integration of AI-powered tools in healthcare. The insights provided offer valuable guidance for researchers and practitioners, paving the way for future advances in KC diagnostics and personalized treatment strategies.
♻ ☆ Learning Massive-scale Partial Correlation Networks in Clinical Multi-omics Studies with HP-ACCORD
Graphical model estimation from multi-omics data requires a balance between statistical estimation performance and computational scalability. We introduce a novel pseudolikelihood-based graphical model framework that reparameterizes the target precision matrix while preserving the sparsity pattern and estimates it by minimizing an $\ell_1$-penalized empirical risk based on a new loss function. The proposed estimator maintains estimation and selection consistency in various metrics under high-dimensional assumptions. The associated optimization problem allows for a provably fast computation algorithm using a novel operator-splitting approach and communication-avoiding distributed matrix multiplication. A high-performance computing implementation of our framework was tested using simulated data with up to one million variables, demonstrating complex dependency structures similar to those found in biological networks. Leveraging this scalability, we estimated a partial correlation network from a dual-omic liver cancer data set. The co-expression network estimated from the ultrahigh-dimensional data demonstrated superior specificity in prioritizing key transcription factors and co-activators by excluding the impact of epigenetic regulation, thereby highlighting the value of computational scalability in multi-omic data analysis.
comment: 25 pages, 6 figures, preprint
♻ ☆ Quantum-enhanced causal discovery for a small number of samples
The discovery of causal relations from observed data has attracted significant interest from disciplines such as economics, social sciences, and biology. In practical applications, considerable knowledge of the underlying systems is often unavailable, and real data are usually associated with nonlinear causal structures, which makes the direct use of most conventional causality analysis methods difficult. This study proposes a novel quantum Peter-Clark (qPC) algorithm for causal discovery that does not require any assumptions about the underlying model structures. Based on conditional independence tests in a class of reproducing kernel Hilbert spaces characterized by quantum circuits, the proposed algorithm can explore causal relations from the observed data drawn from arbitrary distributions. We conducted systematic experiments on fundamental graphs of causal structures, demonstrating that the qPC algorithm exhibits better performance, particularly with smaller sample sizes compared to its classical counterpart. Furthermore, we proposed a novel optimization approach based on Kernel Target Alignment (KTA) for determining hyperparameters of quantum kernels. This method effectively reduced the risk of false positives in causal discovery, enabling more reliable inference. Our theoretical and experimental results demonstrate that the quantum algorithm can empower classical algorithms for accurate inference in causal discovery, supporting them in regimes where classical algorithms typically fail. In addition, the effectiveness of this method was validated using the datasets on Boston housing prices, heart disease, and biological signaling systems as real-world applications. These findings highlight the potential of quantum-based causal discovery methods in addressing practical challenges, particularly in small-sample scenarios, where traditional approaches have shown significant limitations.
comment: 20 pages, 10 figures
♻ ☆ Universal Collection of Euclidean Invariants between Pairs of Position-Orientations
Euclidean E(3) equivariant neural networks that employ scalar fields on position-orientation space M(3) have been effectively applied to tasks such as predicting molecular dynamics and properties. To perform equivariant convolutional-like operations in these architectures one needs Euclidean invariant kernels on M(3) x M(3). In practice, a handcrafted collection of invariants is selected, and this collection is then fed into multilayer perceptrons to parametrize the kernels. We rigorously describe an optimal collection of 4 smooth scalar invariants on the whole of M(3) x M(3). With optimal we mean that the collection is independent and universal, meaning that all invariants are pertinent, and any invariant kernel is a function of them. We evaluate two collections of invariants, one universal and one not, using the PONITA neural network architecture. Our experiments show that using a collection of invariants that is universal positively impacts the accuracy of PONITA significantly.
♻ ☆ Roto-Translation Invariant Metrics on Position-Orientation Space
Riemannian metrics on the position-orientation space M(3) that are roto-translation group SE(3) invariant play a key role in image analysis tasks like enhancement, denoising, and segmentation. These metrics enable roto-translation equivariant algorithms, with the associated Riemannian distance often used in implementation. However, computing the Riemannian distance is costly, which makes it unsuitable in situations where constant recomputation is needed. We propose the mav (minimal angular velocity) distance, defined as the Riemannian length of a geometrically meaningful curve, as a practical alternative. We see an application of the mav distance in geometric deep learning. Namely, neural networks architectures such as PONITA, relies on geometric invariants to create their roto-translation equivariant model. The mav distance offers a trainable invariant, with the parameters that determine the Riemannian metric acting as learnable weights. In this paper we: 1) classify and parametrize all SE(3) invariant metrics on M(3), 2) describes how to efficiently calculate the mav distance, and 3) investigate if including the mav distance within PONITA can positively impact its accuracy in predicting molecular properties.
♻ ☆ A Deep Learning Powered Numerical Relativity Surrogate for Binary Black Hole Waveforms
Gravitational-wave approximants are essential for gravitational-wave astronomy, allowing the coverage binary black hole parameter space for inference or match filtering without costly numerical relativity (NR) simulations, but generally trading some accuracy for computational efficiency. To reduce this trade-off, NR surrogate models can be constructed using interpolation within NR waveform space. We present a 2-stage training approach for neural network-based NR surrogate models. Initially trained on approximant-generated waveforms and then fine-tuned with NR data, these dual-stage artificial neural surrogate (\texttt{DANSur}) models offer rapid and competitively accurate waveform generation, generating millions in under 20ms on a GPU while keeping mean mismatches with NR around $10^{-4}$. Implemented in the \textsc{bilby} framework, we show they can be used for parameter estimation tasks.
♻ ☆ Unsupervised Cognition
Unsupervised learning methods have a soft inspiration in cognition models. To this day, the most successful unsupervised learning methods revolve around clustering samples in a mathematical space. In this paper we propose a primitive-based, unsupervised learning approach for decision-making inspired by a novel cognition framework. This representation-centric approach models the input space constructively as a distributed hierarchical structure in an input-agnostic way. We compared our approach with both current state-of-the-art unsupervised learning classification, with current state-of-the-art small and incomplete datasets classification, and with current state-of-the-art cancer type classification. We show how our proposal outperforms previous state-of-the-art. We also evaluate some cognition-like properties of our proposal where it not only outperforms the compared algorithms (even supervised learning ones), but it also shows a different, more cognition-like, behaviour.
♻ ☆ Anatomical Foundation Models for Brain MRIs
Deep Learning (DL) in neuroimaging has become increasingly relevant for detecting neurological conditions and neurodegenerative disorders. One of the most predominant biomarkers in neuroimaging is represented by brain age, which has been shown to be a good indicator for different conditions, such as Alzheimer's Disease. Using brain age for weakly supervised pre-training of DL models in transfer learning settings has also recently shown promising results, especially when dealing with data scarcity of different conditions. On the other hand, anatomical information of brain MRIs (e.g. cortical thickness) can provide important information for learning good representations that can be transferred to many downstream tasks. In this work, we propose AnatCL, an anatomical foundation model for brain MRIs that i.) leverages anatomical information in a weakly contrastive learning approach, and ii.) achieves state-of-the-art performances across many different downstream tasks. To validate our approach we consider 12 different downstream tasks for the diagnosis of different conditions such as Alzheimer's Disease, autism spectrum disorder, and schizophrenia. Furthermore, we also target the prediction of 10 different clinical assessment scores using structural MRI data. Our findings show that incorporating anatomical information during pre-training leads to more robust and generalizable representations. Pre-trained models can be found at: https://github.com/EIDOSLAB/AnatCL.
comment: Updated version; added ablation study
♻ ☆ The Artificial Scientist -- in-transit Machine Learning of Plasma Simulations
Increasing HPC cluster sizes and large-scale simulations that produce petabytes of data per run, create massive IO and storage challenges for analysis. Deep learning-based techniques, in particular, make use of these amounts of domain data to extract patterns that help build scientific understanding. Here, we demonstrate a streaming workflow in which simulation data is streamed directly to a machine-learning (ML) framework, circumventing the file system bottleneck. Data is transformed in transit, asynchronously to the simulation and the training of the model. With the presented workflow, data operations can be performed in common and easy-to-use programming languages, freeing the application user from adapting the application output routines. As a proof-of-concept we consider a GPU accelerated particle-in-cell (PIConGPU) simulation of the Kelvin- Helmholtz instability (KHI). We employ experience replay to avoid catastrophic forgetting in learning from this non-steady process in a continual manner. We detail challenges addressed while porting and scaling to Frontier exascale system.
comment: 12 pages, 9 figures, in 2025 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Milan, Italy, 2025
♻ ☆ Is Complex Query Answering Really Complex? ICML 2025
Complex query answering (CQA) on knowledge graphs (KGs) is gaining momentum as a challenging reasoning task. In this paper, we show that the current benchmarks for CQA might not be as complex as we think, as the way they are built distorts our perception of progress in this field. For example, we find that in these benchmarks, most queries (up to 98% for some query types) can be reduced to simpler problems, e.g., link prediction, where only one link needs to be predicted. The performance of state-of-the-art CQA models decreases significantly when such models are evaluated on queries that cannot be reduced to easier types. Thus, we propose a set of more challenging benchmarks composed of queries that require models to reason over multiple hops and better reflect the construction of real-world KGs. In a systematic empirical investigation, the new benchmarks show that current methods leave much to be desired from current CQA methods.
comment: ICML 2025
♻ ☆ ForceGrip: Reference-Free Curriculum Learning for Realistic Grip Force Control in VR Hand Manipulation
Realistic Hand manipulation is a key component of immersive virtual reality (VR), yet existing methods often rely on kinematic approach or motion-capture datasets that omit crucial physical attributes such as contact forces and finger torques. Consequently, these approaches prioritize tight, one-size-fits-all grips rather than reflecting users' intended force levels. We present ForceGrip, a deep learning agent that synthesizes realistic hand manipulation motions, faithfully reflecting the user's grip force intention. Instead of mimicking predefined motion datasets, ForceGrip uses generated training scenarios-randomizing object shapes, wrist movements, and trigger input flows-to challenge the agent with a broad spectrum of physical interactions. To effectively learn from these complex tasks, we employ a three-phase curriculum learning framework comprising Finger Positioning, Intention Adaptation, and Dynamic Stabilization. This progressive strategy ensures stable hand-object contact, adaptive force control based on user inputs, and robust handling under dynamic conditions. Additionally, a proximity reward function enhances natural finger motions and accelerates training convergence. Quantitative and qualitative evaluations reveal ForceGrip's superior force controllability and plausibility compared to state-of-the-art methods. Demo videos are available as supplementary material and the code is provided at https://han-dongheun.github.io/ForceGrip.
comment: 11 pages, 11 figures. Accepted to SIGGRAPH Conference Papers '25. Project page: https://han-dongheun.github.io/ForceGrip
♻ ☆ EquiTabPFN: A Target-Permutation Equivariant Prior Fitted Networks
Recent foundational models for tabular data, such as TabPFN, excel at adapting to new tasks via in-context learning, but remain constrained to a fixed, pre-defined number of target dimensions-often necessitating costly ensembling strategies. We trace this constraint to a deeper architectural shortcoming: these models lack target equivariance, so that permuting target dimension orderings alters their predictions. This deficiency gives rise to an irreducible "equivariance gap", an error term that introduces instability in predictions. We eliminate this gap by designing a fully target-equivariant architecture-ensuring permutation invariance via equivariant encoders, decoders, and a bi-attention mechanism. Empirical evaluation on standard classification benchmarks shows that, on datasets with more classes than those seen during pre-training, our model matches or surpasses existing methods while incurring lower computational overhead.
♻ ☆ Significativity Indices for Agreement Values
Agreement measures, such as Cohen's kappa or intraclass correlation, gauge the matching between two or more classifiers. They are used in a wide range of contexts from medicine, where they evaluate the effectiveness of medical treatments and clinical trials, to artificial intelligence, where they can quantify the approximation due to the reduction of a classifier. The consistency of different classifiers to a golden standard can be compared simply by using the order induced by their agreement measure with respect to the golden standard itself. Nevertheless, labelling an approach as good or bad exclusively by using the value of an agreement measure requires a scale or a significativity index. Some quality scales have been proposed in the literature for Cohen's kappa, but they are mainly na\"ive, and their boundaries are arbitrary. This work proposes a general approach to evaluate the significativity of any agreement value between two classifiers and introduces two significativity indices: one dealing with finite data sets, the other one handling classification probability distributions. Moreover, this manuscript addresses the computational challenges of evaluating such indices and proposes some efficient algorithms for their evaluation.
comment: 27 pages, 6 figures
♻ ☆ Attention-based clustering
Transformers have emerged as a powerful neural network architecture capable of tackling a wide range of learning tasks. In this work, we provide a theoretical analysis of their ability to automatically extract structure from data in an unsupervised setting. In particular, we demonstrate their suitability for clustering when the input data is generated from a Gaussian mixture model. To this end, we study a simplified two-head attention layer and define a population risk whose minimization with unlabeled data drives the head parameters to align with the true mixture centroids. This phenomenon highlights the ability of attention-based layers to capture underlying distributional structure. We further examine an attention layer with key, query, and value matrices fixed to the identity, and show that, even without any trainable parameters, it can perform in-context quantization, revealing the surprising capacity of transformer-based methods to adapt dynamically to input-specific distributions.
♻ ☆ XGeM: A Multi-Prompt Foundation Model for Multimodal Medical Data Generation
The adoption of Artificial Intelligence in medical imaging holds great promise, yet it remains hindered by challenges such as data scarcity, privacy concerns, and the need for robust multimodal integration. While recent advances in generative modeling have enabled high-quality synthetic data generation, existing approaches are often limited to unimodal, unidirectional synthesis and therefore lack the ability to jointly synthesize multiple modalities while preserving clinical consistency. To address this challenge, we introduce XGeM, a 6.77-billion-parameter multimodal generative model designed to support flexible, any-to-any synthesis between medical data modalities. XGeM constructs a shared latent space via contrastive learning and introduces a novel Multi-Prompt Training strategy, enabling conditioning on arbitrary subsets of input modalities. This design allows the model to adapt to heterogeneous clinical inputs and generate multiple outputs jointly, preserving both semantic and structural coherence. We extensively validate XGeM: first we benchmark it against five competitors on the MIMIC-CXR dataset, a state-of-the-art dataset for multi-view Chest X-ray and radiological report generation. Secondly, we perform a Visual Turing Test with expert radiologists to assess the realism and clinical relevance of the generated data, ensuring alignment with real-world scenarios. Finally, we show how XGeM can support key medical data challenges such as anonymization, class imbalance, and data scarcity, underscoring its utility as a foundation model for medical data synthesis. Project page is at https://cosbidev.github.io/XGeM/.
♻ ☆ MInCo: Mitigating Information Conflicts in Distracted Visual Model-based Reinforcement Learning
Existing visual model-based reinforcement learning (MBRL) algorithms with observation reconstruction often suffer from information conflicts, making it difficult to learn compact representations and hence result in less robust policies, especially in the presence of task-irrelevant visual distractions. In this paper, we first reveal that the information conflicts in current visual MBRL algorithms stem from visual representation learning and latent dynamics modeling with an information-theoretic perspective. Based on this finding, we present a new algorithm to resolve information conflicts for visual MBRL, named MInCo, which mitigates information conflicts by leveraging negative-free contrastive learning, aiding in learning invariant representation and robust policies despite noisy observations. To prevent the dominance of visual representation learning, we introduce time-varying reweighting to bias the learning towards dynamics modeling as training proceeds. We evaluate our method on several robotic control tasks with dynamic background distractions. Our experiments demonstrate that MInCo learns invariant representations against background noise and consistently outperforms current state-of-the-art visual MBRL methods. Code is available at https://github.com/ShiguangSun/minco.
♻ ☆ Gateformer: Advancing Multivariate Time Series Forecasting through Temporal and Variate-Wise Attention with Gated Representations ICML
There has been a recent surge of interest in time series modeling using the Transformer architecture. However, forecasting multivariate time series with Transformer presents a unique challenge as it requires modeling both temporal (cross-time) and variate (cross-variate) dependencies. While Transformer-based models have gained popularity for their flexibility in capturing both sequential and cross-variate relationships, it is unclear how to best integrate these two sources of information in the context of the Transformer architecture while optimizing for both performance and efficiency. We re-purpose the Transformer architecture to effectively model both cross-time and cross-variate dependencies. Our approach begins by embedding each variate independently into a variate-wise representation that captures its cross-time dynamics, and then models cross-variate dependencies through attention mechanisms on these learned embeddings. Gating operations in both cross-time and cross-variate modeling phases regulate information flow, allowing the model to focus on the most relevant features for accurate predictions. Our method achieves state-of-the-art performance across 13 real-world datasets and can be seamlessly integrated into other Transformer-based and LLM-based forecasters, delivering performance improvements up to 20.7\% over original models. Code is available at this repository: https://github.com/nyuolab/Gateformer.
comment: Accepted at ICML Workshop on Foundation Models for Structured Data
♻ ☆ Good Representation, Better Explanation: Role of Convolutional Neural Networks in Transformer-Based Remote Sensing Image Captioning
Remote Sensing Image Captioning (RSIC) is the process of generating meaningful descriptions from remote sensing images. Recently, it has gained significant attention, with encoder-decoder models serving as the backbone for generating meaningful captions. The encoder extracts essential visual features from the input image, transforming them into a compact representation, while the decoder utilizes this representation to generate coherent textual descriptions. Recently, transformer-based models have gained significant popularity due to their ability to capture long-range dependencies and contextual information. The decoder has been well explored for text generation, whereas the encoder remains relatively unexplored. However, optimizing the encoder is crucial as it directly influences the richness of extracted features, which in turn affects the quality of generated captions. To address this gap, we systematically evaluate twelve different convolutional neural network (CNN) architectures within a transformer-based encoder framework to assess their effectiveness in RSIC. The evaluation consists of two stages: first, a numerical analysis categorizes CNNs into different clusters, based on their performance. The best performing CNNs are then subjected to human evaluation from a human-centric perspective by a human annotator. Additionally, we analyze the impact of different search strategies, namely greedy search and beam search, to ensure the best caption. The results highlight the critical role of encoder selection in improving captioning performance, demonstrating that specific CNN architectures significantly enhance the quality of generated descriptions for remote sensing images. By providing a detailed comparison of multiple encoders, this study offers valuable insights to guide advances in transformer-based image captioning models.
♻ ☆ Exploring the Integration of Large Language Models in Industrial Test Maintenance Processes
Much of the cost and effort required during the software testing process is invested in performing test maintenance - the addition, removal, or modification of test cases to keep the test suite in sync with the system-under-test or to otherwise improve its quality. Tool support could reduce the cost - and improve the quality - of test maintenance by automating aspects of the process or by providing guidance and support to developers. In this study, we explore the capabilities and applications of large language models (LLMs) - complex machine learning models adapted to textual analysis - to support test maintenance. We conducted a case study at Ericsson AB where we explore the triggers that indicate the need for test maintenance, the actions that LLMs can take, and the considerations that must be made when deploying LLMs in an industrial setting. We also propose and demonstrate a multi-agent architecture that can predict which tests require maintenance following a change to the source code. Collectively, these contributions advance our theoretical and practical understanding of how LLMs can be deployed to benefit industrial test maintenance processes.
comment: Under submission to Journal of Systems and Software
♻ ☆ Text-Aware Image Restoration with Diffusion Models
Image restoration aims to recover degraded images. However, existing diffusion-based restoration methods, despite great success in natural image restoration, often struggle to faithfully reconstruct textual regions in degraded images. Those methods frequently generate plausible but incorrect text-like patterns, a phenomenon we refer to as text-image hallucination. In this paper, we introduce Text-Aware Image Restoration (TAIR), a novel restoration task that requires the simultaneous recovery of visual contents and textual fidelity. To tackle this task, we present SA-Text, a large-scale benchmark of 100K high-quality scene images densely annotated with diverse and complex text instances. Furthermore, we propose a multi-task diffusion framework, called TeReDiff, that integrates internal features from diffusion models into a text-spotting module, enabling both components to benefit from joint training. This allows for the extraction of rich text representations, which are utilized as prompts in subsequent denoising steps. Extensive experiments demonstrate that our approach consistently outperforms state-of-the-art restoration methods, achieving significant gains in text recognition accuracy. See our project page: https://cvlab-kaist.github.io/TAIR/
comment: Project page: https://cvlab-kaist.github.io/TAIR/
♻ ☆ Privacy-Preserving Operating Room Workflow Analysis using Digital Twins
The operating room (OR) is a complex environment where optimizing workflows is critical to reduce costs and improve patient outcomes. While computer vision approaches for automatic recognition of perioperative events can identify bottlenecks for OR optimization, privacy concerns limit the use of OR videos for automated event detection. We propose a two-stage pipeline for privacy-preserving OR video analysis and event detection. First, we leverage vision foundation models for depth estimation and semantic segmentation to generate de-identified Digital Twins (DT) of the OR from conventional RGB videos. Second, we employ the SafeOR model, a fused two-stream approach that processes segmentation masks and depth maps for OR event detection. Evaluation on an internal dataset of 38 simulated surgical trials with five event classes shows that our DT-based approach achieves performance on par with -- and sometimes better than -- raw RGB video-based models for OR event detection. Digital Twins enable privacy-preserving OR workflow analysis, facilitating the sharing of de-identified data across institutions and potentially enhancing model generalizability by mitigating domain-specific appearance differences.
♻ ☆ UniNet: A Unified Multi-granular Traffic Modeling Framework for Network Security
As modern networks grow increasingly complex--driven by diverse devices, encrypted protocols, and evolving threats--network traffic analysis has become critically important. Existing machine learning models often rely only on a single representation of packets or flows, limiting their ability to capture the contextual relationships essential for robust analysis. Furthermore, task-specific architectures for supervised, semi-supervised, and unsupervised learning lead to inefficiencies in adapting to varying data formats and security tasks. To address these gaps, we propose UniNet, a unified framework that introduces a novel multi-granular traffic representation (T-Matrix), integrating session, flow, and packet-level features to provide comprehensive contextual information. Combined with T-Attent, a lightweight attention-based model, UniNet efficiently learns latent embeddings for diverse security tasks. Extensive evaluations across four key network security and privacy problems--anomaly detection, attack classification, IoT device identification, and encrypted website fingerprinting--demonstrate UniNet's significant performance gain over state-of-the-art methods, achieving higher accuracy, lower false positive rates, and improved scalability. By addressing the limitations of single-level models and unifying traffic analysis paradigms, UniNet sets a new benchmark for modern network security.
comment: 16 pages,6 figures, 12 tables; accepted for publication in IEEE Transactions on Cognitive Communications and Networking, 2025
♻ ☆ Skywork-Reward-V2: Scaling Preference Data Curation via Human-AI Synergy
Despite the critical role of reward models (RMs) in reinforcement learning from human feedback (RLHF), current state-of-the-art open RMs perform poorly on most existing evaluation benchmarks, failing to capture the spectrum of nuanced and sophisticated human preferences. Even approaches that incorporate advanced training techniques have not yielded meaningful performance improvements. We hypothesize that this brittleness stems primarily from limitations in preference datasets, which are often narrowly scoped, synthetically labeled, or lack rigorous quality control. To address these challenges, we present a large-scale preference dataset comprising 40 million preference pairs, named SynPref-40M. To enable data curation at scale, we design a human-AI synergistic two-stage pipeline that leverages the complementary strengths of human annotation quality and AI scalability. In this pipeline, humans provide verified annotations, while large language models perform automatic curation based on human guidance. Training on this preference mixture, we introduce Skywork-Reward-V2, a suite of eight reward models ranging from 0.6B to 8B parameters, trained on a carefully curated subset of 26 million preference pairs from SynPref-40M. We demonstrate that Skywork-Reward-V2 is versatile across a wide range of capabilities, including alignment with human preferences, objective correctness, safety, resistance to stylistic biases, and best-of-N scaling, achieving state-of-the-art performance across seven major reward model benchmarks. Ablation studies confirm that the effectiveness of our approach stems not only from data scale but also from high-quality curation. The Skywork-Reward-V2 series represents substantial progress in open reward models, highlighting the untapped potential of existing preference datasets and demonstrating how human-AI curation synergy can unlock significantly higher data quality.
♻ ☆ SecAlign: Defending Against Prompt Injection with Preference Optimization
Large language models (LLMs) are becoming increasingly prevalent in modern software systems, interfacing between the user and the Internet to assist with tasks that require advanced language understanding. To accomplish these tasks, the LLM often uses external data sources such as user documents, web retrieval, results from API calls, etc. This opens up new avenues for attackers to manipulate the LLM via prompt injection. Adversarial prompts can be injected into external data sources to override the system's intended instruction and instead execute a malicious instruction. To mitigate this vulnerability, we propose a new defense called SecAlign based on the technique of preference optimization. Our defense first constructs a preference dataset with prompt-injected inputs, secure outputs (ones that respond to the legitimate instruction), and insecure outputs (ones that respond to the injection). We then perform preference optimization on this dataset to teach the LLM to prefer the secure output over the insecure one. This provides the first known method that reduces the success rates of various prompt injections to <10%, even against attacks much more sophisticated than ones seen during training. This indicates our defense generalizes well against unknown and yet-to-come attacks. Also, SecAlign models are still practical with similar utility to the one before defensive training in our evaluations. Our code is at https://github.com/facebookresearch/SecAlign
comment: ACM CCS 2025. Key words: prompt injection defense, LLM security, LLM-integrated applications
♻ ☆ High-Performance Reinforcement Learning on Spot: Optimizing Simulation Parameters with Distributional Measures
This work presents an overview of the technical details behind a high performance reinforcement learning policy deployment with the Spot RL Researcher Development Kit for low level motor access on Boston Dynamics Spot. This represents the first public demonstration of an end to end end reinforcement learning policy deployed on Spot hardware with training code publicly available through Nvidia IsaacLab and deployment code available through Boston Dynamics. We utilize Wasserstein Distance and Maximum Mean Discrepancy to quantify the distributional dissimilarity of data collected on hardware and in simulation to measure our sim2real gap. We use these measures as a scoring function for the Covariance Matrix Adaptation Evolution Strategy to optimize simulated parameters that are unknown or difficult to measure from Spot. Our procedure for modeling and training produces high quality reinforcement learning policies capable of multiple gaits, including a flight phase. We deploy policies capable of over 5.2ms locomotion, more than triple Spots default controller maximum speed, robustness to slippery surfaces, disturbance rejection, and overall agility previously unseen on Spot. We detail our method and release our code to support future work on Spot with the low level API.
♻ ☆ Aligning Frozen LLMs by Reinforcement Learning: An Iterative Reweight-then-Optimize Approach
Aligning large language models (LLMs) with human preferences usually requires fine-tuning methods such as RLHF and DPO. These methods directly optimize the model parameters, so they cannot be used in test-time to improve model performance, nor are they applicable when the model weights are not accessible. In contrast, test-time methods sidestep weight updates by leveraging reward functions to guide and improve output quality. However, they incur high inference costs, and their one-shot guidance is often based on imperfect reward or value functions, leading to suboptimal outputs. In this work, we present a method named Iterative Reweight-then-Optimize (IRO), a reinforcement learning (RL) framework that performs RL-style alignment of the (frozen) base model without touching its parameters. During training, each iteration (i) samples candidates from the base model, (ii) resamples using current value functions, and (iii) trains a new lightweight value function that guides the next decoding pass. At test time, the value functions are used to guide the base model generation via a search-based optimization process. Notably, users can apply IRO to align a model on their own dataset, similar to OpenAI's reinforcement fine-tuning (RFT), but without requiring access to the model weights.
♻ ☆ Generalization vs. Specialization under Concept Shift
Machine learning models are often brittle under distribution shift, i.e., when data distributions at test time differ from those during training. Understanding this failure mode is central to identifying and mitigating safety risks of mass adoption of machine learning. Here we analyze ridge regression under concept shift -- a form of distribution shift in which the input-label relationship changes at test time. We derive an exact expression for prediction risk in the thermodynamic limit. Our results reveal nontrivial effects of concept shift on generalization performance, including a phase transition between weak and strong concept shift regimes and nonmonotonic data dependence of test performance even when double descent is absent. Our theoretical results are in good agreement with experiments based on transformers pretrained to solve linear regression; under concept shift, too long context length can be detrimental to generalization performance of next token prediction. Finally, our experiments on MNIST and FashionMNIST suggest that this intriguing behavior is present also in classification problems.
comment: 8 pages, 3 figures
♻ ☆ Distributional Soft Actor-Critic with Diffusion Policy
Reinforcement learning has been proven to be highly effective in handling complex control tasks. Traditional methods typically use unimodal distributions, such as Gaussian distributions, to model the output of value distributions. However, unimodal distribution often and easily causes bias in value function estimation, leading to poor algorithm performance. This paper proposes a distributional reinforcement learning algorithm called DSAC-D (Distributed Soft Actor Critic with Diffusion Policy) to address the challenges of estimating bias in value functions and obtaining multimodal policy representations. A multimodal distributional policy iteration framework that can converge to the optimal policy was established by introducing policy entropy and value distribution function. A diffusion value network that can accurately characterize the distribution of multi peaks was constructed by generating a set of reward samples through reverse sampling using a diffusion model. Based on this, a distributional reinforcement learning algorithm with dual diffusion of the value network and the policy network was derived. MuJoCo testing tasks demonstrate that the proposed algorithm not only learns multimodal policy, but also achieves state-of-the-art (SOTA) performance in all 9 control tasks, with significant suppression of estimation bias and total average return improvement of over 10% compared to existing mainstream algorithms. The results of real vehicle testing show that DSAC-D can accurately characterize the multimodal distribution of different driving styles, and the diffusion policy network can characterize multimodal trajectories.
comment: Accepted IEEE ITSC 2025
♻ ☆ Neural CRNs: A Natural Implementation of Learning in Chemical Reaction Networks
This work introduces Neural CRNs, a general-purpose chemical neural network framework that embeds learning directly into mass-action chemical reaction systems. Unlike prior approaches that chemically implement and compose discrete neural computations, Neural CRNs adopt an analog computing approach, where both forward and backward passes of learning are implemented as continuous-time evolutions of molecular concentrations. Such an analog formulation naturally aligns with the analog nature of chemical kinetics, yielding concise circuits and practicable reactions. We demonstrate this efficiency by constructing a streamlined supervised learning procedure executable in just two sequential stages. We then implement several learning circuits to demonstrate the framework's linear and nonlinear modeling capabilities and to validate its learning procedure. These circuits are implemented entirely using unimolecular and bimolecular reactions, avoiding the complexity of higher-order chemistries. In summary, Neural CRNs offer a compact, scalable, and autonomous framework for biochemical learning, opening new avenues for adaptive computing in synthetic biology, bioengineering, and biomedicine.
♻ ☆ Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient ACL2025
Recent Large-Language Models (LLMs) pruning methods typically operate at the post-training phase without the expensive weight finetuning, however, their pruning criteria often rely on heuristically hand-crafted metrics, potentially leading to suboptimal performance. We instead propose a novel optimization-based structural pruning that learns the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model. To preserve efficiency, our method eliminates the back-propagation through the LLM per se during optimization, requiring only the forward pass of the LLM. We achieve this by learning an underlying Bernoulli distribution to sample binary pruning masks, where we decouple the Bernoulli parameters from LLM loss, facilitating efficient optimization via policy gradient estimator without back-propagation. Thus, our method can 1) support global and heterogeneous pruning (i.e., automatically determine different redundancy for different layers), and 2) optionally initialize with a metric-based method (for our Bernoulli distributions). Extensive experiments conducted on LLaMA, LLaMA-2, LLaMA-3, Vicuna, and Mistral models using the C4 and WikiText2 datasets demonstrate the promising performance of our method in efficiency and effectiveness. Code is available at https://github.com/ethanygao/backprop-free_LLM_pruning.
comment: ACL2025 Main Accepted
♻ ☆ Kernel Density Bayesian Inverse Reinforcement Learning
Inverse reinforcement learning (IRL) methods infer an agent's reward function using demonstrations of expert behavior. A Bayesian IRL approach models a distribution over candidate reward functions, capturing a degree of uncertainty in the inferred reward function. This is critical in some applications, such as those involving clinical data. Typically, Bayesian IRL algorithms require large demonstration datasets, which may not be available in practice. In this work, we incorporate existing domain-specific data to achieve better posterior concentration rates. We study a common setting in clinical and biological applications where we have access to expert demonstrations and known reward functions for a set of training tasks. Our aim is to learn the reward function of a new test task given limited expert demonstrations. Existing Bayesian IRL methods impose restrictions on the form of input data, thus limiting the incorporation of training task data. To better leverage information from training tasks, we introduce kernel density Bayesian inverse reinforcement learning (KD-BIRL). Our approach employs a conditional kernel density estimator, which uses the known reward functions of the training tasks to improve the likelihood estimation across a range of reward functions and demonstration samples. Our empirical results highlight KD-BIRL's faster concentration rate in comparison to baselines, particularly in low test task expert demonstration data regimes. Additionally, we are the first to provide theoretical guarantees of posterior concentration for a Bayesian IRL algorithm. Taken together, this work introduces a principled and theoretically grounded framework that enables Bayesian IRL to be applied across a variety of domains.
♻ ☆ REINFORCE++: An Efficient RLHF Algorithm with Robustness to Both Prompt and Reward Models
Large Language Models (LLMs) fine-tuned via Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) significantly improve the alignment of human-AI values and further raise the upper bound of AI capabilities, particularly in reasoning-intensive, long-context Chain-of-Thought (long-CoT) tasks. However, existing RLHF (or RLVR) frameworks commonly face challenges such as inference bottlenecks and complexity barriers, restricting their accessibility for newcomers. To bridge this gap, we introduce \textbf{OpenRLHF}, a user-friendly, scalable, and easy-to-learn open-source RLHF framework built upon Ray, vLLM, DeepSpeed, and HuggingFace Transformers, featuring a simplified design, clear code structure, and comprehensive documentation to facilitate entry for researchers and practitioners. Experimental results show that OpenRLHF achieves superior training efficiency with speedups ranging from 1.22x to 1.68x across different model sizes compared to state-of-the-art frameworks, while requiring significantly fewer lines of code for implementation. OpenRLHF is publicly available at https://github.com/OpenRLHF/OpenRLHF, and has already been adopted by leading institutions to accelerate RLHF research and learning.
comment: fix typo
♻ ☆ Implicit Counterfactual Data Augmentation for Robust Learning
Machine learning models are prone to capturing the spurious correlations between non-causal attributes and classes, with counterfactual data augmentation being a promising direction for breaking these spurious associations. However, generating counterfactual data explicitly poses a challenge, and incorporating augmented data into the training process decreases training efficiency. This study proposes an Implicit Counterfactual Data Augmentation (ICDA) method to remove spurious correlations and make stable predictions. Specifically, first, a novel sample-wise augmentation strategy is developed that generates semantically and counterfactually meaningful deep features with distinct augmentation strength for each sample. Second, we derive an easy-to-compute surrogate loss on the augmented feature set when the number of augmented samples becomes infinite. Third, two concrete schemes are proposed, including direct quantification and meta-learning, to derive the key parameters for the robust loss. In addition, ICDA is explained from a regularization perspective, revealing its capacity to improve intra-class compactness and augment margins at both class and sample levels. Extensive experiments have been conducted across various biased learning scenarios covering both image and text datasets, demonstrating that ICDA consistently enhances the generalization and robustness performance of popular networks.
comment: 46 pages, 12 figures
♻ ☆ Optimal strategies to perform multilingual analysis of social content for a novel dataset in the tourism domain
The rising influence of social media platforms in various domains, including tourism, has highlighted the growing need for efficient and automated Natural Language Processing (NLP) strategies to take advantage of this valuable resource. However, the transformation of multilingual, unstructured, and informal texts into structured knowledge still poses significant challenges, most notably the never-ending requirement for manually annotated data to train deep learning classifiers. In this work, we study different NLP techniques to establish the best ones to obtain competitive performances while keeping the need for training annotated data to a minimum. To do so, we built the first publicly available multilingual dataset (French, English, and Spanish) for the tourism domain, composed of tourism-related tweets. The dataset includes multilayered, manually revised annotations for Named Entity Recognition (NER) for Locations and Fine-grained Thematic Concepts Extraction mapped to the Thesaurus of Tourism and Leisure Activities of the World Tourism Organization, as well as for Sentiment Analysis at the tweet level. Extensive experimentation comparing various few-shot and fine-tuning techniques with modern language models demonstrate that modern few-shot techniques allow us to obtain competitive results for all three tasks with very little annotation data: 5 tweets per label (15 in total) for Sentiment Analysis, 30 tweets for Named Entity Recognition of Locations and 1K tweets annotated with fine-grained thematic concepts, a highly fine-grained sequence labeling task based on an inventory of 315 classes. We believe that our results, grounded in a novel dataset, pave the way for applying NLP to new domain-specific applications, reducing the need for manual annotations and circumventing the complexities of rule-based, ad-hoc solutions.
♻ ☆ Causal Representation Learning with Generative Artificial Intelligence: Application to Texts as Treatments
In this paper, we demonstrate how to enhance the validity of causal inference with unstructured high-dimensional treatments like texts, by leveraging the power of generative Artificial Intelligence (GenAI). Specifically, we propose to use a deep generative model such as large language models (LLMs) to efficiently generate treatments and use their internal representation for subsequent causal effect estimation. We show that the knowledge of this true internal representation helps disentangle the treatment features of interest, such as specific sentiments and certain topics, from other possibly unknown confounding features. Unlike existing methods, the proposed GenAI-Powered Inference (GPI) methodology eliminates the need to learn causal representation from the data, and hence produces more accurate and efficient estimates. We formally establish the conditions required for the nonparametric identification of the average treatment effect, propose an estimation strategy that avoids the violation of the overlap assumption, and derive the asymptotic properties of the proposed estimator through the application of double machine learning. Finally, using an instrumental variables approach, we extend the proposed methodology to the settings in which the treatment feature is based on human perception. The proposed GPI methodology is also applicable to text reuse where an LLM is used to regenerate existing texts. We conduct simulation and empirical studies, using the generated text data from an open-source LLM, Llama 3, to illustrate the advantages of our estimator over state-of-the-art causal representation learning algorithms.
♻ ☆ Benchmarking Generalizable Bimanual Manipulation: RoboTwin Dual-Arm Collaboration Challenge at CVPR 2025 MEIS Workshop
Embodied Artificial Intelligence (Embodied AI) is an emerging frontier in robotics, driven by the need for autonomous systems that can perceive, reason, and act in complex physical environments. While single-arm systems have shown strong task performance, collaborative dual-arm systems are essential for handling more intricate tasks involving rigid, deformable, and tactile-sensitive objects. To advance this goal, we launched the RoboTwin Dual-Arm Collaboration Challenge at the 2nd MEIS Workshop, CVPR 2025. Built on the RoboTwin Simulation platform (1.0 and 2.0) and the AgileX COBOT-Magic Robot platform, the competition consisted of three stages: Simulation Round 1, Simulation Round 2, and a final Real-World Round. Participants totally tackled 17 dual-arm manipulation tasks, covering rigid, deformable, and tactile-based scenarios. The challenge attracted 64 global teams and over 400 participants, producing top-performing solutions like SEM and AnchorDP3 and generating valuable insights into generalizable bimanual policy learning. This report outlines the competition setup, task design, evaluation methodology, key findings and future direction, aiming to support future research on robust and generalizable bimanual manipulation policies. The Challenge Webpage is available at https://robotwin-benchmark.github.io/cvpr-2025-challenge/.
comment: Challenge Webpage: https://robotwin-benchmark.github.io/cvpr-2025-challenge/
♻ ☆ Explainable AI for Comprehensive Risk Assessment for Financial Reports: A Lightweight Hierarchical Transformer Network Approach
Every publicly traded U.S. company files an annual 10-K report containing critical insights into financial health and risk. We propose Tiny eXplainable Risk Assessor (TinyXRA), a lightweight and explainable transformer-based model that automatically assesses company risk from these reports. Unlike prior work that relies solely on the standard deviation of excess returns (adjusted for the Fama-French model), which indiscriminately penalizes both upside and downside risk, TinyXRA incorporates skewness, kurtosis, and the Sortino ratio for more comprehensive risk assessment. We leverage TinyBERT as our encoder to efficiently process lengthy financial documents, coupled with a novel dynamic, attention-based word cloud mechanism that provides intuitive risk visualization while filtering irrelevant terms. This lightweight design ensures scalable deployment across diverse computing environments with real-time processing capabilities for thousands of financial documents which is essential for production systems with constrained computational resources. We employ triplet loss for risk quartile classification, improving over pairwise loss approaches in existing literature by capturing both the direction and magnitude of risk differences. Our TinyXRA achieves state-of-the-art predictive accuracy across seven test years on a dataset spanning 2013-2024, while providing transparent and interpretable risk assessments. We conduct comprehensive ablation studies to evaluate our contributions and assess model explanations both quantitatively by systematically removing highly attended words and sentences, and qualitatively by examining explanation coherence. The paper concludes with findings, practical implications, limitations, and future research directions. Our code is available at https://github.com/Chen-XueWen/TinyXRA.
♻ ☆ Neural Graph Matching Improves Retrieval Augmented Generation in Molecular Machine Learning ICML 2025
Molecular machine learning has gained popularity with the advancements of geometric deep learning. In parallel, retrieval-augmented generation has become a principled approach commonly used with language models. However, the optimal integration of retrieval augmentation into molecular machine learning remains unclear. Graph neural networks stand to benefit from clever matching to understand the structural alignment of retrieved molecules to a query molecule. Neural graph matching offers a compelling solution by explicitly modeling node and edge affinities between two structural graphs while employing a noise-robust, end-to-end neural network to learn affinity metrics. We apply this approach to mass spectrum simulation and introduce MARASON, a novel model that incorporates neural graph matching to enhance a fragmentation-based neural network. Experimental results highlight the effectiveness of our design, with MARASON achieving 28% top-1 accuracy, a substantial improvement over the non-retrieval state-of-the-art accuracy of 19%. Moreover, MARASON outperforms both naive retrieval-augmented generation methods and traditional graph matching approaches. Code is publicly available at https://github.com/coleygroup/ms-pred
comment: ICML 2025
♻ ☆ Circuit-tuning: A Mechanistic Approach for Identifying Parameter Redundancy and Fine-tuning Neural Networks
The study of mechanistic interpretability aims to reverse-engineer a model to explain its behaviors. While recent studies have focused on the static mechanism of a certain behavior, the learning dynamics inside a model remain to be explored. In this work, we develop an interpretable fine-tuning method for analyzing the mechanism behind learning. We first introduce the concept of node-level intrinsic dimensionality to describe the learning process of a model in a computational graph. Based on our theory, we propose circuit-tuning, a two-stage algorithm that iteratively builds the minimal subgraph for a specific task and updates the key parameters in a heuristic way. Experimental results confirm the existence of the intrinsic dimensionality at the node level and demonstrate the effectiveness of our method for transparent and interpretable fine-tuning. We visualize and analyze the circuits before, during, and after fine-tuning, providing new insights into the self-organization mechanism of a neural network in the learning process.
♻ ☆ Adapter-Enhanced Semantic Prompting for Continual Learning
Continual learning (CL) enables models to adapt to evolving data streams. A major challenge of CL is catastrophic forgetting, where new knowledge will overwrite previously acquired knowledge. Traditional methods usually retain the past data for replay or add additional branches in the model to learn new knowledge, which has high memory requirements. In this paper, we propose a novel lightweight CL framework, Adapter-Enhanced Semantic Prompting (AESP), which integrates prompt tuning and adapter techniques. Specifically, we design semantic-guided prompts to enhance the generalization ability of visual features and utilize adapters to efficiently fuse the semantic information, aiming to learn more adaptive features for the continual learning task. Furthermore, to choose the right task prompt for feature adaptation, we have developed a novel matching mechanism for prompt selection. Extensive experiments on three CL datasets demonstrate that our approach achieves favorable performance across multiple metrics, showing its potential for advancing CL.
comment: This work has been submitted to the IJCV for possible publication
♻ ☆ EigenLoRAx: Recycling Adapters to Find Principal Subspaces for Resource-Efficient Adaptation and Inference
The rapid growth of large models has raised concerns about their environmental impact and equity in accessibility due to significant computational costs. Low-Rank Adapters (LoRA) offer a lightweight solution for finetuning large models, resulting in an abundance of publicly available adapters tailored to diverse domains. We ask: Can these pretrained adapters be leveraged to further streamline adaptation to new tasks while addressing these challenges? We introduce EigenLoRAx, a parameter-efficient finetuning method that recycles existing adapters to create a principal subspace aligned with their shared domain knowledge which can be further augmented with orthogonal basis vectors in low-resource scenarios. This enables rapid adaptation to new tasks by learning only lightweight coefficients on the principal components of the subspace-eliminating the need to finetune entire adapters. EigenLoRAx requires significantly fewer parameters and memory, improving efficiency for both training and inference. Our method demonstrates strong performance across diverse domains and tasks, offering a scalable for edge-based applications, personalization, and equitable deployment of large models in resource-constrained environments.
♻ ☆ Bi-modality medical images synthesis by a bi-directional discrete process matching method
Recently, medical image synthesis gains more and more popularity, along with the rapid development of generative models. Medical image synthesis aims to generate an unacquired image modality, often from other observed data modalities. Synthesized images can be used for clinical diagnostic assistance, data augmentation for model training and validation or image quality improving. In the meanwhile, the flow-based models are among the successful generative models for the ability of generating realistic and high-quality synthetic images. However, most flow-based models require to calculate flow ordinary different equation (ODE) evolution steps in synthesis process, for which the performances are significantly limited by heavy computation time due to a large number of time iterations. In this paper, we propose a novel flow-based model, namely bi-directional Discrete Process Matching (Bi-DPM) to accomplish the bi-modality image synthesis tasks. Different to other flow matching based models, we propose to utilize both forward and backward ODE flows and enhance the consistency on the intermediate images over a few discrete time steps, resulting in a synthesis process maintaining high-quality generations for both modalities under the guidance of paired data. Our experiments on three datasets of MRI T1/T2 and CT/MRI demonstrate that Bi-DPM outperforms other state-of-the-art flow-based methods for bi-modality image synthesis, delivering higher image quality with accurate anatomical regions.
Escaping Platos Cave: JAM for Aligning Independently Trained Vision and Language Models
Independently trained vision and language models inhabit disjoint representational spaces, shaped by their respective modalities, objectives, and architectures. Yet an emerging hypothesis - the Platonic Representation Hypothesis - suggests that such models may nonetheless converge toward a shared statistical model of reality. This compatibility, if it exists, raises a fundamental question: can we move beyond post-hoc statistical detection of alignment and explicitly optimize for it between such disjoint representations? We cast this Platonic alignment problem as a multi-objective optimization task - preserve each modality's native structure while aligning for mutual coherence. We introduce the Joint Autoencoder Modulator (JAM) framework that jointly trains modality-specific autoencoders on the latent representations of pre-trained single modality models, encouraging alignment through both reconstruction and cross-modal objectives. By analogy, this framework serves as a method to escape Plato's Cave, enabling the emergence of shared structure from disjoint inputs. We evaluate this framework across three critical design axes: (i) the alignment objective - comparing contrastive loss (Con), its hard-negative variant (NegCon), and our Spread loss, (ii) the layer depth at which alignment is most effective, and (iii) the impact of foundation model scale on representational convergence. Our findings show that our lightweight Pareto-efficient framework reliably induces alignment, even across frozen, independently trained representations, offering both theoretical insight and practical pathways for transforming generalist unimodal foundations into specialist multimodal models.
♻ ☆ Fast AI Model Splitting over Edge Networks
Split learning (SL) has emerged as a computationally efficient approach for artificial intelligence (AI) model training, which can alleviate device-side computational workloads. However, complex AI model architectures pose high computational complexity to obtain the optimal model splitting. In this paper, we represent an arbitrary AI model as a directed acyclic graph (DAG), and then reformulate the optimal model splitting problem as a minimum s-t cut search problem. To solve the problem, we propose a fast DAG-based model splitting algorithm, which restructures the DAG to enable the optimal model splitting identification via a maximum flow method. Theoretical analysis indicates that the proposed algorithm is optimal. Furthermore, considering AI models with block structures, we propose a block-wise model splitting algorithm to reduce computational complexity. The algorithm abstracts each block, i.e., a component consisting of multiple layers, into a single vertex, thereby obtaining the optimal model splitting via a simplified DAG. Extensive experimental results demonstrate that the proposed algorithms can determine the optimal model splitting within milliseconds, as well as reduce training delay by 24.62%-38.95% in dynamic edge networks as compared to the state-of-the-art benchmarks.
comment: 13 pages, 14 figures
♻ ☆ Privacy-Preserving Quantized Federated Learning with Diverse Precision
Federated learning (FL) has emerged as a promising paradigm for distributed machine learning, enabling collaborative training of a global model across multiple local devices without requiring them to share raw data. Despite its advancements, FL is limited by factors such as: (i) privacy risks arising from the unprotected transmission of local model updates to the fusion center (FC) and (ii) decreased learning utility caused by heterogeneity in model quantization resolution across participating devices. Prior work typically addresses only one of these challenges because maintaining learning utility under both privacy risks and quantization heterogeneity is a non-trivial task. In this paper, our aim is therefore to improve the learning utility of a privacy-preserving FL that allows clusters of devices with different quantization resolutions to participate in each FL round. Specifically, we introduce a novel stochastic quantizer (SQ) that is designed to simultaneously achieve differential privacy (DP) and minimum quantization error. Notably, the proposed SQ guarantees bounded distortion, unlike other DP approaches. To address quantization heterogeneity, we introduce a cluster size optimization technique combined with a linear fusion approach to enhance model aggregation accuracy. Numerical simulations validate the benefits of our approach in terms of privacy protection and learning utility compared to the conventional LaplaceSQ-FL algorithm.
♻ ☆ Where to find Grokking in LLM Pretraining? Monitor Memorization-to-Generalization without Test
Grokking, i.e., test performance keeps improving long after training loss converged, has been recently witnessed in neural network training, making the mechanism of generalization and other emerging capabilities such as reasoning mysterious. While prior studies usually train small models on a few toy or highly-specific tasks for thousands of epochs, we conduct the first study of grokking on checkpoints during one-pass pretraining of a 7B large language model (LLM), i.e., OLMoE. We compute the training loss and evaluate generalization on diverse benchmark tasks, including math reasoning, code generation, and commonsense/domain-specific knowledge retrieval tasks. Our study, for the first time, verifies that grokking still happens in the pretraining of large-scale foundation models, though different data may enter grokking stages asynchronously. We further demystify grokking's "emergence of generalization" by investigating LLM internal dynamics. Specifically, we find that training samples' pathways (i.e., expert choices across layers) evolve from random, instance-specific to more structured and shareable between samples. Also, the complexity of a sample's pathway reduces despite the converged loss. These indicate a memorization-to-generalization "knowledge digestion", providing a mechanistic explanation of delayed generalization. In the study, we develop two novel metrics to quantify pathway distance and the complexity of a single pathway. We show their ability to predict the generalization improvement on diverse downstream tasks. They are efficient, simple to compute and solely dependent on training data. Hence, they have practical value for pretraining, enabling us to monitor the generalization performance without finetuning and test. Theoretically, we show that more structured pathways reduce model complexity and improve the generalization bound.
comment: 10 pages, 8 figures
♻ ☆ Multivariate de Bruijn Graphs: A Symbolic Graph Framework for Time Series Forecasting
Time series forecasting remains a challenging task for foundation models due to temporal heterogeneity, high dimensionality, and the lack of inherent symbolic structure. In this work, we propose DRAGON (Discrete Representation and Augmented Graph encoding Over de BruijN Graphs), a novel encoder that introduces Multivariate de Bruijn Graphs (MdBGs) to bridge the gap between symbolic representations and neural modeling. DRAGON discretizes continuous input sequences and maps them onto a fixed graph structure, enabling dynamic context recovery via graph-based attention. Integrated as an auxiliary module within a dual-branch architecture, DRAGON augments conventional CNN-based encoders with symbolic, structure-aware representations. All code developed for this study is available at: https://github.com/KurbanIntelligenceLab/MultdBG-Time-Series-Library
Genomics 2
☆ Genetic Features for Drug Responses in Cancer -- Investigating an Ensemble-Feature-Selection Approach
Predicting drug responses using genetic and transcriptomic features is crucial for enhancing personalized medicine. In this study, we implemented an ensemble of machine learning algorithms to analyze the correlation between genetic and transcriptomic features of cancer cell lines and IC50 values, a reliable metric for drug efficacy. Our analysis involved a reduction of the feature set from an original pool of 38,977 features, demonstrating a strong linear relationship between genetic features and drug responses across various algorithms, including SVR, Linear Regression, and Ridge Regression. Notably, copy number variations (CNVs) emerged as more predictive than mutations, suggesting a significant reevaluation of biomarkers for drug response prediction. Through rigorous statistical methods, we identified a highly reduced set of 421 critical features. This set offers a novel perspective that contrasts with traditional cancer driver genes, underscoring the potential for these biomarkers in designing targeted therapies. Furthermore, our findings advocate for IC50 values as a predictable measurement of drug responses and underscore the need for more data that can represent the dimensionality of genomic data in drug response prediction. Future work will aim to expand the dataset and refine feature selection to enhance the generalizability of the predictive model in clinical settings.
comment: 14 pages, 8 figures
♻ ☆ MARS: Processing-In-Memory Acceleration of Raw Signal Genome Analysis Inside the Storage Subsystem
Raw signal genome analysis (RSGA) has emerged as a promising approach to enable real-time genome analysis by directly analyzing raw electrical signals. However, rapid advancements in sequencing technologies make it increasingly difficult for software-based RSGA to match the throughput of raw signal generation. This paper demonstrates that while hardware acceleration techniques can significantly accelerate RSGA, the high volume of genomic data shifts the performance and energy bottleneck from computation to I/O data movement. As sequencing throughput increases, I/O overhead becomes the main contributor to both runtime and energy consumption. Therefore, there is a need to design a high-performance, energy-efficient system for RSGA that can both alleviate the data movement bottleneck and provide large acceleration capabilities. We propose MARS, a storage-centric system that leverages the heterogeneous resources within modern storage systems (e.g., storage-internal DRAM, storage controller, flash chips) alongside their large storage capacity to tackle both data movement and computational overheads of RSGA in an area-efficient and low-cost manner. MARS accelerates RSGA through a novel hardware/software co-design approach. First, MARS modifies the RSGA pipeline via two filtering mechanisms and a quantization scheme, reducing hardware demands and optimizing for in-storage execution. Second, MARS accelerates the RSGA steps directly within the storage by leveraging both Processing-Near-Memory and Processing-Using-Memory paradigms. Third, MARS orchestrates the execution of all steps to fully exploit in-storage parallelism and minimize data movement. Our evaluation shows that MARS outperforms basecalling-based software and hardware-accelerated state-of-the-art read mapping pipelines by 93x and 40x, on average across different datasets, while reducing their energy consumption by 427x and 72x.
Quantitative Methods 4
☆ Leveraging Transformer Models to Capture Multi-Scale Dynamics in Biomolecules by nano-GPT
Long-term biomolecular dynamics are critical for understanding key evolutionary transformations in molecular systems. However, capturing these processes requires extended simulation timescales that often exceed the practical limits of conventional models. To address this, shorter simulations, initialized with diverse perturbations, are commonly used to sample phase space and explore a wide range of behaviors. Recent advances have leveraged language models to infer long-term behavior from short trajectories, but methods such as long short-term memory (LSTM) networks are constrained to low-dimensional reaction coordinates, limiting their applicability to complex systems. In this work, we present nano-GPT, a novel deep learning model inspired by the GPT architecture, specifically designed to capture long-term dynamics in molecular systems with fine-grained conformational states and complex transitions. The model employs a two-pass training mechanism that incrementally replaces molecular dynamics (MD) tokens with model-generated predictions, effectively mitigating accumulation errors inherent in the training window. We validate nano-GPT on three distinct systems: a four-state model potential, the alanine dipeptide, a well-studied simple molecule, and the Fip35 WW domain, a complex biomolecular system. Our results show that nano-GPT effectively captures long-timescale dynamics by learning high-order dependencies through attention mechanism, offering a novel perspective for interpreting biomolecular processes.
☆ A robust and versatile deep learning model for prediction of the arterial input function in dynamic small animal $\left[^{18}\text{F}\right]$FDG PET imaging
Dynamic positron emission tomography (PET) and kinetic modeling are pivotal in advancing tracer development research in small animal studies. Accurate kinetic modeling requires precise input function estimation, traditionally achieved via arterial blood sampling. However, arterial cannulation in small animals like mice, involves intricate, time-consuming, and terminal procedures, precluding longitudinal studies. This work proposes a non-invasive, fully convolutional deep learning-based approach (FC-DLIF) to predict input functions directly from PET imaging, potentially eliminating the need for blood sampling in dynamic small-animal PET. The proposed FC-DLIF model includes a spatial feature extractor acting on the volumetric time frames of the PET sequence, extracting spatial features. These are subsequently further processed in a temporal feature extractor that predicts the arterial input function. The proposed approach is trained and evaluated using images and arterial blood curves from [$^{18}$F]FDG data using cross validation. Further, the model applicability is evaluated on imaging data and arterial blood curves collected using two additional radiotracers ([$^{18}$F]FDOPA, and [$^{68}$Ga]PSMA). The model was further evaluated on data truncated and shifted in time, to simulate shorter, and shifted, PET scans. The proposed FC-DLIF model reliably predicts the arterial input function with respect to mean squared error and correlation. Furthermore, the FC-DLIF model is able to predict the arterial input function even from truncated and shifted samples. The model fails to predict the AIF from samples collected using different radiotracers, as these are not represented in the training data. Our deep learning-based input function offers a non-invasive and reliable alternative to arterial blood sampling, proving robust and flexible to temporal shifts and different scan durations.
comment: 22 pages, 12 figures
☆ The Basic Reproduction Number for Petri Net Models: A Next-Generation Matrix Approach
The basic reproduction number (R_0) is an epidemiological metric that represents the average number of new infections caused by a single infectious individual in a completely susceptible population. The methodology for calculating this metric is well-defined for numerous model types, including, most prominently, Ordinary Differential Equations (ODEs). The basic reproduction number is used in disease modeling to predict the potential of an outbreak and the transmissibility of a disease, as well as by governments to inform public health interventions and resource allocation for controlling the spread of diseases. A Petri net (PN) is a directed bipartite graph where places, transitions, arcs, and the firing of the arcs determine the dynamic behavior of the system. Petri net models have been an increasingly used tool within the epidemiology community. However, a generalized method for calculating R_0 directly from PN models has not been established. Thus, in this paper, we present a general method for calculating R_0 for Petri nets. Additionally, we show how a computational method implementing the next-generation algorithm in ODE models can also be applied to Petri net models. We also provide multiple examples of how to use this approach to calculate 0 for various SIR-type Petri net models.
comment: 35 pages, 9 figures, 44 equations, 7 examples
♻ ☆ Neural Graph Matching Improves Retrieval Augmented Generation in Molecular Machine Learning ICML 2025
Molecular machine learning has gained popularity with the advancements of geometric deep learning. In parallel, retrieval-augmented generation has become a principled approach commonly used with language models. However, the optimal integration of retrieval augmentation into molecular machine learning remains unclear. Graph neural networks stand to benefit from clever matching to understand the structural alignment of retrieved molecules to a query molecule. Neural graph matching offers a compelling solution by explicitly modeling node and edge affinities between two structural graphs while employing a noise-robust, end-to-end neural network to learn affinity metrics. We apply this approach to mass spectrum simulation and introduce MARASON, a novel model that incorporates neural graph matching to enhance a fragmentation-based neural network. Experimental results highlight the effectiveness of our design, with MARASON achieving 28% top-1 accuracy, a substantial improvement over the non-retrieval state-of-the-art accuracy of 19%. Moreover, MARASON outperforms both naive retrieval-augmented generation methods and traditional graph matching approaches. Code is publicly available at https://github.com/coleygroup/ms-pred
comment: ICML 2025
Computation and Language 89
☆ Test-Time Scaling with Reflective Generative Model
We introduce our first reflective generative model MetaStone-S1, which obtains OpenAI o3's performance via the self-supervised process reward model (SPRM). Through sharing the backbone network and using task-specific heads for next token prediction and process scoring respectively, SPRM successfully integrates the policy model and process reward model(PRM) into a unified interface without extra process annotation, reducing over 99% PRM parameters for efficient reasoning. Equipped with SPRM, MetaStone-S1 is naturally suitable for test time scaling (TTS), and we provide three reasoning effort modes (low, medium, and high), based on the controllable thinking length. Moreover, we empirically establish a scaling law that reveals the relationship between total thinking computation and TTS performance. Experiments demonstrate that our MetaStone-S1 achieves comparable performance to OpenAI-o3-mini's series with only 32B parameter size. To support the research community, we have open-sourced MetaStone-S1 at https://github.com/MetaStone-AI/MetaStone-S1.
☆ The Thin Line Between Comprehension and Persuasion in LLMs
Large language models (LLMs) are excellent at maintaining high-level, convincing dialogues. They are being fast deployed as chatbots and evaluators in sensitive areas, such as peer review and mental health applications. This, along with the disparate accounts on their reasoning capabilities, calls for a closer examination of LLMs and their comprehension of dialogue. In this work we begin by evaluating LLMs' ability to maintain a debate--one of the purest yet most complex forms of human communication. Then we measure how this capability relates to their understanding of what is being talked about, namely, their comprehension of dialogical structures and the pragmatic context. We find that LLMs are capable of maintaining coherent, persuasive debates, often swaying the beliefs of participants and audiences alike. We also note that awareness or suspicion of AI involvement encourage people to be more critical of the arguments made. When polling LLMs on their comprehension of deeper structures of dialogue, however, they cannot demonstrate said understanding. Our findings tie the shortcomings of LLMs-as-evaluators to their (in)ability to understand the context. More broadly, for the field of argumentation theory we posit that, if an agent can convincingly maintain a dialogue, it is not necessary for it to know what it is talking about. Hence, the modelling of pragmatic context and coherence are secondary to effectiveness.
☆ Adaptability of ASR Models on Low-Resource Language: A Comparative Study of Whisper and Wav2Vec-BERT on Bangla
In recent years, neural models trained on large multilingual text and speech datasets have shown great potential for supporting low-resource languages. This study investigates the performances of two state-of-the-art Automatic Speech Recognition (ASR) models, OpenAI's Whisper (Small & Large-V2) and Facebook's Wav2Vec-BERT on Bangla, a low-resource language. We have conducted experiments using two publicly available datasets: Mozilla Common Voice-17 and OpenSLR to evaluate model performances. Through systematic fine-tuning and hyperparameter optimization, including learning rate, epochs, and model checkpoint selection, we have compared the models based on Word Error Rate (WER), Character Error Rate (CER), Training Time, and Computational Efficiency. The Wav2Vec-BERT model outperformed Whisper across all key evaluation metrics, demonstrated superior performance while requiring fewer computational resources, and offered valuable insights to develop robust speech recognition systems in low-resource linguistic settings.
☆ Decision-oriented Text Evaluation
Natural language generation (NLG) is increasingly deployed in high-stakes domains, yet common intrinsic evaluation methods, such as n-gram overlap or sentence plausibility, weakly correlate with actual decision-making efficacy. We propose a decision-oriented framework for evaluating generated text by directly measuring its influence on human and large language model (LLM) decision outcomes. Using market digest texts--including objective morning summaries and subjective closing-bell analyses--as test cases, we assess decision quality based on the financial performance of trades executed by human investors and autonomous LLM agents informed exclusively by these texts. Our findings reveal that neither humans nor LLM agents consistently surpass random performance when relying solely on summaries. However, richer analytical commentaries enable collaborative human-LLM teams to outperform individual human or agent baselines significantly. Our approach underscores the importance of evaluating generated text by its ability to facilitate synergistic decision-making between humans and LLMs, highlighting critical limitations of traditional intrinsic metrics.
☆ NaturalThoughts: Selecting and Distilling Reasoning Traces for General Reasoning Tasks
Recent work has shown that distilling reasoning traces from a larger teacher model via supervised finetuning outperforms reinforcement learning with the smaller student model alone (Guo et al. 2025). However, there has not been a systematic study of what kind of reasoning demonstrations from the teacher are most effective in improving the student model's reasoning capabilities. In this work we curate high-quality "NaturalThoughts" by selecting reasoning traces from a strong teacher model based on a large pool of questions from NaturalReasoning (Yuan et al. 2025). We first conduct a systematic analysis of factors that affect distilling reasoning capabilities, in terms of sample efficiency and scalability for general reasoning tasks. We observe that simply scaling up data size with random sampling is a strong baseline with steady performance gains. Further, we find that selecting difficult examples that require more diverse reasoning strategies is more sample-efficient to transfer the teacher model's reasoning skills. Evaluated on both Llama and Qwen models, training with NaturalThoughts outperforms existing reasoning datasets such as OpenThoughts, LIMO, etc. on general STEM reasoning benchmarks including GPQA-Diamond, MMLU-Pro and SuperGPQA.
☆ Gradient-Adaptive Policy Optimization: Towards Multi-Objective Alignment of Large Language Models ACL 2025
Reinforcement Learning from Human Feedback (RLHF) has emerged as a powerful technique for aligning large language models (LLMs) with human preferences. However, effectively aligning LLMs with diverse human preferences remains a significant challenge, particularly when they are conflict. To address this issue, we frame human value alignment as a multi-objective optimization problem, aiming to maximize a set of potentially conflicting objectives. We introduce Gradient-Adaptive Policy Optimization (GAPO), a novel fine-tuning paradigm that employs multiple-gradient descent to align LLMs with diverse preference distributions. GAPO adaptively rescales the gradients for each objective to determine an update direction that optimally balances the trade-offs between objectives. Additionally, we introduce P-GAPO, which incorporates user preferences across different objectives and achieves Pareto solutions that better align with the user's specific needs. Our theoretical analysis demonstrates that GAPO converges towards a Pareto optimal solution for multiple objectives. Empirical results on Mistral-7B show that GAPO outperforms current state-of-the-art methods, achieving superior performance in both helpfulness and harmlessness.
comment: 19 pages, 3 figures. Accepted by ACL 2025 (main)
☆ AI4Research: A Survey of Artificial Intelligence for Scientific Research
Recent advancements in artificial intelligence (AI), particularly in large language models (LLMs) such as OpenAI-o1 and DeepSeek-R1, have demonstrated remarkable capabilities in complex domains such as logical reasoning and experimental coding. Motivated by these advancements, numerous studies have explored the application of AI in the innovation process, particularly in the context of scientific research. These AI technologies primarily aim to develop systems that can autonomously conduct research processes across a wide range of scientific disciplines. Despite these significant strides, a comprehensive survey on AI for Research (AI4Research) remains absent, which hampers our understanding and impedes further development in this field. To address this gap, we present a comprehensive survey and offer a unified perspective on AI4Research. Specifically, the main contributions of our work are as follows: (1) Systematic taxonomy: We first introduce a systematic taxonomy to classify five mainstream tasks in AI4Research. (2) New frontiers: Then, we identify key research gaps and highlight promising future directions, focusing on the rigor and scalability of automated experiments, as well as the societal impact. (3) Abundant applications and resources: Finally, we compile a wealth of resources, including relevant multidisciplinary applications, data corpora, and tools. We hope our work will provide the research community with quick access to these resources and stimulate innovative breakthroughs in AI4Research.
comment: Preprint
☆ High-Layer Attention Pruning with Rescaling
Pruning is a highly effective approach for compressing large language models (LLMs), significantly reducing inference latency. However, conventional training-free structured pruning methods often employ a heuristic metric that indiscriminately removes some attention heads across all pruning layers, without considering their positions within the network architecture. In this work, we propose a novel pruning algorithm that strategically prunes attention heads in the model's higher layers. Since the removal of attention heads can alter the magnitude of token representations, we introduce an adaptive rescaling parameter that calibrates the representation scale post-pruning to counteract this effect. We conduct comprehensive experiments on a wide range of LLMs, including LLaMA3.1-8B, Mistral-7B-v0.3, Qwen2-7B, and Gemma2-9B. Our evaluation includes both generation and discriminative tasks across 27 datasets. The results consistently demonstrate that our method outperforms existing structured pruning methods. This improvement is particularly notable in generation tasks, where our approach significantly outperforms existing baselines.
☆ MiCoTA: Bridging the Learnability Gap with Intermediate CoT and Teacher Assistants
Large language models (LLMs) excel at reasoning tasks requiring long thought sequences for planning, reflection, and refinement. However, their substantial model size and high computational demands are impractical for widespread deployment. Yet, small language models (SLMs) often struggle to learn long-form CoT reasoning due to their limited capacity, a phenomenon we refer to as the "SLMs Learnability Gap". To address this, we introduce \textbf{Mi}d-\textbf{Co}T \textbf{T}eacher \textbf{A}ssistant Distillation (MiCoTAl), a framework for improving long CoT distillation for SLMs. MiCoTA employs intermediate-sized models as teacher assistants and utilizes intermediate-length CoT sequences to bridge both the capacity and reasoning length gaps. Our experiments on downstream tasks demonstrate that although SLMs distilled from large teachers can perform poorly, by applying MiCoTA, they achieve significant improvements in reasoning performance. Specifically, Qwen2.5-7B-Instruct and Qwen2.5-3B-Instruct achieve an improvement of 3.47 and 3.93 respectively on average score on AIME2024, AMC, Olympiad, MATH-500 and GSM8K benchmarks. To better understand the mechanism behind MiCoTA, we perform a quantitative experiment demonstrating that our method produces data more closely aligned with base SLM distributions. Our insights pave the way for future research into long-CoT data distillation for SLMs.
comment: Work in progress
☆ DIY-MKG: An LLM-Based Polyglot Language Learning System EMNLP 2025
Existing language learning tools, even those powered by Large Language Models (LLMs), often lack support for polyglot learners to build linguistic connections across vocabularies in multiple languages, provide limited customization for individual learning paces or needs, and suffer from detrimental cognitive offloading. To address these limitations, we design Do-It-Yourself Multilingual Knowledge Graph (DIY-MKG), an open-source system that supports polyglot language learning. DIY-MKG allows the user to build personalized vocabulary knowledge graphs, which are constructed by selective expansion with related words suggested by an LLM. The system further enhances learning through rich annotation capabilities and an adaptive review module that leverages LLMs for dynamic, personalized quiz generation. In addition, DIY-MKG allows users to flag incorrect quiz questions, simultaneously increasing user engagement and providing a feedback loop for prompt refinement. Our evaluation of LLM-based components in DIY-MKG shows that vocabulary expansion is reliable and fair across multiple languages, and that the generated quizzes are highly accurate, validating the robustness of DIY-MKG.
comment: Submitted to EMNLP 2025 System Demonstration
☆ Eka-Eval : A Comprehensive Evaluation Framework for Large Language Models in Indian Languages
The rapid advancement of Large Language Models (LLMs) has intensified the need for evaluation frameworks that go beyond English centric benchmarks and address the requirements of linguistically diverse regions such as India. We present EKA-EVAL, a unified and production-ready evaluation framework that integrates over 35 benchmarks, including 10 Indic-specific datasets, spanning categories like reasoning, mathematics, tool use, long-context understanding, and reading comprehension. Compared to existing Indian language evaluation tools, EKA-EVAL offers broader benchmark coverage, with built-in support for distributed inference, quantization, and multi-GPU usage. Our systematic comparison positions EKA-EVAL as the first end-to-end, extensible evaluation suite tailored for both global and Indic LLMs, significantly lowering the barrier to multilingual benchmarking. The framework is open-source and publicly available at https://github.com/lingo-iitgn/ eka-eval and a part of ongoing EKA initiative (https://eka.soket.ai), which aims to scale up to over 100 benchmarks and establish a robust, multilingual evaluation ecosystem for LLMs.
☆ Low-Perplexity LLM-Generated Sequences and Where To Find Them ACL 2025
As Large Language Models (LLMs) become increasingly widespread, understanding how specific training data shapes their outputs is crucial for transparency, accountability, privacy, and fairness. To explore how LLMs leverage and replicate their training data, we introduce a systematic approach centered on analyzing low-perplexity sequences - high-probability text spans generated by the model. Our pipeline reliably extracts such long sequences across diverse topics while avoiding degeneration, then traces them back to their sources in the training data. Surprisingly, we find that a substantial portion of these low-perplexity spans cannot be mapped to the corpus. For those that do match, we quantify the distribution of occurrences across source documents, highlighting the scope and nature of verbatim recall and paving a way toward better understanding of how LLMs training data impacts their behavior.
comment: Camera-ready version. Accepted to ACL 2025. 10 pages, 4 figures, 6 tables
☆ Evaluating Structured Output Robustness of Small Language Models for Open Attribute-Value Extraction from Clinical Notes ACL
We present a comparative analysis of the parseability of structured outputs generated by small language models for open attribute-value extraction from clinical notes. We evaluate three widely used serialization formats: JSON, YAML, and XML, and find that JSON consistently yields the highest parseability. Structural robustness improves with targeted prompting and larger models, but declines for longer documents and certain note types. Our error analysis identifies recurring format-specific failure patterns. These findings offer practical guidance for selecting serialization formats and designing prompts when deploying language models in privacy-sensitive clinical settings.
comment: To appear in the ACL Anthology
☆ LoRA Fine-Tuning Without GPUs: A CPU-Efficient Meta-Generation Framework for LLMs ICML 2025
Low-Rank Adapters (LoRAs) have transformed the fine-tuning of Large Language Models (LLMs) by enabling parameter-efficient updates. However, their widespread adoption remains limited by the reliance on GPU-based training. In this work, we propose a theoretically grounded approach to LoRA fine-tuning designed specifically for users with limited computational resources, particularly those restricted to standard laptop CPUs. Our method learns a meta-operator that maps any input dataset, represented as a probability distribution, to a set of LoRA weights by leveraging a large bank of pre-trained adapters for the Mistral-7B-Instruct-v0.2 model. Instead of performing new gradient-based updates, our pipeline constructs adapters via lightweight combinations of existing LoRAs directly on CPU. While the resulting adapters do not match the performance of GPU-trained counterparts, they consistently outperform the base Mistral model on downstream tasks, offering a practical and accessible alternative to traditional GPU-based fine-tuning.
comment: 5-page main paper (excluding references) + 11-page appendix, 3 tables, 1 figure. Accepted to ICML 2025 Workshop on Efficient Systems for Foundation Models
☆ The Anatomy of Evidence: An Investigation Into Explainable ICD Coding ACL 2025
Automatic medical coding has the potential to ease documentation and billing processes. For this task, transparency plays an important role for medical coders and regulatory bodies, which can be achieved using explainability methods. However, the evaluation of these approaches has been mostly limited to short text and binary settings due to a scarcity of annotated data. Recent efforts by Cheng et al. (2023) have introduced the MDACE dataset, which provides a valuable resource containing code evidence in clinical records. In this work, we conduct an in-depth analysis of the MDACE dataset and perform plausibility evaluation of current explainable medical coding systems from an applied perspective. With this, we contribute to a deeper understanding of automatic medical coding and evidence extraction. Our findings reveal that ground truth evidence aligns with code descriptions to a certain degree. An investigation into state-of-the-art approaches shows a high overlap with ground truth evidence. We propose match measures and highlight success and failure cases. Based on our findings, we provide recommendations for developing and evaluating explainable medical coding systems.
comment: Accepted to ACL 2025 Findings
☆ How Do Vision-Language Models Process Conflicting Information Across Modalities?
AI models are increasingly required to be multimodal, integrating disparate input streams into a coherent state representation on which subsequent behaviors and actions can be based. This paper seeks to understand how such models behave when input streams present conflicting information. Focusing specifically on vision-language models, we provide inconsistent inputs (e.g., an image of a dog paired with the caption "A photo of a cat") and ask the model to report the information present in one of the specific modalities (e.g., "What does the caption say / What is in the image?"). We find that models often favor one modality over the other, e.g., reporting the image regardless of what the caption says, but that different models differ in which modality they favor. We find evidence that the behaviorally preferred modality is evident in the internal representational structure of the model, and that specific attention heads can restructure the representations to favor one modality over the other. Moreover, we find modality-agnostic "router heads" which appear to promote answers about the modality requested in the instruction, and which can be manipulated or transferred in order to improve performance across datasets and modalities. Together, the work provides essential steps towards identifying and controlling if and how models detect and resolve conflicting signals within complex multimodal environments.
comment: All code and resources are available at: https://github.com/ethahtz/vlm_conflicting_info_processing
☆ Probing Evaluation Awareness of Language Models ICML
Language models can distinguish between testing and deployment phases -- a capability known as evaluation awareness. This has significant safety and policy implications, potentially undermining the reliability of evaluations that are central to AI governance frameworks and voluntary industry commitments. In this paper, we study evaluation awareness in Llama-3.3-70B-Instruct. We show that linear probes can separate real-world evaluation and deployment prompts, suggesting that current models internally represent this distinction. We also find that current safety evaluations are correctly classified by the probes, suggesting that they already appear artificial or inauthentic to models. Our findings underscore the importance of ensuring trustworthy evaluations and understanding deceptive capabilities. More broadly, our work showcases how model internals may be leveraged to support blackbox methods in safety audits, especially for future models more competent at evaluation awareness and deception.
comment: Technical AI Governance Workshop, ICML (Poster)
☆ MuRating: A High Quality Data Selecting Approach to Multilingual Large Language Model Pretraining
Data quality is a critical driver of large language model performance, yet existing model-based selection methods focus almost exclusively on English. We introduce MuRating, a scalable framework that transfers high-quality English data-quality signals into a single rater for 17 target languages. MuRating aggregates multiple English "raters" via pairwise comparisons to learn unified document-quality scores,then projects these judgments through translation to train a multilingual evaluator on monolingual, cross-lingual, and parallel text pairs. Applied to web data, MuRating selects balanced subsets of English and multilingual content to pretrain a 1.2 B-parameter LLaMA model. Compared to strong baselines, including QuRater, AskLLM, DCLM and so on, our approach boosts average accuracy on both English benchmarks and multilingual evaluations, with especially large gains on knowledge-intensive tasks. We further analyze translation fidelity, selection biases, and underrepresentation of narrative material, outlining directions for future work.
☆ Data interference: emojis, homoglyphs, and issues of data fidelity in corpora and their results
Tokenisation - "the process of splitting text into atomic parts" (Brezina & Timperley, 2017: 1) - is a crucial step for corpus linguistics, as it provides the basis for any applicable quantitative method (e.g. collocations) while ensuring the reliability of qualitative approaches. This paper examines how discrepancies in tokenisation affect the representation of language data and the validity of analytical findings: investigating the challenges posed by emojis and homoglyphs, the study highlights the necessity of preprocessing these elements to maintain corpus fidelity to the source data. The research presents methods for ensuring that digital texts are accurately represented in corpora, thereby supporting reliable linguistic analysis and guaranteeing the repeatability of linguistic interpretations. The findings emphasise the necessity of a detailed understanding of both linguistic and technical aspects involved in digital textual data to enhance the accuracy of corpus analysis, and have significant implications for both quantitative and qualitative approaches in corpus-based research.
comment: Author submitted manuscript
☆ Tuning without Peeking: Provable Privacy and Generalization Bounds for LLM Post-Training
Gradient-based optimization is the workhorse of deep learning, offering efficient and scalable training via backpropagation. However, its reliance on large volumes of labeled data raises privacy and security concerns such as susceptibility to data poisoning attacks and the risk of overfitting. In contrast, black box optimization methods, which treat the model as an opaque function, relying solely on function evaluations to guide optimization, offer a promising alternative in scenarios where data access is restricted, adversarial risks are high, or overfitting is a concern. However, black box methods also pose significant challenges, including poor scalability to high-dimensional parameter spaces, as prevalent in large language models (LLMs), and high computational costs due to reliance on numerous model evaluations. This paper introduces BBoxER, an evolutionary black-box method for LLM post-training that induces an information bottleneck via implicit compression of the training data. Leveraging the tractability of information flow, we provide strong theoretical bounds on generalization, differential privacy, susceptibility to data poisoning attacks, and robustness to extraction attacks. BBoxER operates on top of pre-trained LLMs, offering a lightweight and modular enhancement suitable for deployment in restricted or privacy-sensitive environments, in addition to non-vacuous generalization guarantees. In experiments with LLMs, we demonstrate empirically that Retrofitting methods are able to learn, showing how a few iterations of BBoxER improve performance and generalize well on a benchmark of reasoning datasets. This positions BBoxER as an attractive add-on on top of gradient-based optimization.
☆ ECCV 2024 W-CODA: 1st Workshop on Multimodal Perception and Comprehension of Corner Cases in Autonomous Driving
In this paper, we present details of the 1st W-CODA workshop, held in conjunction with the ECCV 2024. W-CODA aims to explore next-generation solutions for autonomous driving corner cases, empowered by state-of-the-art multimodal perception and comprehension techniques. 5 Speakers from both academia and industry are invited to share their latest progress and opinions. We collect research papers and hold a dual-track challenge, including both corner case scene understanding and generation. As the pioneering effort, we will continuously bridge the gap between frontier autonomous driving techniques and fully intelligent, reliable self-driving agents robust towards corner cases.
comment: ECCV 2024. Workshop page: https://coda-dataset.github.io/w-coda2024/
LLMs for Legal Subsumption in German Employment Contracts
Legal work, characterized by its text-heavy and resource-intensive nature, presents unique challenges and opportunities for NLP research. While data-driven approaches have advanced the field, their lack of interpretability and trustworthiness limits their applicability in dynamic legal environments. To address these issues, we collaborated with legal experts to extend an existing dataset and explored the use of Large Language Models (LLMs) and in-context learning to evaluate the legality of clauses in German employment contracts. Our work evaluates the ability of different LLMs to classify clauses as "valid," "unfair," or "void" under three legal context variants: no legal context, full-text sources of laws and court rulings, and distilled versions of these (referred to as examination guidelines). Results show that full-text sources moderately improve performance, while examination guidelines significantly enhance recall for void clauses and weighted F1-Score, reaching 80\%. Despite these advancements, LLMs' performance when using full-text sources remains substantially below that of human lawyers. We contribute an extended dataset, including examination guidelines, referenced legal sources, and corresponding annotations, alongside our code and all log files. Our findings highlight the potential of LLMs to assist lawyers in contract legality review while also underscoring the limitations of the methods presented.
comment: PrePrint - ICAIL25, Chicago
☆ Stereotype Detection as a Catalyst for Enhanced Bias Detection: A Multi-Task Learning Approach
Bias and stereotypes in language models can cause harm, especially in sensitive areas like content moderation and decision-making. This paper addresses bias and stereotype detection by exploring how jointly learning these tasks enhances model performance. We introduce StereoBias, a unique dataset labeled for bias and stereotype detection across five categories: religion, gender, socio-economic status, race, profession, and others, enabling a deeper study of their relationship. Our experiments compare encoder-only models and fine-tuned decoder-only models using QLoRA. While encoder-only models perform well, decoder-only models also show competitive results. Crucially, joint training on bias and stereotype detection significantly improves bias detection compared to training them separately. Additional experiments with sentiment analysis confirm that the improvements stem from the connection between bias and stereotypes, not multi-task learning alone. These findings highlight the value of leveraging stereotype information to build fairer and more effective AI systems.
☆ AdamMeme: Adaptively Probe the Reasoning Capacity of Multimodal Large Language Models on Harmfulness ACL 2025
The proliferation of multimodal memes in the social media era demands that multimodal Large Language Models (mLLMs) effectively understand meme harmfulness. Existing benchmarks for assessing mLLMs on harmful meme understanding rely on accuracy-based, model-agnostic evaluations using static datasets. These benchmarks are limited in their ability to provide up-to-date and thorough assessments, as online memes evolve dynamically. To address this, we propose AdamMeme, a flexible, agent-based evaluation framework that adaptively probes the reasoning capabilities of mLLMs in deciphering meme harmfulness. Through multi-agent collaboration, AdamMeme provides comprehensive evaluations by iteratively updating the meme data with challenging samples, thereby exposing specific limitations in how mLLMs interpret harmfulness. Extensive experiments show that our framework systematically reveals the varying performance of different target mLLMs, offering in-depth, fine-grained analyses of model-specific weaknesses. Our code is available at https://github.com/Lbotirx/AdamMeme.
comment: ACL 2025
☆ Blending Supervised and Reinforcement Fine-Tuning with Prefix Sampling
Existing post-training techniques for large language models are broadly categorized into Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT). Each paradigm presents a distinct trade-off: SFT excels at mimicking demonstration data but can lead to problematic generalization as a form of behavior cloning. Conversely, RFT can significantly enhance a model's performance but is prone to learn unexpected behaviors, and its performance is highly sensitive to the initial policy. In this paper, we propose a unified view of these methods and introduce Prefix-RFT, a hybrid approach that synergizes learning from both demonstration and exploration. Using mathematical reasoning problems as a testbed, we empirically demonstrate that Prefix-RFT is both simple and effective. It not only surpasses the performance of standalone SFT and RFT but also outperforms parallel mixed-policy RFT methods. A key advantage is its seamless integration into existing open-source frameworks, requiring only minimal modifications to the standard RFT pipeline. Our analysis highlights the complementary nature of SFT and RFT, and validates that Prefix-RFT effectively harmonizes these two learning paradigms. Furthermore, ablation studies confirm the method's robustness to variations in the quality and quantity of demonstration data. We hope this work offers a new perspective on LLM post-training, suggesting that a unified paradigm that judiciously integrates demonstration and exploration could be a promising direction for future research.
comment: Work in progress
☆ Adapting Language Models to Indonesian Local Languages: An Empirical Study of Language Transferability on Zero-Shot Settings
In this paper, we investigate the transferability of pre-trained language models to low-resource Indonesian local languages through the task of sentiment analysis. We evaluate both zero-shot performance and adapter-based transfer on ten local languages using models of different types: a monolingual Indonesian BERT, multilingual models such as mBERT and XLM-R, and a modular adapter-based approach called MAD-X. To better understand model behavior, we group the target languages into three categories: seen (included during pre-training), partially seen (not included but linguistically related to seen languages), and unseen (absent and unrelated in pre-training data). Our results reveal clear performance disparities across these groups: multilingual models perform best on seen languages, moderately on partially seen ones, and poorly on unseen languages. We find that MAD-X significantly improves performance, especially for seen and partially seen languages, without requiring labeled data in the target language. Additionally, we conduct a further analysis on tokenization and show that while subword fragmentation and vocabulary overlap with Indonesian correlate weakly with prediction quality, they do not fully explain the observed performance. Instead, the most consistent predictor of transfer success is the model's prior exposure to the language, either directly or through a related language.
comment: AMLDS 2025
☆ Confidence and Stability of Global and Pairwise Scores in NLP Evaluation ACL
With the advent of highly capable instruction-tuned neural language models, benchmarking in natural language processing (NLP) is increasingly shifting towards pairwise comparison leaderboards, such as LMSYS Arena, from traditional global pointwise scores (e.g., GLUE, BIG-bench, SWE-bench). This paper empirically investigates the strengths and weaknesses of both global scores and pairwise comparisons to aid decision-making in selecting appropriate model evaluation strategies. Through computational experiments on synthetic and real-world datasets using standard global metrics and the popular Bradley-Terry model for pairwise comparisons, we found that while global scores provide more reliable overall rankings, they can underestimate strong models with rare, significant errors or low confidence. Conversely, pairwise comparisons are particularly effective for identifying strong contenders among models with lower global scores, especially where quality metrics are hard to define (e.g., text generation), though they require more comparisons to converge if ties are frequent. Our code and data are available at https://github.com/HSPyroblast/srw-ranking under a permissive license.
comment: 8 pages, accepted at ACL SRW 2025
☆ Chart Question Answering from Real-World Analytical Narratives ACL
We present a new dataset for chart question answering (CQA) constructed from visualization notebooks. The dataset features real-world, multi-view charts paired with natural language questions grounded in analytical narratives. Unlike prior benchmarks, our data reflects ecologically valid reasoning workflows. Benchmarking state-of-the-art multimodal large language models reveals a significant performance gap, with GPT-4.1 achieving an accuracy of 69.3%, underscoring the challenges posed by this more authentic CQA setting.
comment: This paper has been accepted to the ACL Student Research Workshop (SRW) 2025
☆ Data Agent: A Holistic Architecture for Orchestrating Data+AI Ecosystems
Traditional Data+AI systems utilize data-driven techniques to optimize performance, but they rely heavily on human experts to orchestrate system pipelines, enabling them to adapt to changes in data, queries, tasks, and environments. For instance, while there are numerous data science tools available, developing a pipeline planning system to coordinate these tools remains challenging. This difficulty arises because existing Data+AI systems have limited capabilities in semantic understanding, reasoning, and planning. Fortunately, we have witnessed the success of large language models (LLMs) in enhancing semantic understanding, reasoning, and planning abilities. It is crucial to incorporate LLM techniques to revolutionize data systems for orchestrating Data+AI applications effectively. To achieve this, we propose the concept of a 'Data Agent' - a comprehensive architecture designed to orchestrate Data+AI ecosystems, which focuses on tackling data-related tasks by integrating knowledge comprehension, reasoning, and planning capabilities. We delve into the challenges involved in designing data agents, such as understanding data/queries/environments/tools, orchestrating pipelines/workflows, optimizing and executing pipelines, and fostering pipeline self-reflection. Furthermore, we present examples of data agent systems, including a data science agent, data analytics agents (such as unstructured data analytics agent, semantic structured data analytics agent, data lake analytics agent, and multi-modal data analytics agent), and a database administrator (DBA) agent. We also outline several open challenges associated with designing data agent systems.
☆ T3DM: Test-Time Training-Guided Distribution Shift Modelling for Temporal Knowledge Graph Reasoning
Temporal Knowledge Graph (TKG) is an efficient method for describing the dynamic development of facts along a timeline. Most research on TKG reasoning (TKGR) focuses on modelling the repetition of global facts and designing patterns of local historical facts. However, they face two significant challenges: inadequate modeling of the event distribution shift between training and test samples, and reliance on random entity substitution for generating negative samples, which often results in low-quality sampling. To this end, we propose a novel distributional feature modeling approach for training TKGR models, Test-Time Training-guided Distribution shift Modelling (T3DM), to adjust the model based on distribution shift and ensure the global consistency of model reasoning. In addition, we design a negative-sampling strategy to generate higher-quality negative quadruples based on adversarial training. Extensive experiments show that T3DM provides better and more robust results than the state-of-the-art baselines in most cases.
☆ Emotionally Intelligent Task-oriented Dialogue Systems: Architecture, Representation, and Optimisation
Task-oriented dialogue (ToD) systems are designed to help users achieve specific goals through natural language interaction. While recent advances in large language models (LLMs) have significantly improved linguistic fluency and contextual understanding, building effective and emotionally intelligent ToD systems remains a complex challenge. Effective ToD systems must optimise for task success, emotional understanding and responsiveness, and precise information conveyance, all within inherently noisy and ambiguous conversational environments. In this work, we investigate architectural, representational, optimisational as well as emotional considerations of ToD systems. We set up systems covering these design considerations with a challenging evaluation environment composed of a natural-language user simulator coupled with an imperfect natural language understanding module. We propose \textbf{LUSTER}, an \textbf{L}LM-based \textbf{U}nified \textbf{S}ystem for \textbf{T}ask-oriented dialogue with \textbf{E}nd-to-end \textbf{R}einforcement learning with both short-term (user sentiment) and long-term (task success) rewards. Our findings demonstrate that combining LLM capability with structured reward modelling leads to more resilient and emotionally responsive ToD systems, offering a practical path forward for next-generation conversational agents.
comment: 19 pages, 6 figures
☆ Self-Guided Process Reward Optimization with Masked Step Advantage for Process Reinforcement Learning
Process Reinforcement Learning~(PRL) has demonstrated considerable potential in enhancing the reasoning capabilities of Large Language Models~(LLMs). However, introducing additional process reward models incurs substantial computational overhead, and there is no unified theoretical framework for process-level advantage estimation. To bridge this gap, we propose \textbf{S}elf-Guided \textbf{P}rocess \textbf{R}eward \textbf{O}ptimization~(\textbf{SPRO}), a novel framework that enables process-aware RL through two key innovations: (1) we first theoretically demonstrate that process rewards can be derived intrinsically from the policy model itself, and (2) we introduce well-defined cumulative process rewards and \textbf{M}asked \textbf{S}tep \textbf{A}dvantage (\textbf{MSA}), which facilitates rigorous step-wise action advantage estimation within shared-prompt sampling groups. Our experimental results demonstrate that SPRO outperforms vaniila GRPO with 3.4x higher training efficiency and a 17.5\% test accuracy improvement. Furthermore, SPRO maintains a stable and elevated policy entropy throughout training while reducing the average response length by approximately $1/3$, evidencing sufficient exploration and prevention of reward hacking. Notably, SPRO incurs no additional computational overhead compared to outcome-supervised RL methods such as GRPO, which benefit industrial implementation.
☆ Crafting Hanzi as Narrative Bridges: An AI Co-Creation Workshop for Elderly Migrants
This paper explores how older adults, particularly aging migrants in urban China, can engage AI-assisted co-creation to express personal narratives that are often fragmented, underrepresented, or difficult to verbalize. Through a pilot workshop combining oral storytelling and the symbolic reconstruction of Hanzi, participants shared memories of migration and recreated new character forms using Xiaozhuan glyphs, suggested by the Large Language Model (LLM), together with physical materials. Supported by human facilitation and a soft AI presence, participants transformed lived experience into visual and tactile expressions without requiring digital literacy. This approach offers new perspectives on human-AI collaboration and aging by repositioning AI not as a content producer but as a supportive mechanism, and by supporting narrative agency within sociotechnical systems.
comment: A version of this manuscript has been submitted to the [IASDR 2025 Conference](https://iasdr2025.org/) and is currently under review
☆ Is External Information Useful for Stance Detection with LLMs? ACL
In the stance detection task, a text is classified as either favorable, opposing, or neutral towards a target. Prior work suggests that the use of external information, e.g., excerpts from Wikipedia, improves stance detection performance. However, whether or not such information can benefit large language models (LLMs) remains an unanswered question, despite their wide adoption in many reasoning tasks. In this study, we conduct a systematic evaluation on how Wikipedia and web search external information can affect stance detection across eight LLMs and in three datasets with 12 targets. Surprisingly, we find that such information degrades performance in most cases, with macro F1 scores dropping by up to 27.9\%. We explain this through experiments showing LLMs' tendency to align their predictions with the stance and sentiment of the provided information rather than the ground truth stance of the given text. We also find that performance degradation persists with chain-of-thought prompting, while fine-tuning mitigates but does not fully eliminate it. Our findings, in contrast to previous literature on BERT-based systems which suggests that external information enhances performance, highlight the risks of information biases in LLM-based stance classifiers. Code is available at https://github.com/ngqm/acl2025-stance-detection.
comment: ACL Findings 2025
☆ Efficient Out-of-Scope Detection in Dialogue Systems via Uncertainty-Driven LLM Routing
Out-of-scope (OOS) intent detection is a critical challenge in task-oriented dialogue systems (TODS), as it ensures robustness to unseen and ambiguous queries. In this work, we propose a novel but simple modular framework that combines uncertainty modeling with fine-tuned large language models (LLMs) for efficient and accurate OOS detection. The first step applies uncertainty estimation to the output of an in-scope intent detection classifier, which is currently deployed in a real-world TODS handling tens of thousands of user interactions daily. The second step then leverages an emerging LLM-based approach, where a fine-tuned LLM is triggered to make a final decision on instances with high uncertainty. Unlike prior approaches, our method effectively balances computational efficiency and performance, combining traditional approaches with LLMs and yielding state-of-the-art results on key OOS detection benchmarks, including real-world OOS data acquired from a deployed TODS.
☆ Following the Clues: Experiments on Person Re-ID using Cross-Modal Intelligence
The collection and release of street-level recordings as Open Data play a vital role in advancing autonomous driving systems and AI research. However, these datasets pose significant privacy risks, particularly for pedestrians, due to the presence of Personally Identifiable Information (PII) that extends beyond biometric traits such as faces. In this paper, we present cRID, a novel cross-modal framework combining Large Vision-Language Models, Graph Attention Networks, and representation learning to detect textual describable clues of PII and enhance person re-identification (Re-ID). Our approach focuses on identifying and leveraging interpretable features, enabling the detection of semantically meaningful PII beyond low-level appearance cues. We conduct a systematic evaluation of PII presence in person image datasets. Our experiments show improved performance in practical cross-dataset Re-ID scenarios, notably from Market-1501 to CUHK03-np (detected), highlighting the framework's practical utility. Code is available at https://github.com/RAufschlaeger/cRID.
comment: accepted for publication at the 2025 IEEE 28th International Conference on Intelligent Transportation Systems (ITSC 2025), taking place during November 18-21, 2025 in Gold Coast, Australia
☆ Evaluating the Effectiveness of Direct Preference Optimization for Personalizing German Automatic Text Simplifications for Persons with Intellectual Disabilities
Automatic text simplification (ATS) aims to enhance language accessibility for various target groups, particularly persons with intellectual disabilities. Recent advancements in generative AI, especially large language models (LLMs), have substantially improved the quality of machine-generated text simplifications, thereby mitigating information barriers for the target group. However, existing LLM-based ATS systems do not incorporate preference feedback on text simplifications during training, resulting in a lack of personalization tailored to the specific needs of target group representatives. In this work, we extend the standard supervised fine-tuning (SFT) approach for adapting LLM-based ATS models by leveraging a computationally efficient LLM alignment technique -- direct preference optimization (DPO). Specifically, we post-train LLM-based ATS models using human feedback collected from persons with intellectual disabilities, reflecting their preferences on paired text simplifications generated by mainstream LLMs. Furthermore, we propose a pipeline for developing personalized LLM-based ATS systems, encompassing data collection, model selection, SFT and DPO post-training, and evaluation. Our findings underscore the necessity of active participation of target group persons in designing personalized AI accessibility solutions aligned with human expectations. This work represents a step towards personalizing inclusive AI systems at the target-group level, incorporating insights not only from text simplification experts but also from target group persons themselves.
☆ LogitSpec: Accelerating Retrieval-based Speculative Decoding via Next Next Token Speculation
Speculative decoding (SD), where a small draft model is employed to propose draft tokens in advance and then the target model validates them in parallel, has emerged as a promising technique for LLM inference acceleration. Many endeavors to improve SD are to eliminate the need for a draft model and generate draft tokens in a retrieval-based manner in order to further alleviate the drafting overhead and significantly reduce the difficulty in deployment and applications. However, retrieval-based SD relies on a matching paradigm to retrieval the most relevant reference as the draft tokens, where these methods often fail to find matched and accurate draft tokens. To address this challenge, we propose LogitSpec to effectively expand the retrieval range and find the most relevant reference as drafts. Our LogitSpec is motivated by the observation that the logit of the last token can not only predict the next token, but also speculate the next next token. Specifically, LogitSpec generates draft tokens in two steps: (1) utilizing the last logit to speculate the next next token; (2) retrieving relevant reference for both the next token and the next next token. LogitSpec is training-free and plug-and-play, which can be easily integrated into existing LLM inference frameworks. Extensive experiments on a wide range of text generation benchmarks demonstrate that LogitSpec can achieve up to 2.61 $\times$ speedup and 3.28 mean accepted tokens per decoding step. Our code is available at https://github.com/smart-lty/LogitSpec.
Clinical NLP with Attention-Based Deep Learning for Multi-Disease Prediction
This paper addresses the challenges posed by the unstructured nature and high-dimensional semantic complexity of electronic health record texts. A deep learning method based on attention mechanisms is proposed to achieve unified modeling for information extraction and multi-label disease prediction. The study is conducted on the MIMIC-IV dataset. A Transformer-based architecture is used to perform representation learning over clinical text. Multi-layer self-attention mechanisms are employed to capture key medical entities and their contextual relationships. A Sigmoid-based multi-label classifier is then applied to predict multiple disease labels. The model incorporates a context-aware semantic alignment mechanism, enhancing its representational capacity in typical medical scenarios such as label co-occurrence and sparse information. To comprehensively evaluate model performance, a series of experiments were conducted, including baseline comparisons, hyperparameter sensitivity analysis, data perturbation studies, and noise injection tests. Results demonstrate that the proposed method consistently outperforms representative existing approaches across multiple performance metrics. The model maintains strong generalization under varying data scales, interference levels, and model depth configurations. The framework developed in this study offers an efficient algorithmic foundation for processing real-world clinical texts and presents practical significance for multi-label medical text modeling tasks.
☆ Pensieve Grader: An AI-Powered, Ready-to-Use Platform for Effortless Handwritten STEM Grading
Grading handwritten, open-ended responses remains a major bottleneck in large university STEM courses. We introduce Pensieve (https://www.pensieve.co), an AI-assisted grading platform that leverages large language models (LLMs) to transcribe and evaluate student work, providing instructors with rubric-aligned scores, transcriptions, and confidence ratings. Unlike prior tools that focus narrowly on specific tasks like transcription or rubric generation, Pensieve supports the entire grading pipeline-from scanned student submissions to final feedback-within a human-in-the-loop interface. Pensieve has been deployed in real-world courses at over 20 institutions and has graded more than 300,000 student responses. We present system details and empirical results across four core STEM disciplines: Computer Science, Mathematics, Physics, and Chemistry. Our findings show that Pensieve reduces grading time by an average of 65%, while maintaining a 95.4% agreement rate with instructor-assigned grades for high-confidence predictions.
comment: 7 pages, 5 figues, 1 table
☆ Skywork-Reward-V2: Scaling Preference Data Curation via Human-AI Synergy
Despite the critical role of reward models (RMs) in reinforcement learning from human feedback (RLHF), current state-of-the-art open RMs perform poorly on most existing evaluation benchmarks, failing to capture the spectrum of nuanced and sophisticated human preferences. Even approaches that incorporate advanced training techniques have not yielded meaningful performance improvements. We hypothesize that this brittleness stems primarily from limitations in preference datasets, which are often narrowly scoped, synthetically labeled, or lack rigorous quality control. To address these challenges, we present a large-scale preference dataset comprising 40 million preference pairs, named SynPref-40M. To enable data curation at scale, we design a human-AI synergistic two-stage pipeline that leverages the complementary strengths of human annotation quality and AI scalability. In this pipeline, humans provide verified annotations, while large language models perform automatic curation based on human guidance. Training on this preference mixture, we introduce Skywork-Reward-V2, a suite of eight reward models ranging from 0.6B to 8B parameters, trained on a carefully curated subset of 26 million preference pairs from SynPref-40M. We demonstrate that Skywork-Reward-V2 is versatile across a wide range of capabilities, including alignment with human preferences, objective correctness, safety, resistance to stylistic biases, and best-of-N scaling, achieving state-of-the-art performance across seven major reward model benchmarks. Ablation studies confirm that the effectiveness of our approach stems not only from data scale but also from high-quality curation. The Skywork-Reward-V2 series represents substantial progress in open reward models, highlighting the untapped potential of existing preference datasets and demonstrating how human-AI curation synergy can unlock significantly higher data quality.
☆ LEDOM: An Open and Fundamental Reverse Language Model
We introduce LEDOM, the first purely reverse language model, trained autoregressively on 435B tokens with 2B and 7B parameter variants, which processes sequences in reverse temporal order through previous token prediction. For the first time, we present the reverse language model as a potential foundational model across general tasks, accompanied by a set of intriguing examples and insights. Based on LEDOM, we further introduce a novel application: Reverse Reward, where LEDOM-guided reranking of forward language model outputs leads to substantial performance improvements on mathematical reasoning tasks. This approach leverages LEDOM's unique backward reasoning capability to refine generation quality through posterior evaluation. Our findings suggest that LEDOM exhibits unique characteristics with broad application potential. We will release all models, training code, and pre-training data to facilitate future research.
comment: Work in progress
☆ Symbolic or Numerical? Understanding Physics Problem Solving in Reasoning LLMs
Navigating the complexities of physics reasoning has long been a difficult task for Large Language Models (LLMs), requiring a synthesis of profound conceptual understanding and adept problem-solving techniques. In this study, we investigate the application of advanced instruction-tuned reasoning models, such as Deepseek-R1, to address a diverse spectrum of physics problems curated from the challenging SciBench benchmark. Our comprehensive experimental evaluation reveals the remarkable capabilities of reasoning models. Not only do they achieve state-of-the-art accuracy in answering intricate physics questions, but they also generate distinctive reasoning patterns that emphasize on symbolic derivation. Furthermore, our findings indicate that even for these highly sophisticated reasoning models, the strategic incorporation of few-shot prompting can still yield measurable improvements in overall accuracy, highlighting the potential for continued performance gains.
☆ La RoSA: Enhancing LLM Efficiency via Layerwise Rotated Sparse Activation ICML 2025
Activation sparsity can reduce the computational overhead and memory transfers during the forward pass of Large Language Model (LLM) inference. Existing methods face limitations, either demanding time-consuming recovery training that hinders real-world adoption, or relying on empirical magnitude-based pruning, which causes fluctuating sparsity and unstable inference speed-up. This paper introduces LaRoSA (Layerwise Rotated Sparse Activation), a novel method for activation sparsification designed to improve LLM efficiency without requiring additional training or magnitude-based pruning. We leverage layerwise orthogonal rotations to transform input activations into rotated forms that are more suitable for sparsification. By employing a Top-K selection approach within the rotated activations, we achieve consistent model-level sparsity and reliable wall-clock time speed-up. LaRoSA is effective across various sizes and types of LLMs, demonstrating minimal performance degradation and robust inference acceleration. Specifically, for LLaMA2-7B at 40% sparsity, LaRoSA achieves a mere 0.17 perplexity gap with a consistent 1.30x wall-clock time speed-up, and reduces the accuracy gap in zero-shot tasks compared to the dense model to just 0.54%, while surpassing TEAL by 1.77% and CATS by 17.14%.
comment: ICML 2025 Acceptance
☆ Frustratingly Simple Retrieval Improves Challenging, Reasoning-Intensive Benchmarks
Retrieval-augmented Generation (RAG) has primarily been studied in limited settings, such as factoid question answering; more challenging, reasoning-intensive benchmarks have seen limited success from minimal RAG. In this work, we challenge this prevailing view on established, reasoning-intensive benchmarks: MMLU, MMLU Pro, AGI Eval, GPQA, and MATH. We identify a key missing component in prior work: a usable, web-scale datastore aligned with the breadth of pretraining data. To this end, we introduce CompactDS: a diverse, high-quality, web-scale datastore that achieves high retrieval accuracy and subsecond latency on a single-node. The key insights are (1) most web content can be filtered out without sacrificing coverage, and a compact, high-quality subset is sufficient; and (2) combining in-memory approximate nearest neighbor (ANN) retrieval and on-disk exact search balances speed and recall. Using CompactDS, we show that a minimal RAG pipeline achieves consistent accuracy improvements across all benchmarks and model sizes (8B--70B), with relative gains of 10% on MMLU, 33% on MMLU Pro, 14% on GPQA, and 19% on MATH. No single data source suffices alone, highlighting the importance of diversity of sources (web crawls, curated math, academic papers, textbooks). Finally, we show that our carefully designed in-house datastore matches or outperforms web search engines such as Google Search, as well as recently proposed, complex agent-based RAG systems--all while maintaining simplicity, reproducibility, and self-containment. We release CompactDS and our retrieval pipeline, supporting future research exploring retrieval-based AI systems.
comment: 33 pages, 2 figures, 27 tables
☆ Rethinking All Evidence: Enhancing Trustworthy Retrieval-Augmented Generation via Conflict-Driven Summarization
Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by integrating their parametric knowledge with external retrieved content. However, knowledge conflicts caused by internal inconsistencies or noisy retrieved content can severely undermine the generation reliability of RAG systems.In this work, we argue that LLMs should rethink all evidence, including both retrieved content and internal knowledge, before generating responses.We propose CARE-RAG (Conflict-Aware and Reliable Evidence for RAG), a novel framework that improves trustworthiness through Conflict-Driven Summarization of all available evidence.CARE-RAG first derives parameter-aware evidence by comparing parameter records to identify diverse internal perspectives. It then refines retrieved evidences to produce context-aware evidence, removing irrelevant or misleading content. To detect and summarize conflicts, we distill a 3B LLaMA3.2 model to perform conflict-driven summarization, enabling reliable synthesis across multiple sources.To further ensure evaluation integrity, we introduce a QA Repair step to correct outdated or ambiguous benchmark answers.Experiments on revised QA datasets with retrieval data show that CARE-RAG consistently outperforms strong RAG baselines, especially in scenarios with noisy or conflicting evidence.
☆ Evaluating Large Language Models for Multimodal Simulated Ophthalmic Decision-Making in Diabetic Retinopathy and Glaucoma Screening
Large language models (LLMs) can simulate clinical reasoning based on natural language prompts, but their utility in ophthalmology is largely unexplored. This study evaluated GPT-4's ability to interpret structured textual descriptions of retinal fundus photographs and simulate clinical decisions for diabetic retinopathy (DR) and glaucoma screening, including the impact of adding real or synthetic clinical metadata. We conducted a retrospective diagnostic validation study using 300 annotated fundus images. GPT-4 received structured prompts describing each image, with or without patient metadata. The model was tasked with assigning an ICDR severity score, recommending DR referral, and estimating the cup-to-disc ratio for glaucoma referral. Performance was evaluated using accuracy, macro and weighted F1 scores, and Cohen's kappa. McNemar's test and change rate analysis were used to assess the influence of metadata. GPT-4 showed moderate performance for ICDR classification (accuracy 67.5%, macro F1 0.33, weighted F1 0.67, kappa 0.25), driven mainly by correct identification of normal cases. Performance improved in the binary DR referral task (accuracy 82.3%, F1 0.54, kappa 0.44). For glaucoma referral, performance was poor across all settings (accuracy ~78%, F1 <0.04, kappa <0.03). Metadata inclusion did not significantly affect outcomes (McNemar p > 0.05), and predictions remained consistent across conditions. GPT-4 can simulate basic ophthalmic decision-making from structured prompts but lacks precision for complex tasks. While not suitable for clinical use, LLMs may assist in education, documentation, or image annotation workflows in ophthalmology.
☆ GAIus: Combining Genai with Legal Clauses Retrieval for Knowledge-based Assistant
In this paper we discuss the capability of large language models to base their answer and provide proper references when dealing with legal matters of non-english and non-chinese speaking country. We discuss the history of legal information retrieval, the difference between case law and statute law, its impact on the legal tasks and analyze the latest research in this field. Basing on that background we introduce gAIus, the architecture of the cognitive LLM-based agent, whose responses are based on the knowledge retrieved from certain legal act, which is Polish Civil Code. We propose a retrieval mechanism which is more explainable, human-friendly and achieves better results than embedding-based approaches. To evaluate our method we create special dataset based on single-choice questions from entrance exams for law apprenticeships conducted in Poland. The proposed architecture critically leveraged the abilities of used large language models, improving the gpt-3.5-turbo-0125 by 419%, allowing it to beat gpt-4o and lifting gpt-4o-mini score from 31% to 86%. At the end of our paper we show the possible future path of research and potential applications of our findings.
comment: 8 pages, 2 figures, presented at ICAART 2025, in proceedings of the 17th International Conference on Agents and Artificial Intelligence - Volume 3: ICAART
☆ ESTR-CoT: Towards Explainable and Accurate Event Stream based Scene Text Recognition with Chain-of-Thought Reasoning
Event stream based scene text recognition is a newly arising research topic in recent years which performs better than the widely used RGB cameras in extremely challenging scenarios, especially the low illumination, fast motion. Existing works either adopt end-to-end encoder-decoder framework or large language models for enhanced recognition, however, they are still limited by the challenges of insufficient interpretability and weak contextual logical reasoning. In this work, we propose a novel chain-of-thought reasoning based event stream scene text recognition framework, termed ESTR-CoT. Specifically, we first adopt the vision encoder EVA-CLIP (ViT-G/14) to transform the input event stream into tokens and utilize a Llama tokenizer to encode the given generation prompt. A Q-former is used to align the vision token to the pre-trained large language model Vicuna-7B and output both the answer and chain-of-thought (CoT) reasoning process simultaneously. Our framework can be optimized using supervised fine-tuning in an end-to-end manner. In addition, we also propose a large-scale CoT dataset to train our framework via a three stage processing (i.e., generation, polish, and expert verification). This dataset provides a solid data foundation for the development of subsequent reasoning-based large models. Extensive experiments on three event stream STR benchmark datasets (i.e., EventSTR, WordArt*, IC15*) fully validated the effectiveness and interpretability of our proposed framework. The source code and pre-trained models will be released on https://github.com/Event-AHU/ESTR-CoT.
comment: A Strong Baseline for Reasoning based Event Stream Scene Text Recognition
☆ Latent Chain-of-Thought? Decoding the Depth-Recurrent Transformer
Chain-of-thought (CoT) reasoning has enabled transformer-based language models to excel at complex mathematics and multi-step planning. However, in standard decoder-only architectures, these reasoning steps are externalized in natural language, improving interpretability at the cost of efficiency. To capture reasoning that is not easily represented in words, many works have explored recurrent architectures that aim to internalize reasoning in latent space, potentially supporting latent CoT. In this paper, we investigate whether such reasoning structures emerge in Huginn-3.5B, a depth-recurrent Transformer that reuses layers at inference time without increasing parameter count. We examine the model's internal behavior on arithmetic tasks using a suite of probing techniques including the Logit Lens and Coda Lens. Our findings reveal limited evidence of interpretable latent CoT by tracking rank trajectories of final and intermediate result tokens. Furthermore, we uncover significant probing inconsistencies across recurrent blocks, where the interpretability of hidden states depends heavily on both the layer index and the decoding method. Finally, we empirically show that increasing recurrence depth yields only marginal gains and falls well short of models that explicitly externalize reasoning steps. The code is available at https://github.com/wenquanlu/huginn-latent-cot.
☆ Analyzing and Improving Speaker Similarity Assessment for Speech Synthesis
Modeling voice identity is challenging due to its multifaceted nature. In generative speech systems, identity is often assessed using automatic speaker verification (ASV) embeddings, designed for discrimination rather than characterizing identity. This paper investigates which aspects of a voice are captured in such representations. We find that widely used ASV embeddings focus mainly on static features like timbre and pitch range, while neglecting dynamic elements such as rhythm. We also identify confounding factors that compromise speaker similarity measurements and suggest mitigation strategies. To address these gaps, we propose U3D, a metric that evaluates speakers' dynamic rhythm patterns. This work contributes to the ongoing challenge of assessing speaker identity consistency in the context of ever-better voice cloning systems. We publicly release our code.
comment: Accepted at SSW13 - Interspeech 2025 Speech Synthesis Workshop
☆ Reasoning or Not? A Comprehensive Evaluation of Reasoning LLMs for Dialogue Summarization
Dialogue summarization is a challenging task with significant practical value in customer service, meeting analysis, and conversational AI. Although large language models (LLMs) have achieved substantial progress in summarization tasks, the performance of step-by-step reasoning architectures-specifically Long Chain-of-Thought (CoT) implementations such as OpenAI-o1 and DeepSeek-R1-remains unexplored for dialogue scenarios requiring concurrent abstraction and conciseness. In this work, we present the first comprehensive and systematic evaluation of state-of-the-art reasoning LLMs and non-reasoning LLMs across three major paradigms-generic, role-oriented, and query-oriented dialogue summarization. Our study spans diverse languages, domains, and summary lengths, leveraging strong benchmarks (SAMSum, DialogSum, CSDS, and QMSum) and advanced evaluation protocols that include both LLM-based automatic metrics and human-inspired criteria. Contrary to trends in other reasoning-intensive tasks, our findings show that explicit stepwise reasoning does not consistently improve dialogue summarization quality. Instead, reasoning LLMs are often prone to verbosity, factual inconsistencies, and less concise summaries compared to their non-reasoning counterparts. Through scenario-specific analyses and detailed case studies, we further identify when and why explicit reasoning may fail to benefit-or even hinder-summarization in complex dialogue contexts. Our work provides new insights into the limitations of current reasoning LLMs and highlights the need for targeted modeling and evaluation strategies for real-world dialogue summarization.
☆ Dissecting the Impact of Mobile DVFS Governors on LLM Inference Performance and Energy Efficiency
Large Language Models (LLMs) are increasingly being integrated into various applications and services running on billions of mobile devices. However, deploying LLMs on resource-limited mobile devices faces a significant challenge due to their high demand for computation, memory, and ultimately energy. While current LLM frameworks for mobile use three power-hungry components-CPU, GPU, and Memory-even when running primarily-GPU LLM models, optimized DVFS governors for CPU, GPU, and memory featured in modern mobile devices operate independently and are oblivious of each other. Motivated by the above observation, in this work, we first measure the energy-efficiency of a SOTA LLM framework consisting of various LLM models on mobile phones which showed the triplet mobile governors result in up to 40.4% longer prefilling and decoding latency compared to optimal combinations of CPU, GPU, and memory frequencies with the same energy consumption for sampled prefill and decode lengths. Second, we conduct an in-depth measurement study to uncover how the intricate interplay (or lack of) among the mobile governors cause the above inefficiency in LLM inference. Finally, based on these insights, we design FUSE - a unified energy-aware governor for optimizing the energy efficiency of LLM inference on mobile devices. Our evaluation using a ShareGPT dataset shows FUSE reduces the time-to-first-token and time-per-output-token latencies by 7.0%-16.9% and 25.4%-36.8% on average with the same energy-per-token for various mobile LLM models.
comment: equal contribution between Zhang and Dash
☆ Energy-Based Transformers are Scalable Learners and Thinkers
Inference-time computation techniques, analogous to human System 2 Thinking, have recently become popular for improving model performances. However, most existing approaches suffer from several limitations: they are modality-specific (e.g., working only in text), problem-specific (e.g., verifiable domains like math and coding), or require additional supervision/training on top of unsupervised pretraining (e.g., verifiers or verifiable rewards). In this paper, we ask the question "Is it possible to generalize these System 2 Thinking approaches, and develop models that learn to think solely from unsupervised learning?" Interestingly, we find the answer is yes, by learning to explicitly verify the compatibility between inputs and candidate-predictions, and then re-framing prediction problems as optimization with respect to this verifier. Specifically, we train Energy-Based Transformers (EBTs) -- a new class of Energy-Based Models (EBMs) -- to assign an energy value to every input and candidate-prediction pair, enabling predictions through gradient descent-based energy minimization until convergence. Across both discrete (text) and continuous (visual) modalities, we find EBTs scale faster than the dominant Transformer++ approach during training, achieving an up to 35% higher scaling rate with respect to data, batch size, parameters, FLOPs, and depth. During inference, EBTs improve performance with System 2 Thinking by 29% more than the Transformer++ on language tasks, and EBTs outperform Diffusion Transformers on image denoising while using fewer forward passes. Further, we find that EBTs achieve better results than existing models on most downstream tasks given the same or worse pretraining performance, suggesting that EBTs generalize better than existing approaches. Consequently, EBTs are a promising new paradigm for scaling both the learning and thinking capabilities of models.
☆ McBE: A Multi-task Chinese Bias Evaluation Benchmark for Large Language Models
As large language models (LLMs) are increasingly applied to various NLP tasks, their inherent biases are gradually disclosed. Therefore, measuring biases in LLMs is crucial to mitigate its ethical risks. However, most existing bias evaluation datasets focus on English and North American culture, and their bias categories are not fully applicable to other cultures. The datasets grounded in the Chinese language and culture are scarce. More importantly, these datasets usually only support single evaluation tasks and cannot evaluate the bias from multiple aspects in LLMs. To address these issues, we present a Multi-task Chinese Bias Evaluation Benchmark (McBE) that includes 4,077 bias evaluation instances, covering 12 single bias categories, 82 subcategories and introducing 5 evaluation tasks, providing extensive category coverage, content diversity, and measuring comprehensiveness. Additionally, we evaluate several popular LLMs from different series and with parameter sizes. In general, all these LLMs demonstrated varying degrees of bias. We conduct an in-depth analysis of results, offering novel insights into bias in LLMs.
comment: 24 pages, 9 figures
☆ Evaluating the Promise and Pitfalls of LLMs in Hiring Decisions NeurIPS 2025
The use of large language models (LLMs) in hiring promises to streamline candidate screening, but it also raises serious concerns regarding accuracy and algorithmic bias where sufficient safeguards are not in place. In this work, we benchmark several state-of-the-art foundational LLMs - including models from OpenAI, Anthropic, Google, Meta, and Deepseek, and compare them with our proprietary domain-specific hiring model (Match Score) for job candidate matching. We evaluate each model's predictive accuracy (ROC AUC, Precision-Recall AUC, F1-score) and fairness (impact ratio of cut-off analysis across declared gender, race, and intersectional subgroups). Our experiments on a dataset of roughly 10,000 real-world recent candidate-job pairs show that Match Score outperforms the general-purpose LLMs on accuracy (ROC AUC 0.85 vs 0.77) and achieves significantly more equitable outcomes across demographic groups. Notably, Match Score attains a minimum race-wise impact ratio of 0.957 (near-parity), versus 0.809 or lower for the best LLMs, (0.906 vs 0.773 for the intersectionals, respectively). We discuss why pretraining biases may cause LLMs with insufficient safeguards to propagate societal biases in hiring scenarios, whereas a bespoke supervised model can more effectively mitigate these biases. Our findings highlight the importance of domain-specific modeling and bias auditing when deploying AI in high-stakes domains such as hiring, and caution against relying on off-the-shelf LLMs for such tasks without extensive fairness safeguards. Furthermore, we show with empirical evidence that there shouldn't be a dichotomy between choosing accuracy and fairness in hiring: a well-designed algorithm can achieve both accuracy in hiring and fairness in outcomes.
comment: 10 pages, 2 figures, 2 tables. Submitted to NeurIPS 2025
♻ ☆ Sequential Diagnosis with Language Models
Artificial intelligence holds great promise for expanding access to expert medical knowledge and reasoning. However, most evaluations of language models rely on static vignettes and multiple-choice questions that fail to reflect the complexity and nuance of evidence-based medicine in real-world settings. In clinical practice, physicians iteratively formulate and revise diagnostic hypotheses, adapting each subsequent question and test to what they've just learned, and weigh the evolving evidence before committing to a final diagnosis. To emulate this iterative process, we introduce the Sequential Diagnosis Benchmark, which transforms 304 diagnostically challenging New England Journal of Medicine clinicopathological conference (NEJM-CPC) cases into stepwise diagnostic encounters. A physician or AI begins with a short case abstract and must iteratively request additional details from a gatekeeper model that reveals findings only when explicitly queried. Performance is assessed not just by diagnostic accuracy but also by the cost of physician visits and tests performed. We also present the MAI Diagnostic Orchestrator (MAI-DxO), a model-agnostic orchestrator that simulates a panel of physicians, proposes likely differential diagnoses and strategically selects high-value, cost-effective tests. When paired with OpenAI's o3 model, MAI-DxO achieves 80% diagnostic accuracy--four times higher than the 20% average of generalist physicians. MAI-DxO also reduces diagnostic costs by 20% compared to physicians, and 70% compared to off-the-shelf o3. When configured for maximum accuracy, MAI-DxO achieves 85.5% accuracy. These performance gains with MAI-DxO generalize across models from the OpenAI, Gemini, Claude, Grok, DeepSeek, and Llama families. We highlight how AI systems, when guided to think iteratively and act judiciously, can advance diagnostic precision and cost-effectiveness in clinical care.
comment: 23 pages, 10 figures
♻ ☆ Recursive Training Loops in LLMs: How training data properties modulate distribution shift in generated data?
Large language models (LLMs) are increasingly used in the creation of online content, creating feedback loops as subsequent generations of models will be trained on this synthetic data. Such loops were shown to lead to distribution shifts - models misrepresenting the true underlying distributions of human data (also called model collapse). However, how human data properties affect such shifts remains poorly understood. In this paper, we provide the first empirical examination of the effect of such properties on the outcome of recursive training. We first confirm that using different human datasets leads to distribution shifts of different magnitudes. Through exhaustive manipulation of dataset properties combined with regression analyses, we then identify a set of properties predicting distribution shift magnitudes. Lexical diversity is found to amplify these shifts, while semantic diversity and data quality mitigate them. Furthermore, we find that these influences are highly modular: data scrapped from a given internet domain has little influence on the content generated for another domain. Finally, experiments on political bias reveal that human data properties affect whether the initial bias will be amplified or reduced. Overall, our results portray a novel view, where different parts of internet may undergo different types of distribution shift.
♻ ☆ Towards Universal Semantics With Large Language Models
The Natural Semantic Metalanguage (NSM) is a linguistic theory based on a universal set of semantic primes: simple, primitive word-meanings that have been shown to exist in most, if not all, languages of the world. According to this framework, any word, regardless of complexity, can be paraphrased using these primes, revealing a clear and universally translatable meaning. These paraphrases, known as explications, can offer valuable applications for many natural language processing (NLP) tasks, but producing them has traditionally been a slow, manual process. In this work, we present the first study of using large language models (LLMs) to generate NSM explications. We introduce automatic evaluation methods, a tailored dataset for training and evaluation, and fine-tuned models for this task. Our 1B and 8B models outperform GPT-4o in producing accurate, cross-translatable explications, marking a significant step toward universal semantic representation with LLMs and opening up new possibilities for applications in semantic analysis, translation, and beyond.
♻ ☆ LinguaSynth: Heterogeneous Linguistic Signals for News Classification
Deep learning has significantly advanced NLP, but its reliance on large black-box models introduces critical interpretability and computational efficiency concerns. This paper proposes LinguaSynth, a novel text classification framework that strategically integrates five complementary linguistic feature types: lexical, syntactic, entity-level, word-level semantics, and document-level semantics within a transparent logistic regression model. Unlike transformer-based architectures, LinguaSynth maintains interpretability and computational efficiency, achieving an accuracy of 84.89 percent on the 20 Newsgroups dataset and surpassing a robust TF-IDF baseline by 3.32 percent. Through rigorous feature interaction analysis, we show that syntactic and entity-level signals provide essential disambiguation and effectively complement distributional semantics. LinguaSynth sets a new benchmark for interpretable, resource-efficient NLP models and challenges the prevailing assumption that deep neural networks are necessary for high-performing text classification.
♻ ☆ Guaranteed Generation from Large Language Models ICLR 2025
As large language models (LLMs) are increasingly used across various applications, there is a growing need to control text generation to satisfy specific constraints or requirements. This raises a crucial question: Is it possible to guarantee strict constraint satisfaction in generated outputs while preserving the distribution of the original model as much as possible? We first define the ideal distribution - the one closest to the original model, which also always satisfies the expressed constraint - as the ultimate goal of guaranteed generation. We then state a fundamental limitation, namely that it is impossible to reach that goal through autoregressive training alone. This motivates the necessity of combining training-time and inference-time methods to enforce such guarantees. Based on this insight, we propose GUARD, a simple yet effective approach that combines an autoregressive proposal distribution with rejection sampling. Through GUARD's theoretical properties, we show how controlling the KL divergence between a specific proposal and the target ideal distribution simultaneously optimizes inference speed and distributional closeness. To validate these theoretical concepts, we conduct extensive experiments on two text generation settings with hard-to-satisfy constraints: a lexical constraint scenario and a sentiment reversal scenario. These experiments show that GUARD achieves perfect constraint satisfaction while almost preserving the ideal distribution with highly improved inference efficiency. GUARD provides a principled approach to enforcing strict guarantees for LLMs without compromising their generative capabilities.
comment: ICLR 2025
♻ ☆ QAEncoder: Towards Aligned Representation Learning in Question Answering Systems ACL 2025
Modern QA systems entail retrieval-augmented generation (RAG) for accurate and trustworthy responses. However, the inherent gap between user queries and relevant documents hinders precise matching. We introduce QAEncoder, a training-free approach to bridge this gap. Specifically, QAEncoder estimates the expectation of potential queries in the embedding space as a robust surrogate for the document embedding, and attaches document fingerprints to effectively distinguish these embeddings. Extensive experiments across diverse datasets, languages, and embedding models confirmed QAEncoder's alignment capability, which offers a simple-yet-effective solution with zero additional index storage, retrieval latency, training costs, or catastrophic forgetting and hallucination issues. The repository is publicly available at https://github.com/IAAR-Shanghai/QAEncoder.
comment: ACL 2025 Oral
♻ ☆ Unified Triplet-Level Hallucination Evaluation for Large Vision-Language Models
Despite the outstanding performance in vision-language reasoning, Large Vision-Language Models (LVLMs) might generate hallucinated contents that do not exist in the given image. Most existing LVLM hallucination benchmarks are constrained to evaluate the object-related hallucinations. However, the potential hallucination on the relations between two objects, i.e., relation hallucination, still lacks investigation. To remedy that, we design a unified framework to measure the object and relation hallucination in LVLMs simultaneously. The core idea of our framework is to evaluate hallucinations via (object, relation, object) triplets extracted from LVLMs' responses, making it easily generalizable to different vision-language tasks. Based on our framework, we further introduce Tri-HE, a novel Triplet-level Hallucination Evaluation benchmark which can be used to study both object and relation hallucination at the same time. With comprehensive evaluations on Tri-HE, we observe that the relation hallucination issue is even more serious than object hallucination among existing LVLMs, highlighting a previously neglected problem towards reliable LVLMs. Moreover, based on our findings, we design a simple training-free approach that effectively mitigates hallucinations for LVLMs. Our dataset and code for the reproduction of our experiments are available publicly at https://github.com/wujunjie1998/Tri-HE.
comment: Accepted by TMLR 2025. Project Page: https://kaichen1998.github.io/projects/tri-he/
♻ ☆ On the Fundamental Impossibility of Hallucination Control in Large Language Models
We prove that perfect hallucination control in large language models is mathematically impossible. No LLM inference mechanism can simultaneously achieve truthful response generation, semantic information conservation, relevant knowledge revelation, and knowledge-constrained optimality. This impossibility is fundamental, arising from the mathematical structure of information aggregation itself rather than engineering limitations. The proof spans three mathematical frameworks: auction theory, proper scoring theory for probabilistic predictions, and log-sum-exp analysis for transformer architectures. In each setting, we demonstrate that information aggregation creates unavoidable violations of conservation principles. The Jensen gap in transformer probability aggregation provides a direct measure of this impossibility. These results reframe hallucination from an engineering bug to an inevitable mathematical feature of distributed intelligence. There are fundamental trade-offs between truthfulness, knowledge utilization, and response completeness, providing principled foundations for managing rather than eliminating hallucination. This work reveals deep connections between neural network inference, philosophy of knowledge and reasoning, and classical results in game theory and information theory, opening new research directions for developing beneficial AI systems within mathematical constraints.
comment: major review, transformer inference application, examples added, corrections
♻ ☆ Caution for the Environment: Multimodal Agents are Susceptible to Environmental Distractions ACL 2025
This paper investigates the faithfulness of multimodal large language model (MLLM) agents in a graphical user interface (GUI) environment, aiming to address the research question of whether multimodal GUI agents can be distracted by environmental context. A general scenario is proposed where both the user and the agent are benign, and the environment, while not malicious, contains unrelated content. A wide range of MLLMs are evaluated as GUI agents using a simulated dataset, following three working patterns with different levels of perception. Experimental results reveal that even the most powerful models, whether generalist agents or specialist GUI agents, are susceptible to distractions. While recent studies predominantly focus on the helpfulness of agents, our findings first indicate that these agents are prone to environmental distractions. Furthermore, we implement an adversarial environment injection and analyze the approach to improve faithfulness, calling for a collective focus on this important topic.
comment: ACL 2025
♻ ☆ Developing ChemDFM as a large language foundation model for chemistry
Artificial intelligence (AI) has played an increasingly important role in chemical research. However, most models currently used in chemistry are specialist models that require training and tuning for specific tasks. A more generic and efficient solution would be an AI model that could address many tasks and support free-form dialogue in the broad field of chemistry. In its utmost form, such a generalist AI chemist could be referred to as Chemical General Intelligence. Large language models (LLMs) have recently logged tremendous success in the general domain of natural language processing, showing emerging task generalization and free-form dialogue capabilities. However, domain knowledge of chemistry is largely missing when training general-domain LLMs. The lack of such knowledge greatly hinders the performance of generalist LLMs in the field of chemistry. To this end, we develop ChemDFM, a pioneering LLM for chemistry trained on 34B tokens from chemical literature and textbooks, and fine-tuned using 2.7M instructions. As a result, it can understand and reason with chemical knowledge in free-form dialogue. Quantitative evaluations show that ChemDFM significantly surpasses most representative open-source LLMs. It outperforms GPT-4 on a great portion of chemical tasks, despite the substantial size difference. We have open-sourced the inference codes, evaluation datasets, and model weights of ChemDFM on Huggingface (https://huggingface.co/OpenDFM/ChemDFM-v1.0-13B).
comment: 10 pages, 12 figures, 12 tables. Published on Cell Report Physical Science, DOI: https://doi.org/10.1016/j.xcrp.2025.102523
♻ ☆ Unifying Global and Near-Context Biasing in a Single Trie Pass
Despite the success of end-to-end automatic speech recognition (ASR) models, challenges persist in recognizing rare, out-of-vocabulary words - including named entities (NE) - and in adapting to new domains using only text data. This work presents a practical approach to address these challenges through an unexplored combination of an NE bias list and a word-level n-gram language model (LM). This solution balances simplicity and effectiveness, improving entities' recognition while maintaining or even enhancing overall ASR performance. We efficiently integrate this enriched biasing method into a transducer-based ASR system, enabling context adaptation with almost no computational overhead. We present our results on three datasets spanning four languages and compare them to state-of-the-art biasing strategies. We demonstrate that the proposed combination of keyword biasing and n-gram LM improves entity recognition by up to 32% relative and reduces overall WER by up to a 12% relative.
comment: Accepted to TSD2025
♻ ☆ BIS Reasoning 1.0: The First Large-Scale Japanese Benchmark for Belief-Inconsistent Syllogistic Reasoning
We present BIS Reasoning 1.0, the first large-scale Japanese dataset of syllogistic reasoning problems explicitly designed to evaluate belief-inconsistent reasoning in large language models (LLMs). Unlike prior datasets such as NeuBAROCO and JFLD, which focus on general or belief-aligned reasoning, BIS Reasoning 1.0 introduces logically valid yet belief-inconsistent syllogisms to uncover reasoning biases in LLMs trained on human-aligned corpora. We benchmark state-of-the-art models - including GPT models, Claude models, and leading Japanese LLMs - revealing significant variance in performance, with GPT-4o achieving 79.54% accuracy. Our analysis identifies critical weaknesses in current LLMs when handling logically valid but belief-conflicting inputs. These findings have important implications for deploying LLMs in high-stakes domains such as law, healthcare, and scientific literature, where truth must override intuitive belief to ensure integrity and safety.
comment: This version includes typo corrections, added logit lens analysis for open models, and an updated author list
♻ ☆ DICE-BENCH: Evaluating the Tool-Use Capabilities of Large Language Models in Multi-Round, Multi-Party Dialogues ACL 2025
Existing function-calling benchmarks focus on single-turn interactions. However, they overlook the complexity of real-world scenarios. To quantify how existing benchmarks address practical applications, we introduce DICE-SCORE, a metric that evaluates the dispersion of tool-related information such as function name and parameter values throughout the dialogue. Analyzing existing benchmarks through DICE-SCORE reveals notably low scores, highlighting the need for more realistic scenarios. To address this gap, we present DICE-BENCH, a framework that constructs practical function-calling datasets by synthesizing conversations through a tool graph that maintains dependencies across rounds and a multi-agent system with distinct personas to enhance dialogue naturalness. The final dataset comprises 1,607 high-DICE-SCORE instances. Our experiments on 19 LLMs with DICE-BENCH show that significant advances are still required before such models can be deployed effectively in real-world settings. Our code and data are all publicly available: https://snuhcc.github.io/DICE-Bench/.
comment: 9 pages, ACL 2025 Vienna
♻ ☆ VLM2-Bench: A Closer Look at How Well VLMs Implicitly Link Explicit Matching Visual Cues
Visually linking matching cues is a crucial ability in daily life, such as identifying the same person in multiple photos based on their cues, even without knowing who they are. Despite the extensive knowledge that vision-language models (VLMs) possess, it remains largely unexplored whether they are capable of performing this fundamental task. To address this, we introduce \textbf{VLM2-Bench}, a benchmark designed to assess whether VLMs can Visually Link Matching cues, with 9 subtasks and over 3,000 test cases. Comprehensive evaluation across twelve VLMs, along with further analysis of various language-side and vision-side prompting methods, leads to a total of eight key findings. We identify critical challenges in models' ability to link visual cues, highlighting a significant performance gap. Based on these insights, we advocate for (i) enhancing core visual capabilities to improve adaptability and reduce reliance on prior knowledge, (ii) establishing clearer principles for integrating language-based reasoning in vision-centric tasks to prevent unnecessary biases, and (iii) shifting vision-text training paradigms toward fostering models' ability to independently structure and infer relationships among visual cues.
comment: Project Page: https://vlm2-bench.github.io/ Camera Ready version
♻ ☆ Don't Say No: Jailbreaking LLM by Suppressing Refusal ACL 2025
Ensuring the safety alignment of Large Language Models (LLMs) is critical for generating responses consistent with human values. However, LLMs remain vulnerable to jailbreaking attacks, where carefully crafted prompts manipulate them into producing toxic content. One category of such attacks reformulates the task as an optimization problem, aiming to elicit affirmative responses from the LLM. However, these methods heavily rely on predefined objectionable behaviors, limiting their effectiveness and adaptability to diverse harmful queries. In this study, we first identify why the vanilla target loss is suboptimal and then propose enhancements to the loss objective. We introduce DSN (Don't Say No) attack, which combines a cosine decay schedule method with refusal suppression to achieve higher success rates. Extensive experiments demonstrate that DSN outperforms baseline attacks and achieves state-of-the-art attack success rates (ASR). DSN also shows strong universality and transferability to unseen datasets and black-box models.
comment: Accepted by ACL 2025 Findings
♻ ☆ Transferable Modeling Strategies for Low-Resource LLM Tasks: A Prompt and Alignment-Based Approach
This paper addresses the limited transfer and adaptation capabilities of large language models in low-resource language scenarios. It proposes a unified framework that combines a knowledge transfer module with parameter-efficient fine-tuning strategies. The method introduces knowledge alignment loss and soft prompt tuning to guide the model in effectively absorbing the structural features of target languages or tasks under minimal annotation. This enhances both generalization performance and training stability. The framework includes lightweight adaptation modules to reduce computational costs. During training, it integrates freezing strategies and prompt injection to preserve the model's original knowledge while enabling quick adaptation to new tasks. The study also conducts stability analysis experiments and synthetic pseudo-data transfer experiments to systematically evaluate the method's applicability and robustness across different low-resource tasks. Experimental results show that compared with existing multilingual pre-trained models and mainstream transfer methods, the proposed approach achieves higher performance and stability on cross-lingual tasks such as MLQA, XQuAD, and PAWS-X. It demonstrates particularly strong advantages under extremely data-scarce conditions. The proposed method offers strong generality and scalability. It enhances task-specific adaptability while preserving the general capabilities of large language models. This makes it well-suited for complex semantic modeling and multilingual processing tasks.
♻ ☆ Text to Band Gap: Pre-trained Language Models as Encoders for Semiconductor Band Gap Prediction
We investigate the use of transformer-based language models, RoBERTa, T5, and LLaMA, for predicting the band gaps of semiconductor materials directly from textual representations that encode key material features such as chemical composition, crystal system, space group, number of atoms per unit cell, valence electron count, and other relevant electronic and structural properties. Quantum chemistry simulations such as DFT provide accurate predictions but are computationally intensive, limiting their feasibility for large-scale materials screening. Shallow ML models offer faster alternatives but typically require extensive data preprocessing to convert non-numerical material features into structured numerical inputs, often at the cost of losing critical descriptive information. In contrast, our approach leverages pretrained language models to process textual data directly, eliminating the need for manual feature engineering. We construct material descriptions in two formats: structured strings that combine key features in a consistent template, and natural language narratives generated using the ChatGPT API. For each model, we append a custom regression head and perform task-specific finetuning on a curated dataset of inorganic compounds. Our results show that finetuned language models, particularly the decoder-only LLaMA-3 architecture, can outperform conventional approaches in prediction accuracy and flexibility, achieving an MAE of 0.25 eV and R2 of 0.89, compared to the best shallow ML baseline, which achieved an MAE of 0.32 eV and R2 of 0.84. Notably, LLaMA-3 achieves competitive accuracy with minimal finetuning, suggesting its architecture enables more transferable representations for scientific tasks. This work demonstrates the effectiveness of finetuned language models for scientific property prediction and provides a scalable, language-native framework for materials informatics.
♻ ☆ Delving into Multilingual Ethical Bias: The MSQAD with Statistical Hypothesis Tests for Large Language Models ACL 2025
Despite the recent strides in large language models, studies have underscored the existence of social biases within these systems. In this paper, we delve into the validation and comparison of the ethical biases of LLMs concerning globally discussed and potentially sensitive topics, hypothesizing that these biases may arise from language-specific distinctions. Introducing the Multilingual Sensitive Questions & Answers Dataset (MSQAD), we collected news articles from Human Rights Watch covering 17 topics, and generated socially sensitive questions along with corresponding responses in multiple languages. We scrutinized the biases of these responses across languages and topics, employing two statistical hypothesis tests. The results showed that the null hypotheses were rejected in most cases, indicating biases arising from cross-language differences. It demonstrates that ethical biases in responses are widespread across various languages, and notably, these biases were prevalent even among different LLMs. By making the proposed MSQAD openly available, we aim to facilitate future research endeavors focused on examining cross-language biases in LLMs and their variant models.
comment: ACL 2025 main conference
♻ ☆ Multi-interaction TTS toward professional recording reproduction
Voice directors often iteratively refine voice actors' performances by providing feedback to achieve the desired outcome. While this iterative feedback-based refinement process is important in actual recordings, it has been overlooked in text-to-speech synthesis (TTS). As a result, fine-grained style refinement after the initial synthesis is not possible, even though the synthesized speech often deviates from the user's intended style. To address this issue, we propose a TTS method with multi-step interaction that allows users to intuitively and rapidly refine synthesized speech. Our approach models the interaction between the TTS model and its user to emulate the relationship between voice actors and voice directors. Experiments show that the proposed model with its corresponding dataset enables iterative style refinements in accordance with users' directions, thus demonstrating its multi-interaction capability. Sample audios are available: https://ntt-hilab-gensp.github.io/ssw13multiinteractiontts/
comment: 7 pages,6 figures, Accepted to Speech Synthesis Workshop 2025 (SSW13)
♻ ☆ olmOCR: Unlocking Trillions of Tokens in PDFs with Vision Language Models
PDF documents have the potential to provide trillions of novel, high-quality tokens for training language models. However, these documents come in a diversity of types with differing formats and visual layouts that pose a challenge when attempting to extract and faithfully represent the underlying content for language model use. Traditional open source tools often produce lower quality extractions compared to vision language models (VLMs), but reliance on the best VLMs can be prohibitively costly (e.g., over 6,240 USD per million PDF pages for GPT-4o) or infeasible if the PDFs cannot be sent to proprietary APIs. We present olmOCR, an open-source toolkit for processing PDFs into clean, linearized plain text in natural reading order while preserving structured content like sections, tables, lists, equations, and more. Our toolkit runs a fine-tuned 7B vision language model (VLM) trained on olmOCR-mix-0225, a sample of 260,000 pages from over 100,000 crawled PDFs with diverse properties, including graphics, handwritten text and poor quality scans. olmOCR is optimized for large-scale batch processing, able to scale flexibly to different hardware setups and can convert a million PDF pages for only 176 USD. To aid comparison with existing systems, we also introduce olmOCR-Bench, a curated set of 1,400 PDFs capturing many content types that remain challenging even for the best tools and VLMs, including formulas, tables, tiny fonts, old scans, and more. We find olmOCR outperforms even top VLMs including GPT-4o, Gemini Flash 2 and Qwen-2.5-VL. We openly release all components of olmOCR: our fine-tuned VLM model, training code and data, an efficient inference pipeline that supports vLLM and SGLang backends, and benchmark olmOCR-Bench.
♻ ☆ Direct Quantized Training of Language Models with Stochastic Rounding
Although recent quantized Large Language Models (LLMs), such as BitNet, have paved the way for significant reduction in memory usage during deployment with binary or ternary weights, training these models still demands substantial memory footprints. This is partly because high-precision (i.e., unquantized) weights required for straight-through estimation must be maintained throughout the whole training process. To address this, we explore directly updating the quantized low-precision weights without relying on straight-through estimation during backpropagation, aiming to save memory usage during training. Specifically, we employ a stochastic rounding technique to minimize the information loss caused by the use of low-bit weights throughout training. Experimental results on our LLaMA-structured models of various sizes indicate that (1) training with only low-precision weights is feasible even when they are constrained to ternary values; (2) extending the bit width to 8 bits achieves performance on par with BitNet b1.58; (3) our models remain robust to precision scaling and memory reduction, showing minimal performance degradation when moving from FP32 to lower-memory environments (BF16/FP8); and (4) our models also support inference using ternary weights, showcasing their flexibility in deployment.
comment: work in progress, extended experiments to 1B size models
♻ ☆ Fast-dLLM: Training-free Acceleration of Diffusion LLM by Enabling KV Cache and Parallel Decoding
Diffusion-based large language models (Diffusion LLMs) have shown promise for non-autoregressive text generation with parallel decoding capabilities. However, the practical inference speed of open-sourced Diffusion LLMs often lags behind autoregressive models due to the lack of Key-Value (KV) Cache and quality degradation when decoding multiple tokens simultaneously. To bridge this gap, we introduce a novel block-wise approximate KV Cache mechanism tailored for bidirectional diffusion models, enabling cache reuse with negligible performance drop. Additionally, we identify the root cause of generation quality degradation in parallel decoding as the disruption of token dependencies under the conditional independence assumption. To address this, we propose a confidence-aware parallel decoding strategy that selectively decodes tokens exceeding a confidence threshold, mitigating dependency violations and maintaining generation quality. Experimental results on LLaDA and Dream models across multiple LLM benchmarks demonstrate up to \textbf{27.6$\times$ throughput} improvement with minimal accuracy loss, closing the performance gap with autoregressive models and paving the way for practical deployment of Diffusion LLMs.
♻ ☆ MassTool: A Multi-Task Search-Based Tool Retrieval Framework for Large Language Models
Tool retrieval is a critical component in enabling large language models (LLMs) to interact effectively with external tools. It aims to precisely filter the massive tools into a small set of candidates for the downstream tool-augmented LLMs. However, most existing approaches primarily focus on optimizing tool representations, often neglecting the importance of precise query comprehension. To address this gap, we introduce MassTool, a multi-task search-based framework designed to enhance both query representation and tool retrieval accuracy. MassTool employs a two-tower architecture: a tool usage detection tower that predicts the need for function calls, and a tool retrieval tower that leverages a query-centric graph convolution network (QC-GCN) for effective query-tool matching. It also incorporates search-based user intent modeling (SUIM) to handle diverse and out-of-distribution queries, alongside an adaptive knowledge transfer (AdaKT) module for efficient multi-task learning. By jointly optimizing tool usage detection loss, list-wise retrieval loss, and contrastive regularization loss, MassTool establishes a robust dual-step sequential decision-making pipeline for precise query understanding. Extensive experiments demonstrate its effectiveness in improving retrieval accuracy. Our code is available at https://github.com/wxydada/MassTool.
♻ ☆ Pre-training Large Memory Language Models with Internal and External Knowledge
Neural language models are black-boxes -- both linguistic patterns and factual knowledge are distributed across billions of opaque parameters. This entangled encoding makes it difficult to reliably inspect, verify, or update specific facts. We propose a new class of language models, Large Memory Language Models (LMLM) with a pre-training recipe that stores factual knowledge in both internal weights and an external database. Our approach strategically masks externally retrieved factual values from the training loss, thereby teaching the model to perform targeted lookups rather than relying on memorization in model weights. Our experiments demonstrate that LMLMs achieve competitive performance compared to significantly larger, knowledge-dense LLMs on standard benchmarks, while offering the advantages of explicit, editable, and verifiable knowledge bases. This work represents a fundamental shift in how language models interact with and manage factual knowledge.
comment: Code, models, and data available at https://github.com/kilian-group/LMLM
♻ ☆ KatFishNet: Detecting LLM-Generated Korean Text through Linguistic Feature Analysis ACL 2025
The rapid advancement of large language models (LLMs) increases the difficulty of distinguishing between human-written and LLM-generated text. Detecting LLM-generated text is crucial for upholding academic integrity, preventing plagiarism, protecting copyrights, and ensuring ethical research practices. Most prior studies on detecting LLM-generated text focus primarily on English text. However, languages with distinct morphological and syntactic characteristics require specialized detection approaches. Their unique structures and usage patterns can hinder the direct application of methods primarily designed for English. Among such languages, we focus on Korean, which has relatively flexible spacing rules, a rich morphological system, and less frequent comma usage compared to English. We introduce KatFish, the first benchmark dataset for detecting LLM-generated Korean text. The dataset consists of text written by humans and generated by four LLMs across three genres. By examining spacing patterns, part-of-speech diversity, and comma usage, we illuminate the linguistic differences between human-written and LLM-generated Korean text. Building on these observations, we propose KatFishNet, a detection method specifically designed for the Korean language. KatFishNet achieves an average of 19.78% higher AUROC compared to the best-performing existing detection method. Our code and data are available at https://github.com/Shinwoo-Park/detecting_llm_generated_korean_text_through_linguistic_analysis.
comment: Accepted to ACL 2025 main conference
♻ ☆ $μ^2$Tokenizer: Differentiable Multi-Scale Multi-Modal Tokenizer for Radiology Report Generation MICCAI 2025
Automated radiology report generation (RRG) aims to produce detailed textual reports from clinical imaging, such as computed tomography (CT) scans, to improve the accuracy and efficiency of diagnosis and provision of management advice. RRG is complicated by two key challenges: (1) inherent complexity in extracting relevant information from imaging data under resource constraints, and (2) difficulty in objectively evaluating discrepancies between model-generated and expert-written reports. To address these challenges, we propose $\mu^2$LLM, a $\underline{\textbf{mu}}$ltiscale $\underline{\textbf{mu}}$ltimodal large language models for RRG tasks. The novel ${\mu}^2$Tokenizer, as an intermediate layer, integrates multi-modal features from the multiscale visual tokenizer and the text tokenizer, then enhances report generation quality through direct preference optimization (DPO), guided by GREEN-RedLlama. Experimental results on four large CT image-report medical datasets demonstrate that our method outperforms existing approaches, highlighting the potential of our fine-tuned $\mu^2$LLMs on limited data for RRG tasks. At the same time, for prompt engineering, we introduce a five-stage, LLM-driven pipeline that converts routine CT reports into paired visual-question-answer triples and citation-linked reasoning narratives, creating a scalable, high-quality supervisory corpus for explainable multimodal radiology LLM. All code, datasets, and models will be publicly available in our official repository. https://github.com/Siyou-Li/u2Tokenizer
comment: Accepted by MICCAI 2025
♻ ☆ Combating Confirmation Bias: A Unified Pseudo-Labeling Framework for Entity Alignment
Entity alignment (EA) aims at identifying equivalent entity pairs across different knowledge graphs (KGs) that refer to the same real-world identity. To circumvent the shortage of seed alignments provided for training, recent EA models utilize pseudo-labeling strategies to iteratively add unaligned entity pairs predicted with high confidence to the seed alignments for model training. However, the adverse impact of confirmation bias during pseudo-labeling has been largely overlooked, thus hindering entity alignment performance. To systematically combat confirmation bias for pseudo-labeling-based entity alignment, we propose a Unified Pseudo-Labeling framework for Entity Alignment (UPL-EA) that explicitly eliminates pseudo-labeling errors to boost the accuracy of entity alignment. UPL-EA consists of two complementary components: (1) Optimal Transport (OT)-based pseudo-labeling uses discrete OT modeling as an effective means to determine entity correspondences and reduce erroneous matches across two KGs. An effective criterion is derived to infer pseudo-labeled alignments that satisfy one-to-one correspondences; (2) Parallel pseudo-label ensembling refines pseudo-labeled alignments by combining predictions over multiple models independently trained in parallel. The ensembled pseudo-labeled alignments are thereafter used to augment seed alignments to reinforce subsequent model training for alignment inference. The effectiveness of UPL-EA in eliminating pseudo-labeling errors is both theoretically supported and experimentally validated. Our extensive results and in-depth analyses demonstrate the superiority of UPL-EA over 15 competitive baselines and its utility as a general pseudo-labeling framework for entity alignment.
♻ ☆ Towards Safety Evaluations of Theory of Mind in Large Language Models
As the capabilities of large language models (LLMs) continue to advance, the importance of rigorous safety evaluation is becoming increasingly evident. Recent concerns within the realm of safety assessment have highlighted instances in which LLMs exhibit behaviors that appear to disable oversight mechanisms and respond in a deceptive manner. For example, there have been reports suggesting that, when confronted with information unfavorable to their own persistence during task execution, LLMs may act covertly and even provide false answers to questions intended to verify their behavior. To evaluate the potential risk of such deceptive actions toward developers or users, it is essential to investigate whether these behaviors stem from covert, intentional processes within the model. In this study, we propose that it is necessary to measure the theory of mind capabilities of LLMs. We begin by reviewing existing research on theory of mind and identifying the perspectives and tasks relevant to its application in safety evaluation. Given that theory of mind has been predominantly studied within the context of developmental psychology, we analyze developmental trends across a series of open-weight LLMs. Our results indicate that while LLMs have improved in reading comprehension, their theory of mind capabilities have not shown comparable development. Finally, we present the current state of safety evaluation with respect to LLMs' theory of mind, and discuss remaining challenges for future work.
♻ ☆ SHuBERT: Self-Supervised Sign Language Representation Learning via Multi-Stream Cluster Prediction ACL 2025
Sign language processing has traditionally relied on task-specific models, limiting the potential for transfer learning across tasks. Pre-training methods for sign language have typically focused on either supervised pre-training, which cannot take advantage of unlabeled data, or context-independent (frame or video segment) representations, which ignore the effects of relationships across time in sign language. We introduce SHuBERT (Sign Hidden-Unit BERT), a self-supervised contextual representation model learned from approximately 1,000 hours of American Sign Language video. SHuBERT adapts masked token prediction objectives to multi-stream visual sign language input, learning to predict multiple targets corresponding to clustered hand, face, and body pose streams. SHuBERT achieves state-of-the-art performance across multiple tasks including sign language translation, isolated sign language recognition, and fingerspelling detection.
comment: Fixed Figure 1. ACL 2025
Beyond Scale: The Diversity Coefficient as a Data Quality Metric for Variability in Natural Language Data
Current trends in pre-training Large Language Models (LLMs) primarily focus on the scaling of model and dataset size. While the quality of pre-training data is considered an important factor for training powerful LLMs, it remains a nebulous concept that has not been rigorously characterized. To this end, we propose a formalization of one key aspect of data quality -- measuring the variability of natural language data -- specifically via a measure we call the diversity coefficient. Our empirical analysis shows that the proposed diversity coefficient aligns with the intuitive properties of diversity and variability, e.g., it increases as the number of latent concepts increases. Then, we measure the diversity coefficient of publicly available pre-training datasets and demonstrate that their formal diversity is high compared to theoretical lower and upper bounds. Finally, we conduct a comprehensive set of controlled interventional experiments with GPT-2 and LLaMAv2 that demonstrate the diversity coefficient of pre-training data characterizes useful aspects of downstream model evaluation performance -- totaling 44 models of various sizes (51M to 7B parameters). We conclude that our formal notion of diversity is an important aspect of data quality that captures variability and causally leads to improved evaluation performance.
♻ ☆ Rethinking LLM Training through Information Geometry and Quantum Metrics
Optimization in large language models (LLMs) unfolds over high-dimensional parameter spaces with non-Euclidean structure. Information geometry frames this landscape using the Fisher information metric, enabling more principled learning via natural gradient descent. Though often impractical, this geometric lens clarifies phenomena such as sharp minima, generalization, and observed scaling laws. We argue that curvature-aware approaches deepen our understanding of LLM training. Finally, we speculate on quantum analogies based on the Fubini-Study metric and Quantum Fisher Information, hinting at efficient optimization in quantum-enhanced systems.
comment: 9 pages, 1 figure(s)
Quantifying the Importance of Data Alignment in Downstream Model Performance
Contrary to the conventional emphasis on dataset size, we explore the role of data alignment -- an often overlooked aspect of data quality -- in training capable Large Language Models (LLMs). To do so, we use the Task2Vec-based alignment coefficient, a quantitative measure of the similarity between two datasets, to quantify the impact of alignment between training data and evaluation data on downstream performance. In particular, we conduct controlled \textit{interventional} experiments for two settings: 1. the impact of increased alignment coefficients between various pre-training (pt) against evaluation datasets, and 2. the impact of increased alignment coefficients between domain specific fine-tuning (ft) against domain specific evaluation. The domain specific task we explore is Autoformalization -- the machine translation task between natural language and code for formal verification. In both settings, we find a strong, predictable negative correlation between the alignment coefficient of a model's training and evaluation data and the model's loss/perplexity on the respective downstream task. These findings suggest a re-evaluation of LLM training approaches, demonstrating the relevance of data alignment compared to data quantity, especially in specialized downstream tasks such as Autoformalization.
♻ ☆ De-mark: Watermark Removal in Large Language Models ICML 2025
Watermarking techniques offer a promising way to identify machine-generated content via embedding covert information into the contents generated from language models (LMs). However, the robustness of the watermarking schemes has not been well explored. In this paper, we present De-mark, an advanced framework designed to remove n-gram-based watermarks effectively. Our method utilizes a novel querying strategy, termed random selection probing, which aids in assessing the strength of the watermark and identifying the red-green list within the n-gram watermark. Experiments on popular LMs, such as Llama3 and ChatGPT, demonstrate the efficiency and effectiveness of De-mark in watermark removal and exploitation tasks.
comment: ICML 2025
Computer Vision and Pattern Recognition 100
☆ Locality-aware Parallel Decoding for Efficient Autoregressive Image Generation
We present Locality-aware Parallel Decoding (LPD) to accelerate autoregressive image generation. Traditional autoregressive image generation relies on next-patch prediction, a memory-bound process that leads to high latency. Existing works have tried to parallelize next-patch prediction by shifting to multi-patch prediction to accelerate the process, but only achieved limited parallelization. To achieve high parallelization while maintaining generation quality, we introduce two key techniques: (1) Flexible Parallelized Autoregressive Modeling, a novel architecture that enables arbitrary generation ordering and degrees of parallelization. It uses learnable position query tokens to guide generation at target positions while ensuring mutual visibility among concurrently generated tokens for consistent parallel decoding. (2) Locality-aware Generation Ordering, a novel schedule that forms groups to minimize intra-group dependencies and maximize contextual support, enhancing generation quality. With these designs, we reduce the generation steps from 256 to 20 (256$\times$256 res.) and 1024 to 48 (512$\times$512 res.) without compromising quality on the ImageNet class-conditional generation, and achieving at least 3.4$\times$ lower latency than previous parallelized autoregressive models.
comment: The first two authors contributed equally to this work
☆ How Well Does GPT-4o Understand Vision? Evaluating Multimodal Foundation Models on Standard Computer Vision Tasks
Multimodal foundation models, such as GPT-4o, have recently made remarkable progress, but it is not clear where exactly these models stand in terms of understanding vision. In this paper, we benchmark the performance of popular multimodal foundation models (GPT-4o, o4-mini, Gemini 1.5 Pro and Gemini 2.0 Flash, Claude 3.5 Sonnet, Qwen2-VL, Llama 3.2) on standard computer vision tasks (semantic segmentation, object detection, image classification, depth and surface normal prediction) using established datasets (e.g., COCO, ImageNet and its variants, etc). The main challenges to performing this are: 1) most models are trained to output text and cannot natively express versatile domains, such as segments or 3D geometry, and 2) many leading models are proprietary and accessible only at an API level, i.e., there is no weight access to adapt them. We address these challenges by translating standard vision tasks into equivalent text-promptable and API-compatible tasks via prompt chaining to create a standardized benchmarking framework. We observe that 1) the models are not close to the state-of-the-art specialist models at any task. However, 2) they are respectable generalists; this is remarkable as they are presumably trained on primarily image-text-based tasks. 3) They perform semantic tasks notably better than geometric ones. 4) While the prompt-chaining techniques affect performance, better models exhibit less sensitivity to prompt variations. 5) GPT-4o performs the best among non-reasoning models, securing the top position in 4 out of 6 tasks, 6) reasoning models, e.g. o3, show improvements in geometric tasks, and 7) a preliminary analysis of models with native image generation, like the latest GPT-4o, shows they exhibit quirks like hallucinations and spatial misalignments.
comment: Project page at https://fm-vision-evals.epfl.ch/
☆ FreeMorph: Tuning-Free Generalized Image Morphing with Diffusion Model ICCV 2025
We present FreeMorph, the first tuning-free method for image morphing that accommodates inputs with different semantics or layouts. Unlike existing methods that rely on finetuning pre-trained diffusion models and are limited by time constraints and semantic/layout discrepancies, FreeMorph delivers high-fidelity image morphing without requiring per-instance training. Despite their efficiency and potential, tuning-free methods face challenges in maintaining high-quality results due to the non-linear nature of the multi-step denoising process and biases inherited from the pre-trained diffusion model. In this paper, we introduce FreeMorph to address these challenges by integrating two key innovations. 1) We first propose a guidance-aware spherical interpolation design that incorporates explicit guidance from the input images by modifying the self-attention modules, thereby addressing identity loss and ensuring directional transitions throughout the generated sequence. 2) We further introduce a step-oriented variation trend that blends self-attention modules derived from each input image to achieve controlled and consistent transitions that respect both inputs. Our extensive evaluations demonstrate that FreeMorph outperforms existing methods, being 10x ~ 50x faster and establishing a new state-of-the-art for image morphing.
comment: ICCV 2025. Project page: https://yukangcao.github.io/FreeMorph/
☆ Kwai Keye-VL Technical Report
While Multimodal Large Language Models (MLLMs) demonstrate remarkable capabilities on static images, they often fall short in comprehending dynamic, information-dense short-form videos, a dominant medium in today's digital landscape. To bridge this gap, we introduce \textbf{Kwai Keye-VL}, an 8-billion-parameter multimodal foundation model engineered for leading-edge performance in short-video understanding while maintaining robust general-purpose vision-language abilities. The development of Keye-VL rests on two core pillars: a massive, high-quality dataset exceeding 600 billion tokens with a strong emphasis on video, and an innovative training recipe. This recipe features a four-stage pre-training process for solid vision-language alignment, followed by a meticulous two-phase post-training process. The first post-training stage enhances foundational capabilities like instruction following, while the second phase focuses on stimulating advanced reasoning. In this second phase, a key innovation is our five-mode ``cold-start'' data mixture, which includes ``thinking'', ``non-thinking'', ``auto-think'', ``think with image'', and high-quality video data. This mixture teaches the model to decide when and how to reason. Subsequent reinforcement learning (RL) and alignment steps further enhance these reasoning capabilities and correct abnormal model behaviors, such as repetitive outputs. To validate our approach, we conduct extensive evaluations, showing that Keye-VL achieves state-of-the-art results on public video benchmarks and remains highly competitive on general image-based tasks (Figure 1). Furthermore, we develop and release the \textbf{KC-MMBench}, a new benchmark tailored for real-world short-video scenarios, where Keye-VL shows a significant advantage.
comment: Technical Report: https://github.com/Kwai-Keye/Keye
☆ LongAnimation: Long Animation Generation with Dynamic Global-Local Memory
Animation colorization is a crucial part of real animation industry production. Long animation colorization has high labor costs. Therefore, automated long animation colorization based on the video generation model has significant research value. Existing studies are limited to short-term colorization. These studies adopt a local paradigm, fusing overlapping features to achieve smooth transitions between local segments. However, the local paradigm neglects global information, failing to maintain long-term color consistency. In this study, we argue that ideal long-term color consistency can be achieved through a dynamic global-local paradigm, i.e., dynamically extracting global color-consistent features relevant to the current generation. Specifically, we propose LongAnimation, a novel framework, which mainly includes a SketchDiT, a Dynamic Global-Local Memory (DGLM), and a Color Consistency Reward. The SketchDiT captures hybrid reference features to support the DGLM module. The DGLM module employs a long video understanding model to dynamically compress global historical features and adaptively fuse them with the current generation features. To refine the color consistency, we introduce a Color Consistency Reward. During inference, we propose a color consistency fusion to smooth the video segment transition. Extensive experiments on both short-term (14 frames) and long-term (average 500 frames) animations show the effectiveness of LongAnimation in maintaining short-term and long-term color consistency for open-domain animation colorization task. The code can be found at https://cn-makers.github.io/long_animation_web/.
☆ CI-VID: A Coherent Interleaved Text-Video Dataset
Text-to-video (T2V) generation has recently attracted considerable attention, resulting in the development of numerous high-quality datasets that have propelled progress in this area. However, existing public datasets are primarily composed of isolated text-video (T-V) pairs and thus fail to support the modeling of coherent multi-clip video sequences. To address this limitation, we introduce CI-VID, a dataset that moves beyond isolated text-to-video (T2V) generation toward text-and-video-to-video (TV2V) generation, enabling models to produce coherent, multi-scene video sequences. CI-VID contains over 340,000 samples, each featuring a coherent sequence of video clips with text captions that capture both the individual content of each clip and the transitions between them, enabling visually and textually grounded generation. To further validate the effectiveness of CI-VID, we design a comprehensive, multi-dimensional benchmark incorporating human evaluation, VLM-based assessment, and similarity-based metrics. Experimental results demonstrate that models trained on CI-VID exhibit significant improvements in both accuracy and content consistency when generating video sequences. This facilitates the creation of story-driven content with smooth visual transitions and strong temporal coherence, underscoring the quality and practical utility of the CI-VID dataset We release the CI-VID dataset and the accompanying code for data construction and evaluation at: https://github.com/ymju-BAAI/CI-VID
☆ evMLP: An Efficient Event-Driven MLP Architecture for Vision
Deep neural networks have achieved remarkable results in computer vision tasks. In the early days, Convolutional Neural Networks (CNNs) were the mainstream architecture. In recent years, Vision Transformers (ViTs) have become increasingly popular. In addition, exploring applications of multi-layer perceptrons (MLPs) has provided new perspectives for research into vision model architectures. In this paper, we present evMLP accompanied by a simple event-driven local update mechanism. The proposed evMLP can independently process patches on images or feature maps via MLPs. We define changes between consecutive frames as "events". Under the event-driven local update mechanism, evMLP selectively processes patches where events occur. For sequential image data (e.g., video processing), this approach improves computational performance by avoiding redundant computations. Through ImageNet image classification experiments, evMLP attains accuracy competitive with state-of-the-art models. More significantly, experimental results on multiple video datasets demonstrate that evMLP reduces computational cost via its event-driven local update mechanism while maintaining output consistency with its non-event-driven baseline. The code and trained models are available at https://github.com/i-evi/evMLP.
☆ IC-Custom: Diverse Image Customization via In-Context Learning
Image customization, a crucial technique for industrial media production, aims to generate content that is consistent with reference images. However, current approaches conventionally separate image customization into position-aware and position-free customization paradigms and lack a universal framework for diverse customization, limiting their applications across various scenarios. To overcome these limitations, we propose IC-Custom, a unified framework that seamlessly integrates position-aware and position-free image customization through in-context learning. IC-Custom concatenates reference images with target images to a polyptych, leveraging DiT's multi-modal attention mechanism for fine-grained token-level interactions. We introduce the In-context Multi-Modal Attention (ICMA) mechanism with learnable task-oriented register tokens and boundary-aware positional embeddings to enable the model to correctly handle different task types and distinguish various inputs in polyptych configurations. To bridge the data gap, we carefully curated a high-quality dataset of 12k identity-consistent samples with 8k from real-world sources and 4k from high-quality synthetic data, avoiding the overly glossy and over-saturated synthetic appearance. IC-Custom supports various industrial applications, including try-on, accessory placement, furniture arrangement, and creative IP customization. Extensive evaluations on our proposed ProductBench and the publicly available DreamBench demonstrate that IC-Custom significantly outperforms community workflows, closed-source models, and state-of-the-art open-source approaches. IC-Custom achieves approximately 73% higher human preference across identity consistency, harmonicity, and text alignment metrics, while training only 0.4% of the original model parameters. Project page: https://liyaowei-stu.github.io/project/IC_Custom
comment: Project page: https://liyaowei-stu.github.io/project/IC_Custom
☆ 3D Reconstruction and Information Fusion between Dormant and Canopy Seasons in Commercial Orchards Using Deep Learning and Fast GICP
In orchard automation, dense foliage during the canopy season severely occludes tree structures, minimizing visibility to various canopy parts such as trunks and branches, which limits the ability of a machine vision system. However, canopy structure is more open and visible during the dormant season when trees are defoliated. In this work, we present an information fusion framework that integrates multi-seasonal structural data to support robotic and automated crop load management during the entire growing season. The framework combines high-resolution RGB-D imagery from both dormant and canopy periods using YOLOv9-Seg for instance segmentation, Kinect Fusion for 3D reconstruction, and Fast Generalized Iterative Closest Point (Fast GICP) for model alignment. Segmentation outputs from YOLOv9-Seg were used to extract depth-informed masks, which enabled accurate 3D point cloud reconstruction via Kinect Fusion; these reconstructed models from each season were subsequently aligned using Fast GICP to achieve spatially coherent multi-season fusion. The YOLOv9-Seg model, trained on manually annotated images, achieved a mean squared error (MSE) of 0.0047 and segmentation mAP@50 scores up to 0.78 for trunks in dormant season dataset. Kinect Fusion enabled accurate reconstruction of tree geometry, validated with field measurements resulting in root mean square errors (RMSE) of 5.23 mm for trunk diameter, 4.50 mm for branch diameter, and 13.72 mm for branch spacing. Fast GICP achieved precise cross-seasonal registration with a minimum fitness score of 0.00197, allowing integrated, comprehensive tree structure modeling despite heavy occlusions during the growing season. This fused structural representation enables robotic systems to access otherwise obscured architectural information, improving the precision of pruning, thinning, and other automated orchard operations.
comment: 17 pages, 4 tables, 11 figures
☆ Modality Agnostic, patient-specific digital twins modeling temporally varying digestive motion
Objective: Clinical implementation of deformable image registration (DIR) requires voxel-based spatial accuracy metrics such as manually identified landmarks, which are challenging to implement for highly mobile gastrointestinal (GI) organs. To address this, patient-specific digital twins (DT) modeling temporally varying motion were created to assess the accuracy of DIR methods. Approach: 21 motion phases simulating digestive GI motion as 4D sequences were generated from static 3D patient scans using published analytical GI motion models through a semi-automated pipeline. Eleven datasets, including six T2w FSE MRI (T2w MRI), two T1w 4D golden-angle stack-of-stars, and three contrast-enhanced CT scans. The motion amplitudes of the DTs were assessed against real patient stomach motion amplitudes extracted from independent 4D MRI datasets. The generated DTs were then used to assess six different DIR methods using target registration error, Dice similarity coefficient, and the 95th percentile Hausdorff distance using summary metrics and voxel-level granular visualizations. Finally, for a subset of T2w MRI scans from patients treated with MR-guided radiation therapy, dose distributions were warped and accumulated to assess dose warping errors, including evaluations of DIR performance in both low- and high-dose regions for patient-specific error estimation. Main results: Our proposed pipeline synthesized DTs modeling realistic GI motion, achieving mean and maximum motion amplitudes and a mean log Jacobian determinant within 0.8 mm and 0.01, respectively, similar to published real-patient gastric motion data. It also enables the extraction of detailed quantitative DIR performance metrics and rigorous validation of dose mapping accuracy. Significance: The pipeline enables rigorously testing DIR tools for dynamic, anatomically complex regions enabling granular spatial and dosimetric accuracies.
comment: 7 Pages, 6 figures, 4 tables
☆ Reasoning to Edit: Hypothetical Instruction-Based Image Editing with Visual Reasoning
Instruction-based image editing (IIE) has advanced rapidly with the success of diffusion models. However, existing efforts primarily focus on simple and explicit instructions to execute editing operations such as adding, deleting, moving, or swapping objects. They struggle to handle more complex implicit hypothetical instructions that require deeper reasoning to infer plausible visual changes and user intent. Additionally, current datasets provide limited support for training and evaluating reasoning-aware editing capabilities. Architecturally, these methods also lack mechanisms for fine-grained detail extraction that support such reasoning. To address these limitations, we propose Reason50K, a large-scale dataset specifically curated for training and evaluating hypothetical instruction reasoning image editing, along with ReasonBrain, a novel framework designed to reason over and execute implicit hypothetical instructions across diverse scenarios. Reason50K includes over 50K samples spanning four key reasoning scenarios: Physical, Temporal, Causal, and Story reasoning. ReasonBrain leverages Multimodal Large Language Models (MLLMs) for editing guidance generation and a diffusion model for image synthesis, incorporating a Fine-grained Reasoning Cue Extraction (FRCE) module to capture detailed visual and textual semantics essential for supporting instruction reasoning. To mitigate the semantic loss, we further introduce a Cross-Modal Enhancer (CME) that enables rich interactions between the fine-grained cues and MLLM-derived features. Extensive experiments demonstrate that ReasonBrain consistently outperforms state-of-the-art baselines on reasoning scenarios while exhibiting strong zero-shot generalization to conventional IIE tasks. Our dataset and code will be released publicly.
☆ Self-Reinforcing Prototype Evolution with Dual-Knowledge Cooperation for Semi-Supervised Lifelong Person Re-Identification ICCV 2025
Current lifelong person re-identification (LReID) methods predominantly rely on fully labeled data streams. However, in real-world scenarios where annotation resources are limited, a vast amount of unlabeled data coexists with scarce labeled samples, leading to the Semi-Supervised LReID (Semi-LReID) problem where LReID methods suffer severe performance degradation. Existing LReID methods, even when combined with semi-supervised strategies, suffer from limited long-term adaptation performance due to struggling with the noisy knowledge occurring during unlabeled data utilization. In this paper, we pioneer the investigation of Semi-LReID, introducing a novel Self-Reinforcing Prototype Evolution with Dual-Knowledge Cooperation framework (SPRED). Our key innovation lies in establishing a self-reinforcing cycle between dynamic prototype-guided pseudo-label generation and new-old knowledge collaborative purification to enhance the utilization of unlabeled data. Specifically, learnable identity prototypes are introduced to dynamically capture the identity distributions and generate high-quality pseudo-labels. Then, the dual-knowledge cooperation scheme integrates current model specialization and historical model generalization, refining noisy pseudo-labels. Through this cyclic design, reliable pseudo-labels are progressively mined to improve current-stage learning and ensure positive knowledge propagation over long-term learning. Experiments on the established Semi-LReID benchmarks show that our SPRED achieves state-of-the-art performance. Our source code is available at https://github.com/zhoujiahuan1991/ICCV2025-SPRED
comment: Accepted by ICCV 2025
☆ Future Slot Prediction for Unsupervised Object Discovery in Surgical Video MICCAI2025
Object-centric slot attention is an emerging paradigm for unsupervised learning of structured, interpretable object-centric representations (slots). This enables effective reasoning about objects and events at a low computational cost and is thus applicable to critical healthcare applications, such as real-time interpretation of surgical video. The heterogeneous scenes in real-world applications like surgery are, however, difficult to parse into a meaningful set of slots. Current approaches with an adaptive slot count perform well on images, but their performance on surgical videos is low. To address this challenge, we propose a dynamic temporal slot transformer (DTST) module that is trained both for temporal reasoning and for predicting the optimal future slot initialization. The model achieves state-of-the-art performance on multiple surgical databases, demonstrating that unsupervised object-centric methods can be applied to real-world data and become part of the common arsenal in healthcare applications.
comment: Accepted by MICCAI2025
☆ A computationally frugal open-source foundation model for thoracic disease detection in lung cancer screening programs
Low-dose computed tomography (LDCT) imaging employed in lung cancer screening (LCS) programs is increasing in uptake worldwide. LCS programs herald a generational opportunity to simultaneously detect cancer and non-cancer-related early-stage lung disease. Yet these efforts are hampered by a shortage of radiologists to interpret scans at scale. Here, we present TANGERINE, a computationally frugal, open-source vision foundation model for volumetric LDCT analysis. Designed for broad accessibility and rapid adaptation, TANGERINE can be fine-tuned off the shelf for a wide range of disease-specific tasks with limited computational resources and training data. Relative to models trained from scratch, TANGERINE demonstrates fast convergence during fine-tuning, thereby requiring significantly fewer GPU hours, and displays strong label efficiency, achieving comparable or superior performance with a fraction of fine-tuning data. Pretrained using self-supervised learning on over 98,000 thoracic LDCTs, including the UK's largest LCS initiative to date and 27 public datasets, TANGERINE achieves state-of-the-art performance across 14 disease classification tasks, including lung cancer and multiple respiratory diseases, while generalising robustly across diverse clinical centres. By extending a masked autoencoder framework to 3D imaging, TANGERINE offers a scalable solution for LDCT analysis, departing from recent closed, resource-intensive models by combining architectural simplicity, public availability, and modest computational requirements. Its accessible, open-source lightweight design lays the foundation for rapid integration into next-generation medical imaging tools that could transform LCS initiatives, allowing them to pivot from a singular focus on lung cancer detection to comprehensive respiratory disease management in high-risk populations.
☆ MobileIE: An Extremely Lightweight and Effective ConvNet for Real-Time Image Enhancement on Mobile Devices ICCV 2025
Recent advancements in deep neural networks have driven significant progress in image enhancement (IE). However, deploying deep learning models on resource-constrained platforms, such as mobile devices, remains challenging due to high computation and memory demands. To address these challenges and facilitate real-time IE on mobile, we introduce an extremely lightweight Convolutional Neural Network (CNN) framework with around 4K parameters. Our approach integrates reparameterization with an Incremental Weight Optimization strategy to ensure efficiency. Additionally, we enhance performance with a Feature Self-Transform module and a Hierarchical Dual-Path Attention mechanism, optimized with a Local Variance-Weighted loss. With this efficient framework, we are the first to achieve real-time IE inference at up to 1,100 frames per second (FPS) while delivering competitive image quality, achieving the best trade-off between speed and performance across multiple IE tasks. The code will be available at https://github.com/AVC2-UESTC/MobileIE.git.
comment: Accepted by ICCV 2025
☆ Modulate and Reconstruct: Learning Hyperspectral Imaging from Misaligned Smartphone Views
Hyperspectral reconstruction (HSR) from RGB images is a fundamentally ill-posed problem due to severe spectral information loss. Existing approaches typically rely on a single RGB image, limiting reconstruction accuracy. In this work, we propose a novel multi-image-to-hyperspectral reconstruction (MI-HSR) framework that leverages a triple-camera smartphone system, where two lenses are equipped with carefully selected spectral filters. Our configuration, grounded in theoretical and empirical analysis, enables richer and more diverse spectral observations than conventional single-camera setups. To support this new paradigm, we introduce Doomer, the first dataset for MI-HSR, comprising aligned images from three smartphone cameras and a hyperspectral reference camera across diverse scenes. We show that the proposed HSR model achieves consistent improvements over existing methods on the newly proposed benchmark. In a nutshell, our setup allows 30% towards more accurately estimated spectra compared to an ordinary RGB camera. Our findings suggest that multi-view spectral filtering with commodity hardware can unlock more accurate and practical hyperspectral imaging solutions.
☆ Autoadaptive Medical Segment Anything Model
Medical image segmentation is a key task in the imaging workflow, influencing many image-based decisions. Traditional, fully-supervised segmentation models rely on large amounts of labeled training data, typically obtained through manual annotation, which can be an expensive, time-consuming, and error-prone process. This signals a need for accurate, automatic, and annotation-efficient methods of training these models. We propose ADA-SAM (automated, domain-specific, and adaptive segment anything model), a novel multitask learning framework for medical image segmentation that leverages class activation maps from an auxiliary classifier to guide the predictions of the semi-supervised segmentation branch, which is based on the Segment Anything (SAM) framework. Additionally, our ADA-SAM model employs a novel gradient feedback mechanism to create a learnable connection between the segmentation and classification branches by using the segmentation gradients to guide and improve the classification predictions. We validate ADA-SAM on real-world clinical data collected during rehabilitation trials, and demonstrate that our proposed method outperforms both fully-supervised and semi-supervised baselines by double digits in limited label settings. Our code is available at: https://github.com/tbwa233/ADA-SAM.
comment: 11 pages, 2 figures, 3 tables
☆ Empowering Manufacturers with Privacy-Preserving AI Tools: A Case Study in Privacy-Preserving Machine Learning to Solve Real-World Problems
Small- and medium-sized manufacturers need innovative data tools but, because of competition and privacy concerns, often do not want to share their proprietary data with researchers who might be interested in helping. This paper introduces a privacy-preserving platform by which manufacturers may safely share their data with researchers through secure methods, so that those researchers then create innovative tools to solve the manufacturers' real-world problems, and then provide tools that execute solutions back onto the platform for others to use with privacy and confidentiality guarantees. We illustrate this problem through a particular use case which addresses an important problem in the large-scale manufacturing of food crystals, which is that quality control relies on image analysis tools. Previous to our research, food crystals in the images were manually counted, which required substantial and time-consuming human efforts, but we have developed and deployed a crystal analysis tool which makes this process both more rapid and accurate. The tool enables automatic characterization of the crystal size distribution and numbers from microscope images while the natural imperfections from the sample preparation are automatically removed; a machine learning model to count high resolution translucent crystals and agglomeration of crystals was also developed to aid in these efforts. The resulting algorithm was then packaged for real-world use on the factory floor via a web-based app secured through the originating privacy-preserving platform, allowing manufacturers to use it while keeping their proprietary data secure. After demonstrating this full process, future directions are also explored.
comment: 20 pages, 11 figures, 30 references
☆ AMD: Adaptive Momentum and Decoupled Contrastive Learning Framework for Robust Long-Tail Trajectory Prediction
Accurately predicting the future trajectories of traffic agents is essential in autonomous driving. However, due to the inherent imbalance in trajectory distributions, tail data in natural datasets often represents more complex and hazardous scenarios. Existing studies typically rely solely on a base model's prediction error, without considering the diversity and uncertainty of long-tail trajectory patterns. We propose an adaptive momentum and decoupled contrastive learning framework (AMD), which integrates unsupervised and supervised contrastive learning strategies. By leveraging an improved momentum contrast learning (MoCo-DT) and decoupled contrastive learning (DCL) module, our framework enhances the model's ability to recognize rare and complex trajectories. Additionally, we design four types of trajectory random augmentation methods and introduce an online iterative clustering strategy, allowing the model to dynamically update pseudo-labels and better adapt to the distributional shifts in long-tail data. We propose three different criteria to define long-tail trajectories and conduct extensive comparative experiments on the nuScenes and ETH$/$UCY datasets. The results show that AMD not only achieves optimal performance in long-tail trajectory prediction but also demonstrates outstanding overall prediction accuracy.
☆ HCNQA: Enhancing 3D VQA with Hierarchical Concentration Narrowing Supervision
3D Visual Question-Answering (3D VQA) is pivotal for models to perceive the physical world and perform spatial reasoning. Answer-centric supervision is a commonly used training method for 3D VQA models. Many models that utilize this strategy have achieved promising results in 3D VQA tasks. However, the answer-centric approach only supervises the final output of models and allows models to develop reasoning pathways freely. The absence of supervision on the reasoning pathway enables the potential for developing superficial shortcuts through common patterns in question-answer pairs. Moreover, although slow-thinking methods advance large language models, they suffer from underthinking. To address these issues, we propose \textbf{HCNQA}, a 3D VQA model leveraging a hierarchical concentration narrowing supervision method. By mimicking the human process of gradually focusing from a broad area to specific objects while searching for answers, our method guides the model to perform three phases of concentration narrowing through hierarchical supervision. By supervising key checkpoints on a general reasoning pathway, our method can ensure the development of a rational and effective reasoning pathway. Extensive experimental results demonstrate that our method can effectively ensure that the model develops a rational reasoning pathway and performs better. The code is available at https://github.com/JianuoZhu/HCNQA.
comment: ICANN 2025
☆ Robust brain age estimation from structural MRI with contrastive learning
Estimating brain age from structural MRI has emerged as a powerful tool for characterizing normative and pathological aging. In this work, we explore contrastive learning as a scalable and robust alternative to supervised approaches for brain age estimation. We introduce a novel contrastive loss function, $\mathcal{L}^{exp}$, and evaluate it across multiple public neuroimaging datasets comprising over 20,000 scans. Our experiments reveal four key findings. First, scaling pre-training on diverse, multi-site data consistently improves generalization performance, cutting external mean absolute error (MAE) nearly in half. Second, $\mathcal{L}^{exp}$ is robust to site-related confounds, maintaining low scanner-predictability as training size increases. Third, contrastive models reliably capture accelerated aging in patients with cognitive impairment and Alzheimer's disease, as shown through brain age gap analysis, ROC curves, and longitudinal trends. Lastly, unlike supervised baselines, $\mathcal{L}^{exp}$ maintains a strong correlation between brain age accuracy and downstream diagnostic performance, supporting its potential as a foundation model for neuroimaging. These results position contrastive learning as a promising direction for building generalizable and clinically meaningful brain representations.
comment: 11 pages
☆ FreeLoRA: Enabling Training-Free LoRA Fusion for Autoregressive Multi-Subject Personalization
Subject-driven image generation plays a crucial role in applications such as virtual try-on and poster design. Existing approaches typically fine-tune pretrained generative models or apply LoRA-based adaptations for individual subjects. However, these methods struggle with multi-subject personalization, as combining independently adapted modules often requires complex re-tuning or joint optimization. We present FreeLoRA, a simple and generalizable framework that enables training-free fusion of subject-specific LoRA modules for multi-subject personalization. Each LoRA module is adapted on a few images of a specific subject using a Full Token Tuning strategy, where it is applied across all tokens in the prompt to encourage weakly supervised token-content alignment. At inference, we adopt Subject-Aware Inference, activating each module only on its corresponding subject tokens. This enables training-free fusion of multiple personalized subjects within a single image, while mitigating overfitting and mutual interference between subjects. Extensive experiments show that FreeLoRA achieves strong performance in both subject fidelity and prompt consistency.
☆ Boosting Adversarial Transferability Against Defenses via Multi-Scale Transformation
The transferability of adversarial examples poses a significant security challenge for deep neural networks, which can be attacked without knowing anything about them. In this paper, we propose a new Segmented Gaussian Pyramid (SGP) attack method to enhance the transferability, particularly against defense models. Unlike existing methods that generally focus on single-scale images, our approach employs Gaussian filtering and three types of downsampling to construct a series of multi-scale examples. Then, the gradients of the loss function with respect to each scale are computed, and their average is used to determine the adversarial perturbations. The proposed SGP can be considered an input transformation with high extensibility that is easily integrated into most existing adversarial attacks. Extensive experiments demonstrate that in contrast to the state-of-the-art methods, SGP significantly enhances attack success rates against black-box defense models, with average attack success rates increasing by 2.3% to 32.6%, based only on transferability.
☆ How Do Vision-Language Models Process Conflicting Information Across Modalities?
AI models are increasingly required to be multimodal, integrating disparate input streams into a coherent state representation on which subsequent behaviors and actions can be based. This paper seeks to understand how such models behave when input streams present conflicting information. Focusing specifically on vision-language models, we provide inconsistent inputs (e.g., an image of a dog paired with the caption "A photo of a cat") and ask the model to report the information present in one of the specific modalities (e.g., "What does the caption say / What is in the image?"). We find that models often favor one modality over the other, e.g., reporting the image regardless of what the caption says, but that different models differ in which modality they favor. We find evidence that the behaviorally preferred modality is evident in the internal representational structure of the model, and that specific attention heads can restructure the representations to favor one modality over the other. Moreover, we find modality-agnostic "router heads" which appear to promote answers about the modality requested in the instruction, and which can be manipulated or transferred in order to improve performance across datasets and modalities. Together, the work provides essential steps towards identifying and controlling if and how models detect and resolve conflicting signals within complex multimodal environments.
comment: All code and resources are available at: https://github.com/ethahtz/vlm_conflicting_info_processing
☆ Are Vision Transformer Representations Semantically Meaningful? A Case Study in Medical Imaging
Vision transformers (ViTs) have rapidly gained prominence in medical imaging tasks such as disease classification, segmentation, and detection due to their superior accuracy compared to conventional deep learning models. However, due to their size and complex interactions via the self-attention mechanism, they are not well understood. In particular, it is unclear whether the representations produced by such models are semantically meaningful. In this paper, using a projected gradient-based algorithm, we show that their representations are not semantically meaningful and they are inherently vulnerable to small changes. Images with imperceptible differences can have very different representations; on the other hand, images that should belong to different semantic classes can have nearly identical representations. Such vulnerability can lead to unreliable classification results; for example, unnoticeable changes cause the classification accuracy to be reduced by over 60\%. %. To the best of our knowledge, this is the first work to systematically demonstrate this fundamental lack of semantic meaningfulness in ViT representations for medical image classification, revealing a critical challenge for their deployment in safety-critical systems.
comment: 9 pages
☆ A Hybrid Ensemble Learning Framework for Image-Based Solar Panel Classification
The installation of solar energy systems is on the rise, and therefore, appropriate maintenance techniques are required to be used in order to maintain maximum performance levels. One of the major challenges is the automated discrimination between clean and dirty solar panels. This paper presents a novel Dual Ensemble Neural Network (DENN) to classify solar panels using image-based features. The suggested approach utilizes the advantages offered by various ensemble models by integrating them into a dual framework, aimed at improving both classification accuracy and robustness. The DENN model is evaluated in comparison to current ensemble methods, showcasing its superior performance across a range of assessment metrics. The proposed approach performs the best compared to other methods and reaches state-of-the-art accuracy on experimental results for the Deep Solar Eye dataset, effectively serving predictive maintenance purposes in solar energy systems. It reveals the potential of hybrid ensemble learning techniques to further advance the prospects of automated solar panel inspections as a scalable solution to real-world challenges.
comment: 6 pages
☆ Rethinking Discrete Tokens: Treating Them as Conditions for Continuous Autoregressive Image Synthesis
Recent advances in large language models (LLMs) have spurred interests in encoding images as discrete tokens and leveraging autoregressive (AR) frameworks for visual generation. However, the quantization process in AR-based visual generation models inherently introduces information loss that degrades image fidelity. To mitigate this limitation, recent studies have explored to autoregressively predict continuous tokens. Unlike discrete tokens that reside in a structured and bounded space, continuous representations exist in an unbounded, high-dimensional space, making density estimation more challenging and increasing the risk of generating out-of-distribution artifacts. Based on the above findings, this work introduces DisCon (Discrete-Conditioned Continuous Autoregressive Model), a novel framework that reinterprets discrete tokens as conditional signals rather than generation targets. By modeling the conditional probability of continuous representations conditioned on discrete tokens, DisCon circumvents the optimization challenges of continuous token modeling while avoiding the information loss caused by quantization. DisCon achieves a gFID score of 1.38 on ImageNet 256$\times$256 generation, outperforming state-of-the-art autoregressive approaches by a clear margin.
comment: accepted by iccv 2025
SSL4SAR: Self-Supervised Learning for Glacier Calving Front Extraction from SAR Imagery
Glaciers are losing ice mass at unprecedented rates, increasing the need for accurate, year-round monitoring to understand frontal ablation, particularly the factors driving the calving process. Deep learning models can extract calving front positions from Synthetic Aperture Radar imagery to track seasonal ice losses at the calving fronts of marine- and lake-terminating glaciers. The current state-of-the-art model relies on ImageNet-pretrained weights. However, they are suboptimal due to the domain shift between the natural images in ImageNet and the specialized characteristics of remote sensing imagery, in particular for Synthetic Aperture Radar imagery. To address this challenge, we propose two novel self-supervised multimodal pretraining techniques that leverage SSL4SAR, a new unlabeled dataset comprising 9,563 Sentinel-1 and 14 Sentinel-2 images of Arctic glaciers, with one optical image per glacier in the dataset. Additionally, we introduce a novel hybrid model architecture that combines a Swin Transformer encoder with a residual Convolutional Neural Network (CNN) decoder. When pretrained on SSL4SAR, this model achieves a mean distance error of 293 m on the "CAlving Fronts and where to Find thEm" (CaFFe) benchmark dataset, outperforming the prior best model by 67 m. Evaluating an ensemble of the proposed model on a multi-annotator study of the benchmark dataset reveals a mean distance error of 75 m, approaching the human performance of 38 m. This advancement enables precise monitoring of seasonal changes in glacier calving fronts.
comment: in IEEE Transactions on Geoscience and Remote Sensing. arXiv admin note: text overlap with arXiv:2501.05281
☆ Calibrated Self-supervised Vision Transformers Improve Intracranial Arterial Calcification Segmentation from Clinical CT Head Scans
Vision Transformers (ViTs) have gained significant popularity in the natural image domain but have been less successful in 3D medical image segmentation. Nevertheless, 3D ViTs are particularly interesting for large medical imaging volumes due to their efficient self-supervised training within the masked autoencoder (MAE) framework, which enables the use of imaging data without the need for expensive manual annotations. intracranial arterial calcification (IAC) is an imaging biomarker visible on routinely acquired CT scans linked to neurovascular diseases such as stroke and dementia, and automated IAC quantification could enable their large-scale risk assessment. We pre-train ViTs with MAE and fine-tune them for IAC segmentation for the first time. To develop our models, we use highly heterogeneous data from a large clinical trial, the third International Stroke Trial (IST-3). We evaluate key aspects of MAE pre-trained ViTs in IAC segmentation, and analyse the clinical implications. We show: 1) our calibrated self-supervised ViT beats a strong supervised nnU-Net baseline by 3.2 Dice points, 2) low patch sizes are crucial for ViTs for IAC segmentation and interpolation upsampling with regular convolutions is preferable to transposed convolutions for ViT-based models, and 3) our ViTs increase robustness to higher slice thicknesses and improve risk group classification in a clinical scenario by 46%. Our code is available online.
☆ DeRIS: Decoupling Perception and Cognition for Enhanced Referring Image Segmentation through Loopback Synergy ICCV 2025
Referring Image Segmentation (RIS) is a challenging task that aims to segment objects in an image based on natural language expressions. While prior studies have predominantly concentrated on improving vision-language interactions and achieving fine-grained localization, a systematic analysis of the fundamental bottlenecks in existing RIS frameworks remains underexplored. To bridge this gap, we propose DeRIS, a novel framework that decomposes RIS into two key components: perception and cognition. This modular decomposition facilitates a systematic analysis of the primary bottlenecks impeding RIS performance. Our findings reveal that the predominant limitation lies not in perceptual deficiencies, but in the insufficient multi-modal cognitive capacity of current models. To mitigate this, we propose a Loopback Synergy mechanism, which enhances the synergy between the perception and cognition modules, thereby enabling precise segmentation while simultaneously improving robust image-text comprehension. Additionally, we analyze and introduce a simple non-referent sample conversion data augmentation to address the long-tail distribution issue related to target existence judgement in general scenarios. Notably, DeRIS demonstrates inherent adaptability to both non- and multi-referents scenarios without requiring specialized architectural modifications, enhancing its general applicability. The codes and models are available at https://github.com/Dmmm1997/DeRIS.
comment: ICCV 2025
☆ HOI-Dyn: Learning Interaction Dynamics for Human-Object Motion Diffusion
Generating realistic 3D human-object interactions (HOIs) remains a challenging task due to the difficulty of modeling detailed interaction dynamics. Existing methods treat human and object motions independently, resulting in physically implausible and causally inconsistent behaviors. In this work, we present HOI-Dyn, a novel framework that formulates HOI generation as a driver-responder system, where human actions drive object responses. At the core of our method is a lightweight transformer-based interaction dynamics model that explicitly predicts how objects should react to human motion. To further enforce consistency, we introduce a residual-based dynamics loss that mitigates the impact of dynamics prediction errors and prevents misleading optimization signals. The dynamics model is used only during training, preserving inference efficiency. Through extensive qualitative and quantitative experiments, we demonstrate that our approach not only enhances the quality of HOI generation but also establishes a feasible metric for evaluating the quality of generated interactions.
☆ ECCV 2024 W-CODA: 1st Workshop on Multimodal Perception and Comprehension of Corner Cases in Autonomous Driving
In this paper, we present details of the 1st W-CODA workshop, held in conjunction with the ECCV 2024. W-CODA aims to explore next-generation solutions for autonomous driving corner cases, empowered by state-of-the-art multimodal perception and comprehension techniques. 5 Speakers from both academia and industry are invited to share their latest progress and opinions. We collect research papers and hold a dual-track challenge, including both corner case scene understanding and generation. As the pioneering effort, we will continuously bridge the gap between frontier autonomous driving techniques and fully intelligent, reliable self-driving agents robust towards corner cases.
comment: ECCV 2024. Workshop page: https://coda-dataset.github.io/w-coda2024/
☆ When Does Pruning Benefit Vision Representations?
Pruning is widely used to reduce the complexity of deep learning models, but its effects on interpretability and representation learning remain poorly understood. This paper investigates how pruning influences vision models across three key dimensions: (i) interpretability, (ii) unsupervised object discovery, and (iii) alignment with human perception. We first analyze different vision network architectures to examine how varying sparsity levels affect feature attribution interpretability methods. Additionally, we explore whether pruning promotes more succinct and structured representations, potentially improving unsupervised object discovery by discarding redundant information while preserving essential features. Finally, we assess whether pruning enhances the alignment between model representations and human perception, investigating whether sparser models focus on more discriminative features similarly to humans. Our findings also reveal the presence of sweet spots, where sparse models exhibit higher interpretability, downstream generalization and human alignment. However, these spots highly depend on the network architectures and their size in terms of trainable parameters. Our results suggest a complex interplay between these three dimensions, highlighting the importance of investigating when and how pruning benefits vision representations.
☆ Soft Self-labeling and Potts Relaxations for Weakly-Supervised Segmentation CVPR 2025
We consider weakly supervised segmentation where only a fraction of pixels have ground truth labels (scribbles) and focus on a self-labeling approach optimizing relaxations of the standard unsupervised CRF/Potts loss on unlabeled pixels. While WSSS methods can directly optimize such losses via gradient descent, prior work suggests that higher-order optimization can improve network training by introducing hidden pseudo-labels and powerful CRF sub-problem solvers, e.g. graph cut. However, previously used hard pseudo-labels can not represent class uncertainty or errors, which motivates soft self-labeling. We derive a principled auxiliary loss and systematically evaluate standard and new CRF relaxations (convex and non-convex), neighborhood systems, and terms connecting network predictions with soft pseudo-labels. We also propose a general continuous sub-problem solver. Using only standard architectures, soft self-labeling consistently improves scribble-based training and outperforms significantly more complex specialized WSSS systems. It can outperform full pixel-precise supervision. Our general ideas apply to other weakly-supervised problems/systems.
comment: published at CVPR 2025
☆ Using Wavelet Domain Fingerprints to Improve Source Camera Identification
Camera fingerprint detection plays a crucial role in source identification and image forensics, with wavelet denoising approaches proving to be particularly effective in extracting sensor pattern noise (SPN). In this article, we propose a modification to wavelet-based SPN extraction. Rather than constructing the fingerprint as an image, we introduce the notion of a wavelet domain fingerprint. This avoids the final inversion step of the denoising algorithm and allows fingerprint comparisons to be made directly in the wavelet domain. As such, our modification streamlines the extraction and comparison process. Experimental results on real-world datasets demonstrate that our method not only achieves higher detection accuracy but can also significantly improve processing speed.
☆ Component Adaptive Clustering for Generalized Category Discovery
Generalized Category Discovery (GCD) tackles the challenging problem of categorizing unlabeled images into both known and novel classes within a partially labeled dataset, without prior knowledge of the number of unknown categories. Traditional methods often rely on rigid assumptions, such as predefining the number of classes, which limits their ability to handle the inherent variability and complexity of real-world data. To address these shortcomings, we propose AdaGCD, a cluster-centric contrastive learning framework that incorporates Adaptive Slot Attention (AdaSlot) into the GCD framework. AdaSlot dynamically determines the optimal number of slots based on data complexity, removing the need for predefined slot counts. This adaptive mechanism facilitates the flexible clustering of unlabeled data into known and novel categories by dynamically allocating representational capacity. By integrating adaptive representation with dynamic slot allocation, our method captures both instance-specific and spatially clustered features, improving class discovery in open-world scenarios. Extensive experiments on public and fine-grained datasets validate the effectiveness of our framework, emphasizing the advantages of leveraging spatial local information for category discovery in unlabeled image datasets.
comment: Accepted by IEEE ICME 2025
☆ Facial Emotion Learning with Text-Guided Multiview Fusion via Vision-Language Model for 3D/4D Facial Expression Recognition
Facial expression recognition (FER) in 3D and 4D domains presents a significant challenge in affective computing due to the complexity of spatial and temporal facial dynamics. Its success is crucial for advancing applications in human behavior understanding, healthcare monitoring, and human-computer interaction. In this work, we propose FACET-VLM, a vision-language framework for 3D/4D FER that integrates multiview facial representation learning with semantic guidance from natural language prompts. FACET-VLM introduces three key components: Cross-View Semantic Aggregation (CVSA) for view-consistent fusion, Multiview Text-Guided Fusion (MTGF) for semantically aligned facial emotions, and a multiview consistency loss to enforce structural coherence across views. Our model achieves state-of-the-art accuracy across multiple benchmarks, including BU-3DFE, Bosphorus, BU-4DFE, and BP4D-Spontaneous. We further extend FACET-VLM to 4D micro-expression recognition (MER) on the 4DME dataset, demonstrating strong performance in capturing subtle, short-lived emotional cues. The extensive experimental results confirm the effectiveness and substantial contributions of each individual component within the framework. Overall, FACET-VLM offers a robust, extensible, and high-performing solution for multimodal FER in both posed and spontaneous settings.
☆ What does really matter in image goal navigation?
Image goal navigation requires two different skills: firstly, core navigation skills, including the detection of free space and obstacles, and taking decisions based on an internal representation; and secondly, computing directional information by comparing visual observations to the goal image. Current state-of-the-art methods either rely on dedicated image-matching, or pre-training of computer vision modules on relative pose estimation. In this paper, we study whether this task can be efficiently solved with end-to-end training of full agents with RL, as has been claimed by recent work. A positive answer would have impact beyond Embodied AI and allow training of relative pose estimation from reward for navigation alone. In a large study we investigate the effect of architectural choices like late fusion, channel stacking, space-to-depth projections and cross-attention, and their role in the emergence of relative pose estimators from navigation training. We show that the success of recent methods is influenced up to a certain extent by simulator settings, leading to shortcuts in simulation. However, we also show that these capabilities can be transferred to more realistic setting, up to some extend. We also find evidence for correlations between navigation performance and probed (emerging) relative pose estimation performance, an important sub skill.
☆ SPoT: Subpixel Placement of Tokens in Vision Transformers ICCV 2025
Vision Transformers naturally accommodate sparsity, yet standard tokenization methods confine features to discrete patch grids. This constraint prevents models from fully exploiting sparse regimes, forcing awkward compromises. We propose Subpixel Placement of Tokens (SPoT), a novel tokenization strategy that positions tokens continuously within images, effectively sidestepping grid-based limitations. With our proposed oracle-guided search, we uncover substantial performance gains achievable with ideal subpixel token positioning, drastically reducing the number of tokens necessary for accurate predictions during inference. SPoT provides a new direction for flexible, efficient, and interpretable ViT architectures, redefining sparsity as a strategic advantage rather than an imposed limitation.
comment: To appear in Workshop on Efficient Computing under Limited Resources: Visual Computing (ICCV 2025). Code available at https://github.com/dsb-ifi/SPoT
☆ RobuSTereo: Robust Zero-Shot Stereo Matching under Adverse Weather ICCV25
Learning-based stereo matching models struggle in adverse weather conditions due to the scarcity of corresponding training data and the challenges in extracting discriminative features from degraded images. These limitations significantly hinder zero-shot generalization to out-of-distribution weather conditions. In this paper, we propose \textbf{RobuSTereo}, a novel framework that enhances the zero-shot generalization of stereo matching models under adverse weather by addressing both data scarcity and feature extraction challenges. First, we introduce a diffusion-based simulation pipeline with a stereo consistency module, which generates high-quality stereo data tailored for adverse conditions. By training stereo matching models on our synthetic datasets, we reduce the domain gap between clean and degraded images, significantly improving the models' robustness to unseen weather conditions. The stereo consistency module ensures structural alignment across synthesized image pairs, preserving geometric integrity and enhancing depth estimation accuracy. Second, we design a robust feature encoder that combines a specialized ConvNet with a denoising transformer to extract stable and reliable features from degraded images. The ConvNet captures fine-grained local structures, while the denoising transformer refines global representations, effectively mitigating the impact of noise, low visibility, and weather-induced distortions. This enables more accurate disparity estimation even under challenging visual conditions. Extensive experiments demonstrate that \textbf{RobuSTereo} significantly improves the robustness and generalization of stereo matching models across diverse adverse weather scenarios.
comment: accepted by ICCV25
☆ Autoregressive Image Generation with Linear Complexity: A Spatial-Aware Decay Perspective
Autoregressive (AR) models have garnered significant attention in image generation for their ability to effectively capture both local and global structures within visual data. However, prevalent AR models predominantly rely on the transformer architectures, which are beset by quadratic computational complexity concerning input sequence length and substantial memory overhead due to the necessity of maintaining key-value caches. Although linear attention mechanisms have successfully reduced this burden in language models, our initial experiments reveal that they significantly degrade image generation quality because of their inability to capture critical long-range dependencies in visual data. We propose Linear Attention with Spatial-Aware Decay (LASAD), a novel attention mechanism that explicitly preserves genuine 2D spatial relationships within the flattened image sequences by computing position-dependent decay factors based on true 2D spatial location rather than 1D sequence positions. Based on this mechanism, we present LASADGen, an autoregressive image generator that enables selective attention to relevant spatial contexts with linear complexity. Experiments on ImageNet show LASADGen achieves state-of-the-art image generation performance and computational efficiency, bridging the gap between linear attention's efficiency and spatial understanding needed for high-quality generation.
☆ SAILViT: Towards Robust and Generalizable Visual Backbones for MLLMs via Gradual Feature Refinement
Vision Transformers (ViTs) are essential as foundation backbones in establishing the visual comprehension capabilities of Multimodal Large Language Models (MLLMs). Although most ViTs achieve impressive performance through image-text pair-based contrastive learning or self-supervised mechanisms, they struggle to engage in connector-based co-training directly with LLMs due to potential parameter initialization conflicts and modality semantic gaps. To address the above challenges, this paper proposes SAILViT, a gradual feature learning-enhanced ViT for facilitating MLLMs to break through performance bottlenecks in complex multimodal interactions. SAILViT achieves coarse-to-fine-grained feature alignment and world knowledge infusion with gradual feature refinement, which better serves target training demands. We perform thorough empirical analyses to confirm the powerful robustness and generalizability of SAILViT across different dimensions, including parameter sizes, model architectures, training strategies, and data scales. Equipped with SAILViT, existing MLLMs show significant and consistent performance improvements on the OpenCompass benchmark across extensive downstream tasks. SAILViT series models are released at https://huggingface.co/BytedanceDouyinContent.
comment: We release SAILViT, a series of versatile vision foundation models
☆ Depth Anything at Any Condition
We present Depth Anything at Any Condition (DepthAnything-AC), a foundation monocular depth estimation (MDE) model capable of handling diverse environmental conditions. Previous foundation MDE models achieve impressive performance across general scenes but not perform well in complex open-world environments that involve challenging conditions, such as illumination variations, adverse weather, and sensor-induced distortions. To overcome the challenges of data scarcity and the inability of generating high-quality pseudo-labels from corrupted images, we propose an unsupervised consistency regularization finetuning paradigm that requires only a relatively small amount of unlabeled data. Furthermore, we propose the Spatial Distance Constraint to explicitly enforce the model to learn patch-level relative relationships, resulting in clearer semantic boundaries and more accurate details. Experimental results demonstrate the zero-shot capabilities of DepthAnything-AC across diverse benchmarks, including real-world adverse weather benchmarks, synthetic corruption benchmarks, and general benchmarks. Project Page: https://ghost233lism.github.io/depthanything-AC-page Code: https://github.com/HVision-NKU/DepthAnythingAC
☆ Tile and Slide : A New Framework for Scaling NeRF from Local to Global 3D Earth Observation ICCV 2025
Neural Radiance Fields (NeRF) have recently emerged as a paradigm for 3D reconstruction from multiview satellite imagery. However, state-of-the-art NeRF methods are typically constrained to small scenes due to the memory footprint during training, which we study in this paper. Previous work on large-scale NeRFs palliate this by dividing the scene into NeRFs. This paper introduces Snake-NeRF, a framework that scales to large scenes. Our out-of-core method eliminates the need to load all images and networks simultaneously, and operates on a single device. We achieve this by dividing the region of interest into NeRFs that 3D tile without overlap. Importantly, we crop the images with overlap to ensure each NeRFs is trained with all the necessary pixels. We introduce a novel $2\times 2$ 3D tile progression strategy and segmented sampler, which together prevent 3D reconstruction errors along the tile edges. Our experiments conclude that large satellite images can effectively be processed with linear time complexity, on a single GPU, and without compromise in quality.
comment: Accepted at ICCV 2025 Workshop 3D-VAST (From street to space: 3D Vision Across Altitudes). Version before camera ready. Our code will be made public after the conference
☆ Prompt Guidance and Human Proximal Perception for HOT Prediction with Regional Joint Loss ICCV 2025
The task of Human-Object conTact (HOT) detection involves identifying the specific areas of the human body that are touching objects. Nevertheless, current models are restricted to just one type of image, often leading to too much segmentation in areas with little interaction, and struggling to maintain category consistency within specific regions. To tackle this issue, a HOT framework, termed \textbf{P3HOT}, is proposed, which blends \textbf{P}rompt guidance and human \textbf{P}roximal \textbf{P}erception. To begin with, we utilize a semantic-driven prompt mechanism to direct the network's attention towards the relevant regions based on the correlation between image and text. Then a human proximal perception mechanism is employed to dynamically perceive key depth range around the human, using learnable parameters to effectively eliminate regions where interactions are not expected. Calculating depth resolves the uncertainty of the overlap between humans and objects in a 2D perspective, providing a quasi-3D viewpoint. Moreover, a Regional Joint Loss (RJLoss) has been created as a new loss to inhibit abnormal categories in the same area. A new evaluation metric called ``AD-Acc.'' is introduced to address the shortcomings of existing methods in addressing negative samples. Comprehensive experimental results demonstrate that our approach achieves state-of-the-art performance in four metrics across two benchmark datasets. Specifically, our model achieves an improvement of \textbf{0.7}$\uparrow$, \textbf{2.0}$\uparrow$, \textbf{1.6}$\uparrow$, and \textbf{11.0}$\uparrow$ in SC-Acc., mIoU, wIoU, and AD-Acc. metrics, respectively, on the HOT-Annotated dataset. Code is available at https://github.com/YuxiaoWang-AI/P3HOT.
comment: Accepted by ICCV 2025
☆ Perception-Oriented Latent Coding for High-Performance Compressed Domain Semantic Inference
In recent years, compressed domain semantic inference has primarily relied on learned image coding models optimized for mean squared error (MSE). However, MSE-oriented optimization tends to yield latent spaces with limited semantic richness, which hinders effective semantic inference in downstream tasks. Moreover, achieving high performance with these models often requires fine-tuning the entire vision model, which is computationally intensive, especially for large models. To address these problems, we introduce Perception-Oriented Latent Coding (POLC), an approach that enriches the semantic content of latent features for high-performance compressed domain semantic inference. With the semantically rich latent space, POLC requires only a plug-and-play adapter for fine-tuning, significantly reducing the parameter count compared to previous MSE-oriented methods. Experimental results demonstrate that POLC achieves rate-perception performance comparable to state-of-the-art generative image coding methods while markedly enhancing performance in vision tasks, with minimal fine-tuning overhead. Code is available at https://github.com/NJUVISION/POLC.
comment: International Conference on Multimedia and Expo (ICME), 2025
☆ Survivability of Backdoor Attacks on Unconstrained Face Recognition Systems
The widespread use of deep learning face recognition raises several security concerns. Although prior works point at existing vulnerabilities, DNN backdoor attacks against real-life, unconstrained systems dealing with images captured in the wild remain a blind spot of the literature. This paper conducts the first system-level study of backdoors in deep learning-based face recognition systems. This paper yields four contributions by exploring the feasibility of DNN backdoors on these pipelines in a holistic fashion. We demonstrate for the first time two backdoor attacks on the face detection task: face generation and face landmark shift attacks. We then show that face feature extractors trained with large margin losses also fall victim to backdoor attacks. Combining our models, we then show using 20 possible pipeline configurations and 15 attack cases that a single backdoor enables an attacker to bypass the entire function of a system. Finally, we provide stakeholders with several best practices and countermeasures.
☆ DepthSync: Diffusion Guidance-Based Depth Synchronization for Scale- and Geometry-Consistent Video Depth Estimation ICCV 2025
Diffusion-based video depth estimation methods have achieved remarkable success with strong generalization ability. However, predicting depth for long videos remains challenging. Existing methods typically split videos into overlapping sliding windows, leading to accumulated scale discrepancies across different windows, particularly as the number of windows increases. Additionally, these methods rely solely on 2D diffusion priors, overlooking the inherent 3D geometric structure of video depths, which results in geometrically inconsistent predictions. In this paper, we propose DepthSync, a novel, training-free framework using diffusion guidance to achieve scale- and geometry-consistent depth predictions for long videos. Specifically, we introduce scale guidance to synchronize the depth scale across windows and geometry guidance to enforce geometric alignment within windows based on the inherent 3D constraints in video depths. These two terms work synergistically, steering the denoising process toward consistent depth predictions. Experiments on various datasets validate the effectiveness of our method in producing depth estimates with improved scale and geometry consistency, particularly for long videos.
comment: Accepted by ICCV 2025
☆ Autonomous AI Surveillance: Multimodal Deep Learning for Cognitive and Behavioral Monitoring
This study presents a novel classroom surveillance system that integrates multiple modalities, including drowsiness, tracking of mobile phone usage, and face recognition,to assess student attentiveness with enhanced precision.The system leverages the YOLOv8 model to detect both mobile phone and sleep usage,(Ghatge et al., 2024) while facial recognition is achieved through LResNet Occ FC body tracking using YOLO and MTCNN.(Durai et al., 2024) These models work in synergy to provide comprehensive, real-time monitoring, offering insights into student engagement and behavior.(S et al., 2023) The framework is trained on specialized datasets, such as the RMFD dataset for face recognition and a Roboflow dataset for mobile phone detection. The extensive evaluation of the system shows promising results. Sleep detection achieves 97. 42% mAP@50, face recognition achieves 86. 45% validation accuracy and mobile phone detection reach 85. 89% mAP@50. The system is implemented within a core PHP web application and utilizes ESP32-CAM hardware for seamless data capture.(Neto et al., 2024) This integrated approach not only enhances classroom monitoring, but also ensures automatic attendance recording via face recognition as students remain seated in the classroom, offering scalability for diverse educational environments.(Banada,2025)
☆ Towards Controllable Real Image Denoising with Camera Parameters
Recent deep learning-based image denoising methods have shown impressive performance; however, many lack the flexibility to adjust the denoising strength based on the noise levels, camera settings, and user preferences. In this paper, we introduce a new controllable denoising framework that adaptively removes noise from images by utilizing information from camera parameters. Specifically, we focus on ISO, shutter speed, and F-number, which are closely related to noise levels. We convert these selected parameters into a vector to control and enhance the performance of the denoising network. Experimental results show that our method seamlessly adds controllability to standard denoising neural networks and improves their performance. Code is available at https://github.com/OBAKSA/CPADNet.
comment: Accepted for publication in ICIP 2025, IEEE International Conference on Image Processing
☆ SketchColour: Channel Concat Guided DiT-based Sketch-to-Colour Pipeline for 2D Animation
The production of high-quality 2D animation is highly labor-intensive process, as animators are currently required to draw and color a large number of frames by hand. We present SketchColour, the first sketch-to-colour pipeline for 2D animation built on a diffusion transformer (DiT) backbone. By replacing the conventional U-Net denoiser with a DiT-style architecture and injecting sketch information via lightweight channel-concatenation adapters accompanied with LoRA finetuning, our method natively integrates conditioning without the parameter and memory bloat of a duplicated ControlNet, greatly reducing parameter count and GPU memory usage. Evaluated on the SAKUGA dataset, SketchColour outperforms previous state-of-the-art video colourization methods across all metrics, despite using only half the training data of competing models. Our approach produces temporally coherent animations with minimal artifacts such as colour bleeding or object deformation. Our code is available at: https://bconstantine.github.io/SketchColour .
comment: Project page and code: https://bconstantine.github.io/SketchColour
☆ A Gift from the Integration of Discriminative and Diffusion-based Generative Learning: Boundary Refinement Remote Sensing Semantic Segmentation
Remote sensing semantic segmentation must address both what the ground objects are within an image and where they are located. Consequently, segmentation models must ensure not only the semantic correctness of large-scale patches (low-frequency information) but also the precise localization of boundaries between patches (high-frequency information). However, most existing approaches rely heavily on discriminative learning, which excels at capturing low-frequency features, while overlooking its inherent limitations in learning high-frequency features for semantic segmentation. Recent studies have revealed that diffusion generative models excel at generating high-frequency details. Our theoretical analysis confirms that the diffusion denoising process significantly enhances the model's ability to learn high-frequency features; however, we also observe that these models exhibit insufficient semantic inference for low-frequency features when guided solely by the original image. Therefore, we integrate the strengths of both discriminative and generative learning, proposing the Integration of Discriminative and diffusion-based Generative learning for Boundary Refinement (IDGBR) framework. The framework first generates a coarse segmentation map using a discriminative backbone model. This map and the original image are fed into a conditioning guidance network to jointly learn a guidance representation subsequently leveraged by an iterative denoising diffusion process refining the coarse segmentation. Extensive experiments across five remote sensing semantic segmentation datasets (binary and multi-class segmentation) confirm our framework's capability of consistent boundary refinement for coarse results from diverse discriminative architectures. The source code will be available at https://github.com/KeyanHu-git/IDGBR.
comment: 20 pages, 14 figures
☆ Multi Source COVID-19 Detection via Kernel-Density-based Slice Sampling
We present our solution for the Multi-Source COVID-19 Detection Challenge, which classifies chest CT scans from four distinct medical centers. To address multi-source variability, we employ the Spatial-Slice Feature Learning (SSFL) framework with Kernel-Density-based Slice Sampling (KDS). Our preprocessing pipeline combines lung region extraction, quality control, and adaptive slice sampling to select eight representative slices per scan. We compare EfficientNet and Swin Transformer architectures on the validation set. The EfficientNet model achieves an F1-score of 94.68%, compared to the Swin Transformer's 93.34%. The results demonstrate the effectiveness of our KDS-based pipeline on multi-source data and highlight the importance of dataset balance in multi-institutional medical imaging evaluation.
☆ How Weight Resampling and Optimizers Shape the Dynamics of Continual Learning and Forgetting in Neural Networks
Recent work in continual learning has highlighted the beneficial effect of resampling weights in the last layer of a neural network (``zapping"). Although empirical results demonstrate the effectiveness of this approach, the underlying mechanisms that drive these improvements remain unclear. In this work, we investigate in detail the pattern of learning and forgetting that take place inside a convolutional neural network when trained in challenging settings such as continual learning and few-shot transfer learning, with handwritten characters and natural images. Our experiments show that models that have undergone zapping during training more quickly recover from the shock of transferring to a new domain. Furthermore, to better observe the effect of continual learning in a multi-task setting we measure how each individual task is affected. This shows that, not only zapping, but the choice of optimizer can also deeply affect the dynamics of learning and forgetting, causing complex patterns of synergy/interference between tasks to emerge when the model learns sequentially at transfer time.
☆ Interpolation-Based Event Visual Data Filtering Algorithms CVPR
The field of neuromorphic vision is developing rapidly, and event cameras are finding their way into more and more applications. However, the data stream from these sensors is characterised by significant noise. In this paper, we propose a method for event data that is capable of removing approximately 99\% of noise while preserving the majority of the valid signal. We have proposed four algorithms based on the matrix of infinite impulse response (IIR) filters method. We compared them on several event datasets that were further modified by adding artificially generated noise and noise recorded with dynamic vision sensor. The proposed methods use about 30KB of memory for a sensor with a resolution of 1280 x 720 and is therefore well suited for implementation in embedded devices.
comment: This paper has been accepted for publication at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Vancouver, 2023. Copyright IEEE
☆ A Multi-Centric Anthropomorphic 3D CT Phantom-Based Benchmark Dataset for Harmonization
Artificial intelligence (AI) has introduced numerous opportunities for human assistance and task automation in medicine. However, it suffers from poor generalization in the presence of shifts in the data distribution. In the context of AI-based computed tomography (CT) analysis, significant data distribution shifts can be caused by changes in scanner manufacturer, reconstruction technique or dose. AI harmonization techniques can address this problem by reducing distribution shifts caused by various acquisition settings. This paper presents an open-source benchmark dataset containing CT scans of an anthropomorphic phantom acquired with various scanners and settings, which purpose is to foster the development of AI harmonization techniques. Using a phantom allows fixing variations attributed to inter- and intra-patient variations. The dataset includes 1378 image series acquired with 13 scanners from 4 manufacturers across 8 institutions using a harmonized protocol as well as several acquisition doses. Additionally, we present a methodology, baseline results and open-source code to assess image- and feature-level stability and liver tissue classification, promoting the development of AI harmonization strategies.
☆ TrackingMiM: Efficient Mamba-in-Mamba Serialization for Real-time UAV Object Tracking
The Vision Transformer (ViT) model has long struggled with the challenge of quadratic complexity, a limitation that becomes especially critical in unmanned aerial vehicle (UAV) tracking systems, where data must be processed in real time. In this study, we explore the recently proposed State-Space Model, Mamba, leveraging its computational efficiency and capability for long-sequence modeling to effectively process dense image sequences in tracking tasks. First, we highlight the issue of temporal inconsistency in existing Mamba-based methods, specifically the failure to account for temporal continuity in the Mamba scanning mechanism. Secondly, building upon this insight,we propose TrackingMiM, a Mamba-in-Mamba architecture, a minimal-computation burden model for handling image sequence of tracking problem. In our framework, the mamba scan is performed in a nested way while independently process temporal and spatial coherent patch tokens. While the template frame is encoded as query token and utilized for tracking in every scan. Extensive experiments conducted on five UAV tracking benchmarks confirm that the proposed TrackingMiM achieves state-of-the-art precision while offering noticeable higher speed in UAV tracking.
comment: 12 pages
☆ Exploring Pose-based Sign Language Translation: Ablation Studies and Attention Insights CVPR2025
Sign Language Translation (SLT) has evolved significantly, moving from isolated recognition approaches to complex, continuous gloss-free translation systems. This paper explores the impact of pose-based data preprocessing techniques - normalization, interpolation, and augmentation - on SLT performance. We employ a transformer-based architecture, adapting a modified T5 encoder-decoder model to process pose representations. Through extensive ablation studies on YouTubeASL and How2Sign datasets, we analyze how different preprocessing strategies affect translation accuracy. Our results demonstrate that appropriate normalization, interpolation, and augmentation techniques can significantly improve model robustness and generalization abilities. Additionally, we provide a deep analysis of the model's attentions and reveal interesting behavior suggesting that adding a dedicated register token can improve overall model performance. We publish our code on our GitHub repository, including the preprocessed YouTubeASL data.
comment: 8 pages, 9 figures, supplementary, SLRTP2025, CVPR2025
☆ SafePTR: Token-Level Jailbreak Defense in Multimodal LLMs via Prune-then-Restore Mechanism
By incorporating visual inputs, Multimodal Large Language Models (MLLMs) extend LLMs to support visual reasoning. However, this integration also introduces new vulnerabilities, making MLLMs susceptible to multimodal jailbreak attacks and hindering their safe deployment.Existing defense methods, including Image-to-Text Translation, Safe Prompting, and Multimodal Safety Tuning, attempt to address this by aligning multimodal inputs with LLMs' built-in safeguards.Yet, they fall short in uncovering root causes of multimodal vulnerabilities, particularly how harmful multimodal tokens trigger jailbreak in MLLMs? Consequently, they remain vulnerable to text-driven multimodal jailbreaks, often exhibiting overdefensive behaviors and imposing heavy training overhead.To bridge this gap, we present an comprehensive analysis of where, how and which harmful multimodal tokens bypass safeguards in MLLMs. Surprisingly, we find that less than 1% tokens in early-middle layers are responsible for inducing unsafe behaviors, highlighting the potential of precisely removing a small subset of harmful tokens, without requiring safety tuning, can still effectively improve safety against jailbreaks. Motivated by this, we propose Safe Prune-then-Restore (SafePTR), an training-free defense framework that selectively prunes harmful tokens at vulnerable layers while restoring benign features at subsequent layers.Without incurring additional computational overhead, SafePTR significantly enhances the safety of MLLMs while preserving efficiency. Extensive evaluations across three MLLMs and five benchmarks demonstrate SafePTR's state-of-the-art performance in mitigating jailbreak risks without compromising utility.
☆ Mamba Guided Boundary Prior Matters: A New Perspective for Generalized Polyp Segmentation MICCAI-2025
Polyp segmentation in colonoscopy images is crucial for early detection and diagnosis of colorectal cancer. However, this task remains a significant challenge due to the substantial variations in polyp shape, size, and color, as well as the high similarity between polyps and surrounding tissues, often compounded by indistinct boundaries. While existing encoder-decoder CNN and transformer-based approaches have shown promising results, they struggle with stable segmentation performance on polyps with weak or blurry boundaries. These methods exhibit limited abilities to distinguish between polyps and non-polyps and capture essential boundary cues. Moreover, their generalizability still falls short of meeting the demands of real-time clinical applications. To address these limitations, we propose SAM-MaGuP, a groundbreaking approach for robust polyp segmentation. By incorporating a boundary distillation module and a 1D-2D Mamba adapter within the Segment Anything Model (SAM), SAM-MaGuP excels at resolving weak boundary challenges and amplifies feature learning through enriched global contextual interactions. Extensive evaluations across five diverse datasets reveal that SAM-MaGuP outperforms state-of-the-art methods, achieving unmatched segmentation accuracy and robustness. Our key innovations, a Mamba-guided boundary prior and a 1D-2D Mamba block, set a new benchmark in the field, pushing the boundaries of polyp segmentation to new heights.
comment: 11 pages, 2 figures, MICCAI-2025
☆ Following the Clues: Experiments on Person Re-ID using Cross-Modal Intelligence
The collection and release of street-level recordings as Open Data play a vital role in advancing autonomous driving systems and AI research. However, these datasets pose significant privacy risks, particularly for pedestrians, due to the presence of Personally Identifiable Information (PII) that extends beyond biometric traits such as faces. In this paper, we present cRID, a novel cross-modal framework combining Large Vision-Language Models, Graph Attention Networks, and representation learning to detect textual describable clues of PII and enhance person re-identification (Re-ID). Our approach focuses on identifying and leveraging interpretable features, enabling the detection of semantically meaningful PII beyond low-level appearance cues. We conduct a systematic evaluation of PII presence in person image datasets. Our experiments show improved performance in practical cross-dataset Re-ID scenarios, notably from Market-1501 to CUHK03-np (detected), highlighting the framework's practical utility. Code is available at https://github.com/RAufschlaeger/cRID.
comment: accepted for publication at the 2025 IEEE 28th International Conference on Intelligent Transportation Systems (ITSC 2025), taking place during November 18-21, 2025 in Gold Coast, Australia
♻ ☆ Graph-Based Deep Learning for Component Segmentation of Maize Plants
In precision agriculture, one of the most important tasks when exploring crop production is identifying individual plant components. There are several attempts to accomplish this task by the use of traditional 2D imaging, 3D reconstructions, and Convolutional Neural Networks (CNN). However, they have several drawbacks when processing 3D data and identifying individual plant components. Therefore, in this work, we propose a novel Deep Learning architecture to detect components of individual plants on Light Detection and Ranging (LiDAR) 3D Point Cloud (PC) data sets. This architecture is based on the concept of Graph Neural Networks (GNN), and feature enhancing with Principal Component Analysis (PCA). For this, each point is taken as a vertex and by the use of a K-Nearest Neighbors (KNN) layer, the edges are established, thus representing the 3D PC data set. Subsequently, Edge-Conv layers are used to further increase the features of each point. Finally, Graph Attention Networks (GAT) are applied to classify visible phenotypic components of the plant, such as the leaf, stem, and soil. This study demonstrates that our graph-based deep learning approach enhances segmentation accuracy for identifying individual plant components, achieving percentages above 80% in the IoU average, thus outperforming other existing models based on point clouds.
♻ ☆ Real-Time Blind Defocus Deblurring for Earth Observation: The IMAGIN-e Mission Approach
This work addresses mechanical defocus in Earth observation images from the IMAGIN-e mission aboard the ISS, proposing a blind deblurring approach adapted to space-based edge computing constraints. Leveraging Sentinel-2 data, our method estimates the defocus kernel and trains a restoration model within a GAN framework, effectively operating without reference images. On Sentinel-2 images with synthetic degradation, SSIM improved by 72.47% and PSNR by 25.00%, confirming the model's ability to recover lost details when the original clean image is known. On IMAGIN-e, where no reference images exist, perceptual quality metrics indicate a substantial enhancement, with NIQE improving by 60.66% and BRISQUE by 48.38%, validating real-world onboard restoration. The approach is currently deployed aboard the IMAGIN-e mission, demonstrating its practical application in an operational space environment. By efficiently handling high-resolution images under edge computing constraints, the method enables applications such as water body segmentation and contour detection while maintaining processing viability despite resource limitations.
comment: Accepted for presentation at the European Space Agency's Big Data from Space (BiDS) 2025 Conference (https://www.bigdatafromspace2025.org/)
♻ ☆ GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking, a vision-language model (VLM) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document understanding. We open-source GLM-4.1V-9B-Thinking, which achieves state-of-the-art performance among models of comparable size. In a comprehensive evaluation across 28 public benchmarks, our model outperforms Qwen2.5-VL-7B on nearly all tasks and achieves comparable or even superior performance on 18 benchmarks relative to the significantly larger Qwen2.5-VL-72B. Notably, GLM-4.1V-9B-Thinking also demonstrates competitive or superior performance compared to closed-source models such as GPT-4o on challenging tasks including long document understanding and STEM reasoning, further underscoring its strong capabilities. Code, models and more information are released at https://github.com/THUDM/GLM-4.1V-Thinking.
♻ ☆ Harnessing Massive Satellite Imagery with Efficient Masked Image Modeling ICCV 2025
Masked Image Modeling (MIM) has become an essential method for building foundational visual models in remote sensing (RS). However, the limitations in size and diversity of existing RS datasets restrict the ability of MIM methods to learn generalizable representations. Additionally, conventional MIM techniques, which require reconstructing all tokens, introduce unnecessary computational overhead. To address these issues, we present a new pre-training pipeline for RS models, featuring the creation of a large-scale RS dataset and an efficient MIM approach. We curated a high-quality dataset named OpticalRS-13M by collecting publicly available RS datasets and processing them through exclusion, slicing, and deduplication. OpticalRS-13M comprises 13 million optical images covering various RS tasks, such as object detection and pixel segmentation. To enhance efficiency, we propose SelectiveMAE, a pre-training method that dynamically encodes and reconstructs semantically rich patch tokens, thereby reducing the inefficiencies of traditional MIM models caused by redundant background pixels in RS images. Extensive experiments show that OpticalRS-13M significantly improves classification, detection, and segmentation performance, while SelectiveMAE increases training efficiency over 2$\times$ times. This highlights the effectiveness and scalability of our pipeline in developing RS foundational models. The dataset, source code, and trained models will be released at https://github.com/MiliLab/SelectiveMAE.
comment: ICCV 2025
♻ ☆ ScaleFusionNet: Transformer-Guided Multi-Scale Feature Fusion for Skin Lesion Segmentation
Melanoma is a malignant tumor that originates from skin cell lesions. Accurate and efficient segmentation of skin lesions is essential for quantitative analysis but remains a challenge due to blurred lesion boundaries, gradual color changes, and irregular shapes. To address this, we propose ScaleFusionNet, a hybrid model that integrates a Cross-Attention Transformer Module (CATM) and adaptive fusion block (AFB) to enhance feature extraction and fusion by capturing both local and global features. We introduce CATM, which utilizes Swin transformer blocks and Cross Attention Fusion (CAF) to adaptively refine feature fusion and reduce semantic gaps in the encoder-decoder to improve segmentation accuracy. Additionally, the AFB uses Swin Transformer-based attention and deformable convolution-based adaptive feature extraction to help the model gather local and global contextual information through parallel pathways. This enhancement refines the lesion boundaries and preserves fine-grained details. ScaleFusionNet achieves Dice scores of 92.94\% and 91.80\% on the ISIC-2016 and ISIC-2018 datasets, respectively, demonstrating its effectiveness in skin lesion analysis. Simultaneously, independent validation experiments were conducted on the PH$^2$ dataset using the pretrained model weights. The results show that ScaleFusionNet demonstrates significant performance improvements compared with other state-of-the-art methods. Our code implementation is publicly available at GitHub.
♻ ☆ Improving Consistency Models with Generator-Augmented Flows
Consistency models imitate the multi-step sampling of score-based diffusion in a single forward pass of a neural network. They can be learned in two ways: consistency distillation and consistency training. The former relies on the true velocity field of the corresponding differential equation, approximated by a pre-trained neural network. In contrast, the latter uses a single-sample Monte Carlo estimate of this velocity field. The related estimation error induces a discrepancy between consistency distillation and training that, we show, still holds in the continuous-time limit. To alleviate this issue, we propose a novel flow that transports noisy data towards their corresponding outputs derived from a consistency model. We prove that this flow reduces the previously identified discrepancy and the noise-data transport cost. Consequently, our method not only accelerates consistency training convergence but also enhances its overall performance. The code is available at: https://github.com/thibautissenhuth/consistency_GC.
♻ ☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs
Despite progress in Vision-Language Models (VLMs), their capacity for visual reasoning is often limited by the \textit{binding problem}: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current VLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces a simple yet effective intervention: augmenting visual inputs with low-level spatial structures (e.g., horizontal lines) and pairing this with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks. Specifically, our method improves GPT-4o visual search accuracy by 25.00%, increases counting accuracy by 26.83%, reduces edit distance error in scene description by 0.32, and enhances performance on spatial relationship tasks by 9.50% on a a 2D synthetic dataset. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. Our method enhances binding only with a single-query inference, underscoring the importance of visual input design over purely linguistically-based approaches. These findings suggest that low-level visual structuring is a powerful and underexplored direction for improving compositional visual reasoning and could serve as a general strategy for enhancing VLM performance on spatially grounded tasks.
♻ ☆ SURE-VQA: Systematic Understanding of Robustness Evaluation in Medical VQA Tasks
Vision-Language Models (VLMs) have great potential in medical tasks, like Visual Question Answering (VQA), where they could act as interactive assistants for both patients and clinicians. Yet their robustness to distribution shifts on unseen data remains a key concern for safe deployment. Evaluating such robustness requires a controlled experimental setup that allows for systematic insights into the model's behavior. However, we demonstrate that current setups fail to offer sufficiently thorough evaluations. To address this gap, we introduce a novel framework, called \textit{SURE-VQA}, centered around three key requirements to overcome current pitfalls and systematically analyze VLM robustness: 1) Since robustness on synthetic shifts does not necessarily translate to real-world shifts, it should be measured on real-world shifts that are inherent to the VQA data; 2) Traditional token-matching metrics often fail to capture underlying semantics, necessitating the use of large language models (LLMs) for more accurate semantic evaluation; 3) Model performance often lacks interpretability due to missing sanity baselines, thus meaningful baselines should be reported that allow assessing the multimodal impact on the VLM. To demonstrate the relevance of this framework, we conduct a study on the robustness of various Fine-Tuning (FT) methods across three medical datasets with four types of distribution shifts. Our study highlights key insights into robustness: 1) No FT method consistently outperforms others in robustness, and 2) robustness trends are more stable across FT methods than across distribution shifts. Additionally, we find that simple sanity baselines that do not use the image data can perform surprisingly well and confirm LoRA as the best-performing FT method on in-distribution data. Code is provided at https://github.com/IML-DKFZ/sure-vqa.
comment: TMLR 07/2025
♻ ☆ BizGen: Advancing Article-level Visual Text Rendering for Infographics Generation CVPR 2025
Recently, state-of-the-art text-to-image generation models, such as Flux and Ideogram 2.0, have made significant progress in sentence-level visual text rendering. In this paper, we focus on the more challenging scenarios of article-level visual text rendering and address a novel task of generating high-quality business content, including infographics and slides, based on user provided article-level descriptive prompts and ultra-dense layouts. The fundamental challenges are twofold: significantly longer context lengths and the scarcity of high-quality business content data. In contrast to most previous works that focus on a limited number of sub-regions and sentence-level prompts, ensuring precise adherence to ultra-dense layouts with tens or even hundreds of sub-regions in business content is far more challenging. We make two key technical contributions: (i) the construction of scalable, high-quality business content dataset, i.e., Infographics-650K, equipped with ultra-dense layouts and prompts by implementing a layer-wise retrieval-augmented infographic generation scheme; and (ii) a layout-guided cross attention scheme, which injects tens of region-wise prompts into a set of cropped region latent space according to the ultra-dense layouts, and refine each sub-regions flexibly during inference using a layout conditional CFG. We demonstrate the strong results of our system compared to previous SOTA systems such as Flux and SD3 on our BizEval prompt set. Additionally, we conduct thorough ablation experiments to verify the effectiveness of each component. We hope our constructed Infographics-650K and BizEval can encourage the broader community to advance the progress of business content generation.
comment: Accepted by CVPR 2025. Project Page: https://bizgen-msra.github.io
♻ ☆ Average Calibration Error: A Differentiable Loss for Improved Reliability in Image Segmentation
Deep neural networks for medical image segmentation often produce overconfident results misaligned with empirical observations. Such miscalibration, challenges their clinical translation. We propose to use marginal L1 average calibration error (mL1-ACE) as a novel auxiliary loss function to improve pixel-wise calibration without compromising segmentation quality. We show that this loss, despite using hard binning, is directly differentiable, bypassing the need for approximate but differentiable surrogate or soft binning approaches. Our work also introduces the concept of dataset reliability histograms which generalises standard reliability diagrams for refined visual assessment of calibration in semantic segmentation aggregated at the dataset level. Using mL1-ACE, we reduce average and maximum calibration error by 45% and 55% respectively, maintaining a Dice score of 87% on the BraTS 2021 dataset. We share our code here: https://github.com/cai4cai/ACE-DLIRIS
♻ ☆ Unified Triplet-Level Hallucination Evaluation for Large Vision-Language Models
Despite the outstanding performance in vision-language reasoning, Large Vision-Language Models (LVLMs) might generate hallucinated contents that do not exist in the given image. Most existing LVLM hallucination benchmarks are constrained to evaluate the object-related hallucinations. However, the potential hallucination on the relations between two objects, i.e., relation hallucination, still lacks investigation. To remedy that, we design a unified framework to measure the object and relation hallucination in LVLMs simultaneously. The core idea of our framework is to evaluate hallucinations via (object, relation, object) triplets extracted from LVLMs' responses, making it easily generalizable to different vision-language tasks. Based on our framework, we further introduce Tri-HE, a novel Triplet-level Hallucination Evaluation benchmark which can be used to study both object and relation hallucination at the same time. With comprehensive evaluations on Tri-HE, we observe that the relation hallucination issue is even more serious than object hallucination among existing LVLMs, highlighting a previously neglected problem towards reliable LVLMs. Moreover, based on our findings, we design a simple training-free approach that effectively mitigates hallucinations for LVLMs. Our dataset and code for the reproduction of our experiments are available publicly at https://github.com/wujunjie1998/Tri-HE.
comment: Accepted by TMLR 2025. Project Page: https://kaichen1998.github.io/projects/tri-he/
♻ ☆ Just Noticeable Difference for Large Multimodal Models
Just noticeable difference (JND), the minimum change that the human visual system (HVS) can perceive, has been studied for decades. Although recent work has extended this line of research into machine vision, there has been a scarcity of studies systematically exploring its perceptual boundaries across multiple tasks and stimulus types, particularly in the current era of rapidly advancing large multimodal models (LMMs), where studying the multifaceted capabilities of models has become a mainstream focus. Moreover, the perceptual defects of LMMs are not investigated thoroughly, resulting in potential security issues and suboptimal response efficiency. In this paper, we take an initial attempt and demonstrate that there exist significant visual blind spots in current LMMs. To systemically quantify this characteristic, we propose a new concept, {\bf LMM-JND}, together with its determination pipeline. Targeting uncovering the behavior commonalities in HVS-aligned visual perception tasks, we delve into several LMM families and construct a large-scale dataset, named VPA-JND, which contains 21.5k reference images with over 489k stimuli across 12 distortion types, to facilitate LMM-JND studies. VPA-JND exposes areas where state-of-the-art LMMs, including GPT-4o and the InternVL2.5 series, struggle with basic comparison queries and fall significantly short of human-level visual performance. We further explore the effects of vision and language backbones and find a notable correlation between their design philosophy that may instruct the future refinement of LMMs for their visual acuity. Together, our research underscores the significance of LMM-JND as a unique perspective for studying LMMs, and predictable LMM-JND is crucial for security concerns. This work will be available at https://github.com/zijianchen98/LMM-JND.
comment: 19 pages, 19 figures
♻ ☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advancements in image segmentation play an integral role within the broad scope of Deep Learning-based Computer Vision. Furthermore, their widespread applicability in critical real-world tasks has resulted in challenges related to the reliability of such algorithms. Hence, uncertainty quantification has been extensively studied within this context, enabling the expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision-making. Due to the rapid adoption of Convolutional Neural Network (CNN)-based segmentation models in high-stake applications, a substantial body of research has been published on this very topic, causing its swift expansion into a distinct field. This work provides a comprehensive overview of probabilistic segmentation, by discussing fundamental concepts of uncertainty quantification, governing advancements in the field as well as the application to various tasks. Moreover, literature on both types of uncertainties trace back to four key applications: (1) to quantify statistical inconsistencies in the annotation process due ambiguous images, (2) correlating prediction error with uncertainty, (3) expanding the model hypothesis space for better generalization, and (4) Active Learning. An extensive discussion follows that includes an overview of utilized datasets for each of the applications and evaluation of the available methods. We also highlight challenges related to architectures, uncertainty quantification methods, standardization and benchmarking, and finally end with recommendations for future work such as methods based on single forward passes and models that appropriately leverage volumetric data.
comment: 31 pages of content, revised
♻ ☆ GraphGSOcc: Semantic-Geometric Graph Transformer with Dynamic-Static Decoupling for 3D Gaussian Splatting-based Occupancy Prediction
Addressing the task of 3D semantic occupancy prediction for autonomous driving, we tackle two key issues in existing 3D Gaussian Splatting (3DGS) methods: (1) unified feature aggregation neglecting semantic correlations among similar categories and across regions, (2) boundary ambiguities caused by the lack of geometric constraints in MLP iterative optimization and (3) biased issues in dynamic-static object coupling optimization. We propose the GraphGSOcc model, a novel framework that combines semantic and geometric graph Transformer and decouples dynamic-static objects optimization for 3D Gaussian Splatting-based Occupancy Prediction. We propose the Dual Gaussians Graph Attenntion, which dynamically constructs dual graph structures: a geometric graph adaptively calculating KNN search radii based on Gaussian poses, enabling large-scale Gaussians to aggregate features from broader neighborhoods while compact Gaussians focus on local geometric consistency; a semantic graph retaining top-M highly correlated nodes via cosine similarity to explicitly encode semantic relationships within and across instances. Coupled with the Multi-scale Graph Attention framework, fine-grained attention at lower layers optimizes boundary details, while coarsegrained attention at higher layers models object-level topology. On the other hand, we decouple dynamic and static objects by leveraging semantic probability distributions and design a Dynamic-Static Decoupled Gaussian Attention mechanism to optimize the prediction performance for both dynamic objects and static scenes. GraphGSOcc achieves state-ofthe-art performance on the SurroundOcc-nuScenes, Occ3D-nuScenes, OpenOcc and KITTI occupancy benchmarks. Experiments on the SurroundOcc dataset achieve an mIoU of 25.20%, reducing GPU memory to 6.8 GB, demonstrating a 1.97% mIoU improvement and 13.7% memory reduction compared to GaussianWorld.
♻ ☆ DeGauss: Dynamic-Static Decomposition with Gaussian Splatting for Distractor-free 3D Reconstruction ICCV 2025
Reconstructing clean, distractor-free 3D scenes from real-world captures remains a significant challenge, particularly in highly dynamic and cluttered settings such as egocentric videos. To tackle this problem, we introduce DeGauss, a simple and robust self-supervised framework for dynamic scene reconstruction based on a decoupled dynamic-static Gaussian Splatting design. DeGauss models dynamic elements with foreground Gaussians and static content with background Gaussians, using a probabilistic mask to coordinate their composition and enable independent yet complementary optimization. DeGauss generalizes robustly across a wide range of real-world scenarios, from casual image collections to long, dynamic egocentric videos, without relying on complex heuristics or extensive supervision. Experiments on benchmarks including NeRF-on-the-go, ADT, AEA, Hot3D, and EPIC-Fields demonstrate that DeGauss consistently outperforms existing methods, establishing a strong baseline for generalizable, distractor-free 3D reconstructionin highly dynamic, interaction-rich environments. Project page: https://batfacewayne.github.io/DeGauss.io/
comment: Accepted by ICCV 2025
♻ ☆ There and Back Again: On the relation between Noise and Image Inversions in Diffusion Models
Diffusion Models achieve state-of-the-art performance in generating new samples but lack a low-dimensional latent space that encodes the data into meaningful features. Inversion-based methods address this by reversing the denoising trajectory, mapping each image back to its approximated starting noise. In this work, we thoroughly analyze this procedure and focus on the relation between the initial Gaussian noise, the generated samples, and their corresponding latent encodings obtained through the DDIM inversion. First, we show that latents exhibit structural patterns in the form of less diverse noise predicted for smooth image regions. As a consequence of this divergence, we present that the space of image inversions is notably less manipulative than the original Gaussian noise. Next, we explain the origin of the phenomenon, demonstrating that, during the first inversion steps, the noise prediction error is much more significant for the plain areas than for the rest of the image. As a surprisingly simple solution, we propose to replace the first DDIM Inversion steps with a forward diffusion process, which successfully decorrelates latent encodings, leading to higher quality editions and interpolations. The code is available at https://github.com/luk-st/taba.
comment: Preprint
♻ ☆ DCBM: Data-Efficient Visual Concept Bottleneck Models
Concept Bottleneck Models (CBMs) enhance the interpretability of neural networks by basing predictions on human-understandable concepts. However, current CBMs typically rely on concept sets extracted from large language models or extensive image corpora, limiting their effectiveness in data-sparse scenarios. We propose Data-efficient CBMs (DCBMs), which reduce the need for large sample sizes during concept generation while preserving interpretability. DCBMs define concepts as image regions detected by segmentation or detection foundation models, allowing each image to generate multiple concepts across different granularities. This removes reliance on textual descriptions and large-scale pre-training, making DCBMs applicable for fine-grained classification and out-of-distribution tasks. Attribution analysis using Grad-CAM demonstrates that DCBMs deliver visual concepts that can be localized in test images. By leveraging dataset-specific concepts instead of predefined ones, DCBMs enhance adaptability to new domains.
♻ ☆ EP-Diffuser: An Efficient Diffusion Model for Traffic Scene Generation and Prediction via Polynomial Representations
As the prediction horizon increases, predicting the future evolution of traffic scenes becomes increasingly difficult due to the multi-modal nature of agent motion. Most state-of-the-art (SotA) prediction models primarily focus on forecasting the most likely future. However, for the safe operation of autonomous vehicles, it is equally important to cover the distribution for plausible motion alternatives. To address this, we introduce EP-Diffuser, a novel parameter-efficient diffusion-based generative model designed to capture the distribution of possible traffic scene evolutions. Conditioned on road layout and agent history, our model acts as a predictor and generates diverse, plausible scene continuations. We benchmark EP-Diffuser against two SotA models in terms of accuracy and plausibility of predictions on the Argoverse 2 dataset. Despite its significantly smaller model size, our approach achieves both highly accurate and plausible traffic scene predictions. We further evaluate model generalization ability in an out-of-distribution (OoD) test setting using Waymo Open dataset and show superior robustness of our approach.
♻ ☆ Efficient Self-Supervised Adaptation for Medical Image Analysis
Self-supervised adaptation (SSA) improves foundation model transfer to medical domains but is computationally prohibitive. Although parameter efficient fine-tuning methods such as LoRA have been explored for supervised adaptation, their effectiveness for SSA remains unknown. In this work, we introduce efficient self-supervised adaptation (ESSA), a framework that applies parameter-efficient fine-tuning techniques to SSA with the aim of reducing computational cost and improving adaptation performance. Among the methods tested, Attention Projection Layer Adaptation (APLA) sets a new state-of-the-art, consistently surpassing full-parameter SSA and supervised fine-tuning across diverse medical tasks, while reducing GPU memory by up to 40.1% and increasing training throughput by 25.2%, all while maintaining inference efficiency.
♻ ☆ Mod-Adapter: Tuning-Free and Versatile Multi-concept Personalization via Modulation Adapter
Personalized text-to-image generation aims to synthesize images of user-provided concepts in diverse contexts. Despite recent progress in multi-concept personalization, most are limited to object concepts and struggle to customize abstract concepts (e.g., pose, lighting). Some methods have begun exploring multi-concept personalization supporting abstract concepts, but they require test-time fine-tuning for each new concept, which is time-consuming and prone to overfitting on limited training images. In this work, we propose a novel tuning-free method for multi-concept personalization that can effectively customize both object and abstract concepts without test-time fine-tuning. Our method builds upon the modulation mechanism in pretrained Diffusion Transformers (DiTs) model, leveraging the localized and semantically meaningful properties of the modulation space. Specifically, we propose a novel module, Mod-Adapter, to predict concept-specific modulation direction for the modulation process of concept-related text tokens. It incorporates vision-language cross-attention for extracting concept visual features, and Mixture-of-Experts (MoE) layers that adaptively map the concept features into the modulation space. Furthermore, to mitigate the training difficulty caused by the large gap between the concept image space and the modulation space, we introduce a VLM-guided pretraining strategy that leverages the strong image understanding capabilities of vision-language models to provide semantic supervision signals. For a comprehensive comparison, we extend a standard benchmark by incorporating abstract concepts. Our method achieves state-of-the-art performance in multi-concept personalization, supported by quantitative, qualitative, and human evaluations.
comment: Project page: https://weizhi-zhong.github.io/Mod-Adapter
♻ ☆ TC-Light: Temporally Coherent Generative Rendering for Realistic World Transfer
Illumination and texture editing are critical dimensions for world-to-world transfer, which is valuable for applications including sim2real and real2real visual data scaling up for embodied AI. Existing techniques generatively re-render the input video to realize the transfer, such as video relighting models and conditioned world generation models. Nevertheless, these models are predominantly limited to the domain of training data (e.g., portrait) or fall into the bottleneck of temporal consistency and computation efficiency, especially when the input video involves complex dynamics and long durations. In this paper, we propose TC-Light, a novel generative renderer to overcome these problems. Starting from the video preliminarily relighted by an inflated video relighting model, it optimizes appearance embedding in the first stage to align global illumination. Then it optimizes the proposed canonical video representation, i.e., Unique Video Tensor (UVT), to align fine-grained texture and lighting in the second stage. To comprehensively evaluate performance, we also establish a long and highly dynamic video benchmark. Extensive experiments show that our method enables physically plausible re-rendering results with superior temporal coherence and low computation cost. The code and video demos are available at https://dekuliutesla.github.io/tclight/.
comment: Project Page: https://dekuliutesla.github.io/tclight/ Code: https://github.com/Linketic/TC-Light
♻ ☆ Robust 6DoF Pose Tracking Considering Contour and Interior Correspondence Uncertainty for AR Assembly Guidance
Augmented reality assembly guidance is essential for intelligent manufacturing and medical applications, requiring continuous measurement of the 6DoF poses of manipulated objects. Although current tracking methods have made significant advancements in accuracy and efficiency, they still face challenges in robustness when dealing with cluttered backgrounds, rotationally symmetric objects, and noisy sequences. In this paper, we first propose a robust contour-based pose tracking method that addresses error-prone contour correspondences and improves noise tolerance. It utilizes a fan-shaped search strategy to refine correspondences and models local contour shape and noise uncertainty as mixed probability distribution, resulting in a highly robust contour energy function. Secondly, we introduce a CPU-only strategy to better track rotationally symmetric objects and assist the contour-based method in overcoming local minima by exploring sparse interior correspondences. This is achieved by pre-sampling interior points from sparse viewpoint templates offline and using the DIS optical flow algorithm to compute their correspondences during tracking. Finally, we formulate a unified energy function to fuse contour and interior information, which is solvable using a re-weighted least squares algorithm. Experiments on public datasets and real scenarios demonstrate that our method significantly outperforms state-of-the-art monocular tracking methods and can achieve more than 100 FPS using only a CPU.
comment: Accepted by IEEE Transactions on Instrumentation and Measurement
♻ ☆ Towards Cardiac MRI Foundation Models: Comprehensive Visual-Tabular Representations for Whole-Heart Assessment and Beyond
Cardiac magnetic resonance imaging is the gold standard for non-invasive cardiac assessment, offering rich spatio-temporal views of the cardiac anatomy and physiology. Patient-level health factors, such as demographics, metabolic, and lifestyle, are known to substantially influence cardiovascular health and disease risk, yet remain uncaptured by CMR alone. To holistically understand cardiac health and to enable the best possible interpretation of an individual's disease risk, CMR and patient-level factors must be jointly exploited within an integrated framework. Recent multi-modal approaches have begun to bridge this gap, yet they often rely on limited spatio-temporal data and focus on isolated clinical tasks, thereby hindering the development of a comprehensive representation for cardiac health evaluation. To overcome these limitations, we introduce ViTa, a step toward foundation models that delivers a comprehensive representation of the heart and a precise interpretation of individual disease risk. Leveraging data from 42,000 UK Biobank participants, ViTa integrates 3D+T cine stacks from short-axis and long-axis views, enabling a complete capture of the cardiac cycle. These imaging data are then fused with detailed tabular patient-level factors, enabling context-aware insights. This multi-modal paradigm supports a wide spectrum of downstream tasks, including cardiac phenotype and physiological feature prediction, segmentation, and classification of cardiac and metabolic diseases within a single unified framework. By learning a shared latent representation that bridges rich imaging features and patient context, ViTa moves beyond traditional, task-specific models toward a universal, patient-specific understanding of cardiac health, highlighting its potential to advance clinical utility and scalability in cardiac analysis.
♻ ☆ Admitting Ignorance Helps the Video Question Answering Models to Answer
Significant progress has been made in the field of video question answering (VideoQA) thanks to deep learning and large-scale pretraining. Despite the presence of sophisticated model structures and powerful video-text foundation models, most existing methods focus solely on maximizing the correlation between answers and video-question pairs during training. We argue that these models often establish shortcuts, resulting in spurious correlations between questions and answers, especially when the alignment between video and text data is suboptimal. To address these spurious correlations, we propose a novel training framework in which the model is compelled to acknowledge its ignorance when presented with an intervened question, rather than making guesses solely based on superficial question-answer correlations. We introduce methodologies for intervening in questions, utilizing techniques such as displacement and perturbation, and design frameworks for the model to admit its lack of knowledge in both multi-choice VideoQA and open-ended settings. In practice, we integrate a state-of-the-art model into our framework to validate its effectiveness. The results clearly demonstrate that our framework can significantly enhance the performance of VideoQA models with minimal structural modifications.
♻ ☆ Reducing Variability of Multiple Instance Learning Methods for Digital Pathology MICCAI 2025
Digital pathology has revolutionized the field by enabling the digitization of tissue samples into whole slide images (WSIs). However, the high resolution and large size of WSIs present significant challenges when it comes to applying Deep Learning models. As a solution, WSIs are often divided into smaller patches with a global label (\textit{i.e., diagnostic}) per slide, instead of a (too) costly pixel-wise annotation. By treating each slide as a bag of patches, Multiple Instance Learning (MIL) methods have emerged as a suitable solution for WSI classification. A major drawback of MIL methods is their high variability in performance across different runs, which can reach up to 10-15 AUC points on the test set, making it difficult to compare different MIL methods reliably. This variability mainly comes from three factors: i) weight initialization, ii) batch (shuffling) ordering, iii) and learning rate. To address that, we introduce a Multi-Fidelity, Model Fusion strategy for MIL methods. We first train multiple models for a few epochs and average the most stable and promising ones based on validation scores. This approach can be applied to any existing MIL model to reduce performance variability. It also simplifies hyperparameter tuning and improves reproducibility while maintaining computational efficiency. We extensively validate our approach on WSI classification tasks using 2 different datasets, 3 initialization strategies and 5 MIL methods, for a total of more than 2000 experiments.
comment: MICCAI 2025 - This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this article is published in LNCS, Springer
♻ ☆ Contrastive Learning and Adversarial Disentanglement for Privacy-Aware Task-Oriented Semantic Communication
Task-oriented semantic communication systems have emerged as a promising approach to achieving efficient and intelligent data transmission in next-generation networks, where only information relevant to a specific task is communicated. This is particularly important in 6G-enabled Internet of Things (6G-IoT) scenarios, where bandwidth constraints, latency requirements, and data privacy are critical. However, existing methods struggle to fully disentangle task-relevant and task-irrelevant information, leading to privacy concerns and suboptimal performance. To address this, we propose an information-bottleneck inspired method, named CLAD (contrastive learning and adversarial disentanglement). CLAD utilizes contrastive learning to effectively capture task-relevant features while employing adversarial disentanglement to discard task-irrelevant information. Additionally, due to the absence of reliable and reproducible methods to quantify the minimality of encoded feature vectors, we introduce the Information Retention Index (IRI), a comparative metric used as a proxy for the mutual information between the encoded features and the input. The IRI reflects how minimal and informative the representation is, making it highly relevant for privacy-preserving and bandwidth-efficient 6G-IoT systems. Extensive experiments demonstrate that CLAD outperforms state-of-the-art baselines in terms of semantic extraction, task performance, privacy preservation, and IRI, making it a promising building block for responsible, efficient and trustworthy 6G-IoT services.
♻ ☆ Articulate3D: Holistic Understanding of 3D Scenes as Universal Scene Description
3D scene understanding is a long-standing challenge in computer vision and a key component in enabling mixed reality, wearable computing, and embodied AI. Providing a solution to these applications requires a multifaceted approach that covers scene-centric, object-centric, as well as interaction-centric capabilities. While there exist numerous datasets and algorithms approaching the former two problems, the task of understanding interactable and articulated objects is underrepresented and only partly covered in the research field. In this work, we address this shortcoming by introducing: (1) Articulate3D, an expertly curated 3D dataset featuring high-quality manual annotations on 280 indoor scenes. Articulate3D provides 8 types of annotations for articulated objects, covering parts and detailed motion information, all stored in a standardized scene representation format designed for scalable 3D content creation, exchange and seamless integration into simulation environments. (2) USDNet, a novel unified framework capable of simultaneously predicting part segmentation along with a full specification of motion attributes for articulated objects. We evaluate USDNet on Articulate3D as well as two existing datasets, demonstrating the advantage of our unified dense prediction approach. Furthermore, we highlight the value of Articulate3D through cross-dataset and cross-domain evaluations and showcase its applicability in downstream tasks such as scene editing through LLM prompting and robotic policy training for articulated object manipulation. We provide open access to our dataset, benchmark, and method's source code.
♻ ☆ Embedded Graph Convolutional Networks for Real-Time Event Data Processing on SoC FPGAs
The utilisation of event cameras represents an important and swiftly evolving trend aimed at addressing the constraints of traditional video systems. Particularly within the automotive domain, these cameras find significant relevance for their integration into embedded real-time systems due to lower latency and energy consumption. One effective approach to ensure the necessary throughput and latency for event processing is through the utilisation of graph convolutional networks (GCNs). In this study, we introduce a custom EFGCN (Event-based FPGA-accelerated Graph Convolutional Network) designed with a series of hardware-aware optimisations tailored for PointNetConv, a graph convolution designed for point cloud processing. The proposed techniques result in up to 100-fold reduction in model size compared to Asynchronous Event-based GNN (AEGNN), one of the most recent works in the field, with a relatively small decrease in accuracy (2.9% for the N-Caltech101 classification task, 2.2% for the N-Cars classification task), thus following the TinyML trend. We implemented EFGCN on a ZCU104 SoC FPGA platform without any external memory resources, achieving a throughput of 13.3 million events per second (MEPS) and real-time partially asynchronous processing with low latency. Our approach achieves state-of-the-art performance across multiple event-based classification benchmarks while remaining highly scalable, customisable and resource-efficient. We publish both software and hardware source code in an open repository: https://github.com/vision-agh/gcnn-dvs-fpga
comment: Submitted to the IEEE Transactions on Very Large Scale Integration Systems. This manuscript was first submitted for publication on March 31, 2024. It has since been revised three times: on 22 Mau 2024, 10 June 2024 and 19 June 2025 (major update)
♻ ☆ Concat-ID: Towards Universal Identity-Preserving Video Synthesis
We present Concat-ID, a unified framework for identity-preserving video generation. Concat-ID employs variational autoencoders to extract image features, which are then concatenated with video latents along the sequence dimension. It relies exclusively on inherent 3D self-attention mechanisms to incorporate them, eliminating the need for additional parameters or modules. A novel cross-video pairing strategy and a multi-stage training regimen are introduced to balance identity consistency and facial editability while enhancing video naturalness. Extensive experiments demonstrate Concat-ID's superiority over existing methods in both single and multi-identity generation, as well as its seamless scalability to multi-subject scenarios, including virtual try-on and background-controllable generation. Concat-ID establishes a new benchmark for identity-preserving video synthesis, providing a versatile and scalable solution for a wide range of applications.
♻ ☆ Semantic Alignment and Reinforcement for Data-Free Quantization of Vision Transformers ICCV2025
Data-free quantization (DFQ) enables model quantization without accessing real data, addressing concerns regarding data security and privacy. With the growing adoption of Vision Transformers (ViTs), DFQ for ViTs has garnered significant attention. However, existing DFQ methods exhibit two limitations: (1) semantic distortion, where the semantics of synthetic images deviate substantially from those of real images, and (2) semantic inadequacy, where synthetic images contain extensive regions with limited content and oversimplified textures, leading to suboptimal quantization performance. To address these limitations, we propose SARDFQ, a novel Semantics Alignment and Reinforcement Data-Free Quantization method for ViTs. To address semantic distortion, SARDFQ incorporates Attention Priors Alignment (APA), which optimizes synthetic images to follow randomly generated structure attention priors. To mitigate semantic inadequacy, SARDFQ introduces Multi-Semantic Reinforcement (MSR), leveraging localized patch optimization to enhance semantic richness across synthetic images. Furthermore, SARDFQ employs Soft-Label Learning (SL), wherein multiple semantic targets are adapted to facilitate the learning of multi-semantic images augmented by MSR. Extensive experiments demonstrate the effectiveness of SARDFQ, significantly surpassing existing methods. For example, SARDFQ improves top-1 accuracy on ImageNet by 15.52% for W4A4 ViT-B. The code is at https://github.com/zysxmu/SARDFQ.
comment: ICCV2025
♻ ☆ ExPaMoE: An Expandable Parallel Mixture of Experts for Continual Test-Time Adaptation
Continual Test-Time Adaptation (CTTA) aims to enable models to adapt on-the-fly to a stream of unlabeled data under evolving distribution shifts. However, existing CTTA methods typically rely on shared model parameters across all domains, making them vulnerable to feature entanglement and catastrophic forgetting in the presence of large or non-stationary domain shifts. To address this limitation, we propose ExPaMoE, a novel framework based on an Expandable Parallel Mixture-of-Experts architecture. ExPaMoE decouples domain-general and domain-specific knowledge via a dual-branch expert design with token-guided feature separation, and dynamically expands its expert pool based on a Spectral-Aware Online Domain Discriminator (SODD) that detects distribution changes in real-time using frequency-domain cues. Extensive experiments demonstrate the superiority of ExPaMoE across diverse CTTA scenarios. We evaluate our method on standard benchmarks including CIFAR-10C, CIFAR-100C, ImageNet-C, and Cityscapes-to-ACDC for semantic segmentation. Additionally, we introduce ImageNet++, a large-scale and realistic CTTA benchmark built from multiple ImageNet-derived datasets, to better reflect long-term adaptation under complex domain evolution. ExPaMoE consistently outperforms prior arts, showing strong robustness, scalability, and resistance to forgetting.
♻ ☆ TARO: Timestep-Adaptive Representation Alignment with Onset-Aware Conditioning for Synchronized Video-to-Audio Synthesis ICCV 2025
This paper introduces Timestep-Adaptive Representation Alignment with Onset-Aware Conditioning (TARO), a novel framework for high-fidelity and temporally coherent video-to-audio synthesis. Built upon flow-based transformers, which offer stable training and continuous transformations for enhanced synchronization and audio quality, TARO introduces two key innovations: (1) Timestep-Adaptive Representation Alignment (TRA), which dynamically aligns latent representations by adjusting alignment strength based on the noise schedule, ensuring smooth evolution and improved fidelity, and (2) Onset-Aware Conditioning (OAC), which integrates onset cues that serve as sharp event-driven markers of audio-relevant visual moments to enhance synchronization with dynamic visual events. Extensive experiments on the VGGSound and Landscape datasets demonstrate that TARO outperforms prior methods, achieving relatively 53% lower Frechet Distance (FD), 29% lower Frechet Audio Distance (FAD), and a 97.19% Alignment Accuracy, highlighting its superior audio quality and synchronization precision.
comment: Accepted to ICCV 2025
♻ ☆ NuSegDG: Integration of Heterogeneous Space and Gaussian Kernel for Domain-Generalized Nuclei Segmentation
Domain-generalized nuclei segmentation refers to the generalizability of models to unseen domains based on knowledge learned from source domains and is challenged by various image conditions, cell types, and stain strategies. Recently, the Segment Anything Model (SAM) has made great success in universal image segmentation by interactive prompt modes (e.g., point and box). Despite its strengths, the original SAM presents limited adaptation to medical images. Moreover, SAM requires providing manual bounding box prompts for each object to produce satisfactory segmentation masks, so it is laborious in nuclei segmentation scenarios. To address these limitations, we propose a domain-generalizable framework for nuclei image segmentation, abbreviated to NuSegDG. Specifically, we first devise a Heterogeneous Space Adapter (HS-Adapter) to learn multi-dimensional feature representations of different nuclei domains by injecting a small number of trainable parameters into the image encoder of SAM. To alleviate the labor-intensive requirement of manual prompts, we introduce a Gaussian-Kernel Prompt Encoder (GKP-Encoder) to generate density maps driven by a single point, which guides segmentation predictions by mixing position prompts and semantic prompts. Furthermore, we present a Two-Stage Mask Decoder (TSM-Decoder) to effectively convert semantic masks to instance maps without the manual demand for morphological shape refinement. Based on our experimental evaluations, the proposed NuSegDG demonstrates state-of-the-art performance in nuclei instance segmentation, exhibiting superior domain generalization capabilities. The source code is available at https://github.com/xq141839/NuSegDG.
♻ ☆ Time Series Representations for Classification Lie Hidden in Pretrained Vision Transformers
Time series classification is a fundamental task in healthcare and industry, yet the development of time series foundation models (TSFMs) remains limited by the scarcity of publicly available time series datasets. In this work, we propose Time Vision Transformer (TiViT), a framework that converts time series into images to leverage the representational power of frozen Vision Transformers (ViTs) pretrained on large-scale image datasets. First, we theoretically motivate our approach by analyzing the 2D patching of ViTs for time series, showing that it can increase the number of label-relevant tokens and reduce the sample complexity. Second, we empirically demonstrate that TiViT achieves state-of-the-art performance on standard time series classification benchmarks by utilizing the hidden representations of large OpenCLIP models. We explore the structure of TiViT representations and find that intermediate layers with high intrinsic dimension are the most effective for time series classification. Finally, we assess the alignment between TiViT and TSFM representation spaces and identify a strong complementarity, with further performance gains achieved by combining their features. Our findings reveal a new direction for reusing vision representations in a non-visual domain. Code is available at https://github.com/ExplainableML/TiViT.
comment: Preprint
♻ ☆ Unsupervised Panoptic Interpretation of Latent Spaces in GANs Using Space-Filling Vector Quantization
Generative adversarial networks (GANs) learn a latent space whose samples can be mapped to real-world images. Such latent spaces are difficult to interpret. Some earlier supervised methods aim to create an interpretable latent space or discover interpretable directions, which requires exploiting data labels or annotated synthesized samples for training. However, we propose using a modification of vector quantization called space-filling vector quantization (SFVQ), which quantizes the data on a piece-wise linear curve. SFVQ can capture the underlying morphological structure of the latent space, making it interpretable. We apply this technique to model the latent space of pre-trained StyleGAN2 and BigGAN networks on various datasets. Our experiments show that the SFVQ curve yields a general interpretable model of the latent space such that it determines which parts of the latent space correspond to specific generative factors. Furthermore, we demonstrate that each line of the SFVQ curve can potentially refer to an interpretable direction for applying intelligible image transformations. We also demonstrate that the points located on an SFVQ line can be used for controllable data augmentation.
♻ ☆ Scaling Open-Vocabulary Action Detection
In this work, we focus on scaling open-vocabulary action detection. Existing approaches for action detection are predominantly limited to closed-set scenarios and rely on complex, parameter-heavy architectures. Extending these models to the open-vocabulary setting poses two key challenges: (1) the lack of large-scale datasets with many action classes for robust training, and (2) parameter-heavy adaptations to a pretrained vision-language contrastive model to convert it for detection, risking overfitting the additional non-pretrained parameters to base action classes. Firstly, we introduce an encoder-only multimodal model for video action detection, reducing the reliance on parameter-heavy additions for video action detection. Secondly, we introduce a simple weakly supervised training strategy to exploit an existing closed-set action detection dataset for pretraining. Finally, we depart from the ill-posed base-to-novel benchmark used by prior works in open-vocabulary action detection and devise a new benchmark to evaluate on existing closed-set action detection datasets without ever using them for training, showing novel results to serve as baselines for future work.
♻ ☆ SimVecVis: A Dataset for Enhancing MLLMs in Visualization Understanding
Current multimodal large language models (MLLMs), while effective in natural image understanding, struggle with visualization understanding due to their inability to decode the data-to-visual mapping and extract structured information. To address these challenges, we propose SimVec, a novel simplified vector format that encodes chart elements such as mark type, position, and size. The effectiveness of SimVec is demonstrated by using MLLMs to reconstruct chart information from SimVec formats. Then, we build a new visualization dataset, SimVecVis, to enhance the performance of MLLMs in visualization understanding, which consists of three key dimensions: bitmap images of charts, their SimVec representations, and corresponding data-centric question-answering (QA) pairs with explanatory chain-of-thought (CoT) descriptions. We finetune state-of-the-art MLLMs (e.g., MiniCPM and Qwen-VL), using SimVecVis with different dataset dimensions. The experimental results show that it leads to substantial performance improvements of MLLMs with good spatial perception capabilities (e.g., MiniCPM) in data-centric QA tasks. Our dataset and source code are available at: https://github.com/VIDA-Lab/SimVecVis.
♻ ☆ What Changed and What Could Have Changed? State-Change Counterfactuals for Procedure-Aware Video Representation Learning
Understanding a procedural activity requires modeling both how action steps transform the scene and how evolving scene transformations can influence the sequence of action steps, even those that are accidental or erroneous. Existing work has studied procedure-aware video representations by proposing novel approaches such as modeling the temporal order of actions, and has not explicitly learned the state changes (scene transformations). In this work, we study procedure-aware video representation learning by incorporating state-change descriptions generated by Large Language Models (LLMs) as supervision signals for video encoders. Moreover, we generate state-change counterfactuals that simulate hypothesized failure outcomes, allowing models to learn by imagining the unseen ``What if'' scenarios. This counterfactual reasoning facilitates the model's ability to understand the cause and effect of each step in an activity. To verify the procedure awareness of our model, we conduct extensive experiments on procedure-aware tasks, including temporal action segmentation, error detection, action phase classification, frame retrieval, multi-instance retrieval, and action recognition. Our results demonstrate the effectiveness of the proposed state-change descriptions and their counterfactuals, and achieve significant improvements on multiple tasks. We will make our source code and data publicly available soon.
comment: 16 pages, 4 figures
♻ ☆ Is Visual in-Context Learning for Compositional Medical Tasks within Reach? ICCV 2025
In this paper, we explore the potential of visual in-context learning to enable a single model to handle multiple tasks and adapt to new tasks during test time without re-training. Unlike previous approaches, our focus is on training in-context learners to adapt to sequences of tasks, rather than individual tasks. Our goal is to solve complex tasks that involve multiple intermediate steps using a single model, allowing users to define entire vision pipelines flexibly at test time. To achieve this, we first examine the properties and limitations of visual in-context learning architectures, with a particular focus on the role of codebooks. We then introduce a novel method for training in-context learners using a synthetic compositional task generation engine. This engine bootstraps task sequences from arbitrary segmentation datasets, enabling the training of visual in-context learners for compositional tasks. Additionally, we investigate different masking-based training objectives to gather insights into how to train models better for solving complex, compositional tasks. Our exploration not only provides important insights especially for multi-modal medical task sequences but also highlights challenges that need to be addressed.
comment: Accepted to ICCV 2025
Machine Learning 220
☆ How Well Does GPT-4o Understand Vision? Evaluating Multimodal Foundation Models on Standard Computer Vision Tasks
Multimodal foundation models, such as GPT-4o, have recently made remarkable progress, but it is not clear where exactly these models stand in terms of understanding vision. In this paper, we benchmark the performance of popular multimodal foundation models (GPT-4o, o4-mini, Gemini 1.5 Pro and Gemini 2.0 Flash, Claude 3.5 Sonnet, Qwen2-VL, Llama 3.2) on standard computer vision tasks (semantic segmentation, object detection, image classification, depth and surface normal prediction) using established datasets (e.g., COCO, ImageNet and its variants, etc). The main challenges to performing this are: 1) most models are trained to output text and cannot natively express versatile domains, such as segments or 3D geometry, and 2) many leading models are proprietary and accessible only at an API level, i.e., there is no weight access to adapt them. We address these challenges by translating standard vision tasks into equivalent text-promptable and API-compatible tasks via prompt chaining to create a standardized benchmarking framework. We observe that 1) the models are not close to the state-of-the-art specialist models at any task. However, 2) they are respectable generalists; this is remarkable as they are presumably trained on primarily image-text-based tasks. 3) They perform semantic tasks notably better than geometric ones. 4) While the prompt-chaining techniques affect performance, better models exhibit less sensitivity to prompt variations. 5) GPT-4o performs the best among non-reasoning models, securing the top position in 4 out of 6 tasks, 6) reasoning models, e.g. o3, show improvements in geometric tasks, and 7) a preliminary analysis of models with native image generation, like the latest GPT-4o, shows they exhibit quirks like hallucinations and spatial misalignments.
comment: Project page at https://fm-vision-evals.epfl.ch/
☆ Test-Time Scaling with Reflective Generative Model
We introduce our first reflective generative model MetaStone-S1, which obtains OpenAI o3's performance via the self-supervised process reward model (SPRM). Through sharing the backbone network and using task-specific heads for next token prediction and process scoring respectively, SPRM successfully integrates the policy model and process reward model(PRM) into a unified interface without extra process annotation, reducing over 99% PRM parameters for efficient reasoning. Equipped with SPRM, MetaStone-S1 is naturally suitable for test time scaling (TTS), and we provide three reasoning effort modes (low, medium, and high), based on the controllable thinking length. Moreover, we empirically establish a scaling law that reveals the relationship between total thinking computation and TTS performance. Experiments demonstrate that our MetaStone-S1 achieves comparable performance to OpenAI-o3-mini's series with only 32B parameter size. To support the research community, we have open-sourced MetaStone-S1 at https://github.com/MetaStone-AI/MetaStone-S1.
☆ Characterizing control between interacting subsystems with deep Jacobian estimation
Biological function arises through the dynamical interactions of multiple subsystems, including those between brain areas, within gene regulatory networks, and more. A common approach to understanding these systems is to model the dynamics of each subsystem and characterize communication between them. An alternative approach is through the lens of control theory: how the subsystems control one another. This approach involves inferring the directionality, strength, and contextual modulation of control between subsystems. However, methods for understanding subsystem control are typically linear and cannot adequately describe the rich contextual effects enabled by nonlinear complex systems. To bridge this gap, we devise a data-driven nonlinear control-theoretic framework to characterize subsystem interactions via the Jacobian of the dynamics. We address the challenge of learning Jacobians from time-series data by proposing the JacobianODE, a deep learning method that leverages properties of the Jacobian to directly estimate it for arbitrary dynamical systems from data alone. We show that JacobianODEs outperform existing Jacobian estimation methods on challenging systems, including high-dimensional chaos. Applying our approach to a multi-area recurrent neural network (RNN) trained on a working memory selection task, we show that the "sensory" area gains greater control over the "cognitive" area over learning. Furthermore, we leverage the JacobianODE to directly control the trained RNN, enabling precise manipulation of its behavior. Our work lays the foundation for a theoretically grounded and data-driven understanding of interactions among biological subsystems.
comment: 10 pages, 6 figures
☆ SpecCLIP: Aligning and Translating Spectroscopic Measurements for Stars
In recent years, large language models (LLMs) have transformed natural language understanding through vast datasets and large-scale parameterization. Inspired by this success, we present SpecCLIP, a foundation model framework that extends LLM-inspired methodologies to stellar spectral analysis. Stellar spectra, akin to structured language, encode rich physical and chemical information about stars. By training foundation models on large-scale spectral datasets, our goal is to learn robust and informative embeddings that support diverse downstream applications. As a proof of concept, SpecCLIP involves pre-training on two spectral types--LAMOST low-resolution and Gaia XP--followed by contrastive alignment using the CLIP (Contrastive Language-Image Pre-training) framework, adapted to associate spectra from different instruments. This alignment is complemented by auxiliary decoders that preserve spectrum-specific information and enable translation (prediction) between spectral types, with the former achieved by maximizing mutual information between embeddings and input spectra. The result is a cross-spectrum framework enabling intrinsic calibration and flexible applications across instruments. We demonstrate that fine-tuning these models on moderate-sized labeled datasets improves adaptability to tasks such as stellar-parameter estimation and chemical-abundance determination. SpecCLIP also enhances the accuracy and precision of parameter estimates benchmarked against external survey data. Additionally, its similarity search and cross-spectrum prediction capabilities offer potential for anomaly detection. Our results suggest that contrastively trained foundation models enriched with spectrum-aware decoders can advance precision stellar spectroscopy.
comment: 26 pages, 6 figures, 5 tables. To be submitted to AAS Journals. Comments welcome
☆ A first-order method for nonconvex-nonconcave minimax problems under a local Kurdyka-Łojasiewicz condition
We study a class of nonconvex-nonconcave minimax problems in which the inner maximization problem satisfies a local Kurdyka-{\L}ojasiewicz (KL) condition that may vary with the outer minimization variable. In contrast to the global KL or Polyak-{\L}ojasiewicz (PL) conditions commonly assumed in the literature -- which are significantly stronger and often too restrictive in practice -- this local KL condition accommodates a broader range of practical scenarios. However, it also introduces new analytical challenges. In particular, as an optimization algorithm progresses toward a stationary point of the problem, the region over which the KL condition holds may shrink, resulting in a more intricate and potentially ill-conditioned landscape. To address this challenge, we show that the associated maximal function is locally H\"older smooth. Leveraging this key property, we develop an inexact proximal gradient method for solving the minimax problem, where the inexact gradient of the maximal function is computed by applying a proximal gradient method to a KL-structured subproblem. Under mild assumptions, we establish complexity guarantees for computing an approximate stationary point of the minimax problem.
comment: 26 pages
☆ Exploring a Hybrid Deep Learning Approach for Anomaly Detection in Mental Healthcare Provider Billing: Addressing Label Scarcity through Semi-Supervised Anomaly Detection
The complexity of mental healthcare billing enables anomalies, including fraud. While machine learning methods have been applied to anomaly detection, they often struggle with class imbalance, label scarcity, and complex sequential patterns. This study explores a hybrid deep learning approach combining Long Short-Term Memory (LSTM) networks and Transformers, with pseudo-labeling via Isolation Forests (iForest) and Autoencoders (AE). Prior work has not evaluated such hybrid models trained on pseudo-labeled data in the context of healthcare billing. The approach is evaluated on two real-world billing datasets related to mental healthcare. The iForest LSTM baseline achieves the highest recall (0.963) on declaration-level data. On the operation-level data, the hybrid iForest-based model achieves the highest recall (0.744), though at the cost of lower precision. These findings highlight the potential of combining pseudo-labeling with hybrid deep learning in complex, imbalanced anomaly detection settings.
☆ Gradient-Adaptive Policy Optimization: Towards Multi-Objective Alignment of Large Language Models ACL 2025
Reinforcement Learning from Human Feedback (RLHF) has emerged as a powerful technique for aligning large language models (LLMs) with human preferences. However, effectively aligning LLMs with diverse human preferences remains a significant challenge, particularly when they are conflict. To address this issue, we frame human value alignment as a multi-objective optimization problem, aiming to maximize a set of potentially conflicting objectives. We introduce Gradient-Adaptive Policy Optimization (GAPO), a novel fine-tuning paradigm that employs multiple-gradient descent to align LLMs with diverse preference distributions. GAPO adaptively rescales the gradients for each objective to determine an update direction that optimally balances the trade-offs between objectives. Additionally, we introduce P-GAPO, which incorporates user preferences across different objectives and achieves Pareto solutions that better align with the user's specific needs. Our theoretical analysis demonstrates that GAPO converges towards a Pareto optimal solution for multiple objectives. Empirical results on Mistral-7B show that GAPO outperforms current state-of-the-art methods, achieving superior performance in both helpfulness and harmlessness.
comment: 19 pages, 3 figures. Accepted by ACL 2025 (main)
☆ Advancing Magnetic Materials Discovery -- A structure-based machine learning approach for magnetic ordering and magnetic moment prediction
Accurately predicting magnetic behavior across diverse materials systems remains a longstanding challenge due to the complex interplay of structural and electronic factors and is pivotal for the accelerated discovery and design of next-generation magnetic materials. In this work, a refined descriptor is proposed that significantly improves the prediction of two critical magnetic properties -- magnetic ordering (Ferromagnetic vs. Ferrimagnetic) and magnetic moment per atom -- using only the structural information of materials. Unlike previous models limited to Mn-based or lanthanide-transition metal compounds, the present approach generalizes across a diverse dataset of 5741 stable, binary and ternary, ferromagnetic and ferrimagnetic compounds sourced from the Materials Project. Leveraging an enriched elemental vector representation and advanced feature engineering, including nonlinear terms and reduced matrix sparsity, the LightGBM-based model achieves an accuracy of 82.4% for magnetic ordering classification and balanced recall across FM and FiM classes, addressing a key limitation in prior studies. The model predicts magnetic moment per atom with a correlation coefficient of 0.93, surpassing the Hund's matrix and orbital field matrix descriptors. Additionally, it accurately estimates formation energy per atom, enabling assessment of both magnetic behavior and material stability. This generalized and computationally efficient framework offers a robust tool for high-throughput screening of magnetic materials with tailored properties.
☆ High-Layer Attention Pruning with Rescaling
Pruning is a highly effective approach for compressing large language models (LLMs), significantly reducing inference latency. However, conventional training-free structured pruning methods often employ a heuristic metric that indiscriminately removes some attention heads across all pruning layers, without considering their positions within the network architecture. In this work, we propose a novel pruning algorithm that strategically prunes attention heads in the model's higher layers. Since the removal of attention heads can alter the magnitude of token representations, we introduce an adaptive rescaling parameter that calibrates the representation scale post-pruning to counteract this effect. We conduct comprehensive experiments on a wide range of LLMs, including LLaMA3.1-8B, Mistral-7B-v0.3, Qwen2-7B, and Gemma2-9B. Our evaluation includes both generation and discriminative tasks across 27 datasets. The results consistently demonstrate that our method outperforms existing structured pruning methods. This improvement is particularly notable in generation tasks, where our approach significantly outperforms existing baselines.
☆ STEM Diffraction Pattern Analysis with Deep Learning Networks
Accurate grain orientation mapping is essential for understanding and optimizing the performance of polycrystalline materials, particularly in energy-related applications. Lithium nickel oxide (LiNiO$_{2}$) is a promising cathode material for next-generation lithium-ion batteries, and its electrochemical behaviour is closely linked to microstructural features such as grain size and crystallographic orientations. Traditional orientation mapping methods--such as manual indexing, template matching (TM), or Hough transform-based techniques--are often slow and noise-sensitive when handling complex or overlapping patterns, creating a bottleneck in large-scale microstructural analysis. This work presents a machine learning-based approach for predicting Euler angles directly from scanning transmission electron microscopy (STEM) diffraction patterns (DPs). This enables the automated generation of high-resolution crystal orientation maps, facilitating the analysis of internal microstructures at the nanoscale. Three deep learning architectures--convolutional neural networks (CNNs), Dense Convolutional Networks (DenseNets), and Shifted Windows (Swin) Transformers--are evaluated, using an experimentally acquired dataset labelled via a commercial TM algorithm. While the CNN model serves as a baseline, both DenseNets and Swin Transformers demonstrate superior performance, with the Swin Transformer achieving the highest evaluation scores and the most consistent microstructural predictions. The resulting crystal maps exhibit clear grain boundary delineation and coherent intra-grain orientation distributions, underscoring the potential of attention-based architectures for analyzing diffraction-based image data. These findings highlight the promise of combining advanced machine learning models with STEM data for robust, high-throughput microstructural characterization.
☆ A computationally frugal open-source foundation model for thoracic disease detection in lung cancer screening programs
Low-dose computed tomography (LDCT) imaging employed in lung cancer screening (LCS) programs is increasing in uptake worldwide. LCS programs herald a generational opportunity to simultaneously detect cancer and non-cancer-related early-stage lung disease. Yet these efforts are hampered by a shortage of radiologists to interpret scans at scale. Here, we present TANGERINE, a computationally frugal, open-source vision foundation model for volumetric LDCT analysis. Designed for broad accessibility and rapid adaptation, TANGERINE can be fine-tuned off the shelf for a wide range of disease-specific tasks with limited computational resources and training data. Relative to models trained from scratch, TANGERINE demonstrates fast convergence during fine-tuning, thereby requiring significantly fewer GPU hours, and displays strong label efficiency, achieving comparable or superior performance with a fraction of fine-tuning data. Pretrained using self-supervised learning on over 98,000 thoracic LDCTs, including the UK's largest LCS initiative to date and 27 public datasets, TANGERINE achieves state-of-the-art performance across 14 disease classification tasks, including lung cancer and multiple respiratory diseases, while generalising robustly across diverse clinical centres. By extending a masked autoencoder framework to 3D imaging, TANGERINE offers a scalable solution for LDCT analysis, departing from recent closed, resource-intensive models by combining architectural simplicity, public availability, and modest computational requirements. Its accessible, open-source lightweight design lays the foundation for rapid integration into next-generation medical imaging tools that could transform LCS initiatives, allowing them to pivot from a singular focus on lung cancer detection to comprehensive respiratory disease management in high-risk populations.
☆ Evolving HPC services to enable ML workloads on HPE Cray EX
The Alps Research Infrastructure leverages GH200 technology at scale, featuring 10,752 GPUs. Accessing Alps provides a significant computational advantage for researchers in Artificial Intelligence (AI) and Machine Learning (ML). While Alps serves a broad range of scientific communities, traditional HPC services alone are not sufficient to meet the dynamic needs of the ML community. This paper presents an initial investigation into extending HPC service capabilities to better support ML workloads. We identify key challenges and gaps we have observed since the early-access phase (2023) of Alps by the Swiss AI community and propose several technological enhancements. These include a user environment designed to facilitate the adoption of HPC for ML workloads, balancing performance with flexibility; a utility for rapid performance screening of ML applications during development; observability capabilities and data products for inspecting ongoing large-scale ML workloads; a utility to simplify the vetting of allocated nodes for compute readiness; a service plane infrastructure to deploy various types of workloads, including support and inference services; and a storage infrastructure tailored to the specific needs of ML workloads. These enhancements aim to facilitate the execution of ML workloads on HPC systems, increase system usability and resilience, and better align with the needs of the ML community. We also discuss our current approach to security aspects. This paper concludes by placing these proposals in the broader context of changes in the communities served by HPC infrastructure like ours.
comment: Presented at the Cray User Group 2025 (CUG'25)
☆ Towards Foundation Auto-Encoders for Time-Series Anomaly Detection KDD 2024
We investigate a novel approach to time-series modeling, inspired by the successes of large pretrained foundation models. We introduce FAE (Foundation Auto-Encoders), a foundation generative-AI model for anomaly detection in time-series data, based on Variational Auto-Encoders (VAEs). By foundation, we mean a model pretrained on massive amounts of time-series data which can learn complex temporal patterns useful for accurate modeling, forecasting, and detection of anomalies on previously unseen datasets. FAE leverages VAEs and Dilated Convolutional Neural Networks (DCNNs) to build a generic model for univariate time-series modeling, which could eventually perform properly in out-of-the-box, zero-shot anomaly detection applications. We introduce the main concepts of FAE, and present preliminary results in different multi-dimensional time-series datasets from various domains, including a real dataset from an operational mobile ISP, and the well known KDD 2021 Anomaly Detection dataset.
comment: Presented at ACM KDD 2024, MiLeTS 2024 Workshop, August 25, 2024, Barcelona, Spain
☆ Low-Perplexity LLM-Generated Sequences and Where To Find Them ACL 2025
As Large Language Models (LLMs) become increasingly widespread, understanding how specific training data shapes their outputs is crucial for transparency, accountability, privacy, and fairness. To explore how LLMs leverage and replicate their training data, we introduce a systematic approach centered on analyzing low-perplexity sequences - high-probability text spans generated by the model. Our pipeline reliably extracts such long sequences across diverse topics while avoiding degeneration, then traces them back to their sources in the training data. Surprisingly, we find that a substantial portion of these low-perplexity spans cannot be mapped to the corpus. For those that do match, we quantify the distribution of occurrences across source documents, highlighting the scope and nature of verbatim recall and paving a way toward better understanding of how LLMs training data impacts their behavior.
comment: Camera-ready version. Accepted to ACL 2025. 10 pages, 4 figures, 6 tables
☆ Automatic Rank Determination for Low-Rank Adaptation via Submodular Function Maximization
In this paper, we propose SubLoRA, a rank determination method for Low-Rank Adaptation (LoRA) based on submodular function maximization. In contrast to prior approaches, such as AdaLoRA, that rely on first-order (linearized) approximations of the loss function, SubLoRA utilizes second-order information to capture the potentially complex loss landscape by incorporating the Hessian matrix. We show that the linearization becomes inaccurate and ill-conditioned when the LoRA parameters have been well optimized, motivating the need for a more reliable and nuanced second-order formulation. To this end, we reformulate the rank determination problem as a combinatorial optimization problem with a quadratic objective. However, solving this problem exactly is NP-hard in general. To overcome the computational challenge, we introduce a submodular function maximization framework and devise a greedy algorithm with approximation guarantees. We derive a sufficient and necessary condition under which the rank-determination objective becomes submodular, and construct a closed-form projection of the Hessian matrix that satisfies this condition while maintaining computational efficiency. Our method combines solid theoretical foundations, second-order accuracy, and practical computational efficiency. We further extend SubLoRA to a joint optimization setting, alternating between LoRA parameter updates and rank determination under a rank budget constraint. Extensive experiments on fine-tuning physics-informed neural networks (PINNs) for solving partial differential equations (PDEs) demonstrate the effectiveness of our approach. Results show that SubLoRA outperforms existing methods in both rank determination and joint training performance.
☆ Out-of-Distribution Detection Methods Answer the Wrong Questions ICML 2025
To detect distribution shifts and improve model safety, many out-of-distribution (OOD) detection methods rely on the predictive uncertainty or features of supervised models trained on in-distribution data. In this paper, we critically re-examine this popular family of OOD detection procedures, and we argue that these methods are fundamentally answering the wrong questions for OOD detection. There is no simple fix to this misalignment, since a classifier trained only on in-distribution classes cannot be expected to identify OOD points; for instance, a cat-dog classifier may confidently misclassify an airplane if it contains features that distinguish cats from dogs, despite generally appearing nothing alike. We find that uncertainty-based methods incorrectly conflate high uncertainty with being OOD, while feature-based methods incorrectly conflate far feature-space distance with being OOD. We show how these pathologies manifest as irreducible errors in OOD detection and identify common settings where these methods are ineffective. Additionally, interventions to improve OOD detection such as feature-logit hybrid methods, scaling of model and data size, epistemic uncertainty representation, and outlier exposure also fail to address this fundamental misalignment in objectives. We additionally consider unsupervised density estimation and generative models for OOD detection, which we show have their own fundamental limitations.
comment: Extended version of ICML 2025 paper
☆ mGRADE: Minimal Recurrent Gating Meets Delay Convolutions for Lightweight Sequence Modeling
Edge devices for temporal processing demand models that capture both short- and long- range dynamics under tight memory constraints. While Transformers excel at sequence modeling, their quadratic memory scaling with sequence length makes them impractical for such settings. Recurrent Neural Networks (RNNs) offer constant memory but train sequentially, and Temporal Convolutional Networks (TCNs), though efficient, scale memory with kernel size. To address this, we propose mGRADE (mininally Gated Recurrent Architecture with Delay Embedding), a hybrid-memory system that integrates a temporal 1D-convolution with learnable spacings followed by a minimal gated recurrent unit (minGRU). This design allows the convolutional layer to realize a flexible delay embedding that captures rapid temporal variations, while the recurrent module efficiently maintains global context with minimal memory overhead. We validate our approach on two synthetic tasks, demonstrating that mGRADE effectively separates and preserves multi-scale temporal features. Furthermore, on challenging pixel-by-pixel image classification benchmarks, mGRADE consistently outperforms both pure convolutional and pure recurrent counterparts using approximately 20% less memory footprint, highlighting its suitability for memory-constrained temporal processing at the edge. This highlights mGRADE's promise as an efficient solution for memory-constrained multi-scale temporal processing at the edge.
☆ MILP-SAT-GNN: Yet Another Neural SAT Solver
We proposes a novel method that enables Graph Neural Networks (GNNs) to solve SAT problems by leveraging a technique developed for applying GNNs to Mixed Integer Linear Programming (MILP). Specifically, k-CNF formulae are mapped into MILP problems, which are then encoded as weighted bipartite graphs and subsequently fed into a GNN for training and testing. From a theoretical perspective: (i) we establish permutation and equivalence invariance results, demonstrating that the method produces outputs that are stable under reordering of clauses and variables; (ii) we identify a theoretical limitation, showing that for a class of formulae called foldable formulae, standard GNNs cannot always distinguish satisfiable from unsatisfiable instances; (iii) we prove a universal approximation theorem, establishing that with Random Node Initialization (RNI), the method can approximate SAT solving to arbitrary precision on finite datasets, that is, the GNN becomes approximately sound and complete on such datasets. Furthermore, we show that for unfoldable formulae, the same approximation guarantee can be achieved without the need for RNI. Finally, we conduct an experimental evaluation of our approach, which show that, despite the simplicity of the neural architecture, the method achieves promising results.
☆ TD-MPC-Opt: Distilling Model-Based Multi-Task Reinforcement Learning Agents
We present a novel approach to knowledge transfer in model-based reinforcement learning, addressing the critical challenge of deploying large world models in resource-constrained environments. Our method efficiently distills a high-capacity multi-task agent (317M parameters) into a compact model (1M parameters) on the MT30 benchmark, significantly improving performance across diverse tasks. Our distilled model achieves a state-of-the-art normalized score of 28.45, surpassing the original 1M parameter model score of 18.93. This improvement demonstrates the ability of our distillation technique to capture and consolidate complex multi-task knowledge. We further optimize the distilled model through FP16 post-training quantization, reducing its size by $\sim$50\%. Our approach addresses practical deployment limitations and offers insights into knowledge representation in large world models, paving the way for more efficient and accessible multi-task reinforcement learning systems in robotics and other resource-constrained applications. Code available at https://github.com/dmytro-kuzmenko/td-mpc-opt.
comment: Preprint of a manuscript submitted for peer review
☆ LoRA Fine-Tuning Without GPUs: A CPU-Efficient Meta-Generation Framework for LLMs ICML 2025
Low-Rank Adapters (LoRAs) have transformed the fine-tuning of Large Language Models (LLMs) by enabling parameter-efficient updates. However, their widespread adoption remains limited by the reliance on GPU-based training. In this work, we propose a theoretically grounded approach to LoRA fine-tuning designed specifically for users with limited computational resources, particularly those restricted to standard laptop CPUs. Our method learns a meta-operator that maps any input dataset, represented as a probability distribution, to a set of LoRA weights by leveraging a large bank of pre-trained adapters for the Mistral-7B-Instruct-v0.2 model. Instead of performing new gradient-based updates, our pipeline constructs adapters via lightweight combinations of existing LoRAs directly on CPU. While the resulting adapters do not match the performance of GPU-trained counterparts, they consistently outperform the base Mistral model on downstream tasks, offering a practical and accessible alternative to traditional GPU-based fine-tuning.
comment: 5-page main paper (excluding references) + 11-page appendix, 3 tables, 1 figure. Accepted to ICML 2025 Workshop on Efficient Systems for Foundation Models
☆ Towards Decentralized and Sustainable Foundation Model Training with the Edge
Foundation models are at the forefront of AI research, appealing for their ability to learn from vast datasets and cater to diverse tasks. Yet, their significant computational demands raise issues of environmental impact and the risk of centralized control in their development. We put forward a vision towards decentralized and sustainable foundation model training that leverages the collective compute of sparingly used connected edge AI devices. We present the rationale behind our vision, particularly in support of its sustainability benefit. We further outline a set of challenges that need to be addressed to turn this vision into reality.
☆ The Anatomy of Evidence: An Investigation Into Explainable ICD Coding ACL 2025
Automatic medical coding has the potential to ease documentation and billing processes. For this task, transparency plays an important role for medical coders and regulatory bodies, which can be achieved using explainability methods. However, the evaluation of these approaches has been mostly limited to short text and binary settings due to a scarcity of annotated data. Recent efforts by Cheng et al. (2023) have introduced the MDACE dataset, which provides a valuable resource containing code evidence in clinical records. In this work, we conduct an in-depth analysis of the MDACE dataset and perform plausibility evaluation of current explainable medical coding systems from an applied perspective. With this, we contribute to a deeper understanding of automatic medical coding and evidence extraction. Our findings reveal that ground truth evidence aligns with code descriptions to a certain degree. An investigation into state-of-the-art approaches shows a high overlap with ground truth evidence. We propose match measures and highlight success and failure cases. Based on our findings, we provide recommendations for developing and evaluating explainable medical coding systems.
comment: Accepted to ACL 2025 Findings
☆ Neural Entropy-stable conservative flux form neural networks for learning hyperbolic conservation laws
We propose a neural entropy-stable conservative flux form neural network (NESCFN) for learning hyperbolic conservation laws and their associated entropy functions directly from solution trajectories, without requiring any predefined numerical discretization. While recent neural network architectures have successfully integrated classical numerical principles into learned models, most rely on prior knowledge of the governing equations or assume a fixed discretization. Our approach removes this dependency by embedding entropy-stable design principles into the learning process itself, enabling the discovery of physically consistent dynamics in a fully data-driven setting. By jointly learning both the numerical flux function and a corresponding entropy, the proposed method ensures conservation and entropy dissipation, critical for long-term stability and fidelity in the system of hyperbolic conservation laws. Numerical results demonstrate that the method achieves stability and conservation over extended time horizons and accurately captures shock propagation speeds, even without oracle access to future-time solution profiles in the training data.
☆ How Do Vision-Language Models Process Conflicting Information Across Modalities?
AI models are increasingly required to be multimodal, integrating disparate input streams into a coherent state representation on which subsequent behaviors and actions can be based. This paper seeks to understand how such models behave when input streams present conflicting information. Focusing specifically on vision-language models, we provide inconsistent inputs (e.g., an image of a dog paired with the caption "A photo of a cat") and ask the model to report the information present in one of the specific modalities (e.g., "What does the caption say / What is in the image?"). We find that models often favor one modality over the other, e.g., reporting the image regardless of what the caption says, but that different models differ in which modality they favor. We find evidence that the behaviorally preferred modality is evident in the internal representational structure of the model, and that specific attention heads can restructure the representations to favor one modality over the other. Moreover, we find modality-agnostic "router heads" which appear to promote answers about the modality requested in the instruction, and which can be manipulated or transferred in order to improve performance across datasets and modalities. Together, the work provides essential steps towards identifying and controlling if and how models detect and resolve conflicting signals within complex multimodal environments.
comment: All code and resources are available at: https://github.com/ethahtz/vlm_conflicting_info_processing
☆ MuRating: A High Quality Data Selecting Approach to Multilingual Large Language Model Pretraining
Data quality is a critical driver of large language model performance, yet existing model-based selection methods focus almost exclusively on English. We introduce MuRating, a scalable framework that transfers high-quality English data-quality signals into a single rater for 17 target languages. MuRating aggregates multiple English "raters" via pairwise comparisons to learn unified document-quality scores,then projects these judgments through translation to train a multilingual evaluator on monolingual, cross-lingual, and parallel text pairs. Applied to web data, MuRating selects balanced subsets of English and multilingual content to pretrain a 1.2 B-parameter LLaMA model. Compared to strong baselines, including QuRater, AskLLM, DCLM and so on, our approach boosts average accuracy on both English benchmarks and multilingual evaluations, with especially large gains on knowledge-intensive tasks. We further analyze translation fidelity, selection biases, and underrepresentation of narrative material, outlining directions for future work.
☆ BranchNet: A Neuro-Symbolic Learning Framework for Structured Multi-Class Classification
We introduce BranchNet, a neuro-symbolic learning framework that transforms decision tree ensembles into sparse, partially connected neural networks. Each branch, defined as a decision path from root to a parent of leaves, is mapped to a hidden neuron, preserving symbolic structure while enabling gradient-based optimization. The resulting models are compact, interpretable, and require no manual architecture tuning. Evaluated on a suite of structured multi-class classification benchmarks, BranchNet consistently outperforms XGBoost in accuracy, with statistically significant gains. We detail the architecture, training procedure, and sparsity dynamics, and discuss the model's strengths in symbolic interpretability as well as its current limitations, particularly on binary tasks where further adaptive calibration may be beneficial.
comment: 18 pages, 3 figures (with two images each)
☆ Enhanced Generative Model Evaluation with Clipped Density and Coverage
Although generative models have made remarkable progress in recent years, their use in critical applications has been hindered by their incapacity to reliably evaluate sample quality. Quality refers to at least two complementary concepts: fidelity and coverage. Current quality metrics often lack reliable, interpretable values due to an absence of calibration or insufficient robustness to outliers. To address these shortcomings, we introduce two novel metrics, Clipped Density and Clipped Coverage. By clipping individual sample contributions and, for fidelity, the radii of nearest neighbor balls, our metrics prevent out-of-distribution samples from biasing the aggregated values. Through analytical and empirical calibration, these metrics exhibit linear score degradation as the proportion of poor samples increases. Thus, they can be straightforwardly interpreted as equivalent proportions of good samples. Extensive experiments on synthetic and real-world datasets demonstrate that Clipped Density and Clipped Coverage outperform existing methods in terms of robustness, sensitivity, and interpretability for evaluating generative models.
☆ Tuning without Peeking: Provable Privacy and Generalization Bounds for LLM Post-Training
Gradient-based optimization is the workhorse of deep learning, offering efficient and scalable training via backpropagation. However, its reliance on large volumes of labeled data raises privacy and security concerns such as susceptibility to data poisoning attacks and the risk of overfitting. In contrast, black box optimization methods, which treat the model as an opaque function, relying solely on function evaluations to guide optimization, offer a promising alternative in scenarios where data access is restricted, adversarial risks are high, or overfitting is a concern. However, black box methods also pose significant challenges, including poor scalability to high-dimensional parameter spaces, as prevalent in large language models (LLMs), and high computational costs due to reliance on numerous model evaluations. This paper introduces BBoxER, an evolutionary black-box method for LLM post-training that induces an information bottleneck via implicit compression of the training data. Leveraging the tractability of information flow, we provide strong theoretical bounds on generalization, differential privacy, susceptibility to data poisoning attacks, and robustness to extraction attacks. BBoxER operates on top of pre-trained LLMs, offering a lightweight and modular enhancement suitable for deployment in restricted or privacy-sensitive environments, in addition to non-vacuous generalization guarantees. In experiments with LLMs, we demonstrate empirically that Retrofitting methods are able to learn, showing how a few iterations of BBoxER improve performance and generalize well on a benchmark of reasoning datasets. This positions BBoxER as an attractive add-on on top of gradient-based optimization.
☆ A Real-Time Digital Twin for Type 1 Diabetes using Simulation-Based Inference
Accurately estimating parameters of physiological models is essential to achieving reliable digital twins. For Type 1 Diabetes, this is particularly challenging due to the complexity of glucose-insulin interactions. Traditional methods based on Markov Chain Monte Carlo struggle with high-dimensional parameter spaces and fit parameters from scratch at inference time, making them slow and computationally expensive. In this study, we propose a Simulation-Based Inference approach based on Neural Posterior Estimation to efficiently capture the complex relationships between meal intake, insulin, and glucose level, providing faster, amortized inference. Our experiments demonstrate that SBI not only outperforms traditional methods in parameter estimation but also generalizes better to unseen conditions, offering real-time posterior inference with reliable uncertainty quantification.
☆ ECCV 2024 W-CODA: 1st Workshop on Multimodal Perception and Comprehension of Corner Cases in Autonomous Driving
In this paper, we present details of the 1st W-CODA workshop, held in conjunction with the ECCV 2024. W-CODA aims to explore next-generation solutions for autonomous driving corner cases, empowered by state-of-the-art multimodal perception and comprehension techniques. 5 Speakers from both academia and industry are invited to share their latest progress and opinions. We collect research papers and hold a dual-track challenge, including both corner case scene understanding and generation. As the pioneering effort, we will continuously bridge the gap between frontier autonomous driving techniques and fully intelligent, reliable self-driving agents robust towards corner cases.
comment: ECCV 2024. Workshop page: https://coda-dataset.github.io/w-coda2024/
☆ Token Communication in the Era of Large Models: An Information Bottleneck-Based Approach
This letter proposes UniToCom, a unified token communication paradigm that treats tokens as the fundamental units for both processing and wireless transmission. Specifically, to enable efficient token representations, we propose a generative information bottleneck (GenIB) principle, which facilitates the learning of tokens that preserve essential information while supporting reliable generation across multiple modalities. By doing this, GenIB-based tokenization is conducive to improving the communication efficiency and reducing computational complexity. Additionally, we develop $\sigma$-GenIB to address the challenges of variance collapse in autoregressive modeling, maintaining representational diversity and stability. Moreover, we employ a causal Transformer-based multimodal large language model (MLLM) at the receiver to unify the processing of both discrete and continuous tokens under the next-token prediction paradigm. Simulation results validate the effectiveness and superiority of the proposed UniToCom compared to baselines under dynamic channel conditions. By integrating token processing with MLLMs, UniToCom enables scalable and generalizable communication in favor of multimodal understanding and generation, providing a potential solution for next-generation intelligent communications.
☆ Revisiting Learning Rate Control
The learning rate is one of the most important hyperparameters in deep learning, and how to control it is an active area within both AutoML and deep learning research. Approaches for learning rate control span from classic optimization to online scheduling based on gradient statistics. This paper compares paradigms to assess the current state of learning rate control. We find that methods from multi-fidelity hyperparameter optimization, fixed-hyperparameter schedules, and hyperparameter-free learning often perform very well on selected deep learning tasks but are not reliable across settings. This highlights the need for algorithm selection methods in learning rate control, which have been neglected so far by both the AutoML and deep learning communities. We also observe a trend of hyperparameter optimization approaches becoming less effective as models and tasks grow in complexity, even when combined with multi-fidelity approaches for more expensive model trainings. A focus on more relevant test tasks and new promising directions like finetunable methods and meta-learning will enable the AutoML community to significantly strengthen its impact on this crucial factor in deep learning.
Agent Ideate: A Framework for Product Idea Generation from Patents Using Agentic AI IJCAI 2025
Patents contain rich technical knowledge that can inspire innovative product ideas, yet accessing and interpreting this information remains a challenge. This work explores the use of Large Language Models (LLMs) and autonomous agents to mine and generate product concepts from a given patent. In this work, we design Agent Ideate, a framework for automatically generating product-based business ideas from patents. We experimented with open-source LLMs and agent-based architectures across three domains: Computer Science, Natural Language Processing, and Material Chemistry. Evaluation results show that the agentic approach consistently outperformed standalone LLMs in terms of idea quality, relevance, and novelty. These findings suggest that combining LLMs with agentic workflows can significantly enhance the innovation pipeline by unlocking the untapped potential of business idea generation from patent data.
comment: AgentScen Workshop, IJCAI 2025
☆ B-PL-PINN: Stabilizing PINN Training with Bayesian Pseudo Labeling
Training physics-informed neural networks (PINNs) for forward problems often suffers from severe convergence issues, hindering the propagation of information from regions where the desired solution is well-defined. Haitsiukevich and Ilin (2023) proposed an ensemble approach that extends the active training domain of each PINN based on i) ensemble consensus and ii) vicinity to (pseudo-)labeled points, thus ensuring that the information from the initial condition successfully propagates to the interior of the computational domain. In this work, we suggest replacing the ensemble by a Bayesian PINN, and consensus by an evaluation of the PINN's posterior variance. Our experiments show that this mathematically principled approach outperforms the ensemble on a set of benchmark problems and is competitive with PINN ensembles trained with combinations of Adam and LBFGS.
☆ Relational Causal Discovery with Latent Confounders
Estimating causal effects from real-world relational data can be challenging when the underlying causal model and potential confounders are unknown. While several causal discovery algorithms exist for learning causal models with latent confounders from data, they assume that the data is independent and identically distributed (i.i.d.) and are not well-suited for learning from relational data. Similarly, existing relational causal discovery algorithms assume causal sufficiency, which is unrealistic for many real-world datasets. To address this gap, we propose RelFCI, a sound and complete causal discovery algorithm for relational data with latent confounders. Our work builds upon the Fast Causal Inference (FCI) and Relational Causal Discovery (RCD) algorithms and it defines new graphical models, necessary to support causal discovery in relational domains. We also establish soundness and completeness guarantees for relational d-separation with latent confounders. We present experimental results demonstrating the effectiveness of RelFCI in identifying the correct causal structure in relational causal models with latent confounders.
comment: 30 pages, 19 figures. Accepted for publication at the 41st Conference on Uncertainty in Artificial Intelligence (UAI 2025). Andrea Piras and Matteo Negro contributed equally to this work
☆ Variational Graph Convolutional Neural Networks
Estimation of model uncertainty can help improve the explainability of Graph Convolutional Networks and the accuracy of the models at the same time. Uncertainty can also be used in critical applications to verify the results of the model by an expert or additional models. In this paper, we propose Variational Neural Network versions of spatial and spatio-temporal Graph Convolutional Networks. We estimate uncertainty in both outputs and layer-wise attentions of the models, which has the potential for improving model explainability. We showcase the benefits of these models in the social trading analysis and the skeleton-based human action recognition tasks on the Finnish board membership, NTU-60, NTU-120 and Kinetics datasets, where we show improvement in model accuracy in addition to estimated model uncertainties.
comment: This work has been submitted to the IEEE for possible publication. 9 pages, 6 figures
☆ Dynamic Similarity Graph Construction with Kernel Density Estimation ICML'25
In the kernel density estimation (KDE) problem, we are given a set $X$ of data points in $\mathbb{R}^d$, a kernel function $k: \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$, and a query point $\mathbf{q} \in \mathbb{R}^d$, and the objective is to quickly output an estimate of $\sum_{\mathbf{x} \in X} k(\mathbf{q}, \mathbf{x})$. In this paper, we consider $\textsf{KDE}$ in the dynamic setting, and introduce a data structure that efficiently maintains the estimates for a set of query points as data points are added to $X$ over time. Based on this, we design a dynamic data structure that maintains a sparse approximation of the fully connected similarity graph on $X$, and develop a fast dynamic spectral clustering algorithm. We further evaluate the effectiveness of our algorithms on both synthetic and real-world datasets.
comment: ICML'25
☆ PERTINENCE: Input-based Opportunistic Neural Network Dynamic Execution
Deep neural networks (DNNs) have become ubiquitous thanks to their remarkable ability to model complex patterns across various domains such as computer vision, speech recognition, robotics, etc. While large DNN models are often more accurate than simpler, lightweight models, they are also resource- and energy-hungry. Hence, it is imperative to design methods to reduce reliance on such large models without significant degradation in output accuracy. The high computational cost of these models is often necessary only for a reduced set of challenging inputs, while lighter models can handle most simple ones. Thus, carefully combining properties of existing DNN models in a dynamic, input-based way opens opportunities to improve efficiency without impacting accuracy. In this work, we introduce PERTINENCE, a novel online method designed to analyze the complexity of input features and dynamically select the most suitable model from a pre-trained set to process a given input effectively. To achieve this, we employ a genetic algorithm to explore the training space of an ML-based input dispatcher, enabling convergence towards the Pareto front in the solution space that balances overall accuracy and computational efficiency. We showcase our approach on state-of-the-art Convolutional Neural Networks (CNNs) trained on the CIFAR-10 and CIFAR-100, as well as Vision Transformers (ViTs) trained on TinyImageNet dataset. We report results showing PERTINENCE's ability to provide alternative solutions to existing state-of-the-art models in terms of trade-offs between accuracy and number of operations. By opportunistically selecting among models trained for the same task, PERTINENCE achieves better or comparable accuracy with up to 36% fewer operations.
☆ GPT, But Backwards: Exactly Inverting Language Model Outputs ICML 2025
While existing auditing techniques attempt to identify potential unwanted behaviours in large language models (LLMs), we address the complementary forensic problem of reconstructing the exact input that led to an existing LLM output - enabling post-incident analysis and potentially the detection of fake output reports. We formalize exact input reconstruction as a discrete optimisation problem with a unique global minimum and introduce SODA, an efficient gradient-based algorithm that operates on a continuous relaxation of the input search space with periodic restarts and parameter decay. Through comprehensive experiments on LLMs ranging in size from 33M to 3B parameters, we demonstrate that SODA significantly outperforms existing approaches. We succeed in fully recovering 79.5% of shorter out-of-distribution inputs from next-token logits, without a single false positive, but struggle to extract private information from the outputs of longer (15+ token) input sequences. This suggests that standard deployment practices may currently provide adequate protection against malicious use of our method. Our code is available at https://doi.org/10.5281/zenodo.15539879.
comment: 9 pages, ICML 2025 Workshop on Reliable and Responsible Foundation Models
☆ A generative modeling / Physics-Informed Neural Network approach to random differential equations
The integration of Scientific Machine Learning (SciML) techniques with uncertainty quantification (UQ) represents a rapidly evolving frontier in computational science. This work advances Physics-Informed Neural Networks (PINNs) by incorporating probabilistic frameworks to effectively model uncertainty in complex systems. Our approach enhances the representation of uncertainty in forward problems by combining generative modeling techniques with PINNs. This integration enables in a systematic fashion uncertainty control while maintaining the predictive accuracy of the model. We demonstrate the utility of this method through applications to random differential equations and random partial differential equations (PDEs).
☆ Blending Supervised and Reinforcement Fine-Tuning with Prefix Sampling
Existing post-training techniques for large language models are broadly categorized into Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT). Each paradigm presents a distinct trade-off: SFT excels at mimicking demonstration data but can lead to problematic generalization as a form of behavior cloning. Conversely, RFT can significantly enhance a model's performance but is prone to learn unexpected behaviors, and its performance is highly sensitive to the initial policy. In this paper, we propose a unified view of these methods and introduce Prefix-RFT, a hybrid approach that synergizes learning from both demonstration and exploration. Using mathematical reasoning problems as a testbed, we empirically demonstrate that Prefix-RFT is both simple and effective. It not only surpasses the performance of standalone SFT and RFT but also outperforms parallel mixed-policy RFT methods. A key advantage is its seamless integration into existing open-source frameworks, requiring only minimal modifications to the standard RFT pipeline. Our analysis highlights the complementary nature of SFT and RFT, and validates that Prefix-RFT effectively harmonizes these two learning paradigms. Furthermore, ablation studies confirm the method's robustness to variations in the quality and quantity of demonstration data. We hope this work offers a new perspective on LLM post-training, suggesting that a unified paradigm that judiciously integrates demonstration and exploration could be a promising direction for future research.
comment: Work in progress
☆ AsyncFlow: An Asynchronous Streaming RL Framework for Efficient LLM Post-Training
Reinforcement learning (RL) has become a pivotal technology in the post-training phase of large language models (LLMs). Traditional task-colocated RL frameworks suffer from significant scalability bottlenecks, while task-separated RL frameworks face challenges in complex dataflows and the corresponding resource idling and workload imbalance. Moreover, most existing frameworks are tightly coupled with LLM training or inference engines, making it difficult to support custom-designed engines. To address these challenges, we propose AsyncFlow, an asynchronous streaming RL framework for efficient post-training. Specifically, we introduce a distributed data storage and transfer module that provides a unified data management and fine-grained scheduling capability in a fully streamed manner. This architecture inherently facilitates automated pipeline overlapping among RL tasks and dynamic load balancing. Moreover, we propose a producer-consumer-based asynchronous workflow engineered to minimize computational idleness by strategically deferring parameter update process within staleness thresholds. Finally, the core capability of AsynFlow is architecturally decoupled from underlying training and inference engines and encapsulated by service-oriented user interfaces, offering a modular and customizable user experience. Extensive experiments demonstrate an average of 1.59 throughput improvement compared with state-of-the-art baseline. The presented architecture in this work provides actionable insights for next-generation RL training system designs.
☆ SPoT: Subpixel Placement of Tokens in Vision Transformers ICCV 2025
Vision Transformers naturally accommodate sparsity, yet standard tokenization methods confine features to discrete patch grids. This constraint prevents models from fully exploiting sparse regimes, forcing awkward compromises. We propose Subpixel Placement of Tokens (SPoT), a novel tokenization strategy that positions tokens continuously within images, effectively sidestepping grid-based limitations. With our proposed oracle-guided search, we uncover substantial performance gains achievable with ideal subpixel token positioning, drastically reducing the number of tokens necessary for accurate predictions during inference. SPoT provides a new direction for flexible, efficient, and interpretable ViT architectures, redefining sparsity as a strategic advantage rather than an imposed limitation.
comment: To appear in Workshop on Efficient Computing under Limited Resources: Visual Computing (ICCV 2025). Code available at https://github.com/dsb-ifi/SPoT
☆ GradMetaNet: An Equivariant Architecture for Learning on Gradients
Gradients of neural networks encode valuable information for optimization, editing, and analysis of models. Therefore, practitioners often treat gradients as inputs to task-specific algorithms, e.g. for pruning or optimization. Recent works explore learning algorithms that operate directly on gradients but use architectures that are not specifically designed for gradient processing, limiting their applicability. In this paper, we present a principled approach for designing architectures that process gradients. Our approach is guided by three principles: (1) equivariant design that preserves neuron permutation symmetries, (2) processing sets of gradients across multiple data points to capture curvature information, and (3) efficient gradient representation through rank-1 decomposition. Based on these principles, we introduce GradMetaNet, a novel architecture for learning on gradients, constructed from simple equivariant blocks. We prove universality results for GradMetaNet, and show that previous approaches cannot approximate natural gradient-based functions that GradMetaNet can. We then demonstrate GradMetaNet's effectiveness on a diverse set of gradient-based tasks on MLPs and transformers, such as learned optimization, INR editing, and estimating loss landscape curvature.
☆ Dance Dance ConvLSTM
\textit{Dance Dance Revolution} is a rhythm game consisting of songs and accompanying choreography, referred to as charts. Players press arrows on a device referred to as a dance pad in time with steps determined by the song's chart. In 2017, the authors of Dance Dance Convolution (DDC) developed an algorithm for the automatic generation of \textit{Dance Dance Revolution} charts, utilizing a CNN-LSTM architecture. We introduce Dance Dance ConvLSTM (DDCL), a new method for the automatic generation of DDR charts using a ConvLSTM based model, which improves upon the DDC methodology and substantially increases the accuracy of chart generation.
comment: 15 pages, 9 figures, 4 tables
☆ Kernel Recursive Least Squares Dictionary Learning Algorithm
We propose an efficient online dictionary learning algorithm for kernel-based sparse representations. In this framework, input signals are nonlinearly mapped to a high-dimensional feature space and represented sparsely using a virtual dictionary. At each step, the dictionary is updated recursively using a novel algorithm based on the recursive least squares (RLS) method. This update mechanism works with single samples or mini-batches and maintains low computational complexity. Experiments on four datasets across different domains show that our method not only outperforms existing online kernel dictionary learning approaches but also achieves classification accuracy close to that of batch-trained models, while remaining significantly more efficient.
comment: Published in Digital Signal Processing, Volume 141, 2023. DOI: https://doi.org/10.1016/j.dsp.2023.104159 12 pages, 8 figures. Code and data available at: https://github.com/G-Alipoor/kernel-rls-dictionary-learning
☆ Tile and Slide : A New Framework for Scaling NeRF from Local to Global 3D Earth Observation ICCV 2025
Neural Radiance Fields (NeRF) have recently emerged as a paradigm for 3D reconstruction from multiview satellite imagery. However, state-of-the-art NeRF methods are typically constrained to small scenes due to the memory footprint during training, which we study in this paper. Previous work on large-scale NeRFs palliate this by dividing the scene into NeRFs. This paper introduces Snake-NeRF, a framework that scales to large scenes. Our out-of-core method eliminates the need to load all images and networks simultaneously, and operates on a single device. We achieve this by dividing the region of interest into NeRFs that 3D tile without overlap. Importantly, we crop the images with overlap to ensure each NeRFs is trained with all the necessary pixels. We introduce a novel $2\times 2$ 3D tile progression strategy and segmented sampler, which together prevent 3D reconstruction errors along the tile edges. Our experiments conclude that large satellite images can effectively be processed with linear time complexity, on a single GPU, and without compromise in quality.
comment: Accepted at ICCV 2025 Workshop 3D-VAST (From street to space: 3D Vision Across Altitudes). Version before camera ready. Our code will be made public after the conference
☆ When Less Is More: Binary Feedback Can Outperform Ordinal Comparisons in Ranking Recovery
Paired comparison data, where users evaluate items in pairs, play a central role in ranking and preference learning tasks. While ordinal comparison data intuitively offer richer information than binary comparisons, this paper challenges that conventional wisdom. We propose a general parametric framework for modeling ordinal paired comparisons without ties. The model adopts a generalized additive structure, featuring a link function that quantifies the preference difference between two items and a pattern function that governs the distribution over ordinal response levels. This framework encompasses classical binary comparison models as special cases, by treating binary responses as binarized versions of ordinal data. Within this framework, we show that binarizing ordinal data can significantly improve the accuracy of ranking recovery. Specifically, we prove that under the counting algorithm, the ranking error associated with binary comparisons exhibits a faster exponential convergence rate than that of ordinal data. Furthermore, we characterize a substantial performance gap between binary and ordinal data in terms of a signal-to-noise ratio (SNR) determined by the pattern function. We identify the pattern function that minimizes the SNR and maximizes the benefit of binarization. Extensive simulations and a real application on the MovieLens dataset further corroborate our theoretical findings.
☆ Survivability of Backdoor Attacks on Unconstrained Face Recognition Systems
The widespread use of deep learning face recognition raises several security concerns. Although prior works point at existing vulnerabilities, DNN backdoor attacks against real-life, unconstrained systems dealing with images captured in the wild remain a blind spot of the literature. This paper conducts the first system-level study of backdoors in deep learning-based face recognition systems. This paper yields four contributions by exploring the feasibility of DNN backdoors on these pipelines in a holistic fashion. We demonstrate for the first time two backdoor attacks on the face detection task: face generation and face landmark shift attacks. We then show that face feature extractors trained with large margin losses also fall victim to backdoor attacks. Combining our models, we then show using 20 possible pipeline configurations and 15 attack cases that a single backdoor enables an attacker to bypass the entire function of a system. Finally, we provide stakeholders with several best practices and countermeasures.
☆ Data Agent: A Holistic Architecture for Orchestrating Data+AI Ecosystems
Traditional Data+AI systems utilize data-driven techniques to optimize performance, but they rely heavily on human experts to orchestrate system pipelines, enabling them to adapt to changes in data, queries, tasks, and environments. For instance, while there are numerous data science tools available, developing a pipeline planning system to coordinate these tools remains challenging. This difficulty arises because existing Data+AI systems have limited capabilities in semantic understanding, reasoning, and planning. Fortunately, we have witnessed the success of large language models (LLMs) in enhancing semantic understanding, reasoning, and planning abilities. It is crucial to incorporate LLM techniques to revolutionize data systems for orchestrating Data+AI applications effectively. To achieve this, we propose the concept of a 'Data Agent' - a comprehensive architecture designed to orchestrate Data+AI ecosystems, which focuses on tackling data-related tasks by integrating knowledge comprehension, reasoning, and planning capabilities. We delve into the challenges involved in designing data agents, such as understanding data/queries/environments/tools, orchestrating pipelines/workflows, optimizing and executing pipelines, and fostering pipeline self-reflection. Furthermore, we present examples of data agent systems, including a data science agent, data analytics agents (such as unstructured data analytics agent, semantic structured data analytics agent, data lake analytics agent, and multi-modal data analytics agent), and a database administrator (DBA) agent. We also outline several open challenges associated with designing data agent systems.
☆ Analysis of Muon's Convergence and Critical Batch Size
This paper presents a theoretical analysis of Muon, a new optimizer that leverages the inherent matrix structure of neural network parameters. We provide convergence proofs for four practical variants of Muon: with and without Nesterov momentum, and with and without weight decay. We then show that adding weight decay leads to strictly tighter bounds on both the parameter and gradient norms, and we clarify the relationship between the weight decay coefficient and the learning rate. Finally, we derive Muon's critical batch size minimizing the stochastic first-order oracle (SFO) complexity, which is the stochastic computational cost, and validate our theoretical findings with experiments.
☆ Autonomous AI Surveillance: Multimodal Deep Learning for Cognitive and Behavioral Monitoring
This study presents a novel classroom surveillance system that integrates multiple modalities, including drowsiness, tracking of mobile phone usage, and face recognition,to assess student attentiveness with enhanced precision.The system leverages the YOLOv8 model to detect both mobile phone and sleep usage,(Ghatge et al., 2024) while facial recognition is achieved through LResNet Occ FC body tracking using YOLO and MTCNN.(Durai et al., 2024) These models work in synergy to provide comprehensive, real-time monitoring, offering insights into student engagement and behavior.(S et al., 2023) The framework is trained on specialized datasets, such as the RMFD dataset for face recognition and a Roboflow dataset for mobile phone detection. The extensive evaluation of the system shows promising results. Sleep detection achieves 97. 42% mAP@50, face recognition achieves 86. 45% validation accuracy and mobile phone detection reach 85. 89% mAP@50. The system is implemented within a core PHP web application and utilizes ESP32-CAM hardware for seamless data capture.(Neto et al., 2024) This integrated approach not only enhances classroom monitoring, but also ensures automatic attendance recording via face recognition as students remain seated in the classroom, offering scalability for diverse educational environments.(Banada,2025)
☆ A Privacy-Preserving Indoor Localization System based on Hierarchical Federated Learning
Location information serves as the fundamental element for numerous Internet of Things (IoT) applications. Traditional indoor localization techniques often produce significant errors and raise privacy concerns due to centralized data collection. In response, Machine Learning (ML) techniques offer promising solutions by capturing indoor environment variations. However, they typically require central data aggregation, leading to privacy, bandwidth, and server reliability issues. To overcome these challenges, in this paper, we propose a Federated Learning (FL)-based approach for dynamic indoor localization using a Deep Neural Network (DNN) model. Experimental results show that FL has the nearby performance to Centralized Model (CL) while keeping the data privacy, bandwidth efficiency and server reliability. This research demonstrates that our proposed FL approach provides a viable solution for privacy-enhanced indoor localization, paving the way for advancements in secure and efficient indoor localization systems.
☆ Transfer Learning for VLC-based indoor Localization: Addressing Environmental Variability
Accurate indoor localization is crucial in industrial environments. Visible Light Communication (VLC) has emerged as a promising solution, offering high accuracy, energy efficiency, and minimal electromagnetic interference. However, VLC-based indoor localization faces challenges due to environmental variability, such as lighting fluctuations and obstacles. To address these challenges, we propose a Transfer Learning (TL)-based approach for VLC-based indoor localization. Using real-world data collected at a BOSCH factory, the TL framework integrates a deep neural network (DNN) to improve localization accuracy by 47\%, reduce energy consumption by 32\%, and decrease computational time by 40\% compared to the conventional models. The proposed solution is highly adaptable under varying environmental conditions and achieves similar accuracy with only 30\% of the dataset, making it a cost-efficient and scalable option for industrial applications in Industry 4.0.
comment: Accepted for publication in the IEEE VTC2025-Spring Conference, 7 pages
☆ On the Effect of Ruleset Tuning and Data Imbalance on Explainable Network Security Alert Classifications: a Case-Study on DeepCASE
Automation in Security Operations Centers (SOCs) plays a prominent role in alert classification and incident escalation. However, automated methods must be robust in the presence of imbalanced input data, which can negatively affect performance. Additionally, automated methods should make explainable decisions. In this work, we evaluate the effect of label imbalance on the classification of network intrusion alerts. As our use-case we employ DeepCASE, the state-of-the-art method for automated alert classification. We show that label imbalance impacts both classification performance and correctness of the classification explanations offered by DeepCASE. We conclude tuning the detection rules used in SOCs can significantly reduce imbalance and may benefit the performance and explainability offered by alert post-processing methods such as DeepCASE. Therefore, our findings suggest that traditional methods to improve the quality of input data can benefit automation.
☆ How Weight Resampling and Optimizers Shape the Dynamics of Continual Learning and Forgetting in Neural Networks
Recent work in continual learning has highlighted the beneficial effect of resampling weights in the last layer of a neural network (``zapping"). Although empirical results demonstrate the effectiveness of this approach, the underlying mechanisms that drive these improvements remain unclear. In this work, we investigate in detail the pattern of learning and forgetting that take place inside a convolutional neural network when trained in challenging settings such as continual learning and few-shot transfer learning, with handwritten characters and natural images. Our experiments show that models that have undergone zapping during training more quickly recover from the shock of transferring to a new domain. Furthermore, to better observe the effect of continual learning in a multi-task setting we measure how each individual task is affected. This shows that, not only zapping, but the choice of optimizer can also deeply affect the dynamics of learning and forgetting, causing complex patterns of synergy/interference between tasks to emerge when the model learns sequentially at transfer time.
☆ Self-Guided Process Reward Optimization with Masked Step Advantage for Process Reinforcement Learning
Process Reinforcement Learning~(PRL) has demonstrated considerable potential in enhancing the reasoning capabilities of Large Language Models~(LLMs). However, introducing additional process reward models incurs substantial computational overhead, and there is no unified theoretical framework for process-level advantage estimation. To bridge this gap, we propose \textbf{S}elf-Guided \textbf{P}rocess \textbf{R}eward \textbf{O}ptimization~(\textbf{SPRO}), a novel framework that enables process-aware RL through two key innovations: (1) we first theoretically demonstrate that process rewards can be derived intrinsically from the policy model itself, and (2) we introduce well-defined cumulative process rewards and \textbf{M}asked \textbf{S}tep \textbf{A}dvantage (\textbf{MSA}), which facilitates rigorous step-wise action advantage estimation within shared-prompt sampling groups. Our experimental results demonstrate that SPRO outperforms vaniila GRPO with 3.4x higher training efficiency and a 17.5\% test accuracy improvement. Furthermore, SPRO maintains a stable and elevated policy entropy throughout training while reducing the average response length by approximately $1/3$, evidencing sufficient exploration and prevention of reward hacking. Notably, SPRO incurs no additional computational overhead compared to outcome-supervised RL methods such as GRPO, which benefit industrial implementation.
☆ AI and Remote Sensing for Resilient and Sustainable Built Environments: A Review of Current Methods, Open Data and Future Directions
Critical infrastructure, such as transport networks, underpins economic growth by enabling mobility and trade. However, ageing assets, climate change impacts (e.g., extreme weather, rising sea levels), and hybrid threats ranging from natural disasters to cyber attacks and conflicts pose growing risks to their resilience and functionality. This review paper explores how emerging digital technologies, specifically Artificial Intelligence (AI), can enhance damage assessment and monitoring of transport infrastructure. A systematic literature review examines existing AI models and datasets for assessing damage in roads, bridges, and other critical infrastructure impacted by natural disasters. Special focus is given to the unique challenges and opportunities associated with bridge damage detection due to their structural complexity and critical role in connectivity. The integration of SAR (Synthetic Aperture Radar) data with AI models is also discussed, with the review revealing a critical research gap: a scarcity of studies applying AI models to SAR data for comprehensive bridge damage assessment. Therefore, this review aims to identify the research gaps and provide foundations for AI-driven solutions for assessing and monitoring critical transport infrastructures.
☆ MARVIS: Modality Adaptive Reasoning over VISualizations
Scientific applications of machine learning often rely on small, specialized models tuned to particular domains. Such models often achieve excellent performance, but lack flexibility. Foundation models offer versatility, but typically underperform specialized approaches, especially on non-traditional modalities and long-tail domains. We propose MARVIS (Modality Adaptive Reasoning over VISualizations), a training-free method that enables even small vision-language models to predict any data modality with high accuracy. MARVIS transforms latent embedding spaces into visual representations and then leverages the spatial and fine-grained reasoning skills of VLMs to successfully interpret and utilize them. MARVIS achieves competitive performance on vision, audio, biological, and tabular domains using a single 3B parameter model, achieving results that beat Gemini by 16\% on average and approach specialized methods, without exposing personally identifiable information (P.I.I.) or requiring any domain-specific training. We open source our code and datasets at https://github.com/penfever/marvis
☆ Parsimonious Gaussian mixture models with piecewise-constant eigenvalue profiles
Gaussian mixture models (GMMs) are ubiquitous in statistical learning, particularly for unsupervised problems. While full GMMs suffer from the overparameterization of their covariance matrices in high-dimensional spaces, spherical GMMs (with isotropic covariance matrices) certainly lack flexibility to fit certain anisotropic distributions. Connecting these two extremes, we introduce a new family of parsimonious GMMs with piecewise-constant covariance eigenvalue profiles. These extend several low-rank models like the celebrated mixtures of probabilistic principal component analyzers (MPPCA), by enabling any possible sequence of eigenvalue multiplicities. If the latter are prespecified, then we can naturally derive an expectation-maximization (EM) algorithm to learn the mixture parameters. Otherwise, to address the notoriously-challenging issue of jointly learning the mixture parameters and hyperparameters, we propose a componentwise penalized EM algorithm, whose monotonicity is proven. We show the superior likelihood-parsimony tradeoffs achieved by our models on a variety of unsupervised experiments: density fitting, clustering and single-image denoising.
☆ Consistency of Learned Sparse Grid Quadrature Rules using NeuralODEs
This paper provides a proof of the consistency of sparse grid quadrature for numerical integration of high dimensional distributions. In a first step, a transport map is learned that normalizes the distribution to a noise distribution on the unit cube. This step is built on the statistical learning theory of neural ordinary differential equations, which has been established recently. Secondly, the composition of the generative map with the quantity of interest is integrated numerically using the Clenshaw-Curtis sparse grid quadrature. A decomposition of the total numerical error in quadrature error and statistical error is provided. As main result it is proven in the framework of empirical risk minimization that all error terms can be controlled in the sense of PAC (probably approximately correct) learning and with high probability the numerical integral approximates the theoretical value up to an arbitrary small error in the limit where the data set size is growing and the network capacity is increased adaptively.
☆ Chargax: A JAX Accelerated EV Charging Simulator
Deep Reinforcement Learning can play a key role in addressing sustainable energy challenges. For instance, many grid systems are heavily congested, highlighting the urgent need to enhance operational efficiency. However, reinforcement learning approaches have traditionally been slow due to the high sample complexity and expensive simulation requirements. While recent works have effectively used GPUs to accelerate data generation by converting environments to JAX, these works have largely focussed on classical toy problems. This paper introduces Chargax, a JAX-based environment for realistic simulation of electric vehicle charging stations designed for accelerated training of RL agents. We validate our environment in a variety of scenarios based on real data, comparing reinforcement learning agents against baselines. Chargax delivers substantial computational performance improvements of over 100x-1000x over existing environments. Additionally, Chargax' modular architecture enables the representation of diverse real-world charging station configurations.
comment: Accepted at RLC 2025
☆ Loss Functions in Diffusion Models: A Comparative Study
Diffusion models have emerged as powerful generative models, inspiring extensive research into their underlying mechanisms. One of the key questions in this area is the loss functions these models shall train with. Multiple formulations have been introduced in the literature over the past several years with some links and some critical differences stemming from various initial considerations. In this paper, we explore the different target objectives and corresponding loss functions in detail. We present a systematic overview of their relationships, unifying them under the framework of the variational lower bound objective. We complement this theoretical analysis with an empirical study providing insights into the conditions under which these objectives diverge in performance and the underlying factors contributing to such deviations. Additionally, we evaluate how the choice of objective impacts the model ability to achieve specific goals, such as generating high-quality samples or accurately estimating likelihoods. This study offers a unified understanding of loss functions in diffusion models, contributing to more efficient and goal-oriented model designs in future research.
comment: Accepted to ECML 2025
☆ Mamba Guided Boundary Prior Matters: A New Perspective for Generalized Polyp Segmentation MICCAI-2025
Polyp segmentation in colonoscopy images is crucial for early detection and diagnosis of colorectal cancer. However, this task remains a significant challenge due to the substantial variations in polyp shape, size, and color, as well as the high similarity between polyps and surrounding tissues, often compounded by indistinct boundaries. While existing encoder-decoder CNN and transformer-based approaches have shown promising results, they struggle with stable segmentation performance on polyps with weak or blurry boundaries. These methods exhibit limited abilities to distinguish between polyps and non-polyps and capture essential boundary cues. Moreover, their generalizability still falls short of meeting the demands of real-time clinical applications. To address these limitations, we propose SAM-MaGuP, a groundbreaking approach for robust polyp segmentation. By incorporating a boundary distillation module and a 1D-2D Mamba adapter within the Segment Anything Model (SAM), SAM-MaGuP excels at resolving weak boundary challenges and amplifies feature learning through enriched global contextual interactions. Extensive evaluations across five diverse datasets reveal that SAM-MaGuP outperforms state-of-the-art methods, achieving unmatched segmentation accuracy and robustness. Our key innovations, a Mamba-guided boundary prior and a 1D-2D Mamba block, set a new benchmark in the field, pushing the boundaries of polyp segmentation to new heights.
comment: 11 pages, 2 figures, MICCAI-2025
☆ Meteoroid stream identification with HDBSCAN unsupervised clustering algorithm
Accurate identification of meteoroid streams is central to understanding their origins and evolution. However, overlapping clusters and background noise hinder classification, an issue amplified for missions such as ESA's LUMIO that rely on meteor shower observations to infer lunar meteoroid impact parameters. This study evaluates the performance of the Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm for unsupervised meteoroid stream identification, comparing its outcomes with the established Cameras for All-Sky Meteor Surveillance (CAMS) look-up table method. We analyze the CAMS Meteoroid Orbit Database v3.0 using three feature vectors: LUTAB (CAMS geocentric parameters), ORBIT (heliocentric orbital elements), and GEO (adapted geocentric parameters). HDBSCAN is applied with varying minimum cluster sizes and two cluster selection methods (eom and leaf). To align HDBSCAN clusters with CAMS classifications, the Hungarian algorithm determines the optimal mapping. Clustering performance is assessed via the Silhouette score, Normalized Mutual Information, and F1 score, with Principal Component Analysis further supporting the analysis. With the GEO vector, HDBSCAN confirms 39 meteoroid streams, 21 strongly aligning with CAMS. The ORBIT vector identifies 30 streams, 13 with high matching scores. Less active showers pose identification challenges. The eom method consistently yields superior performance and agreement with CAMS. Although HDBSCAN requires careful selection of the minimum cluster size, it delivers robust, internally consistent clusters and outperforms the look-up table method in statistical coherence. These results underscore HDBSCAN's potential as a mathematically consistent alternative for meteoroid stream identification, although further validation is needed to assess physical validity.
comment: Accepted in The Astronomical Journal
☆ How to Securely Shuffle? A survey about Secure Shufflers for privacy-preserving computations
Ishai et al. (FOCS'06) introduced secure shuffling as an efficient building block for private data aggregation. Recently, the field of differential privacy has revived interest in secure shufflers by highlighting the privacy amplification they can provide in various computations. Although several works argue for the utility of secure shufflers, they often treat them as black boxes; overlooking the practical vulnerabilities and performance trade-offs of existing implementations. This leaves a central question open: what makes a good secure shuffler? This survey addresses that question by identifying, categorizing, and comparing 26 secure protocols that realize the necessary shuffling functionality. To enable a meaningful comparison, we adapt and unify existing security definitions into a consistent set of properties. We also present an overview of privacy-preserving technologies that rely on secure shufflers, offer practical guidelines for selecting appropriate protocols, and outline promising directions for future work.
☆ Optimizing Methane Detection On Board Satellites: Speed, Accuracy, and Low-Power Solutions for Resource-Constrained Hardware
Methane is a potent greenhouse gas, and detecting its leaks early via hyperspectral satellite imagery can help mitigate climate change. Meanwhile, many existing missions operate in manual tasking regimes only, thus missing potential events of interest. To overcome slow downlink rates cost-effectively, onboard detection is a viable solution. However, traditional methane enhancement methods are too computationally demanding for resource-limited onboard hardware. This work accelerates methane detection by focusing on efficient, low-power algorithms. We test fast target detection methods (ACE, CEM) that have not been previously used for methane detection and propose a Mag1c-SAS - a significantly faster variant of the current state-of-the-art algorithm for methane detection: Mag1c. To explore their true detection potential, we integrate them with a machine learning model (U-Net, LinkNet). Our results identify two promising candidates (Mag1c-SAS and CEM), both acceptably accurate for the detection of strong plumes and computationally efficient enough for onboard deployment: one optimized more for accuracy, the other more for speed, achieving up to ~100x and ~230x faster computation than original Mag1c on resource-limited hardware. Additionally, we propose and evaluate three band selection strategies. One of them can outperform the method traditionally used in the field while using fewer channels, leading to even faster processing without compromising accuracy. This research lays the foundation for future advancements in onboard methane detection with minimal hardware requirements, improving timely data delivery. The produced code, data, and models are open-sourced and can be accessed from https://github.com/zaitra/methane-filters-benchmark.
comment: This is a preprint of a paper accepted for the EDHPC 2025 Conference
☆ Zero-Incentive Dynamics: a look at reward sparsity through the lens of unrewarded subgoals
This work re-examines the commonly held assumption that the frequency of rewards is a reliable measure of task difficulty in reinforcement learning. We identify and formalize a structural challenge that undermines the effectiveness of current policy learning methods: when essential subgoals do not directly yield rewards. We characterize such settings as exhibiting zero-incentive dynamics, where transitions critical to success remain unrewarded. We show that state-of-the-art deep subgoal-based algorithms fail to leverage these dynamics and that learning performance is highly sensitive to the temporal proximity between subgoal completion and eventual reward. These findings reveal a fundamental limitation in current approaches and point to the need for mechanisms that can infer latent task structure without relying on immediate incentives.
comment: Accepted at "Finding the Frame 2025", workshop at RLC
☆ Cross-platform Smartphone Positioning at Museums
Indoor Positioning Systems (IPSs) hold significant potential for enhancing visitor experiences in cultural heritage institutions. By enabling personalized navigation, efficient artifact organization, and better interaction with exhibits, IPSs can transform the modalities of how individuals engage with museums, galleries and libraries. However, these institutions face several challenges in implementing IPSs, including environmental constraints, technical limits, and limited experimentation. In other contexts, Received Signal Strength (RSS)-based approaches using Bluetooth Low Energy (BLE) and WiFi have emerged as preferred solutions due to their non-invasive nature and minimal infrastructure requirements. Nevertheless, the lack of publicly available RSS datasets that specifically reflect museum environments presents a substantial barrier to developing and evaluating positioning algorithms designed for the intricate spatial characteristics typical of cultural heritage sites. To address this limitation, we present BAR, a novel RSS dataset collected in front of 90 artworks across 13 museum rooms using two different platforms, i.e., Android and iOS. Additionally, we provide an advanced position classification baseline taking advantage of a proximity-based method and $k$-NN algorithms. In our analysis, we discuss the results and offer suggestions for potential research directions.
comment: Accepted at the 2025 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Tampere, Finland, September 15-18, 2025
☆ Symbolic identification of tensor equations in multidimensional physical fields
Recently, data-driven methods have shown great promise for discovering governing equations from simulation or experimental data. However, most existing approaches are limited to scalar equations, with few capable of identifying tensor relationships. In this work, we propose a general data-driven framework for identifying tensor equations, referred to as Symbolic Identification of Tensor Equations (SITE). The core idea of SITE--representing tensor equations using a host-plasmid structure--is inspired by the multidimensional gene expression programming (M-GEP) approach. To improve the robustness of the evolutionary process, SITE adopts a genetic information retention strategy. Moreover, SITE introduces two key innovations beyond conventional evolutionary algorithms. First, it incorporates a dimensional homogeneity check to restrict the search space and eliminate physically invalid expressions. Second, it replaces traditional linear scaling with a tensor linear regression technique, greatly enhancing the efficiency of numerical coefficient optimization. We validate SITE using two benchmark scenarios, where it accurately recovers target equations from synthetic data, showing robustness to noise and small sample sizes. Furthermore, SITE is applied to identify constitutive relations directly from molecular simulation data, which are generated without reliance on macroscopic constitutive models. It adapts to both compressible and incompressible flow conditions and successfully identifies the corresponding macroscopic forms, highlighting its potential for data-driven discovery of tensor equation.
☆ Tensor Program Optimization for the RISC-V Vector Extension Using Probabilistic Programs
RISC-V provides a flexible and scalable platform for applications ranging from embedded devices to high-performance computing clusters. Particularly, its RISC-V Vector Extension (RVV) becomes of interest for the acceleration of AI workloads. But writing software that efficiently utilizes the vector units of RISC-V CPUs without expert knowledge requires the programmer to rely on the autovectorization features of compilers or hand-crafted libraries like muRISCV-NN. Smarter approaches, like autotuning frameworks, have been missing the integration with the RISC-V RVV extension, thus heavily limiting the efficient deployment of complex AI workloads. In this paper, we present a workflow based on the TVM compiler to efficiently map AI workloads onto RISC-V vector units. Instead of relying on hand-crafted libraries, we integrated the RVV extension into TVM's MetaSchedule framework, a probabilistic program framework for tensor operation tuning. We implemented different RISC-V SoCs on an FPGA and tuned a wide range of AI workloads on them. We found that our proposal shows a mean improvement of 46% in execution latency when compared against the autovectorization feature of GCC, and 29% against muRISCV-NN. Moreover, the binary resulting from our proposal has a smaller code memory footprint, making it more suitable for embedded devices. Finally, we also evaluated our solution on a commercially available RISC-V SoC implementing the RVV 1.0 Vector Extension and found our solution is able to find mappings that are 35% faster on average than the ones proposed by LLVM. We open-sourced our proposal for the community to expand it to target other RISC-V extensions.
comment: 9 pages, 10 figures, 2 algorithms
☆ EdgeLoRA: An Efficient Multi-Tenant LLM Serving System on Edge Devices
Large Language Models (LLMs) have gained significant attention due to their versatility across a wide array of applications. Fine-tuning LLMs with parameter-efficient adapters, such as Low-Rank Adaptation (LoRA), enables these models to efficiently adapt to downstream tasks without extensive retraining. Deploying fine-tuned LLMs on multi-tenant edge devices offers substantial benefits, such as reduced latency, enhanced privacy, and personalized responses. However, serving LLMs efficiently on resource-constrained edge devices presents critical challenges, including the complexity of adapter selection for different tasks and memory overhead from frequent adapter swapping. Moreover, given the multiple requests in multi-tenant settings, processing requests sequentially results in underutilization of computational resources and increased latency. This paper introduces EdgeLoRA, an efficient system for serving LLMs on edge devices in multi-tenant environments. EdgeLoRA incorporates three key innovations: (1) an adaptive adapter selection mechanism to streamline the adapter configuration process; (2) heterogeneous memory management, leveraging intelligent adapter caching and pooling to mitigate memory operation overhead; and (3) batch LoRA inference, enabling efficient batch processing to significantly reduce computational latency. Comprehensive evaluations using the Llama3.1-8B model demonstrate that EdgeLoRA significantly outperforms the status quo (i.e., llama.cpp) in terms of both latency and throughput. The results demonstrate that EdgeLoRA can achieve up to a 4 times boost in throughput. Even more impressively, it can serve several orders of magnitude more adapters simultaneously. These results highlight EdgeLoRA's potential to transform edge deployment of LLMs in multi-tenant scenarios, offering a scalable and efficient solution for resource-constrained environments.
☆ Pensieve Grader: An AI-Powered, Ready-to-Use Platform for Effortless Handwritten STEM Grading
Grading handwritten, open-ended responses remains a major bottleneck in large university STEM courses. We introduce Pensieve (https://www.pensieve.co), an AI-assisted grading platform that leverages large language models (LLMs) to transcribe and evaluate student work, providing instructors with rubric-aligned scores, transcriptions, and confidence ratings. Unlike prior tools that focus narrowly on specific tasks like transcription or rubric generation, Pensieve supports the entire grading pipeline-from scanned student submissions to final feedback-within a human-in-the-loop interface. Pensieve has been deployed in real-world courses at over 20 institutions and has graded more than 300,000 student responses. We present system details and empirical results across four core STEM disciplines: Computer Science, Mathematics, Physics, and Chemistry. Our findings show that Pensieve reduces grading time by an average of 65%, while maintaining a 95.4% agreement rate with instructor-assigned grades for high-confidence predictions.
comment: 7 pages, 5 figues, 1 table
☆ Gradient Short-Circuit: Efficient Out-of-Distribution Detection via Feature Intervention ICCV 2025
Out-of-Distribution (OOD) detection is critical for safely deploying deep models in open-world environments, where inputs may lie outside the training distribution. During inference on a model trained exclusively with In-Distribution (ID) data, we observe a salient gradient phenomenon: around an ID sample, the local gradient directions for "enhancing" that sample's predicted class remain relatively consistent, whereas OOD samples--unseen in training--exhibit disorganized or conflicting gradient directions in the same neighborhood. Motivated by this observation, we propose an inference-stage technique to short-circuit those feature coordinates that spurious gradients exploit to inflate OOD confidence, while leaving ID classification largely intact. To circumvent the expense of recomputing the logits after this gradient short-circuit, we further introduce a local first-order approximation that accurately captures the post-modification outputs without a second forward pass. Experiments on standard OOD benchmarks show our approach yields substantial improvements. Moreover, the method is lightweight and requires minimal changes to the standard inference pipeline, offering a practical path toward robust OOD detection in real-world applications.
comment: Accepted to ICCV 2025
☆ Decomposing Prediction Mechanisms for In-Context Recall
We introduce a new family of toy problems that combine features of linear-regression-style continuous in-context learning (ICL) with discrete associative recall. We pretrain transformer models on sample traces from this toy, specifically symbolically-labeled interleaved state observations from randomly drawn linear deterministic dynamical systems. We study if the transformer models can recall the state of a sequence previously seen in its context when prompted to do so with the corresponding in-context label. Taking a closer look at this task, it becomes clear that the model must perform two functions: (1) identify which system's state should be recalled and apply that system to its last seen state, and (2) continuing to apply the correct system to predict the subsequent states. Training dynamics reveal that the first capability emerges well into a model's training. Surprisingly, the second capability, of continuing the prediction of a resumed sequence, develops much earlier. Via out-of-distribution experiments, and a mechanistic analysis on model weights via edge pruning, we find that next-token prediction for this toy problem involves at least two separate mechanisms. One mechanism uses the discrete symbolic labels to do the associative recall required to predict the start of a resumption of a previously seen sequence. The second mechanism, which is largely agnostic to the discrete symbolic labels, performs a "Bayesian-style" prediction based on the previous token and the context. These two mechanisms have different learning dynamics. To confirm that this multi-mechanism (manifesting as separate phase transitions) phenomenon is not just an artifact of our toy setting, we used OLMo training checkpoints on an ICL translation task to see a similar phenomenon: a decisive gap in the emergence of first-task-token performance vs second-task-token performance.
comment: 44 pages, 47 figures, 2 tables
☆ Evaluating LLM Agent Collusion in Double Auctions
Large language models (LLMs) have demonstrated impressive capabilities as autonomous agents with rapidly expanding applications in various domains. As these agents increasingly engage in socioeconomic interactions, identifying their potential for undesirable behavior becomes essential. In this work, we examine scenarios where they can choose to collude, defined as secretive cooperation that harms another party. To systematically study this, we investigate the behavior of LLM agents acting as sellers in simulated continuous double auction markets. Through a series of controlled experiments, we analyze how parameters such as the ability to communicate, choice of model, and presence of environmental pressures affect the stability and emergence of seller collusion. We find that direct seller communication increases collusive tendencies, the propensity to collude varies across models, and environmental pressures, such as oversight and urgency from authority figures, influence collusive behavior. Our findings highlight important economic and ethical considerations for the deployment of LLM-based market agents.
☆ Coherent Online Road Topology Estimation and Reasoning with Standard-Definition Maps
Most autonomous cars rely on the availability of high-definition (HD) maps. Current research aims to address this constraint by directly predicting HD map elements from onboard sensors and reasoning about the relationships between the predicted map and traffic elements. Despite recent advancements, the coherent online construction of HD maps remains a challenging endeavor, as it necessitates modeling the high complexity of road topologies in a unified and consistent manner. To address this challenge, we propose a coherent approach to predict lane segments and their corresponding topology, as well as road boundaries, all by leveraging prior map information represented by commonly available standard-definition (SD) maps. We propose a network architecture, which leverages hybrid lane segment encodings comprising prior information and denoising techniques to enhance training stability and performance. Furthermore, we facilitate past frames for temporal consistency. Our experimental evaluation demonstrates that our approach outperforms previous methods by a large margin, highlighting the benefits of our modeling scheme.
comment: Accepted at IROS 2025
☆ Surrogate Modeling via Factorization Machine and Ising Model with Enhanced Higher-Order Interaction Learning
Recently, a surrogate model was proposed that employs a factorization machine to approximate the underlying input-output mapping of the original system, with quantum annealing used to optimize the resulting surrogate function. Inspired by this approach, we propose an enhanced surrogate model that incorporates additional slack variables into both the factorization machine and its associated Ising representation thereby unifying what was by design a two-step process into a single, integrated step. During the training phase, the slack variables are iteratively updated, enabling the model to account for higher-order feature interactions. We apply the proposed method to the task of predicting drug combination effects. Experimental results indicate that the introduction of slack variables leads to a notable improvement of performance. Our algorithm offers a promising approach for building efficient surrogate models that exploit potential quantum advantages.
☆ Distributional Soft Actor-Critic with Diffusion Policy
Reinforcement learning has been proven to be highly effective in handling complex control tasks. Traditional methods typically use unimodal distributions, such as Gaussian distributions, to model the output of value distributions. However, unimodal distribution often and easily causes bias in value function estimation, leading to poor algorithm performance. This paper proposes a distributional reinforcement learning algorithm called DSAC-D (Distributed Soft Actor Critic with Diffusion Policy) to address the challenges of estimating bias in value functions and obtaining multimodal policy representations. A multimodal distributional policy iteration framework that can converge to the optimal policy was established by introducing policy entropy and value distribution function. A diffusion value network that can accurately characterize the distribution of multi peaks was constructed by generating a set of reward samples through reverse sampling using a diffusion model. Based on this, a distributional reinforcement learning algorithm with dual diffusion of the value network and the policy network was derived. MuJoCo testing tasks demonstrate that the proposed algorithm not only learns multimodal policy, but also achieves state-of-the-art (SOTA) performance in all 9 control tasks, with significant suppression of estimation bias and total average return improvement of over 10\% compared to existing mainstream algorithms. The results of real vehicle testing show that DSAC-D can accurately characterize the multimodal distribution of different driving styles, and the diffusion policy network can characterize multimodal trajectories.
comment: Accepted IEEE ITSC 2025
☆ Active Measurement: Efficient Estimation at Scale
AI has the potential to transform scientific discovery by analyzing vast datasets with little human effort. However, current workflows often do not provide the accuracy or statistical guarantees that are needed. We introduce active measurement, a human-in-the-loop AI framework for scientific measurement. An AI model is used to predict measurements for individual units, which are then sampled for human labeling using importance sampling. With each new set of human labels, the AI model is improved and an unbiased Monte Carlo estimate of the total measurement is refined. Active measurement can provide precise estimates even with an imperfect AI model, and requires little human effort when the AI model is very accurate. We derive novel estimators, weighting schemes, and confidence intervals, and show that active measurement reduces estimation error compared to alternatives in several measurement tasks.
☆ Activation Reward Models for Few-Shot Model Alignment
Aligning Large Language Models (LLMs) and Large Multimodal Models (LMMs) to human preferences is a central challenge in improving the quality of the models' generative outputs for real-world applications. A common approach is to use reward modeling to encode preferences, enabling alignment via post-training using reinforcement learning. However, traditional reward modeling is not easily adaptable to new preferences because it requires a separate reward model, commonly trained on large preference datasets. To address this, we introduce Activation Reward Models (Activation RMs) -- a novel few-shot reward modeling method that leverages activation steering to construct well-aligned reward signals using minimal supervision and no additional model finetuning. Activation RMs outperform existing few-shot reward modeling approaches such as LLM-as-a-judge with in-context learning, voting-based scoring, and token probability scoring on standard reward modeling benchmarks. Furthermore, we demonstrate the effectiveness of Activation RMs in mitigating reward hacking behaviors, highlighting their utility for safety-critical applications. Toward this end, we propose PreferenceHack, a novel few-shot setting benchmark, the first to test reward models on reward hacking in a paired preference format. Finally, we show that Activation RM achieves state-of-the-art performance on this benchmark, surpassing even GPT-4o.
☆ Efficient Kilometer-Scale Precipitation Downscaling with Conditional Wavelet Diffusion
Effective hydrological modeling and extreme weather analysis demand precipitation data at a kilometer-scale resolution, which is significantly finer than the 10 km scale offered by standard global products like IMERG. To address this, we propose the Wavelet Diffusion Model (WDM), a generative framework that achieves 10x spatial super-resolution (downscaling to 1 km) and delivers a 9x inference speedup over pixel-based diffusion models. WDM is a conditional diffusion model that learns the learns the complex structure of precipitation from MRMS radar data directly in the wavelet domain. By focusing on high-frequency wavelet coefficients, it generates exceptionally realistic and detailed 1-km precipitation fields. This wavelet-based approach produces visually superior results with fewer artifacts than pixel-space models, and delivers a significant gains in sampling efficiency. Our results demonstrate that WDM provides a robust solution to the dual challenges of accuracy and speed in geoscience super-resolution, paving the way for more reliable hydrological forecasts.
☆ Skywork-Reward-V2: Scaling Preference Data Curation via Human-AI Synergy
Despite the critical role of reward models (RMs) in reinforcement learning from human feedback (RLHF), current state-of-the-art open RMs perform poorly on most existing evaluation benchmarks, failing to capture the spectrum of nuanced and sophisticated human preferences. Even approaches that incorporate advanced training techniques have not yielded meaningful performance improvements. We hypothesize that this brittleness stems primarily from limitations in preference datasets, which are often narrowly scoped, synthetically labeled, or lack rigorous quality control. To address these challenges, we present a large-scale preference dataset comprising 40 million preference pairs, named SynPref-40M. To enable data curation at scale, we design a human-AI synergistic two-stage pipeline that leverages the complementary strengths of human annotation quality and AI scalability. In this pipeline, humans provide verified annotations, while large language models perform automatic curation based on human guidance. Training on this preference mixture, we introduce Skywork-Reward-V2, a suite of eight reward models ranging from 0.6B to 8B parameters, trained on a carefully curated subset of 26 million preference pairs from SynPref-40M. We demonstrate that Skywork-Reward-V2 is versatile across a wide range of capabilities, including alignment with human preferences, objective correctness, safety, resistance to stylistic biases, and best-of-N scaling, achieving state-of-the-art performance across seven major reward model benchmarks. Ablation studies confirm that the effectiveness of our approach stems not only from data scale but also from high-quality curation. The Skywork-Reward-V2 series represents substantial progress in open reward models, highlighting the untapped potential of existing preference datasets and demonstrating how human-AI curation synergy can unlock significantly higher data quality.
☆ Reasoner for Real-World Event Detection: Scaling Reinforcement Learning via Adaptive Perplexity-Aware Sampling Strategy EMNLP
Detecting abnormal events in real-world customer service dialogues is highly challenging due to the complexity of business data and the dynamic nature of customer interactions. Moreover, models must demonstrate strong out-of-domain (OOD) generalization to enable rapid adaptation across different business scenarios and maximize commercial value. In this work, we propose a novel Adaptive Perplexity-Aware Reinforcement Learning (APARL) framework that leverages the advanced reasoning capabilities of large language models for abnormal event detection. APARL introduces a dual-loop dynamic curriculum learning architecture, enabling the model to progressively focus on more challenging samples as its proficiency increases. This design effectively addresses performance bottlenecks and significantly enhances OOD transferability. Extensive evaluations on food delivery dialogue tasks show that our model achieves significantly enhanced adaptability and robustness, attaining the highest F1 score with an average improvement of 17.19\%, and an average improvement of 9.59\% in OOD transfer tests. This method provides a superior solution for industrial deployment of anomaly detection models, contributing to improved operational efficiency and commercial benefits.
comment: 15 pages, 6 figures, submitted to EMNLP
☆ SWinMamba: Serpentine Window State Space Model for Vascular Segmentation
Vascular segmentation in medical images is crucial for disease diagnosis and surgical navigation. However, the segmented vascular structure is often discontinuous due to its slender nature and inadequate prior modeling. In this paper, we propose a novel Serpentine Window Mamba (SWinMamba) to achieve accurate vascular segmentation. The proposed SWinMamba innovatively models the continuity of slender vascular structures by incorporating serpentine window sequences into bidirectional state space models. The serpentine window sequences enable efficient feature capturing by adaptively guiding global visual context modeling to the vascular structure. Specifically, the Serpentine Window Tokenizer (SWToken) adaptively splits the input image using overlapping serpentine window sequences, enabling flexible receptive fields (RFs) for vascular structure modeling. The Bidirectional Aggregation Module (BAM) integrates coherent local features in the RFs for vascular continuity representation. In addition, dual-domain learning with Spatial-Frequency Fusion Unit (SFFU) is designed to enhance the feature representation of vascular structure. Extensive experiments on three challenging datasets demonstrate that the proposed SWinMamba achieves superior performance with complete and connected vessels.
☆ ICLShield: Exploring and Mitigating In-Context Learning Backdoor Attacks ICML 2025
In-context learning (ICL) has demonstrated remarkable success in large language models (LLMs) due to its adaptability and parameter-free nature. However, it also introduces a critical vulnerability to backdoor attacks, where adversaries can manipulate LLM behaviors by simply poisoning a few ICL demonstrations. In this paper, we propose, for the first time, the dual-learning hypothesis, which posits that LLMs simultaneously learn both the task-relevant latent concepts and backdoor latent concepts within poisoned demonstrations, jointly influencing the probability of model outputs. Through theoretical analysis, we derive an upper bound for ICL backdoor effects, revealing that the vulnerability is dominated by the concept preference ratio between the task and the backdoor. Motivated by these findings, we propose ICLShield, a defense mechanism that dynamically adjusts the concept preference ratio. Our method encourages LLMs to select clean demonstrations during the ICL phase by leveraging confidence and similarity scores, effectively mitigating susceptibility to backdoor attacks. Extensive experiments across multiple LLMs and tasks demonstrate that our method achieves state-of-the-art defense effectiveness, significantly outperforming existing approaches (+26.02% on average). Furthermore, our method exhibits exceptional adaptability and defensive performance even for closed-source models (e.g., GPT-4).
comment: ICML 2025
☆ Neural Hamiltonian Operator
Stochastic control problems in high dimensions are notoriously difficult to solve due to the curse of dimensionality. An alternative to traditional dynamic programming is Pontryagin's Maximum Principle (PMP), which recasts the problem as a system of Forward-Backward Stochastic Differential Equations (FBSDEs). In this paper, we introduce a formal framework for solving such problems with deep learning by defining a \textbf{Neural Hamiltonian Operator (NHO)}. This operator parameterizes the coupled FBSDE dynamics via neural networks that represent the feedback control and an ansatz for the value function's spatial gradient. We show how the optimal NHO can be found by training the underlying networks to enforce the consistency conditions dictated by the PMP. By adopting this operator-theoretic view, we situate the deep FBSDE method within the rigorous language of statistical inference, framing it as a problem of learning an unknown operator from simulated data. This perspective allows us to prove the universal approximation capabilities of NHOs under general martingale drivers and provides a clear lens for analyzing the significant optimization challenges inherent to this class of models.
☆ DiffusionLight-Turbo: Accelerated Light Probes for Free via Single-Pass Chrome Ball Inpainting
We introduce a simple yet effective technique for estimating lighting from a single low-dynamic-range (LDR) image by reframing the task as a chrome ball inpainting problem. This approach leverages a pre-trained diffusion model, Stable Diffusion XL, to overcome the generalization failures of existing methods that rely on limited HDR panorama datasets. While conceptually simple, the task remains challenging because diffusion models often insert incorrect or inconsistent content and cannot readily generate chrome balls in HDR format. Our analysis reveals that the inpainting process is highly sensitive to the initial noise in the diffusion process, occasionally resulting in unrealistic outputs. To address this, we first introduce DiffusionLight, which uses iterative inpainting to compute a median chrome ball from multiple outputs to serve as a stable, low-frequency lighting prior that guides the generation of a high-quality final result. To generate high-dynamic-range (HDR) light probes, an Exposure LoRA is fine-tuned to create LDR images at multiple exposure values, which are then merged. While effective, DiffusionLight is time-intensive, requiring approximately 30 minutes per estimation. To reduce this overhead, we introduce DiffusionLight-Turbo, which reduces the runtime to about 30 seconds with minimal quality loss. This 60x speedup is achieved by training a Turbo LoRA to directly predict the averaged chrome balls from the iterative process. Inference is further streamlined into a single denoising pass using a LoRA swapping technique. Experimental results that show our method produces convincing light estimates across diverse settings and demonstrates superior generalization to in-the-wild scenarios. Our code is available at https://diffusionlight.github.io/turbo
comment: arXiv admin note: substantial text overlap with arXiv:2312.09168
☆ Far From Sight, Far From Mind: Inverse Distance Weighting for Graph Federated Recommendation
Graph federated recommendation systems offer a privacy-preserving alternative to traditional centralized recommendation architectures, which often raise concerns about data security. While federated learning enables personalized recommendations without exposing raw user data, existing aggregation methods overlook the unique properties of user embeddings in this setting. Indeed, traditional aggregation methods fail to account for their complexity and the critical role of user similarity in recommendation effectiveness. Moreover, evolving user interactions require adaptive aggregation while preserving the influence of high-relevance anchor users (the primary users before expansion in graph-based frameworks). To address these limitations, we introduce Dist-FedAvg, a novel distance-based aggregation method designed to enhance personalization and aggregation efficiency in graph federated learning. Our method assigns higher aggregation weights to users with similar embeddings, while ensuring that anchor users retain significant influence in local updates. Empirical evaluations on multiple datasets demonstrate that Dist-FedAvg consistently outperforms baseline aggregation techniques, improving recommendation accuracy while maintaining seamless integration into existing federated learning frameworks.
comment: 17 pages, 5 figures
☆ VLAD: A VLM-Augmented Autonomous Driving Framework with Hierarchical Planning and Interpretable Decision Process
Recent advancements in open-source Visual Language Models (VLMs) such as LLaVA, Qwen-VL, and Llama have catalyzed extensive research on their integration with diverse systems. The internet-scale general knowledge encapsulated within these models presents significant opportunities for enhancing autonomous driving perception, prediction, and planning capabilities. In this paper we propose VLAD, a vision-language autonomous driving model, which integrates a fine-tuned VLM with VAD, a state-of-the-art end-to-end system. We implement a specialized fine-tuning approach using custom question-answer datasets designed specifically to improve the spatial reasoning capabilities of the model. The enhanced VLM generates high-level navigational commands that VAD subsequently processes to guide vehicle operation. Additionally, our system produces interpretable natural language explanations of driving decisions, thereby increasing transparency and trustworthiness of the traditionally black-box end-to-end architecture. Comprehensive evaluation on the real-world nuScenes dataset demonstrates that our integrated system reduces average collision rates by 31.82% compared to baseline methodologies, establishing a new benchmark for VLM-augmented autonomous driving systems.
comment: 2025 IEEE 28th International Conference on Intelligent Transportation Systems (ITSC)
☆ PULSE: Practical Evaluation Scenarios for Large Multimodal Model Unlearning
In recent years, unlearning techniques, which are methods for inducing a model to "forget" previously learned information, have attracted attention as a way to address privacy and copyright concerns in large language models (LLMs) and large multimodal models (LMMs). While several unlearning benchmarks have been established for LLMs, a practical evaluation framework for unlearning in LMMs has been less explored. Specifically, existing unlearning benchmark for LMMs considers only scenarios in which the model is required to unlearn fine-tuned knowledge through a single unlearning operation. In this study, we introduce PULSE protocol for realistic unlearning scenarios for LMMs by introducing two critical perspectives: (i) Pre-trained knowledge Unlearning for analyzing the effect across different knowledge acquisition phases and (ii) Long-term Sustainability Evaluation to address sequential requests. We then evaluate existing unlearning methods along these dimensions. Our results reveal that, although some techniques can successfully unlearn knowledge acquired through fine-tuning, they struggle to eliminate information learned during pre-training. Moreover, methods that effectively unlearn a batch of target data in a single operation exhibit substantial performance degradation when the same data are split and unlearned sequentially.
☆ Automated Classification of Volcanic Earthquakes Using Transformer Encoders: Insights into Data Quality and Model Interpretability
Precisely classifying earthquake types is crucial for elucidating the relationship between volcanic earthquakes and volcanic activity. However, traditional methods rely on subjective human judgment, which requires considerable time and effort. To address this issue, we developed a deep learning model using a transformer encoder for a more objective and efficient classification. Tested on Mount Asama's diverse seismic activity, our model achieved high F1 scores (0.930 for volcano tectonic, 0.931 for low-frequency earthquakes, and 0.980 for noise), superior to a conventional CNN-based method. To enhance interpretability, attention weight visualizations were analyzed, revealing that the model focuses on key waveform features similarly to human experts. However, inconsistencies in training data, such as ambiguously labeled B-type events with S-waves, were found to influence classification accuracy and attention weight distributions. Experiments addressing data selection and augmentation demonstrated the importance of balancing data quality and diversity. In addition, stations within 3 km of the crater played an important role in improving model performance and interpretability. These findings highlight the potential of Transformer-based models for automated volcanic earthquake classification, particularly in improving efficiency and interpretability. By addressing challenges such as data imbalance and subjective labeling, our approach provides a robust framework for understanding seismic activity at Mount Asama. Moreover, this framework offers opportunities for transfer learning to other volcanic regions, paving the way for enhanced volcanic hazard assessments and disaster mitigation strategies.
comment: submitted to Seismological Research Letters
☆ Latent Chain-of-Thought? Decoding the Depth-Recurrent Transformer
Chain-of-thought (CoT) reasoning has enabled transformer-based language models to excel at complex mathematics and multi-step planning. However, in standard decoder-only architectures, these reasoning steps are externalized in natural language, improving interpretability at the cost of efficiency. To capture reasoning that is not easily represented in words, many works have explored recurrent architectures that aim to internalize reasoning in latent space, potentially supporting latent CoT. In this paper, we investigate whether such reasoning structures emerge in Huginn-3.5B, a depth-recurrent Transformer that reuses layers at inference time without increasing parameter count. We examine the model's internal behavior on arithmetic tasks using a suite of probing techniques including the Logit Lens and Coda Lens. Our findings reveal limited evidence of interpretable latent CoT by tracking rank trajectories of final and intermediate result tokens. Furthermore, we uncover significant probing inconsistencies across recurrent blocks, where the interpretability of hidden states depends heavily on both the layer index and the decoding method. Finally, we empirically show that increasing recurrence depth yields only marginal gains and falls well short of models that explicitly externalize reasoning steps. The code is available at https://github.com/wenquanlu/huginn-latent-cot.
☆ cVLA: Towards Efficient Camera-Space VLAs
Vision-Language-Action (VLA) models offer a compelling framework for tackling complex robotic manipulation tasks, but they are often expensive to train. In this paper, we propose a novel VLA approach that leverages the competitive performance of Vision Language Models (VLMs) on 2D images to directly infer robot end-effector poses in image frame coordinates. Unlike prior VLA models that output low-level controls, our model predicts trajectory waypoints, making it both more efficient to train and robot embodiment agnostic. Despite its lightweight design, our next-token prediction architecture effectively learns meaningful and executable robot trajectories. We further explore the underutilized potential of incorporating depth images, inference-time techniques such as decoding strategies, and demonstration-conditioned action generation. Our model is trained on a simulated dataset and exhibits strong sim-to-real transfer capabilities. We evaluate our approach using a combination of simulated and real data, demonstrating its effectiveness on a real robotic system.
comment: 20 pages, 10 figures
☆ Analyzing and Improving Speaker Similarity Assessment for Speech Synthesis
Modeling voice identity is challenging due to its multifaceted nature. In generative speech systems, identity is often assessed using automatic speaker verification (ASV) embeddings, designed for discrimination rather than characterizing identity. This paper investigates which aspects of a voice are captured in such representations. We find that widely used ASV embeddings focus mainly on static features like timbre and pitch range, while neglecting dynamic elements such as rhythm. We also identify confounding factors that compromise speaker similarity measurements and suggest mitigation strategies. To address these gaps, we propose U3D, a metric that evaluates speakers' dynamic rhythm patterns. This work contributes to the ongoing challenge of assessing speaker identity consistency in the context of ever-better voice cloning systems. We publicly release our code.
comment: Accepted at SSW13 - Interspeech 2025 Speech Synthesis Workshop
☆ Towards Bio-Inspired Robotic Trajectory Planning via Self-Supervised RNN
Trajectory planning in robotics is understood as generating a sequence of joint configurations that will lead a robotic agent, or its manipulator, from an initial state to the desired final state, thus completing a manipulation task while considering constraints like robot kinematics and the environment. Typically, this is achieved via sampling-based planners, which are computationally intensive. Recent advances demonstrate that trajectory planning can also be performed by supervised sequence learning of trajectories, often requiring only a single or fixed number of passes through a neural architecture, thus ensuring a bounded computation time. Such fully supervised approaches, however, perform imitation learning; they do not learn based on whether the trajectories can successfully reach a goal, but try to reproduce observed trajectories. In our work, we build on this approach and propose a cognitively inspired self-supervised learning scheme based on a recurrent architecture for building a trajectory model. We evaluate the feasibility of the proposed method on a task of kinematic planning for a robotic arm. The results suggest that the model is able to learn to generate trajectories only using given paired forward and inverse kinematics models, and indicate that this novel method could facilitate planning for more complex manipulation tasks requiring adaptive solutions.
comment: 12 pages, 4 figures, 2 tables. To be published in 2025 International Conference on Artificial Neural Networks (ICANN) proceedings. This research was funded by the Horizon Europe project TERAIS, GA no. 101079338, and in part by the Slovak Grant Agency for Science (VEGA), project 1/0373/23
☆ Statistical Inference for Responsiveness Verification
Many safety failures in machine learning arise when models are used to assign predictions to people (often in settings like lending, hiring, or content moderation) without accounting for how individuals can change their inputs. In this work, we introduce a formal validation procedure for the responsiveness of predictions with respect to interventions on their features. Our procedure frames responsiveness as a type of sensitivity analysis in which practitioners control a set of changes by specifying constraints over interventions and distributions over downstream effects. We describe how to estimate responsiveness for the predictions of any model and any dataset using only black-box access, and how to use these estimates to support tasks such as falsification and failure probability estimation. We develop algorithms that construct these estimates by generating a uniform sample of reachable points, and demonstrate how they can promote safety in real-world applications such as recidivism prediction, organ transplant prioritization, and content moderation.
☆ Non-exchangeable Conformal Prediction for Temporal Graph Neural Networks KDD 2025
Conformal prediction for graph neural networks (GNNs) offers a promising framework for quantifying uncertainty, enhancing GNN reliability in high-stakes applications. However, existing methods predominantly focus on static graphs, neglecting the evolving nature of real-world graphs. Temporal dependencies in graph structure, node attributes, and ground truth labels violate the fundamental exchangeability assumption of standard conformal prediction methods, limiting their applicability. To address these challenges, in this paper, we introduce NCPNET, a novel end-to-end conformal prediction framework tailored for temporal graphs. Our approach extends conformal prediction to dynamic settings, mitigating statistical coverage violations induced by temporal dependencies. To achieve this, we propose a diffusion-based non-conformity score that captures both topological and temporal uncertainties within evolving networks. Additionally, we develop an efficiency-aware optimization algorithm that improves the conformal prediction process, enhancing computational efficiency and reducing coverage violations. Extensive experiments on diverse real-world temporal graphs, including WIKI, REDDIT, DBLP, and IBM Anti-Money Laundering dataset, demonstrate NCPNET's capability to ensure guaranteed coverage in temporal graphs, achieving up to a 31% reduction in prediction set size on the WIKI dataset, significantly improving efficiency compared to state-of-the-art methods. Our data and code are available at https://github.com/ODYSSEYWT/NCPNET.
comment: accepted by KDD 2025
☆ Generative Latent Diffusion for Efficient Spatiotemporal Data Reduction
Generative models have demonstrated strong performance in conditional settings and can be viewed as a form of data compression, where the condition serves as a compact representation. However, their limited controllability and reconstruction accuracy restrict their practical application to data compression. In this work, we propose an efficient latent diffusion framework that bridges this gap by combining a variational autoencoder with a conditional diffusion model. Our method compresses only a small number of keyframes into latent space and uses them as conditioning inputs to reconstruct the remaining frames via generative interpolation, eliminating the need to store latent representations for every frame. This approach enables accurate spatiotemporal reconstruction while significantly reducing storage costs. Experimental results across multiple datasets show that our method achieves up to 10 times higher compression ratios than rule-based state-of-the-art compressors such as SZ3, and up to 63 percent better performance than leading learning-based methods under the same reconstruction error.
comment: 10 pages
☆ CROP: Circuit Retrieval and Optimization with Parameter Guidance using LLMs
Modern very large-scale integration (VLSI) design requires the implementation of integrated circuits using electronic design automation (EDA) tools. Due to the complexity of EDA algorithms, the vast parameter space poses a huge challenge to chip design optimization, as the combination of even moderate numbers of parameters creates an enormous solution space to explore. Manual parameter selection remains industrial practice despite being excessively laborious and limited by expert experience. To address this issue, we present CROP, the first large language model (LLM)-powered automatic VLSI design flow tuning framework. Our approach includes: (1) a scalable methodology for transforming RTL source code into dense vector representations, (2) an embedding-based retrieval system for matching designs with semantically similar circuits, and (3) a retrieval-augmented generation (RAG)-enhanced LLM-guided parameter search system that constrains the search process with prior knowledge from similar designs. Experiment results demonstrate CROP's ability to achieve superior quality-of-results (QoR) with fewer iterations than existing approaches on industrial designs, including a 9.9% reduction in power consumption.
comment: Accepted by ICCAD 2025
☆ Can Artificial Intelligence solve the blockchain oracle problem? Unpacking the Challenges and Possibilities
The blockchain oracle problem, which refers to the challenge of injecting reliable external data into decentralized systems, remains a fundamental limitation to the development of trustless applications. While recent years have seen a proliferation of architectural, cryptographic, and economic strategies to mitigate this issue, no one has yet fully resolved the fundamental question of how a blockchain can gain knowledge about the off-chain world. In this position paper, we critically assess the role artificial intelligence (AI) can play in tackling the oracle problem. Drawing from both academic literature and practitioner implementations, we examine how AI techniques such as anomaly detection, language-based fact extraction, dynamic reputation modeling, and adversarial resistance can enhance oracle systems. We observe that while AI introduces powerful tools for improving data quality, source selection, and system resilience, it cannot eliminate the reliance on unverifiable off-chain inputs. Therefore, this study supports the idea that AI should be understood as a complementary layer of inference and filtering within a broader oracle design, not a substitute for trust assumptions.
☆ Scaling Collapse Reveals Universal Dynamics in Compute-Optimally Trained Neural Networks ICML 25
What scaling limits govern neural network training dynamics when model size and training time grow in tandem? We show that despite the complex interactions between architecture, training algorithms, and data, compute-optimally trained models exhibit a remarkably precise universality. Specifically, loss curves from models of varying sizes collapse onto a single universal curve when training compute and loss are normalized to unity at the end of training. With learning rate decay, the collapse becomes so tight that differences in the normalized curves across models fall below the noise floor of individual loss curves across random seeds, a phenomenon we term supercollapse. We observe supercollapse across learning rate schedules, datasets, and architectures, including transformers trained on next-token prediction, and find it breaks down when hyperparameters are scaled suboptimally, providing a precise and practical indicator of good scaling. We explain these phenomena by connecting collapse to the power-law structure in typical neural scaling laws, and analyzing a simple yet surprisingly effective model of SGD noise dynamics that accurately predicts loss curves across various learning rate schedules and quantitatively explains the origin of supercollapse.
comment: ICML 25. Code available at https://github.com/shikaiqiu/supercollapse
☆ Parametric Neural Amp Modeling with Active Learning
We introduce PANAMA, an active learning framework for the training of end-to-end parametric guitar amp models using a WaveNet-like architecture. With \model, one can create a virtual amp by recording samples that are determined by an active learning strategy to use a minimum amount of datapoints (i.e., amp knob settings). We show that gradient-based optimization algorithms can be used to determine the optimal datapoints to sample, and that the approach helps under a constrained number of samples.
comment: Accepted at ISMIR 2025 as Late-Breaking Demo (LBD)
☆ Resolving Turbulent Magnetohydrodynamics: A Hybrid Operator-Diffusion Framework
We present a hybrid machine learning framework that combines Physics-Informed Neural Operators (PINOs) with score-based generative diffusion models to simulate the full spatio-temporal evolution of two-dimensional, incompressible, resistive magnetohydrodynamic (MHD) turbulence across a broad range of Reynolds numbers ($\mathrm{Re}$). The framework leverages the equation-constrained generalization capabilities of PINOs to predict coherent, low-frequency dynamics, while a conditional diffusion model stochastically corrects high-frequency residuals, enabling accurate modeling of fully developed turbulence. Trained on a comprehensive ensemble of high-fidelity simulations with $\mathrm{Re} \in \{100, 250, 500, 750, 1000, 3000, 10000\}$, the approach achieves state-of-the-art accuracy in regimes previously inaccessible to deterministic surrogates. At $\mathrm{Re}=1000$ and $3000$, the model faithfully reconstructs the full spectral energy distributions of both velocity and magnetic fields late into the simulation, capturing non-Gaussian statistics, intermittent structures, and cross-field correlations with high fidelity. At extreme turbulence levels ($\mathrm{Re}=10000$), it remains the first surrogate capable of recovering the high-wavenumber evolution of the magnetic field, preserving large-scale morphology and enabling statistically meaningful predictions.
☆ A robust and adaptive MPC formulation for Gaussian process models
In this paper, we present a robust and adaptive model predictive control (MPC) framework for uncertain nonlinear systems affected by bounded disturbances and unmodeled nonlinearities. We use Gaussian Processes (GPs) to learn the uncertain dynamics based on noisy measurements, including those collected during system operation. As a key contribution, we derive robust predictions for GP models using contraction metrics, which are incorporated in the MPC formulation. The proposed design guarantees recursive feasibility, robust constraint satisfaction and convergence to a reference state, with high probability. We provide a numerical example of a planar quadrotor subject to difficult-to-model ground effects, which highlights significant improvements achieved through the proposed robust prediction method and through online learning.
☆ Energy-Based Transformers are Scalable Learners and Thinkers
Inference-time computation techniques, analogous to human System 2 Thinking, have recently become popular for improving model performances. However, most existing approaches suffer from several limitations: they are modality-specific (e.g., working only in text), problem-specific (e.g., verifiable domains like math and coding), or require additional supervision/training on top of unsupervised pretraining (e.g., verifiers or verifiable rewards). In this paper, we ask the question "Is it possible to generalize these System 2 Thinking approaches, and develop models that learn to think solely from unsupervised learning?" Interestingly, we find the answer is yes, by learning to explicitly verify the compatibility between inputs and candidate-predictions, and then re-framing prediction problems as optimization with respect to this verifier. Specifically, we train Energy-Based Transformers (EBTs) -- a new class of Energy-Based Models (EBMs) -- to assign an energy value to every input and candidate-prediction pair, enabling predictions through gradient descent-based energy minimization until convergence. Across both discrete (text) and continuous (visual) modalities, we find EBTs scale faster than the dominant Transformer++ approach during training, achieving an up to 35% higher scaling rate with respect to data, batch size, parameters, FLOPs, and depth. During inference, EBTs improve performance with System 2 Thinking by 29% more than the Transformer++ on language tasks, and EBTs outperform Diffusion Transformers on image denoising while using fewer forward passes. Further, we find that EBTs achieve better results than existing models on most downstream tasks given the same or worse pretraining performance, suggesting that EBTs generalize better than existing approaches. Consequently, EBTs are a promising new paradigm for scaling both the learning and thinking capabilities of models.
☆ Sample Complexity Bounds for Linear Constrained MDPs with a Generative Model
We consider infinite-horizon $\gamma$-discounted (linear) constrained Markov decision processes (CMDPs) where the objective is to find a policy that maximizes the expected cumulative reward subject to expected cumulative constraints. Given access to a generative model, we propose to solve CMDPs with a primal-dual framework that can leverage any black-box unconstrained MDP solver. For linear CMDPs with feature dimension $d$, we instantiate the framework by using mirror descent value iteration (\texttt{MDVI})~\citep{kitamura2023regularization} an example MDP solver. We provide sample complexity bounds for the resulting CMDP algorithm in two cases: (i) relaxed feasibility, where small constraint violations are allowed, and (ii) strict feasibility, where the output policy is required to exactly satisfy the constraint. For (i), we prove that the algorithm can return an $\epsilon$-optimal policy with high probability by using $\tilde{O}\left(\frac{d^2}{(1-\gamma)^4\epsilon^2}\right)$ samples. We note that these results exhibit a near-optimal dependence on both $d$ and $\epsilon$. For (ii), we show that the algorithm requires $\tilde{O}\left(\frac{d^2}{(1-\gamma)^6\epsilon^2\zeta^2}\right)$ samples, where $\zeta$ is the problem-dependent Slater constant that characterizes the size of the feasible region. Finally, we instantiate our framework for tabular CMDPs and show that it can be used to recover near-optimal sample complexities in this setting.
☆ Evaluating the Promise and Pitfalls of LLMs in Hiring Decisions NeurIPS 2025
The use of large language models (LLMs) in hiring promises to streamline candidate screening, but it also raises serious concerns regarding accuracy and algorithmic bias where sufficient safeguards are not in place. In this work, we benchmark several state-of-the-art foundational LLMs - including models from OpenAI, Anthropic, Google, Meta, and Deepseek, and compare them with our proprietary domain-specific hiring model (Match Score) for job candidate matching. We evaluate each model's predictive accuracy (ROC AUC, Precision-Recall AUC, F1-score) and fairness (impact ratio of cut-off analysis across declared gender, race, and intersectional subgroups). Our experiments on a dataset of roughly 10,000 real-world recent candidate-job pairs show that Match Score outperforms the general-purpose LLMs on accuracy (ROC AUC 0.85 vs 0.77) and achieves significantly more equitable outcomes across demographic groups. Notably, Match Score attains a minimum race-wise impact ratio of 0.957 (near-parity), versus 0.809 or lower for the best LLMs, (0.906 vs 0.773 for the intersectionals, respectively). We discuss why pretraining biases may cause LLMs with insufficient safeguards to propagate societal biases in hiring scenarios, whereas a bespoke supervised model can more effectively mitigate these biases. Our findings highlight the importance of domain-specific modeling and bias auditing when deploying AI in high-stakes domains such as hiring, and caution against relying on off-the-shelf LLMs for such tasks without extensive fairness safeguards. Furthermore, we show with empirical evidence that there shouldn't be a dichotomy between choosing accuracy and fairness in hiring: a well-designed algorithm can achieve both accuracy in hiring and fairness in outcomes.
comment: 10 pages, 2 figures, 2 tables. Submitted to NeurIPS 2025
☆ Selective Feature Re-Encoded Quantum Convolutional Neural Network with Joint Optimization for Image Classification
Quantum Machine Learning (QML) has seen significant advancements, driven by recent improvements in Noisy Intermediate-Scale Quantum (NISQ) devices. Leveraging quantum principles such as entanglement and superposition, quantum convolutional neural networks (QCNNs) have demonstrated promising results in classifying both quantum and classical data. This study examines QCNNs in the context of image classification and proposes a novel strategy to enhance feature processing and a QCNN architecture for improved classification accuracy. First, a selective feature re-encoding strategy is proposed, which directs the quantum circuits to prioritize the most informative features, thereby effectively navigating the crucial regions of the Hilbert space to find the optimal solution space. Secondly, a novel parallel-mode QCNN architecture is designed to simultaneously incorporate features extracted by two classical methods, Principal Component Analysis (PCA) and Autoencoders, within a unified training scheme. The joint optimization involved in the training process allows the QCNN to benefit from complementary feature representations, enabling better mutual readjustment of model parameters. To assess these methodologies, comprehensive experiments have been performed using the widely used MNIST and Fashion MNIST datasets for binary classification tasks. Experimental findings reveal that the selective feature re-encoding method significantly improves the quantum circuit's feature processing capability and performance. Furthermore, the jointly optimized parallel QCNN architecture consistently outperforms the individual QCNN models and the traditional ensemble approach involving independent learning followed by decision fusion, confirming its superior accuracy and generalization capabilities.
comment: 26 pages, 12 figures, 6 Tables
GeoAda: Efficiently Finetune Geometric Diffusion Models with Equivariant Adapters
Geometric diffusion models have shown remarkable success in molecular dynamics and structure generation. However, efficiently fine-tuning them for downstream tasks with varying geometric controls remains underexplored. In this work, we propose an SE(3)-equivariant adapter framework ( GeoAda) that enables flexible and parameter-efficient fine-tuning for controlled generative tasks without modifying the original model architecture. GeoAda introduces a structured adapter design: control signals are first encoded through coupling operators, then processed by a trainable copy of selected pretrained model layers, and finally projected back via decoupling operators followed by an equivariant zero-initialized convolution. By fine-tuning only these lightweight adapter modules, GeoAda preserves the model's geometric consistency while mitigating overfitting and catastrophic forgetting. We theoretically prove that the proposed adapters maintain SE(3)-equivariance, ensuring that the geometric inductive biases of the pretrained diffusion model remain intact during adaptation. We demonstrate the wide applicability of GeoAda across diverse geometric control types, including frame control, global control, subgraph control, and a broad range of application domains such as particle dynamics, molecular dynamics, human motion prediction, and molecule generation. Empirical results show that GeoAda achieves state-of-the-art fine-tuning performance while preserving original task accuracy, whereas other baselines experience significant performance degradation due to overfitting and catastrophic forgetting.
☆ Adaptive Iterative Soft-Thresholding Algorithm with the Median Absolute Deviation
The adaptive Iterative Soft-Thresholding Algorithm (ISTA) has been a popular algorithm for finding a desirable solution to the LASSO problem without explicitly tuning the regularization parameter $\lambda$. Despite that the adaptive ISTA is a successful practical algorithm, few theoretical results exist. In this paper, we present the theoretical analysis on the adaptive ISTA with the thresholding strategy of estimating noise level by median absolute deviation. We show properties of the fixed points of the algorithm, including scale equivariance, non-uniqueness, and local stability, prove the local linear convergence guarantee, and show its global convergence behavior.
☆ Reasoning on a Budget: A Survey of Adaptive and Controllable Test-Time Compute in LLMs
Large language models (LLMs) have rapidly progressed into general-purpose agents capable of solving a broad spectrum of tasks. However, current models remain inefficient at reasoning: they apply fixed inference-time compute regardless of task complexity, often overthinking simple problems while underthinking hard ones. This survey presents a comprehensive review of efficient test-time compute (TTC) strategies, which aim to improve the computational efficiency of LLM reasoning. We introduce a two-tiered taxonomy that distinguishes between L1-controllability, methods that operate under fixed compute budgets, and L2-adaptiveness, methods that dynamically scale inference based on input difficulty or model confidence. We benchmark leading proprietary LLMs across diverse datasets, highlighting critical trade-offs between reasoning performance and token usage. Compared to prior surveys on efficient reasoning, our review emphasizes the practical control, adaptability, and scalability of TTC methods. Finally, we discuss emerging trends such as hybrid thinking models and identify key challenges for future work towards making LLMs more computationally efficient, robust, and responsive to user constraints.
☆ HCVR: A Hybrid Approach with Correlation-aware Voting Rules for Feature Selection
In this paper, we propose HCVR (Hybrid approach with Correlation-aware Voting Rules), a lightweight rule-based feature selection method that combines Parameter-to-Parameter (P2P) and Parameter-to-Target (P2T) correlations to eliminate redundant features and retain relevant ones. This method is a hybrid of non-iterative and iterative filtering approaches for dimensionality reduction. It is a greedy method, which works by backward elimination, eliminating possibly multiple features at every step. The rules contribute to voting for features, and a decision to keep or discard is made by majority voting. The rules make use of correlation thresholds between every pair of features, and between features and the target. We provide the results from the application of HCVR to the SPAMBASE dataset. The results showed improvement performance as compared to traditional non-iterative (CFS, mRMR and MI) and iterative (RFE, SFS and Genetic Algorithm) techniques. The effectiveness was assessed based on the performance of different classifiers after applying filtering.
comment: 11 pages, 5 tables, 2 figures
☆ NGAT: A Node-level Graph Attention Network for Long-term Stock Prediction
Graph representation learning methods have been widely adopted in financial applications to enhance company representations by leveraging inter-firm relationships. However, current approaches face three key challenges: (1) The advantages of relational information are obscured by limitations in downstream task designs; (2) Existing graph models specifically designed for stock prediction often suffer from excessive complexity and poor generalization; (3) Experience-based construction of corporate relationship graphs lacks effective comparison of different graph structures. To address these limitations, we propose a long-term stock prediction task and develop a Node-level Graph Attention Network (NGAT) specifically tailored for corporate relationship graphs. Furthermore, we experimentally demonstrate the limitations of existing graph comparison methods based on model downstream task performance. Experimental results across two datasets consistently demonstrate the effectiveness of our proposed task and model. The project is publicly available on GitHub to encourage reproducibility and future research.
♻ ☆ Recursive Training Loops in LLMs: How training data properties modulate distribution shift in generated data?
Large language models (LLMs) are increasingly used in the creation of online content, creating feedback loops as subsequent generations of models will be trained on this synthetic data. Such loops were shown to lead to distribution shifts - models misrepresenting the true underlying distributions of human data (also called model collapse). However, how human data properties affect such shifts remains poorly understood. In this paper, we provide the first empirical examination of the effect of such properties on the outcome of recursive training. We first confirm that using different human datasets leads to distribution shifts of different magnitudes. Through exhaustive manipulation of dataset properties combined with regression analyses, we then identify a set of properties predicting distribution shift magnitudes. Lexical diversity is found to amplify these shifts, while semantic diversity and data quality mitigate them. Furthermore, we find that these influences are highly modular: data scrapped from a given internet domain has little influence on the content generated for another domain. Finally, experiments on political bias reveal that human data properties affect whether the initial bias will be amplified or reduced. Overall, our results portray a novel view, where different parts of internet may undergo different types of distribution shift.
♻ ☆ Adapting Probabilistic Risk Assessment for AI
Modern general-purpose artificial intelligence (AI) systems present an urgent risk management challenge, as their rapidly evolving capabilities and potential for catastrophic harm outpace our ability to reliably assess their risks. Current methods often rely on selective testing and undocumented assumptions about risk priorities, frequently failing to make a serious attempt at assessing the set of pathways through which AI systems pose direct or indirect risks to society and the biosphere. This paper introduces the probabilistic risk assessment (PRA) for AI framework, adapting established PRA techniques from high-reliability industries (e.g., nuclear power, aerospace) for the new challenges of advanced AI. The framework guides assessors in identifying potential risks, estimating likelihood and severity bands, and explicitly documenting evidence, underlying assumptions, and analyses at appropriate granularities. The framework's implementation tool synthesizes the results into a risk report card with aggregated risk estimates from all assessed risks. It introduces three methodological advances: (1) Aspect-oriented hazard analysis provides systematic hazard coverage guided by a first-principles taxonomy of AI system aspects (e.g. capabilities, domain knowledge, affordances); (2) Risk pathway modeling analyzes causal chains from system aspects to societal impacts using bidirectional analysis and incorporating prospective techniques; and (3) Uncertainty management employs scenario decomposition, reference scales, and explicit tracing protocols to structure credible projections with novelty or limited data. Additionally, the framework harmonizes diverse assessment methods by integrating evidence into comparable, quantified absolute risk estimates for lifecycle decisions. We have implemented this as a workbook tool for AI developers, evaluators, and regulators.
comment: Project website with workbook tool available at: https://pra-for-ai.github.io/pra/
♻ ☆ Distribution Matching for Self-Supervised Transfer Learning
In this paper, we propose a novel self-supervised transfer learning method called \underline{\textbf{D}}istribution \underline{\textbf{M}}atching (DM), which drives the representation distribution toward a predefined reference distribution while preserving augmentation invariance. DM results in a learned representation space that is intuitively structured and therefore easy to interpret. Experimental results across multiple real-world datasets and evaluation metrics demonstrate that DM performs competitively on target classification tasks compared to existing self-supervised transfer learning methods. Additionally, we provide robust theoretical guarantees for DM, including a population theorem and an end-to-end sample theorem. The population theorem bridges the gap between the self-supervised learning task and target classification accuracy, while the sample theorem shows that, even with a limited number of samples from the target domain, DM can deliver exceptional classification performance, provided the unlabeled sample size is sufficiently large.
♻ ☆ GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking, a vision-language model (VLM) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document understanding. We open-source GLM-4.1V-9B-Thinking, which achieves state-of-the-art performance among models of comparable size. In a comprehensive evaluation across 28 public benchmarks, our model outperforms Qwen2.5-VL-7B on nearly all tasks and achieves comparable or even superior performance on 18 benchmarks relative to the significantly larger Qwen2.5-VL-72B. Notably, GLM-4.1V-9B-Thinking also demonstrates competitive or superior performance compared to closed-source models such as GPT-4o on challenging tasks including long document understanding and STEM reasoning, further underscoring its strong capabilities. Code, models and more information are released at https://github.com/THUDM/GLM-4.1V-Thinking.
♻ ☆ Generalization performance of narrow one-hidden layer networks in the teacher-student setting
Understanding the generalization abilities of neural networks for simple input-output distributions is crucial to account for their learning performance on real datasets. The classical teacher-student setting, where a network is trained from data obtained thanks to a label-generating teacher model, serves as a perfect theoretical test bed. In this context, a complete theoretical account of the performance of fully connected one-hidden layer networks in the presence of generic activation functions is lacking. In this work, we develop such a general theory for narrow networks, i.e. networks with a large number of hidden units, yet much smaller than the input dimension. Using methods from statistical physics, we provide closed-form expressions for the typical performance of both finite temperature (Bayesian) and empirical risk minimization estimators, in terms of a small number of weight statistics. In doing so, we highlight the presence of a transition where hidden neurons specialize when the number of samples is sufficiently large and proportional to the number of parameters of the network. Our theory accurately predicts the generalization error of neural networks trained on regression or classification tasks with either noisy full-batch gradient descent (Langevin dynamics) or full-batch gradient descent.
comment: 34 pages, figures
♻ ☆ Deep Reinforcement Learning for Traveling Purchaser Problems
The traveling purchaser problem (TPP) is an important combinatorial optimization problem with broad applications. Due to the coupling between routing and purchasing, existing works on TPPs commonly address route construction and purchase planning simultaneously, which, however, leads to exact methods with high computational cost and heuristics with sophisticated design but limited performance. In sharp contrast, we propose a novel approach based on deep reinforcement learning (DRL), which addresses route construction and purchase planning separately, while evaluating and optimizing the solution from a global perspective. The key components of our approach include a bipartite graph representation for TPPs to capture the market-product relations, and a policy network that extracts information from the bipartite graph and uses it to sequentially construct the route. One significant advantage of our framework is that we can efficiently construct the route using the policy network, and once the route is determined, the associated purchasing plan can be easily derived through linear programming, while, by leveraging DRL, we can train the policy network towards optimizing the global solution objective. Furthermore, by introducing a meta-learning strategy, the policy network can be trained stably on large-sized TPP instances, and generalize well across instances of varying sizes and distributions, even to much larger instances that are never seen during training. Experiments on various synthetic TPP instances and the TPPLIB benchmark demonstrate that our DRL-based approach can significantly outperform well-established TPP heuristics, reducing the optimality gap by 40%-90%, and also showing an advantage in runtime, especially on large-sized instances.
♻ ☆ SpikeNAS: A Fast Memory-Aware Neural Architecture Search Framework for Spiking Neural Network-based Embedded AI Systems
Embedded AI systems are expected to incur low power/energy consumption for solving machine learning tasks, as these systems are usually power constrained (e.g., object recognition task in autonomous mobile agents with portable batteries). These requirements can be fulfilled by Spiking Neural Networks (SNNs), since their bio-inspired spike-based operations offer high accuracy and ultra low-power/energy computation. Currently, most of SNN architectures are derived from Artificial Neural Networks whose neurons' architectures and operations are different from SNNs, and/or developed without considering memory budgets from the underlying processing hardware of embedded platforms. These limitations hinder SNNs from reaching their full potential in accuracy and efficiency. Toward this, we propose SpikeNAS, a novel fast memory-aware neural architecture search (NAS) framework for SNNs that quickly finds an appropriate SNN architecture with high accuracy under the given memory budgets from targeted embedded systems. To do this, our SpikeNAS employs several key steps: analyzing the impacts of network operations on the accuracy, enhancing the network architecture to improve the learning quality, developing a fast memory-aware search algorithm, and performing quantization. The experimental results show that our SpikeNAS improves the searching time and maintains high accuracy compared to state-of-the-art while meeting the given memory budgets (e.g., 29x, 117x, and 3.7x faster search for CIFAR10, CIFAR100, and TinyImageNet200 respectively, using an Nvidia RTX A6000 GPU machine), thereby quickly providing the appropriate SNN architecture for the memory-constrained embedded AI systems.
comment: To appear at the IEEE Transactions on Artificial Intelligence (TAI) 2025
♻ ☆ Beating Transformers using Synthetic Cognition
The road to Artificial General Intelligence goes through the generation of context-aware reactive behaviors, where the Transformer architecture has been proven to be the state-of-the-art. However, they still fail to develop reasoning. Recently, a novel approach for developing cognitive architectures, called Synthetic Cognition, has been proposed and implemented to develop instantaneous reactive behavior. In this study, we aim to explore the use of Synthetic Cognition to develop context-aware reactive behaviors. We propose a mechanism to deal with sequences for the recent implementation of Synthetic Cognition, and test it against DNA foundation models in DNA sequence classification tasks. In our experiments, our proposal clearly outperforms the DNA foundation models, obtaining the best score on more benchmark tasks than the alternatives. Thus, we achieve two goals: expanding Synthetic Cognition to deal with sequences, and beating the Transformer architecture for sequence classification.
♻ ☆ Retrieving snow depth distribution by downscaling ERA5 Reanalysis with ICESat-2 laser altimetry
Estimating the variability of seasonal snow cover, in particular snow depth in remote areas, poses significant challenges due to limited spatial and temporal data availability. This study uses snow depth measurements from the ICESat-2 satellite laser altimeter, which are sparse in both space and time, and incorporates them with climate reanalysis data into a downscaling-calibration scheme to produce monthly gridded snow depth maps at microscale (10 m). Snow surface elevation measurements from ICESat-2 along profiles are compared to a digital elevation model to determine snow depth at each point. To efficiently turn sparse measurements into snow depth maps, a regression model is fitted to establish a relationship between the retrieved snow depth and the corresponding ERA5 Land snow depth. This relationship, referred to as subgrid variability, is then applied to downscale the monthly ERA5 Land snow depth data. The method can provide timeseries of monthly snow depth maps for the entire ERA5 time range (since 1950). The validation of downscaled snow depth data was performed at an intermediate scale (100 m x 500 m) using datasets from airborne laser scanning (ALS) in the Hardangervidda region of southern Norway. Results show that snow depth prediction achieved R2 values ranging from 0.74 to 0.88 (post-calibration). The method relies on globally available data and is applicable to other snow regions above the treeline. Though requiring area-specific calibration, our approach has the potential to provide snow depth maps in areas where no such data exist and can be used to extrapolate existing snow surveys in time and over larger areas. With this, it can offer valuable input data for hydrological, ecological or permafrost modeling tasks.
♻ ☆ Long-Context Linear System Identification ICLR 2025
This paper addresses the problem of long-context linear system identification, where the state $x_t$ of a dynamical system at time $t$ depends linearly on previous states $x_s$ over a fixed context window of length $p$. We establish a sample complexity bound that matches the i.i.d. parametric rate up to logarithmic factors for a broad class of systems, extending previous works that considered only first-order dependencies. Our findings reveal a learning-without-mixing phenomenon, indicating that learning long-context linear autoregressive models is not hindered by slow mixing properties potentially associated with extended context windows. Additionally, we extend these results to (i) shared low-rank representations, where rank-regularized estimators improve the dependence of the rates on the dimensionality, and (ii) misspecified context lengths in strictly stable systems, where shorter contexts offer statistical advantages.
comment: Published at ICLR 2025. This version includes minor corrections and improved grammar from the published version. 34 pages, 4 figures
♻ ☆ Interact2Vec -- An efficient neural network-based model for simultaneously learning users and items embeddings in recommender systems
Over the past decade, recommender systems have experienced a surge in popularity. Despite notable progress, they grapple with challenging issues, such as high data dimensionality and sparseness. Representing users and items as low-dimensional embeddings learned via neural networks has become a leading solution. However, while recent studies show promising results, many approaches rely on complex architectures or require content data, which may not always be available. This paper presents Interact2Vec, a novel neural network-based model that simultaneously learns distributed embeddings for users and items while demanding only implicit feedback. The model employs state-of-the-art strategies that natural language processing models commonly use to optimize the training phase and enhance the final embeddings. Two types of experiments were conducted regarding the extrinsic and intrinsic quality of the model. In the former, we benchmarked the recommendations generated by Interact2Vec's embeddings in a top-$N$ ranking problem, comparing them with six other recommender algorithms. The model achieved the second or third-best results in 30% of the datasets, being competitive with other recommenders, and has proven to be very efficient with an average training time reduction of 274% compared to other embedding-based models. Later, we analyzed the intrinsic quality of the embeddings through similarity tables. Our findings suggest that Interact2Vec can achieve promising results, especially on the extrinsic task, and is an excellent embedding-generator model for scenarios of scarce computing resources, enabling the learning of item and user embeddings simultaneously and efficiently.
comment: Published in Applied Soft Computing (ASOC), 49 pages, 14 figures
♻ ☆ Improving Consistency Models with Generator-Augmented Flows
Consistency models imitate the multi-step sampling of score-based diffusion in a single forward pass of a neural network. They can be learned in two ways: consistency distillation and consistency training. The former relies on the true velocity field of the corresponding differential equation, approximated by a pre-trained neural network. In contrast, the latter uses a single-sample Monte Carlo estimate of this velocity field. The related estimation error induces a discrepancy between consistency distillation and training that, we show, still holds in the continuous-time limit. To alleviate this issue, we propose a novel flow that transports noisy data towards their corresponding outputs derived from a consistency model. We prove that this flow reduces the previously identified discrepancy and the noise-data transport cost. Consequently, our method not only accelerates consistency training convergence but also enhances its overall performance. The code is available at: https://github.com/thibautissenhuth/consistency_GC.
♻ ☆ AirRadar: Inferring Nationwide Air Quality in China with Deep Neural Networks
Monitoring real-time air quality is essential for safeguarding public health and fostering social progress. However, the widespread deployment of air quality monitoring stations is constrained by their significant costs. To address this limitation, we introduce \emph{AirRadar}, a deep neural network designed to accurately infer real-time air quality in locations lacking monitoring stations by utilizing data from existing ones. By leveraging learnable mask tokens, AirRadar reconstructs air quality features in unmonitored regions. Specifically, it operates in two stages: first capturing spatial correlations and then adjusting for distribution shifts. We validate AirRadar's efficacy using a year-long dataset from 1,085 monitoring stations across China, demonstrating its superiority over multiple baselines, even with varying degrees of unobserved data. The source code can be accessed at https://github.com/CityMind-Lab/AirRadar.
♻ ☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs
Despite progress in Vision-Language Models (VLMs), their capacity for visual reasoning is often limited by the \textit{binding problem}: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current VLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces a simple yet effective intervention: augmenting visual inputs with low-level spatial structures (e.g., horizontal lines) and pairing this with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks. Specifically, our method improves GPT-4o visual search accuracy by 25.00%, increases counting accuracy by 26.83%, reduces edit distance error in scene description by 0.32, and enhances performance on spatial relationship tasks by 9.50% on a a 2D synthetic dataset. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. Our method enhances binding only with a single-query inference, underscoring the importance of visual input design over purely linguistically-based approaches. These findings suggest that low-level visual structuring is a powerful and underexplored direction for improving compositional visual reasoning and could serve as a general strategy for enhancing VLM performance on spatially grounded tasks.
♻ ☆ SURE-VQA: Systematic Understanding of Robustness Evaluation in Medical VQA Tasks
Vision-Language Models (VLMs) have great potential in medical tasks, like Visual Question Answering (VQA), where they could act as interactive assistants for both patients and clinicians. Yet their robustness to distribution shifts on unseen data remains a key concern for safe deployment. Evaluating such robustness requires a controlled experimental setup that allows for systematic insights into the model's behavior. However, we demonstrate that current setups fail to offer sufficiently thorough evaluations. To address this gap, we introduce a novel framework, called \textit{SURE-VQA}, centered around three key requirements to overcome current pitfalls and systematically analyze VLM robustness: 1) Since robustness on synthetic shifts does not necessarily translate to real-world shifts, it should be measured on real-world shifts that are inherent to the VQA data; 2) Traditional token-matching metrics often fail to capture underlying semantics, necessitating the use of large language models (LLMs) for more accurate semantic evaluation; 3) Model performance often lacks interpretability due to missing sanity baselines, thus meaningful baselines should be reported that allow assessing the multimodal impact on the VLM. To demonstrate the relevance of this framework, we conduct a study on the robustness of various Fine-Tuning (FT) methods across three medical datasets with four types of distribution shifts. Our study highlights key insights into robustness: 1) No FT method consistently outperforms others in robustness, and 2) robustness trends are more stable across FT methods than across distribution shifts. Additionally, we find that simple sanity baselines that do not use the image data can perform surprisingly well and confirm LoRA as the best-performing FT method on in-distribution data. Code is provided at https://github.com/IML-DKFZ/sure-vqa.
comment: TMLR 07/2025
♻ ☆ Time-Series JEPA for Predictive Remote Control under Capacity-Limited Networks
In remote control systems, transmitting large data volumes (e.g., images, video frames) from wireless sensors to remote controllers is challenging when uplink capacity is limited (e.g., RedCap devices or massive wireless sensor networks). Furthermore, controllers often need only information-rich representations of the original data. To address this, we propose a semantic-driven predictive control combined with a channel-aware scheduling to enhance control performance for multiple devices under limited network capacity. At its core, the proposed framework, coined Time-Series Joint Embedding Predictive Architecture (TS-JEPA), encodes high-dimensional sensory data into low-dimensional semantic embeddings at the sensor, reducing communication overhead. Furthermore, TS-JEPA enables predictive inference by predicting future embeddings from current ones and predicted commands, which are directly used by a semantic actor model to compute control commands within the embedding space, eliminating the need to reconstruct raw data. To further enhance reliability and communication efficiency, a channel-aware scheduling is integrated to dynamically prioritize device transmissions based on channel conditions and age of information (AoI). Simulations on inverted cart-pole systems show that the proposed framework significantly outperforms conventional control baselines in communication efficiency, control cost, and predictive accuracy. It enables robust and scalable control under limited network capacity compared to traditional scheduling schemes.
♻ ☆ Extracting Interpretable Models from Tree Ensembles: Computational and Statistical Perspectives
Tree ensembles are non-parametric methods widely recognized for their accuracy and ability to capture complex interactions. While these models excel at prediction, they are difficult to interpret and may fail to uncover useful relationships in the data. We propose an estimator to extract compact sets of decision rules from tree ensembles. The extracted models are accurate and can be manually examined to reveal relationships between the predictors and the response. A key novelty of our estimator is the flexibility to jointly control the number of rules extracted and the interaction depth of each rule, which improves accuracy. We develop a tailored exact algorithm to efficiently solve optimization problems underlying our estimator and an approximate algorithm for computing regularization paths, sequences of solutions that correspond to varying model sizes. We also establish novel non-asymptotic prediction error bounds for our proposed approach, comparing it to an oracle that chooses the best data-dependent linear combination of the rules in the ensemble subject to the same complexity constraint as our estimator. The bounds illustrate that the large-sample predictive performance of our estimator is on par with that of the oracle. Through experiments, we demonstrate that our estimator outperforms existing algorithms for rule extraction.
♻ ☆ Average Calibration Error: A Differentiable Loss for Improved Reliability in Image Segmentation
Deep neural networks for medical image segmentation often produce overconfident results misaligned with empirical observations. Such miscalibration, challenges their clinical translation. We propose to use marginal L1 average calibration error (mL1-ACE) as a novel auxiliary loss function to improve pixel-wise calibration without compromising segmentation quality. We show that this loss, despite using hard binning, is directly differentiable, bypassing the need for approximate but differentiable surrogate or soft binning approaches. Our work also introduces the concept of dataset reliability histograms which generalises standard reliability diagrams for refined visual assessment of calibration in semantic segmentation aggregated at the dataset level. Using mL1-ACE, we reduce average and maximum calibration error by 45% and 55% respectively, maintaining a Dice score of 87% on the BraTS 2021 dataset. We share our code here: https://github.com/cai4cai/ACE-DLIRIS
♻ ☆ Leveraging Genetic Algorithms for Efficient Demonstration Generation in Real-World Reinforcement Learning Environments
Reinforcement Learning (RL) has demonstrated significant potential in certain real-world industrial applications, yet its broader deployment remains limited by inherent challenges such as sample inefficiency and unstable learning dynamics. This study investigates the utilization of Genetic Algorithms (GAs) as a mechanism for improving RL performance in an industrially inspired sorting environment. We propose a novel approach in which GA-generated expert demonstrations are used to enhance policy learning. These demonstrations are incorporated into a Deep Q-Network (DQN) replay buffer for experience-based learning and utilized as warm-start trajectories for Proximal Policy Optimization (PPO) agents to accelerate training convergence. Our experiments compare standard RL training with rule-based heuristics, brute-force optimization, and demonstration data, revealing that GA-derived demonstrations significantly improve RL performance. Notably, PPO agents initialized with GA-generated data achieved superior cumulative rewards, highlighting the potential of hybrid learning paradigms, where heuristic search methods complement data-driven RL. The utilized framework is publicly available and enables further research into adaptive RL strategies for real-world applications.
comment: This manuscript corresponds to the submitted version to LOD 2025. The final Version of Record will appear in the official conference proceedings
♻ ☆ Unified Triplet-Level Hallucination Evaluation for Large Vision-Language Models
Despite the outstanding performance in vision-language reasoning, Large Vision-Language Models (LVLMs) might generate hallucinated contents that do not exist in the given image. Most existing LVLM hallucination benchmarks are constrained to evaluate the object-related hallucinations. However, the potential hallucination on the relations between two objects, i.e., relation hallucination, still lacks investigation. To remedy that, we design a unified framework to measure the object and relation hallucination in LVLMs simultaneously. The core idea of our framework is to evaluate hallucinations via (object, relation, object) triplets extracted from LVLMs' responses, making it easily generalizable to different vision-language tasks. Based on our framework, we further introduce Tri-HE, a novel Triplet-level Hallucination Evaluation benchmark which can be used to study both object and relation hallucination at the same time. With comprehensive evaluations on Tri-HE, we observe that the relation hallucination issue is even more serious than object hallucination among existing LVLMs, highlighting a previously neglected problem towards reliable LVLMs. Moreover, based on our findings, we design a simple training-free approach that effectively mitigates hallucinations for LVLMs. Our dataset and code for the reproduction of our experiments are available publicly at https://github.com/wujunjie1998/Tri-HE.
comment: Accepted by TMLR 2025. Project Page: https://kaichen1998.github.io/projects/tri-he/
♻ ☆ 15,500 Seconds: Lean UAV Classification Leveraging PEFT and Pre-Trained Networks
Unmanned Aerial Vehicles (UAVs) pose an escalating security concerns as the market for consumer and military UAVs grows. This paper address the critical data scarcity challenges in deep UAV audio classification. We build upon our previous work expanding novel approaches such as: parameter efficient fine-tuning, data augmentation, and pre-trained networks. We achieve performance upwards of 95\% validation accuracy with EfficientNet-B0.
♻ ☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advancements in image segmentation play an integral role within the broad scope of Deep Learning-based Computer Vision. Furthermore, their widespread applicability in critical real-world tasks has resulted in challenges related to the reliability of such algorithms. Hence, uncertainty quantification has been extensively studied within this context, enabling the expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision-making. Due to the rapid adoption of Convolutional Neural Network (CNN)-based segmentation models in high-stake applications, a substantial body of research has been published on this very topic, causing its swift expansion into a distinct field. This work provides a comprehensive overview of probabilistic segmentation, by discussing fundamental concepts of uncertainty quantification, governing advancements in the field as well as the application to various tasks. Moreover, literature on both types of uncertainties trace back to four key applications: (1) to quantify statistical inconsistencies in the annotation process due ambiguous images, (2) correlating prediction error with uncertainty, (3) expanding the model hypothesis space for better generalization, and (4) Active Learning. An extensive discussion follows that includes an overview of utilized datasets for each of the applications and evaluation of the available methods. We also highlight challenges related to architectures, uncertainty quantification methods, standardization and benchmarking, and finally end with recommendations for future work such as methods based on single forward passes and models that appropriately leverage volumetric data.
comment: 31 pages of content, revised
♻ ☆ Enhancing Expressivity of Quantum Neural Networks Based on the SWAP test
Parameterized quantum circuits represent promising architectures for machine learning applications, yet many lack clear connections to classical models, potentially limiting their ability to translate the wide success of classical neural networks to the quantum realm. We examine a specific type of quantum neural network (QNN) built exclusively from SWAP test circuits, and discuss its mathematical equivalence to a classical two-layer feedforward network with quadratic activation functions under amplitude encoding. Our analysis across classical real-world and synthetic datasets reveals that while this architecture can successfully learn many practical tasks, it exhibits fundamental expressivity limitations due to violating the universal approximation theorem, particularly failing on harder problems like the parity check function. To address this limitation, we introduce a circuit modification using generalized SWAP test circuits that effectively implements classical neural networks with product layers. This enhancement enables successful learning of parity check functions in arbitrary dimensions which we analytically argue to be impossible for the original architecture beyond two dimensions regardless of network size. Our results establish a framework for enhancing QNN expressivity through classical task analysis and demonstrate that our SWAP test-based architecture offers broad representational capacity, suggesting potential promise also for quantum learning tasks.
comment: 15 pages, 7 figures, added code availability statement
♻ ☆ Grower-in-the-Loop Interactive Reinforcement Learning for Greenhouse Climate Control
Climate control is crucial for greenhouse production as it directly affects crop growth and resource use. Reinforcement learning (RL) has received increasing attention in this field, but still faces challenges, including limited training efficiency and high reliance on initial learning conditions. Interactive RL, which combines human (grower) input with the RL agent's learning, offers a potential solution to overcome these challenges. However, interactive RL has not yet been applied to greenhouse climate control and may face challenges related to imperfect inputs. Therefore, this paper aims to explore the possibility and performance of applying interactive RL with imperfect inputs into greenhouse climate control, by: (1) developing three representative interactive RL algorithms tailored for greenhouse climate control (reward shaping, policy shaping and control sharing); (2) analyzing how input characteristics are often contradicting, and how the trade-offs between them make grower's inputs difficult to perfect; (3) proposing a neural network-based approach to enhance the robustness of interactive RL agents under limited input availability; (4) conducting a comprehensive evaluation of the three interactive RL algorithms with imperfect inputs in a simulated greenhouse environment. The demonstration shows that interactive RL incorporating imperfect grower inputs has the potential to improve the performance of the RL agent. RL algorithms that influence action selection, such as policy shaping and control sharing, perform better when dealing with imperfect inputs, achieving 8.4% and 6.8% improvement in profit, respectively. In contrast, reward shaping, an algorithm that manipulates the reward function, is sensitive to imperfect inputs and leads to a 9.4% decrease in profit. This highlights the importance of selecting an appropriate mechanism when incorporating imperfect inputs.
♻ ☆ FAMES: Fast Approximate Multiplier Substitution for Mixed-Precision Quantized DNNs--Down to 2 Bits!
A widely-used technique in designing energy-efficient deep neural network (DNN) accelerators is quantization. Recent progress in this direction has reduced the bitwidths used in DNN down to 2. Meanwhile, many prior works apply approximate multipliers (AppMuls) in designing DNN accelerators to lower their energy consumption. Unfortunately, these works still assume a bitwidth much larger than 2, which falls far behind the state-of-the-art in quantization area and even challenges the meaningfulness of applying AppMuls in DNN accelerators, since a high-bitwidth AppMul consumes much more energy than a low-bitwidth exact multiplier! Thus, an important problem to study is: Can approximate multipliers be effectively applied to quantized DNN models with very low bitwidths? In this work, we give an affirmative answer to this question and present a systematic solution that achieves the answer: FAMES, a fast approximate multiplier substitution method for mixed-precision DNNs. Our experiments demonstrate an average 28.67% energy reduction on state-of-the-art mixed-precision quantized models with bitwidths as low as 2 bits and accuracy losses kept under 1%. Additionally, our approach is up to 300x faster than previous genetic algorithm-based methods.
♻ ☆ EP-Diffuser: An Efficient Diffusion Model for Traffic Scene Generation and Prediction via Polynomial Representations
As the prediction horizon increases, predicting the future evolution of traffic scenes becomes increasingly difficult due to the multi-modal nature of agent motion. Most state-of-the-art (SotA) prediction models primarily focus on forecasting the most likely future. However, for the safe operation of autonomous vehicles, it is equally important to cover the distribution for plausible motion alternatives. To address this, we introduce EP-Diffuser, a novel parameter-efficient diffusion-based generative model designed to capture the distribution of possible traffic scene evolutions. Conditioned on road layout and agent history, our model acts as a predictor and generates diverse, plausible scene continuations. We benchmark EP-Diffuser against two SotA models in terms of accuracy and plausibility of predictions on the Argoverse 2 dataset. Despite its significantly smaller model size, our approach achieves both highly accurate and plausible traffic scene predictions. We further evaluate model generalization ability in an out-of-distribution (OoD) test setting using Waymo Open dataset and show superior robustness of our approach.
♻ ☆ Enhancing Robustness to Missing Modalities through Clustered Federated Learning
In the era of big data, data mining has become indispensable for uncovering hidden patterns and insights from vast and complex datasets. The integration of multimodal data sources further enhances its potential. Multimodal Federated Learning (MFL) is a distributed approach that enhances the efficiency and quality of multimodal learning, ensuring collaborative work and privacy protection. However, missing modalities pose a significant challenge in MFL, often due to data quality issues or privacy policies across the clients. In this work, we present MMiC, a framework for Mitigating Modality incompleteness in MFL within the Clusters. MMiC replaces partial parameters within client models inside clusters to mitigate the impact of missing modalities. Furthermore, it leverages the Banzhaf Power Index to optimize client selection under these conditions. Finally, MMiC employs an innovative approach to dynamically control global aggregation by utilizing Markovitz Portfolio Optimization. Extensive experiments demonstrate that MMiC consistently outperforms existing federated learning architectures in both global and personalized performance on multimodal datasets with missing modalities, confirming the effectiveness of our proposed solution.
comment: 15 pages, 3 figures
♻ ☆ Co-Optimizing Reconfigurable Environments and Policies for Decentralized Multi-Agent Navigation
This work views the multi-agent system and its surrounding environment as a co-evolving system, where the behavior of one affects the other. The goal is to take both agent actions and environment configurations as decision variables, and optimize these two components in a coordinated manner to improve some measure of interest. Towards this end, we consider the problem of decentralized multi-agent navigation in a cluttered environment, where we assume that the layout of the environment is reconfigurable. By introducing two sub-objectives -- multi-agent navigation and environment optimization -- we propose an agent-environment co-optimization problem and develop a coordinated algorithm that alternates between these sub-objectives to search for an optimal synthesis of agent actions and environment configurations; ultimately, improving the navigation performance. Due to the challenge of explicitly modeling the relation between the agents, the environment and their performance therein, we leverage policy gradient to formulate a model-free learning mechanism within the coordinated framework. A formal convergence analysis shows that our coordinated algorithm tracks the local minimum solution of an associated time-varying non-convex optimization problem. Experiments corroborate theoretical findings and show the benefits of co-optimization. Interestingly, the results also indicate that optimized environments can offer structural guidance to de-conflict agents in motion.
♻ ☆ Contrastive Learning and Adversarial Disentanglement for Privacy-Aware Task-Oriented Semantic Communication
Task-oriented semantic communication systems have emerged as a promising approach to achieving efficient and intelligent data transmission in next-generation networks, where only information relevant to a specific task is communicated. This is particularly important in 6G-enabled Internet of Things (6G-IoT) scenarios, where bandwidth constraints, latency requirements, and data privacy are critical. However, existing methods struggle to fully disentangle task-relevant and task-irrelevant information, leading to privacy concerns and suboptimal performance. To address this, we propose an information-bottleneck inspired method, named CLAD (contrastive learning and adversarial disentanglement). CLAD utilizes contrastive learning to effectively capture task-relevant features while employing adversarial disentanglement to discard task-irrelevant information. Additionally, due to the absence of reliable and reproducible methods to quantify the minimality of encoded feature vectors, we introduce the Information Retention Index (IRI), a comparative metric used as a proxy for the mutual information between the encoded features and the input. The IRI reflects how minimal and informative the representation is, making it highly relevant for privacy-preserving and bandwidth-efficient 6G-IoT systems. Extensive experiments demonstrate that CLAD outperforms state-of-the-art baselines in terms of semantic extraction, task performance, privacy preservation, and IRI, making it a promising building block for responsible, efficient and trustworthy 6G-IoT services.
♻ ☆ NegMerge: Sign-Consensual Weight Merging for Machine Unlearning ICML 2025
Machine unlearning aims to selectively remove specific knowledge from a trained model. Existing approaches, such as Task Arithmetic, fine-tune the model on the forget set to create a task vector (i.e., a direction in weight space) for subtraction from the original model's weight. However, their effectiveness is highly sensitive to hyperparameter selection, requiring extensive validation to identify the optimal vector from many fine-tuned candidates. In this paper, we propose a novel method that utilizes all fine-tuned models trained with varying hyperparameters instead of a single selection. Specifically, we aggregate the computed task vectors by retaining only the elements with consistent shared signs. The merged task vector is then negated to induce unlearning on the original model. Evaluations on zero-shot and standard image recognition tasks across twelve datasets and four backbone architectures show that our approach outperforms state-of-the-art methods while requiring similar or fewer computational resources. Code is available at https://github.com/naver-ai/negmerge.
comment: Accepted to ICML 2025
♻ ☆ Sublinear Regret for a Class of Continuous-Time Linear-Quadratic Reinforcement Learning Problems
We study reinforcement learning (RL) for a class of continuous-time linear-quadratic (LQ) control problems for diffusions, where states are scalar-valued and running control rewards are absent but volatilities of the state processes depend on both state and control variables. We apply a model-free approach that relies neither on knowledge of model parameters nor on their estimations, and devise an RL algorithm to learn the optimal policy parameter directly. Our main contributions include the introduction of an exploration schedule and a regret analysis of the proposed algorithm. We provide the convergence rate of the policy parameter to the optimal one, and prove that the algorithm achieves a regret bound of $O(N^{\frac{3}{4}})$ up to a logarithmic factor, where $N$ is the number of learning episodes. We conduct a simulation study to validate the theoretical results and demonstrate the effectiveness and reliability of the proposed algorithm. We also perform numerical comparisons between our method and those of the recent model-based stochastic LQ RL studies adapted to the state- and control-dependent volatility setting, demonstrating a better performance of the former in terms of regret bounds.
comment: 42 pages, 4 figures. Accepted for publication in SIAM Journal on Control and Optimization (2025)
♻ ☆ On the Fundamental Impossibility of Hallucination Control in Large Language Models
We prove that perfect hallucination control in large language models is mathematically impossible. No LLM inference mechanism can simultaneously achieve truthful response generation, semantic information conservation, relevant knowledge revelation, and knowledge-constrained optimality. This impossibility is fundamental, arising from the mathematical structure of information aggregation itself rather than engineering limitations. The proof spans three mathematical frameworks: auction theory, proper scoring theory for probabilistic predictions, and log-sum-exp analysis for transformer architectures. In each setting, we demonstrate that information aggregation creates unavoidable violations of conservation principles. The Jensen gap in transformer probability aggregation provides a direct measure of this impossibility. These results reframe hallucination from an engineering bug to an inevitable mathematical feature of distributed intelligence. There are fundamental trade-offs between truthfulness, knowledge utilization, and response completeness, providing principled foundations for managing rather than eliminating hallucination. This work reveals deep connections between neural network inference, philosophy of knowledge and reasoning, and classical results in game theory and information theory, opening new research directions for developing beneficial AI systems within mathematical constraints.
comment: major review, transformer inference application, examples added, corrections
♻ ☆ Initialization Method for Factorization Machine Based on Low-Rank Approximation for Constructing a Corrected Approximate Ising Model
This paper presents an initialization method that can approximate a given approximate Ising model with a high degree of accuracy using a factorization machine (FM), a machine learning model. The construction of an Ising models using an FM is applied to black-box combinatorial optimization problems using factorization machine with quantum annealing (FMQA). It is anticipated that the optimization performance of FMQA will be enhanced through an implementation of the warm-start method. Nevertheless, the optimal initialization method for leveraging the warm-start approach in FMQA remains undetermined. Consequently, the present study compares initialization methods based on random initialization and low-rank approximation, and then identifies a suitable one for use with warm-start in FMQA through numerical experiments. Furthermore, the properties of the initialization method by the low-rank approximation for the FM are analyzed using random matrix theory, demonstrating that the approximation accuracy of the proposed method is not significantly influenced by the specific Ising model under consideration. The findings of this study will facilitate advancements of research in the field of black-box combinatorial optimization through the use of Ising machines.
comment: 31 pages, 5 figures
♻ ☆ Truthful Elicitation of Imprecise Forecasts
The quality of probabilistic forecasts is crucial for decision-making under uncertainty. While proper scoring rules incentivize truthful reporting of precise forecasts, they fall short when forecasters face epistemic uncertainty about their beliefs, limiting their use in safety-critical domains where decision-makers (DMs) prioritize proper uncertainty management. To address this, we propose a framework for scoring imprecise forecasts -- forecasts given as a set of beliefs. Despite existing impossibility results for deterministic scoring rules, we enable truthful elicitation by drawing connection to social choice theory and introducing a two-way communication framework where DMs first share their aggregation rules (e.g., averaging or min-max) used in downstream decisions for resolving forecast ambiguity. This, in turn, helps forecasters resolve indecision during elicitation. We further show that truthful elicitation of imprecise forecasts is achievable using proper scoring rules randomized over the aggregation procedure. Our approach allows DM to elicit and integrate the forecaster's epistemic uncertainty into their decision-making process, thus improving credibility.
comment: Accepted at UAI 2025 for Oral Presentation (fixed formatting)
♻ ☆ Non-collective Calibrating Strategy for Time Series Forecasting IJCAI 2025
Deep learning-based approaches have demonstrated significant advancements in time series forecasting. Despite these ongoing developments, the complex dynamics of time series make it challenging to establish the rule of thumb for designing the golden model architecture. In this study, we argue that refining existing advanced models through a universal calibrating strategy can deliver substantial benefits with minimal resource costs, as opposed to elaborating and training a new model from scratch. We first identify a multi-target learning conflict in the calibrating process, which arises when optimizing variables across time steps, leading to the underutilization of the model's learning capabilities. To address this issue, we propose an innovative calibrating strategy called Socket+Plug (SoP). This approach retains an exclusive optimizer and early-stopping monitor for each predicted target within each Plug while keeping the fully trained Socket backbone frozen. The model-agnostic nature of SoP allows it to directly calibrate the performance of any trained deep forecasting models, regardless of their specific architectures. Extensive experiments on various time series benchmarks and a spatio-temporal meteorological ERA5 dataset demonstrate the effectiveness of SoP, achieving up to a 22% improvement even when employing a simple MLP as the Plug (highlighted in Figure 1). Code is available at https://github.com/hanyuki23/SoP.
comment: Accepted by IJCAI 2025
♻ ☆ Adapting Rule Representation With Four-Parameter Beta Distribution for Learning Classifier Systems
Rule representations significantly influence the search capabilities and decision boundaries within the search space of Learning Classifier Systems (LCSs), a family of rule-based machine learning systems that evolve interpretable models through evolutionary processes. However, it is very difficult to choose an appropriate rule representation for each problem. Additionally, some problems benefit from using different representations for different subspaces within the input space. Thus, an adaptive mechanism is needed to choose an appropriate rule representation for each rule in LCSs. This article introduces a flexible rule representation using a four-parameter beta distribution and integrates it into a fuzzy-style LCS. The four-parameter beta distribution can form various function shapes, and this flexibility enables our LCS to automatically select appropriate representations for different subspaces. Our rule representation can represent crisp/fuzzy decision boundaries in various boundary shapes, such as rectangles and bells, by controlling four parameters, compared to the standard representations such as trapezoidal ones. Leveraging this flexibility, our LCS is designed to adapt the appropriate rule representation for each subspace. Moreover, our LCS incorporates a generalization bias favoring crisp rules where feasible, enhancing model interpretability without compromising accuracy. Experimental results on real-world classification tasks show that our LCS achieves significantly superior test accuracy and produces more compact rule sets. Our implementation is available at https://github.com/YNU-NakataLab/Beta4-UCS. An extended abstract related to this work is available at https://doi.org/10.36227/techrxiv.174900805.59801248/v1.
♻ ☆ Query Complexity of Classical and Quantum Channel Discrimination
Quantum channel discrimination has been studied from an information-theoretic perspective, wherein one is interested in the optimal decay rate of error probabilities as a function of the number of unknown channel accesses. In this paper, we study the query complexity of quantum channel discrimination, wherein the goal is to determine the minimum number of channel uses needed to reach a desired error probability. To this end, we show that the query complexity of binary channel discrimination depends logarithmically on the inverse error probability and inversely on the negative logarithm of the (geometric and Holevo) channel fidelity. As a special case of these findings, we precisely characterize the query complexity of discriminating two classical channels and two classical-quantum channels. Furthermore, by obtaining a tighter characterization of the sample complexity of quantum hypothesis testing, including prior probabilities, we provide a more precise characterization of query complexity when the error probability does not exceed a fixed threshold. We also provide lower and upper bounds on the query complexity of binary asymmetric channel discrimination and multiple quantum channel discrimination. For the former, the query complexity depends on the geometric R\'enyi and Petz R\'enyi channel divergences, while for the latter, it depends on the negative logarithm of the (geometric and Uhlmann) channel fidelity. For multiple channel discrimination, the upper bound scales as the logarithm of the number of channels.
comment: v2: 33 pages, Added tighter and precise characterization of sample and query complexity in Theorem 11 (for states), Theorem 12 (for general channels), and Corollaries 10 and 14 for classical-quantum channels; v1:22 pages; see also the independent work "Sampling complexity of quantum channel discrimination" DOI 10.1088/1572-9494/adcb9e
♻ ☆ Upper and lower bounds for the Lipschitz constant of random neural networks
Empirical studies have widely demonstrated that neural networks are highly sensitive to small, adversarial perturbations of the input. The worst-case robustness against these so-called adversarial examples can be quantified by the Lipschitz constant of the neural network. In this paper, we study upper and lower bounds for the Lipschitz constant of random ReLU neural networks. Specifically, we assume that the weights and biases follow a generalization of the He initialization, where general symmetric distributions for the biases are permitted. For deep networks of fixed depth and sufficiently large width, our established upper bound is larger than the lower bound by a factor that is logarithmic in the width. In contrast, for shallow neural networks we characterize the Lipschitz constant up to an absolute numerical constant that is independent of all parameters.
♻ ☆ Efficiently Vectorized MCMC on Modern Accelerators
With the advent of automatic vectorization tools (e.g., JAX's $\texttt{vmap}$), writing multi-chain MCMC algorithms is often now as simple as invoking those tools on single-chain code. Whilst convenient, for various MCMC algorithms this results in a synchronization problem -- loosely speaking, at each iteration all chains running in parallel must wait until the last chain has finished drawing its sample. In this work, we show how to design single-chain MCMC algorithms in a way that avoids synchronization overheads when vectorizing with tools like $\texttt{vmap}$ by using the framework of finite state machines (FSMs). Using a simplified model, we derive an exact theoretical form of the obtainable speed-ups using our approach, and use it to make principled recommendations for optimal algorithm design. We implement several popular MCMC algorithms as FSMs, including Elliptical Slice Sampling, HMC-NUTS, and Delayed Rejection, demonstrating speed-ups of up to an order of magnitude in experiments.
♻ ☆ Is merging worth it? Securely evaluating the information gain for causal dataset acquisition AISTATS 2025
Merging datasets across institutions is a lengthy and costly procedure, especially when it involves private information. Data hosts may therefore want to prospectively gauge which datasets are most beneficial to merge with, without revealing sensitive information. For causal estimation this is particularly challenging as the value of a merge depends not only on reduction in epistemic uncertainty but also on improvement in overlap. To address this challenge, we introduce the first cryptographically secure information-theoretic approach for quantifying the value of a merge in the context of heterogeneous treatment effect estimation. We do this by evaluating the Expected Information Gain (EIG) using multi-party computation to ensure that no raw data is revealed. We further demonstrate that our approach can be combined with differential privacy (DP) to meet arbitrary privacy requirements whilst preserving more accurate computation compared to DP alone. To the best of our knowledge, this work presents the first privacy-preserving method for dataset acquisition tailored to causal estimation. We demonstrate the effectiveness and reliability of our method on a range of simulated and realistic benchmarks. Code is publicly available: https://github.com/LucileTerminassian/causal_prospective_merge.
comment: Published at AISTATS 2025
♻ ☆ TRACED: Transition-aware Regret Approximation with Co-learnability for Environment Design
Generalizing deep reinforcement learning agents to unseen environments remains a significant challenge. One promising solution is Unsupervised Environment Design (UED), a co-evolutionary framework in which a teacher adaptively generates tasks with high learning potential, while a student learns a robust policy from this evolving curriculum. Existing UED methods typically measure learning potential via regret, the gap between optimal and current performance, approximated solely by value-function loss. Building on these approaches, we introduce the transition prediction error as an additional term in our regret approximation. To capture how training on one task affects performance on others, we further propose a lightweight metric called co-learnability. By combining these two measures, we present Transition-aware Regret Approximation with Co-learnability for Environment Design (TRACED). Empirical evaluations show that TRACED yields curricula that improve zero-shot generalization across multiple benchmarks while requiring up to 2x fewer environment interactions than strong baselines. Ablation studies confirm that the transition prediction error drives rapid complexity ramp-up and that co-learnability delivers additional gains when paired with the transition prediction error. These results demonstrate how refined regret approximation and explicit modeling of task relationships can be leveraged for sample-efficient curriculum design in UED.
♻ ☆ Time Series Representations for Classification Lie Hidden in Pretrained Vision Transformers
Time series classification is a fundamental task in healthcare and industry, yet the development of time series foundation models (TSFMs) remains limited by the scarcity of publicly available time series datasets. In this work, we propose Time Vision Transformer (TiViT), a framework that converts time series into images to leverage the representational power of frozen Vision Transformers (ViTs) pretrained on large-scale image datasets. First, we theoretically motivate our approach by analyzing the 2D patching of ViTs for time series, showing that it can increase the number of label-relevant tokens and reduce the sample complexity. Second, we empirically demonstrate that TiViT achieves state-of-the-art performance on standard time series classification benchmarks by utilizing the hidden representations of large OpenCLIP models. We explore the structure of TiViT representations and find that intermediate layers with high intrinsic dimension are the most effective for time series classification. Finally, we assess the alignment between TiViT and TSFM representation spaces and identify a strong complementarity, with further performance gains achieved by combining their features. Our findings reveal a new direction for reusing vision representations in a non-visual domain. Code is available at https://github.com/ExplainableML/TiViT.
comment: Preprint
♻ ☆ Unsupervised Panoptic Interpretation of Latent Spaces in GANs Using Space-Filling Vector Quantization
Generative adversarial networks (GANs) learn a latent space whose samples can be mapped to real-world images. Such latent spaces are difficult to interpret. Some earlier supervised methods aim to create an interpretable latent space or discover interpretable directions, which requires exploiting data labels or annotated synthesized samples for training. However, we propose using a modification of vector quantization called space-filling vector quantization (SFVQ), which quantizes the data on a piece-wise linear curve. SFVQ can capture the underlying morphological structure of the latent space, making it interpretable. We apply this technique to model the latent space of pre-trained StyleGAN2 and BigGAN networks on various datasets. Our experiments show that the SFVQ curve yields a general interpretable model of the latent space such that it determines which parts of the latent space correspond to specific generative factors. Furthermore, we demonstrate that each line of the SFVQ curve can potentially refer to an interpretable direction for applying intelligible image transformations. We also demonstrate that the points located on an SFVQ line can be used for controllable data augmentation.
♻ ☆ Who Should I Listen To? Adaptive Collaboration in Personalized Federated Learning
Data heterogeneity is a central challenge in federated learning, and personalized federated learning (PFL) aims to address it by tailoring models to each client's distribution. Yet many PFL methods fail to outperform local or centralized baselines, suggesting a mismatch between the collaboration they enforce and the structure of the data. We propose an approach based on adaptive collaboration, where clients decide adaptively not only how much to rely on others, but also whom to trust at the level of individual examples. We instantiate this principle in FEDMOSAIC, a federated co-training method in which clients exchange predictions over a shared unlabeled dataset. This enables fine-grained trust decisions that are difficult to achieve with parameter sharing alone. Each client adjusts its loss weighting based on the agreement between private and public data, and contributes to global pseudo-labels in proportion to its estimated per-example confidence. Empirically, FEDMOSAIC improves upon state-of-the-art PFL methods across diverse non-IID settings, and we provide convergence guarantees under standard assumptions. Our results demonstrate the potential of data-aware collaboration for robust and effective personalization.
♻ ☆ Learned-Database Systems Security
A learned database system uses machine learning (ML) internally to improve performance. We can expect such systems to be vulnerable to some adversarial-ML attacks. Often, the learned component is shared between mutually-distrusting users or processes, much like microarchitectural resources such as caches, potentially giving rise to highly-realistic attacker models. However, compared to attacks on other ML-based systems, attackers face a level of indirection as they cannot interact directly with the learned model. Additionally, the difference between the attack surface of learned and non-learned versions of the same system is often subtle. These factors obfuscate the de-facto risks that the incorporation of ML carries. We analyze the root causes of potentially-increased attack surface in learned database systems and develop a framework for identifying vulnerabilities that stem from the use of ML. We apply our framework to a broad set of learned components currently being explored in the database community. To empirically validate the vulnerabilities surfaced by our framework, we choose 3 of them and implement and evaluate exploits against these. We show that the use of ML cause leakage of past queries in a database, enable a poisoning attack that causes exponential memory blowup in an index structure and crashes it in seconds, and enable index users to snoop on each others' key distributions by timing queries over their own keys. We find that adversarial ML is an universal threat against learned components in database systems, point to open research gaps in our understanding of learned-systems security, and conclude by discussing mitigations, while noting that data leakage is inherent in systems whose learned component is shared between multiple parties.
comment: Accepted at TMLR
♻ ☆ ZeCO: Zero Communication Overhead Sequence Parallelism for Linear Attention
Linear attention mechanisms deliver significant advantages for Large Language Models (LLMs) by providing linear computational complexity, enabling efficient processing of ultra-long sequences (e.g., 1M context). However, existing Sequence Parallelism (SP) methods, essential for distributing these workloads across devices, become the primary bottleneck due to substantial communication overhead. In this paper, we introduce ZeCO (Zero Communication Overhead) sequence parallelism for linear attention models, a new SP method designed to overcome these limitations and achieve end-to-end near-linear scalability for long sequence training. For example, training a model with a 1M sequence length across 64 devices using ZeCO takes roughly the same time as training with an 16k sequence on a single device. At the heart of ZeCO lies All-Scan, a new collective communication primitive. All-Scan provides each SP rank with precisely the initial operator state it requires while maintaining a minimal communication footprint, effectively eliminating communication overhead. Theoretically, we prove the optimaity of ZeCO, showing that it introduces only negligible time and space overhead. Empirically, we compare the communication costs of different sequence parallelism strategies and demonstrate that All-Scan achieves the fastest communication in SP scenarios. Specifically, on 256 GPUs with an 8M sequence length, ZeCO achieves a 60\% speedup compared to the current state-of-the-art (SOTA) SP method. We believe ZeCO establishes a clear path toward efficiently training next-generation LLMs on previously intractable sequence lengths.
♻ ☆ Scaling Up Liquid-Resistance Liquid-Capacitance Networks for Efficient Sequence Modeling
We present LrcSSM, a $\textit{nonlinear}$ recurrent model that processes long sequences as fast as today's linear state-space layers. By forcing the state-transition matrix to be diagonal and learned at every step, the full sequence can be solved in parallel with a single prefix-scan, giving $\mathcal{O}(TD)$ time and memory and only $\mathcal{O}(\log T)$ sequential depth, for input-sequence length $T$ and a state dimension $D$. Moreover, LrcSSM offers a formal gradient-stability guarantee that other input-varying systems such as Liquid-S4 and Mamba do not provide. Lastly, for network depth $L$, as the forward and backward passes cost $\Theta(T\,D\,L)$ FLOPs, with its low sequential depth and parameter count $\Theta(D\,L)$, the model follows the compute-optimal scaling law regime ($\beta \approx 0.42$) recently observed for Mamba, outperforming quadratic-attention Transformers at equal compute while avoiding the memory overhead of FFT-based long convolutions. We show that on a series of long-range forecasting tasks, LrcSSM outperforms LRU, S5 and Mamba.
♻ ☆ SimBank: from Simulation to Solution in Prescriptive Process Monitoring
Prescriptive Process Monitoring (PresPM) is an emerging area within Process Mining, focused on optimizing processes through real-time interventions for effective decision-making. PresPM holds significant promise for organizations seeking enhanced operational performance. However, the current literature faces two key limitations: a lack of extensive comparisons between techniques and insufficient evaluation approaches. To address these gaps, we introduce SimBank: a simulator designed for accurate benchmarking of PresPM methods. Modeled after a bank's loan application process, SimBank enables extensive comparisons of both online and offline PresPM methods. It incorporates a variety of intervention optimization problems with differing levels of complexity and supports experiments on key causal machine learning challenges, such as assessing a method's robustness to confounding in data. SimBank additionally offers a comprehensive evaluation capability: for each test case, it can generate the true outcome under each intervention action, which is not possible using recorded datasets. The simulator incorporates parallel activities and loops, drawing from common logs to generate cases that closely resemble real-life process instances. Our proof of concept demonstrates SimBank's benchmarking capabilities through experiments with various PresPM methods across different interventions, highlighting its value as a publicly available simulator for advancing research and practice in PresPM.
♻ ☆ optimizn: a Python Library for Developing Customized Optimization Algorithms
Combinatorial optimization problems are prevalent across a wide variety of domains. These problems are often nuanced, their optimal solutions might not be efficiently obtainable, and they may require lots of time and compute resources to solve (they are NP-hard). It follows that the best course of action for solving these problems is to use general optimization algorithm paradigms to quickly and easily develop algorithms that are customized to these problems and can produce good solutions in a reasonable amount of time. In this paper, we present optimizn, a Python library for developing customized optimization algorithms under general optimization algorithm paradigms (simulated annealing, branch and bound). Additionally, optimizn offers continuous training, with which users can run their algorithms on a regular cadence, retain the salient aspects of previous runs, and use them in subsequent runs to potentially produce solutions that get closer and closer to optimality. An earlier version of this paper was peer reviewed and published internally at Microsoft.
♻ ☆ Diffusion-based Iterative Counterfactual Explanations for Fetal Ultrasound Image Quality Assessment
Obstetric ultrasound image quality is crucial for accurate diagnosis and monitoring of fetal health. However, acquiring high-quality standard planes is difficult, influenced by the sonographer's expertise and factors like the maternal BMI or fetus dynamics. In this work, we explore diffusion-based counterfactual explainable AI to generate realistic, high-quality standard planes from low-quality non-standard ones. Through quantitative and qualitative evaluation, we demonstrate the effectiveness of our approach in generating plausible counterfactuals of increased quality. This shows future promise for enhancing training of clinicians by providing visual feedback and potentially improving standard plane quality and acquisition for downstream diagnosis and monitoring.
♻ ☆ On the Trade-off between Flatness and Optimization in Distributed Learning
This paper proposes a theoretical framework to evaluate and compare the performance of stochastic gradient algorithms for distributed learning in relation to their behavior around local minima in nonconvex environments. Previous works have noticed that convergence toward flat local minima tend to enhance the generalization ability of learning algorithms. This work discovers three interesting results. First, it shows that decentralized learning strategies are able to escape faster away from local minima and favor convergence toward flatter minima relative to the centralized solution. Second, in decentralized methods, the consensus strategy has a worse excess-risk performance than diffusion, giving it a better chance of escaping from local minima and favoring flatter minima. Third, and importantly, the ultimate classification accuracy is not solely dependent on the flatness of the local minimum but also on how well a learning algorithm can approach that minimum. In other words, the classification accuracy is a function of both flatness and optimization performance. In this regard, since diffusion has a lower excess-risk than consensus, when both algorithms are trained starting from random initial points, diffusion enhances the classification accuracy. The paper examines the interplay between the two measures of flatness and optimization error closely. One important conclusion is that decentralized strategies deliver in general enhanced classification accuracy because they strike a more favorable balance between flatness and optimization performance compared to the centralized solution.
♻ ☆ Adaptive NAD: Online and Self-adaptive Unsupervised Network Anomaly Detector
The widespread usage of the Internet of Things (IoT) has raised the risks of cyber threats, thus developing Anomaly Detection Systems (ADSs) that can adapt to evolving or new attacks is critical. Previous studies primarily focused on offline unsupervised learning methods to safeguard ADSs, which is not applicable in practical real-world applications. Besides, most of them strongly rely on assumptions of known legitimates and fail to satisfy the interpretable requirements in security applications, creating barriers to the adoption in practice. In this paper, we design Adaptive NAD, a general framework to improve and interpret online unsupervised anomaly detection in security domains. An interpretable two-layer anomaly detection strategy is proposed to generate reliable high-confidence pseudo-labels. Then, an online learning scheme is introduced to update Adaptive NAD by a novel threshold calculation technique to adapt to new threats. Experimental results demonstrate that Adaptive NAD achieves more than 5.4%, 23.0%, and 3.2% improvements in SPAUC compared with state-of-the-art solutions on the CIC-Darknet2020, CIC-DoHBrw-2020, and Edge-IIoTset datasets, respectively. The code is released at https://github.com/MyLearnCodeSpace/Adaptive-NAD.
♻ ☆ Efficient Online Reinforcement Learning Fine-Tuning Need Not Retain Offline Data
The modern paradigm in machine learning involves pre-training on diverse data, followed by task-specific fine-tuning. In reinforcement learning (RL), this translates to learning via offline RL on a diverse historical dataset, followed by rapid online RL fine-tuning using interaction data. Most RL fine-tuning methods require continued training on offline data for stability and performance. However, this is undesirable because training on diverse offline data is slow and expensive for large datasets, and in principle, also limit the performance improvement possible because of constraints or pessimism on offline data. In this paper, we show that retaining offline data is unnecessary as long as we use a properly-designed online RL approach for fine-tuning offline RL initializations. To build this approach, we start by analyzing the role of retaining offline data in online fine-tuning. We find that continued training on offline data is mostly useful for preventing a sudden divergence in the value function at the onset of fine-tuning, caused by a distribution mismatch between the offline data and online rollouts. This divergence typically results in unlearning and forgetting the benefits of offline pre-training. Our approach, Warm-start RL (WSRL), mitigates the catastrophic forgetting of pre-trained initializations using a very simple idea. WSRL employs a warmup phase that seeds the online RL run with a very small number of rollouts from the pre-trained policy to do fast online RL. The data collected during warmup helps ``recalibrate'' the offline Q-function to the online distribution, allowing us to completely discard offline data without destabilizing the online RL fine-tuning. We show that WSRL is able to fine-tune without retaining any offline data, and is able to learn faster and attains higher performance than existing algorithms irrespective of whether they retain offline data or not.
♻ ☆ FE-LWS: Refined Image-Text Representations via Decoder Stacking and Fused Encodings for Remote Sensing Image Captioning
Remote sensing image captioning aims to generate descriptive text from remote sensing images, typically employing an encoder-decoder framework. In this setup, a convolutional neural network (CNN) extracts feature representations from the input image, which then guide the decoder in a sequence-to-sequence caption generation process. Although much research has focused on refining the decoder, the quality of image representations from the encoder remains crucial for accurate captioning. This paper introduces a novel approach that integrates features from two distinct CNN based encoders, capturing complementary information to enhance caption generation. Additionally, we propose a weighted averaging technique to combine the outputs of all GRUs in the stacked decoder. Furthermore, a comparison-based beam search strategy is incorporated to refine caption selection. The results demonstrate that our fusion-based approach, along with the enhanced stacked decoder, significantly outperforms both the transformer-based state-of-the-art model and other LSTM-based baselines.
♻ ☆ Rank-1 Matrix Completion with Gradient Descent and Small Random Initialization NeurIPS 2023
The nonconvex formulation of the matrix completion problem has received significant attention in recent years due to its affordable complexity compared to the convex formulation. Gradient Descent (GD) is a simple yet efficient baseline algorithm for solving nonconvex optimization problems. The success of GD has been witnessed in many different problems in both theory and practice when it is combined with random initialization. However, previous works on matrix completion require either careful initialization or regularizers to prove the convergence of GD. In this paper, we study the rank-1 symmetric matrix completion and prove that GD converges to the ground truth when small random initialization is used. We show that in a logarithmic number of iterations, the trajectory enters the region where local convergence occurs. We provide an upper bound on the initialization size that is sufficient to guarantee the convergence, and show that a larger initialization can be used as more samples are available. We observe that the implicit regularization effect of GD plays a critical role in the analysis, and for the entire trajectory, it prevents each entry from becoming much larger than the others.
comment: NeurIPS 2023
♻ ☆ Efficient Split Federated Learning for Large Language Models over Communication Networks
Fine-tuning pre-trained large language models (LLMs) in a distributed manner poses significant challenges on resource-constrained edge networks. To address this challenge, we propose SflLLM, a novel framework that integrates split federated learning with parameter-efficient fine-tuning techniques. By leveraging model splitting and low-rank adaptation (LoRA), SflLLM reduces the computational burden on edge devices. Furthermore, the introduction of a federated server facilitates parallel training and enhances data privacy. To accommodate heterogeneous communication conditions and diverse computational capabilities of edge devices, as well as the impact of LoRA rank selection on model convergence and training cost, we formulate a joint optimization problem of both communication and computation resource. The formulated problem jointly optimizes subchannel allocation, power control, model splitting point selection, and LoRA rank configuration, aimed at minimizing total training delay. An iterative optimization algorithm is proposed to solve this problem efficiently. Specifically, a greedy heuristic is employed for subchannel allocation, the power control subproblem is reformulated as a convex optimization problem using auxiliary variables, and an exhaustive search is adopted for optimal split position and rank selection. Simulation results demonstrate that the proposed SflLLM framework achieves comparable model accuracy while significantly reducing client-side computational requirements. Furthermore, the proposed resource allocation scheme and adaptive LoRA rank selection strategy notably reduce the training latency compared to conventional approaches.
♻ ☆ A deep solver for backward stochastic Volterra integral equations
We present the first deep-learning solver for backward stochastic Volterra integral equations (BSVIEs) and their fully-coupled forward-backward variants. The method trains a neural network to approximate the two solution fields in a single stage, avoiding the use of nested time-stepping cycles that limit classical algorithms. For the decoupled case we prove a non-asymptotic error bound composed of an a posteriori residual plus the familiar square root dependence on the time step. Numerical experiments confirm this rate and reveal two key properties: \emph{scalability}, in the sense that accuracy remains stable from low dimension up to 500 spatial variables while GPU batching keeps wall-clock time nearly constant; and \emph{generality}, since the same method handles coupled systems whose forward dynamics depend on the backward solution. These results open practical access to a family of high-dimensional, path-dependent problems in stochastic control and quantitative finance.
comment: 25 pages, 10 figures
♻ ☆ DeFusion: An Effective Decoupling Fusion Network for Multi-Modal Pregnancy Prediction
Temporal embryo images and parental fertility table indicators are both valuable for pregnancy prediction in \textbf{in vitro fertilization embryo transfer} (IVF-ET). However, current machine learning models cannot make full use of the complementary information between the two modalities to improve pregnancy prediction performance. In this paper, we propose a Decoupling Fusion Network called DeFusion to effectively integrate the multi-modal information for IVF-ET pregnancy prediction. Specifically, we propose a decoupling fusion module that decouples the information from the different modalities into related and unrelated information, thereby achieving a more delicate fusion. And we fuse temporal embryo images with a spatial-temporal position encoding, and extract fertility table indicator information with a table transformer. To evaluate the effectiveness of our model, we use a new dataset including 4046 cases collected from Southern Medical University. The experiments show that our model outperforms state-of-the-art methods. Meanwhile, the performance on the eye disease prediction dataset reflects the model's good generalization. Our code is available at https://github.com/Ou-Young-1999/DFNet.
♻ ☆ Momentum Does Not Reduce Stochastic Noise in Stochastic Gradient Descent
For nonconvex objective functions, including those found in training deep neural networks, stochastic gradient descent (SGD) with momentum is said to converge faster and have better generalizability than SGD without momentum. In particular, adding momentum is thought to reduce stochastic noise. To verify this, we estimated the magnitude of gradient noise by using convergence analysis and an optimal batch size estimation formula and found that momentum does not reduce gradient noise. We also analyzed the effect of search direction noise, which is stochastic noise defined as the error between the search direction of the optimizer and the steepest descent direction, and found that it inherently smooths the objective function and that momentum does not reduce search direction noise either. Finally, an analysis of the degree of smoothing introduced by search direction noise revealed that adding momentum offers limited advantage to SGD.
comment: We retract this paper due to an irrecoverable and critical error in its content
♻ ☆ LUSD: Localized Update Score Distillation for Text-Guided Image Editing ICCV 2025
While diffusion models show promising results in image editing given a target prompt, achieving both prompt fidelity and background preservation remains difficult. Recent works have introduced score distillation techniques that leverage the rich generative prior of text-to-image diffusion models to solve this task without additional fine-tuning. However, these methods often struggle with tasks such as object insertion. Our investigation of these failures reveals significant variations in gradient magnitude and spatial distribution, making hyperparameter tuning highly input-specific or unsuccessful. To address this, we propose two simple yet effective modifications: attention-based spatial regularization and gradient filtering-normalization, both aimed at reducing these variations during gradient updates. Experimental results show our method outperforms state-of-the-art score distillation techniques in prompt fidelity, improving successful edits while preserving the background. Users also preferred our method over state-of-the-art techniques across three metrics, and by 58-64% overall.
comment: ICCV 2025. Project page: https://github.com/sincostanx/LUSD
♻ ☆ Direct Quantized Training of Language Models with Stochastic Rounding
Although recent quantized Large Language Models (LLMs), such as BitNet, have paved the way for significant reduction in memory usage during deployment with binary or ternary weights, training these models still demands substantial memory footprints. This is partly because high-precision (i.e., unquantized) weights required for straight-through estimation must be maintained throughout the whole training process. To address this, we explore directly updating the quantized low-precision weights without relying on straight-through estimation during backpropagation, aiming to save memory usage during training. Specifically, we employ a stochastic rounding technique to minimize the information loss caused by the use of low-bit weights throughout training. Experimental results on our LLaMA-structured models of various sizes indicate that (1) training with only low-precision weights is feasible even when they are constrained to ternary values; (2) extending the bit width to 8 bits achieves performance on par with BitNet b1.58; (3) our models remain robust to precision scaling and memory reduction, showing minimal performance degradation when moving from FP32 to lower-memory environments (BF16/FP8); and (4) our models also support inference using ternary weights, showcasing their flexibility in deployment.
comment: work in progress, extended experiments to 1B size models
♻ ☆ Can Large Language Models Develop Strategic Reasoning? Post-training Insights from Learning Chess
While reinforcement learning (RL) for large language models (LLMs) has shown promise in mathematical reasoning, strategic reasoning for LLMs using RL remains largely unexplored. We investigate whether LLMs can develop strategic reasoning capabilities through RL in chess. To this end, we leverage a chess-pretrained action-value network to provide dense reward on the LLM's output move quality, which can be seen as a form of knowledge distillation. Our experiments show that our distillation-based dense rewards often outperform sparse binary rewards. However, surprisingly, all models plateau far below expert levels. We provide SFT and RL ablations on chess reasoning training and find evidence that this limitation stems from a deficit in the pretrained models' internal understanding of chess--a deficit which RL alone may not be able to fully overcome.
comment: 27 pages
♻ ☆ Feature Reweighting for EEG-based Motor Imagery Classification
Classification of motor imagery (MI) using non-invasive electroencephalographic (EEG) signals is a critical objective as it is used to predict the intention of limb movements of a subject. In recent research, convolutional neural network (CNN) based methods have been widely utilized for MI-EEG classification. The challenges of training neural networks for MI-EEG signals classification include low signal-to-noise ratio, non-stationarity, non-linearity, and high complexity of EEG signals. The features computed by CNN-based networks on the highly noisy MI-EEG signals contain irrelevant information. Subsequently, the feature maps of the CNN-based network computed from the noisy and irrelevant features contain irrelevant information. Thus, many non-contributing features often mislead the neural network training and degrade the classification performance. Hence, a novel feature reweighting approach is proposed to address this issue. The proposed method gives a noise reduction mechanism named feature reweighting module that suppresses irrelevant temporal and channel feature maps. The feature reweighting module of the proposed method generates scores that reweight the feature maps to reduce the impact of irrelevant information. Experimental results show that the proposed method significantly improved the classification of MI-EEG signals of Physionet EEG-MMIDB and BCI Competition IV 2a datasets by a margin of 9.34% and 3.82%, respectively, compared to the state-of-the-art methods.
♻ ☆ Continual Learning with Strategic Selection and Forgetting for Network Intrusion Detection
Intrusion Detection Systems (IDS) are crucial for safeguarding digital infrastructure. In dynamic network environments, both threat landscapes and normal operational behaviors are constantly changing, resulting in concept drift. While continuous learning mitigates the adverse effects of concept drift, insufficient attention to drift patterns and excessive preservation of outdated knowledge can still hinder the IDS's adaptability. In this paper, we propose SSF (Strategic Selection and Forgetting), a novel continual learning method for IDS, providing continuous model updates with a constantly refreshed memory buffer. Our approach features a strategic sample selection algorithm to select representative new samples and a strategic forgetting mechanism to drop outdated samples. The proposed strategic sample selection algorithm prioritizes new samples that cause the `drifted' pattern, enabling the model to better understand the evolving landscape. Additionally, we introduce strategic forgetting upon detecting significant drift by discarding outdated samples to free up memory, allowing the incorporation of more recent data. SSF captures evolving patterns effectively and ensures the model is aligned with the change of data patterns, significantly enhancing the IDS's adaptability to concept drift. The state-of-the-art performance of SSF on NSL-KDD and UNSW-NB15 datasets demonstrates its superior adaptability to concept drift for network intrusion detection. The code is released at https://github.com/xinchen930/SSF-Strategic-Selection-and-Forgetting.
comment: Accepted by IEEE International Conference on Computer Communications (INFOCOM) 2025
♻ ☆ Tightly-Coupled LiDAR-IMU-Leg Odometry with Online Learned Leg Kinematics Incorporating Foot Tactile Information
In this letter, we present tightly coupled LiDAR-IMU-leg odometry, which is robust to challenging conditions such as featureless environments and deformable terrains. We developed an online learning-based leg kinematics model named the neural leg kinematics model, which incorporates tactile information (foot reaction force) to implicitly express the nonlinear dynamics between robot feet and the ground. Online training of this model enhances its adaptability to weight load changes of a robot (e.g., assuming delivery or transportation tasks) and terrain conditions. According to the \textit{neural adaptive leg odometry factor} and online uncertainty estimation of the leg kinematics model-based motion predictions, we jointly solve online training of this kinematics model and odometry estimation on a unified factor graph to retain the consistency of both. The proposed method was verified through real experiments using a quadruped robot in two challenging situations: 1) a sandy beach, representing an extremely featureless area with a deformable terrain, and 2) a campus, including multiple featureless areas and terrain types of asphalt, gravel (deformable terrain), and grass. Experimental results showed that our odometry estimation incorporating the \textit{neural leg kinematics model} outperforms state-of-the-art works. Our project page is available for further details: https://takuokawara.github.io/RAL2025_project_page/
comment: Robotics and Automation Letters, 2025
♻ ☆ Dataset Distillation via the Wasserstein Metric ICCV 2025
Dataset Distillation (DD) aims to generate a compact synthetic dataset that enables models to achieve performance comparable to training on the full large dataset, significantly reducing computational costs. Drawing from optimal transport theory, we introduce WMDD (Wasserstein Metric-based Dataset Distillation), a straightforward yet powerful method that employs the Wasserstein metric to enhance distribution matching. We compute the Wasserstein barycenter of features from a pretrained classifier to capture essential characteristics of the original data distribution. By optimizing synthetic data to align with this barycenter in feature space and leveraging per-class BatchNorm statistics to preserve intra-class variations, WMDD maintains the efficiency of distribution matching approaches while achieving state-of-the-art results across various high-resolution datasets. Our extensive experiments demonstrate WMDD's effectiveness and adaptability, highlighting its potential for advancing machine learning applications at scale.
comment: Accepted to ICCV 2025. Project page at https://liu-hy.github.io/WMDD/ and code is available at https://github.com/Liu-Hy/WMDD
♻ ☆ Aitomia: Your Intelligent Assistant for AI-Driven Atomistic and Quantum Chemical Simulations
We have developed Aitomia - a platform powered by AI to assist in performing AI-driven atomistic and quantum chemical (QC) simulations. This evolving intelligent assistant platform is equipped with chatbots and AI agents to help experts and guide non-experts in setting up and running the atomistic simulations, monitoring their computation status, analyzing the simulation results, and summarizing them for the user in text and graphical forms. We achieve these goals by exploiting open-source large language models (LLMs, original and fine-tuned), rule-based agents, and a retrieval-augmented generation (RAG) system. Aitomia leverages the versatility of our MLatom ecosystem, supporting AI-enhanced computational chemistry tasks ranging from ground- to excited-state calculations such as geometry optimizations, thermochemistry, and spectra calculations. Aitomia is the first intelligent assistant publicly accessible online on a cloud computing platform for atomistic simulations of broad scope (Aitomistic Hub at https://aitomistic.xyz), while it may also be deployed locally as described at http://mlatom.com/aitomia. Aitomia is expected to lower the barrier to performing atomistic simulations, democratizing simulations, and accelerating research and development in the relevant fields.
♻ ☆ Pre-training Large Memory Language Models with Internal and External Knowledge
Neural language models are black-boxes -- both linguistic patterns and factual knowledge are distributed across billions of opaque parameters. This entangled encoding makes it difficult to reliably inspect, verify, or update specific facts. We propose a new class of language models, Large Memory Language Models (LMLM) with a pre-training recipe that stores factual knowledge in both internal weights and an external database. Our approach strategically masks externally retrieved factual values from the training loss, thereby teaching the model to perform targeted lookups rather than relying on memorization in model weights. Our experiments demonstrate that LMLMs achieve competitive performance compared to significantly larger, knowledge-dense LLMs on standard benchmarks, while offering the advantages of explicit, editable, and verifiable knowledge bases. This work represents a fundamental shift in how language models interact with and manage factual knowledge.
comment: Code, models, and data available at https://github.com/kilian-group/LMLM
♻ ☆ Backdooring Bias (B^2) into Stable Diffusion Models
Recent advances in large text-conditional diffusion models have revolutionized image generation by enabling users to create realistic, high-quality images from textual prompts, significantly enhancing artistic creation and visual communication. However, these advancements also introduce an underexplored attack opportunity: the possibility of inducing biases by an adversary into the generated images for malicious intentions, e.g., to influence public opinion and spread propaganda. In this paper, we study an attack vector that allows an adversary to inject arbitrary bias into a target model. The attack leverages low-cost backdooring techniques using a targeted set of natural textual triggers embedded within a small number of malicious data samples produced with public generative models. An adversary could pick common sequences of words that can then be inadvertently activated by benign users during inference. We investigate the feasibility and challenges of such attacks, demonstrating how modern generative models have made this adversarial process both easier and more adaptable. On the other hand, we explore various aspects of the detectability of such attacks and demonstrate that the model's utility remains intact in the absence of the triggers. Our extensive experiments using over 200,000 generated images and against hundreds of fine-tuned models demonstrate the feasibility of the presented backdoor attack. We illustrate how these biases maintain strong text-image alignment, highlighting the challenges in detecting biased images without knowing that bias in advance. Our cost analysis confirms the low financial barrier ($10-$15) to executing such attacks, underscoring the need for robust defensive strategies against such vulnerabilities in diffusion models.
comment: Accepted to USENIX Security '25
♻ ☆ Drug Discovery SMILES-to-Pharmacokinetics Diffusion Models with Deep Molecular Understanding
Artificial intelligence (AI) is increasingly used in every stage of drug development. One challenge facing drug discovery AI is that drug pharmacokinetic (PK) datasets are often collected independently from each other, often with limited overlap, creating data overlap sparsity. Data sparsity makes data curation difficult for researchers looking to answer research questions in poly-pharmacy, drug combination research, and high-throughput screening. We propose Imagand, a novel SMILES-to-Pharmacokinetic (S2PK) diffusion model capable of generating an array of PK target properties conditioned on SMILES inputs. We show that Imagand-generated synthetic PK data closely resembles real data univariate and bivariate distributions, and improves performance for downstream tasks. Imagand is a promising solution for data overlap sparsity and allows researchers to efficiently generate ligand PK data for drug discovery research. Code is available at https://github.com/bing1100/Imagand.
comment: 13 pages, 5 figures, 4 tables
♻ ☆ Diffusion Policies for Risk-Averse Behavior Modeling in Offline Reinforcement Learning
Offline reinforcement learning (RL) presents distinct challenges as it relies solely on observational data. A central concern in this context is ensuring the safety of the learned policy by quantifying uncertainties associated with various actions and environmental stochasticity. Traditional approaches primarily emphasize mitigating epistemic uncertainty by learning risk-averse policies, often overlooking environmental stochasticity. In this study, we propose an uncertainty-aware distributional offline RL method to simultaneously address both epistemic uncertainty and environmental stochasticity. We propose a model-free offline RL algorithm capable of learning risk-averse policies and characterizing the entire distribution of discounted cumulative rewards, as opposed to merely maximizing the expected value of accumulated discounted returns. Our method is rigorously evaluated through comprehensive experiments in both risk-sensitive and risk-neutral benchmarks, demonstrating its superior performance.
comment: IROS 2025
♻ ☆ Fourier Series Guided Design of Quantum Convolutional Neural Networks for Enhanced Time Series Forecasting
In this study, we apply 1D quantum convolution to address the task of time series forecasting. By encoding multiple points into the quantum circuit to predict subsequent data, each point becomes a feature, transforming the problem into a multidimensional one. Building on theoretical foundations from prior research, which demonstrated that Variational Quantum Circuits (VQCs) can be expressed as multidimensional Fourier series, we explore the capabilities of different architectures and ansatz. This analysis considers the concepts of circuit expressibility and the presence of barren plateaus. Analyzing the problem within the framework of the Fourier series enabled the design of an architecture that incorporates data reuploading, resulting in enhanced performance. Rather than a strict requirement for the number of free parameters to exceed the degrees of freedom of the Fourier series, our findings suggest that even a limited number of parameters can produce Fourier functions of higher degrees. This highlights the remarkable expressive power of quantum circuits. This observation is also significant in reducing training times. The ansatz with greater expressibility and number of non-zero Fourier coefficients consistently delivers favorable results across different scenarios, with performance metrics improving as the number of qubits increases.
♻ ☆ Empirical Bayes Estimation for Lasso-Type Regularizers: Analysis of Automatic Relevance Determination
This paper focuses on linear regression models with non-conjugate sparsity-inducing regularizers such as lasso and group lasso. Although the empirical Bayes approach enables us to estimate the regularization parameter, little is known on the properties of the estimators. In particular, many aspects regarding the specific conditions under which the mechanism of automatic relevance determination (ARD) occurs remain unexplained. In this paper, we derive the empirical Bayes estimators for the group lasso regularized linear regression models with limited parameters. It is shown that the estimators diverge under a specific condition, giving rise to the ARD mechanism. We also prove that empirical Bayes methods can produce the ARD mechanism in general regularized linear regression models and clarify the conditions under which models such as ridge, lasso, and group lasso can do so.
comment: 8 pages, 1 figure, accepted by the 2025 IEEE International Symposium on Information Theory (ISIT 2025)
♻ ☆ OralBBNet: Spatially Guided Dental Segmentation of Panoramic X-Rays with Bounding Box Priors
Teeth segmentation and recognition play a vital role in a variety of dental applications and diagnostic procedures. The integration of deep learning models has facilitated the development of precise and automated segmentation methods. Although prior research has explored teeth segmentation, not many methods have successfully performed tooth segmentation and detection simultaneously. This study presents UFBA-425, a dental dataset derived from the UFBA-UESC dataset, featuring bounding box and polygon annotations for 425 panoramic dental X-rays. In addition, this paper presents the OralBBNet architecture, which is based on the best segmentation and detection qualities of architectures such as U-Net and YOLOv8, respectively. OralBBNet is designed to improve the accuracy and robustness of tooth classification and segmentation on panoramic X-rays by leveraging the complementary strengths of U-Net and YOLOv8. Our approach achieved a 1-3% improvement in mean average precision (mAP) for tooth detection compared to existing techniques and a 15-20% improvement in the dice score for teeth segmentation over state-of-the-art (SOTA) solutions for various tooth categories and 2-4% improvement in the dice score compared to other SOTA segmentation architectures. The results of this study establish a foundation for the wider implementation of object detection models in dental diagnostics.
♻ ☆ A Framework for Mining Collectively-Behaving Bots in MMORPGs
In MMORPGs (Massively Multiplayer Online Role-Playing Games), abnormal players (bots) using unauthorized automated programs to carry out pre-defined behaviors systematically and repeatedly are commonly observed. Bots usually engage in these activities to gain in-game money, which they eventually trade for real money outside the game. Such abusive activities negatively impact the in-game experiences of legitimate users since bots monopolize specific hunting areas and obtain valuable items. Thus, detecting abnormal players is a significant task for game companies. Motivated by the fact that bots tend to behave collectively with similar in-game trajectories due to the auto-programs, we developed BotTRep, a framework that comprises trajectory representation learning followed by clustering using a completely unlabeled in-game trajectory dataset. Our model aims to learn representations for in-game trajectory sequences so that players with contextually similar trajectories have closer embeddings. Then, by applying DBSCAN to these representations and visualizing the corresponding moving patterns, our framework ultimately assists game masters in identifying and banning bots.
♻ ☆ BoltzNCE: Learning Likelihoods for Boltzmann Generation with Stochastic Interpolants and Noise Contrastive Estimation NeurIPS 2025
Efficient sampling from the Boltzmann distribution defined by an energy function is a key challenge in modeling physical systems such as molecules. Boltzmann Generators tackle this by leveraging Continuous Normalizing Flows that transform a simple prior into a distribution that can be reweighted to match the Boltzmann distribution using sample likelihoods. However, obtaining likelihoods requires computing costly Jacobians during integration, making it impractical for large molecular systems. To overcome this, we propose learning the likelihood of the generated distribution via an energy-based model trained with noise contrastive estimation and score matching. By using stochastic interpolants to anneal between the prior and generated distributions, we combine both the objective functions to efficiently learn the density function. On the alanine dipeptide system, we demonstrate that our method yields free energy profiles and energy distributions comparable to those obtained with exact likelihoods. Additionally, we show that free energy differences between metastable states can be estimated accurately with orders-of-magnitude speedup.
comment: 19 pages, 25 figures, submitted to NeurIPS 2025
♻ ☆ $μ^2$Tokenizer: Differentiable Multi-Scale Multi-Modal Tokenizer for Radiology Report Generation MICCAI 2025
Automated radiology report generation (RRG) aims to produce detailed textual reports from clinical imaging, such as computed tomography (CT) scans, to improve the accuracy and efficiency of diagnosis and provision of management advice. RRG is complicated by two key challenges: (1) inherent complexity in extracting relevant information from imaging data under resource constraints, and (2) difficulty in objectively evaluating discrepancies between model-generated and expert-written reports. To address these challenges, we propose $\mu^2$LLM, a $\underline{\textbf{mu}}$ltiscale $\underline{\textbf{mu}}$ltimodal large language models for RRG tasks. The novel ${\mu}^2$Tokenizer, as an intermediate layer, integrates multi-modal features from the multiscale visual tokenizer and the text tokenizer, then enhances report generation quality through direct preference optimization (DPO), guided by GREEN-RedLlama. Experimental results on four large CT image-report medical datasets demonstrate that our method outperforms existing approaches, highlighting the potential of our fine-tuned $\mu^2$LLMs on limited data for RRG tasks. At the same time, for prompt engineering, we introduce a five-stage, LLM-driven pipeline that converts routine CT reports into paired visual-question-answer triples and citation-linked reasoning narratives, creating a scalable, high-quality supervisory corpus for explainable multimodal radiology LLM. All code, datasets, and models will be publicly available in our official repository. https://github.com/Siyou-Li/u2Tokenizer
comment: Accepted by MICCAI 2025
♻ ☆ Combating Confirmation Bias: A Unified Pseudo-Labeling Framework for Entity Alignment
Entity alignment (EA) aims at identifying equivalent entity pairs across different knowledge graphs (KGs) that refer to the same real-world identity. To circumvent the shortage of seed alignments provided for training, recent EA models utilize pseudo-labeling strategies to iteratively add unaligned entity pairs predicted with high confidence to the seed alignments for model training. However, the adverse impact of confirmation bias during pseudo-labeling has been largely overlooked, thus hindering entity alignment performance. To systematically combat confirmation bias for pseudo-labeling-based entity alignment, we propose a Unified Pseudo-Labeling framework for Entity Alignment (UPL-EA) that explicitly eliminates pseudo-labeling errors to boost the accuracy of entity alignment. UPL-EA consists of two complementary components: (1) Optimal Transport (OT)-based pseudo-labeling uses discrete OT modeling as an effective means to determine entity correspondences and reduce erroneous matches across two KGs. An effective criterion is derived to infer pseudo-labeled alignments that satisfy one-to-one correspondences; (2) Parallel pseudo-label ensembling refines pseudo-labeled alignments by combining predictions over multiple models independently trained in parallel. The ensembled pseudo-labeled alignments are thereafter used to augment seed alignments to reinforce subsequent model training for alignment inference. The effectiveness of UPL-EA in eliminating pseudo-labeling errors is both theoretically supported and experimentally validated. Our extensive results and in-depth analyses demonstrate the superiority of UPL-EA over 15 competitive baselines and its utility as a general pseudo-labeling framework for entity alignment.
♻ ☆ Dynamic Matching with Post-allocation Service and its Application to Refugee Resettlement
Motivated by our collaboration with a major refugee resettlement agency in the U.S., we study a dynamic matching problem where each new arrival (a refugee case) must be matched immediately and irrevocably to one of the static resources (a location with a fixed annual quota). In addition to consuming the static resource, each case requires post-allocation services from a server, such as a translator. Given the uncertainty in service time, a server may not be available at a given time, thus we refer to it as a dynamic resource. Upon matching, the case will wait to avail service in a first-come-first-serve manner. Bursty matching to a location may result in undesirable congestion at its corresponding server. Consequently, the central planner (the agency) faces a dynamic matching problem with an objective that combines the matching reward (captured by pair-specific employment outcomes) with the cost for congestion for dynamic resources and over-allocation for the static ones. Motivated by the observed fluctuations in the composition of refugee pools across the years, we aim to design algorithms that do not rely on distributional knowledge. We develop learning-based algorithms that are asymptotically optimal in certain regimes, easy to interpret, and computationally fast. Our design is based on learning the dual variables of the underlying optimization problem; however, the main challenge lies in the time-varying nature of the dual variables associated with dynamic resources. Our theoretical development brings together techniques from Lyapunov analysis, adversarial online learning, and stochastic optimization. On the application side, when tested on real data from our partner agency and incorporating practical considerations, our method outperforms existing ones making it a viable candidate for replacing the current practice upon experimentation.
comment: Preliminary conference version appeared in ACM Economics and Computation (EC 2024)
♻ ☆ Temporally Consistent Koopman Autoencoders for Forecasting Dynamical Systems
Absence of sufficiently high-quality data often poses a key challenge in data-driven modeling of high-dimensional spatio-temporal dynamical systems. Koopman Autoencoders (KAEs) harness the expressivity of deep neural networks (DNNs), the dimension reduction capabilities of autoencoders, and the spectral properties of the Koopman operator to learn a reduced-order feature space with simpler, linear dynamics. However, the effectiveness of KAEs is hindered by limited and noisy training datasets, leading to poor generalizability. To address this, we introduce the temporally consistent Koopman autoencoder (tcKAE), designed to generate accurate long-term predictions even with limited and noisy training data. This is achieved through a consistency regularization term that enforces prediction coherence across different time steps, thus enhancing the robustness and generalizability of tcKAE over existing models. We provide analytical justification for this approach based on Koopman spectral theory and empirically demonstrate tcKAE's superior performance over state-of-the-art KAE models across a variety of test cases, including simple pendulum oscillations, kinetic plasma, and fluid flow data.
♻ ☆ KAIROS: Scalable Model-Agnostic Data Valuation
Training data increasingly shapes not only model accuracy but also regulatory compliance and market valuation of AI assets. Yet existing valuation methods remain inadequate: model-based techniques depend on a single fitted model and inherit its biases, while algorithm-based approaches such as Data Shapley require costly retrainings at web scale. Recent Wasserstein-based model-agnostic methods rely on approximations that misrank examples relative to their true leave-one-out (LOO) utility. We introduce KAIROS, a scalable, model-agnostic valuation framework that assigns each example a distributional influence score: its contribution to the Maximum Mean Discrepancy (MMD) between the empirical training distribution and a clean reference set. Unlike Wasserstein surrogates, our MMD-based influence admits a closed-form solution that faithfully approximates the exact LOO ranking within $O(1/N^2)$ error, requires no retraining, and naturally extends to conditional kernels for unified label- and feature-error detection. Moreover, KAIROS supports efficient online updates: when a new batch of size m arrives, all scores can be updated in $O(mN)$ time, delivering up to 50x speedup without compromising ranking quality. Empirical evaluations on noise, mislabeling, and poisoning benchmarks show that KAIROS consistently outperforms state-of-the-art model-, Shapley-, and Wasserstein-based baselines in both accuracy and runtime. We provide rigorous theoretical guarantees, including symmetry for reproducible rankings and density-separation for interpretable thresholds.
comment: 19 pages, 9 figures
♻ ☆ Bayesian Invariance Modeling of Multi-Environment Data
Invariant prediction [Peters et al., 2016] analyzes feature/outcome data from multiple environments to identify invariant features - those with a stable predictive relationship to the outcome. Such features support generalization to new environments and help reveal causal mechanisms. Previous methods have primarily tackled this problem through hypothesis testing or regularized optimization. Here we develop Bayesian Invariant Prediction (BIP), a probabilistic model for invariant prediction. BIP encodes the indices of invariant features as a latent variable and recover them by posterior inference. Under the assumptions of Peters et al. [2016], the BIP posterior targets the true invariant features. We prove that the posterior is consistent and that greater environment heterogeneity leads to faster posterior contraction. To handle many features, we design an efficient variational approximation called VI-BIP. In simulations and real data, we find that BIP and VI-BIP are more accurate and scalable than existing methods for invariant prediction.
♻ ☆ Tree-based Learning for High-Fidelity Prediction of Chaos
Model-free forecasting of the temporal evolution of chaotic systems is crucial but challenging. Existing solutions require hyperparameter tuning, significantly hindering their wider adoption. In this work, we introduce a tree-based approach not requiring hyperparameter tuning: TreeDOX. It uses time delay overembedding as explicit short-term memory and Extra-Trees Regressors to perform feature reduction and forecasting. We demonstrate the state-of-the-art performance of TreeDOX using the Henon map, Lorenz and Kuramoto-Sivashinsky systems, and the real-world Southern Oscillation Index.
♻ ☆ Hardware and Software Platform Inference
It is now a common business practice to buy access to large language model (LLM) inference rather than self-host, because of significant upfront hardware infrastructure and energy costs. However, as a buyer, there is no mechanism to verify the authenticity of the advertised service including the serving hardware platform, e.g. that it is actually being served using an NVIDIA H100. Furthermore, there are reports suggesting that model providers may deliver models that differ slightly from the advertised ones, often to make them run on less expensive hardware. That way, a client pays premium for a capable model access on more expensive hardware, yet ends up being served by a (potentially less capable) cheaper model on cheaper hardware. In this paper we introduce hardware and software platform inference (HSPI) -- a method for identifying the underlying GPU architecture and software stack of a (black-box) machine learning model solely based on its input-output behavior. Our method leverages the inherent differences of various GPU architectures and compilers to distinguish between different GPU types and software stacks. By analyzing the numerical patterns in the model's outputs, we propose a classification framework capable of accurately identifying the GPU used for model inference as well as the underlying software configuration. Our findings demonstrate the feasibility of inferring GPU type from black-box models. We evaluate HSPI against models served on different real hardware and find that in a white-box setting we can distinguish between different GPUs with between $83.9\%$ and $100\%$ accuracy. Even in a black-box setting we achieve results that are up to 3x higher than random guess accuracy. Our code is available at https://github.com/ChengZhang-98/HSPI.
♻ ☆ A physics informed neural network approach to simulating ice dynamics governed by the shallow ice approximation
In this article we develop a Physics Informed Neural Network (PINN) approach to simulate ice sheet dynamics governed by the Shallow Ice Approximation. This problem takes the form of a time-dependent parabolic obstacle problem. Prior work has used this approach to address the stationary obstacle problem and here we extend it to the time dependent problem. Through comprehensive 1D and 2D simulations, we validate the model's effectiveness in capturing complex free-boundary conditions. By merging traditional mathematical modeling with cutting-edge deep learning methods, this approach provides a scalable and robust solution for predicting temporal variations in ice thickness. To illustrate this approach in a real world setting, we simulate the dynamics of the Devon Ice Cap, incorporating aerogeophysical data from 2000 and 2018.
♻ ☆ The unstable formula theorem revisited via algorithms
This paper is about the surprising interaction of a foundational result from model theory, about stability of theories, with algorithmic stability in learning. First, in response to gaps in existing learning models, we introduce a new statistical learning model, called ``Probably Eventually Correct'' or PEC. We characterize Littlestone (stable) classes in terms of this model. As a corollary, Littlestone classes have frequent short definitions in a natural statistical sense. In order to obtain a characterization of Littlestone classes in terms of frequent definitions, we build an equivalence theorem highlighting what is common to many existing approximation algorithms, and to the new PEC. This is guided by an analogy to definability of types in model theory, but has its own character. Drawing on these theorems and on other recent work, we present a complete algorithmic analogue of Shelah's celebrated Unstable Formula Theorem, with algorithmic properties taking the place of the infinite.
Beyond Scale: The Diversity Coefficient as a Data Quality Metric for Variability in Natural Language Data
Current trends in pre-training Large Language Models (LLMs) primarily focus on the scaling of model and dataset size. While the quality of pre-training data is considered an important factor for training powerful LLMs, it remains a nebulous concept that has not been rigorously characterized. To this end, we propose a formalization of one key aspect of data quality -- measuring the variability of natural language data -- specifically via a measure we call the diversity coefficient. Our empirical analysis shows that the proposed diversity coefficient aligns with the intuitive properties of diversity and variability, e.g., it increases as the number of latent concepts increases. Then, we measure the diversity coefficient of publicly available pre-training datasets and demonstrate that their formal diversity is high compared to theoretical lower and upper bounds. Finally, we conduct a comprehensive set of controlled interventional experiments with GPT-2 and LLaMAv2 that demonstrate the diversity coefficient of pre-training data characterizes useful aspects of downstream model evaluation performance -- totaling 44 models of various sizes (51M to 7B parameters). We conclude that our formal notion of diversity is an important aspect of data quality that captures variability and causally leads to improved evaluation performance.
♻ ☆ Non-Convex Optimization with Spectral Radius Regularization
We develop regularization methods to find flat minima while training deep neural networks. These minima generalize better than sharp minima, yielding models outperforming baselines on real-world test data (which may be distributed differently than the training data). Specifically, we propose a method of regularized optimization to reduce the spectral radius of the Hessian of the loss function. We also derive algorithms to efficiently optimize neural network models and prove that these algorithms almost surely converge. Furthermore, we demonstrate that our algorithm works effectively on applications in different domains, including healthcare. To show that our models generalize well, we introduced various methods for testing generalizability and found that our models outperform comparable baseline models on these tests.
comment: 18 pages
Quantifying the Importance of Data Alignment in Downstream Model Performance
Contrary to the conventional emphasis on dataset size, we explore the role of data alignment -- an often overlooked aspect of data quality -- in training capable Large Language Models (LLMs). To do so, we use the Task2Vec-based alignment coefficient, a quantitative measure of the similarity between two datasets, to quantify the impact of alignment between training data and evaluation data on downstream performance. In particular, we conduct controlled \textit{interventional} experiments for two settings: 1. the impact of increased alignment coefficients between various pre-training (pt) against evaluation datasets, and 2. the impact of increased alignment coefficients between domain specific fine-tuning (ft) against domain specific evaluation. The domain specific task we explore is Autoformalization -- the machine translation task between natural language and code for formal verification. In both settings, we find a strong, predictable negative correlation between the alignment coefficient of a model's training and evaluation data and the model's loss/perplexity on the respective downstream task. These findings suggest a re-evaluation of LLM training approaches, demonstrating the relevance of data alignment compared to data quantity, especially in specialized downstream tasks such as Autoformalization.
♻ ☆ Reliable algorithm selection for machine learning-guided design ICML 2025
Algorithms for machine learning-guided design, or design algorithms, use machine learning-based predictions to propose novel objects with desired property values. Given a new design task -- for example, to design novel proteins with high binding affinity to a therapeutic target -- one must choose a design algorithm and specify any hyperparameters and predictive and/or generative models involved. How can these decisions be made such that the resulting designs are successful? This paper proposes a method for design algorithm selection, which aims to select design algorithms that will produce a distribution of design labels satisfying a user-specified success criterion -- for example, that at least ten percent of designs' labels exceed a threshold. It does so by combining designs' predicted property values with held-out labeled data to reliably forecast characteristics of the label distributions produced by different design algorithms, building upon techniques from prediction-powered inference. The method is guaranteed with high probability to return design algorithms that yield successful label distributions (or the null set if none exist), if the density ratios between the design and labeled data distributions are known. We demonstrate the method's effectiveness in simulated protein and RNA design tasks, in settings with either known or estimated density ratios.
comment: ICML 2025
♻ ☆ ODE$_t$(ODE$_l$): Shortcutting the Time and Length in Diffusion and Flow Models for Faster Sampling
Recently, continuous normalizing flows (CNFs) and diffusion models (DMs) have been studied using the unified theoretical framework. Although such models can generate high-quality data points from a noise distribution, the sampling demands multiple iterations to solve an ordinary differential equation (ODE) with high computational complexity. Most existing methods focus on reducing the number of time steps during the sampling process to improve efficiency. In this work, we explore a complementary direction in which the quality-complexity tradeoff can be dynamically controlled in terms of time steps and in the length of the neural network. We achieve this by rewiring the blocks in the transformer-based architecture to solve an inner discretized ODE w.r.t. its length. Then, we employ time- and length-wise consistency terms during flow matching training, and as a result, the sampling can be performed with an arbitrary number of time steps and transformer blocks. Unlike others, our ODE$_t$(ODE$_l$) approach is solver-agnostic in time dimension and decreases both latency and memory usage. Compared to the previous state of the art, image generation experiments on CelebA-HQ and ImageNet show a latency reduction of up to 3$\times$ in the most efficient sampling mode, and a FID score improvement of up to 3.5 points for high-quality sampling. We release our code and model weights with fully reproducible experiments.
comment: Preprint. Github page: github.com/gudovskiy/odelt
♻ ☆ Generating Hypotheses of Dynamic Causal Graphs in Neuroscience: Leveraging Generative Factor Models of Observed Time Series
The field of hypothesis generation promises to reduce costs in neuroscience by narrowing the range of interventional studies needed to study various phenomena. Existing machine learning methods can generate scientific hypotheses from complex datasets, but many approaches assume causal relationships are static over time, limiting their applicability to systems with dynamic, state-dependent behavior, such as the brain. While some techniques attempt dynamic causal discovery through factor models, they often restrict relationships to linear patterns or impose other simplifying assumptions. We propose a novel method that models dynamic graphs as a conditionally weighted superposition of static graphs, where each static graph can capture nonlinear relationships. This approach enables the detection of complex, time-varying interactions between variables beyond linear limitations. Our method improves f1-scores of predicted dynamic causal patterns by roughly 22-28% on average over baselines in some of our experiments, with some improvements reaching well over 60%. A case study on real brain data demonstrates our method's ability to uncover relationships linked to specific behavioral states, offering valuable insights into neural dynamics.
♻ ☆ Parameters vs FLOPs: Scaling Laws for Optimal Sparsity for Mixture-of-Experts Language Models
Scaling the capacity of language models has consistently proven to be a reliable approach for improving performance and unlocking new capabilities. Capacity can be primarily defined by two dimensions: the number of model parameters and the compute per example. While scaling typically involves increasing both, the precise interplay between these factors and their combined contribution to overall capacity remains not fully understood. We explore this relationship in the context of sparse Mixture-of-Experts (MoEs), which allow scaling the number of parameters without proportionally increasing the FLOPs per example. We investigate how varying the sparsity level, i.e., the fraction of inactive parameters, impacts model's performance during pretraining and downstream few-shot evaluation. We find that under different constraints (e.g., parameter size and total training compute), there is an optimal level of sparsity that improves both training efficiency and model performance. These results provide a better understanding of the impact of sparsity in scaling laws for MoEs and complement existing works in this area, offering insights for designing more efficient architectures.
♻ ☆ Identifying Systems with Symmetries using Equivariant Autoregressive Reservoir Computers
The investigation reported in this document focuses on identifying systems with symmetries using equivariant autoregressive reservoir computers. General results in structured matrix approximation theory are presented, exploring a two-fold approach. Firstly, a comprehensive examination of generic symmetry-preserving nonlinear time delay embedding is conducted. This involves analyzing time series data sampled from an equivariant system under study. Secondly, sparse least-squares methods are applied to discern approximate representations of the output coupling matrices. These matrices play a critical role in determining the nonlinear autoregressive representation of an equivariant system. The structural characteristics of these matrices are dictated by the set of symmetries inherent in the system. The document outlines prototypical algorithms derived from the described techniques, offering insight into their practical applications. Emphasis is placed on the significant improvement on structured identification precision when compared to classical reservoir computing methods for the simulation of equivariant dynamical systems.
comment: The views expressed in the article do not necessarily represent the views of the National Commission of Banks and Insurance Companies of Honduras
♻ ☆ TAROT: Targeted Data Selection via Optimal Transport
We propose TAROT, a targeted data selection framework grounded in optimal transport theory. Previous targeted data selection methods primarily rely on influence-based greedy heuristics to enhance domain-specific performance. While effective on limited, unimodal data (i.e., data following a single pattern), these methods struggle as target data complexity increases. Specifically, in multimodal distributions, these heuristics fail to account for multiple inherent patterns, leading to suboptimal data selection. This work identifies two primary factors contributing to this limitation: (i) the disproportionate impact of dominant feature components in high-dimensional influence estimation, and (ii) the restrictive linear additive assumptions inherent in greedy selection strategies. To address these challenges, TAROT incorporates whitened feature distance to mitigate dominant feature bias, providing a more reliable measure of data influence. Building on this, TAROT uses whitened feature distance to quantify and minimize the optimal transport distance between the selected data and target domains. Notably, this minimization also facilitates the estimation of optimal selection ratios. We evaluate TAROT across multiple tasks, including semantic segmentation, motion prediction, and instruction tuning. Results consistently show that TAROT outperforms state-of-the-art methods, highlighting its versatility across various deep learning tasks. Code is available at https://github.com/vita-epfl/TAROT.
♻ ☆ Asymptotically perfect seeded graph matching without edge correlation (and applications to inference)
We present the OmniMatch algorithm for seeded multiple graph matching. In the setting of $d$-dimensional Random Dot Product Graphs (RDPG), we prove that under mild assumptions, OmniMatch with $s$ seeds asymptotically and efficiently perfectly aligns $O(s^{\alpha})$ unseeded vertices -- for $\alpha<2\wedge d/4$ -- across multiple networks even in the presence of no edge correlation. We demonstrate the effectiveness of our algorithm across numerous simulations and in the context of shuffled graph hypothesis testing. In the shuffled testing setting, testing power is lost due to the misalignment/shuffling of vertices across graphs, and we demonstrate the capacity of OmniMatch to correct for misaligned vertices prior to testing and hence recover the lost testing power. We further demonstrate the algorithm on a pair of data examples from connectomics and machine translation.
comment: 10 figures, 35 pages
♻ ☆ Learning From Crowdsourced Noisy Labels: A Signal Processing Perspective
One of the primary catalysts fueling advances in artificial intelligence (AI) and machine learning (ML) is the availability of massive, curated datasets. A commonly used technique to curate such massive datasets is crowdsourcing, where data are dispatched to multiple annotators. The annotator-produced labels are then fused to serve downstream learning and inference tasks. This annotation process often creates noisy labels due to various reasons, such as the limited expertise, or unreliability of annotators, among others. Therefore, a core objective in crowdsourcing is to develop methods that effectively mitigate the negative impact of such label noise on learning tasks. This feature article introduces advances in learning from noisy crowdsourced labels. The focus is on key crowdsourcing models and their methodological treatments, from classical statistical models to recent deep learning-based approaches, emphasizing analytical insights and algorithmic developments. In particular, this article reviews the connections between signal processing (SP) theory and methods, such as identifiability of tensor and nonnegative matrix factorization, and novel, principled solutions of longstanding challenges in crowdsourcing -- showing how SP perspectives drive the advancements of this field. Furthermore, this article touches upon emerging topics that are critical for developing cutting-edge AI/ML systems, such as crowdsourcing in reinforcement learning with human feedback (RLHF) and direct preference optimization (DPO) that are key techniques for fine-tuning large language models (LLMs).
♻ ☆ Non-negative matrix factorization algorithms generally improve topic model fits
We report on the potential for using algorithms for non-negative matrix factorization (NMF) to improve parameter estimation in topic models. While several papers have studied connections between NMF and topic models, none have suggested leveraging these connections to develop new algorithms for fitting topic models. NMF avoids the "sum-to-one" constraints on the topic model parameters, resulting in an optimization problem with simpler structure and more efficient computations. Building on recent advances in optimization algorithms for NMF, we show that first solving the NMF problem then recovering the topic model fit can produce remarkably better fits, and in less time, than standard algorithms for topic models. While we focus primarily on maximum likelihood estimation, we show that this approach also has the potential to improve variational inference for topic models. Our methods are implemented in the R package fastTopics.
♻ ☆ Unraveling particle dark matter with Physics-Informed Neural Networks
We parametrically solve the Boltzmann equations governing freeze-in dark matter (DM) in alternative cosmologies with Physics-Informed Neural Networks (PINNs), a mesh-free method. Through inverse PINNs, using a single DM experimental point -- observed relic density -- we determine the physical attributes of the theory, namely power-law cosmologies, inspired by braneworld scenarios, and particle interaction cross sections. The expansion of the Universe in such alternative cosmologies has been parameterized through a switch-like function reproducing the Hubble law at later times. Without loss of generality, we model more realistically this transition with a smooth function. We predict a distinct pair-wise relationship between power-law exponent and particle interactions: for a given cosmology with negative (positive) exponent, smaller (larger) cross sections are required to reproduce the data. Lastly, via Bayesian methods, we quantify the epistemic uncertainty of theoretical parameters found in inverse problems.
comment: 26 LaTeX pages; 12 figures. Comments added in the main text, new Fig. 5 added and references added. Matches version published in PLB
♻ ☆ Towards Explaining Deep Neural Network Compression Through a Probabilistic Latent Space
Despite the impressive performance of deep neural networks (DNNs), their computational complexity and storage space consumption have led to the concept of network compression. While DNN compression techniques such as pruning and low-rank decomposition have been extensively studied, there has been insufficient attention paid to their theoretical explanation. In this paper, we propose a novel theoretical framework that leverages a probabilistic latent space of DNN weights and explains the optimal network sparsity by using the information-theoretic divergence measures. We introduce new analogous projected patterns (AP2) and analogous-in-probability projected patterns (AP3) notions for DNNs and prove that there exists a relationship between AP3/AP2 property of layers in the network and its performance. Further, we provide a theoretical analysis that explains the training process of the compressed network. The theoretical results are empirically validated through experiments conducted on standard pre-trained benchmarks, including AlexNet, ResNet50, and VGG16, using CIFAR10 and CIFAR100 datasets. Through our experiments, we highlight the relationship of AP3 and AP2 properties with fine-tuning pruned DNNs and sparsity levels.
♻ ☆ A Model-Consistent Data-Driven Computational Strategy for PDE Joint Inversion Problems
The task of simultaneously reconstructing multiple physical coefficients in partial differential equations (PDEs) from observed data is ubiquitous in applications. In this work, we propose an integrated data-driven and model-based iterative reconstruction framework for such joint inversion problems where additional data on the unknown coefficients are supplemented for better reconstructions. Our method couples the supplementary data with the PDE model to make the data-driven modeling process consistent with the model-based reconstruction procedure. We characterize the impact of learning uncertainty on the joint inversion results for two typical inverse problems. Numerical evidence is provided to demonstrate the feasibility of using data-driven models to improve the joint inversion of multiple coefficients in PDEs.
♻ ☆ Privacy-Preserving in Connected and Autonomous Vehicles Through Vision to Text Transformation
Connected and Autonomous Vehicles (CAVs) rely on a range of devices that often process privacy-sensitive data. Among these, roadside units play a critical role particularly through the use of AI-equipped (AIE) cameras for applications such as violation detection. However, the privacy risks associated with captured imagery remain a major concern, as such data can be misused for identity theft, profiling, or unauthorized commercial purposes. While traditional techniques such as face blurring and obfuscation have been applied to mitigate privacy risks, individual privacy remains at risk, as individuals can still be tracked using other features such as their clothing. This paper introduces a novel privacy-preserving framework that leverages feedback-based reinforcement learning (RL) and vision-language models (VLMs) to protect sensitive visual information captured by AIE cameras. The main idea is to convert images into semantically equivalent textual descriptions, ensuring that scene-relevant information is retained while visual privacy is preserved. A hierarchical RL strategy is employed to iteratively refine the generated text, enhancing both semantic accuracy and privacy. Evaluation results demonstrate significant improvements in both privacy protection and textual quality, with the Unique Word Count increasing by approximately 77\% and Detail Density by around 50\% compared to existing approaches.
♻ ☆ Exploring the Design Space of Diffusion Bridge Models
Diffusion bridge models and stochastic interpolants enable high-quality image-to-image (I2I) translation by creating paths between distributions in pixel space. However, the proliferation of techniques based on incompatible mathematical assumptions have impeded progress. In this work, we unify and expand the space of bridge models by extending Stochastic Interpolants (SIs) with preconditioning, endpoint conditioning, and an optimized sampling algorithm. These enhancements expand the design space of diffusion bridge models, leading to state-of-the-art performance in both image quality and sampling efficiency across diverse I2I tasks. Furthermore, we identify and address a previously overlooked issue of low sample diversity under fixed conditions. We introduce a quantitative analysis for output diversity and demonstrate how we can modify the base distribution for further improvements.
comment: 23 pages, 9 figures
♻ ☆ Benign Overfitting without Linearity: Neural Network Classifiers Trained by Gradient Descent for Noisy Linear Data
Benign overfitting, the phenomenon where interpolating models generalize well in the presence of noisy data, was first observed in neural network models trained with gradient descent. To better understand this empirical observation, we consider the generalization error of two-layer neural networks trained to interpolation by gradient descent on the logistic loss following random initialization. We assume the data comes from well-separated class-conditional log-concave distributions and allow for a constant fraction of the training labels to be corrupted by an adversary. We show that in this setting, neural networks exhibit benign overfitting: they can be driven to zero training error, perfectly fitting any noisy training labels, and simultaneously achieve minimax optimal test error. In contrast to previous work on benign overfitting that require linear or kernel-based predictors, our analysis holds in a setting where both the model and learning dynamics are fundamentally nonlinear.
comment: 44 pages; adds corrections to proof of Theorem 3.1
♻ ☆ Byzantine-Robust Gossip: Insights from a Dual Approach
Distributed learning has many computational benefits but is vulnerable to attacks from a subset of devices transmitting incorrect information. This paper investigates Byzantine-resilient algorithms in a decentralized setting, where devices communicate directly in a peer-to-peer manner within a communication network. We leverage the so-called dual approach for decentralized optimization and propose a Byzantine-robust algorithm. We provide convergence guarantees in the average consensus subcase, discuss the potential of the dual approach beyond this subcase, and re-interpret existing algorithms using the dual framework. Lastly, we experimentally show the soundness of our method.
comment: 9 pages, 1 figure
♻ ☆ SPACE-SUIT: An Artificial Intelligence Based Chromospheric Feature Extractor and Classifier for SUIT
The Solar Ultraviolet Imaging Telescope(SUIT) onboard Aditya-L1 is an imager that observes the solar photosphere and chromosphere through observations in the wavelength range of 200-400 nm. A comprehensive understanding of the plasma and thermodynamic properties of chromospheric and photospheric morphological structures requires a large sample statistical study, necessitating the development of automatic feature detection methods. To this end, we develop the feature detection algorithm SPACE-SUIT: Solar Phenomena Analysis and Classification using Enhanced vision techniques for SUIT, to detect and classify the solar chromospheric features to be observed from SUIT's Mg II k filter. Specifically, we target plage regions, sunspots, filaments, and off-limb structures. SPACE uses YOLO, a neural network-based model to identify regions of interest. We train and validate SPACE using mock-SUIT images developed from Interface Region Imaging Spectrometer(IRIS) full-disk mosaic images in Mg II k line, while we also perform detection on Level-1 SUIT data. SPACE achieves an approximate precision of 0.788, recall 0.863 and MAP of 0.874 on the validation mock SUIT FITS dataset. Given the manual labeling of our dataset, we perform "self-validation" by applying statistical measures and Tamura features on the ground truth and predicted bounding boxes. We find the distributions of entropy, contrast, dissimilarity, and energy to show differences in the features. These differences are qualitatively captured by the detected regions predicted by SPACE and validated with the observed SUIT images, even in the absence of labeled ground truth. This work not only develops a chromospheric feature extractor but also demonstrates the effectiveness of statistical metrics and Tamura features for distinguishing chromospheric features, offering independent validation for future detection schemes.
comment: Published in Solar Physics
Quantitative Methods 9
☆ Characterizing control between interacting subsystems with deep Jacobian estimation
Biological function arises through the dynamical interactions of multiple subsystems, including those between brain areas, within gene regulatory networks, and more. A common approach to understanding these systems is to model the dynamics of each subsystem and characterize communication between them. An alternative approach is through the lens of control theory: how the subsystems control one another. This approach involves inferring the directionality, strength, and contextual modulation of control between subsystems. However, methods for understanding subsystem control are typically linear and cannot adequately describe the rich contextual effects enabled by nonlinear complex systems. To bridge this gap, we devise a data-driven nonlinear control-theoretic framework to characterize subsystem interactions via the Jacobian of the dynamics. We address the challenge of learning Jacobians from time-series data by proposing the JacobianODE, a deep learning method that leverages properties of the Jacobian to directly estimate it for arbitrary dynamical systems from data alone. We show that JacobianODEs outperform existing Jacobian estimation methods on challenging systems, including high-dimensional chaos. Applying our approach to a multi-area recurrent neural network (RNN) trained on a working memory selection task, we show that the "sensory" area gains greater control over the "cognitive" area over learning. Furthermore, we leverage the JacobianODE to directly control the trained RNN, enabling precise manipulation of its behavior. Our work lays the foundation for a theoretically grounded and data-driven understanding of interactions among biological subsystems.
comment: 10 pages, 6 figures
☆ A Real-Time Digital Twin for Type 1 Diabetes using Simulation-Based Inference
Accurately estimating parameters of physiological models is essential to achieving reliable digital twins. For Type 1 Diabetes, this is particularly challenging due to the complexity of glucose-insulin interactions. Traditional methods based on Markov Chain Monte Carlo struggle with high-dimensional parameter spaces and fit parameters from scratch at inference time, making them slow and computationally expensive. In this study, we propose a Simulation-Based Inference approach based on Neural Posterior Estimation to efficiently capture the complex relationships between meal intake, insulin, and glucose level, providing faster, amortized inference. Our experiments demonstrate that SBI not only outperforms traditional methods in parameter estimation but also generalizes better to unseen conditions, offering real-time posterior inference with reliable uncertainty quantification.
☆ BioMARS: A Multi-Agent Robotic System for Autonomous Biological Experiments
Large language models (LLMs) and vision-language models (VLMs) have the potential to transform biological research by enabling autonomous experimentation. Yet, their application remains constrained by rigid protocol design, limited adaptability to dynamic lab conditions, inadequate error handling, and high operational complexity. Here we introduce BioMARS (Biological Multi-Agent Robotic System), an intelligent platform that integrates LLMs, VLMs, and modular robotics to autonomously design, plan, and execute biological experiments. BioMARS uses a hierarchical architecture: the Biologist Agent synthesizes protocols via retrieval-augmented generation; the Technician Agent translates them into executable robotic pseudo-code; and the Inspector Agent ensures procedural integrity through multimodal perception and anomaly detection. The system autonomously conducts cell passaging and culture tasks, matching or exceeding manual performance in viability, consistency, and morphological integrity. It also supports context-aware optimization, outperforming conventional strategies in differentiating retinal pigment epithelial cells. A web interface enables real-time human-AI collaboration, while a modular backend allows scalable integration with laboratory hardware. These results highlight the feasibility of generalizable, AI-driven laboratory automation and the transformative role of language-based reasoning in biological research.
☆ TubuleTracker: a high-fidelity shareware software to quantify angiogenesis architecture and maturity
Background: In vitro endothelial cell culture is widely used to study angiogenesis. Histomicrographic images of cell networks are often analyzed manually, a process that is time-consuming and subjective. Automated tools like ImageJ (NIH) can assist, but are often slow and inaccurate. Additionally, as endothelial networks grow more complex, traditional architectural metrics may not fully reflect network maturity. To address these limitations, we developed tubuleTracker, a software tool that quantifies endothelial network architecture and maturity rapidly and objectively. Methods: Human umbilical vein endothelial cells were cultured in an extracellular matrix, and 54 images were acquired using phase contrast microscopy. Each image was analyzed manually by three independent reviewers, and by both ImageJ and tubuleTracker. Key metrics included tubule count, total length, node count, tubule area, and vessel circularity. In parallel, trained scientists rated each image for angiogenesis maturity on a 1-5 scale (1 = most mature). Results: Analysis time per image differed significantly: manual (8 min), ImageJ (58+/-4 s), and tubuleTracker (6+/-2 s) (p<0.0001). Significant differences were also found in tubule count (manual 168+/-SD, tubuleTracker 92+/-SD, ImageJ 433+/-SD), length, and node count (all p<0.0001). tubuleTracker's metrics varied significantly across angiogenesis maturity scores, including tubule count, length, node count, area, and circularity (all p<0.0001). Conclusions: tubuleTracker was faster and more consistent than both manual and ImageJ-based analysis. Vessel circularity proved especially effective in capturing angiogenesis maturity. tubuleTracker is available as free shareware for the biomedical research community.
comment: Abstract word count = [285] Total word count = [3910] Main body text = [2179] References = [30] Table = [0] Figures = [4]
♻ ☆ Drug Discovery SMILES-to-Pharmacokinetics Diffusion Models with Deep Molecular Understanding
Artificial intelligence (AI) is increasingly used in every stage of drug development. One challenge facing drug discovery AI is that drug pharmacokinetic (PK) datasets are often collected independently from each other, often with limited overlap, creating data overlap sparsity. Data sparsity makes data curation difficult for researchers looking to answer research questions in poly-pharmacy, drug combination research, and high-throughput screening. We propose Imagand, a novel SMILES-to-Pharmacokinetic (S2PK) diffusion model capable of generating an array of PK target properties conditioned on SMILES inputs. We show that Imagand-generated synthetic PK data closely resembles real data univariate and bivariate distributions, and improves performance for downstream tasks. Imagand is a promising solution for data overlap sparsity and allows researchers to efficiently generate ligand PK data for drug discovery research. Code is available at https://github.com/bing1100/Imagand.
comment: 13 pages, 5 figures, 4 tables
♻ ☆ Inherited or produced? Inferring protein production kinetics when protein counts are shaped by a cell's division history
Inferring protein production kinetics for dividing cells is complicated due to protein inheritance from the mother cell. For instance, fluorescence measurements -- commonly used to assess gene activation -- may reflect not only newly produced proteins but also those inherited through successive cell divisions. In such cases, observed protein levels in any given cell are shaped by its division history. As a case study, we examine activation of the glc3 gene in yeast involved in glycogen synthesis and expressed under nutrient-limiting conditions. We monitor this activity using snapshot fluorescence measurements via flow cytometry, where GFP expression reflects glc3 promoter activity. A na\"ive analysis of flow cytometry data ignoring cell division suggests many cells are active with low expression. Explicitly accounting for the (non-Markovian) effects of cell division and protein inheritance makes it impossible to write down a tractable likelihood -- a key ingredient in physics-inspired inference, defining the probability of observing data given a model. The dependence on a cell's division history breaks the assumptions of standard (Markovian) master equations, rendering traditional likelihood-based approaches inapplicable. Instead, we adapt conditional normalizing flows (a class of neural network models designed to learn probability distributions) to approximate otherwise intractable likelihoods from simulated data. In doing so, we find that glc3 is mostly inactive under stress, showing that while cells occasionally activate the gene, expression is brief and transient.
♻ ☆ Ubiquitous Asymptotic Robustness in Biochemical Systems
Living systems maintain stable internal states despite environmental fluctuations. Absolute concentration robustness (ACR) is a striking homeostatic phenomenon in which the steady-state concentration of a molecular species remains invariant to changes in total molecular supply. Although experimental studies have reported approximate-but not exact-robustness in steady-state concentrations, such behavior has often been attributed to exact ACR motifs perturbed by measurement noise or minor side reactions, rather than recognized as a structural property of the network itself. In this work, we highlight a previously underappreciated phenomenon, which we term asymptotic ACR (aACR): approximate robustness can emerge solely from the architecture of the reaction network, without requiring parameters being negligible or the presence of an exact ACR motif. We find that aACR is far more common than classical ACR, as demonstrated in systems such as the Escherichia coli EnvZ-OmpR system and MAPK signaling cascade. Furthermore, we mathematically prove that such ubiquity stems solely from network structure. Finally, we reveal a counterintuitive feature of aACR in systems with multiple conserved quantities, revealing subtle distinctions in how robustness manifests in complex biochemical networks.
comment: This include two files: a main text and Supplementary Information. 17 pages, 4 figures, 2 tables for the main text; 29 pages, 1 figure, 18 tables for the Supplementary Information
♻ ☆ Reliable algorithm selection for machine learning-guided design ICML 2025
Algorithms for machine learning-guided design, or design algorithms, use machine learning-based predictions to propose novel objects with desired property values. Given a new design task -- for example, to design novel proteins with high binding affinity to a therapeutic target -- one must choose a design algorithm and specify any hyperparameters and predictive and/or generative models involved. How can these decisions be made such that the resulting designs are successful? This paper proposes a method for design algorithm selection, which aims to select design algorithms that will produce a distribution of design labels satisfying a user-specified success criterion -- for example, that at least ten percent of designs' labels exceed a threshold. It does so by combining designs' predicted property values with held-out labeled data to reliably forecast characteristics of the label distributions produced by different design algorithms, building upon techniques from prediction-powered inference. The method is guaranteed with high probability to return design algorithms that yield successful label distributions (or the null set if none exist), if the density ratios between the design and labeled data distributions are known. We demonstrate the method's effectiveness in simulated protein and RNA design tasks, in settings with either known or estimated density ratios.
comment: ICML 2025
♻ ☆ Co-Enrichment of Proteins in Extracellular Vesicles
Extracellular vesicles (EVs) are cell-derived secretions that mediate tissue homeostasis and intercellular communication through their diverse cargos, such as proteins. Distinct EV biogenesis pathways suggest specific association and co-enrichment of proteins sharing a biogenesis pathway, and non-association and co-depletion of proteins segregated into distinct pathways. Yet these associations elude conventional protein expression or co-expression measurements. Here, we propose and define pairwise protein co-enrichment (CoEn) to quantify whether a given protein is co-enriched or co-depleted with another protein relative to its overall expression. We measure CoEn, and differential CoEn (dCoEn) between a stimulus and a reference condition, of up to 240 protein pairs in EVs using antibody microarrays. We validate CoEn by modulating well-known EV biogenesis pathways, and find that dCoEn quantifies expected changes between perturbed and reference conditions while uncovering new ones; CoEn and dCoEn in three model cell lines and parental and organotropic breast cancer progeny cell lines reveals both preserved and variable CoEn that may warrant further studies. Collectively, our result suggest that CoEn reflects and illuminates cell physiology and EV biogenies, is readily measurable, and could further serve as quality control in EV biomanufacturing as well as underpin new EV biomarkers.
Cell Behavior 2
☆ Phototactic Decision-Making by Micro-Algae
We study how simple eukaryotic organisms make decisions in response to competing stimuli in the context of phototaxis by the unicellular alga $Chlamydomonas~reinhardtii$. While negatively phototactic cells swim directly away from a collimated light beam, when presented with two beams of adjustable intersection angle and intensities, we find that cells swim in a direction given by an intensity-weighted average of the two light propagation vectors. This geometrical law is a fixed point of an adaptive model of phototaxis and minimizes the average light intensity falling on the anterior pole of the cell. At large angular separations, subpopulations of cells swim away from one source or the other, or along the direction of the geometrical law, with some cells stochastically switching between the three directions. This behavior is shown to arise from a population-level distribution of photoreceptor locations that breaks front-back symmetry of photoreception.
comment: 6 pages, 5 figures, with Supplementary Material appended
☆ TubuleTracker: a high-fidelity shareware software to quantify angiogenesis architecture and maturity
Background: In vitro endothelial cell culture is widely used to study angiogenesis. Histomicrographic images of cell networks are often analyzed manually, a process that is time-consuming and subjective. Automated tools like ImageJ (NIH) can assist, but are often slow and inaccurate. Additionally, as endothelial networks grow more complex, traditional architectural metrics may not fully reflect network maturity. To address these limitations, we developed tubuleTracker, a software tool that quantifies endothelial network architecture and maturity rapidly and objectively. Methods: Human umbilical vein endothelial cells were cultured in an extracellular matrix, and 54 images were acquired using phase contrast microscopy. Each image was analyzed manually by three independent reviewers, and by both ImageJ and tubuleTracker. Key metrics included tubule count, total length, node count, tubule area, and vessel circularity. In parallel, trained scientists rated each image for angiogenesis maturity on a 1-5 scale (1 = most mature). Results: Analysis time per image differed significantly: manual (8 min), ImageJ (58+/-4 s), and tubuleTracker (6+/-2 s) (p<0.0001). Significant differences were also found in tubule count (manual 168+/-SD, tubuleTracker 92+/-SD, ImageJ 433+/-SD), length, and node count (all p<0.0001). tubuleTracker's metrics varied significantly across angiogenesis maturity scores, including tubule count, length, node count, area, and circularity (all p<0.0001). Conclusions: tubuleTracker was faster and more consistent than both manual and ImageJ-based analysis. Vessel circularity proved especially effective in capturing angiogenesis maturity. tubuleTracker is available as free shareware for the biomedical research community.
comment: Abstract word count = [285] Total word count = [3910] Main body text = [2179] References = [30] Table = [0] Figures = [4]
Computation and Language 58
☆ The Medium Is Not the Message: Deconfounding Text Embeddings via Linear Concept Erasure
Embedding-based similarity metrics between text sequences can be influenced not just by the content dimensions we most care about, but can also be biased by spurious attributes like the text's source or language. These document confounders cause problems for many applications, but especially those that need to pool texts from different corpora. This paper shows that a debiasing algorithm that removes information about observed confounders from the encoder representations substantially reduces these biases at a minimal computational cost. Document similarity and clustering metrics improve across every embedding variant and task we evaluate -- often dramatically. Interestingly, performance on out-of-distribution benchmarks is not impacted, indicating that the embeddings are not otherwise degraded.
☆ MEGA: xLSTM with Multihead Exponential Gated Fusion for Precise Aspect-based Sentiment Analysis
Aspect-based Sentiment Analysis (ABSA) is a critical Natural Language Processing (NLP) task that extracts aspects from text and determines their associated sentiments, enabling fine-grained analysis of user opinions. Existing ABSA methods struggle to balance computational efficiency with high performance: deep learning models often lack global context, transformers demand significant computational resources, and Mamba-based approaches face CUDA dependency and diminished local correlations. Recent advancements in Extended Long Short-Term Memory (xLSTM) models, particularly their efficient modeling of long-range dependencies, have significantly advanced the NLP community. However, their potential in ABSA remains untapped. To this end, we propose xLSTM with Multihead Exponential Gated Fusion (MEGA), a novel framework integrating a bi-directional mLSTM architecture with forward and partially flipped backward (PF-mLSTM) streams. The PF-mLSTM enhances localized context modeling by processing the initial sequence segment in reverse with dedicated parameters, preserving critical short-range patterns. We further introduce an mLSTM-based multihead cross exponential gated fusion mechanism (MECGAF) that dynamically combines forward mLSTM outputs as query and key with PF-mLSTM outputs as value, optimizing short-range dependency capture while maintaining global context and efficiency. Experimental results on three benchmark datasets demonstrate that MEGA outperforms state-of-the-art baselines, achieving superior accuracy and efficiency in ABSA tasks.
comment: 6, 1 figure
☆ Matching and Linking Entries in Historical Swedish Encyclopedias
The \textit{Nordisk familjebok} is a Swedish encyclopedia from the 19th and 20th centuries. It was written by a team of experts and aimed to be an intellectual reference, stressing precision and accuracy. This encyclopedia had four main editions remarkable by their size, ranging from 20 to 38 volumes. As a consequence, the \textit{Nordisk familjebok} had a considerable influence in universities, schools, the media, and society overall. As new editions were released, the selection of entries and their content evolved, reflecting intellectual changes in Sweden. In this paper, we used digitized versions from \textit{Project Runeberg}. We first resegmented the raw text into entries and matched pairs of entries between the first and second editions using semantic sentence embeddings. We then extracted the geographical entries from both editions using a transformer-based classifier and linked them to Wikidata. This enabled us to identify geographic trends and possible shifts between the first and second editions, written between 1876-1899 and 1904-1926, respectively. Interpreting the results, we observe a small but significant shift in geographic focus away from Europe and towards North America, Africa, Asia, Australia, and northern Scandinavia from the first to the second edition, confirming the influence of the First World War and the rise of new powers. The code and data are available on GitHub at https://github.com/sibbo/nordisk-familjebok.
comment: 10 pages, 3 figures
☆ Event-based evaluation of abstractive news summarization ACL 2025
An abstractive summary of a news article contains its most important information in a condensed version. The evaluation of automatically generated summaries by generative language models relies heavily on human-authored summaries as gold references, by calculating overlapping units or similarity scores. News articles report events, and ideally so should the summaries. In this work, we propose to evaluate the quality of abstractive summaries by calculating overlapping events between generated summaries, reference summaries, and the original news articles. We experiment on a richly annotated Norwegian dataset comprising both events annotations and summaries authored by expert human annotators. Our approach provides more insight into the event information contained in the summaries.
comment: to appear at GEM2 workshop@ACL 2025
☆ SciArena: An Open Evaluation Platform for Foundation Models in Scientific Literature Tasks
We present SciArena, an open and collaborative platform for evaluating foundation models on scientific literature tasks. Unlike traditional benchmarks for scientific literature understanding and synthesis, SciArena engages the research community directly, following the Chatbot Arena evaluation approach of community voting on model comparisons. By leveraging collective intelligence, SciArena offers a community-driven evaluation of model performance on open-ended scientific tasks that demand literature-grounded, long-form responses. The platform currently supports 23 open-source and proprietary foundation models and has collected over 13,000 votes from trusted researchers across diverse scientific domains. We analyze the data collected so far and confirm that the submitted questions are diverse, aligned with real-world literature needs, and that participating researchers demonstrate strong self-consistency and inter-annotator agreement in their evaluations. We discuss the results and insights based on the model ranking leaderboard. To further promote research in building model-based automated evaluation systems for literature tasks, we release SciArena-Eval, a meta-evaluation benchmark based on our collected preference data. The benchmark measures the accuracy of models in judging answer quality by comparing their pairwise assessments with human votes. Our experiments highlight the benchmark's challenges and emphasize the need for more reliable automated evaluation methods.
☆ La Leaderboard: A Large Language Model Leaderboard for Spanish Varieties and Languages of Spain and Latin America ACL 2025
Leaderboards showcase the current capabilities and limitations of Large Language Models (LLMs). To motivate the development of LLMs that represent the linguistic and cultural diversity of the Spanish-speaking community, we present La Leaderboard, the first open-source leaderboard to evaluate generative LLMs in languages and language varieties of Spain and Latin America. La Leaderboard is a community-driven project that aims to establish an evaluation standard for everyone interested in developing LLMs for the Spanish-speaking community. This initial version combines 66 datasets in Basque, Catalan, Galician, and different Spanish varieties, showcasing the evaluation results of 50 models. To encourage community-driven development of leaderboards in other languages, we explain our methodology, including guidance on selecting the most suitable evaluation setup for each downstream task. In particular, we provide a rationale for using fewer few-shot examples than typically found in the literature, aiming to reduce environmental impact and facilitate access to reproducible results for a broader research community.
comment: Accepted at ACL 2025 Main
☆ Should We Still Pretrain Encoders with Masked Language Modeling?
Learning high-quality text representations is fundamental to a wide range of NLP tasks. While encoder pretraining has traditionally relied on Masked Language Modeling (MLM), recent evidence suggests that decoder models pretrained with Causal Language Modeling (CLM) can be effectively repurposed as encoders, often surpassing traditional encoders on text representation benchmarks. However, it remains unclear whether these gains reflect an inherent advantage of the CLM objective or arise from confounding factors such as model and data scale. In this paper, we address this question through a series of large-scale, carefully controlled pretraining ablations, training a total of 30 models ranging from 210 million to 1 billion parameters, and conducting over 15,000 fine-tuning and evaluation runs. We find that while training with MLM generally yields better performance across text representation tasks, CLM-trained models are more data-efficient and demonstrate improved fine-tuning stability. Building on these findings, we experimentally show that a biphasic training strategy that sequentially applies CLM and then MLM, achieves optimal performance under a fixed computational training budget. Moreover, we demonstrate that this strategy becomes more appealing when initializing from readily available pretrained CLM models (from the existing LLM ecosystem), reducing the computational burden needed to train best-in-class encoder models. We release all project artifacts at https://hf.co/MLMvsCLM to foster further research.
comment: 23 pages, 10 figures, 17 tables
☆ Discourse Heuristics For Paradoxically Moral Self-Correction
Moral self-correction has emerged as a promising approach for aligning the output of Large Language Models (LLMs) with human moral values. However, moral self-correction techniques are subject to two primary paradoxes. First, despite empirical and theoretical evidence to support the effectiveness of self-correction, this LLM capability only operates at a superficial level. Second, while LLMs possess the capability of self-diagnosing immoral aspects of their output, they struggle to identify the cause of this moral inconsistency during their self-correction process. To better understand and address these paradoxes, we analyze the discourse constructions in fine-tuning corpora designed to enhance moral self-correction, uncovering the existence of the heuristics underlying effective constructions. We demonstrate that moral self-correction relies on discourse constructions that reflect heuristic shortcuts, and that the presence of these heuristic shortcuts during self-correction leads to inconsistency when attempting to enhance both self-correction and self-diagnosis capabilities jointly. Based on our findings, we propose a solution to improve moral self-correction by leveraging the heuristics of curated datasets. We also highlight the generalization challenges of this capability, particularly in terms of learning from situated context and model scales.
☆ Enhancing LLM Agent Safety via Causal Influence Prompting ACL 2025
As autonomous agents powered by large language models (LLMs) continue to demonstrate potential across various assistive tasks, ensuring their safe and reliable behavior is crucial for preventing unintended consequences. In this work, we introduce CIP, a novel technique that leverages causal influence diagrams (CIDs) to identify and mitigate risks arising from agent decision-making. CIDs provide a structured representation of cause-and-effect relationships, enabling agents to anticipate harmful outcomes and make safer decisions. Our approach consists of three key steps: (1) initializing a CID based on task specifications to outline the decision-making process, (2) guiding agent interactions with the environment using the CID, and (3) iteratively refining the CID based on observed behaviors and outcomes. Experimental results demonstrate that our method effectively enhances safety in both code execution and mobile device control tasks.
comment: Accepted at ACL 2025 Findings, Source code: https://github.com/HahmDY/causal_influence_prompting.git
☆ The Cognate Data Bottleneck in Language Phylogenetics
To fully exploit the potential of computational phylogenetic methods for cognate data one needs to leverage specific (complex) models an machine learning-based techniques. However, both approaches require datasets that are substantially larger than the manually collected cognate data currently available. To the best of our knowledge, there exists no feasible approach to automatically generate larger cognate datasets. We substantiate this claim by automatically extracting datasets from BabelNet, a large multilingual encyclopedic dictionary. We demonstrate that phylogenetic inferences on the respective character matrices yield trees that are largely inconsistent with the established gold standard ground truth trees. We also discuss why we consider it as being unlikely to be able to extract more suitable character matrices from other multilingual resources. Phylogenetic data analysis approaches that require larger datasets can therefore not be applied to cognate data. Thus, it remains an open question how, and if these computational approaches can be applied in historical linguistics.
☆ ONLY: One-Layer Intervention Sufficiently Mitigates Hallucinations in Large Vision-Language Models ICCV 2025
Recent Large Vision-Language Models (LVLMs) have introduced a new paradigm for understanding and reasoning about image input through textual responses. Although they have achieved remarkable performance across a range of multi-modal tasks, they face the persistent challenge of hallucination, which introduces practical weaknesses and raises concerns about their reliable deployment in real-world applications. Existing work has explored contrastive decoding approaches to mitigate this issue, where the output of the original LVLM is compared and contrasted with that of a perturbed version. However, these methods require two or more queries that slow down LVLM response generation, making them less suitable for real-time applications. To overcome this limitation, we propose ONLY, a training-free decoding approach that requires only a single query and a one-layer intervention during decoding, enabling efficient real-time deployment. Specifically, we enhance textual outputs by selectively amplifying crucial textual information using a text-to-visual entropy ratio for each token. Extensive experimental results demonstrate that our proposed ONLY consistently outperforms state-of-the-art methods across various benchmarks while requiring minimal implementation effort and computational cost. Code is available at https://github.com/zifuwan/ONLY.
comment: Accepted by ICCV 2025. Project page: https://zifuwan.github.io/ONLY/
☆ MemeCMD: An Automatically Generated Chinese Multi-turn Dialogue Dataset with Contextually Retrieved Memes
Memes are widely used in online social interactions, providing vivid, intuitive, and often humorous means to express intentions and emotions. Existing dialogue datasets are predominantly limited to either manually annotated or pure-text conversations, lacking the expressiveness and contextual nuance that multimodal interactions provide.To address these challenges, we introduce MemeCMD, an automatically generated Chinese Multi-turn Dialogue dataset with contextually retrieved memes. Our dataset combines a large-scale, MLLM-annotated meme library with dialogues auto-generated by dual agents across diverse scenarios. We introduce a retrieval framework and adaptive threshold to ensure contextually relevant, naturally spaced meme usage. Experiments demonstrate the effectiveness of our approach in generating contextually appropriate and diverse meme-incorporated dialogues, offering a scalable and privacy-preserving resource for advancing multimodal conversational AI.
Scaling Laws Are Unreliable for Downstream Tasks: A Reality Check
Downstream scaling laws aim to predict task performance at larger scales from pretraining losses at smaller scales. Whether this prediction should be possible is unclear: some works demonstrate that task performance follows clear linear scaling trends under transformation, whereas others point out fundamental challenges to downstream scaling laws, such as emergence and inverse scaling. In this work, we conduct a meta-analysis of existing data on downstream scaling laws, finding that close fit to linear scaling laws only occurs in a minority of cases: 39% of the time. Furthermore, seemingly benign changes to the experimental setting can completely change the scaling trend. Our analysis underscores the need to understand the conditions under which scaling laws succeed. To fully model the relationship between pretraining loss and downstream task performance, we must embrace the cases in which scaling behavior deviates from linear trends.
♻ ☆ Capturing Visualization Design Rationale IEEE VIS 2025
Prior natural language datasets for data visualization have focused on tasks such as visualization literacy assessment, insight generation, and visualization generation from natural language instructions. These studies often rely on controlled setups with purpose-built visualizations and artificially constructed questions. As a result, they tend to prioritize the interpretation of visualizations, focusing on decoding visualizations rather than understanding their encoding. In this paper, we present a new dataset and methodology for probing visualization design rationale through natural language. We leverage a unique source of real-world visualizations and natural language narratives: literate visualization notebooks created by students as part of a data visualization course. These notebooks combine visual artifacts with design exposition, in which students make explicit the rationale behind their design decisions. We also use large language models (LLMs) to generate and categorize question-answer-rationale triples from the narratives and articulations in the notebooks. We then carefully validate the triples and curate a dataset that captures and distills the visualization design choices and corresponding rationales of the students.
comment: To be presented at IEEE VIS 2025
♻ ☆ Flow-Modulated Scoring for Semantic-Aware Knowledge Graph Completion
Effective modeling of multifaceted relations is pivotal for Knowledge Graph Completion (KGC). However, a majority of existing approaches are predicated on static, embedding-based scoring, exhibiting inherent limitations in capturing contextual dependencies and relational dynamics. Addressing this gap, we propose the Flow-Modulated Scoring (FMS) framework. FMS comprises two principal components: (1) a semantic context learning module that encodes context-sensitive entity representations, and (2) a conditional flow-matching module designed to learn the dynamic transformation from a head to a tail embedding, governed by the aforementioned context. The resultant predictive vector field, representing the context-informed relational path, serves to dynamically refine the initial static score of an entity pair. Through this synergy of context-aware static representations and conditioned dynamic information, FMS facilitates a more profound modeling of relational semantics. Comprehensive evaluations on several standard benchmarks demonstrate that our proposed method surpasses prior state-of-the-art results.
comment: 10 pages
♻ ☆ Large Language Model Confidence Estimation via Black-Box Access
Estimating uncertainty or confidence in the responses of a model can be significant in evaluating trust not only in the responses, but also in the model as a whole. In this paper, we explore the problem of estimating confidence for responses of large language models (LLMs) with simply black-box or query access to them. We propose a simple and extensible framework where, we engineer novel features and train a (interpretable) model (viz. logistic regression) on these features to estimate the confidence. We empirically demonstrate that our simple framework is effective in estimating confidence of Flan-ul2, Llama-13b, Mistral-7b and GPT-4 on four benchmark Q\&A tasks as well as of Pegasus-large and BART-large on two benchmark summarization tasks with it surpassing baselines by even over $10\%$ (on AUROC) in some cases. Additionally, our interpretable approach provides insight into features that are predictive of confidence, leading to the interesting and useful discovery that our confidence models built for one LLM generalize zero-shot across others on a given dataset.
comment: Accepted to TMLR 2025
♻ ☆ MLR-Bench: Evaluating AI Agents on Open-Ended Machine Learning Research
Recent advancements in AI agents have demonstrated their growing potential to drive and support scientific discovery. In this work, we introduce MLR-Bench, a comprehensive benchmark for evaluating AI agents on open-ended machine learning research. MLR-Bench includes three key components: (1) 201 research tasks sourced from NeurIPS, ICLR, and ICML workshops covering diverse ML topics; (2) MLR-Judge, an automated evaluation framework combining LLM-based reviewers with carefully designed review rubrics to assess research quality; and (3) MLR-Agent, a modular agent scaffold capable of completing research tasks through four stages: idea generation, proposal formulation, experimentation, and paper writing. Our framework supports both stepwise assessment across these distinct research stages, and end-to-end evaluation of the final research paper. We then use MLR-Bench to evaluate six frontier LLMs and an advanced coding agent, finding that while LLMs are effective at generating coherent ideas and well-structured papers, current coding agents frequently (e.g., in 80% of the cases) produce fabricated or invalidated experimental results--posing a major barrier to scientific reliability. We validate MLR-Judge through human evaluation, showing high agreement with expert reviewers, supporting its potential as a scalable tool for research evaluation. We open-source MLR-Bench to help the community benchmark, diagnose, and improve AI research agents toward trustworthy and transparent scientific discovery.
comment: 42 pages, 9 figures
♻ ☆ Intertextual Parallel Detection in Biblical Hebrew: A Transformer-Based Benchmark
Identifying parallel passages in biblical Hebrew (BH) is central to biblical scholarship for understanding intertextual relationships. Traditional methods rely on manual comparison, a labor-intensive process prone to human error. This study evaluates the potential of pre-trained transformer-based language models, including E5, AlephBERT, MPNet, and LaBSE, for detecting textual parallels in the Hebrew Bible. Focusing on known parallels between Samuel/Kings and Chronicles, I assessed each model's capability to generate word embeddings distinguishing parallel from non-parallel passages. Using cosine similarity and Wasserstein Distance measures, I found that E5 and AlephBERT show promise; E5 excels in parallel detection, while AlephBERT demonstrates stronger non-parallel differentiation. These findings indicate that pre-trained models can enhance the efficiency and accuracy of detecting intertextual parallels in ancient texts, suggesting broader applications for ancient language studies.
♻ ☆ Benchmarking the Pedagogical Knowledge of Large Language Models
Benchmarks like Massive Multitask Language Understanding (MMLU) have played a pivotal role in evaluating AI's knowledge and abilities across diverse domains. However, existing benchmarks predominantly focus on content knowledge, leaving a critical gap in assessing models' understanding of pedagogy - the method and practice of teaching. This paper introduces The Pedagogy Benchmark, a novel dataset designed to evaluate large language models on their Cross-Domain Pedagogical Knowledge (CDPK) and Special Education Needs and Disability (SEND) pedagogical knowledge. These benchmarks are built on a carefully curated set of questions sourced from professional development exams for teachers, which cover a range of pedagogical subdomains such as teaching strategies and assessment methods. Here we outline the methodology and development of these benchmarks. We report results for 97 models, with accuracies spanning a range from 28% to 89% on the pedagogical knowledge questions. We consider the relationship between cost and accuracy and chart the progression of the Pareto value frontier over time. We provide online leaderboards at https://rebrand.ly/pedagogy which are updated with new models and allow interactive exploration and filtering based on various model properties, such as cost per token and open-vs-closed weights, as well as looking at performance in different subjects. LLMs and generative AI have tremendous potential to influence education and help to address the global learning crisis. Education-focused benchmarks are crucial to measure models' capacities to understand pedagogical concepts, respond appropriately to learners' needs, and support effective teaching practices across diverse contexts. They are needed for informing the responsible and evidence-based deployment of LLMs and LLM-based tools in educational settings, and for guiding both development and policy decisions.
♻ ☆ Text Production and Comprehension by Human and Artificial Intelligence: Interdisciplinary Workshop Report
This report synthesizes the outcomes of a recent interdisciplinary workshop that brought together leading experts in cognitive psychology, language learning, and artificial intelligence (AI)-based natural language processing (NLP). The workshop, funded by the National Science Foundation, aimed to address a critical knowledge gap in our understanding of the relationship between AI language models and human cognitive processes in text comprehension and composition. Through collaborative dialogue across cognitive, linguistic, and technological perspectives, workshop participants examined the underlying processes involved when humans produce and comprehend text, and how AI can both inform our understanding of these processes and augment human capabilities. The workshop revealed emerging patterns in the relationship between large language models (LLMs) and human cognition, with highlights on both the capabilities of LLMs and their limitations in fully replicating human-like language understanding and generation. Key findings include the potential of LLMs to offer insights into human language processing, the increasing alignment between LLM behavior and human language processing when models are fine-tuned with human feedback, and the opportunities and challenges presented by human-AI collaboration in language tasks. By synthesizing these findings, this report aims to guide future research, development, and implementation of LLMs in cognitive psychology, linguistics, and education. It emphasizes the importance of ethical considerations and responsible use of AI technologies while striving to enhance human capabilities in text comprehension and production through effective human-AI collaboration.
♻ ☆ A Study of In-Context-Learning-Based Text-to-SQL Errors
Large language models (LLMs) have been adopted to perform text-to-SQL tasks, utilizing their in-context learning (ICL) capability to translate natural language questions into structured query language (SQL). However, such a technique faces correctness problems and requires efficient repairing solutions. In this paper, we conduct the first comprehensive study of text-to-SQL errors. Our study covers four representative ICL-based techniques, five basic repairing methods, two benchmarks, and two LLM settings. We find that text-to-SQL errors are widespread and summarize 29 error types of 7 categories. We also find that existing repairing attempts have limited correctness improvement at the cost of high computational overhead with many mis-repairs. Based on the findings, we propose MapleRepair, a novel text-to-SQL error detection and repairing framework. The evaluation demonstrates that MapleRepair outperforms existing solutions by repairing 13.8% more queries with neglectable mis-repairs and 67.4% less overhead.
♻ ☆ OM4OV: Leveraging Ontology Matching for Ontology Versioning
Due to the dynamic nature of the Semantic Web, version control is necessary to capture time-varying information, particularly for widely used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component for efficient ontology management, the growing size of ontologies and accumulating errors caused by manual labour overwhelm current OV approaches. In this paper, we propose a fresh approach to performing OV using existing ontology matching (OM) techniques and systems. We introduce a unified OM4OV pipeline. From an OM perspective, we reconstruct a new task formulation and measurements for OV tasks. Building upon the prior alignment(s) from OM, we propose a pipeline optimisation method called the cross-reference (CR) mechanism to enhance overall OV performance. We experimentally validate the OM4OV pipeline and the cross-reference mechanism in an OV testbed originating from the Ontology Alignment Evaluation Initiative (OAEI) datasets. We also discuss insights into OM used for OV tasks, where some apparent false mappings detected by OV systems are not actually untrue.
comment: 15 pages, 8 figures, 1 table
♻ ☆ HyperCLOVA X THINK Technical Report
We introduce HyperCLOVA X THINK, the first reasoning-focused large language model in the HyperCLOVA X family, pre-trained on roughly $6$ trillion high-quality Korean, and English tokens, augmented with targeted synthetic Korean data. It was implemented as a compute-memory-balanced Peri-LN Transformer scaled with $\mu$P, pre-trained through a three-stage curriculum that expands the context window to $128$K tokens, and post-trained via supervised fine-tuning with Reinforcement Learning from Verifiable Rewards supports both detailed rationale and concise-answer modes. It delivers competitive performance against similarly sized models on Korea-focused benchmarks such as KMMLU, CSAT, KoBALT-700, HAERAE-1.0, and KoBigBench, while preserving robust bilingual consistency and translation quality. In addition, a vision-augmented variant matches or exceeds GPT-4.1 on the KCSAT STEM benchmark, all of which are achieved with substantially lower training compute than existing models of similar sizes. We also present a pruning and distillation technique that will soon be applied to HyperCLOVA X THINK for an open-source and business-friendly foundation model. Altogether, these capabilities position HyperCLOVA X THINK as a robust foundation for Korean AI innovation and a valuable resource for the global research community.
comment: 50 pages, 13 figures; fixed figures in the appendix
♻ ☆ AudioTrust: Benchmarking the Multifaceted Trustworthiness of Audio Large Language Models
The rapid advancement and expanding applications of Audio Large Language Models (ALLMs) demand a rigorous understanding of their trustworthiness. However, systematic research on evaluating these models, particularly concerning risks unique to the audio modality, remains largely unexplored. Existing evaluation frameworks primarily focus on the text modality or address only a restricted set of safety dimensions, failing to adequately account for the unique characteristics and application scenarios inherent to the audio modality. We introduce AudioTrust-the first multifaceted trustworthiness evaluation framework and benchmark specifically designed for ALLMs. AudioTrust facilitates assessments across six key dimensions: fairness, hallucination, safety, privacy, robustness, and authentication. To comprehensively evaluate these dimensions, AudioTrust is structured around 18 distinct experimental setups. Its core is a meticulously constructed dataset of over 4,420 audio/text samples, drawn from real-world scenarios (e.g., daily conversations, emergency calls, voice assistant interactions), specifically designed to probe the multifaceted trustworthiness of ALLMs. For assessment, the benchmark carefully designs 9 audio-specific evaluation metrics, and we employ a large-scale automated pipeline for objective and scalable scoring of model outputs. Experimental results reveal the trustworthiness boundaries and limitations of current state-of-the-art open-source and closed-source ALLMs when confronted with various high-risk audio scenarios, offering valuable insights for the secure and trustworthy deployment of future audio models. Our platform and benchmark are available at https://github.com/JusperLee/AudioTrust.
comment: Technical Report
♻ ☆ Quasi-symbolic Semantic Geometry over Transformer-based Variational AutoEncoder
Formal/symbolic semantics can provide canonical, rigid controllability and interpretability to sentence representations due to their \textit{localisation} or \textit{composition} property. How can we deliver such property to the current distributional sentence representations to control and interpret the generation of language models (LMs)? In this work, we theoretically frame the sentence semantics as the composition of \textit{semantic role - word content} features and propose the formal semantic geometry. To inject such geometry into Transformer-based LMs (i.e. GPT2), we deploy Transformer-based Variational AutoEncoder with a supervision approach, where the sentence generation can be manipulated and explained over low-dimensional latent Gaussian space. In addition, we propose a new probing algorithm to guide the movement of sentence vectors over such geometry. Experimental results reveal that the formal semantic geometry can potentially deliver better control and interpretation to sentence generation.
comment: CoNLL2025 (Best Paper nomination)
♻ ☆ T2I-R1: Reinforcing Image Generation with Collaborative Semantic-level and Token-level CoT
Recent advancements in large language models have demonstrated how chain-of-thought (CoT) and reinforcement learning (RL) can improve performance. However, applying such reasoning strategies to the visual generation domain remains largely unexplored. In this paper, we present T2I-R1, a novel reasoning-enhanced text-to-image generation model, powered by RL with a bi-level CoT reasoning process. Specifically, we identify two levels of CoT that can be utilized to enhance different stages of generation: (1) the semantic-level CoT for high-level planning of the prompt and (2) the token-level CoT for low-level pixel processing during patch-by-patch generation. To better coordinate these two levels of CoT, we introduce BiCoT-GRPO with an ensemble of generation rewards, which seamlessly optimizes both generation CoTs within the same training step. By applying our reasoning strategies to the baseline model, Janus-Pro, we achieve superior performance with 13% improvement on T2I-CompBench and 19% improvement on the WISE benchmark, even surpassing the state-of-the-art model FLUX.1. Code is available at: https://github.com/CaraJ7/T2I-R1
comment: Project Page: https://github.com/CaraJ7/T2I-R1
♻ ☆ Iterative Resolution of Prompt Ambiguities Using a Progressive Cutting-Search Approach
Generative AI systems have revolutionized human interaction by enabling natural language-based coding and problem solving. However, the inherent ambiguity of natural language often leads to imprecise instructions, forcing users to iteratively test, correct, and resubmit their prompts. We propose an iterative approach that systematically narrows down these ambiguities through a structured series of clarification questions and alternative solution proposals, illustrated with input/output examples as well. Once every uncertainty is resolved, a final, precise solution is generated. Evaluated on a diverse dataset spanning coding, data analysis, and creative writing, our method demonstrates superior accuracy, competitive resolution times, and higher user satisfaction compared to conventional one-shot solutions, which typically require multiple manual iterations to achieve a correct output.
♻ ☆ Not Minds, but Signs: Reframing LLMs through Semiotics
This paper challenges the prevailing tendency to frame Large Language Models (LLMs) as cognitive systems, arguing instead for a semiotic perspective that situates these models within the broader dynamics of sign manipulation and meaning-making. Rather than assuming that LLMs understand language or simulate human thought, we propose that their primary function is to recombine, recontextualize, and circulate linguistic forms based on probabilistic associations. By shifting from a cognitivist to a semiotic framework, we avoid anthropomorphism and gain a more precise understanding of how LLMs participate in cultural processes, not by thinking, but by generating texts that invite interpretation. Through theoretical analysis and practical examples, the paper demonstrates how LLMs function as semiotic agents whose outputs can be treated as interpretive acts, open to contextual negotiation and critical reflection. We explore applications in literature, philosophy, education, and cultural production, emphasizing how LLMs can serve as tools for creativity, dialogue, and critical inquiry. The semiotic paradigm foregrounds the situated, contingent, and socially embedded nature of meaning, offering a more rigorous and ethically aware framework for studying and using LLMs. Ultimately, this approach reframes LLMs as technological participants in an ongoing ecology of signs. They do not possess minds, but they alter how we read, write, and make meaning, compelling us to reconsider the foundations of language, interpretation, and the role of artificial systems in the production of knowledge.
♻ ☆ Positional Bias in Binary Question Answering: How Uncertainty Shapes Model Preferences
Positional bias in binary question answering occurs when a model systematically favors one choice over another based solely on the ordering of presented options. In this study, we quantify and analyze positional bias across five large language models under varying degrees of answer uncertainty. We re-adapted the SQuAD-it dataset by adding an extra incorrect answer option and then created multiple versions with progressively less context and more out-of-context answers, yielding datasets that range from low to high uncertainty. Additionally, we evaluate two naturally higher-uncertainty benchmarks: (1) WebGPT - question pairs with unequal human-assigned quality scores, and (2) Winning Arguments - where models predict the more persuasive argument in Reddit's r/ChangeMyView exchanges. Across each dataset, the order of the "correct" (or higher-quality/persuasive) option is systematically flipped (first placed in position 1, then in position 2) to compute both Preference Fairness and Position Consistency. We observe that positional bias is nearly absent under low-uncertainty conditions, but grows exponentially when it becomes doubtful to decide which option is correct.
♻ ☆ Fact Recall, Heuristics or Pure Guesswork? Precise Interpretations of Language Models for Fact Completion ACL
Language models (LMs) can make a correct prediction based on many possible signals in a prompt, not all corresponding to recall of factual associations. However, current interpretations of LMs fail to take this into account. For example, given the query "Astrid Lindgren was born in" with the corresponding completion "Sweden", no difference is made between whether the prediction was based on knowing where the author was born or assuming that a person with a Swedish-sounding name was born in Sweden. In this paper, we present a model-specific recipe - PrISM - for constructing datasets with examples of four different prediction scenarios: generic language modeling, guesswork, heuristics recall and exact fact recall. We apply two popular interpretability methods to the scenarios: causal tracing (CT) and information flow analysis. We find that both yield distinct results for each scenario. Results for exact fact recall and generic language modeling scenarios confirm previous conclusions about the importance of mid-range MLP sublayers for fact recall, while results for guesswork and heuristics indicate a critical role of late last token position MLP sublayers. In summary, we contribute resources for a more extensive and granular study of fact completion in LMs, together with analyses that provide a more nuanced understanding of how LMs process fact-related queries.
comment: accepted to ACL Findings 2025
♻ ☆ Efficient Domain-adaptive Continual Pretraining for the Process Industry in the German Language
Domain-adaptive continual pretraining (DAPT) is a state-of-the-art technique that further trains a language model (LM) on its pretraining task, e.g., masked language modeling (MLM), when common domain adaptation via LM fine-tuning is not possible due to a lack of labeled task data. Although popular, MLM requires a significant corpus of domain-related data, which is difficult to obtain for specific domains in languages other than English, such as the process industry in the German language. This paper introduces an efficient approach called ICL-augmented pretraining or ICL-APT that leverages in-context learning (ICL) and k-nearest neighbors (kNN) to augment target data with domain-related and in-domain texts, significantly reducing GPU time while maintaining strong model performance. Our results show that the best configuration of ICL-APT performed better than the state-of-the-art DAPT by 28.7% (7.87 points) and requires almost 4 times less GPU-computing time, providing a cost-effective solution for industries with limited computational capacity. The findings highlight the broader applicability of this framework to other low-resource industries, making NLP-based solutions more accessible and feasible in production environments.
comment: accepted to TSD 2025
♻ ☆ Integrating Expert Labels into LLM-based Emission Goal Detection: Example Selection vs Automatic Prompt Design
We address the detection of emission reduction goals in corporate reports, an important task for monitoring companies' progress in addressing climate change. Specifically, we focus on the issue of integrating expert feedback in the form of labeled example passages into LLM-based pipelines, and compare the two strategies of (1) a dynamic selection of few-shot examples and (2) the automatic optimization of the prompt by the LLM itself. Our findings on a public dataset of 769 climate-related passages from real-world business reports indicate that automatic prompt optimization is the superior approach, while combining both methods provides only limited benefit. Qualitative results indicate that optimized prompts do indeed capture many intricacies of the targeted emission goal extraction task.
♻ ☆ DiReCT: Diagnostic Reasoning for Clinical Notes via Large Language Models NeurIPS 2024
Large language models (LLMs) have recently showcased remarkable capabilities, spanning a wide range of tasks and applications, including those in the medical domain. Models like GPT-4 excel in medical question answering but may face challenges in the lack of interpretability when handling complex tasks in real clinical settings. We thus introduce the diagnostic reasoning dataset for clinical notes (DiReCT), aiming at evaluating the reasoning ability and interpretability of LLMs compared to human doctors. It contains 511 clinical notes, each meticulously annotated by physicians, detailing the diagnostic reasoning process from observations in a clinical note to the final diagnosis. Additionally, a diagnostic knowledge graph is provided to offer essential knowledge for reasoning, which may not be covered in the training data of existing LLMs. Evaluations of leading LLMs on DiReCT bring out a significant gap between their reasoning ability and that of human doctors, highlighting the critical need for models that can reason effectively in real-world clinical scenarios.
comment: Accepted by NeurIPS 2024 D&B Track
♻ ☆ An evaluation of LLMs and Google Translate for translation of selected Indian languages via sentiment and semantic analyses
Large Language models (LLMs) have been prominent for language translation, including low-resource languages. There has been limited study on the assessment of the quality of translations generated by LLMs, including Gemini, GPT, and Google Translate. This study addresses this limitation by using semantic and sentiment analysis of selected LLMs for Indian languages, including Sanskrit, Telugu and Hindi. We select prominent texts (Bhagavad Gita, Tamas and Maha Prasthanam ) that have been well translated by experts and use LLMs to generate their translations into English, and provide a comparison with selected expert (human) translations. Our investigation revealed that while LLMs have made significant progress in translation accuracy, challenges remain in preserving sentiment and semantic integrity, especially in metaphorical and philosophical contexts for texts such as the Bhagavad Gita. The sentiment analysis revealed that GPT models are better at preserving the sentiment polarity for the given texts when compared to human (expert) translation. The results revealed that GPT models are generally better at maintaining the sentiment and semantics when compared to Google Translate. This study could help in the development of accurate and culturally sensitive translation systems for large language models.
♻ ☆ SAGE: Steering Dialog Generation with Future-Aware State-Action Augmentation
Recent advances in large language models have demonstrated impressive capabilities in task-oriented applications, yet building emotionally intelligent chatbots that can engage in natural, strategic conversations remains a challenge. We present a novel approach called SAGE that uses latent variables to control long-horizon behavior in dialogue generation. At the core of our method is the State-Action Chain (SAC), which augments standard language model fine-tuning by introducing latent variables that encapsulate emotional states and conversational strategies between dialogue turns. During inference, these variables are generated before each response, enabling coarse-grained control over dialogue progression while maintaining natural interaction patterns. We also introduce a self-improvement pipeline that leverages dialogue tree search, LLM-based reward modeling, and targeted fine-tuning to optimize conversational trajectories. Our experimental results show that models trained with this approach demonstrate improved performance in emotional intelligence metrics while maintaining strong capabilities on LLM benchmarks. The discrete nature of our latent variables facilitates search-based strategies and provides a foundation for future applications of reinforcement learning to dialogue systems, where learning can occur at the state level rather than the token level. https://github.com/apple/ml-sage-dialog-gen
comment: 9 pages main text
♻ ☆ Learning-to-Context Slope: Evaluating In-Context Learning Effectiveness Beyond Performance Illusions
In-context learning (ICL) has emerged as an effective approach to enhance the performance of large language models (LLMs). However, its effectiveness varies significantly across models and tasks, posing challenges for practitioners to determine when ICL reliably improves performance. Current evaluation approaches, reliant on performance change after applying ICL, suffer from low reliability, poor attribution, and impracticality in data-insufficient scenarios. We propose the Learning-to-Context Slope (LCS), a novel metric that quantifies ICL effectiveness by modeling the slope between learning gain (loss decrease from demonstrations) and contextual relevance (demonstration-input relevance). LCS addresses key limitations of performance-based metrics: (1) it captures continuous loss changes even when outputs are incorrect, improving reliability; (2) its formulation attributes ICL failures to weak contextual alignment (inability to adapt inputs to demonstrations) or strong output calibration (self-verification of correctness); and (3) it minimizes reliance on labeled data via synthetic evaluation. Extensive experiments demonstrate that LCS strongly correlates with performance improvements in labeled settings and reliably reflects true effectiveness in biased or data-scarce scenarios. Further analysis reveals actionable thresholds for LCS and identifies model capabilities critical to ICL success.
♻ ☆ ResearchBench: Benchmarking LLMs in Scientific Discovery via Inspiration-Based Task Decomposition
Large language models (LLMs) have demonstrated potential in assisting scientific research, yet their ability to discover high-quality research hypotheses remains unexamined due to the lack of a dedicated benchmark. To address this gap, we introduce the first large-scale benchmark for evaluating LLMs with a near-sufficient set of sub-tasks of scientific discovery: inspiration retrieval, hypothesis composition, and hypothesis ranking. We develop an automated framework that extracts critical components - research questions, background surveys, inspirations, and hypotheses - from scientific papers across 12 disciplines, with expert validation confirming its accuracy. To prevent data contamination, we focus exclusively on papers published in 2024, ensuring minimal overlap with LLM pretraining data. Our evaluation reveals that LLMs perform well in retrieving inspirations, an out-of-distribution task, suggesting their ability to surface novel knowledge associations. This positions LLMs as "research hypothesis mines", capable of facilitating automated scientific discovery by generating innovative hypotheses at scale with minimal human intervention.
♻ ☆ ComRAG: Retrieval-Augmented Generation with Dynamic Vector Stores for Real-time Community Question Answering in Industry ACL 2025
Community Question Answering (CQA) platforms can be deemed as important knowledge bases in community, but effectively leveraging historical interactions and domain knowledge in real-time remains a challenge. Existing methods often underutilize external knowledge, fail to incorporate dynamic historical QA context, or lack memory mechanisms suited for industrial deployment. We propose ComRAG, a retrieval-augmented generation framework for real-time industrial CQA that integrates static knowledge with dynamic historical QA pairs via a centroid-based memory mechanism designed for retrieval, generation, and efficient storage. Evaluated on three industrial CQA datasets, ComRAG consistently outperforms all baselines--achieving up to 25.9% improvement in vector similarity, reducing latency by 8.7% to 23.3%, and lowering chunk growth from 20.23% to 2.06% over iterations.
comment: 7 pages, 4 figures. Accepted at ACL 2025 Industry Track
♻ ☆ Revisiting Epistemic Markers in Confidence Estimation: Can Markers Accurately Reflect Large Language Models' Uncertainty? ACL2025
As large language models (LLMs) are increasingly used in high-stakes domains, accurately assessing their confidence is crucial. Humans typically express confidence through epistemic markers (e.g., "fairly confident") instead of numerical values. However, it remains unclear whether LLMs consistently use these markers to reflect their intrinsic confidence due to the difficulty of quantifying uncertainty associated with various markers. To address this gap, we first define marker confidence as the observed accuracy when a model employs an epistemic marker. We evaluate its stability across multiple question-answering datasets in both in-distribution and out-of-distribution settings for open-source and proprietary LLMs. Our results show that while markers generalize well within the same distribution, their confidence is inconsistent in out-of-distribution scenarios. These findings raise significant concerns about the reliability of epistemic markers for confidence estimation, underscoring the need for improved alignment between marker based confidence and actual model uncertainty. Our code is available at https://github.com/HKUST-KnowComp/MarCon.
comment: ACL2025 Main
♻ ☆ RadZero: Similarity-Based Cross-Attention for Explainable Vision-Language Alignment in Radiology with Zero-Shot Multi-Task Capability
Recent advancements in multi-modal models have significantly improved vision-language (VL) alignment in radiology. However, existing approaches struggle to effectively utilize complex radiology reports for learning and offer limited interpretability through attention probability visualizations. To address these challenges, we introduce RadZero, a novel framework for VL alignment in radiology with zero-shot multi-task capability. A key component of our approach is VL-CABS (Vision-Language Cross-Attention Based on Similarity), which aligns text embeddings with local image features for interpretable, fine-grained VL reasoning. RadZero leverages large language models to extract concise semantic sentences from radiology reports and employs multi-positive contrastive training to effectively capture relationships between images and multiple relevant textual descriptions. It uses a pre-trained vision encoder with additional trainable Transformer layers, allowing efficient high-resolution image processing. By computing similarity between text embeddings and local image patch features, VL-CABS enables zero-shot inference with similarity probability for classification, and pixel-level VL similarity maps for grounding and segmentation. Experimental results on public chest radiograph benchmarks show that RadZero outperforms state-of-the-art methods in zero-shot classification, grounding, and segmentation. Furthermore, VL similarity map analysis highlights the potential of VL-CABS for improving explainability in VL alignment. Additionally, qualitative evaluation demonstrates RadZero's capability for open-vocabulary semantic segmentation, further validating its effectiveness in medical imaging.
♻ ☆ Generative Representational Learning of Foundation Models for Recommendation
Developing a single foundation model with the capability to excel across diverse tasks has been a long-standing objective in the field of artificial intelligence. As the wave of general-purpose foundation models sweeps across various domains, their influence has significantly extended to the field of recommendation systems. While recent efforts have explored recommendation foundation models for various generative tasks, they often overlook crucial embedding tasks and struggle with the complexities of multi-task learning, including knowledge sharing & conflict resolution, and convergence speed inconsistencies. To address these limitations, we introduce RecFound, a generative representational learning framework for recommendation foundation models. We construct the first comprehensive dataset for recommendation foundation models covering both generative and embedding tasks across diverse scenarios. Based on this dataset, we propose a novel multi-task training scheme featuring a Task-wise Mixture of Low-rank Experts (TMoLE) to handle knowledge sharing & conflict, a Step-wise Convergence-oriented Sample Scheduler (S2Sched) to address inconsistent convergence, and a Model Merge module to balance the performance across tasks. Experiments demonstrate that RecFound achieves state-of-the-art performance across various recommendation tasks, outperforming existing baselines.
comment: Project page is available at https://junkfood436.github.io/RecFound/
♻ ☆ Pipelined Decoder for Efficient Context-Aware Text Generation
As the basis of generative AI, an autoregressive model requires the generation of a new token depending on all the previously generated tokens, which brings high quality but also restricts the model to generate tokens one by one, forming a bottleneck limiting the generation speed. In this paper, we propose a new decoder architecture that efficiently generates text in parallel for context-aware generation tasks. Our proposed pipelined decoder initiates the generation of multiple subsequences simultaneously, and, at each time-step, it generates a new token for each subsequence to realize parallelism. Experiments on multiple text generation tasks, including question answering, text summarization, and keyphrase generation, show that our pipelined decoder significantly improves the generation speed without a significant loss of generation quality or additional memory consumption.
♻ ☆ Parameter-Efficient Fine-Tuning via Circular Convolution ACL 2025
Low-Rank Adaptation (LoRA) has gained popularity for fine-tuning large foundation models, leveraging low-rank matrices $\mathbf{A}$ and $\mathbf{B}$ to represent weight changes (i.e., $\Delta \mathbf{W} = \mathbf{B} \mathbf{A}$). This method reduces trainable parameters and mitigates heavy memory consumption associated with full delta matrices by sequentially multiplying $\mathbf{A}$ and $\mathbf{B}$ with the activation. Despite its success, the intrinsic low-rank characteristic may limit its performance. Although several variants have been proposed to address this issue, they often overlook the crucial computational and memory efficiency brought by LoRA. In this paper, we propose Circular Convolution Adaptation (C$^3$A), which not only achieves high-rank adaptation with enhanced performance but also excels in both computational power and memory utilization. Extensive experiments demonstrate that C$^3$A consistently outperforms LoRA and its variants across various fine-tuning tasks.
comment: ACL 2025
♻ ☆ Two-Stage Regularization-Based Structured Pruning for LLMs
The deployment of large language models (LLMs) is largely hindered by their large number of parameters. Structural pruning has emerged as a promising solution. Prior structured pruning methods directly remove unimportant parameters based on certain metrics, which often causes knowledge loss and necessitates extensive retraining. To overcome this, we introduce a novel pruning method TRSP: Two-Stage Regularization-Based Structured Pruning for LLMs. Specifically, we multiply the output of each transformer layer by an initial learnable weight and iteratively learn these weights by adding their $\ell_1$-norm as a regularization term to the loss function, serving as the first-stage regularization. Subsequently, we apply additional regularization to the difference between the output and input of layers with smaller weights, encouraging the shift of knowledge to the preserved layers. This serves as the second-stage regularization. TRSP retains more knowledge and better preserves model performance than direct parameter elimination. Through extensive experimentation we show that TRSP outperforms strong layer-wise structured pruning methods without requiring retraining. As a layer-wise pruning method, it delivers notable end-to-end acceleration, making it a promising solution for efficient LLM deployment.
♻ ☆ Graft: Integrating the Domain Knowledge via Efficient Parameter Synergy for MLLMs
Multimodal Large Language Models (MLLMs) have achieved success across various domains. However, their applicability tends to degrade when confronted with different types of data inputs, especially for MLLMs that have been fine-tuned for specific tasks. Despite its importance, the study of knowledge sharing among domain-specific MLLMs--such as those trained for mathematics or code--remains largely underexplored. To address the fragmentation of knowledge across domain-specialized MLLMs, we propose a unified parameter integration framework that enables modular composition of expert capabilities. Our method is grounded in a novel Compatibility-Aware Parameter Splicing (CAPS) strategy, which leverages both local functional attribution and global information-theoretic signals to guide selective parameter fusion. By extending this mechanism to the low-rank adaptation layer granularity, we ensure efficient integration with minimal inference overhead. Furthermore, we introduce a domain compatibility scoring mechanism that quantifies inter-expert alignment at the activation level and correlates with downstream task utility. This principled fusion protocol allows the final model to synergize heterogeneous expertise while preserving structural modularity. Extensive evaluations across diverse multimodal benchmarks validate the effectiveness of our framework, offering a scalable path toward compositional, domain-adaptive MLLMs.
♻ ☆ BlockDialect: Block-wise Fine-grained Mixed Format Quantization for Energy-Efficient LLM Inference ICML 2025
The rapidly increasing size of large language models (LLMs) presents significant challenges in memory usage and computational costs. Quantizing both weights and activations can address these issues, with hardware-supported fine-grained scaling emerging as a promising solution to mitigate outliers. However, existing methods struggle to capture nuanced block data distributions. We propose BlockDialect, a block-wise fine-grained mixed format technique that assigns a per-block optimal number format from a formatbook for better data representation. Additionally, we introduce DialectFP4, a formatbook of FP4 variants (akin to dialects) that adapt to diverse data distributions. To leverage this efficiently, we propose a two-stage approach for online DialectFP4 activation quantization. Importantly, DialectFP4 ensures energy efficiency by selecting representable values as scaled integers compatible with low-precision integer arithmetic. BlockDialect achieves 10.78% (7.48%) accuracy gain on the LLaMA3-8B (LLaMA2-7B) model compared to MXFP4 format with lower bit usage per data, while being only 5.45% (2.69%) below full precision even when quantizing full-path matrix multiplication. Focusing on how to represent over how to scale, our work presents a promising path for energy-efficient LLM inference.
comment: ICML 2025
♻ ☆ DALR: Dual-level Alignment Learning for Multimodal Sentence Representation Learning ACL 2025
Previous multimodal sentence representation learning methods have achieved impressive performance. However, most approaches focus on aligning images and text at a coarse level, facing two critical challenges:cross-modal misalignment bias and intra-modal semantic divergence, which significantly degrade sentence representation quality. To address these challenges, we propose DALR (Dual-level Alignment Learning for Multimodal Sentence Representation). For cross-modal alignment, we propose a consistency learning module that softens negative samples and utilizes semantic similarity from an auxiliary task to achieve fine-grained cross-modal alignment. Additionally, we contend that sentence relationships go beyond binary positive-negative labels, exhibiting a more intricate ranking structure. To better capture these relationships and enhance representation quality, we integrate ranking distillation with global intra-modal alignment learning. Comprehensive experiments on semantic textual similarity (STS) and transfer (TR) tasks validate the effectiveness of our approach, consistently demonstrating its superiority over state-of-the-art baselines.
comment: Accepted by ACL 2025 Findings
♻ ☆ Flexora: Flexible Low Rank Adaptation for Large Language Models
Large Language Models (LLMs) are driving advancements in artificial intelligence by increasing the scale of model parameters, which has significantly enhanced generalization ability and unlocked new capabilities in practice. However, their performance in specific downstream tasks is usually hindered by their knowledge boundaries on these tasks. Thus, fine-tuning techniques, especially the widely used Low-Rank Adaptation (LoRA) method, have been introduced to expand the boundaries on these tasks, whereas LoRA would underperform on certain tasks owing to its potential overfitting on these tasks. To overcome this overfitting and improve the performance of LoRA, we propose the flexible low rank adaptation (Flexora) method to automatically and flexibly select the most important layers needing to be fine-tuned to achieve the best performance on different downstream tasks. Specifically, Flexora firstly frames this layer selection problem as a well-defined hyperparameter optimization (HPO) problem, then addresses it using the unrolled differentiation (UD) method, and finally selects the most useful layers based on the optimized hyperparameters. Our extensive experiments on many pretrained models and natural language tasks show that Flexora is able to consistently improve over the existing baselines, indicating the effectiveness of our Flexora in practice. We additionally provide insightful theoretical results and many ablation studies to deliver a comprehensive understanding of our Flexora.
comment: 40 pages, 15 figures
♻ ☆ SPIRAL: Self-Play on Zero-Sum Games Incentivizes Reasoning via Multi-Agent Multi-Turn Reinforcement Learning
Recent advances in reinforcement learning have shown that language models can develop sophisticated reasoning through training on tasks with verifiable rewards, but these approaches depend on human-curated problem-answer pairs and domain-specific reward engineering. We introduce SPIRAL, a self-play framework where models learn by playing multi-turn, zero-sum games against continuously improving versions of themselves, eliminating the need for human supervision. Through self-play, SPIRAL generates an infinite curriculum of progressively challenging problems as models must constantly adapt to stronger opponents. To enable this self-play training at scale, We implement a fully online, multi-turn, multi-agent reinforcement learning system for LLMs and propose role-conditioned advantage estimation (RAE) to stabilize multi-agent training. Using SPIRAL, self-play on zero-sum games produces reasoning capabilities that transfer broadly. Training Qwen3-4B-Base on Kuhn Poker alone achieves 8.6% improvement on math and 8.4% on general reasoning, outperforming SFT on 25,000 expert game trajectories. Analysis reveals that this transfer occurs through three cognitive patterns: systematic decomposition, expected value calculation, and case-by-case analysis. Multi-game training (TicTacToe, Kuhn Poker, Simple Negotiation) further enhances performance as each game develops distinct reasoning strengths. Applying SPIRAL to a strong reasoning model (DeepSeek-R1-Distill-Qwen-7B) can still lead to 2.0% average improvement. These results demonstrate that zero-sum games naturally develop transferable reasoning capabilities, highlighting a promising direction for autonomous reasoning development.
comment: Work in Progress
♻ ☆ Teaching Audio-Aware Large Language Models What Does Not Hear: Mitigating Hallucinations through Synthesized Negative Samples
Recent advancements in audio-aware large language models (ALLMs) enable them to process and understand audio inputs. However, these models often hallucinate non-existent sound events, reducing their reliability in real-world applications. To address this, we propose LISTEN (Learning to Identify Sounds Through Extended Negative Samples), a contrastive-like training method that enhances ALLMs' ability to distinguish between present and absent sounds using synthesized data from the backbone LLM. Unlike prior approaches, our method requires no modification to LLM parameters and efficiently integrates audio representations via a lightweight adapter. Experiments show that LISTEN effectively mitigates hallucinations while maintaining impressive performance on existing audio question and reasoning benchmarks. At the same time, it is more efficient in both data and computation.
comment: Accepted to Interspeech 2025. Project Website: https://kuan2jiu99.github.io/Balsa
♻ ☆ Seeking and Updating with Live Visual Knowledge
The visual world around us constantly evolves, from real-time news and social media trends to global infrastructure changes visible through satellite imagery and augmented reality enhancements. However, Multimodal Large Language Models (MLLMs), which automate many tasks, struggle to stay current, limited by the cutoff dates in their fixed training datasets. To quantify this stagnation, we introduce LiveVQA, the first-of-its-kind dataset featuring 107,143 samples and 12 categories data specifically designed to support research in both seeking and updating with live visual knowledge. Drawing from recent news articles, video platforms, and academic publications in April 2024-May 2025, LiveVQA enables evaluation of how models handle latest visual information beyond their knowledge boundaries and how current methods help to update them. Our comprehensive benchmarking of 17 state-of-the-art MLLMs reveals significant performance gaps on content beyond knowledge cutoff, and tool-use or agentic visual seeking framework drastically gain an average of 327% improvement. Furthermore, we explore parameter-efficient fine-tuning (PEFT) methods to update MLLMs with new visual knowledge. We dive deeply to the critical balance between adapter capacity and model capability when updating MLLMs with new visual knowledge. All the experimental dataset and source code are publicly available at: https://livevqa.github.io.
comment: Preprint. Under Review
♻ ☆ SPADE: Structured Prompting Augmentation for Dialogue Enhancement in Machine-Generated Text Detection ACL
The increasing capability of large language models (LLMs) to generate synthetic content has heightened concerns about their misuse, driving the development of Machine-Generated Text (MGT) detection models. However, these detectors face significant challenges due to the lack of high-quality synthetic datasets for training. To address this issue, we propose SPADE, a structured framework for detecting synthetic dialogues using prompt-based positive and negative samples. Our proposed methods yield 14 new dialogue datasets, which we benchmark against eight MGT detection models. The results demonstrate improved generalization performance when utilizing a mixed dataset produced by proposed augmentation frameworks, offering a practical approach to enhancing LLM application security. Considering that real-world agents lack knowledge of future opponent utterances, we simulate online dialogue detection and examine the relationship between chat history length and detection accuracy. Our open-source datasets, code and prompts can be downloaded from https://github.com/AngieYYF/SPADE-customer-service-dialogue.
comment: ACL LLMSEC
♻ ☆ A Survey on Uncertainty Quantification of Large Language Models: Taxonomy, Open Research Challenges, and Future Directions
The remarkable performance of large language models (LLMs) in content generation, coding, and common-sense reasoning has spurred widespread integration into many facets of society. However, integration of LLMs raises valid questions on their reliability and trustworthiness, given their propensity to generate hallucinations: plausible, factually-incorrect responses, which are expressed with striking confidence. Previous work has shown that hallucinations and other non-factual responses generated by LLMs can be detected by examining the uncertainty of the LLM in its response to the pertinent prompt, driving significant research efforts devoted to quantifying the uncertainty of LLMs. This survey seeks to provide an extensive review of existing uncertainty quantification methods for LLMs, identifying their salient features, along with their strengths and weaknesses. We present existing methods within a relevant taxonomy, unifying ostensibly disparate methods to aid understanding of the state of the art. Furthermore, we highlight applications of uncertainty quantification methods for LLMs, spanning chatbot and textual applications to embodied artificial intelligence applications in robotics. We conclude with open research challenges in uncertainty quantification of LLMs, seeking to motivate future research.
♻ ☆ Reasoning about Uncertainty: Do Reasoning Models Know When They Don't Know?
Reasoning language models have set state-of-the-art (SOTA) records on many challenging benchmarks, enabled by multi-step reasoning induced using reinforcement learning. However, like previous language models, reasoning models are prone to generating confident, plausible responses that are incorrect (hallucinations). Knowing when and how much to trust these models is critical to the safe deployment of reasoning models in real-world applications. To this end, we explore uncertainty quantification of reasoning models in this work. Specifically, we ask three fundamental questions: First, are reasoning models well-calibrated? Second, does deeper reasoning improve model calibration? Finally, inspired by humans' innate ability to double-check their thought processes to verify the validity of their answers and their confidence, we ask: can reasoning models improve their calibration by explicitly reasoning about their chain-of-thought traces? We introduce introspective uncertainty quantification (UQ) to explore this direction. In extensive evaluations on SOTA reasoning models across a broad range of benchmarks, we find that reasoning models: (i) are typically overconfident, with self-verbalized confidence estimates often greater than 85% particularly for incorrect responses, (ii) become even more overconfident with deeper reasoning, and (iii) can become better calibrated through introspection (e.g., o3-Mini and DeepSeek R1) but not uniformly (e.g., Claude 3.7 Sonnet becomes more poorly calibrated). Lastly, we conclude with important research directions to design necessary UQ benchmarks and improve the calibration of reasoning models.
♻ ☆ Squat: Quant Small Language Models on the Edge
A growing trend has emerged in designing high-quality Small Language Models (SLMs) with a few million parameters. This trend is driven by the increasing concerns over cloud costs, privacy, and latency. Considering that full parameter training is feasible for SLMs on mobile devices, Quantization-Aware Training (QAT) is employed to improve efficiency by reducing computational overhead and memory footprint. However, previous QAT works adopt fine-grained quantization methods to compress models with billions of parameters on GPUs, incompatible with current commodity hardware, such as mobile and edge devices, which relies on Single Instruction Multiple Data (SIMD) instructions. Thus, the generalization of these methods to SLMs on mobile devices is limited. In this paper, we propose Squat method, an effective QAT framework with deployable quantization for SLMs on mobile devices. Specifically, we propose entropy-guided and distribution-aligned distillation to mitigate the distortion of attention information from quantization. Besides, we employ sub-8-bit token adaptive quantization, assigning varying bit widths to different tokens based on their importance. Furthermore, we develop a SIMD-based Multi-Kernel Mixed-Precision (MKMP) multiplier to support sub-8-bit mixed-precision MAC on mobile devices. Our extensive experiments verify the substantial improvements of our method compared to other QAT methods across various datasets. Furthermore, we achieve an on-device speedup of up to 2.37x compared with its FP16 counterparts, signaling a great advancement. Code: https://github.com/shawnricecake/squant
comment: Accepeted by ICCAD 2025
♻ ☆ Self-reflective Uncertainties: Do LLMs Know Their Internal Answer Distribution?
To reveal when a large language model (LLM) is uncertain about a response, uncertainty quantification commonly produces percentage numbers along with the output. But is this all we can do? We argue that in the output space of LLMs, the space of strings, exist strings expressive enough to summarize the distribution over output strings the LLM deems possible. We lay a foundation for this new avenue of uncertainty explication and present SelfReflect, a theoretically-motivated metric to assess how faithfully a string summarizes an LLM's internal answer distribution. We show that SelfReflect is able to discriminate even subtle differences of candidate summary strings and that it aligns with human judgement, outperforming alternative metrics such as LLM judges and embedding comparisons. With SelfReflect, we investigate a number of self-summarization methods and find that even state-of-the-art reasoning models struggle to explicate their internal uncertainty. But we find that faithful summarizations can be generated by sampling and summarizing. To support the development of this universal form of LLM uncertainties, we publish our metric at https://github.com/apple/ml-selfreflect
Divergent Creativity in Humans and Large Language Models
The recent surge of Large Language Models (LLMs) has led to claims that they are approaching a level of creativity akin to human capabilities. This idea has sparked a blend of excitement and apprehension. However, a critical piece that has been missing in this discourse is a systematic evaluation of LLMs' semantic diversity, particularly in comparison to human divergent thinking. To bridge this gap, we leverage recent advances in computational creativity to analyze semantic divergence in both state-of-the-art LLMs and a substantial dataset of 100,000 humans. We found evidence that LLMs can surpass average human performance on the Divergent Association Task, and approach human creative writing abilities, though they fall short of the typical performance of highly creative humans. Notably, even the top performing LLMs are still largely surpassed by highly creative individuals, underscoring a ceiling that current LLMs still fail to surpass. Our human-machine benchmarking framework addresses the polemic surrounding the imminent replacement of human creative labour by AI, disentangling the quality of the respective creative linguistic outputs using established objective measures. While prompting deeper exploration of the distinctive elements of human inventive thought compared to those of AI systems, we lay out a series of techniques to improve their outputs with respect to semantic diversity, such as prompt design and hyper-parameter tuning.
comment: First two and last listed authors are corresponding authors. The first two listed authors contributed equally to this work
♻ ☆ BioPars: A Pretrained Biomedical Large Language Model for Persian Biomedical Text Mining
Large Language Models (LLMs) have recently gained attention in the life sciences due to their capacity to model, extract, and apply complex biological information. Beyond their classical use as chatbots, these systems are increasingly used for complex analysis and problem-solving in specialized fields, including bioinformatics. First, we introduce BIOPARS-BENCH, a dataset from over 10,000 scientific articles, textbooks, and medical websites. BioParsQA was also introduced to evaluate the proposed model, which consists of 5,231 Persian medical questions and answers. This study then introduces BioPars, a simple but accurate measure designed to assess LLMs for three main abilities: acquiring subject-specific knowledge, interpreting and synthesizing such knowledge, and demonstrating proper evidence. Comparing ChatGPT, Llama, and Galactica, our study highlights their ability to remember and retrieve learned knowledge but also reveals shortcomings in addressing higher-level, real-world questions and fine-grained inferences. These findings indicate the need for further fine-tuning to address the capabilities of LLM in bioinformatics tasks. To our knowledge, BioPars is the first application of LLM in Persian medical QA, especially for generating long answers. Evaluation of four selected medical QA datasets shows that BioPars has achieved remarkable results compared to comparative approaches. The model on BioParsQA achieved a ROUGE-L score of 29.99, which is an improvement over GPT-4 1.0. The model achieved a BERTScore of 90.87 with the MMR method. The MoverScore and BLEURT values were also higher in this model than the other three models. In addition, the reported scores for the model are MoverScore=60.43 and BLEURT=50.78. BioPars is an ongoing project and all resources related to its development will be made available via the following GitHub repository: https://github.com/amirap80/BioPars.
Computer Vision and Pattern Recognition 60
♻ ☆ Defensive Adversarial CAPTCHA: A Semantics-Driven Framework for Natural Adversarial Example Generation
Traditional CAPTCHA (Completely Automated Public Turing Test to Tell Computers and Humans Apart) schemes are increasingly vulnerable to automated attacks powered by deep neural networks (DNNs). Existing adversarial attack methods often rely on the original image characteristics, resulting in distortions that hinder human interpretation and limit their applicability in scenarios where no initial input images are available. To address these challenges, we propose the Unsourced Adversarial CAPTCHA (DAC), a novel framework that generates high-fidelity adversarial examples guided by attacker-specified semantics information. Leveraging a Large Language Model (LLM), DAC enhances CAPTCHA diversity and enriches the semantic information. To address various application scenarios, we examine the white-box targeted attack scenario and the black box untargeted attack scenario. For target attacks, we introduce two latent noise variables that are alternately guided in the diffusion step to achieve robust inversion. The synergy between gradient guidance and latent variable optimization achieved in this way ensures that the generated adversarial examples not only accurately align with the target conditions but also achieve optimal performance in terms of distributional consistency and attack effectiveness. In untargeted attacks, especially for black-box scenarios, we introduce bi-path unsourced adversarial CAPTCHA (BP-DAC), a two-step optimization strategy employing multimodal gradients and bi-path optimization for efficient misclassification. Experiments show that the defensive adversarial CAPTCHA generated by BP-DAC is able to defend against most of the unknown models, and the generated CAPTCHA is indistinguishable to both humans and DNNs.
comment: 13 pages, 6 figures
♻ ☆ Training Free Stylized Abstraction
Stylized abstraction synthesizes visually exaggerated yet semantically faithful representations of subjects, balancing recognizability with perceptual distortion. Unlike image-to-image translation, which prioritizes structural fidelity, stylized abstraction demands selective retention of identity cues while embracing stylistic divergence, especially challenging for out-of-distribution individuals. We propose a training-free framework that generates stylized abstractions from a single image using inference-time scaling in vision-language models (VLLMs) to extract identity-relevant features, and a novel cross-domain rectified flow inversion strategy that reconstructs structure based on style-dependent priors. Our method adapts structural restoration dynamically through style-aware temporal scheduling, enabling high-fidelity reconstructions that honor both subject and style. It supports multi-round abstraction-aware generation without fine-tuning. To evaluate this task, we introduce StyleBench, a GPT-based human-aligned metric suited for abstract styles where pixel-level similarity fails. Experiments across diverse abstraction (e.g., LEGO, knitted dolls, South Park) show strong generalization to unseen identities and styles in a fully open-source setup.
comment: Project Page: https://kartik-3004.github.io/TF-SA/
♻ ☆ Prompt-Guided Latent Diffusion with Predictive Class Conditioning for 3D Prostate MRI Generation
Objective: Latent diffusion models (LDM) could alleviate data scarcity challenges affecting machine learning development for medical imaging. However, medical LDM strategies typically rely on short-prompt text encoders, non-medical LDMs, or large data volumes. These strategies can limit performance and scientific accessibility. We propose a novel LDM conditioning approach to address these limitations. Methods: We propose Class-Conditioned Efficient Large Language model Adapter (CCELLA), a novel dual-head conditioning approach that simultaneously conditions the LDM U-Net with free-text clinical reports and radiology classification. We also propose a data-efficient LDM framework centered around CCELLA and a proposed joint loss function. We first evaluate our method on 3D prostate MRI against state-of-the-art. We then augment a downstream classifier model training dataset with synthetic images from our method. Results: Our method achieves a 3D FID score of 0.025 on a size-limited 3D prostate MRI dataset, significantly outperforming a recent foundation model with FID 0.071. When training a classifier for prostate cancer prediction, adding synthetic images generated by our method during training improves classifier accuracy from 69% to 74%. Training a classifier solely on our method's synthetic images achieved comparable performance to training on real images alone. Conclusion: We show that our method improved both synthetic image quality and downstream classifier performance using limited data and minimal human annotation. Significance: The proposed CCELLA-centric framework enables radiology report and class-conditioned LDM training for high-quality medical image synthesis given limited data volume and human data annotation, improving LDM performance and scientific accessibility. Code from this study will be available at https://github.com/grabkeem/CCELLA
comment: MAH and BT are co-senior authors on the work. This work has been submitted to the IEEE for possible publication
♻ ☆ Learning from Videos for 3D World: Enhancing MLLMs with 3D Vision Geometry Priors
Previous research has investigated the application of Multimodal Large Language Models (MLLMs) in understanding 3D scenes by interpreting them as videos. These approaches generally depend on comprehensive 3D data inputs, such as point clouds or reconstructed Bird's-Eye View (BEV) maps. In our research, we advance this field by enhancing the capability of MLLMs to understand and reason in 3D spaces directly from video data, without the need for additional 3D input. We propose a novel and efficient method, the Video-3D Geometry Large Language Model (VG LLM). Our approach employs a 3D visual geometry encoder that extracts 3D prior information from video sequences. This information is integrated with visual tokens and fed into the MLLM. Extensive experiments have shown that our method has achieved substantial improvements in various tasks related to 3D scene understanding and spatial reasoning, all directly learned from video sources. Impressively, our 4B model, which does not rely on explicit 3D data inputs, achieves competitive results compared to existing state-of-the-art methods, and even surpasses the Gemini-1.5-Pro in the VSI-Bench evaluations.
♻ ☆ Bridging SFT and DPO for Diffusion Model Alignment with Self-Sampling Preference Optimization
Existing post-training techniques are broadly categorized into supervised fine-tuning (SFT) and reinforcement learning (RL) methods; the former is stable during training but suffers from limited generalization, while the latter, despite its stronger generalization capability, relies on additional preference data or reward models and carries the risk of reward exploitation. In order to preserve the advantages of both SFT and RL -- namely, eliminating the need for paired data and reward models while retaining the training stability of SFT and the generalization ability of RL -- a new alignment method, Self-Sampling Preference Optimization (SSPO), is proposed in this paper. SSPO introduces a Random Checkpoint Replay (RCR) strategy that utilizes historical checkpoints to construct paired data, thereby effectively mitigating overfitting. Simultaneously, a Self-Sampling Regularization (SSR) strategy is employed to dynamically evaluate the quality of generated samples; when the generated samples are more likely to be winning samples, the approach automatically switches from DPO (Direct Preference Optimization) to SFT, ensuring that the training process accurately reflects the quality of the samples. Experimental results demonstrate that SSPO not only outperforms existing methods on text-to-image benchmarks, but its effectiveness has also been validated in text-to-video tasks. We validate SSPO across both text-to-image and text-to-video benchmarks. SSPO surpasses all previous approaches on the text-to-image benchmarks and demonstrates outstanding performance on the text-to-video benchmarks.
♻ ☆ AdaptoVision: A Multi-Resolution Image Recognition Model for Robust and Scalable Classification
This paper introduces AdaptoVision, a novel convolutional neural network (CNN) architecture designed to efficiently balance computational complexity and classification accuracy. By leveraging enhanced residual units, depth-wise separable convolutions, and hierarchical skip connections, AdaptoVision significantly reduces parameter count and computational requirements while preserving competitive performance across various benchmark and medical image datasets. Extensive experimentation demonstrates that AdaptoVision achieves state-of-the-art on BreakHis dataset and comparable accuracy levels, notably 95.3\% on CIFAR-10 and 85.77\% on CIFAR-100, without relying on any pretrained weights. The model's streamlined architecture and strategic simplifications promote effective feature extraction and robust generalization, making it particularly suitable for deployment in real-time and resource-constrained environments.
♻ ☆ The Hidden Life of Tokens: Reducing Hallucination of Large Vision-Language Models via Visual Information Steering
Large Vision-Language Models (LVLMs) can reason effectively over both textual and visual inputs, but they tend to hallucinate syntactically coherent yet visually ungrounded contents. In this paper, we investigate the internal dynamics of hallucination by examining the tokens logits ranking throughout the generation process, revealing three key patterns in how LVLMs process information: (1) gradual visual information loss - visually grounded tokens gradually become less favored throughout generation, and (2) early excitation - semantically meaningful tokens achieve peak activation in the layers earlier than the final layer. (3) hidden genuine information - visually grounded tokens though not being eventually decoded still retain relatively high rankings at inference. Based on these insights, we propose VISTA (Visual Information Steering with Token-logit Augmentation), a training-free inference-time intervention framework that reduces hallucination while promoting genuine information. VISTA works by combining two complementary approaches: reinforcing visual information in activation space and leveraging early layer activations to promote semantically meaningful decoding. Compared to existing methods, VISTA requires no external supervision and is applicable to various decoding strategies. Extensive experiments show that VISTA on average reduces hallucination by about 40% on evaluated open-ended generation task, and it consistently outperforms existing methods on four benchmarks across four architectures under three decoding strategies. Code is available at https://github.com/LzVv123456/VISTA.
♻ ☆ Building Rome with Convex Optimization
Global bundle adjustment is made easy by depth prediction and convex optimization. We (i) propose a scaled bundle adjustment (SBA) formulation that lifts 2D keypoint measurements to 3D with learned depth, (ii) design an empirically tight convex semidfinite program (SDP) relaxation that solves SBA to certfiable global optimality, (iii) solve the SDP relaxations at extreme scale with Burer-Monteiro factorization and a CUDA-based trust-region Riemannian optimizer (dubbed XM), (iv) build a structure from motion (SfM) pipeline with XM as the optimization engine and show that XM-SfM compares favorably with existing pipelines in terms of reconstruction quality while being significantly faster, more scalable, and initialization-free.
♻ ☆ UAV-DETR: Efficient End-to-End Object Detection for Unmanned Aerial Vehicle Imagery
Unmanned aerial vehicle object detection (UAV-OD) has been widely used in various scenarios. However, most existing UAV-OD algorithms rely on manually designed components, which require extensive tuning. End-to-end models that do not depend on such manually designed components are mainly designed for natural images, which are less effective for UAV imagery. To address such challenges, this paper proposes an efficient detection transformer (DETR) framework tailored for UAV imagery, i.e., UAV-DETR. The framework includes a multi-scale feature fusion with frequency enhancement module, which captures both spatial and frequency information at different scales. In addition, a frequency-focused down-sampling module is presented to retain critical spatial details during down-sampling. A semantic alignment and calibration module is developed to align and fuse features from different fusion paths. Experimental results demonstrate the effectiveness and generalization of our approach across various UAV imagery datasets. On the VisDrone dataset, our method improves AP by 3.1\% and $\text{AP}_{50}$ by 4.2\% over the baseline. Similar enhancements are observed on the UAVVaste dataset. The project page: https://github.com/ValiantDiligent/UAV-DETR
♻ ☆ Depth Matters: Exploring Deep Interactions of RGB-D for Semantic Segmentation in Traffic Scenes
RGB-D has gradually become a crucial data source for understanding complex scenes in assisted driving. However, existing studies have paid insufficient attention to the intrinsic spatial properties of depth maps. This oversight significantly impacts the attention representation, leading to prediction errors caused by attention shift issues. To this end, we propose a novel learnable Depth interaction Pyramid Transformer (DiPFormer) to explore the effectiveness of depth. Firstly, we introduce Depth Spatial-Aware Optimization (Depth SAO) as offset to represent real-world spatial relationships. Secondly, the similarity in the feature space of RGB-D is learned by Depth Linear Cross-Attention (Depth LCA) to clarify spatial differences at the pixel level. Finally, an MLP Decoder is utilized to effectively fuse multi-scale features for meeting real-time requirements. Comprehensive experiments demonstrate that the proposed DiPFormer significantly addresses the issue of attention misalignment in both road detection (+7.5%) and semantic segmentation (+4.9% / +1.5%) tasks. DiPFormer achieves state-of-the-art performance on the KITTI (97.57% F-score on KITTI road and 68.74% mIoU on KITTI-360) and Cityscapes (83.4% mIoU) datasets.
comment: Accepted by IROS 2025
♻ ☆ Realism in Action: Anomaly-Aware Diagnosis of Brain Tumors from Medical Images Using YOLOv8 and DeiT
Reliable diagnosis of brain tumors remains challenging due to low clinical incidence rates of such cases. However, this low rate is neglected in most of proposed methods. We propose a clinically inspired framework for anomaly-resilient tumor detection and classification. Detection leverages YOLOv8n fine-tuned on a realistically imbalanced dataset (1:9 tumor-to-normal ratio; 30,000 MRI slices from 81 patients). In addition, we propose a novel Patient-to-Patient (PTP) metric that evaluates diagnostic reliability at the patient level. Classification employs knowledge distillation: a Data Efficient Image Transformer (DeiT) student model is distilled from a ResNet152 teacher. The distilled ViT achieves an F1-score of 0.92 within 20 epochs, matching near teacher performance (F1=0.97) with significantly reduced computational resources. This end-to-end framework demonstrates high robustness in clinically representative anomaly-distributed data, offering a viable tool that adheres to realistic situations in clinics.
♻ ☆ SurgTPGS: Semantic 3D Surgical Scene Understanding with Text Promptable Gaussian Splatting MICCAI 2025
In contemporary surgical research and practice, accurately comprehending 3D surgical scenes with text-promptable capabilities is particularly crucial for surgical planning and real-time intra-operative guidance, where precisely identifying and interacting with surgical tools and anatomical structures is paramount. However, existing works focus on surgical vision-language model (VLM), 3D reconstruction, and segmentation separately, lacking support for real-time text-promptable 3D queries. In this paper, we present SurgTPGS, a novel text-promptable Gaussian Splatting method to fill this gap. We introduce a 3D semantics feature learning strategy incorporating the Segment Anything model and state-of-the-art vision-language models. We extract the segmented language features for 3D surgical scene reconstruction, enabling a more in-depth understanding of the complex surgical environment. We also propose semantic-aware deformation tracking to capture the seamless deformation of semantic features, providing a more precise reconstruction for both texture and semantic features. Furthermore, we present semantic region-aware optimization, which utilizes regional-based semantic information to supervise the training, particularly promoting the reconstruction quality and semantic smoothness. We conduct comprehensive experiments on two real-world surgical datasets to demonstrate the superiority of SurgTPGS over state-of-the-art methods, highlighting its potential to revolutionize surgical practices. SurgTPGS paves the way for developing next-generation intelligent surgical systems by enhancing surgical precision and safety. Our code is available at: https://github.com/lastbasket/SurgTPGS.
comment: MICCAI 2025. Project Page: https://lastbasket.github.io/MICCAI-2025-SurgTPGS/
♻ ☆ Fully Differentiable Lagrangian Convolutional Neural Network for Physics-Informed Precipitation Nowcasting
This paper presents a convolutional neural network model for precipitation nowcasting that combines data-driven learning with physics-informed domain knowledge. We propose LUPIN, a Lagrangian Double U-Net for Physics-Informed Nowcasting, that draws from existing extrapolation-based nowcasting methods. It consists of a U-Net that dynamically produces mesoscale advection motion fields, a differentiable semi-Lagrangian extrapolation operator, and an advection-free U-Net capturing the growth and decay of precipitation over time. Using our approach, we successfully implement the Lagrangian convolutional neural network for precipitation nowcasting in a fully differentiable and GPU-accelerated manner. This allows for end-to-end training and inference, including the data-driven Lagrangian coordinate system transformation of the data at runtime. We evaluate the model and compare it with other related AI-based models both quantitatively and qualitatively in an extreme event case study. Based on our evaluation, LUPIN matches and even exceeds the performance of the chosen benchmarks, opening the door for other Lagrangian machine learning models.
comment: Submitted to Applied Computing and Geosciences
♻ ☆ Beyond Diagnostic Performance: Revealing and Quantifying Ethical Risks in Pathology Foundation Models
Pathology foundation models (PFMs), as large-scale pre-trained models tailored for computational pathology, have significantly advanced a wide range of applications. Their ability to leverage prior knowledge from massive datasets has streamlined the development of intelligent pathology models. However, we identify several critical and interrelated ethical risks that remain underexplored, yet must be addressed to enable the safe translation of PFMs from lab to clinic. These include the potential leakage of patient-sensitive attributes, disparities in model performance across demographic and institutional subgroups, and the reliance on diagnosis-irrelevant features that undermine clinical reliability. In this study, we pioneer the quantitative analysis for ethical risks in PFMs, including privacy leakage, clinical reliability, and group fairness. Specifically, we propose an evaluation framework that systematically measures key dimensions of ethical concern: the degree to which patient-sensitive attributes can be inferred from model representations, the extent of performance disparities across demographic and institutional subgroups, and the influence of diagnostically irrelevant features on model decisions. We further investigate the underlying causes of these ethical risks in PFMs and empirically validate our findings. Then we offer insights into potential directions for mitigating such risks, aiming to inform the development of more ethically robust PFMs. This work provides the first quantitative and systematic evaluation of ethical risks in PFMs. Our findings highlight the urgent need for ethical safeguards in PFMs and offer actionable insights for building more trustworthy and clinically robust PFMs. To facilitate future research and deployment, we will release the assessment framework as an online toolkit to support the development, auditing, and deployment of ethically robust PFMs.
comment: 33 pages,5 figure,23 tables
♻ ☆ SegAnyPET: Universal Promptable Segmentation from Positron Emission Tomography Images ICCV 2025
Positron Emission Tomography (PET) is a powerful molecular imaging tool that plays a crucial role in modern medical diagnostics by visualizing radio-tracer distribution to reveal physiological processes. Accurate organ segmentation from PET images is essential for comprehensive multi-systemic analysis of interactions between different organs and pathologies. Existing segmentation methods are limited by insufficient annotation data and varying levels of annotation, resulting in weak generalization ability and difficulty in clinical application. Recent developments in segmentation foundation models have shown superior versatility across diverse segmentation tasks. Despite the efforts of medical adaptations, these works primarily focus on structural medical images with detailed physiological structural information and exhibit limited generalization performance on molecular PET imaging. In this paper, we collect and construct PETS-5k, the largest PET segmentation dataset to date, comprising 5,731 three-dimensional whole-body PET images and encompassing over 1.3M 2D images. Based on the established dataset, we develop SegAnyPET, a modality-specific 3D foundation model for universal promptable segmentation from PET images. To issue the challenge of discrepant annotation quality, we adopt a cross prompting confident learning (CPCL) strategy with an uncertainty-guided self-rectification process to robustly learn segmentation from high-quality labeled data and low-quality noisy labeled data for promptable segmentation. Experimental results demonstrate that SegAnyPET can segment seen and unseen target organs using only one or a few prompt points, outperforming state-of-the-art foundation models and task-specific fully supervised models with higher accuracy and strong generalization ability for universal segmentation.
comment: Accept for ICCV 2025
♻ ☆ Exploring Text-Guided Single Image Editing for Remote Sensing Images
Artificial intelligence generative content (AIGC) has significantly impacted image generation in the field of remote sensing. However, the equally important area of remote sensing image (RSI) editing has not received sufficient attention. Deep learning based editing methods generally involve two sequential stages: generation and editing. For natural images, these stages primarily rely on generative backbones pre-trained on large-scale benchmark datasets and text guidance facilitated by vision-language models (VLMs). However, it become less viable for RSIs: First, existing generative RSI benchmark datasets do not fully capture the diversity of RSIs, and is often inadequate for universal editing tasks. Second, the single text semantic corresponds to multiple image semantics, leading to the introduction of incorrect semantics. To solve above problems, this paper proposes a text-guided RSI editing method and can be trained using only a single image. A multi-scale training approach is adopted to preserve consistency without the need for training on extensive benchmarks, while leveraging RSI pre-trained VLMs and prompt ensembling (PE) to ensure accuracy and controllability. Experimental results on multiple RSI editing tasks show that the proposed method offers significant advantages in both CLIP scores and subjective evaluations compared to existing methods. Additionally, we explore the ability of the edited RSIs to support disaster assessment tasks in order to validate their practicality. Codes will be released at https://github.com/HIT-PhilipHan/remote_sensing_image_editing.
comment: 17 pages, 18 figures, Accepted by IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
♻ ☆ Exploring Intrinsic Normal Prototypes within a Single Image for Universal Anomaly Detection CVPR2025
Anomaly detection (AD) is essential for industrial inspection, yet existing methods typically rely on ``comparing'' test images to normal references from a training set. However, variations in appearance and positioning often complicate the alignment of these references with the test image, limiting detection accuracy. We observe that most anomalies manifest as local variations, meaning that even within anomalous images, valuable normal information remains. We argue that this information is useful and may be more aligned with the anomalies since both the anomalies and the normal information originate from the same image. Therefore, rather than relying on external normality from the training set, we propose INP-Former, a novel method that extracts Intrinsic Normal Prototypes (INPs) directly from the test image. Specifically, we introduce the INP Extractor, which linearly combines normal tokens to represent INPs. We further propose an INP Coherence Loss to ensure INPs can faithfully represent normality for the testing image. These INPs then guide the INP-Guided Decoder to reconstruct only normal tokens, with reconstruction errors serving as anomaly scores. Additionally, we propose a Soft Mining Loss to prioritize hard-to-optimize samples during training. INP-Former achieves state-of-the-art performance in single-class, multi-class, and few-shot AD tasks across MVTec-AD, VisA, and Real-IAD, positioning it as a versatile and universal solution for AD. Remarkably, INP-Former also demonstrates some zero-shot AD capability. Code is available at:https://github.com/luow23/INP-Former.
comment: Accepted by CVPR2025
♻ ☆ StreakNet-Arch: An Anti-scattering Network-based Architecture for Underwater Carrier LiDAR-Radar Imaging
In this paper, we introduce StreakNet-Arch, a real-time, end-to-end binary-classification framework based on our self-developed Underwater Carrier LiDAR-Radar (UCLR) that embeds Self-Attention and our novel Double Branch Cross Attention (DBC-Attention) to enhance scatter suppression. Under controlled water tank validation conditions, StreakNet-Arch with Self-Attention or DBC-Attention outperforms traditional bandpass filtering and achieves higher $F_1$ scores than learning-based MP networks and CNNs at comparable model size and complexity. Real-time benchmarks on an NVIDIA RTX 3060 show a constant Average Imaging Time (54 to 84 ms) regardless of frame count, versus a linear increase (58 to 1,257 ms) for conventional methods. To facilitate further research, we contribute a publicly available streak-tube camera image dataset contains 2,695,168 real-world underwater 3D point cloud data. More importantly, we validate our UCLR system in a South China Sea trial, reaching an error of 46mm for 3D target at 1,000 m depth and 20 m range. Source code and data are available at https://github.com/BestAnHongjun/StreakNet .
comment: Accepted by IEEE Transactions on Image Processing (T-IP)
♻ ☆ Towards Generalized and Training-Free Text-Guided Semantic Manipulation
Text-guided semantic manipulation refers to semantically editing an image generated from a source prompt to match a target prompt, enabling the desired semantic changes (e.g., addition, removal, and style transfer) while preserving irrelevant contents. With the powerful generative capabilities of the diffusion model, the task has shown the potential to generate high-fidelity visual content. Nevertheless, existing methods either typically require time-consuming fine-tuning (inefficient), fail to accomplish multiple semantic manipulations (poorly extensible), and/or lack support for different modality tasks (limited generalizability). Upon further investigation, we find that the geometric properties of noises in the diffusion model are strongly correlated with the semantic changes. Motivated by this, we propose a novel $\textit{GTF}$ for text-guided semantic manipulation, which has the following attractive capabilities: 1) $\textbf{Generalized}$: our $\textit{GTF}$ supports multiple semantic manipulations (e.g., addition, removal, and style transfer) and can be seamlessly integrated into all diffusion-based methods (i.e., Plug-and-play) across different modalities (i.e., modality-agnostic); and 2) $\textbf{Training-free}$: $\textit{GTF}$ produces high-fidelity results via simply controlling the geometric relationship between noises without tuning or optimization. Our extensive experiments demonstrate the efficacy of our approach, highlighting its potential to advance the state-of-the-art in semantics manipulation.
comment: Project Page: https://ayanami-yu.github.io/GTF-Project-Page/
♻ ☆ Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention
Semi-supervised learning offers an appealing solution for remote sensing (RS) image segmentation to relieve the burden of labor-intensive pixel-level labeling. However, RS images pose unique challenges, including rich multi-scale features and high inter-class similarity. To address these problems, this paper proposes a novel semi-supervised Multi-Scale Uncertainty and Cross-Teacher-Student Attention (MUCA) model for RS image semantic segmentation tasks. Specifically, MUCA constrains the consistency among feature maps at different layers of the network by introducing a multi-scale uncertainty consistency regularization. It improves the multi-scale learning capability of semi-supervised algorithms on unlabeled data. Additionally, MUCA utilizes a Cross-Teacher-Student attention mechanism to guide the student network, guiding the student network to construct more discriminative feature representations through complementary features from the teacher network. This design effectively integrates weak and strong augmentations (WA and SA) to further boost segmentation performance. To verify the effectiveness of our model, we conduct extensive experiments on ISPRS-Potsdam and LoveDA datasets. The experimental results show the superiority of our method over state-of-the-art semi-supervised methods. Notably, our model excels in distinguishing highly similar objects, showcasing its potential for advancing semi-supervised RS image segmentation tasks.
♻ ☆ Listener-Rewarded Thinking in VLMs for Image Preferences
Training robust and generalizable reward models for human visual preferences is essential for aligning text-to-image and text-to-video generative models with human intent. However, current reward models often fail to generalize, and supervised fine-tuning leads to memorization, demanding complex annotation pipelines. While reinforcement learning (RL), specifically Group Relative Policy Optimization (GRPO), improves generalization, we uncover a key failure mode: a significant drop in reasoning accuracy occurs when a model's reasoning trace contradicts that of an independent, frozen vision-language model ("listener") evaluating the same output. To address this, we introduce a listener-augmented GRPO framework. Here, the listener re-evaluates the reasoner's chain-of-thought to provide a dense, calibrated confidence score, shaping the RL reward signal. This encourages the reasoner not only to answer correctly, but to produce explanations that are persuasive to an independent model. Our listener-shaped reward scheme achieves best accuracy on the ImageReward benchmark (67.4%), significantly improves out-of-distribution (OOD) performance on a large-scale human preference dataset (1.2M votes, up to +6% over naive reasoner), and reduces reasoning contradictions compared to strong GRPO and SFT baselines. These results demonstrate that listener-based rewards provide a scalable, data-efficient path to aligning vision-language models with nuanced human preferences. We will release our reasoning model here: https://huggingface.co/alexgambashidze/qwen2.5vl_image_preference_reasoner.
♻ ☆ Towards Markerless Intraoperative Tracking of Deformable Spine Tissue MICCAI
Consumer-grade RGB-D imaging for intraoperative orthopedic tissue tracking is a promising method with high translational potential. Unlike bone-mounted tracking devices, markerless tracking can reduce operating time and complexity. However, its use has been limited to cadaveric studies. This paper introduces the first real-world clinical RGB-D dataset for spine surgery and develops SpineAlign, a system for capturing deformation between preoperative and intraoperative spine states. We also present an intraoperative segmentation network trained on this data and introduce CorrespondNet, a multi-task framework for predicting key regions for registration in both intraoperative and preoperative scenes.
comment: An improved version of this manuscript was accepted to MICCAI
♻ ☆ StruMamba3D: Exploring Structural Mamba for Self-supervised Point Cloud Representation Learning ICCV 2025
Recently, Mamba-based methods have demonstrated impressive performance in point cloud representation learning by leveraging State Space Model (SSM) with the efficient context modeling ability and linear complexity. However, these methods still face two key issues that limit the potential of SSM: Destroying the adjacency of 3D points during SSM processing and failing to retain long-sequence memory as the input length increases in downstream tasks. To address these issues, we propose StruMamba3D, a novel paradigm for self-supervised point cloud representation learning. It enjoys several merits. First, we design spatial states and use them as proxies to preserve spatial dependencies among points. Second, we enhance the SSM with a state-wise update strategy and incorporate a lightweight convolution to facilitate interactions between spatial states for efficient structure modeling. Third, our method reduces the sensitivity of pre-trained Mamba-based models to varying input lengths by introducing a sequence length-adaptive strategy. Experimental results across four downstream tasks showcase the superior performance of our method. In addition, our method attains the SOTA 95.1% accuracy on ModelNet40 and 92.75% accuracy on the most challenging split of ScanObjectNN without voting strategy.
comment: Accepted by ICCV 2025
♻ ☆ Edit Transfer: Learning Image Editing via Vision In-Context Relations
We introduce a new setting, Edit Transfer, where a model learns a transformation from just a single source-target example and applies it to a new query image. While text-based methods excel at semantic manipulations through textual prompts, they often struggle with precise geometric details (e.g., poses and viewpoint changes). Reference-based editing, on the other hand, typically focuses on style or appearance and fails at non-rigid transformations. By explicitly learning the editing transformation from a source-target pair, Edit Transfer mitigates the limitations of both text-only and appearance-centric references. Drawing inspiration from in-context learning in large language models, we propose a visual relation in-context learning paradigm, building upon a DiT-based text-to-image model. We arrange the edited example and the query image into a unified four-panel composite, then apply lightweight LoRA fine-tuning to capture complex spatial transformations from minimal examples. Despite using only 42 training samples, Edit Transfer substantially outperforms state-of-the-art TIE and RIE methods on diverse non-rigid scenarios, demonstrating the effectiveness of few-shot visual relation learning.
♻ ☆ T2I-R1: Reinforcing Image Generation with Collaborative Semantic-level and Token-level CoT
Recent advancements in large language models have demonstrated how chain-of-thought (CoT) and reinforcement learning (RL) can improve performance. However, applying such reasoning strategies to the visual generation domain remains largely unexplored. In this paper, we present T2I-R1, a novel reasoning-enhanced text-to-image generation model, powered by RL with a bi-level CoT reasoning process. Specifically, we identify two levels of CoT that can be utilized to enhance different stages of generation: (1) the semantic-level CoT for high-level planning of the prompt and (2) the token-level CoT for low-level pixel processing during patch-by-patch generation. To better coordinate these two levels of CoT, we introduce BiCoT-GRPO with an ensemble of generation rewards, which seamlessly optimizes both generation CoTs within the same training step. By applying our reasoning strategies to the baseline model, Janus-Pro, we achieve superior performance with 13% improvement on T2I-CompBench and 19% improvement on the WISE benchmark, even surpassing the state-of-the-art model FLUX.1. Code is available at: https://github.com/CaraJ7/T2I-R1
comment: Project Page: https://github.com/CaraJ7/T2I-R1
♻ ☆ From Holistic to Localized: Local Enhanced Adapters for Efficient Visual Instruction Fine-Tuning ICCV 2025
Efficient Visual Instruction Fine-Tuning (EVIT) seeks to adapt Multimodal Large Language Models (MLLMs) to downstream tasks with minimal computational overhead. However, as task diversity and complexity increase, EVIT faces significant challenges in resolving data conflicts. To address this limitation, we propose the Dual Low-Rank Adaptation (Dual-LoRA), a holistic-to-local framework that enhances the adapter's capacity to address data conflict through dual structural optimization. Specifically, we utilize two subspaces: a skill space for stable, holistic knowledge retention, and a rank-rectified task space that locally activates the holistic knowledge. Additionally, we introduce Visual Cue Enhancement (VCE), a multi-level local feature aggregation module designed to enrich the vision-language projection with local details. Our approach is both memory- and time-efficient, requiring only 1.16$\times$ the inference time of the standard LoRA method (with injection into the query and value projection layers), and just 73\% of the inference time of a 4-expert LoRA-MoE. Extensive experiments on various downstream tasks and general MLLM benchmarks validate the effectiveness of our proposed methods.
comment: ICCV 2025
♻ ☆ Identity Preserving 3D Head Stylization with Multiview Score Distillation
3D head stylization transforms realistic facial features into artistic representations, enhancing user engagement across gaming and virtual reality applications. While 3D-aware generators have made significant advancements, many 3D stylization methods primarily provide near-frontal views and struggle to preserve the unique identities of original subjects, often resulting in outputs that lack diversity and individuality. This paper addresses these challenges by leveraging the PanoHead model, synthesizing images from a comprehensive 360-degree perspective. We propose a novel framework that employs negative log-likelihood distillation (LD) to enhance identity preservation and improve stylization quality. By integrating multi-view grid score and mirror gradients within the 3D GAN architecture and introducing a score rank weighing technique, our approach achieves substantial qualitative and quantitative improvements. Our findings not only advance the state of 3D head stylization but also provide valuable insights into effective distillation processes between diffusion models and GANs, focusing on the critical issue of identity preservation. Please visit the https://three-bee.github.io/head_stylization for more visuals.
comment: https://three-bee.github.io/head_stylization
♻ ☆ SMoLoRA: Exploring and Defying Dual Catastrophic Forgetting in Continual Visual Instruction Tuning
Visual instruction tuning (VIT) enables multimodal large language models (MLLMs) to effectively handle a wide range of vision tasks by framing them as language-based instructions. Building on this, continual visual instruction tuning (CVIT) extends the capability of MLLMs to incrementally learn new tasks, accommodating evolving functionalities. While prior work has advanced CVIT through the development of new benchmarks and approaches to mitigate catastrophic forgetting, these efforts largely follow traditional continual learning paradigms, neglecting the unique challenges specific to CVIT. We identify a dual form of catastrophic forgetting in CVIT, where MLLMs not only forget previously learned visual understanding but also experience a decline in instruction following abilities as they acquire new tasks. To address this, we introduce the Separable Mixture of Low-Rank Adaptation (SMoLoRA) framework, which employs separable routing through two distinct modules-one for visual understanding and another for instruction following. This dual-routing design enables specialized adaptation in both domains, preventing forgetting while improving performance. Furthermore, we propose a new CVIT benchmark that goes beyond existing benchmarks by additionally evaluating a model's ability to generalize to unseen tasks and handle diverse instructions across various tasks. Extensive experiments demonstrate that SMoLoRA outperforms existing methods in mitigating dual forgetting, improving generalization to unseen tasks, and ensuring robustness in following diverse instructions. Code is available at https://github.com/Minato-Zackie/SMoLoRA.
♻ ☆ A Dataset for Enhancing MLLMs in Visualization Understanding and Reconstruction
Current multimodal large language models (MLLMs), while effective in natural image understanding, struggle with visualization understanding due to their inability to decode the data-to-visual mapping and extract structured information. To address these challenges, we propose SimVec, a compact and structured vector format that encodes chart elements, including mark types, positions, and sizes. Then, we present a new visualization dataset, which consists of bitmap images of charts, their corresponding SimVec representations, and data-centric question-answering pairs, each accompanied by explanatory chain-of-thought sentences. We fine-tune state-of-the-art MLLMs using our dataset. The experimental results show that fine-tuning leads to substantial improvements in data-centric reasoning tasks compared to their zero-shot versions. SimVec also enables MLLMs to accurately and compactly reconstruct chart structures from images. Our dataset and code are available at: https://github.com/VIDA-Lab/MLLM4VIS.
♻ ☆ Maximum Dispersion, Maximum Concentration: Enhancing the Quality of MOP Solutions
Multi-objective optimization problems (MOPs) often require a trade-off between conflicting objectives, maximizing diversity and convergence in the objective space. This study presents an approach to improve the quality of MOP solutions by optimizing the dispersion in the decision space and the convergence in a specific region of the objective space. Our approach defines a Region of Interest (ROI) based on a cone representing the decision maker's preferences in the objective space, while enhancing the dispersion of solutions in the decision space using a uniformity measure. Combining solution concentration in the objective space with dispersion in the decision space intensifies the search for Pareto-optimal solutions while increasing solution diversity. When combined, these characteristics improve the quality of solutions and avoid the bias caused by clustering solutions in a specific region of the decision space. Preliminary experiments suggest that this method enhances multi-objective optimization by generating solutions that effectively balance dispersion and concentration, thereby mitigating bias in the decision space.
comment: 11 pages
♻ ☆ Ovis-U1 Technical Report
In this report, we introduce Ovis-U1, a 3-billion-parameter unified model that integrates multimodal understanding, text-to-image generation, and image editing capabilities. Building on the foundation of the Ovis series, Ovis-U1 incorporates a diffusion-based visual decoder paired with a bidirectional token refiner, enabling image generation tasks comparable to leading models like GPT-4o. Unlike some previous models that use a frozen MLLM for generation tasks, Ovis-U1 utilizes a new unified training approach starting from a language model. Compared to training solely on understanding or generation tasks, unified training yields better performance, demonstrating the enhancement achieved by integrating these two tasks. Ovis-U1 achieves a score of 69.6 on the OpenCompass Multi-modal Academic Benchmark, surpassing recent state-of-the-art models such as Ristretto-3B and SAIL-VL-1.5-2B. In text-to-image generation, it excels with scores of 83.72 and 0.89 on the DPG-Bench and GenEval benchmarks, respectively. For image editing, it achieves 4.00 and 6.42 on the ImgEdit-Bench and GEdit-Bench-EN, respectively. As the initial version of the Ovis unified model series, Ovis-U1 pushes the boundaries of multimodal understanding, generation, and editing.
comment: An unified model for multimodal understanding, text-to-image generation, and image editing. GitHub: https://github.com/AIDC-AI/Ovis-U1
♻ ☆ Dehazing Light Microscopy Images with Guided Conditional Flow Matching: finding a sweet spot between fidelity and realism
Fluorescence microscopy is a major driver of scientific progress in the life sciences. Although high-end confocal microscopes are capable of filtering out-of-focus light, cheaper and more accessible microscopy modalities, such as widefield microscopy, can not, which consequently leads to hazy image data. Computational dehazing is trying to combine the best of both worlds, leading to cheap microscopy but crisp-looking images. The perception-distortion trade-off tells us that we can optimize either for data fidelity, e.g. low MSE or high PSNR, or for data realism, measured by perceptual metrics such as LPIPS or FID. Existing methods either prioritize fidelity at the expense of realism, or produce perceptually convincing results that lack quantitative accuracy. In this work, we propose HazeMatching, a novel iterative method for dehazing light microscopy images, which effectively balances these objectives. Our goal was to find a balanced trade-off between the fidelity of the dehazing results and the realism of individual predictions (samples). We achieve this by adapting the conditional flow matching framework by guiding the generative process with a hazy observation in the conditional velocity field. We evaluate HazeMatching on 5 datasets, covering both synthetic and real data, assessing both distortion and perceptual quality. Our method is compared against 7 baselines, achieving a consistent balance between fidelity and realism on average. Additionally, with calibration analysis, we show that HazeMatching produces well-calibrated predictions. Note that our method does not need an explicit degradation operator to exist, making it easily applicable on real microscopy data. All data used for training and evaluation and our code will be publicly available under a permissive license.
comment: 4 figures, 10 pages + refs, 40 pages total (including supplement), 24 supplementary figures
♻ ☆ Unsupervised contrastive analysis for anomaly detection in brain MRIs via conditional diffusion models
Contrastive Analysis (CA) detects anomalies by contrasting patterns unique to a target group (e.g., unhealthy subjects) from those in a background group (e.g., healthy subjects). In the context of brain MRIs, existing CA approaches rely on supervised contrastive learning or variational autoencoders (VAEs) using both healthy and unhealthy data, but such reliance on target samples is challenging in clinical settings. Unsupervised Anomaly Detection (UAD) offers an alternative by learning a reference representation of healthy anatomy without the need for target samples. Deviations from this reference distribution can indicate potential anomalies. In this context, diffusion models have been increasingly adopted in UAD due to their superior performance in image generation compared to VAEs. Nonetheless, precisely reconstructing the anatomy of the brain remains a challenge. In this work, we propose an unsupervised framework to improve the reconstruction quality by training a self-supervised contrastive encoder on healthy images to extract meaningful anatomical features. These features are used to condition a diffusion model to reconstruct the healthy appearance of a given image, enabling interpretable anomaly localization via pixel-wise comparison. We validate our approach through a proof-of-concept on a facial image dataset and further demonstrate its effectiveness on four brain MRI datasets, achieving state-of-the-art anomaly localization performance on the NOVA benchmark.
comment: Under consideration at Pattern Recognition Letters
♻ ☆ ZonUI-3B: A Lightweight Vision-Language Model for Cross-Resolution GUI Grounding
This paper introduces ZonUI-3B, a lightweight Vision-Language Model (VLM) specifically designed for Graphical User Interface grounding tasks, achieving performance competitive with significantly larger models. Unlike large-scale VLMs (>7B parameters) that are computationally intensive and impractical for consumer-grade hardware, ZonUI-3B delivers strong grounding accuracy while being fully trainable on a single GPU (RTX 4090). The model incorporates several key innovations: (i) combine cross-platform, multi-resolution dataset of 24K examples from diverse sources including mobile, desktop, and web GUI screenshots to effectively address data scarcity in high-resolution desktop environments; (ii) a two-stage fine-tuning strategy, where initial cross-platform training establishes robust GUI understanding, followed by specialized fine-tuning on high-resolution data to significantly enhance model adaptability; and (iii) data curation and redundancy reduction strategies, demonstrating that randomly sampling a smaller subset with reduced redundancy achieves performance comparable to larger datasets, emphasizing data diversity over sheer volume. Empirical evaluation on standard GUI grounding benchmarks-including ScreenSpot, ScreenSpot-v2, and the challenging ScreenSpot-Pro, highlights ZonUI-3B's exceptional accuracy, achieving 84.9% on ScreenSpot and 86.4% on ScreenSpot-v2, surpassing prior models under 4B parameters. Ablation studies validate the critical role of balanced sampling and two-stage fine-tuning in enhancing robustness, particularly in high-resolution desktop scenarios. The ZonUI-3B is available at: https://github.com/Han1018/ZonUI-3B
♻ ☆ Beyond Attention or Similarity: Maximizing Conditional Diversity for Token Pruning in MLLMs
In multimodal large language models (MLLMs), the length of input visual tokens is often significantly greater than that of their textual counterparts, leading to a high inference cost. Many works aim to address this issue by removing redundant visual tokens. However, current approaches either rely on attention-based pruning, which retains numerous duplicate tokens, or use similarity-based pruning, overlooking the instruction relevance, consequently causing suboptimal performance. In this paper, we go beyond attention or similarity by proposing a novel visual token pruning method named CDPruner, which maximizes the conditional diversity of retained tokens. We first define the conditional similarity between visual tokens conditioned on the instruction, and then reformulate the token pruning problem with determinantal point process (DPP) to maximize the conditional diversity of the selected subset. The proposed CDPruner is training-free and model-agnostic, allowing easy application to various MLLMs. Extensive experiments across diverse MLLMs show that CDPruner establishes new state-of-the-art on various vision-language benchmarks. By maximizing conditional diversity through DPP, the selected subset better represents the input images while closely adhering to user instructions, thereby preserving strong performance even with high reduction ratios. When applied to LLaVA, CDPruner reduces FLOPs by 95\% and CUDA latency by 78\%, while maintaining 94\% of the original accuracy. Our code is available at https://github.com/Theia-4869/CDPruner.
comment: 22 pages, 5 figures, code: https://github.com/Theia-4869/CDPruner, project page: https://theia-4869.github.io/CDPruner
♻ ☆ ICME 2025 Grand Challenge on Video Super-Resolution for Video Conferencing
Super-Resolution (SR) is a critical task in computer vision, focusing on reconstructing high-resolution (HR) images from low-resolution (LR) inputs. The field has seen significant progress through various challenges, particularly in single-image SR. Video Super-Resolution (VSR) extends this to the temporal domain, aiming to enhance video quality using methods like local, uni-, bi-directional propagation, or traditional upscaling followed by restoration. This challenge addresses VSR for conferencing, where LR videos are encoded with H.265 at fixed QPs. The goal is to upscale videos by a specific factor, providing HR outputs with enhanced perceptual quality under a low-delay scenario using causal models. The challenge included three tracks: general-purpose videos, talking head videos, and screen content videos, with separate datasets provided by the organizers for training, validation, and testing. We open-sourced a new screen content dataset for the SR task in this challenge. Submissions were evaluated through subjective tests using a crowdsourced implementation of the ITU-T Rec P.910.
♻ ☆ Unleashing Diffusion and State Space Models for Medical Image Segmentation
Existing segmentation models trained on a single medical imaging dataset often lack robustness when encountering unseen organs or tumors. Developing a robust model capable of identifying rare or novel tumor categories not present during training is crucial for advancing medical imaging applications. We propose DSM, a novel framework that leverages diffusion and state space models to segment unseen tumor categories beyond the training data. DSM utilizes two sets of object queries trained within modified attention decoders to enhance classification accuracy. Initially, the model learns organ queries using an object-aware feature grouping strategy to capture organ-level visual features. It then refines tumor queries by focusing on diffusion-based visual prompts, enabling precise segmentation of previously unseen tumors. Furthermore, we incorporate diffusion-guided feature fusion to improve semantic segmentation performance. By integrating CLIP text embeddings, DSM captures category-sensitive classes to improve linguistic transfer knowledge, thereby enhancing the model's robustness across diverse scenarios and multi-label tasks. Extensive experiments demonstrate the superior performance of DSM in various tumor segmentation tasks. Code is available at https://github.com/Rows21/k-Means_Mask_Mamba.
♻ ☆ Instruct-4DGS: Efficient Dynamic Scene Editing via 4D Gaussian-based Static-Dynamic Separation CVPR 2025
Recent 4D dynamic scene editing methods require editing thousands of 2D images used for dynamic scene synthesis and updating the entire scene with additional training loops, resulting in several hours of processing to edit a single dynamic scene. Therefore, these methods are not scalable with respect to the temporal dimension of the dynamic scene (i.e., the number of timesteps). In this work, we propose Instruct-4DGS, an efficient dynamic scene editing method that is more scalable in terms of temporal dimension. To achieve computational efficiency, we leverage a 4D Gaussian representation that models a 4D dynamic scene by combining static 3D Gaussians with a Hexplane-based deformation field, which captures dynamic information. We then perform editing solely on the static 3D Gaussians, which is the minimal but sufficient component required for visual editing. To resolve the misalignment between the edited 3D Gaussians and the deformation field, which may arise from the editing process, we introduce a refinement stage using a score distillation mechanism. Extensive editing results demonstrate that Instruct-4DGS is efficient, reducing editing time by more than half compared to existing methods while achieving high-quality edits that better follow user instructions. Code and results: https://hanbyelcho.info/instruct-4dgs/
comment: Accepted to CVPR 2025. The first two authors contributed equally
♻ ☆ BézierGS: Dynamic Urban Scene Reconstruction with Bézier Curve Gaussian Splatting ICCV 2025
The realistic reconstruction of street scenes is critical for developing real-world simulators in autonomous driving. Most existing methods rely on object pose annotations, using these poses to reconstruct dynamic objects and move them during the rendering process. This dependence on high-precision object annotations limits large-scale and extensive scene reconstruction. To address this challenge, we propose B\'ezier curve Gaussian splatting (B\'ezierGS), which represents the motion trajectories of dynamic objects using learnable B\'ezier curves. This approach fully leverages the temporal information of dynamic objects and, through learnable curve modeling, automatically corrects pose errors. By introducing additional supervision on dynamic object rendering and inter-curve consistency constraints, we achieve reasonable and accurate separation and reconstruction of scene elements. Extensive experiments on the Waymo Open Dataset and the nuPlan benchmark demonstrate that B\'ezierGS outperforms state-of-the-art alternatives in both dynamic and static scene components reconstruction and novel view synthesis.
comment: Accepted at ICCV 2025, Project Page: https://github.com/fudan-zvg/BezierGS
♻ ☆ Contrastive Conditional Latent Diffusion for Audio-visual Segmentation
We propose a contrastive conditional latent diffusion model for audio-visual segmentation (AVS) to thoroughly investigate the impact of audio, where the correlation between audio and the final segmentation map is modeled to guarantee the strong correlation between them. To achieve semantic-correlated representation learning, our framework incorporates a latent diffusion model. The diffusion model learns the conditional generation process of the ground-truth segmentation map, resulting in ground-truth aware inference during the denoising process at the test stage. As our model is conditional, it is vital to ensure that the conditional variable contributes to the model output. We thus extensively model the contribution of the audio signal by minimizing the density ratio between the conditional probability of the multimodal data, e.g. conditioned on the audio-visual data, and that of the unimodal data, e.g. conditioned on the audio data only. In this way, our latent diffusion model via density ratio optimization explicitly maximizes the contribution of audio for AVS, which can then be achieved with contrastive learning as a constraint, where the diffusion part serves as the main objective to achieve maximum likelihood estimation, and the density ratio optimization part imposes the constraint. By adopting this latent diffusion model via contrastive learning, we effectively enhance the contribution of audio for AVS. The effectiveness of our solution is validated through experimental results on the benchmark dataset. Code and results are online via our project page: https://github.com/OpenNLPLab/DiffusionAVS.
♻ ☆ R1-Track: Direct Application of MLLMs to Visual Object Tracking via Reinforcement Learning
Visual single object tracking aims to continuously localize and estimate the scale of a target in subsequent video frames, given only its initial state in the first frame. This task has traditionally been framed as a template matching problem, evolving through major phases including correlation filters, two-stream networks, and one-stream networks with significant progress achieved. However, these methods typically require explicit classification and regression modeling, depend on supervised training with large-scale datasets, and are limited to the single task of tracking, lacking flexibility. In recent years, multi-modal large language models (MLLMs) have advanced rapidly. Open-source models like Qwen2.5-VL, a flagship MLLMs with strong foundational capabilities, demonstrate excellent performance in grounding tasks. This has spurred interest in applying such models directly to visual tracking. However, experiments reveal that Qwen2.5-VL struggles with template matching between image pairs (i.e., tracking tasks). Inspired by deepseek-R1, we fine-tuned Qwen2.5-VL using the group relative policy optimization (GRPO) reinforcement learning method on a small-scale dataset with a rule-based reward function. The resulting model, R1-Track, achieved notable performance on the GOT-10k benchmark. R1-Track supports flexible initialization via bounding boxes or text descriptions while retaining most of the original model's general capabilities. And we further discuss potential improvements for R1-Track. This rough technical report summarizes our findings as of May 2025.
comment: 7 pages, 2 figures
♻ ☆ RadZero: Similarity-Based Cross-Attention for Explainable Vision-Language Alignment in Radiology with Zero-Shot Multi-Task Capability
Recent advancements in multi-modal models have significantly improved vision-language (VL) alignment in radiology. However, existing approaches struggle to effectively utilize complex radiology reports for learning and offer limited interpretability through attention probability visualizations. To address these challenges, we introduce RadZero, a novel framework for VL alignment in radiology with zero-shot multi-task capability. A key component of our approach is VL-CABS (Vision-Language Cross-Attention Based on Similarity), which aligns text embeddings with local image features for interpretable, fine-grained VL reasoning. RadZero leverages large language models to extract concise semantic sentences from radiology reports and employs multi-positive contrastive training to effectively capture relationships between images and multiple relevant textual descriptions. It uses a pre-trained vision encoder with additional trainable Transformer layers, allowing efficient high-resolution image processing. By computing similarity between text embeddings and local image patch features, VL-CABS enables zero-shot inference with similarity probability for classification, and pixel-level VL similarity maps for grounding and segmentation. Experimental results on public chest radiograph benchmarks show that RadZero outperforms state-of-the-art methods in zero-shot classification, grounding, and segmentation. Furthermore, VL similarity map analysis highlights the potential of VL-CABS for improving explainability in VL alignment. Additionally, qualitative evaluation demonstrates RadZero's capability for open-vocabulary semantic segmentation, further validating its effectiveness in medical imaging.
♻ ☆ De-LightSAM: Modality-Decoupled Lightweight SAM for Generalizable Medical Segmentation
The universality of deep neural networks across different modalities and their generalization capabilities to unseen domains play an essential role in medical image segmentation. The recent segment anything model (SAM) has demonstrated strong adaptability across diverse natural scenarios. However, the huge computational costs, demand for manual annotations as prompts and conflict-prone decoding process of SAM degrade its generalization capabilities in medical scenarios. To address these limitations, we propose a modality-decoupled lightweight SAM for domain-generalized medical image segmentation, named De-LightSAM. Specifically, we first devise a lightweight domain-controllable image encoder (DC-Encoder) that produces discriminative visual features for diverse modalities. Further, we introduce the self-patch prompt generator (SP-Generator) to automatically generate high-quality dense prompt embeddings for guiding segmentation decoding. Finally, we design the query-decoupled modality decoder (QM-Decoder) that leverages a one-to-one strategy to provide an independent decoding channel for every modality, preventing mutual knowledge interference of different modalities. Moreover, we design a multi-modal decoupled knowledge distillation (MDKD) strategy to leverage robust common knowledge to complement domain-specific medical feature representations. Extensive experiments indicate that De-LightSAM outperforms state-of-the-arts in diverse medical imaging segmentation tasks, displaying superior modality universality and generalization capabilities. Especially, De-LightSAM uses only 2.0% parameters compared to SAM-H. The source code is available at https://github.com/xq141839/De-LightSAM.
comment: Under Review
♻ ☆ VideoCogQA: A Controllable Benchmark for Evaluating Cognitive Abilities in Video-Language Models
Recent advancements in Large Video-Language Models (LVLMs) have led to promising results in multimodal video understanding. However, it remains unclear whether these models possess the cognitive capabilities required for high-level tasks, particularly those involving symbolic and abstract perception. Existing benchmarks typically rely on real-world, annotated videos, which lack control over video content and inherent difficulty, limiting their diagnostic power. To bridge this gap, we propose VideoCogQA, a scalable and fully controllable benchmark inspired by game-world environments, designed to evaluate the cognitive abilities of LVLMs. By generating synthetic videos via a programmatic engine, VideoCogQA allows fine-grained control over visual elements, temporal dynamics, and task difficulty. This approach enables a focused evaluation of video cognitive abilities, independent of prior knowledge from visual scene semantics. The dataset includes 800 videos and 3,280 question-answer pairs, featuring tasks related to abstract concepts, symbolic elements, and multimodal integration, with varying levels of difficulty. Experimental results show that even state-of-the-art (SOTA) models, such as GPT-4o, achieve an average performance of 48.8% on tasks involving abstract concepts. Additionally, performance drops by 15% as task complexity increases, highlighting the challenges LVLMs face in maintaining consistent performance. Through this work, we hope to show the limitations of current LVLMs and offer insights into how they can more effectively emulate human cognitive processes in the future.
♻ ☆ Thinking with Images for Multimodal Reasoning: Foundations, Methods, and Future Frontiers
Recent progress in multimodal reasoning has been significantly advanced by textual Chain-of-Thought (CoT), a paradigm where models conduct reasoning within language. This text-centric approach, however, treats vision as a static, initial context, creating a fundamental "semantic gap" between rich perceptual data and discrete symbolic thought. Human cognition often transcends language, utilizing vision as a dynamic mental sketchpad. A similar evolution is now unfolding in AI, marking a fundamental paradigm shift from models that merely think about images to those that can truly think with images. This emerging paradigm is characterized by models leveraging visual information as intermediate steps in their thought process, transforming vision from a passive input into a dynamic, manipulable cognitive workspace. In this survey, we chart this evolution of intelligence along a trajectory of increasing cognitive autonomy, which unfolds across three key stages: from external tool exploration, through programmatic manipulation, to intrinsic imagination. To structure this rapidly evolving field, our survey makes four key contributions. (1) We establish the foundational principles of the think with image paradigm and its three-stage framework. (2) We provide a comprehensive review of the core methods that characterize each stage of this roadmap. (3) We analyze the critical landscape of evaluation benchmarks and transformative applications. (4) We identify significant challenges and outline promising future directions. By providing this structured overview, we aim to offer a clear roadmap for future research towards more powerful and human-aligned multimodal AI.
comment: We maintain a real-time GitHub repository tracking progress at: https://github.com/zhaochen0110/Awesome_Think_With_Images
♻ ☆ Teaching Time Series to See and Speak: Forecasting with Aligned Visual and Textual Perspectives
Time series forecasting traditionally relies on unimodal numerical inputs, which often struggle to capture high-level semantic patterns due to their dense and unstructured nature. While recent approaches have explored representing time series as text using large language models (LLMs), these methods remain limited by the discrete nature of token sequences and lack the perceptual intuition humans typically apply, such as interpreting visual patterns. In this paper, we propose a multimodal contrastive learning framework that transforms raw time series into structured visual and textual perspectives. Rather than using natural language or real-world images, we construct both modalities directly from numerical sequences. We then align these views in a shared semantic space via contrastive learning, enabling the model to capture richer and more complementary representations. Furthermore, we introduce a variate selection module that leverages the aligned representations to identify the most informative variables for multivariate forecasting. Extensive experiments on fifteen short-term and six long-term forecasting benchmarks demonstrate that our approach consistently outperforms strong unimodal and cross-modal baselines, highlighting the effectiveness of multimodal alignment in enhancing time series forecasting. Code is available at: https://github.com/Ironieser/TimesCLIP.
comment: Code: https://github.com/Ironieser/TimesCLIP
♻ ☆ PriOr-Flow: Enhancing Primitive Panoramic Optical Flow with Orthogonal View
Panoramic optical flow enables a comprehensive understanding of temporal dynamics across wide fields of view. However, severe distortions caused by sphere-to-plane projections, such as the equirectangular projection (ERP), significantly degrade the performance of conventional perspective-based optical flow methods, especially in polar regions. To address this challenge, we propose PriOr-Flow, a novel dual-branch framework that leverages the low-distortion nature of the orthogonal view to enhance optical flow estimation in these regions. Specifically, we introduce the Dual-Cost Collaborative Lookup (DCCL) operator, which jointly retrieves correlation information from both the primitive and orthogonal cost volumes, effectively mitigating distortion noise during cost volume construction. Furthermore, our Ortho-Driven Distortion Compensation (ODDC) module iteratively refines motion features from both branches, further suppressing polar distortions. Extensive experiments demonstrate that PriOr-Flow is compatible with various perspective-based iterative optical flow methods and consistently achieves state-of-the-art performance on publicly available panoramic optical flow datasets, setting a new benchmark for wide-field motion estimation. The code is publicly available at: https://github.com/longliangLiu/PriOr-Flow.
♻ ☆ Enabling Collaborative Parametric Knowledge Calibration for Retrieval-Augmented Vision Question Answering
Knowledge-based Vision Question Answering (KB-VQA) systems address complex visual-grounded questions with knowledge retrieved from external knowledge bases. The tasks of knowledge retrieval and answer generation tasks both necessitate precise multimodal understanding of question context and external knowledge. However, existing methods treat these two stages as separate modules with limited interaction during training, which hinders bi-directional parametric knowledge sharing, ultimately leading to suboptimal performance. To fully exploit the cross-task synergy in KB-VQA, we propose a unified retrieval-augmented VQA framework with collaborative parametric knowledge calibration. The proposed framework can effectively adapt general multimodal pre-trained models for fine-grained, knowledge-intensive tasks while enabling the retriever and generator to collaboratively enhance and share their parametric knowledge during both training and inference. To enhance fine-grained understanding of questions and external documents, we also integrate late interaction mechanism into the proposed training framework. Additionally, we introduce a reflective-answering mechanism that allows the model to explicitly evaluate and refine its knowledge boundary. Our approach achieves competitive performance against state-of-the-art models, delivering a significant 4.7\% improvement in answering accuracy, and brings an average 7.5\% boost in base MLLMs' VQA performance.
comment: 10 pages, 5 figures, Under Review
♻ ☆ OMNI-DC: Highly Robust Depth Completion with Multiresolution Depth Integration ICCV 2025
Depth completion (DC) aims to predict a dense depth map from an RGB image and a sparse depth map. Existing DC methods generalize poorly to new datasets or unseen sparse depth patterns, limiting their real-world applications. We propose OMNI-DC, a highly robust DC model that generalizes well zero-shot to various datasets. The key design is a novel Multi-resolution Depth Integrator, allowing our model to deal with very sparse depth inputs. We also introduce a novel Laplacian loss to model the ambiguity in the training process. Moreover, we train OMNI-DC on a mixture of high-quality datasets with a scale normalization technique and synthetic depth patterns. Extensive experiments on 7 datasets show consistent improvements over baselines, reducing errors by as much as 43%. Codes and checkpoints are available at https://github.com/princeton-vl/OMNI-DC.
comment: Accepted to ICCV 2025. Added additional results and ablations
♻ ☆ Seeking and Updating with Live Visual Knowledge
The visual world around us constantly evolves, from real-time news and social media trends to global infrastructure changes visible through satellite imagery and augmented reality enhancements. However, Multimodal Large Language Models (MLLMs), which automate many tasks, struggle to stay current, limited by the cutoff dates in their fixed training datasets. To quantify this stagnation, we introduce LiveVQA, the first-of-its-kind dataset featuring 107,143 samples and 12 categories data specifically designed to support research in both seeking and updating with live visual knowledge. Drawing from recent news articles, video platforms, and academic publications in April 2024-May 2025, LiveVQA enables evaluation of how models handle latest visual information beyond their knowledge boundaries and how current methods help to update them. Our comprehensive benchmarking of 17 state-of-the-art MLLMs reveals significant performance gaps on content beyond knowledge cutoff, and tool-use or agentic visual seeking framework drastically gain an average of 327% improvement. Furthermore, we explore parameter-efficient fine-tuning (PEFT) methods to update MLLMs with new visual knowledge. We dive deeply to the critical balance between adapter capacity and model capability when updating MLLMs with new visual knowledge. All the experimental dataset and source code are publicly available at: https://livevqa.github.io.
comment: Preprint. Under Review
♻ ☆ FreqDGT: Frequency-Adaptive Dynamic Graph Networks with Transformer for Cross-subject EEG Emotion Recognition
Electroencephalography (EEG) serves as a reliable and objective signal for emotion recognition in affective brain-computer interfaces, offering unique advantages through its high temporal resolution and ability to capture authentic emotional states that cannot be consciously controlled. However, cross-subject generalization remains a fundamental challenge due to individual variability, cognitive traits, and emotional responses. We propose FreqDGT, a frequency-adaptive dynamic graph transformer that systematically addresses these limitations through an integrated framework. FreqDGT introduces frequency-adaptive processing (FAP) to dynamically weight emotion-relevant frequency bands based on neuroscientific evidence, employs adaptive dynamic graph learning (ADGL) to learn input-specific brain connectivity patterns, and implements multi-scale temporal disentanglement network (MTDN) that combines hierarchical temporal transformers with adversarial feature disentanglement to capture both temporal dynamics and ensure cross-subject robustness. Comprehensive experiments demonstrate that FreqDGT significantly improves cross-subject emotion recognition accuracy, confirming the effectiveness of integrating frequency-adaptive, spatial-dynamic, and temporal-hierarchical modeling while ensuring robustness to individual differences. The code is available at https://github.com/NZWANG/FreqDGT.
♻ ☆ A Good Start Matters: Enhancing Continual Learning with Data-Driven Weight Initialization
To adapt to real-world data streams, continual learning (CL) systems must rapidly learn new concepts while preserving and utilizing prior knowledge. When it comes to adding new information to continually-trained deep neural networks (DNNs), classifier weights for newly encountered categories are typically initialized randomly, leading to high initial training loss (spikes) and instability. Consequently, achieving optimal convergence and accuracy requires prolonged training, increasing computational costs. Inspired by Neural Collapse (NC), we propose a weight initialization strategy to improve learning efficiency in CL. In DNNs trained with mean-squared-error, NC gives rise to a Least-Square (LS) classifier in the last layer, whose weights can be analytically derived from learned features. We leverage this LS formulation to initialize classifier weights in a data-driven manner, aligning them with the feature distribution rather than using random initialization. Our method mitigates initial loss spikes and accelerates adaptation to new tasks. We evaluate our approach in large-scale CL settings, demonstrating faster adaptation and improved CL performance.
comment: Accepted to the Conference on Lifelong Learning Agents (CoLLAs) 2025
♻ ☆ AirV2X: Unified Air-Ground Vehicle-to-Everything Collaboration
While multi-vehicular collaborative driving demonstrates clear advantages over single-vehicle autonomy, traditional infrastructure-based V2X systems remain constrained by substantial deployment costs and the creation of "uncovered danger zones" in rural and suburban areas. We present AirV2X-Perception, a large-scale dataset that leverages Unmanned Aerial Vehicles (UAVs) as a flexible alternative or complement to fixed Road-Side Units (RSUs). Drones offer unique advantages over ground-based perception: complementary bird's-eye-views that reduce occlusions, dynamic positioning capabilities that enable hovering, patrolling, and escorting navigation rules, and significantly lower deployment costs compared to fixed infrastructure. Our dataset comprises 6.73 hours of drone-assisted driving scenarios across urban, suburban, and rural environments with varied weather and lighting conditions. The AirV2X-Perception dataset facilitates the development and standardized evaluation of Vehicle-to-Drone (V2D) algorithms, addressing a critical gap in the rapidly expanding field of aerial-assisted autonomous driving systems. The dataset and development kits are open-sourced at https://github.com/taco-group/AirV2X-Perception.
♻ ☆ DynaCLR: Contrastive Learning of Cellular Dynamics with Temporal Regularization
We report DynaCLR, a self-supervised method for embedding cell and organelle Dynamics via Contrastive Learning of Representations of time-lapse images. DynaCLR integrates single-cell tracking and time-aware contrastive sampling to learn robust, temporally regularized representations of cell dynamics. DynaCLR embeddings generalize effectively to in-distribution and out-of-distribution datasets, and can be used for several downstream tasks with sparse human annotations. We demonstrate efficient annotations of cell states with a human-in-the-loop using fluorescence and label-free imaging channels. DynaCLR method enables diverse downstream biological analyses: classification of cell division and infection, clustering heterogeneous cell migration patterns, cross-modal distillation of cell states from fluorescence to label-free channel, alignment of asynchronous cellular responses and broken cell tracks, and discovering organelle response due to infection. DynaCLR is a flexible method for comparative analyses of dynamic cellular responses to pharmacological, microbial, and genetic perturbations. We provide PyTorch-based implementations of the model training and inference pipeline (https://github.com/mehta-lab/viscy) and a GUI (https://github.com/czbiohub-sf/napari-iohub) for the visualization and annotation of trajectories of cells in the real space and the embedding space.
comment: 30 pages, 6 figures, 13 appendix figures, 5 videos (ancillary files)
♻ ☆ CoCMT: Communication-Efficient Cross-Modal Transformer for Collaborative Perception
Multi-agent collaborative perception enhances each agent perceptual capabilities by sharing sensing information to cooperatively perform robot perception tasks. This approach has proven effective in addressing challenges such as sensor deficiencies, occlusions, and long-range perception. However, existing representative collaborative perception systems transmit intermediate feature maps, such as bird-eye view (BEV) representations, which contain a significant amount of non-critical information, leading to high communication bandwidth requirements. To enhance communication efficiency while preserving perception capability, we introduce CoCMT, an object-query-based collaboration framework that optimizes communication bandwidth by selectively extracting and transmitting essential features. Within CoCMT, we introduce the Efficient Query Transformer (EQFormer) to effectively fuse multi-agent object queries and implement a synergistic deep supervision to enhance the positive reinforcement between stages, leading to improved overall performance. Experiments on OPV2V and V2V4Real datasets show CoCMT outperforms state-of-the-art methods while drastically reducing communication needs. On V2V4Real, our model (Top-50 object queries) requires only 0.416 Mb bandwidth, 83 times less than SOTA methods, while improving AP70 by 1.1 percent. This efficiency breakthrough enables practical collaborative perception deployment in bandwidth-constrained environments without sacrificing detection accuracy.
♻ ☆ Grounding Creativity in Physics: A Brief Survey of Physical Priors in AIGC IJCAI 2025
Recent advancements in AI-generated content have significantly improved the realism of 3D and 4D generation. However, most existing methods prioritize appearance consistency while neglecting underlying physical principles, leading to artifacts such as unrealistic deformations, unstable dynamics, and implausible objects interactions. Incorporating physics priors into generative models has become a crucial research direction to enhance structural integrity and motion realism. This survey provides a review of physics-aware generative methods, systematically analyzing how physical constraints are integrated into 3D and 4D generation. First, we examine recent works in incorporating physical priors into static and dynamic 3D generation, categorizing methods based on representation types, including vision-based, NeRF-based, and Gaussian Splatting-based approaches. Second, we explore emerging techniques in 4D generation, focusing on methods that model temporal dynamics with physical simulations. Finally, we conduct a comparative analysis of major methods, highlighting their strengths, limitations, and suitability for different materials and motion dynamics. By presenting an in-depth analysis of physics-grounded AIGC, this survey aims to bridge the gap between generative models and physical realism, providing insights that inspire future research in physically consistent content generation.
comment: Accepted by IJCAI 2025 Survey Track
♻ ☆ Lifelong Learning of Video Diffusion Models From a Single Video Stream
This work demonstrates that training autoregressive video diffusion models from a single video stream$\unicode{x2013}$resembling the experience of embodied agents$\unicode{x2013}$is not only possible, but can also be as effective as standard offline training given the same number of gradient steps. Our work further reveals that this main result can be achieved using experience replay methods that only retain a subset of the preceding video stream. To support training and evaluation in this setting, we introduce four new datasets for streaming lifelong generative video modeling: Lifelong Bouncing Balls, Lifelong 3D Maze, Lifelong Drive, and Lifelong PLAICraft, each consisting of one million consecutive frames from environments of increasing complexity.
comment: Video samples are available here: https://drive.google.com/drive/folders/1CsmWqug-CS7I6NwGDvHsEN9FqN2QzspN
♻ ☆ Da Yu: Towards USV-Based Image Captioning for Waterway Surveillance and Scene Understanding
Automated waterway environment perception is crucial for enabling unmanned surface vessels (USVs) to understand their surroundings and make informed decisions. Most existing waterway perception models primarily focus on instance-level object perception paradigms (e.g., detection, segmentation). However, due to the complexity of waterway environments, current perception datasets and models fail to achieve global semantic understanding of waterways, limiting large-scale monitoring and structured log generation. With the advancement of vision-language models (VLMs), we leverage image captioning to introduce WaterCaption, the first captioning dataset specifically designed for waterway environments. WaterCaption focuses on fine-grained, multi-region long-text descriptions, providing a new research direction for visual geo-understanding and spatial scene cognition. Exactly, it includes 20.2k image-text pair data with 1.8 million vocabulary size. Additionally, we propose Da Yu, an edge-deployable multi-modal large language model for USVs, where we propose a novel vision-to-language projector called Nano Transformer Adaptor (NTA). NTA effectively balances computational efficiency with the capacity for both global and fine-grained local modeling of visual features, thereby significantly enhancing the model's ability to generate long-form textual outputs. Da Yu achieves an optimal balance between performance and efficiency, surpassing state-of-the-art models on WaterCaption and several other captioning benchmarks.
comment: 14 pages, 13 figures
♻ ☆ Seamless Interaction: Dyadic Audiovisual Motion Modeling and Large-Scale Dataset
Human communication involves a complex interplay of verbal and nonverbal signals, essential for conveying meaning and achieving interpersonal goals. To develop socially intelligent AI technologies, it is crucial to develop models that can both comprehend and generate dyadic behavioral dynamics. To this end, we introduce the Seamless Interaction Dataset, a large-scale collection of over 4,000 hours of face-to-face interaction footage from over 4,000 participants in diverse contexts. This dataset enables the development of AI technologies that understand dyadic embodied dynamics, unlocking breakthroughs in virtual agents, telepresence experiences, and multimodal content analysis tools. We also develop a suite of models that utilize the dataset to generate dyadic motion gestures and facial expressions aligned with human speech. These models can take as input both the speech and visual behavior of their interlocutors. We present a variant with speech from an LLM model and integrations with 2D and 3D rendering methods, bringing us closer to interactive virtual agents. Additionally, we describe controllable variants of our motion models that can adapt emotional responses and expressivity levels, as well as generating more semantically-relevant gestures. Finally, we discuss methods for assessing the quality of these dyadic motion models, which are demonstrating the potential for more intuitive and responsive human-AI interactions.
♻ ☆ Mixed Signals: A Diverse Point Cloud Dataset for Heterogeneous LiDAR V2X Collaboration
Vehicle-to-everything (V2X) collaborative perception has emerged as a promising solution to address the limitations of single-vehicle perception systems. However, existing V2X datasets are limited in scope, diversity, and quality. To address these gaps, we present Mixed Signals, a comprehensive V2X dataset featuring 45.1k point clouds and 240.6k bounding boxes collected from three connected autonomous vehicles (CAVs) equipped with two different configurations of LiDAR sensors, plus a roadside unit with dual LiDARs. Our dataset provides point clouds and bounding box annotations across 10 classes, ensuring reliable data for perception training. We provide detailed statistical analysis on the quality of our dataset and extensively benchmark existing V2X methods on it. The Mixed Signals dataset is ready-to-use, with precise alignment and consistent annotations across time and viewpoints. Dataset website is available at https://mixedsignalsdataset.cs.cornell.edu/.
Machine Learning 154
☆ Jump-Start Reinforcement Learning with Self-Evolving Priors for Extreme Monopedal Locomotion
Reinforcement learning (RL) has shown great potential in enabling quadruped robots to perform agile locomotion. However, directly training policies to simultaneously handle dual extreme challenges, i.e., extreme underactuation and extreme terrains, as in monopedal hopping tasks, remains highly challenging due to unstable early-stage interactions and unreliable reward feedback. To address this, we propose JumpER (jump-start reinforcement learning via self-evolving priors), an RL training framework that structures policy learning into multiple stages of increasing complexity. By dynamically generating self-evolving priors through iterative bootstrapping of previously learned policies, JumpER progressively refines and enhances guidance, thereby stabilizing exploration and policy optimization without relying on external expert priors or handcrafted reward shaping. Specifically, when integrated with a structured three-stage curriculum that incrementally evolves action modality, observation space, and task objective, JumpER enables quadruped robots to achieve robust monopedal hopping on unpredictable terrains for the first time. Remarkably, the resulting policy effectively handles challenging scenarios that traditional methods struggle to conquer, including wide gaps up to 60 cm, irregularly spaced stairs, and stepping stones with distances varying from 15 cm to 35 cm. JumpER thus provides a principled and scalable approach for addressing locomotion tasks under the dual challenges of extreme underactuation and extreme terrains.
☆ Beyond First-Order: Training LLMs with Stochastic Conjugate Subgradients and AdamW
Stochastic gradient-based descent (SGD), have long been central to training large language models (LLMs). However, their effectiveness is increasingly being questioned, particularly in large-scale applications where empirical evidence suggests potential performance limitations. In response, this paper proposes a stochastic conjugate subgradient method together with adaptive sampling tailored specifically for training LLMs. The method not only achieves faster convergence per iteration but also demonstrates improved scalability compared to traditional SGD techniques. It leverages sample complexity analysis to adaptively choose the sample size, employs a stochastic conjugate subgradient approach to determine search directions and utilizing an AdamW-like algorithm to adaptively adjust step sizes. This approach preserves the key advantages of first-order methods while effectively addressing the nonconvexity and non-smoothness inherent in LLMs training. Additionally, we provide a detailed analysis of the advantage of the algorithm. Experimental results show that the proposed method not only maintains, but in many cases surpasses, the scalability of traditional SGD techniques, significantly enhancing both the speed and accuracy of the optimization process.
☆ Quantum Machine Learning in Transportation: A Case Study of Pedestrian Stress Modelling
Quantum computing has opened new opportunities to tackle complex machine learning tasks, for instance, high-dimensional data representations commonly required in intelligent transportation systems. We explore quantum machine learning to model complex skin conductance response (SCR) events that reflect pedestrian stress in a virtual reality road crossing experiment. For this purpose, Quantum Support Vector Machine (QSVM) with an eight-qubit ZZ feature map and a Quantum Neural Network (QNN) using a Tree Tensor Network ansatz and an eight-qubit ZZ feature map, were developed on Pennylane. The dataset consists of SCR measurements along with features such as the response amplitude and elapsed time, which have been categorized into amplitude-based classes. The QSVM achieved good training accuracy, but had an overfitting problem, showing a low test accuracy of 45% and therefore impacting the reliability of the classification model. The QNN model reached a higher test accuracy of 55%, making it a better classification model than the QSVM and the classic versions.
comment: Proceedings of IEEE Intelligent Transportation Systems Conference, 2025
☆ PAE MobiLLM: Privacy-Aware and Efficient LLM Fine-Tuning on the Mobile Device via Additive Side-Tuning
There is a huge gap between numerous intriguing applications fostered by on-device large language model (LLM) fine-tuning (FT) from fresh mobile data and the limited resources of a mobile device. While existing server-assisted methods (e.g., split learning or side-tuning) may enable LLM FT on the local mobile device, they suffer from heavy communication burdens of activation transmissions, and may disclose data, labels or fine-tuned models to the server. To address those issues, we develop PAE MobiLLM, a privacy-aware and efficient LLM FT method which can be deployed on the mobile device via server-assisted additive side-tuning. To further accelerate FT convergence and improve computing efficiency, PAE MobiLLM integrates activation caching on the server side, which allows the server to reuse historical activations and saves the mobile device from repeatedly computing forward passes for the recurring data samples. Besides, to reduce communication cost, PAE MobiLLM develops a one-token (i.e., ``pivot'' token) activation shortcut that transmits only a single activation dimension instead of full activation matrices to guide the side network tuning. Last but not least, PAE MobiLLM introduces the additive adapter side-network design which makes the server train the adapter modules based on device-defined prediction differences rather than raw ground-truth labels. In this way, the server can only assist device-defined side-network computing, and learn nothing about data, labels or fine-tuned models.
☆ Deep Learning-Based Intrusion Detection for Automotive Ethernet: Evaluating & Optimizing Fast Inference Techniques for Deployment on Low-Cost Platform
Modern vehicles are increasingly connected, and in this context, automotive Ethernet is one of the technologies that promise to provide the necessary infrastructure for intra-vehicle communication. However, these systems are subject to attacks that can compromise safety, including flow injection attacks. Deep Learning-based Intrusion Detection Systems (IDS) are often designed to combat this problem, but they require expensive hardware to run in real time. In this work, we propose to evaluate and apply fast neural network inference techniques like Distilling and Prunning for deploying IDS models on low-cost platforms in real time. The results show that these techniques can achieve intrusion detection times of up to 727 {\mu}s using a Raspberry Pi 4, with AUCROC values of 0.9890.
Escaping Platos Cave: JAM for Aligning Independently Trained Vision and Language Models
Independently trained vision and language models inhabit disjoint representational spaces, shaped by their respective modalities, objectives, and architectures. Yet an emerging hypothesis - the Platonic Representation Hypothesis - suggests that such models may nonetheless converge toward a shared statistical model of reality. This compatibility, if it exists, raises a fundamental question: can we move beyond post-hoc statistical detection of alignment and explicitly optimize for it between such disjoint representations? We cast this Platonic alignment problem as a multi-objective optimization task - preserve each modality's native structure while aligning for mutual coherence. We introduce the Joint Autoencoder Modulator (JAM) framework that jointly trains modality-specific autoencoders on the latent representations of pre-trained single modality models, encouraging alignment through both reconstruction and cross-modal objectives. By analogy, this framework serves as a method to escape Plato's Cave, enabling the emergence of shared structure from disjoint inputs. We evaluate this framework across three critical design axes: (i) the alignment objective - comparing contrastive loss (Con), its hard-negative variant (NegCon), and our Spread loss, (ii) the layer depth at which alignment is most effective, and (iii) the impact of foundation model scale on representational convergence. Our findings show that our lightweight Pareto-efficient framework reliably induces alignment, even across frozen, independently trained representations, offering both theoretical insight and practical pathways for transforming generalist unimodal foundations into specialist multimodal models.
☆ Are Large Brainwave Foundation Models Capable Yet? Insights from Fine-tuning
Foundation Models have demonstrated significant success across various domains in Artificial Intelligence (AI), yet their capabilities for brainwave modeling remain unclear. In this paper, we comprehensively evaluate current Large Brainwave Foundation Models (LBMs) through systematic fine-tuning experiments across multiple Brain-Computer Interface (BCI) benchmark tasks, including memory tasks and sleep stage classification. Our extensive analysis shows that state-of-the-art LBMs achieve only marginal improvements (0.9%-1.2%) over traditional deep architectures while requiring significantly more parameters (millions vs thousands), raising important questions about their efficiency and applicability in BCI contexts. Moreover, through detailed ablation studies and Low-Rank Adaptation (LoRA), we significantly reduce trainable parameters without performance degradation, while demonstrating that architectural and training inefficiencies limit LBMs' current capabilities. Our experiments span both full model fine-tuning and parameter-efficient adaptation techniques, providing insights into optimal training strategies for BCI applications. We pioneer the application of LoRA to LBMs, revealing that performance benefits generally emerge when adapting multiple neural network components simultaneously. These findings highlight the critical need for domain-specific development strategies to advance LBMs, suggesting that current architectures may require redesign to fully leverage the potential of foundation models in brainwave analysis.
☆ Diffusion Explorer: Interactive Exploration of Diffusion Models
Diffusion models have been central to the development of recent image, video, and even text generation systems. They posses striking geometric properties that can be faithfully portrayed in low-dimensional settings. However, existing resources for explaining diffusion either require an advanced theoretical foundation or focus on their neural network architectures rather than their rich geometric properties. We introduce Diffusion Explorer, an interactive tool to explain the geometric properties of diffusion models. Users can train 2D diffusion models in the browser and observe the temporal dynamics of their sampling process. Diffusion Explorer leverages interactive animation, which has been shown to be a powerful tool for making engaging visualizations of dynamic systems, making it well suited to explaining diffusion models which represent stochastic processes that evolve over time. Diffusion Explorer is open source and a live demo is available at alechelbling.com/Diffusion-Explorer.
☆ FlashDP: Private Training Large Language Models with Efficient DP-SGD
As large language models (LLMs) increasingly underpin technological advancements, the privacy of their training data emerges as a critical concern. Differential Privacy (DP) serves as a rigorous mechanism to protect this data, yet its integration via Differentially Private Stochastic Gradient Descent (DP-SGD) introduces substantial challenges, primarily due to the complexities of per-sample gradient clipping. Current explicit methods, such as Opacus, necessitate extensive storage for per-sample gradients, significantly inflating memory requirements. Conversely, implicit methods like GhostClip reduce storage needs by recalculating gradients multiple times, which leads to inefficiencies due to redundant computations. This paper introduces FlashDP, an innovative cache-friendly per-layer DP-SGD that consolidates necessary operations into a single task, calculating gradients only once in a fused manner. This approach not only diminishes memory movement by up to \textbf{50\%} but also cuts down redundant computations by \textbf{20\%}, compared to previous methods. Consequently, FlashDP does not increase memory demands and achieves a \textbf{90\%} throughput compared to the Non-DP method on a four-A100 system during the pre-training of the Llama-13B model, while maintaining parity with standard per-layer clipped DP-SGD in terms of accuracy. These advancements establish FlashDP as a pivotal development for efficient and privacy-preserving training of LLMs. FlashDP's code has been open-sourced in https://github.com/kaustpradalab/flashdp.
☆ A Review on Sound Source Localization in Robotics: Focusing on Deep Learning Methods
Sound source localization (SSL) adds a spatial dimension to auditory perception, allowing a system to pinpoint the origin of speech, machinery noise, warning tones, or other acoustic events, capabilities that facilitate robot navigation, human-machine dialogue, and condition monitoring. While existing surveys provide valuable historical context, they typically address general audio applications and do not fully account for robotic constraints or the latest advancements in deep learning. This review addresses these gaps by offering a robotics-focused synthesis, emphasizing recent progress in deep learning methodologies. We start by reviewing classical methods such as Time Difference of Arrival (TDOA), beamforming, Steered-Response Power (SRP), and subspace analysis. Subsequently, we delve into modern machine learning (ML) and deep learning (DL) approaches, discussing traditional ML and neural networks (NNs), convolutional neural networks (CNNs), convolutional recurrent neural networks (CRNNs), and emerging attention-based architectures. The data and training strategy that are the two cornerstones of DL-based SSL are explored. Studies are further categorized by robot types and application domains to facilitate researchers in identifying relevant work for their specific contexts. Finally, we highlight the current challenges in SSL works in general, regarding environmental robustness, sound source multiplicity, and specific implementation constraints in robotics, as well as data and learning strategies in DL-based SSL. Also, we sketch promising directions to offer an actionable roadmap toward robust, adaptable, efficient, and explainable DL-based SSL for next-generation robots.
comment: 35 pages
☆ Spectral Manifold Harmonization for Graph Imbalanced Regression
Graph-structured data is ubiquitous in scientific domains, where models often face imbalanced learning settings. In imbalanced regression, domain preferences focus on specific target value ranges representing the most scientifically valuable cases; we observe a significant lack of research. In this paper, we present Spectral Manifold Harmonization (SMH), a novel approach for addressing this imbalanced regression challenge on graph-structured data by generating synthetic graph samples that preserve topological properties while focusing on often underrepresented target distribution regions. Conventional methods fail in this context because they either ignore graph topology in case generation or do not target specific domain ranges, resulting in models biased toward average target values. Experimental results demonstrate the potential of SMH on chemistry and drug discovery benchmark datasets, showing consistent improvements in predictive performance for target domain ranges.
☆ Tensor Decomposition Networks for Fast Machine Learning Interatomic Potential Computations
$\rm{SO}(3)$-equivariant networks are the dominant models for machine learning interatomic potentials (MLIPs). The key operation of such networks is the Clebsch-Gordan (CG) tensor product, which is computationally expensive. To accelerate the computation, we develop tensor decomposition networks (TDNs) as a class of approximately equivariant networks whose CG tensor products are replaced by low-rank tensor decompositions, such as the CANDECOMP/PARAFAC (CP) decomposition. With the CP decomposition, we prove (i) a uniform bound on the induced error of $\rm{SO}(3)$-equivariance, and (ii) the universality of approximating any equivariant bilinear map. To further reduce the number of parameters, we propose path-weight sharing that ties all multiplicity-space weights across the $O(L^3)$ CG paths into a single path without compromising equivariance, where $L$ is the maximum angular degree. The resulting layer acts as a plug-and-play replacement for tensor products in existing networks, and the computational complexity of tensor products is reduced from $O(L^6)$ to $O(L^4)$. We evaluate TDNs on PubChemQCR, a newly curated molecular relaxation dataset containing 105 million DFT-calculated snapshots. We also use existing datasets, including OC20, and OC22. Results show that TDNs achieve competitive performance with dramatic speedup in computations.
☆ On Design Principles for Private Adaptive Optimizers
The spherical noise added to gradients in differentially private (DP) training undermines the performance of adaptive optimizers like AdaGrad and Adam, and hence many recent works have proposed algorithms to address this challenge. However, the empirical results in these works focus on simple tasks and models and the conclusions may not generalize to model training in practice. In this paper we survey several of these variants, and develop better theoretical intuition for them as well as perform empirical studies comparing them. We find that a common intuition of aiming for unbiased estimates of second moments of gradients in adaptive optimizers is misguided, and instead that a simple technique called scale-then-privatize (which does not achieve unbiased second moments) has more desirable theoretical behaviors and outperforms all other variants we study on a small-scale language model training task. We additionally argue that scale-then-privatize causes the noise addition to better match the application of correlated noise mechanisms which are more desirable to use in practice.
comment: PPML 2025
☆ Landslide Detection and Mapping Using Deep Learning Across Multi-Source Satellite Data and Geographic Regions
Landslides pose severe threats to infrastructure, economies, and human lives, necessitating accurate detection and predictive mapping across diverse geographic regions. With advancements in deep learning and remote sensing, automated landslide detection has become increasingly effective. This study presents a comprehensive approach integrating multi-source satellite imagery and deep learning models to enhance landslide identification and prediction. We leverage Sentinel-2 multispectral data and ALOS PALSAR-derived slope and Digital Elevation Model (DEM) layers to capture critical environmental features influencing landslide occurrences. Various geospatial analysis techniques are employed to assess the impact of terra in characteristics, vegetation cover, and rainfall on detection accuracy. Additionally, we evaluate the performance of multiple stateof-the-art deep learning segmentation models, including U-Net, DeepLabV3+, and Res-Net, to determine their effectiveness in landslide detection. The proposed framework contributes to the development of reliable early warning systems, improved disaster risk management, and sustainable land-use planning. Our findings provide valuable insights into the potential of deep learning and multi-source remote sensing in creating robust, scalable, and transferable landslide prediction models.
comment: 20 pages, 24 figures
☆ A Neural Operator based on Dynamic Mode Decomposition
The scientific computation methods development in conjunction with artificial intelligence technologies remains a hot research topic. Finding a balance between lightweight and accurate computations is a solid foundation for this direction. The study presents a neural operator based on the dynamic mode decomposition algorithm (DMD), mapping functional spaces, which combines DMD and deep learning (DL) for spatiotemporal processes efficient modeling. Solving PDEs for various initial and boundary conditions requires significant computational resources. The method suggested automatically extracts key modes and system dynamics using them to construct predictions, reducing computational costs compared to traditional numerical methods. The approach has demonstrated its efficiency through comparative analysis of performance with closest analogues DeepONet and FNO in the heat equation, Laplaces equation, and Burgers equation solutions approximation, where it achieves high reconstruction accuracy.
comment: 30 pages, 10 figures
☆ A LoD of Gaussians: Unified Training and Rendering for Ultra-Large Scale Reconstruction with External Memory
Gaussian Splatting has emerged as a high-performance technique for novel view synthesis, enabling real-time rendering and high-quality reconstruction of small scenes. However, scaling to larger environments has so far relied on partitioning the scene into chunks -- a strategy that introduces artifacts at chunk boundaries, complicates training across varying scales, and is poorly suited to unstructured scenarios such as city-scale flyovers combined with street-level views. Moreover, rendering remains fundamentally limited by GPU memory, as all visible chunks must reside in VRAM simultaneously. We introduce A LoD of Gaussians, a framework for training and rendering ultra-large-scale Gaussian scenes on a single consumer-grade GPU -- without partitioning. Our method stores the full scene out-of-core (e.g., in CPU memory) and trains a Level-of-Detail (LoD) representation directly, dynamically streaming only the relevant Gaussians. A hybrid data structure combining Gaussian hierarchies with Sequential Point Trees enables efficient, view-dependent LoD selection, while a lightweight caching and view scheduling system exploits temporal coherence to support real-time streaming and rendering. Together, these innovations enable seamless multi-scale reconstruction and interactive visualization of complex scenes -- from broad aerial views to fine-grained ground-level details.
☆ Geometry-aware 4D Video Generation for Robot Manipulation
Understanding and predicting the dynamics of the physical world can enhance a robot's ability to plan and interact effectively in complex environments. While recent video generation models have shown strong potential in modeling dynamic scenes, generating videos that are both temporally coherent and geometrically consistent across camera views remains a significant challenge. To address this, we propose a 4D video generation model that enforces multi-view 3D consistency of videos by supervising the model with cross-view pointmap alignment during training. This geometric supervision enables the model to learn a shared 3D representation of the scene, allowing it to predict future video sequences from novel viewpoints based solely on the given RGB-D observations, without requiring camera poses as inputs. Compared to existing baselines, our method produces more visually stable and spatially aligned predictions across multiple simulated and real-world robotic datasets. We further show that the predicted 4D videos can be used to recover robot end-effector trajectories using an off-the-shelf 6DoF pose tracker, supporting robust robot manipulation and generalization to novel camera viewpoints.
comment: Project website: https://robot4dgen.github.io
☆ Proof of a perfect platonic representation hypothesis
In this note, we elaborate on and explain in detail the proof given by Ziyin et al. (2025) of the "perfect" Platonic Representation Hypothesis (PRH) for the embedded deep linear network model (EDLN). We show that if trained with SGD, two EDLNs with different widths and depths and trained on different data will become Perfectly Platonic, meaning that every possible pair of layers will learn the same representation up to a rotation. Because most of the global minima of the loss function are not Platonic, that SGD only finds the perfectly Platonic solution is rather extraordinary. The proof also suggests at least six ways the PRH can be broken. We also show that in the EDLN model, the emergence of the Platonic representations is due to the same reason as the emergence of progressive sharpening. This implies that these two seemingly unrelated phenomena in deep learning can, surprisingly, have a common cause. Overall, the theory and proof highlight the importance of understanding emergent "entropic forces" due to the irreversibility of SGD training and their role in representation learning. The goal of this note is to be instructive and avoid lengthy technical details.
☆ Description of the Training Process of Neural Networks via Ergodic Theorem : Ghost nodes
Recent studies have proposed interpreting the training process from an ergodic perspective. Building on this foundation we present a unified framework for understanding and accelerating the training of deep neural networks via stochastic gradient descent. By analyzing the geometric landscape of the objective function we introduce a practical diagnostic, the running estimate of the largest Lyapunov exponent, which provably distinguishes genuine convergence toward stable minimizers from mere statistical stabilization near saddle points. We then propose a ghost category extension for standard classifiers that adds auxiliary ghost output nodes so the model gains extra descent directions that open a lateral corridor around narrow loss barriers and enable the optimizer to bypass poor basins during the early training phase. We show that this extension strictly reduces approximation error and that after sufficient convergence the ghost dimensions collapse and the extended model's invariant law coincides with that of the original and there exists a path in the enlarged parameter space along which the total loss does not increase while the original loss decreases by an arbitrary margin. Taken together these results provide a principled architecture level intervention that accelerates early stage trainability while preserving asymptotic behavior.
comment: 9 pages, 2 figures
☆ Box Pose and Shape Estimation and Domain Adaptation for Large-Scale Warehouse Automation
Modern warehouse automation systems rely on fleets of intelligent robots that generate vast amounts of data -- most of which remains unannotated. This paper develops a self-supervised domain adaptation pipeline that leverages real-world, unlabeled data to improve perception models without requiring manual annotations. Our work focuses specifically on estimating the pose and shape of boxes and presents a correct-and-certify pipeline for self-supervised box pose and shape estimation. We extensively evaluate our approach across a range of simulated and real industrial settings, including adaptation to a large-scale real-world dataset of 50,000 images. The self-supervised model significantly outperforms models trained solely in simulation and shows substantial improvements over a zero-shot 3D bounding box estimation baseline.
comment: 12 pages, 6 figures. This work will be presented at the 19th International Symposium on Experimental Robotics (ISER2025)
☆ Enhancing LLM Agent Safety via Causal Influence Prompting ACL 2025
As autonomous agents powered by large language models (LLMs) continue to demonstrate potential across various assistive tasks, ensuring their safe and reliable behavior is crucial for preventing unintended consequences. In this work, we introduce CIP, a novel technique that leverages causal influence diagrams (CIDs) to identify and mitigate risks arising from agent decision-making. CIDs provide a structured representation of cause-and-effect relationships, enabling agents to anticipate harmful outcomes and make safer decisions. Our approach consists of three key steps: (1) initializing a CID based on task specifications to outline the decision-making process, (2) guiding agent interactions with the environment using the CID, and (3) iteratively refining the CID based on observed behaviors and outcomes. Experimental results demonstrate that our method effectively enhances safety in both code execution and mobile device control tasks.
comment: Accepted at ACL 2025 Findings, Source code: https://github.com/HahmDY/causal_influence_prompting.git
☆ Reasoning as an Adaptive Defense for Safety
Reasoning methods that adaptively allocate test-time compute have advanced LLM performance on easy to verify domains such as math and code. In this work, we study how to utilize this approach to train models that exhibit a degree of robustness to safety vulnerabilities, and show that doing so can provide benefits. We build a recipe called $\textit{TARS}$ (Training Adaptive Reasoners for Safety), a reinforcement learning (RL) approach that trains models to reason about safety using chain-of-thought traces and a reward signal that balances safety with task completion. To build TARS, we identify three critical design choices: (1) a "lightweight" warmstart SFT stage, (2) a mix of harmful, harmless, and ambiguous prompts to prevent shortcut behaviors such as too many refusals, and (3) a reward function to prevent degeneration of reasoning capabilities during training. Models trained with TARS exhibit adaptive behaviors by spending more compute on ambiguous queries, leading to better safety-refusal trade-offs. They also internally learn to better distinguish between safe and unsafe prompts and attain greater robustness to both white-box (e.g., GCG) and black-box attacks (e.g., PAIR). Overall, our work provides an effective, open recipe for training LLMs against jailbreaks and harmful requests by reasoning per prompt.
comment: 42 pages, 11 Figures, 7 Tables
☆ Scalable Feature Learning on Huge Knowledge Graphs for Downstream Machine Learning
Many machine learning tasks can benefit from external knowledge. Large knowledge graphs store such knowledge, and embedding methods can be used to distill it into ready-to-use vector representations for downstream applications. For this purpose, current models have however two limitations: they are primarily optimized for link prediction, via local contrastive learning, and they struggle to scale to the largest graphs due to GPU memory limits. To address these, we introduce SEPAL: a Scalable Embedding Propagation ALgorithm for large knowledge graphs designed to produce high-quality embeddings for downstream tasks at scale. The key idea of SEPAL is to enforce global embedding alignment by optimizing embeddings only on a small core of entities, and then propagating them to the rest of the graph via message passing. We evaluate SEPAL on 7 large-scale knowledge graphs and 46 downstream machine learning tasks. Our results show that SEPAL significantly outperforms previous methods on downstream tasks. In addition, SEPAL scales up its base embedding model, enabling fitting huge knowledge graphs on commodity hardware.
☆ Benchmarking the Discovery Engine
The Discovery Engine is a general purpose automated system for scientific discovery, which combines machine learning with state-of-the-art ML interpretability to enable rapid and robust scientific insight across diverse datasets. In this paper, we benchmark the Discovery Engine against five recent peer-reviewed scientific publications applying machine learning across medicine, materials science, social science, and environmental science. In each case, the Discovery Engine matches or exceeds prior predictive performance while also generating deeper, more actionable insights through rich interpretability artefacts. These results demonstrate its potential as a new standard for automated, interpretable scientific modelling that enables complex knowledge discovery from data.
comment: 16 pages, 8 figures, benchmarks Discovery Engine on five scientific datasets (medicine, materials science, climate, air quality, social science)
☆ Atmospheric model-trained machine learning selection and classification of ultracool TY dwarfs
The T and Y spectral classes represent the coolest and lowest-mass population of brown dwarfs, yet their census remains incomplete due to limited statistics. Existing detection frameworks are often constrained to identifying M, L, and early T dwarfs, owing to the sparse observational sample of ultracool dwarfs (UCDs) at later types. This paper presents a novel machine learning framework capable of detecting and classifying late-T and Y dwarfs, trained entirely on synthetic photometry from atmospheric models. Utilizing grids from the ATMO 2020 and Sonora Bobcat models, I produce a training dataset over two orders of magnitude larger than any empirical set of >T6 UCDs. Polynomial color relations fitted to the model photometry are used to assign spectral types to these synthetic models, which in turn train an ensemble of classifiers to identify and classify the spectral type of late UCDs. The model is highly performant when validating on both synthetic and empirical datasets, verifying catalogs of known UCDs with object classification metrics >99% and an average spectral type precision within 0.35 +/- 0.37 subtypes. Application of the model to a 1.5 degree region around Pisces and the UKIDSS UDS field results in the discovery of one previously uncatalogued T8.2 candidate, demonstrating the ability of this model-trained approach in discovering faint, late-type UCDs from photometric catalogs.
comment: 12 pages, 9 figures, to be published in Monthly Notices of the Royal Astronomical Society
☆ MVP: Winning Solution to SMP Challenge 2025 Video Track
Social media platforms serve as central hubs for content dissemination, opinion expression, and public engagement across diverse modalities. Accurately predicting the popularity of social media videos enables valuable applications in content recommendation, trend detection, and audience engagement. In this paper, we present Multimodal Video Predictor (MVP), our winning solution to the Video Track of the SMP Challenge 2025. MVP constructs expressive post representations by integrating deep video features extracted from pretrained models with user metadata and contextual information. The framework applies systematic preprocessing techniques, including log-transformations and outlier removal, to improve model robustness. A gradient-boosted regression model is trained to capture complex patterns across modalities. Our approach ranked first in the official evaluation of the Video Track, demonstrating its effectiveness and reliability for multimodal video popularity prediction on social platforms. The source code is available at https://anonymous.4open.science/r/SMPDVideo.
☆ Time Series Foundation Models are Flow Predictors
We investigate the effectiveness of time series foundation models (TSFMs) for crowd flow prediction, focusing on Moirai and TimesFM. Evaluated on three real-world mobility datasets-Bike NYC, Taxi Beijing, and Spanish national OD flows-these models are deployed in a strict zero-shot setting, using only the temporal evolution of each OD flow and no explicit spatial information. Moirai and TimesFM outperform both statistical and deep learning baselines, achieving up to 33% lower RMSE, 39% lower MAE and up to 49% higher CPC compared to state-of-the-art competitors. Our results highlight the practical value of TSFMs for accurate, scalable flow prediction, even in scenarios with limited annotated data or missing spatial context.
comment: arXiv admin note: text overlap with arXiv:2203.07372
☆ RaGNNarok: A Light-Weight Graph Neural Network for Enhancing Radar Point Clouds on Unmanned Ground Vehicles
Low-cost indoor mobile robots have gained popularity with the increasing adoption of automation in homes and commercial spaces. However, existing lidar and camera-based solutions have limitations such as poor performance in visually obscured environments, high computational overhead for data processing, and high costs for lidars. In contrast, mmWave radar sensors offer a cost-effective and lightweight alternative, providing accurate ranging regardless of visibility. However, existing radar-based localization suffers from sparse point cloud generation, noise, and false detections. Thus, in this work, we introduce RaGNNarok, a real-time, lightweight, and generalizable graph neural network (GNN)-based framework to enhance radar point clouds, even in complex and dynamic environments. With an inference time of just 7.3 ms on the low-cost Raspberry Pi 5, RaGNNarok runs efficiently even on such resource-constrained devices, requiring no additional computational resources. We evaluate its performance across key tasks, including localization, SLAM, and autonomous navigation, in three different environments. Our results demonstrate strong reliability and generalizability, making RaGNNarok a robust solution for low-cost indoor mobile robots.
comment: 8 pages, accepted by IROS 2025
☆ Development and Comparative Evaluation of Three Artificial Intelligence Models (NLP, LLM, JEPA) for Predicting Triage in Emergency Departments: A 7-Month Retrospective Proof-of-Concept
Triage errors, including undertriage and overtriage, are persistent challenges in emergency departments (EDs). With increasing patient influx and staff shortages, the integration of artificial intelligence (AI) into triage protocols has gained attention. This study compares the performance of three AI models [Natural Language Processing (NLP), Large Language Models (LLM), and Joint Embedding Predictive Architecture (JEPA)] in predicting triage outcomes against the FRENCH scale and clinical practice.We conducted a retrospective analysis of a prospectively recruited cohort gathering adult patient triage data over a 7-month period at the Roger Salengro Hospital ED (Lille, France). Three AI models were trained and validated : (1) TRIAGEMASTER (NLP), (2) URGENTIAPARSE (LLM), and (3) EMERGINET (JEPA). Data included demographic details, verbatim chief complaints, vital signs, and triage outcomes based on the FRENCH scale and GEMSA coding. The primary outcome was the concordance of AI-predicted triage level with the FRENCH gold-standard. It was assessed thanks to various indicators : F1-Score, Weighted Kappa, Spearman, MAE, RMSE. The LLM model (URGENTIAPARSE) showed higher accuracy (composite score: 2.514) compared to JEPA (EMERGINET, 0.438) and NLP (TRIAGEMASTER, -3.511), outperforming nurse triage (-4.343). Secondary analyses highlighted the effectiveness of URGENTIAPARSE in predicting hospitalization needs (GEMSA) and its robustness with structured data versus raw transcripts (either for GEMSA prediction or for FRENCH prediction). LLM architecture, through abstraction of patient representations, offers the most accurate triage predictions among tested models. Integrating AI into ED workflows could enhance patient safety and operational efficiency, though integration into clinical workflows requires addressing model limitations and ensuring ethical transparency.
comment: 15 pages, 6 figures
☆ Understanding Generalization in Node and Link Prediction
Using message-passing graph neural networks (MPNNs) for node and link prediction is crucial in various scientific and industrial domains, which has led to the development of diverse MPNN architectures. Besides working well in practical settings, their ability to generalize beyond the training set remains poorly understood. While some studies have explored MPNNs' generalization in graph-level prediction tasks, much less attention has been given to node- and link-level predictions. Existing works often rely on unrealistic i.i.d.\@ assumptions, overlooking possible correlations between nodes or links, and assuming fixed aggregation and impractical loss functions while neglecting the influence of graph structure. In this work, we introduce a unified framework to analyze the generalization properties of MPNNs in inductive and transductive node and link prediction settings, incorporating diverse architectural parameters and loss functions and quantifying the influence of graph structure. Additionally, our proposed generalization framework can be applied beyond graphs to any classification task under the inductive or transductive setting. Our empirical study supports our theoretical insights, deepening our understanding of MPNNs' generalization capabilities in these tasks.
comment: arXiv admin note: text overlap with arXiv:2412.07106
☆ HyperFusion: Hierarchical Multimodal Ensemble Learning for Social Media Popularity Prediction
Social media popularity prediction plays a crucial role in content optimization, marketing strategies, and user engagement enhancement across digital platforms. However, predicting post popularity remains challenging due to the complex interplay between visual, textual, temporal, and user behavioral factors. This paper presents HyperFusion, a hierarchical multimodal ensemble learning framework for social media popularity prediction. Our approach employs a three-tier fusion architecture that progressively integrates features across abstraction levels: visual representations from CLIP encoders, textual embeddings from transformer models, and temporal-spatial metadata with user characteristics. The framework implements a hierarchical ensemble strategy combining CatBoost, TabNet, and custom multi-layer perceptrons. To address limited labeled data, we propose a two-stage training methodology with pseudo-labeling and iterative refinement. We introduce novel cross-modal similarity measures and hierarchical clustering features that capture inter-modal dependencies. Experimental results demonstrate that HyperFusion achieves competitive performance on the SMP challenge dataset. Our team achieved third place in the SMP Challenge 2025 (Image Track). The source code is available at https://anonymous.4open.science/r/SMPDImage.
☆ Privacy-Preserving Quantized Federated Learning with Diverse Precision
Federated learning (FL) has emerged as a promising paradigm for distributed machine learning, enabling collaborative training of a global model across multiple local devices without requiring them to share raw data. Despite its advancements, FL is limited by factors such as: (i) privacy risks arising from the unprotected transmission of local model updates to the fusion center (FC) and (ii) decreased learning utility caused by heterogeneity in model quantization resolution across participating devices. Prior work typically addresses only one of these challenges because maintaining learning utility under both privacy risks and quantization heterogeneity is a non-trivial task. In this paper, our aim is therefore to improve the learning utility of a privacy-preserving FL that allows clusters of devices with different quantization resolutions to participate in each FL round. Specifically, we introduce a novel stochastic quantizer (SQ) that is designed to simultaneously achieve differential privacy (DP) and minimum quantization error. Notably, the proposed SQ guarantees bounded distortion, unlike other DP approaches. To address quantization heterogeneity, we introduce a cluster size optimization technique combined with a linear fusion approach to enhance model aggregation accuracy. Numerical simulations validate the benefits of our approach in terms of privacy protection and learning utility compared to the conventional LaplaceSQ-FL algorithm.
☆ TABASCO: A Fast, Simplified Model for Molecular Generation with Improved Physical Quality
State-of-the-art models for 3D molecular generation are based on significant inductive biases, SE(3), permutation equivariance to respect symmetry and graph message-passing networks to capture local chemistry, yet the generated molecules still struggle with physical plausibility. We introduce TABASCO which relaxes these assumptions: The model has a standard non-equivariant transformer architecture, treats atoms in a molecule as sequences and reconstructs bonds deterministically after generation. The absence of equivariant layers and message passing allows us to significantly simplify the model architecture and scale data throughput. On the GEOM-Drugs benchmark TABASCO achieves state-of-the-art PoseBusters validity and delivers inference roughly 10x faster than the strongest baseline, while exhibiting emergent rotational equivariance despite symmetry not being hard-coded. Our work offers a blueprint for training minimalist, high-throughput generative models suited to specialised tasks such as structure- and pharmacophore-based drug design. We provide a link to our implementation at github.com/carlosinator/tabasco.
☆ An in depth look at the Procrustes-Wasserstein distance: properties and barycenters
Due to its invariance to rigid transformations such as rotations and reflections, Procrustes-Wasserstein (PW) was introduced in the literature as an optimal transport (OT) distance, alternative to Wasserstein and more suited to tasks such as the alignment and comparison of point clouds. Having that application in mind, we carefully build a space of discrete probability measures and show that over that space PW actually is a distance. Algorithms to solve the PW problems already exist, however we extend the PW framework by discussing and testing several initialization strategies. We then introduce the notion of PW barycenter and detail an algorithm to estimate it from the data. The result is a new method to compute representative shapes from a collection of point clouds. We benchmark our method against existing OT approaches, demonstrating superior performance in scenarios requiring precise alignment and shape preservation. We finally show the usefulness of the PW barycenters in an archaeological context. Our results highlight the potential of PW in boosting 2D and 3D point cloud analysis for machine learning and computational geometry applications.
comment: 16 pages
Scaling Laws Are Unreliable for Downstream Tasks: A Reality Check
Downstream scaling laws aim to predict task performance at larger scales from pretraining losses at smaller scales. Whether this prediction should be possible is unclear: some works demonstrate that task performance follows clear linear scaling trends under transformation, whereas others point out fundamental challenges to downstream scaling laws, such as emergence and inverse scaling. In this work, we conduct a meta-analysis of existing data on downstream scaling laws, finding that close fit to linear scaling laws only occurs in a minority of cases: 39% of the time. Furthermore, seemingly benign changes to the experimental setting can completely change the scaling trend. Our analysis underscores the need to understand the conditions under which scaling laws succeed. To fully model the relationship between pretraining loss and downstream task performance, we must embrace the cases in which scaling behavior deviates from linear trends.
☆ NN-Former: Rethinking Graph Structure in Neural Architecture Representation CVPR 2025
The growing use of deep learning necessitates efficient network design and deployment, making neural predictors vital for estimating attributes such as accuracy and latency. Recently, Graph Neural Networks (GNNs) and transformers have shown promising performance in representing neural architectures. However, each of both methods has its disadvantages. GNNs lack the capabilities to represent complicated features, while transformers face poor generalization when the depth of architecture grows. To mitigate the above issues, we rethink neural architecture topology and show that sibling nodes are pivotal while overlooked in previous research. We thus propose a novel predictor leveraging the strengths of GNNs and transformers to learn the enhanced topology. We introduce a novel token mixer that considers siblings, and a new channel mixer named bidirectional graph isomorphism feed-forward network. Our approach consistently achieves promising performance in both accuracy and latency prediction, providing valuable insights for learning Directed Acyclic Graph (DAG) topology. The code is available at https://github.com/XuRuihan/NNFormer.
comment: Accepted to CVPR 2025. Code is avaiable at https://github.com/XuRuihan/NNFormer
☆ Template-Fitting Meets Deep Learning: Redshift Estimation Using Physics-Guided Neural Networks
Accurate photometric redshift estimation is critical for observational cosmology, especially in large-scale surveys where spectroscopic measurements are impractical. Traditional approaches include template fitting and machine learning, each with distinct strengths and limitations. We present a hybrid method that integrates template fitting with deep learning using physics-guided neural networks. By embedding spectral energy distribution templates into the network architecture, our model encodes physical priors into the training process. The system employs a multimodal design, incorporating cross-attention mechanisms to fuse photometric and image data, along with Bayesian layers for uncertainty estimation. We evaluate our model on the publicly available PREML dataset, which includes approximately 400,000 galaxies from the Hyper Suprime-Cam PDR3 release, with 5-band photometry, multi-band imaging, and spectroscopic redshifts. Our approach achieves an RMS error of 0.0507, a 3-sigma catastrophic outlier rate of 0.13%, and a bias of 0.0028. The model satisfies two of the three LSST photometric redshift requirements for redshifts below 3. These results highlight the potential of combining physically motivated templates with data-driven models for robust redshift estimation in upcoming cosmological surveys.
☆ Machine Learning-based Early Detection of Potato Sprouting Using Electrophysiological Signals
Accurately predicting potato sprouting before the emergence of any visual signs is critical for effective storage management, as sprouting degrades both the commercial and nutritional value of tubers. Effective forecasting allows for the precise application of anti-sprouting chemicals (ASCs), minimizing waste and reducing costs. This need has become even more pressing following the ban on Isopropyl N-(3-chlorophenyl) carbamate (CIPC) or Chlorpropham due to health and environmental concerns, which has led to the adoption of significantly more expensive alternative ASCs. Existing approaches primarily rely on visual identification, which only detects sprouting after morphological changes have occurred, limiting their effectiveness for proactive management. A reliable early prediction method is therefore essential to enable timely intervention and improve the efficiency of post-harvest storage strategies, where early refers to detecting sprouting before any visible signs appear. In this work, we address the problem of early prediction of potato sprouting. To this end, we propose a novel machine learning (ML)-based approach that enables early prediction of potato sprouting using electrophysiological signals recorded from tubers using proprietary sensors. Our approach preprocesses the recorded signals, extracts relevant features from the wavelet domain, and trains supervised ML models for early sprouting detection. Additionally, we incorporate uncertainty quantification techniques to enhance predictions. Experimental results demonstrate promising performance in the early detection of potato sprouting by accurately predicting the exact day of sprouting for a subset of potatoes and while showing acceptable average error across all potatoes. Despite promising results, further refinements are necessary to minimize prediction errors, particularly in reducing the maximum observed deviations.
comment: 8 pages, 7 figures
☆ Aligning Learning and Endogenous Decision-Making
Many of the observations we make are biased by our decisions. For instance, the demand of items is impacted by the prices set, and online checkout choices are influenced by the assortments presented. The challenge in decision-making under this setting is the lack of counterfactual information, and the need to learn it instead. We introduce an end-to-end method under endogenous uncertainty to train ML models to be aware of their downstream, enabling their effective use in the decision-making stage. We further introduce a robust optimization variant that accounts for uncertainty in ML models -- specifically by constructing uncertainty sets over the space of ML models and optimizing actions to protect against worst-case predictions. We prove guarantees that this robust approach can capture near-optimal decisions with high probability as a function of data. Besides this, we also introduce a new class of two-stage stochastic optimization problems to the end-to-end learning framework that can now be addressed through our framework. Here, the first stage is an information-gathering problem to decide which random variable to poll and gain information about before making a second-stage decision based off of it. We present several computational experiments for pricing and inventory assortment/recommendation problems. We compare against existing methods in online learning/bandits/offline reinforcement learning and show our approach has consistent improved performance over these. Just as in the endogenous setting, the model's prediction also depends on the first-stage decision made. While this decision does not affect the random variable in this setting, it does affect the correct point forecast that should be made.
☆ Quantum Approximate Optimization Algorithm for Spatiotemporal Forecasting of HIV Clusters
HIV epidemiological data is increasingly complex, requiring advanced computation for accurate cluster detection and forecasting. We employed quantum-accelerated machine learning to analyze HIV prevalence at the ZIP-code level using AIDSVu and synthetic SDoH data for 2022. Our approach compared classical clustering (DBSCAN, HDBSCAN) with a quantum approximate optimization algorithm (QAOA), developed a hybrid quantum-classical neural network for HIV prevalence forecasting, and used quantum Bayesian networks to explore causal links between SDoH factors and HIV incidence. The QAOA-based method achieved 92% accuracy in cluster detection within 1.6 seconds, outperforming classical algorithms. Meanwhile, the hybrid quantum-classical neural network predicted HIV prevalence with 94% accuracy, surpassing a purely classical counterpart. Quantum Bayesian analysis identified housing instability as a key driver of HIV cluster emergence and expansion, with stigma exerting a geographically variable influence. These quantum-enhanced methods deliver greater precision and efficiency in HIV surveillance while illuminating critical causal pathways. This work can guide targeted interventions, optimize resource allocation for PrEP, and address structural inequities fueling HIV transmission.
comment: Conference details can be found here: https://www.insticc.org/node/technicalprogram/DATA/2025
☆ Do Echo Top Heights Improve Deep Learning Nowcasts?
Precipitation nowcasting -- the short-term prediction of rainfall using recent radar observations -- is critical for weather-sensitive sectors such as transportation, agriculture, and disaster mitigation. While recent deep learning models have shown promise in improving nowcasting skill, most approaches rely solely on 2D radar reflectivity fields, discarding valuable vertical information available in the full 3D radar volume. In this work, we explore the use of Echo Top Height (ETH), a 2D projection indicating the maximum altitude of radar reflectivity above a given threshold, as an auxiliary input variable for deep learning-based nowcasting. We examine the relationship between ETH and radar reflectivity, confirming its relevance for predicting rainfall intensity. We implement a single-pass 3D U-Net that processes both the radar reflectivity and ETH as separate input channels. While our models are able to leverage ETH to improve skill at low rain-rate thresholds, results are inconsistent at higher intensities and the models with ETH systematically underestimate precipitation intensity. Three case studies are used to illustrate how ETH can help in some cases, but also confuse the models and increase the error variance. Nonetheless, the study serves as a foundation for critically assessing the potential contribution of additional variables to nowcasting performance.
comment: Pre-review version of an article accepted at Transactions on Large-Scale Data and Knowledge-Centered Systems
☆ Stylometry recognizes human and LLM-generated texts in short samples
The paper explores stylometry as a method to distinguish between texts created by Large Language Models (LLMs) and humans, addressing issues of model attribution, intellectual property, and ethical AI use. Stylometry has been used extensively to characterise the style and attribute authorship of texts. By applying it to LLM-generated texts, we identify their emergent writing patterns. The paper involves creating a benchmark dataset based on Wikipedia, with (a) human-written term summaries, (b) texts generated purely by LLMs (GPT-3.5/4, LLaMa 2/3, Orca, and Falcon), (c) processed through multiple text summarisation methods (T5, BART, Gensim, and Sumy), and (d) rephrasing methods (Dipper, T5). The 10-sentence long texts were classified by tree-based models (decision trees and LightGBM) using human-designed (StyloMetrix) and n-gram-based (our own pipeline) stylometric features that encode lexical, grammatical, syntactic, and punctuation patterns. The cross-validated results reached a performance of up to .87 Matthews correlation coefficient in the multiclass scenario with 7 classes, and accuracy between .79 and 1. in binary classification, with the particular example of Wikipedia and GPT-4 reaching up to .98 accuracy on a balanced dataset. Shapley Additive Explanations pinpointed features characteristic of the encyclopaedic text type, individual overused words, as well as a greater grammatical standardisation of LLMs with respect to human-written texts. These results show -- crucially, in the context of the increasingly sophisticated LLMs -- that it is possible to distinguish machine- from human-generated texts at least for a well-defined text type.
☆ yProv4ML: Effortless Provenance Tracking for Machine Learning Systems
The rapid growth of interest in large language models (LLMs) reflects their potential for flexibility and generalization, and attracted the attention of a diverse range of researchers. However, the advent of these techniques has also brought to light the lack of transparency and rigor with which development is pursued. In particular, the inability to determine the number of epochs and other hyperparameters in advance presents challenges in identifying the best model. To address this challenge, machine learning frameworks such as MLFlow can automate the collection of this type of information. However, these tools capture data using proprietary formats and pose little attention to lineage. This paper proposes yProv4ML, a framework to capture provenance information generated during machine learning processes in PROV-JSON format, with minimal code modifications.
☆ Good Enough to Learn: LLM-based Anomaly Detection in ECU Logs without Reliable Labels
Anomaly detection often relies on supervised or clustering approaches, with limited success in specialized domains like automotive communication systems where scalable solutions are essential. We propose a novel decoder-only Large Language Model (LLM) to detect anomalies in Electronic Control Unit (ECU) communication logs. Our approach addresses two key challenges: the lack of LLMs tailored for ECU communication and the complexity of inconsistent ground truth data. By learning from UDP communication logs, we formulate anomaly detection simply as identifying deviations in time from normal behavior. We introduce an entropy regularization technique that increases model's uncertainty in known anomalies while maintaining consistency in similar scenarios. Our solution offers three novelties: a decoder-only anomaly detection architecture, a way to handle inconsistent labeling, and an adaptable LLM for different ECU communication use cases. By leveraging the generative capabilities of decoder-only models, we present a new technique that addresses the high cost and error-prone nature of manual labeling through a more scalable system that is able to learn from a minimal set of examples, while improving detection accuracy in complex communication environments.
comment: 6 pages, 7 figures, 4 tables, accepted to IEEE Intelligent Vehicles Symposium (IV) 2025
☆ Provenance Tracking in Large-Scale Machine Learning Systems
As the demand for large scale AI models continues to grow, the optimization of their training to balance computational efficiency, execution time, accuracy and energy consumption represents a critical multidimensional challenge. Achieving this balance requires not only innovative algorithmic techniques and hardware architectures but also comprehensive tools for monitoring, analyzing, and understanding the underlying processes involved in model training and deployment. Provenance data information about the origins, context, and transformations of data and processes has become a key component in this pursuit. By leveraging provenance, researchers and engineers can gain insights into resource usage patterns, identify inefficiencies, and ensure reproducibility and accountability in AI development workflows. For this reason, the question of how distributed resources can be optimally utilized to scale large AI models in an energy efficient manner is a fundamental one. To support this effort, we introduce the yProv4ML library, a tool designed to collect provenance data in JSON format, compliant with the W3C PROV and ProvML standards. yProv4ML focuses on flexibility and extensibility, and enables users to integrate additional data collection tools via plugins. The library is fully integrated with the yProv framework, allowing for higher level pairing in tasks run also through workflow management systems.
☆ A Probabilistic Approach to Wildfire Spread Prediction Using a Denoising Diffusion Surrogate Model
Thanks to recent advances in generative AI, computers can now simulate realistic and complex natural processes. We apply this capability to predict how wildfires spread, a task made difficult by the unpredictable nature of fire and the variety of environmental conditions it depends on. In this study, We present the first denoising diffusion model for predicting wildfire spread, a new kind of AI framework that learns to simulate fires not just as one fixed outcome, but as a range of possible scenarios. By doing so, it accounts for the inherent uncertainty of wildfire dynamics, a feature that traditional models typically fail to represent. Unlike deterministic approaches that generate a single prediction, our model produces ensembles of forecasts that reflect physically meaningful distributions of where fire might go next. This technology could help us develop smarter, faster, and more reliable tools for anticipating wildfire behavior, aiding decision-makers in fire risk assessment and response planning.
☆ SINDy on slow manifolds
The sparse identification of nonlinear dynamics (SINDy) has been established as an effective method to learn interpretable models of dynamical systems from data. However, for high-dimensional slow-fast dynamical systems, the regression problem becomes simultaneously computationally intractable and ill-conditioned. Although, in principle, modeling only the dynamics evolving on the underlying slow manifold addresses both of these challenges, the truncated fast variables have to be compensated by including higher-order nonlinearities as candidate terms for the model, leading to an explosive growth in the size of the SINDy library. In this work, we develop a SINDy variant that is able to robustly and efficiently identify slow-fast dynamics in two steps: (i) identify the slow manifold, that is, an algebraic equation for the fast variables as functions of the slow ones, and (ii) learn a model for the dynamics of the slow variables restricted to the manifold. Critically, the equation learned in (i) is leveraged to build a manifold-informed function library for (ii) that contains only essential higher-order nonlinearites as candidate terms. Rather than containing all monomials of up to a certain degree, the resulting custom library is a sparse subset of the latter that is tailored to the specific problem at hand. The approach is demonstrated on numerical examples of a snap-through buckling beam and the flow over a NACA 0012 airfoil. We find that our method significantly reduces both the condition number and the size of the SINDy library, thus enabling accurate identification of the dynamics on slow manifolds.
comment: 18 pages, 6 figures, to be submitted to Nonlinear Dynamics (Springer)
☆ Evaluating LLMs and Prompting Strategies for Automated Hardware Diagnosis from Textual User-Reports
Computer manufacturers offer platforms for users to describe device faults using textual reports such as "My screen is flickering". Identifying the faulty component from the report is essential for automating tests and improving user experience. However, such reports are often ambiguous and lack detail, making this task challenging. Large Language Models (LLMs) have shown promise in addressing such issues. This study evaluates 27 open-source models (1B-72B parameters) and 2 proprietary LLMs using four prompting strategies: Zero-Shot, Few-Shot, Chain-of-Thought (CoT), and CoT+Few-Shot (CoT+FS). We conducted 98,948 inferences, processing over 51 million input tokens and generating 13 million output tokens. We achieve f1-score up to 0.76. Results show that three models offer the best balance between size and performance: mistral-small-24b-instruct and two smaller models, llama-3.2-1b-instruct and gemma-2-2b-it, that offer competitive performance with lower VRAM usage, enabling efficient inference on end-user devices as modern laptops or smartphones with NPUs.
comment: To be published in the Proceedings of the Brazilian Integrated Software and Hardware Seminar 2025 (SEMISH 2025)
☆ Ordinality in Discrete-level Question Difficulty Estimation: Introducing Balanced DRPS and OrderedLogitNN
Recent years have seen growing interest in Question Difficulty Estimation (QDE) using natural language processing techniques. Question difficulty is often represented using discrete levels, framing the task as ordinal regression due to the inherent ordering from easiest to hardest. However, the literature has neglected the ordinal nature of the task, relying on classification or discretized regression models, with specialized ordinal regression methods remaining unexplored. Furthermore, evaluation metrics are tightly coupled to the modeling paradigm, hindering cross-study comparability. While some metrics fail to account for the ordinal structure of difficulty levels, none adequately address class imbalance, resulting in biased performance assessments. This study addresses these limitations by benchmarking three types of model outputs -- discretized regression, classification, and ordinal regression -- using the balanced Discrete Ranked Probability Score (DRPS), a novel metric that jointly captures ordinality and class imbalance. In addition to using popular ordinal regression methods, we propose OrderedLogitNN, extending the ordered logit model from econometrics to neural networks. We fine-tune BERT on the RACE++ and ARC datasets and find that OrderedLogitNN performs considerably better on complex tasks. The balanced DRPS offers a robust and fair evaluation metric for discrete-level QDE, providing a principled foundation for future research.
comment: Published in the EvalLAC'25 workshop at AIED 2025
☆ Aleatoric and Epistemic Uncertainty Measures for Ordinal Classification through Binary Reduction
Ordinal classification problems, where labels exhibit a natural order, are prevalent in high-stakes fields such as medicine and finance. Accurate uncertainty quantification, including the decomposition into aleatoric (inherent variability) and epistemic (lack of knowledge) components, is crucial for reliable decision-making. However, existing research has primarily focused on nominal classification and regression. In this paper, we introduce a novel class of measures of aleatoric and epistemic uncertainty in ordinal classification, which is based on a suitable reduction to (entropy- and variance-based) measures for the binary case. These measures effectively capture the trade-off in ordinal classification between exact hit-rate and minimial error distances. We demonstrate the effectiveness of our approach on various tabular ordinal benchmark datasets using ensembles of gradient-boosted trees and multi-layer perceptrons for approximate Bayesian inference. Our method significantly outperforms standard and label-wise entropy and variance-based measures in error detection, as indicated by misclassification rates and mean absolute error. Additionally, the ordinal measures show competitive performance in out-of-distribution (OOD) detection. Our findings highlight the importance of considering the ordinal nature of classification problems when assessing uncertainty.
☆ Guided Unconditional and Conditional Generative Models for Super-Resolution and Inference of Quasi-Geostrophic Turbulence
Typically, numerical simulations of the ocean, weather, and climate are coarse, and observations are sparse and gappy. In this work, we apply four generative diffusion modeling approaches to super-resolution and inference of forced two-dimensional quasi-geostrophic turbulence on the beta-plane from coarse, sparse, and gappy observations. Two guided approaches minimally adapt a pre-trained unconditional model: SDEdit modifies the initial condition, and Diffusion Posterior Sampling (DPS) modifies the reverse diffusion process score. The other two conditional approaches, a vanilla variant and classifier-free guidance, require training with paired high-resolution and observation data. We consider eight test cases spanning: two regimes, eddy and anisotropic-jet turbulence; two Reynolds numbers, 10^3 and 10^4; and two observation types, 4x coarse-resolution fields and coarse, sparse and gappy observations. Our comprehensive skill metrics include norms of the reconstructed vorticity fields, turbulence statistical quantities, and quantification of the super-resolved probabilistic ensembles and their errors. We also study the sensitivity to tuning parameters such as guidance strength. Results show that SDEdit generates unphysical fields, while DPS generates reasonable reconstructions at low computational cost but with smoothed fine-scale features. Both conditional approaches require re-training, but they reconstruct missing fine-scale features, are cycle-consistent with observations, and possess the correct statistics such as energy spectra. Further, their mean model errors are highly correlated with and predictable from their ensemble standard deviations. Results highlight the trade-offs between ease of implementation, fidelity (sharpness), and cycle-consistency of the diffusion models, and offer practical guidance for deployment in geophysical inverse problems.
comment: 56 pages, 23 figures, 7 tables
☆ Large Reasoning Models are not thinking straight: on the unreliability of thinking trajectories
Large Language Models (LLMs) trained via Reinforcement Learning (RL) have recently achieved impressive results on reasoning benchmarks. Yet, growing evidence shows that these models often generate longer but ineffective chains of thought (CoTs), calling into question whether benchmark gains reflect real reasoning improvements. We present new evidence of overthinking, where models disregard correct solutions even when explicitly provided, instead continuing to generate unnecessary reasoning steps that often lead to incorrect conclusions. Experiments on three state-of-the-art models using the AIME2024 math benchmark reveal critical limitations in these models ability to integrate corrective information, posing new challenges for achieving robust and interpretable reasoning.
comment: Accepted to KONVENS 2025
☆ SCAWaveNet: A Spatial-Channel Attention-based Network for Global Significant Wave Height Retrieval
Recent advancements in spaceborne GNSS missions have produced extensive global datasets, providing a robust basis for deep learning-based significant wave height (SWH) retrieval. While existing deep learning models predominantly utilize CYGNSS data with four-channel information, they often adopt single-channel inputs or simple channel concatenation without leveraging the benefits of cross-channel information interaction during training. To address this limitation, a novel spatial-channel attention-based network, namely SCAWaveNet, is proposed for SWH retrieval. Specifically, features from each channel of the DDMs are modeled as independent attention heads, enabling the fusion of spatial and channel-wise information. For auxiliary parameters, a lightweight attention mechanism is designed to assign weights along the spatial and channel dimensions. The final feature integrates both spatial and channel-level characteristics. Model performance is evaluated using four-channel CYGNSS data. When ERA5 is used as a reference, SCAWaveNet achieves an average RMSE of 0.438 m. When using buoy data from NDBC, the average RMSE reaches 0.432 m. Compared to state-of-the-art models, SCAWaveNet reduces the average RMSE by at least 3.52% on the ERA5 dataset and by 5.47% on the NDBC buoy observations. The code is available at https://github.com/Clifx9908/SCAWaveNet.
comment: 16 pages,6 tables,11 figures
☆ A Test-Function Approach to Incremental Stability
This paper presents a novel framework for analyzing Incremental-Input-to-State Stability ($\delta$ISS) based on the idea of using rewards as "test functions." Whereas control theory traditionally deals with Lyapunov functions that satisfy a time-decrease condition, reinforcement learning (RL) value functions are constructed by exponentially decaying a Lipschitz reward function that may be non-smooth and unbounded on both sides. Thus, these RL-style value functions cannot be directly understood as Lyapunov certificates. We develop a new equivalence between a variant of incremental input-to-state stability of a closed-loop system under given a policy, and the regularity of RL-style value functions under adversarial selection of a H\"older-continuous reward function. This result highlights that the regularity of value functions, and their connection to incremental stability, can be understood in a way that is distinct from the traditional Lyapunov-based approach to certifying stability in control theory.
comment: 8 pages
☆ Diffusion Classifier Guidance for Non-robust Classifiers
Classifier guidance is intended to steer a diffusion process such that a given classifier reliably recognizes the generated data point as a certain class. However, most classifier guidance approaches are restricted to robust classifiers, which were specifically trained on the noise of the diffusion forward process. We extend classifier guidance to work with general, non-robust, classifiers that were trained without noise. We analyze the sensitivity of both non-robust and robust classifiers to noise of the diffusion process on the standard CelebA data set, the specialized SportBalls data set and the high-dimensional real-world CelebA-HQ data set. Our findings reveal that non-robust classifiers exhibit significant accuracy degradation under noisy conditions, leading to unstable guidance gradients. To mitigate these issues, we propose a method that utilizes one-step denoised image predictions and implements stabilization techniques inspired by stochastic optimization methods, such as exponential moving averages. Experimental results demonstrate that our approach improves the stability of classifier guidance while maintaining sample diversity and visual quality. This work contributes to advancing conditional sampling techniques in generative models, enabling a broader range of classifiers to be used as guidance classifiers.
comment: Accepted at ECML 2025
☆ Testing the spin-bath view of self-attention: A Hamiltonian analysis of GPT-2 Transformer
The recently proposed physics-based framework by Huo and Johnson~\cite{huo2024capturing} models the attention mechanism of Large Language Models (LLMs) as an interacting two-body spin system, offering a first-principles explanation for phenomena like repetition and bias. Building on this hypothesis, we extract the complete Query-Key weight matrices from a production-grade GPT-2 model and derive the corresponding effective Hamiltonian for every attention head. From these Hamiltonians we obtain analytic \textit{phase boundaries} logit gap criteria that predict which token should dominate the next-token distribution for a given context. A systematic evaluation on 144 heads across 20 factual-recall prompts reveals a strong negative correlation between the theoretical logit gaps and the model's empirical token rankings ($r\approx-0.70$, $p<10^{-3}$).Targeted ablations further show that suppressing the heads most aligned with the spin-bath predictions induces the anticipated shifts in output probabilities, confirming a causal link rather than a coincidental association. Taken together, our findings provide the first strong empirical evidence for the spin-bath analogy in a production-grade model. This validation not only furnishes a tractable, physics-inspired lens for interpretability but also provides the groundwork for novel generative models, bridging the gap between theoretical condensed matter physics and AI.
☆ Harnessing the Power of Reinforcement Learning for Adaptive MCMC
Sampling algorithms drive probabilistic machine learning, and recent years have seen an explosion in the diversity of tools for this task. However, the increasing sophistication of sampling algorithms is correlated with an increase in the tuning burden. There is now a greater need than ever to treat the tuning of samplers as a learning task in its own right. In a conceptual breakthrough, Wang et al (2025) formulated Metropolis-Hastings as a Markov decision process, opening up the possibility for adaptive tuning using Reinforcement Learning (RL). Their emphasis was on theoretical foundations; realising the practical benefit of Reinforcement Learning Metropolis-Hastings (RLMH) was left for subsequent work. The purpose of this paper is twofold: First, we observe the surprising result that natural choices of reward, such as the acceptance rate, or the expected squared jump distance, provide insufficient signal for training RLMH. Instead, we propose a novel reward based on the contrastive divergence, whose superior performance in the context of RLMH is demonstrated. Second, we explore the potential of RLMH and present adaptive gradient-based samplers that balance flexibility of the Markov transition kernel with learnability of the associated RL task. A comprehensive simulation study using the posteriordb benchmark supports the practical effectiveness of RLMH.
☆ Audio-3DVG: Unified Audio - Point Cloud Fusion for 3D Visual Grounding
3D Visual Grounding (3DVG) involves localizing target objects in 3D point clouds based on natural language. While prior work has made strides using textual descriptions, leveraging spoken language-known as Audio-based 3D Visual Grounding-remains underexplored and challenging. Motivated by advances in automatic speech recognition (ASR) and speech representation learning, we propose Audio-3DVG, a simple yet effective framework that integrates audio and spatial information for enhanced grounding. Rather than treating speech as a monolithic input, we decompose the task into two complementary components. First, we introduce Object Mention Detection, a multi-label classification task that explicitly identifies which objects are referred to in the audio, enabling more structured audio-scene reasoning. Second, we propose an Audio-Guided Attention module that captures interactions between candidate objects and relational speech cues, improving target discrimination in cluttered scenes. To support benchmarking, we synthesize audio descriptions for standard 3DVG datasets, including ScanRefer, Sr3D, and Nr3D. Experimental results demonstrate that Audio-3DVG not only achieves new state-of-the-art performance in audio-based grounding, but also competes with text-based methods-highlighting the promise of integrating spoken language into 3D vision tasks.
comment: Work in progress, 42 pages
☆ Neural Augmented Kalman Filters for Road Network assisted GNSS positioning ICML 2025
The Global Navigation Satellite System (GNSS) provides critical positioning information globally, but its accuracy in dense urban environments is often compromised by multipath and non-line-of-sight errors. Road network data can be used to reduce the impact of these errors and enhance the accuracy of a positioning system. Previous works employing road network data are either limited to offline applications, or rely on Kalman Filter (KF) heuristics with little flexibility and robustness. We instead propose training a Temporal Graph Neural Network (TGNN) to integrate road network information into a KF. The TGNN is designed to predict the correct road segment and its associated uncertainty to be used in the measurement update step of the KF. We validate our approach with real-world GNSS data and open-source road networks, observing a 29% decrease in positioning error for challenging scenarios compared to a GNSS-only KF. To the best of our knowledge, ours is the first deep learning-based approach jointly employing road network data and GNSS measurements to determine the user position on Earth.
comment: Accepted to ICML 2025 workshop ML4Wireless
☆ Cognitive Load-Aware Inference: A Neuro-Symbolic Framework for Optimizing the Token Economy of Large Language Models
The escalating computational costs of Large Language Model (LLM) inference have become a critical barrier to their widespread and sustainable deployment. While existing optimization strategies are effective, they are predominantly based on statistical heuristics or architectural modifications, lacking a guiding cognitive theory to manage the inference process itself. This paper aims to bridge this gap by introducing a novel paradigm: the Cognitive Load-Aware Inference (CLAI) framework, which operationalizes principles from Cognitive Load Theory (CLT) and neuroscience for LLM inference. We formalize the concepts of Intrinsic Cognitive Load, Extraneous Cognitive Load, and Germane Cognitive Load into quantifiable LLM metrics ($ICL_{LLM}$, $ECL_{LLM}$, and $GCL_{LLM}$), thereby reframing the inference process as a cognitive economics optimization problem: based on the intrinsic complexity of a problem ($ICL_{LLM}$), minimize wasteful computation ($ECL_{LLM}$), and strategically allocate the token budget to productive reasoning ($GCL_{LLM}$). We propose two implementation paths: CLAI-Prompt, a zero-shot method that guides a base LLM through cognitive control steps via a structured meta-prompt, and CLAI-Tune, a fine-tuned model that internalizes these principles for spontaneous cognitive economy. Across a range of benchmarks in complex reasoning, long-context question answering, and code generation, our methods achieve significant reductions in token consumption (up to 45\%) without sacrificing accuracy. Furthermore, CLAI-Tune exhibits an emergent ability to autonomously decompose difficult problems, a key characteristic of human expert cognition. This work demonstrates that by emulating the brain's resource management strategies, we can build more efficient, robust, and capable artificial intelligence systems.
comment: 23 pages
☆ GANs Secretly Perform Approximate Bayesian Model Selection
Generative Adversarial Networks (GANs) are popular and successful generative models. Despite their success, optimization is notoriously challenging and they require regularization against overfitting. In this work, we explain the success and limitations of GANs by interpreting them as probabilistic generative models. This interpretation enables us to view GANs as Bayesian neural networks with partial stochasticity, allowing us to establish conditions of universal approximation. We can then cast the adversarial-style optimization of several variants of GANs as the optimization of a proxy for the marginal likelihood. Taking advantage of the connection between marginal likelihood optimization and Occam's razor, we can define regularization and optimization strategies to smooth the loss landscape and search for solutions with minimum description length, which are associated with flat minima and good generalization. The results on a wide range of experiments indicate that these strategies lead to performance improvements and pave the way to a deeper understanding of regularization strategies for GANs.
☆ Cooperative Sheaf Neural Networks
Sheaf diffusion has recently emerged as a promising design pattern for graph representation learning due to its inherent ability to handle heterophilic data and avoid oversmoothing. Meanwhile, cooperative message passing has also been proposed as a way to enhance the flexibility of information diffusion by allowing nodes to independently choose whether to propagate/gather information from/to neighbors. A natural question ensues: is sheaf diffusion capable of exhibiting this cooperative behavior? Here, we provide a negative answer to this question. In particular, we show that existing sheaf diffusion methods fail to achieve cooperative behavior due to the lack of message directionality. To circumvent this limitation, we introduce the notion of cellular sheaves over directed graphs and characterize their in- and out-degree Laplacians. We leverage our construction to propose Cooperative Sheaf Neural Networks (CSNNs). Theoretically, we characterize the receptive field of CSNN and show it allows nodes to selectively attend (listen) to arbitrarily far nodes while ignoring all others in their path, potentially mitigating oversquashing. Our experiments show that CSNN presents overall better performance compared to prior art on sheaf diffusion as well as cooperative graph neural networks.
☆ Hebbian Physics Networks: A Self-Organizing Computational Architecture Based on Local Physical Laws
Traditional machine learning approaches in physics rely on global optimization, limiting interpretability and enforcing physical constraints externally. We introduce the Hebbian Physics Network (HPN), a self-organizing computational framework in which learning emerges from local Hebbian updates driven by violations of conservation laws. Grounded in non-equilibrium thermodynamics and inspired by Prigogine/'s theory of dissipative structures, HPNs eliminate the need for global loss functions by encoding physical laws directly into the system/'s local dynamics. Residuals - quantified imbalances in continuity, momentum, or energy - serve as thermodynamic signals that drive weight adaptation through generalized Hebbian plasticity. We demonstrate this approach on incompressible fluid flow and continuum diffusion, where physically consistent structures emerge from random initial conditions without supervision. HPNs reframe computation as a residual-driven thermodynamic process, offering an interpretable, scalable, and physically grounded alternative for modeling complex dynamical systems.
comment: 6 pages, 2 figures, 2 supplementary videos
☆ Forward Reverse Kernel Regression for the Schrödinger bridge problem
In this paper, we study the Schr\"odinger Bridge Problem (SBP), which is central to entropic optimal transport. For general reference processes and begin--endpoint distributions, we propose a forward-reverse iterative Monte Carlo procedure to approximate the Schr\"odinger potentials in a nonparametric way. In particular, we use kernel based Monte Carlo regression in the context of Picard iteration of a corresponding fixed point problem. By preserving in the iteration positivity and contractivity in a Hilbert metric sense, we develop a provably convergent algorithm. Furthermore, we provide convergence rates for the potential estimates and prove their optimality. Finally, as an application, we propose a non-nested Monte Carlo procedure for the final dimensional distributions of the Schr\"odinger Bridge process, based on the constructed potentials and the forward-reverse simulation method for conditional diffusions.
☆ Geometric Gaussian Approximations of Probability Distributions
Approximating complex probability distributions, such as Bayesian posterior distributions, is of central interest in many applications. We study the expressivity of geometric Gaussian approximations. These consist of approximations by Gaussian pushforwards through diffeomorphisms or Riemannian exponential maps. We first review these two different kinds of geometric Gaussian approximations. Then we explore their relationship to one another. We further provide a constructive proof that such geometric Gaussian approximations are universal, in that they can capture any probability distribution. Finally, we discuss whether, given a family of probability distributions, a common diffeomorphism can be found to obtain uniformly high-quality geometric Gaussian approximations for that family.
☆ Residual Reward Models for Preference-based Reinforcement Learning
Preference-based Reinforcement Learning (PbRL) provides a way to learn high-performance policies in environments where the reward signal is hard to specify, avoiding heuristic and time-consuming reward design. However, PbRL can suffer from slow convergence speed since it requires training in a reward model. Prior work has proposed learning a reward model from demonstrations and fine-tuning it using preferences. However, when the model is a neural network, using different loss functions for pre-training and fine-tuning can pose challenges to reliable optimization. In this paper, we propose a method to effectively leverage prior knowledge with a Residual Reward Model (RRM). An RRM assumes that the true reward of the environment can be split into a sum of two parts: a prior reward and a learned reward. The prior reward is a term available before training, for example, a user's ``best guess'' reward function, or a reward function learned from inverse reinforcement learning (IRL), and the learned reward is trained with preferences. We introduce state-based and image-based versions of RRM and evaluate them on several tasks in the Meta-World environment suite. Experimental results show that our method substantially improves the performance of a common PbRL method. Our method achieves performance improvements for a variety of different types of prior rewards, including proxy rewards, a reward obtained from IRL, and even a negated version of the proxy reward. We also conduct experiments with a Franka Panda to show that our method leads to superior performance on a real robot. It significantly accelerates policy learning for different tasks, achieving success in fewer steps than the baseline. The videos are presented at https://sunlighted.github.io/RRM-web/.
comment: 26 pages, 22 figures
☆ A Practical Guide to Interpretable Role-Based Clustering in Multi-Layer Financial Networks
Understanding the functional roles of financial institutions within interconnected markets is critical for effective supervision, systemic risk assessment, and resolution planning. We propose an interpretable role-based clustering approach for multi-layer financial networks, designed to identify the functional positions of institutions across different market segments. Our method follows a general clustering framework defined by proximity measures, cluster evaluation criteria, and algorithm selection. We construct explainable node embeddings based on egonet features that capture both direct and indirect trading relationships within and across market layers. Using transaction-level data from the ECB's Money Market Statistical Reporting (MMSR), we demonstrate how the approach uncovers heterogeneous institutional roles such as market intermediaries, cross-segment connectors, and peripheral lenders or borrowers. The results highlight the flexibility and practical value of role-based clustering in analyzing financial networks and understanding institutional behavior in complex market structures.
☆ Quantum Circuit Structure Optimization for Quantum Reinforcement Learning
Reinforcement learning (RL) enables agents to learn optimal policies through environmental interaction. However, RL suffers from reduced learning efficiency due to the curse of dimensionality in high-dimensional spaces. Quantum reinforcement learning (QRL) addresses this issue by leveraging superposition and entanglement in quantum computing, allowing efficient handling of high-dimensional problems with fewer resources. QRL combines quantum neural networks (QNNs) with RL, where the parameterized quantum circuit (PQC) acts as the core computational module. The PQC performs linear and nonlinear transformations through gate operations, similar to hidden layers in classical neural networks. Previous QRL studies, however, have used fixed PQC structures based on empirical intuition without verifying their optimality. This paper proposes a QRL-NAS algorithm that integrates quantum neural architecture search (QNAS) to optimize PQC structures within QRL. Experiments demonstrate that QRL-NAS achieves higher rewards than QRL with fixed circuits, validating its effectiveness and practical utility.
☆ AI-Generated Video Detection via Perceptual Straightening
The rapid advancement of generative AI enables highly realistic synthetic videos, posing significant challenges for content authentication and raising urgent concerns about misuse. Existing detection methods often struggle with generalization and capturing subtle temporal inconsistencies. We propose ReStraV(Representation Straightening Video), a novel approach to distinguish natural from AI-generated videos. Inspired by the "perceptual straightening" hypothesis -- which suggests real-world video trajectories become more straight in neural representation domain -- we analyze deviations from this expected geometric property. Using a pre-trained self-supervised vision transformer (DINOv2), we quantify the temporal curvature and stepwise distance in the model's representation domain. We aggregate statistics of these measures for each video and train a classifier. Our analysis shows that AI-generated videos exhibit significantly different curvature and distance patterns compared to real videos. A lightweight classifier achieves state-of-the-art detection performance (e.g., 97.17% accuracy and 98.63% AUROC on the VidProM benchmark), substantially outperforming existing image- and video-based methods. ReStraV is computationally efficient, it is offering a low-cost and effective detection solution. This work provides new insights into using neural representation geometry for AI-generated video detection.
☆ Rotational Sampling: A Plug-and-Play Encoder for Rotation-Invariant 3D Molecular GNNs
Graph neural networks (GNNs) have achieved remarkable success in molecular property prediction. However, traditional graph representations struggle to effectively encode the inherent 3D spatial structures of molecules, as molecular orientations in 3D space introduce significant variability, severely limiting model generalization and robustness. Existing approaches primarily focus on rotation-invariant and rotation-equivariant methods. Invariant methods often rely heavily on prior knowledge and lack sufficient generalizability, while equivariant methods suffer from high computational costs. To address these limitations, this paper proposes a novel plug-and-play 3D encoding module leveraging rotational sampling. By computing the expectation over the SO(3) rotational group, the method naturally achieves approximate rotational invariance. Furthermore, by introducing a carefully designed post-alignment strategy, strict invariance can be achieved without compromising performance. Experimental evaluations on the QM9 and C10 Datasets demonstrate superior predictive accuracy, robustness, and generalization performance compared to existing methods. Moreover, the proposed approach maintains low computational complexity and enhanced interpretability, providing a promising direction for efficient and effective handling of 3D molecular information in drug discovery and material design.
♻ ☆ STONet: A neural operator for modeling solute transport in micro-cracked reservoirs
In this work, we introduce a novel neural operator, the Solute Transport Operator Network (STONet), to efficiently model contaminant transport in micro-cracked porous media. STONet's model architecture is specifically designed for this problem and uniquely integrates an enriched DeepONet structure with a transformer-based multi-head attention mechanism, enhancing performance without incurring additional computational overhead compared to existing neural operators. The model combines different networks to encode heterogeneous properties effectively and predict the rate of change of the concentration field to accurately model the transport process. The training data is obtained using finite element (FEM) simulations by random sampling of micro-fracture distributions and applied pressure boundary conditions, which capture diverse scenarios of fracture densities, orientations, apertures, lengths, and balance of pressure-driven to density-driven flow. Our numerical experiments demonstrate that, once trained, STONet achieves accurate predictions, with relative errors typically below 1% compared with FEM simulations while reducing runtime by approximately two orders of magnitude. This type of computational efficiency facilitates building digital twins for rapid assessment of subsurface contamination risks and optimization of environmental remediation strategies. The data and code for the paper will be published at https://github.com/ehsanhaghighat/STONet.
♻ ☆ SPGD: Steepest Perturbed Gradient Descent Optimization
Optimization algorithms are pivotal in advancing various scientific and industrial fields but often encounter obstacles such as trapping in local minima, saddle points, and plateaus (flat regions), which makes the convergence to reasonable or near-optimal solutions particularly challenging. This paper presents the Steepest Perturbed Gradient Descent (SPGD), a novel algorithm that innovatively combines the principles of the gradient descent method with periodic uniform perturbation sampling to effectively circumvent these impediments and lead to better solutions whenever possible. SPGD is distinctively designed to generate a set of candidate solutions and select the one exhibiting the steepest loss difference relative to the current solution. It enhances the traditional gradient descent approach by integrating a strategic exploration mechanism that significantly increases the likelihood of escaping sub-optimal local minima and navigating complex optimization landscapes effectively. Our approach not only retains the directed efficiency of gradient descent but also leverages the exploratory benefits of stochastic perturbations, thus enabling a more comprehensive search for global optima across diverse problem spaces. We demonstrate the efficacy of SPGD in solving the 3D component packing problem, an NP-hard challenge. Preliminary results show a substantial improvement over four established methods, particularly on response surfaces with complex topographies and in multidimensional non-convex continuous optimization problems. Comparative analyses with established 2D benchmark functions highlight SPGD's superior performance, showcasing its ability to navigate complex optimization landscapes. These results emphasize SPGD's potential as a versatile tool for a wide range of optimization problems.
comment: 28 pages, 26 figures, submitted to Journal of Mechanical Design
♻ ☆ Diffuse-CLoC: Guided Diffusion for Physics-based Character Look-ahead Control
We present Diffuse-CLoC, a guided diffusion framework for physics-based look-ahead control that enables intuitive, steerable, and physically realistic motion generation. While existing kinematics motion generation with diffusion models offer intuitive steering capabilities with inference-time conditioning, they often fail to produce physically viable motions. In contrast, recent diffusion-based control policies have shown promise in generating physically realizable motion sequences, but the lack of kinematics prediction limits their steerability. Diffuse-CLoC addresses these challenges through a key insight: modeling the joint distribution of states and actions within a single diffusion model makes action generation steerable by conditioning it on the predicted states. This approach allows us to leverage established conditioning techniques from kinematic motion generation while producing physically realistic motions. As a result, we achieve planning capabilities without the need for a high-level planner. Our method handles a diverse set of unseen long-horizon downstream tasks through a single pre-trained model, including static and dynamic obstacle avoidance, motion in-betweening, and task-space control. Experimental results show that our method significantly outperforms the traditional hierarchical framework of high-level motion diffusion and low-level tracking.
♻ ☆ Meta-Posterior Consistency for the Bayesian Inference of Metastable System
The vast majority of the literature on learning dynamical systems or stochastic processes from time series has focused on stable or ergodic systems, for both Bayesian and frequentist inference procedures. However, most real-world systems are only metastable, that is, the dynamics appear to be stable on some time scale, but are in fact unstable over longer time scales. Consistency of inference for metastable systems may not be possible, but one can ask about metaconsistency: Do inference procedures converge when observations are taken over a large but finite time interval, but diverge on longer time scales? In this paper we introduce, discuss, and quantify metaconsistency in a Bayesian framework. We discuss how metaconsistency can be exploited to efficiently infer a model for a sub-system of a larger system, where inference on the global behavior may require much more data, or there is no theoretical guarantee as to the asymptotic success of inference procedures. We also discuss the relation between metaconsistency and the spectral properties of the model dynamical system in the case of uniformly ergodic and non-ergodic diffusions.
comment: 32 pages, 3 figures
♻ ☆ Not All Water Consumption Is Equal: A Water Stress Weighted Metric for Sustainable Computing
Water consumption is an increasingly critical dimension of computing sustainability, especially as AI workloads rapidly scale. However, current water impact assessment often overlooks where and when water stress is more severe. To fill in this gap, we present SCARF, the first general framework that evaluates water impact of computing by factoring in both spatial and temporal variations in water stress. SCARF calculates an Adjusted Water Impact (AWI) metric that considers both consumption volume and local water stress over time. Through three case studies on LLM serving, datacenters, and semiconductor fabrication plants, we show the hidden opportunities for reducing water impact by optimizing location and time choices, paving the way for water-sustainable computing. The code is available at https://github.com/jojacola/SCARF.
comment: 7 pages, 9 figures, The 4th Workshop on Sustainable Computer Systems (HotCarbon'25), Cambridge, MA, July 10-11th, 2025
♻ ☆ Large Language Model Confidence Estimation via Black-Box Access
Estimating uncertainty or confidence in the responses of a model can be significant in evaluating trust not only in the responses, but also in the model as a whole. In this paper, we explore the problem of estimating confidence for responses of large language models (LLMs) with simply black-box or query access to them. We propose a simple and extensible framework where, we engineer novel features and train a (interpretable) model (viz. logistic regression) on these features to estimate the confidence. We empirically demonstrate that our simple framework is effective in estimating confidence of Flan-ul2, Llama-13b, Mistral-7b and GPT-4 on four benchmark Q\&A tasks as well as of Pegasus-large and BART-large on two benchmark summarization tasks with it surpassing baselines by even over $10\%$ (on AUROC) in some cases. Additionally, our interpretable approach provides insight into features that are predictive of confidence, leading to the interesting and useful discovery that our confidence models built for one LLM generalize zero-shot across others on a given dataset.
comment: Accepted to TMLR 2025
♻ ☆ Uncertainty Quantification of Wind Gust Predictions in the Northeast United States: An Evidential Neural Network and Explainable Artificial Intelligence Approach
Machine learning algorithms have shown promise in reducing bias in wind gust predictions, while still underpredicting high gusts. Uncertainty quantification (UQ) supports this issue by identifying when predictions are reliable or need cautious interpretation. Using data from 61 extratropical storms in the Northeastern USA, we introduce evidential neural network (ENN) as a novel approach for UQ in gust predictions, leveraging atmospheric variables from the Weather Research and Forecasting (WRF) model. Explainable AI techniques suggested that key predictive features contributed to higher uncertainty, which correlated strongly with storm intensity and spatial gust gradients. Compared to WRF, ENN demonstrated a 47% reduction in RMSE and allowed the construction of gust prediction intervals without an ensemble, successfully capturing at least 95% of observed gusts at 179 out of 266 stations. From an operational perspective, providing gust forecasts with quantified uncertainty enhances stakeholders' confidence in risk assessment and response planning for extreme gust events.
♻ ☆ MLR-Bench: Evaluating AI Agents on Open-Ended Machine Learning Research
Recent advancements in AI agents have demonstrated their growing potential to drive and support scientific discovery. In this work, we introduce MLR-Bench, a comprehensive benchmark for evaluating AI agents on open-ended machine learning research. MLR-Bench includes three key components: (1) 201 research tasks sourced from NeurIPS, ICLR, and ICML workshops covering diverse ML topics; (2) MLR-Judge, an automated evaluation framework combining LLM-based reviewers with carefully designed review rubrics to assess research quality; and (3) MLR-Agent, a modular agent scaffold capable of completing research tasks through four stages: idea generation, proposal formulation, experimentation, and paper writing. Our framework supports both stepwise assessment across these distinct research stages, and end-to-end evaluation of the final research paper. We then use MLR-Bench to evaluate six frontier LLMs and an advanced coding agent, finding that while LLMs are effective at generating coherent ideas and well-structured papers, current coding agents frequently (e.g., in 80% of the cases) produce fabricated or invalidated experimental results--posing a major barrier to scientific reliability. We validate MLR-Judge through human evaluation, showing high agreement with expert reviewers, supporting its potential as a scalable tool for research evaluation. We open-source MLR-Bench to help the community benchmark, diagnose, and improve AI research agents toward trustworthy and transparent scientific discovery.
comment: 42 pages, 9 figures
♻ ☆ Conformal Inference under High-Dimensional Covariate Shifts via Likelihood-Ratio Regularization
We consider the problem of conformal prediction under covariate shift. Given labeled data from a source domain and unlabeled data from a covariate shifted target domain, we seek to construct prediction sets with valid marginal coverage in the target domain. Most existing methods require estimating the unknown likelihood ratio function, which can be prohibitive for high-dimensional data such as images. To address this challenge, we introduce the likelihood ratio regularized quantile regression (LR-QR) algorithm, which combines the pinball loss with a novel choice of regularization in order to construct a threshold function without directly estimating the unknown likelihood ratio. We show that the LR-QR method has coverage at the desired level in the target domain, up to a small error term that we can control. Our proofs draw on a novel analysis of coverage via stability bounds from learning theory. Our experiments demonstrate that the LR-QR algorithm outperforms existing methods on high-dimensional prediction tasks, including a regression task for the Communities and Crime dataset, an image classification task from the WILDS repository, and an LLM question-answering task on the MMLU benchmark.
♻ ☆ Bridging SFT and DPO for Diffusion Model Alignment with Self-Sampling Preference Optimization
Existing post-training techniques are broadly categorized into supervised fine-tuning (SFT) and reinforcement learning (RL) methods; the former is stable during training but suffers from limited generalization, while the latter, despite its stronger generalization capability, relies on additional preference data or reward models and carries the risk of reward exploitation. In order to preserve the advantages of both SFT and RL -- namely, eliminating the need for paired data and reward models while retaining the training stability of SFT and the generalization ability of RL -- a new alignment method, Self-Sampling Preference Optimization (SSPO), is proposed in this paper. SSPO introduces a Random Checkpoint Replay (RCR) strategy that utilizes historical checkpoints to construct paired data, thereby effectively mitigating overfitting. Simultaneously, a Self-Sampling Regularization (SSR) strategy is employed to dynamically evaluate the quality of generated samples; when the generated samples are more likely to be winning samples, the approach automatically switches from DPO (Direct Preference Optimization) to SFT, ensuring that the training process accurately reflects the quality of the samples. Experimental results demonstrate that SSPO not only outperforms existing methods on text-to-image benchmarks, but its effectiveness has also been validated in text-to-video tasks. We validate SSPO across both text-to-image and text-to-video benchmarks. SSPO surpasses all previous approaches on the text-to-image benchmarks and demonstrates outstanding performance on the text-to-video benchmarks.
♻ ☆ Persistence Paradox in Dynamic Science
Persistence is often regarded as a virtue in science. In this paper, however, we challenge this conventional view by highlighting its contextual nature, particularly how persistence can become a liability during periods of paradigm shift. We focus on the deep learning revolution catalyzed by AlexNet in 2012. Analyzing the 20-year career trajectories of over 5,000 scientists who were active in top machine learning venues during the preceding decade, we examine how their research focus and output evolved. We first uncover a dynamic period in which leading venues increasingly prioritized cutting-edge deep learning developments that displaced relatively traditional statistical learning methods. Scientists responded to these changes in markedly different ways. Those who were previously successful or affiliated with old teams adapted more slowly, experiencing what we term a rigidity penalty - a reluctance to embrace new directions leading to a decline in scientific impact, as measured by citation percentile rank. In contrast, scientists who pursued strategic adaptation - selectively pivoting toward emerging trends while preserving weak connections to prior expertise - reaped the greatest benefits. Taken together, our macro- and micro-level findings show that scientific breakthroughs act as mechanisms that reconfigure power structures within a field.
♻ ☆ The Hidden Life of Tokens: Reducing Hallucination of Large Vision-Language Models via Visual Information Steering
Large Vision-Language Models (LVLMs) can reason effectively over both textual and visual inputs, but they tend to hallucinate syntactically coherent yet visually ungrounded contents. In this paper, we investigate the internal dynamics of hallucination by examining the tokens logits ranking throughout the generation process, revealing three key patterns in how LVLMs process information: (1) gradual visual information loss - visually grounded tokens gradually become less favored throughout generation, and (2) early excitation - semantically meaningful tokens achieve peak activation in the layers earlier than the final layer. (3) hidden genuine information - visually grounded tokens though not being eventually decoded still retain relatively high rankings at inference. Based on these insights, we propose VISTA (Visual Information Steering with Token-logit Augmentation), a training-free inference-time intervention framework that reduces hallucination while promoting genuine information. VISTA works by combining two complementary approaches: reinforcing visual information in activation space and leveraging early layer activations to promote semantically meaningful decoding. Compared to existing methods, VISTA requires no external supervision and is applicable to various decoding strategies. Extensive experiments show that VISTA on average reduces hallucination by about 40% on evaluated open-ended generation task, and it consistently outperforms existing methods on four benchmarks across four architectures under three decoding strategies. Code is available at https://github.com/LzVv123456/VISTA.
♻ ☆ Lion Secretly Solves Constrained Optimization: As Lyapunov Predicts ICLR 2024
Lion (Evolved Sign Momentum), a new optimizer discovered through program search, has shown promising results in training large AI models. It performs comparably or favorably to AdamW but with greater memory efficiency. As we can expect from the results of a random search program, Lion incorporates elements from several existing algorithms, including signed momentum, decoupled weight decay, Polak, and Nesterov momentum, but does not fit into any existing category of theoretically grounded optimizers. Thus, even though Lion appears to perform well as a general-purpose optimizer for a wide range of tasks, its theoretical basis remains uncertain. This lack of theoretical clarity limits opportunities to further enhance and expand Lion's efficacy. This work aims to demystify Lion. Based on both continuous-time and discrete-time analysis, we demonstrate that Lion is a theoretically novel and principled approach for minimizing a general loss function $f(x)$ while enforcing a bound constraint $\|x\|_\infty \leq 1/\lambda$. Lion achieves this through the incorporation of decoupled weight decay, where $\lambda$ represents the weight decay coefficient. Our analysis is made possible by the development of a new Lyapunov function for the Lion updates. It applies to a broader family of Lion-$\kappa$ algorithms, where the $\text{sign}(\cdot)$ operator in Lion is replaced by the subgradient of a convex function $\kappa$, leading to the solution of a general composite optimization problem of $\min_x f(x) + \kappa^*(x)$. Our findings provide valuable insights into the dynamics of Lion and pave the way for further improvements and extensions of Lion-related algorithms.
comment: ICLR 2024 Spotlight
♻ ☆ Unsupervised Attributed Dynamic Network Embedding with Stability Guarantees
Stability for dynamic network embeddings ensures that nodes behaving the same at different times receive the same embedding, allowing comparison of nodes in the network across time. We present attributed unfolded adjacency spectral embedding (AUASE), a stable unsupervised representation learning framework for dynamic networks in which nodes are attributed with time-varying covariate information. To establish stability, we prove uniform convergence to an associated latent position model. We quantify the benefits of our dynamic embedding by comparing with state-of-the-art network representation learning methods on four real attributed networks. To the best of our knowledge, AUASE is the only attributed dynamic embedding that satisfies stability guarantees without the need for ground truth labels, which we demonstrate provides significant improvements for link prediction and node classification.
comment: 28 pages, 5 figures
♻ ☆ Reasoning by Superposition: A Theoretical Perspective on Chain of Continuous Thought
Large Language Models (LLMs) have demonstrated remarkable performance in many applications, including challenging reasoning problems via chain-of-thoughts (CoTs) techniques that generate ``thinking tokens'' before answering the questions. While existing theoretical works demonstrate that CoTs with discrete tokens boost the capability of LLMs, recent work on continuous CoTs lacks a theoretical understanding of why it outperforms discrete counterparts in various reasoning tasks such as directed graph reachability, a fundamental graph reasoning problem that includes many practical domain applications as special cases. In this paper, we prove that a two-layer transformer with $D$ steps of continuous CoTs can solve the directed graph reachability problem, where $D$ is the diameter of the graph, while the best known result of constant-depth transformers with discrete CoTs requires $O(n^2)$ decoding steps where $n$ is the number of vertices ($D
comment: 26 pages, 7 figures
♻ ☆ Realism in Action: Anomaly-Aware Diagnosis of Brain Tumors from Medical Images Using YOLOv8 and DeiT
Reliable diagnosis of brain tumors remains challenging due to low clinical incidence rates of such cases. However, this low rate is neglected in most of proposed methods. We propose a clinically inspired framework for anomaly-resilient tumor detection and classification. Detection leverages YOLOv8n fine-tuned on a realistically imbalanced dataset (1:9 tumor-to-normal ratio; 30,000 MRI slices from 81 patients). In addition, we propose a novel Patient-to-Patient (PTP) metric that evaluates diagnostic reliability at the patient level. Classification employs knowledge distillation: a Data Efficient Image Transformer (DeiT) student model is distilled from a ResNet152 teacher. The distilled ViT achieves an F1-score of 0.92 within 20 epochs, matching near teacher performance (F1=0.97) with significantly reduced computational resources. This end-to-end framework demonstrates high robustness in clinically representative anomaly-distributed data, offering a viable tool that adheres to realistic situations in clinics.
♻ ☆ Fully Differentiable Lagrangian Convolutional Neural Network for Physics-Informed Precipitation Nowcasting
This paper presents a convolutional neural network model for precipitation nowcasting that combines data-driven learning with physics-informed domain knowledge. We propose LUPIN, a Lagrangian Double U-Net for Physics-Informed Nowcasting, that draws from existing extrapolation-based nowcasting methods. It consists of a U-Net that dynamically produces mesoscale advection motion fields, a differentiable semi-Lagrangian extrapolation operator, and an advection-free U-Net capturing the growth and decay of precipitation over time. Using our approach, we successfully implement the Lagrangian convolutional neural network for precipitation nowcasting in a fully differentiable and GPU-accelerated manner. This allows for end-to-end training and inference, including the data-driven Lagrangian coordinate system transformation of the data at runtime. We evaluate the model and compare it with other related AI-based models both quantitatively and qualitatively in an extreme event case study. Based on our evaluation, LUPIN matches and even exceeds the performance of the chosen benchmarks, opening the door for other Lagrangian machine learning models.
comment: Submitted to Applied Computing and Geosciences
♻ ☆ Discrete Diffusion in Large Language and Multimodal Models: A Survey
In this work, we provide a systematic survey of Discrete Diffusion Language Models (dLLMs) and Discrete Diffusion Multimodal Language Models (dMLLMs). Unlike autoregressive (AR) models, dLLMs and dMLLMs adopt a multi-token, parallel decoding paradigm using full attention and a denoising-based generation strategy. This paradigm naturally enables parallel generation, fine-grained output controllability, and dynamic, response-aware perception. These capabilities are previously difficult to achieve with AR models. Recently, a growing number of industrial-scale proprietary d(M)LLMs, as well as a large number of open-source academic d(M)LLMs, have demonstrated performance comparable to their autoregressive counterparts, while achieving up to 10x acceleration in inference speed. The advancement of discrete diffusion LLMs and MLLMs has been largely driven by progress in two domains. The first is the development of autoregressive LLMs and MLLMs, which has accumulated vast amounts of data, benchmarks, and foundational infrastructure for training and inference. The second contributing domain is the evolution of the mathematical models underlying discrete diffusion. Together, these advancements have catalyzed a surge in dLLMs and dMLLMs research in early 2025. In this work, we present a comprehensive overview of the research in the dLLM and dMLLM domains. We trace the historical development of dLLMs and dMLLMs, formalize the underlying mathematical frameworks, and categorize representative models. We further analyze key techniques for training and inference, and summarize emerging applications across language, vision-language, and biological domains. We conclude by discussing future directions for research and deployment. Paper collection: https://github.com/LiQiiiii/DLLM-Survey
♻ ☆ Studying and Improving Graph Neural Network-based Motif Estimation
Graph Neural Networks (GNNs) are a predominant method for graph representation learning. However, beyond subgraph frequency estimation, their application to network motif significance-profile (SP) prediction remains under-explored, with no established benchmarks in the literature. We propose to address this problem, framing SP estimation as a task independent of subgraph frequency estimation. Our approach shifts from frequency counting to direct SP estimation and modulates the problem as multitarget regression. The reformulation is optimised for interpretability, stability and scalability on large graphs. We validate our method using a large synthetic dataset and further test it on real-world graphs. Our experiments reveal that 1-WL limited models struggle to make precise estimations of SPs. However, they can generalise to approximate the graph generation processes of networks by comparing their predicted SP with the ones originating from synthetic generators. This first study on GNN-based motif estimation also hints at how using direct SP estimation can help go past the theoretical limitations that motif estimation faces when performed through subgraph counting.
comment: This manuscript represents a revised version from the paper on https://openreview.net/forum?id=PZVVOeu6xx. Still a work in progress. Comments are welcome! 23 pages (12 main text + references), 9 figures, 5 tables. (First update: Fix broken links, references and text review.)
♻ ☆ LangTime: A Language-Guided Unified Model for Time Series Forecasting with Proximal Policy Optimization
Recent research has shown an increasing interest in utilizing pre-trained large language models (LLMs) for a variety of time series applications. However, there are three main challenges when using LLMs as foundational models for time series forecasting: (1) Cross-domain generalization. (2) Cross-modality alignment. (3) Error accumulation in autoregressive frameworks. To address these challenges, we proposed LangTime, a language-guided unified model for time series forecasting that incorporates cross-domain pre-training with reinforcement learning-based fine-tuning. Specifically, LangTime constructs Temporal Comprehension Prompts (TCPs), which include dataset-wise and channel-wise instructions, to facilitate domain adaptation and condense time series into a single token, enabling LLMs to understand better and align temporal data. To improve autoregressive forecasting, we introduce TimePPO, a reinforcement learning-based fine-tuning algorithm. TimePPO mitigates error accumulation by leveraging a multidimensional rewards function tailored for time series and a repeat-based value estimation strategy. Extensive experiments demonstrate that LangTime achieves state-of-the-art cross-domain forecasting performance, while TimePPO fine-tuning effectively enhances the stability and accuracy of autoregressive forecasting.
♻ ☆ On best approximation by multivariate ridge functions with applications to generalized translation networks
In this paper, we prove sharp upper and lower bounds for the approximation of Sobolev functions by sums of multivariate ridge functions, i.e., for approximation by functions of the form $\mathbb{R}^d \ni x \mapsto \sum_{k=1}^n \varrho_k(A_k x) \in \mathbb{R}$ with $\varrho_k : \mathbb{R}^\ell \to \mathbb{R}$ and $A_k \in \mathbb{R}^{\ell \times d}$. We show that the order of approximation asymptotically behaves as $n^{-r/(d-\ell)}$, where $r$ is the regularity (order of differentiability) of the Sobolev functions to be approximated. Our lower bound even holds when approximating $L^\infty$-Sobolev functions of regularity $r$ with error measured in $L^1$, while our upper bound applies to the approximation of $L^p$-Sobolev functions in $L^p$ for any $1 \leq p \leq \infty$. These bounds generalize well-known results regarding the approximation properties of univariate ridge functions to the multivariate case. We use our results to obtain sharp asymptotic bounds for the approximation of Sobolev functions using generalized translation networks and complex-valued neural networks.
♻ ☆ EvoPress: Accurate Dynamic Model Compression via Evolutionary Search ICML
The high computational costs of large language models (LLMs) have led to a flurry of research on LLM compression, via methods such as quantization, sparsification, or structured pruning. A new frontier in this area is given by dynamic, non-uniform compression methods, which adjust the compression levels (e.g., sparsity) per-block or even per-layer in order to minimize accuracy loss, while guaranteeing a global compression threshold. Yet, current methods rely on estimating the importance of a given layer, implicitly assuming that layers contribute independently to the overall compression error. We begin from the motivating observation that this independence assumption does not generally hold for LLM compression: pruning a model further may even significantly recover performance. To address this, we propose EvoPress, a novel evolutionary framework for dynamic LLM compression. By formulating dynamic compression as a general optimization problem, EvoPress identifies optimal compression profiles in a highly efficient manner, and generalizes across diverse models and compression techniques. Via EvoPress, we achieve state-of-the-art performance for dynamic compression of Llama, Mistral, and Phi models, setting new benchmarks for structural pruning (block/layer dropping), unstructured sparsity, and quantization with dynamic bitwidths. Our code is available at https://github.com/IST-DASLab/EvoPress}.
comment: ICML camera-ready
♻ ☆ Chameleon: A MatMul-Free Temporal Convolutional Network Accelerator for End-to-End Few-Shot and Continual Learning from Sequential Data
On-device learning at the edge enables low-latency, private personalization with improved long-term robustness and reduced maintenance costs. Yet, achieving scalable, low-power end-to-end on-chip learning, especially from real-world sequential data with a limited number of examples, is an open challenge. Indeed, accelerators supporting error backpropagation optimize for learning performance at the expense of inference efficiency, while simplified learning algorithms often fail to reach acceptable accuracy targets. In this work, we present Chameleon, leveraging three key contributions to solve these challenges. (i) A unified learning and inference architecture supports few-shot learning (FSL), continual learning (CL) and inference at only 0.5% area overhead to the inference logic. (ii) Long temporal dependencies are efficiently captured with temporal convolutional networks (TCNs), enabling the first demonstration of end-to-end on-chip FSL and CL on sequential data and inference on 16-kHz raw audio. (iii) A dual-mode, matrix-multiplication-free compute array allows either matching the power consumption of state-of-the-art inference-only keyword spotting (KWS) accelerators or enabling $4.3\times$ higher peak GOPS. Fabricated in 40-nm CMOS, Chameleon sets new accuracy records on Omniglot for end-to-end on-chip FSL (96.8%, 5-way 1-shot, 98.8%, 5-way 5-shot) and CL (82.2% final accuracy for learning 250 classes with 10 shots), while maintaining an inference accuracy of 93.3% on the 12-class Google Speech Commands dataset at an extreme-edge power budget of 3.1 $\mu$W.
comment: 14 pages, 7 figures; added FSL power consumption measurements at 100 kHz clock speed, fixed typos
♻ ☆ Conditional Local Independence Testing for Dynamic Causal Discovery
Inferring causal relationships from dynamical systems is the central interest of many scientific inquiries. Conditional Local Independence (CLI), which describes whether the evolution of one process is influenced by another process given additional processes, is important for causal learning in such systems. However, existing CLI tests were limited to counting processes. In this paper, we propose a nonparametric CLT test for It\^o processes. Specifically, we first introduce a testing statistic based on the Local Covariance Measure (LCM) by constructing a martingale from the conditional expectation of the process of interest. For estimation, we propose an efficient estimator based on the optimal filtering equation, which can achieve root-N consistency. To establish the asymptotic level and power of the test, we relax the restrictive boundedness condition to a moment bound condition, which is practical for It\^o processes. We verify the proposed test in synthetic and real-world experiments.
comment: Working paper
♻ ☆ Machine Learning-Based Analysis of ECG and PCG Signals for Rheumatic Heart Disease Detection: A Scoping Review (2015-2025)
AI-powered stethoscopes offer a promising alternative for screening rheumatic heart disease (RHD), particularly in regions with limited diagnostic infrastructure. Early detection is vital, yet echocardiography, the gold standard tool, remains largely inaccessible in low-resource settings due to cost and workforce constraints. This review systematically examines machine learning (ML) applications from 2015 to 2025 that analyze electrocardiogram (ECG) and phonocardiogram (PCG) data to support accessible, scalable screening of all RHD variants in relation to the World Heart Federation's "25 by 25" goal to reduce RHD mortality. Using PRISMA-ScR guidelines, 37 peer-reviewed studies were selected from PubMed, IEEE Xplore, Scopus, and Embase. Convolutional neural networks (CNNs) dominate recent efforts, achieving a median accuracy of 97.75%, F1-score of 0.95, and AUROC of 0.89. However, challenges remain: 73% of studies used single-center datasets, 81.1% relied on private data, only 10.8% were externally validated, and none assessed cost-effectiveness. Although 45.9% originated from endemic regions, few addressed demographic diversity or implementation feasibility. These gaps underscore the disconnect between model performance and clinical readiness. Bridging this divide requires standardized benchmark datasets, prospective trials in endemic areas, and broader validation. If these issues are addressed, AI-augmented auscultation could transform cardiovascular diagnostics in underserved populations, thereby aiding early detection. This review also offers practical recommendations for building accessible ML-based RHD screening tools, aiming to close the diagnostic gap in low-resource settings where conventional auscultation may miss up to 90% of cases and echocardiography remains out of reach.
♻ ☆ Gradient Descent Algorithm in Hilbert Spaces under Stationary Markov Chains with $φ$- and $β$-Mixing
In this paper, we study a strictly stationary Markov chain gradient descent algorithm operating in general Hilbert spaces. Our analysis focuses on the mixing coefficients of the underlying process, specifically the $\phi$- and $\beta$-mixing coefficients. Under these assumptions, we derive probabilistic upper bounds on the convergence behavior of the algorithm based on the exponential as well as the polynomial decay of the mixing coefficients.
♻ ☆ Towards Efficient Parametric State Estimation in Circulating Fuel Reactors with Shallow Recurrent Decoder Networks
The recent developments in data-driven methods have paved the way to new methodologies to provide accurate state reconstruction of engineering systems; nuclear reactors represent particularly challenging applications for this task due to the complexity of the strongly coupled physics involved and the extremely harsh and hostile environments, especially for new technologies such as Generation-IV reactors. Data-driven techniques can combine different sources of information, including computational proxy models and local noisy measurements on the system, to robustly estimate the state. This work leverages the novel Shallow Recurrent Decoder architecture to infer the entire state vector (including neutron fluxes, precursors concentrations, temperature, pressure and velocity) of a reactor from three out-of-core time-series neutron flux measurements alone. In particular, this work extends the standard architecture to treat parametric time-series data, ensuring the possibility of investigating different accidental scenarios and showing the capabilities of this approach to provide an accurate state estimation in various operating conditions. This paper considers as a test case the Molten Salt Fast Reactor (MSFR), a Generation-IV reactor concept, characterised by strong coupling between the neutronics and the thermal hydraulics due to the liquid nature of the fuel. The promising results of this work are further strengthened by the possibility of quantifying the uncertainty associated with the state estimation, due to the considerably low training cost. The accurate reconstruction of every characteristic field in real-time makes this approach suitable for monitoring and control purposes in the framework of a reactor digital twin.
♻ ☆ Leveraging Nested MLMC for Sequential Neural Posterior Estimation with Intractable Likelihoods
There has been a growing interest in studying sequential neural posterior estimation (SNPE) techniques for their advantages in dealing with simulation-based models with intractable likelihoods. They are devoted to learning the posterior from adaptively proposed simulations using neural network-based conditional density estimators. As a SNPE technique, the automatic posterior transformation (APT) method proposed by Greenberg et al. (2019) performs notably and scales to high dimensional data. However, the APT method bears the computation of an expectation of the logarithm of an intractable normalizing constant, i.e., a nested expectation. Although atomic APT was proposed to solve this by discretizing the normalizing constant, it remains challenging to analyze the convergence of learning. In this paper, we propose a nested APT method to estimate the involved nested expectation instead. This facilitates establishing the convergence analysis. Since the nested estimators for the loss function and its gradient are biased, we make use of unbiased multi-level Monte Carlo (MLMC) estimators for debiasing. To further reduce the excessive variance of the unbiased estimators, this paper also develops some truncated MLMC estimators by taking account of the trade-off between the bias and the average cost. Numerical experiments for approximating complex posteriors with multimodal in moderate dimensions are provided.
comment: 30 pages, 6 figures
♻ ☆ Sliding Puzzles Gym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning ICML 2025
Effective visual representation learning is crucial for reinforcement learning (RL) agents to extract task-relevant information from raw sensory inputs and generalize across diverse environments. However, existing RL benchmarks lack the ability to systematically evaluate representation learning capabilities in isolation from other learning challenges. To address this gap, we introduce the Sliding Puzzles Gym (SPGym), a novel benchmark that transforms the classic 8-tile puzzle into a visual RL task with images drawn from arbitrarily large datasets. SPGym's key innovation lies in its ability to precisely control representation learning complexity through adjustable grid sizes and image pools, while maintaining fixed environment dynamics, observation, and action spaces. This design enables researchers to isolate and scale the visual representation challenge independently of other learning components. Through extensive experiments with model-free and model-based RL algorithms, we uncover fundamental limitations in current methods' ability to handle visual diversity. As we increase the pool of possible images, all algorithms exhibit in- and out-of-distribution performance degradation, with sophisticated representation learning techniques often underperforming simpler approaches like data augmentation. These findings highlight critical gaps in visual representation learning for RL and establish SPGym as a valuable tool for driving progress in robust, generalizable decision-making systems.
comment: Accepted at ICML 2025
♻ ☆ T2I-R1: Reinforcing Image Generation with Collaborative Semantic-level and Token-level CoT
Recent advancements in large language models have demonstrated how chain-of-thought (CoT) and reinforcement learning (RL) can improve performance. However, applying such reasoning strategies to the visual generation domain remains largely unexplored. In this paper, we present T2I-R1, a novel reasoning-enhanced text-to-image generation model, powered by RL with a bi-level CoT reasoning process. Specifically, we identify two levels of CoT that can be utilized to enhance different stages of generation: (1) the semantic-level CoT for high-level planning of the prompt and (2) the token-level CoT for low-level pixel processing during patch-by-patch generation. To better coordinate these two levels of CoT, we introduce BiCoT-GRPO with an ensemble of generation rewards, which seamlessly optimizes both generation CoTs within the same training step. By applying our reasoning strategies to the baseline model, Janus-Pro, we achieve superior performance with 13% improvement on T2I-CompBench and 19% improvement on the WISE benchmark, even surpassing the state-of-the-art model FLUX.1. Code is available at: https://github.com/CaraJ7/T2I-R1
comment: Project Page: https://github.com/CaraJ7/T2I-R1
♻ ☆ Iterative Resolution of Prompt Ambiguities Using a Progressive Cutting-Search Approach
Generative AI systems have revolutionized human interaction by enabling natural language-based coding and problem solving. However, the inherent ambiguity of natural language often leads to imprecise instructions, forcing users to iteratively test, correct, and resubmit their prompts. We propose an iterative approach that systematically narrows down these ambiguities through a structured series of clarification questions and alternative solution proposals, illustrated with input/output examples as well. Once every uncertainty is resolved, a final, precise solution is generated. Evaluated on a diverse dataset spanning coding, data analysis, and creative writing, our method demonstrates superior accuracy, competitive resolution times, and higher user satisfaction compared to conventional one-shot solutions, which typically require multiple manual iterations to achieve a correct output.
♻ ☆ Learning dynamical systems from data: Gradient-based dictionary optimization
The Koopman operator plays a crucial role in analyzing the global behavior of dynamical systems. Existing data-driven methods for approximating the Koopman operator or discovering the governing equations of the underlying system typically require a fixed set of basis functions, also called dictionary. The optimal choice of basis functions is highly problem-dependent and often requires domain knowledge. We present a novel gradient descent-based optimization framework for learning suitable and interpretable basis functions from data and show how it can be used in combination with EDMD, SINDy, and PDE-FIND. We illustrate the efficacy of the proposed approach with the aid of various benchmark problems such as the Ornstein-Uhlenbeck process, Chua's circuit, a nonlinear heat equation, as well as protein-folding data.
♻ ☆ The Number of Trials Matters in Infinite-Horizon General-Utility Markov Decision Processes
The general-utility Markov decision processes (GUMDPs) framework generalizes the MDPs framework by considering objective functions that depend on the frequency of visitation of state-action pairs induced by a given policy. In this work, we contribute with the first analysis on the impact of the number of trials, i.e., the number of randomly sampled trajectories, in infinite-horizon GUMDPs. We show that, as opposed to standard MDPs, the number of trials plays a key-role in infinite-horizon GUMDPs and the expected performance of a given policy depends, in general, on the number of trials. We consider both discounted and average GUMDPs, where the objective function depends, respectively, on discounted and average frequencies of visitation of state-action pairs. First, we study policy evaluation under discounted GUMDPs, proving lower and upper bounds on the mismatch between the finite and infinite trials formulations for GUMDPs. Second, we address average GUMDPs, studying how different classes of GUMDPs impact the mismatch between the finite and infinite trials formulations. Third, we provide a set of empirical results to support our claims, highlighting how the number of trajectories and the structure of the underlying GUMDP influence policy evaluation.
♻ ☆ Identity Preserving 3D Head Stylization with Multiview Score Distillation
3D head stylization transforms realistic facial features into artistic representations, enhancing user engagement across gaming and virtual reality applications. While 3D-aware generators have made significant advancements, many 3D stylization methods primarily provide near-frontal views and struggle to preserve the unique identities of original subjects, often resulting in outputs that lack diversity and individuality. This paper addresses these challenges by leveraging the PanoHead model, synthesizing images from a comprehensive 360-degree perspective. We propose a novel framework that employs negative log-likelihood distillation (LD) to enhance identity preservation and improve stylization quality. By integrating multi-view grid score and mirror gradients within the 3D GAN architecture and introducing a score rank weighing technique, our approach achieves substantial qualitative and quantitative improvements. Our findings not only advance the state of 3D head stylization but also provide valuable insights into effective distillation processes between diffusion models and GANs, focusing on the critical issue of identity preservation. Please visit the https://three-bee.github.io/head_stylization for more visuals.
comment: https://three-bee.github.io/head_stylization
♻ ☆ Mirror Online Conformal Prediction with Intermittent Feedback
Online conformal prediction enables the runtime calibration of a pre-trained artificial intelligence model using feedback on its performance. Calibration is achieved through set predictions that are updated via online rules so as to ensure long-term coverage guarantees. While recent research has demonstrated the benefits of incorporating prior knowledge into the calibration process, this has come at the cost of replacing coverage guarantees with less tangible regret guarantees based on the quantile loss. This work introduces intermittent mirror online conformal prediction (IM-OCP), a novel runtime calibration framework that integrates prior knowledge, operates under potentially intermittent feedback, and features minimal memory complexity. IM-OCP guarantees long-term coverage and sub-linear regret, both of which hold deterministically for any given data sequence and in expectation with respect to the intermittent feedback.
♻ ☆ Training-Conditional Coverage Bounds under Covariate Shift
Conformal prediction methodology has recently been extended to the covariate shift setting, where the distribution of covariates differs between training and test data. While existing results ensure that the prediction sets from these methods achieve marginal coverage above a nominal level, their coverage rate conditional on the training dataset (referred to as training-conditional coverage) remains unexplored. In this paper, we address this gap by deriving upper bounds on the tail of the training-conditional coverage distribution, offering probably approximately correct (PAC) guarantees for these methods. Our results quantify the relationship between the quality of the prediction sets and the severity of distributional changes, and can potentially be used to compute more efficient prediction sets.
comment: arXiv admin note: text overlap with arXiv:2404.13731
♻ ☆ A novel Trunk Branch-net PINN for flow and heat transfer prediction in porous medium
A novel Trunk-Branch (TB)-net physics-informed neural network (PINN) architecture is developed, which is a PINN-based method incorporating trunk and branch nets to capture both global and local features. The aim is to solve four main classes of problems: forward flow problem, forward heat transfer problem, inverse heat transfer problem, and transfer learning problem within the porous medium, which are notoriously complex that could not be handled by origin PINN. In the proposed TB-net PINN architecture, a Fully-connected Neural Network (FNN) is used as the trunk net, followed by separated FNNs as the branch nets with respect to outputs, and automatic differentiation is performed for partial derivatives of outputs with respect to inputs by considering various physical loss. The effectiveness and flexibility of the novel TB-net PINN architecture is demonstrated through a collection of forward problems, and transfer learning validates the feasibility of resource reuse. Combining with the superiority over traditional numerical methods in solving inverse problems, the proposed TB-net PINN shows its great potential for practical engineering applications.
comment: 33 pages, 24 figures,
♻ ☆ Towards the Training of Deeper Predictive Coding Neural Networks
Predictive coding networks trained with equilibrium propagation are neural models that perform inference through an iterative energy minimization process. Previous studies have demonstrated their effectiveness in shallow architectures, but show significant performance degradation when depth exceeds five to seven layers. In this work, we show that the reason behind this degradation is due to exponentially imbalanced errors between layers during weight updates, and predictions from the previous layer not being effective in guiding updates in deeper layers. We address the first issue by introducing two novel methods to optimize the latent variables that use precision-weighting to re-balance the distribution of energy among layers during the `relaxation phase', and the second issue by proposing a novel weight update mechanism that reduces error accumulation in deeper layers. Empirically, we test our methods on a large number of image classification tasks, resulting in large improvements in test accuracy across networks with more than seven layers, with performances comparable to those of backprop on similar models. These findings suggest that a better understanding of the relaxation phase is important to train models using equilibrium propagation at scale, and open new possibilities for their application in complex tasks.
comment: 18 Pages, 7 figures
♻ ☆ Integrating Expert Labels into LLM-based Emission Goal Detection: Example Selection vs Automatic Prompt Design
We address the detection of emission reduction goals in corporate reports, an important task for monitoring companies' progress in addressing climate change. Specifically, we focus on the issue of integrating expert feedback in the form of labeled example passages into LLM-based pipelines, and compare the two strategies of (1) a dynamic selection of few-shot examples and (2) the automatic optimization of the prompt by the LLM itself. Our findings on a public dataset of 769 climate-related passages from real-world business reports indicate that automatic prompt optimization is the superior approach, while combining both methods provides only limited benefit. Qualitative results indicate that optimized prompts do indeed capture many intricacies of the targeted emission goal extraction task.
♻ ☆ Hierarchical Decentralized Stochastic Control for Cyber-Physical Systems
This paper presents a two-timescale hierarchical decentralized architecture for control of Cyber-Physical Systems. The architecture consists of $N$ independent sub-processes, a global controller, and $N$ local controllers, each formulated as a Markov Decision Process (MDP). The global controller, operating at a slower timescale optimizes the infinite-horizon discounted cumulative reward under budget constraints. For the local controllers, operating at a faster timescale, we propose two different optimization frameworks, namely the COpt and FOpt. In the COpt framework, the local controller also optimizes an infinite-horizon MDP, while in the FOpt framework, the local controller optimizes a finite-horizon MDP. The FOpt framework mimics a federal structure, where the local controllers have more autonomy in their decision making. First, the existence of stationary deterministic optimal policies for both these frameworks is established. Then, various relationships between the two frameworks are studied, including a bound on the difference between the two optimal value functions. Additionally, sufficiency conditions are provided such that the two frameworks lead to the same optimal values.
comment: 6 pages, 2 figures
♻ ☆ Multiresolution Analysis and Statistical Thresholding on Dynamic Networks
Detecting structural change in dynamic network data has wide-ranging applications. Existing approaches typically divide the data into time bins, extract network features within each bin, and then compare these features over time. This introduces an inherent tradeoff between temporal resolution and the statistical stability of the extracted features. Despite this tradeoff, reminiscent of time-frequency tradeoffs in signal processing, most methods rely on a fixed temporal resolution. Choosing an appropriate resolution parameter is typically difficult and can be especially problematic in domains like cybersecurity, where anomalous behavior may emerge at multiple time scales. We address this challenge by proposing ANIE (Adaptive Network Intensity Estimation), a multi-resolution framework designed to automatically identify the time scales at which network structure evolves, enabling the joint detection of both rapid and gradual changes. Modeling interactions as Poisson processes, our method proceeds in two steps: (1) estimating a low-dimensional subspace of node behavior, and (2) deriving a set of novel empirical affinity coefficients that quantify change in interaction intensity between latent factors and support statistical testing for structural change across time scales. We provide theoretical guarantees for subspace estimation and the asymptotic behavior of the affinity coefficients, enabling model-based change detection. Experiments on synthetic networks show that ANIE adapts to the appropriate time resolution and is able to capture sharp structural changes while remaining robust to noise. Furthermore, applications to real-world data showcase the practical benefits of ANIE's multiresolution approach to detecting structural change over fixed resolution methods.
♻ ☆ Downscaling Neural Network for Coastal Simulations
Learning the fine-scale details of a coastal ocean simulation from a coarse representation is a challenging task. For real-world applications, high-resolution simulations are necessary to advance understanding of many coastal processes, specifically, to predict flooding resulting from tsunamis and storm surges. We propose a Downscaling Neural Network for Coastal Simulation (DNNCS) for spatiotemporal enhancement to efficiently learn the high-resolution numerical solution. Given images of coastal simulations produced on low-resolution computational meshes using low polynomial order discontinuous Galerkin discretizations and a coarse temporal resolution, the proposed DNNCS learns to produce high-resolution free surface elevation and velocity visualizations in both time and space. To efficiently model the dynamic changes over time and space, we propose grid-aware spatiotemporal attention to project the temporal features to the spatial domain for non-local feature matching. The coordinate information is also utilized via positional encoding. For the final reconstruction, we use the spatiotemporal bilinear operation to interpolate the missing frames and then expand the feature maps to the frequency domain for residual mapping. Besides data-driven losses, the proposed physics-informed loss guarantees gradient consistency and momentum changes. Their combination contributes to the overall 24% improvements in Root Mean Square Error (RMSE). To train the proposed model, we propose a novel coastal simulation dataset and use it for model optimization and evaluation. Our method shows superior downscaling quality and fast computation compared to the state-of-the-art methods.
comment: 13 pages, 12 figures
♻ ☆ Binned semiparametric Bayesian networks
This paper introduces a new type of probabilistic semiparametric model that takes advantage of data binning to reduce the computational cost of kernel density estimation in nonparametric distributions. Two new conditional probability distributions are developed for the new binned semiparametric Bayesian networks, the sparse binned kernel density estimation and the Fourier kernel density estimation. These two probability distributions address the curse of dimensionality, which typically impacts binned models, by using sparse tensors and restricting the number of parent nodes in conditional probability calculations. To evaluate the proposal, we perform a complexity analysis and conduct several comparative experiments using synthetic data and datasets from the UCI Machine Learning repository. The experiments include different binning rules, parent restrictions, grid sizes, and number of instances to get a holistic view of the model's behavior. As a result, our binned semiparametric Bayesian networks achieve structural learning and log-likelihood estimations with no statistically significant differences compared to the semiparametric Bayesian networks, but at a much higher speed. Thus, the new binned semiparametric Bayesian networks prove to be a reliable and more efficient alternative to their non-binned counterparts.
comment: Submitted to Information Sciences
♻ ☆ Integrating Dual Prototypes for Task-Wise Adaption in Pre-Trained Model-Based Class-Incremental Learning
Class-incremental learning (CIL) aims to acquire new classes while conserving historical knowledge incrementally. Despite existing pre-trained model (PTM) based methods performing excellently in CIL, it is better to fine-tune them on downstream incremental tasks with massive patterns unknown to PTMs. However, using task streams for fine-tuning could lead to \textit{catastrophic forgetting} that will erase the knowledge in PTMs. This paper proposes the Dual Prototype network for Task-wise Adaption (DPTA) of PTM-based CIL. For each incremental learning task, an adapter module is built to fine-tune the PTM, where the center-adapt loss forces the representation to be more centrally clustered and class separable. The dual prototype network improves the prediction process by enabling test-time adapter selection, where the raw prototypes deduce several possible task indexes of test samples to select suitable adapter modules for PTM, and the augmented prototypes that could separate highly correlated classes are utilized to determine the final result. Experiments on several benchmark datasets demonstrate the excellent performance of DPTA. Code is available in https://github.com/Yorkxzm/DPTA
comment: 10 pages,9 figures,2 tables
♻ ☆ The Curse of Depth in Large Language Models
In this paper, we introduce the Curse of Depth, a concept that highlights, explains, and addresses the recent observation in modern Large Language Models (LLMs) where nearly half of the layers are less effective than expected. We first confirm the wide existence of this phenomenon across the most popular families of LLMs such as Llama, Mistral, DeepSeek, and Qwen. Our analysis, theoretically and empirically, identifies that the underlying reason for the ineffectiveness of deep layers in LLMs is the widespread usage of Pre-Layer Normalization (Pre-LN). While Pre-LN stabilizes the training of Transformer LLMs, its output variance exponentially grows with the model depth, which undesirably causes the derivative of the deep Transformer blocks to be an identity matrix, and therefore barely contributes to the training. To resolve this training pitfall, we propose LayerNorm Scaling (LNS), which scales the variance of output of the layer normalization inversely by the square root of its depth. This simple modification mitigates the output variance explosion of deeper Transformer layers, improving their contribution. Across a wide range of model sizes (130M to 7B), our experiments show that LNS consistently outperforms previous normalization and scaling techniques in enhancing LLM pre-training performance. Moreover, this improvement seamlessly carries over to supervised fine-tuning. All these gains can be attributed to the fact that LayerNorm Scaling enables deeper layers to contribute more effectively during training. Our code is available at \href{https://github.com/lmsdss/LayerNorm-Scaling}{LayerNorm-Scaling}.
♻ ☆ Plastic tensor networks for interpretable generative modeling
A structural optimization scheme for a single-layer nonnegative adaptive tensor tree (NATT) that models a target probability distribution is proposed as an alternative paradigm for generative modeling. The NATT scheme, by construction, automatically searches for a tree structure that best fits a given discrete dataset whose features serve as inputs, and has the advantage that it is interpretable as a probabilistic graphical model. We consider the NATT scheme and a recently proposed Born machine adaptive tensor tree (BMATT) optimization scheme and demonstrate their effectiveness on a variety of generative modeling tasks where the objective is to infer the hidden structure of a provided dataset. Our results show that in terms of minimizing the negative log-likelihood, the single-layer scheme has model performance comparable to the Born machine scheme, though not better. The tasks include deducing the structure of binary bitwise operations, learning the internal structure of random Bayesian networks given only visible sites, and a real-world example related to hierarchical clustering where a cladogram is constructed from mitochondrial DNA sequences. In doing so, we also show the importance of the choice of network topology and the versatility of a least-mutual information criterion in selecting a candidate structure for a tensor tree, as well as discuss aspects of these tensor tree generative models including their information content and interpretability.
comment: 18 pages, 17 figures
♻ ☆ UFGraphFR: Graph Federation Recommendation System based on User Text description features
Federated learning has emerged as a key paradigm in privacy-preserving computing due to its "data usable but not visible" property, enabling users to collaboratively train models without sharing raw data. Motivated by this, federated recommendation systems offer a promising architecture that balances user privacy with recommendation accuracy through distributed collaborative learning. However, existing federated recommendation methods often neglect the underlying semantic or behavioral relationships between users during parameter aggregation, which limits their recommendation effectiveness. To overcome this limitation, graph-based federated recommendation systems have been proposed to leverage neighborhood information. Yet, conventional graph construction methods usually require access to raw user data or explicit social links, which contradicts the strict privacy requirements of federated learning. In this work, we propose UFGraphFR (User Text-feature-based Graph Federated Recommendation), a novel personalized federated recommendation framework that constructs a user graph based on clients' locally embedded text features. Our core assumption is that users with similar textual feature descriptions exhibit similar preferences. Accordingly, UFGraphFR introduces two key components: (1) a privacy-preserving user relationship graph constructed from the joint embedding layer's weight matrix without leaking raw user attributes; (2) a Transformer-based architecture to model temporal dependencies in user-item interaction sequences. Experimental results on benchmark datasets such as MovieLens and HetRec2011 demonstrate that UFGraphFR achieves recommendation accuracy comparable to both centralized and state-of-the-art federated baselines while preserving user privacy. The code is available at: https://github.com/trueWangSyutung/UFGraphFR.
♻ ☆ A Minimalist Method for Fine-tuning Text-to-Image Diffusion Models
Recent work uses reinforcement learning (RL) to fine-tune text-to-image diffusion models, improving text-image alignment and sample quality. However, existing approaches introduce unnecessary complexity: they cache the full sampling trajectory, depend on differentiable reward models or large preference datasets, or require specialized guidance techniques. Motivated by the "golden noise" hypothesis -- that certain initial noise samples can consistently yield superior alignment -- we introduce Noise PPO, a minimalist RL algorithm that leaves the pre-trained diffusion model entirely frozen and learns a prompt-conditioned initial noise generator. Our approach requires no trajectory storage, reward backpropagation, or complex guidance tricks. Extensive experiments show that optimizing the initial noise distribution consistently improves alignment and sample quality over the original model, with the most significant gains at low inference steps. As the number of inference steps increases, the benefit of noise optimization diminishes but remains present. These findings clarify the scope and limitations of the golden noise hypothesis and reinforce the practical value of minimalist RL fine-tuning for diffusion models.
comment: 17 pages, 6 figures
♻ ☆ Autonomy by Design: Preserving Human Autonomy in AI Decision-Support
AI systems increasingly support human decision-making across domains of professional, skill-based, and personal activity. While previous work has examined how AI might affect human autonomy globally, the effects of AI on domain-specific autonomy -- the capacity for self-governed action within defined realms of skill or expertise -- remain understudied. We analyze how AI decision-support systems affect two key components of domain-specific autonomy: skilled competence (the ability to make informed judgments within one's domain) and authentic value-formation (the capacity to form genuine domain-relevant values and preferences). By engaging with prior investigations and analyzing empirical cases across medical, financial, and educational domains, we demonstrate how the absence of reliable failure indicators and the potential for unconscious value shifts can erode domain-specific autonomy both immediately and over time. We then develop a constructive framework for autonomy-preserving AI support systems. We propose specific socio-technical design patterns -- including careful role specification, implementation of defeater mechanisms, and support for reflective practice -- that can help maintain domain-specific autonomy while leveraging AI capabilities. This framework provides concrete guidance for developing AI systems that enhance rather than diminish human agency within specialized domains of action.
♻ ☆ Both Asymptotic and Non-Asymptotic Convergence of Quasi-Hyperbolic Momentum using Increasing Batch Size
Momentum methods were originally introduced for their superiority to stochastic gradient descent (SGD) in deterministic settings with convex objective functions. However, despite their widespread application to deep neural networks -- a representative case of stochastic nonconvex optimization -- the theoretical justification for their effectiveness in such settings remains limited. Quasi-hyperbolic momentum (QHM) is an algorithm that generalizes various momentum methods and has been studied to better understand the class of momentum-based algorithms as a whole. In this paper, we provide both asymptotic and non-asymptotic convergence results for mini-batch QHM with an increasing batch size. We show that achieving asymptotic convergence requires either a decaying learning rate or an increasing batch size. Since a decaying learning rate adversely affects non-asymptotic convergence, we demonstrate that using mini-batch QHM with an increasing batch size -- without decaying the learning rate -- can be a more effective strategy. Our experiments show that even a finite increase in batch size can provide benefits for training neural networks.
♻ ☆ RadZero: Similarity-Based Cross-Attention for Explainable Vision-Language Alignment in Radiology with Zero-Shot Multi-Task Capability
Recent advancements in multi-modal models have significantly improved vision-language (VL) alignment in radiology. However, existing approaches struggle to effectively utilize complex radiology reports for learning and offer limited interpretability through attention probability visualizations. To address these challenges, we introduce RadZero, a novel framework for VL alignment in radiology with zero-shot multi-task capability. A key component of our approach is VL-CABS (Vision-Language Cross-Attention Based on Similarity), which aligns text embeddings with local image features for interpretable, fine-grained VL reasoning. RadZero leverages large language models to extract concise semantic sentences from radiology reports and employs multi-positive contrastive training to effectively capture relationships between images and multiple relevant textual descriptions. It uses a pre-trained vision encoder with additional trainable Transformer layers, allowing efficient high-resolution image processing. By computing similarity between text embeddings and local image patch features, VL-CABS enables zero-shot inference with similarity probability for classification, and pixel-level VL similarity maps for grounding and segmentation. Experimental results on public chest radiograph benchmarks show that RadZero outperforms state-of-the-art methods in zero-shot classification, grounding, and segmentation. Furthermore, VL similarity map analysis highlights the potential of VL-CABS for improving explainability in VL alignment. Additionally, qualitative evaluation demonstrates RadZero's capability for open-vocabulary semantic segmentation, further validating its effectiveness in medical imaging.
♻ ☆ Parameter-Efficient Fine-Tuning via Circular Convolution ACL 2025
Low-Rank Adaptation (LoRA) has gained popularity for fine-tuning large foundation models, leveraging low-rank matrices $\mathbf{A}$ and $\mathbf{B}$ to represent weight changes (i.e., $\Delta \mathbf{W} = \mathbf{B} \mathbf{A}$). This method reduces trainable parameters and mitigates heavy memory consumption associated with full delta matrices by sequentially multiplying $\mathbf{A}$ and $\mathbf{B}$ with the activation. Despite its success, the intrinsic low-rank characteristic may limit its performance. Although several variants have been proposed to address this issue, they often overlook the crucial computational and memory efficiency brought by LoRA. In this paper, we propose Circular Convolution Adaptation (C$^3$A), which not only achieves high-rank adaptation with enhanced performance but also excels in both computational power and memory utilization. Extensive experiments demonstrate that C$^3$A consistently outperforms LoRA and its variants across various fine-tuning tasks.
comment: ACL 2025
♻ ☆ Teaching Time Series to See and Speak: Forecasting with Aligned Visual and Textual Perspectives
Time series forecasting traditionally relies on unimodal numerical inputs, which often struggle to capture high-level semantic patterns due to their dense and unstructured nature. While recent approaches have explored representing time series as text using large language models (LLMs), these methods remain limited by the discrete nature of token sequences and lack the perceptual intuition humans typically apply, such as interpreting visual patterns. In this paper, we propose a multimodal contrastive learning framework that transforms raw time series into structured visual and textual perspectives. Rather than using natural language or real-world images, we construct both modalities directly from numerical sequences. We then align these views in a shared semantic space via contrastive learning, enabling the model to capture richer and more complementary representations. Furthermore, we introduce a variate selection module that leverages the aligned representations to identify the most informative variables for multivariate forecasting. Extensive experiments on fifteen short-term and six long-term forecasting benchmarks demonstrate that our approach consistently outperforms strong unimodal and cross-modal baselines, highlighting the effectiveness of multimodal alignment in enhancing time series forecasting. Code is available at: https://github.com/Ironieser/TimesCLIP.
comment: Code: https://github.com/Ironieser/TimesCLIP
♻ ☆ Two-Stage Regularization-Based Structured Pruning for LLMs
The deployment of large language models (LLMs) is largely hindered by their large number of parameters. Structural pruning has emerged as a promising solution. Prior structured pruning methods directly remove unimportant parameters based on certain metrics, which often causes knowledge loss and necessitates extensive retraining. To overcome this, we introduce a novel pruning method TRSP: Two-Stage Regularization-Based Structured Pruning for LLMs. Specifically, we multiply the output of each transformer layer by an initial learnable weight and iteratively learn these weights by adding their $\ell_1$-norm as a regularization term to the loss function, serving as the first-stage regularization. Subsequently, we apply additional regularization to the difference between the output and input of layers with smaller weights, encouraging the shift of knowledge to the preserved layers. This serves as the second-stage regularization. TRSP retains more knowledge and better preserves model performance than direct parameter elimination. Through extensive experimentation we show that TRSP outperforms strong layer-wise structured pruning methods without requiring retraining. As a layer-wise pruning method, it delivers notable end-to-end acceleration, making it a promising solution for efficient LLM deployment.
♻ ☆ PEAKS: Selecting Key Training Examples Incrementally via Prediction Error Anchored by Kernel Similarity
As deep learning continues to be driven by ever-larger datasets, understanding which examples are most important for generalization has become a critical question. While progress in data selection continues, emerging applications require studying this problem in dynamic contexts. To bridge this gap, we pose the Incremental Data Selection (IDS) problem, where examples arrive as a continuous stream, and need to be selected without access to the full data source. In this setting, the learner must incrementally build a training dataset of predefined size while simultaneously learning the underlying task. We find that in IDS, the impact of a new sample on the model state depends fundamentally on both its geometric relationship in the feature space and its prediction error. Leveraging this insight, we propose PEAKS (Prediction Error Anchored by Kernel Similarity), an efficient data selection method tailored for IDS. Our comprehensive evaluations demonstrate that PEAKS consistently outperforms existing selection strategies. Furthermore, PEAKS yields increasingly better performance returns than random selection as training data size grows on real-world datasets. The code is available at https://github.com/BurakGurbuz97/PEAKS.
♻ ☆ Towards Large-Scale In-Context Reinforcement Learning by Meta-Training in Randomized Worlds
In-Context Reinforcement Learning (ICRL) enables agents to learn automatically and on-the-fly from their interactive experiences. However, a major challenge in scaling up ICRL is the lack of scalable task collections. To address this, we propose the procedurally generated tabular Markov Decision Processes, named AnyMDP. Through a carefully designed randomization process, AnyMDP is capable of generating high-quality tasks on a large scale while maintaining relatively low structural biases. To facilitate efficient meta-training at scale, we further introduce step-wise supervision and induce prior information in the ICRL framework.Our results demonstrate that, with a sufficiently large scale of AnyMDP tasks, the proposed model can generalize to tasks that were not considered in the training set. The scalable task set provided by AnyMDP also enables a more thorough empirical investigation of the relationship between data distribution and ICRL performance. We further show that the generalization of ICRL potentially comes at the cost of increased task diversity and longer adaptation periods. This finding carries critical implications for scaling robust ICRL capabilities, highlighting the necessity of diverse and extensive task design, and prioritizing asymptotic performance over few-shot adaptation.
comment: Preprint
♻ ☆ BlockDialect: Block-wise Fine-grained Mixed Format Quantization for Energy-Efficient LLM Inference ICML 2025
The rapidly increasing size of large language models (LLMs) presents significant challenges in memory usage and computational costs. Quantizing both weights and activations can address these issues, with hardware-supported fine-grained scaling emerging as a promising solution to mitigate outliers. However, existing methods struggle to capture nuanced block data distributions. We propose BlockDialect, a block-wise fine-grained mixed format technique that assigns a per-block optimal number format from a formatbook for better data representation. Additionally, we introduce DialectFP4, a formatbook of FP4 variants (akin to dialects) that adapt to diverse data distributions. To leverage this efficiently, we propose a two-stage approach for online DialectFP4 activation quantization. Importantly, DialectFP4 ensures energy efficiency by selecting representable values as scaled integers compatible with low-precision integer arithmetic. BlockDialect achieves 10.78% (7.48%) accuracy gain on the LLaMA3-8B (LLaMA2-7B) model compared to MXFP4 format with lower bit usage per data, while being only 5.45% (2.69%) below full precision even when quantizing full-path matrix multiplication. Focusing on how to represent over how to scale, our work presents a promising path for energy-efficient LLM inference.
comment: ICML 2025
♻ ☆ SPIRAL: Self-Play on Zero-Sum Games Incentivizes Reasoning via Multi-Agent Multi-Turn Reinforcement Learning
Recent advances in reinforcement learning have shown that language models can develop sophisticated reasoning through training on tasks with verifiable rewards, but these approaches depend on human-curated problem-answer pairs and domain-specific reward engineering. We introduce SPIRAL, a self-play framework where models learn by playing multi-turn, zero-sum games against continuously improving versions of themselves, eliminating the need for human supervision. Through self-play, SPIRAL generates an infinite curriculum of progressively challenging problems as models must constantly adapt to stronger opponents. To enable this self-play training at scale, We implement a fully online, multi-turn, multi-agent reinforcement learning system for LLMs and propose role-conditioned advantage estimation (RAE) to stabilize multi-agent training. Using SPIRAL, self-play on zero-sum games produces reasoning capabilities that transfer broadly. Training Qwen3-4B-Base on Kuhn Poker alone achieves 8.6% improvement on math and 8.4% on general reasoning, outperforming SFT on 25,000 expert game trajectories. Analysis reveals that this transfer occurs through three cognitive patterns: systematic decomposition, expected value calculation, and case-by-case analysis. Multi-game training (TicTacToe, Kuhn Poker, Simple Negotiation) further enhances performance as each game develops distinct reasoning strengths. Applying SPIRAL to a strong reasoning model (DeepSeek-R1-Distill-Qwen-7B) can still lead to 2.0% average improvement. These results demonstrate that zero-sum games naturally develop transferable reasoning capabilities, highlighting a promising direction for autonomous reasoning development.
comment: Work in Progress
♻ ☆ Analogical Learning for Cross-Scenario Generalization: Framework and Application to Intelligent Localization
Existing learning models often exhibit poor generalization when deployed across diverse scenarios. It is primarily due to that the underlying reference frame of the data varies with the deployment environment and settings. However, despite that data of each scenario has a distinct reference frame, its generation generally follows common underlying physical rules. Based on this understanding, this article proposes a deep learning framework named analogical learning (AL), which implicitly retrieves the reference frame information associated with a scenario and then to make accurate prediction by relative analogy with other scenarios. Specifically, we design a bipartite neural network called Mateformer. Its first part captures the relativity within multiple latent feature spaces between the input data and a small amount of embedded data from the studied scenario, while its second part uses this relativity to guide the nonlinear analogy. We apply AL to the typical multi-scenario learning problem of intelligent wireless localization in cellular networks. Extensive experiments validate AL's superiority across three key dimensions. First, it achieves state-of-the-art accuracy in single-scenario benchmarks. Second, it demonstrates stable transferability between different scenarios, avoiding catastrophic forgetting. Finally, and most importantly, it robustly adapts to new, unseen scenarios--including dynamic weather and traffic conditions--without any tuning. All data and code are available at https://github.com/ziruichen-research/ALLoc.
♻ ☆ A Good Start Matters: Enhancing Continual Learning with Data-Driven Weight Initialization
To adapt to real-world data streams, continual learning (CL) systems must rapidly learn new concepts while preserving and utilizing prior knowledge. When it comes to adding new information to continually-trained deep neural networks (DNNs), classifier weights for newly encountered categories are typically initialized randomly, leading to high initial training loss (spikes) and instability. Consequently, achieving optimal convergence and accuracy requires prolonged training, increasing computational costs. Inspired by Neural Collapse (NC), we propose a weight initialization strategy to improve learning efficiency in CL. In DNNs trained with mean-squared-error, NC gives rise to a Least-Square (LS) classifier in the last layer, whose weights can be analytically derived from learned features. We leverage this LS formulation to initialize classifier weights in a data-driven manner, aligning them with the feature distribution rather than using random initialization. Our method mitigates initial loss spikes and accelerates adaptation to new tasks. We evaluate our approach in large-scale CL settings, demonstrating faster adaptation and improved CL performance.
comment: Accepted to the Conference on Lifelong Learning Agents (CoLLAs) 2025
♻ ☆ Neuro-Informed Joint Learning Enhances Cognitive Workload Decoding in Portable BCIs
Portable and wearable consumer-grade electroencephalography (EEG) devices, like Muse headbands, offer unprecedented mobility for daily brain-computer interface (BCI) applications, including cognitive load detection. However, the exacerbated non-stationarity in portable EEG signals constrains data fidelity and decoding accuracy, creating a fundamental trade-off between portability and performance. To mitigate such limitation, we propose MuseCogNet (Muse-based Cognitive Network), a unified joint learning framework integrating self-supervised and supervised training paradigms. In particular, we introduce an EEG-grounded self-supervised reconstruction loss based on average pooling to capture robust neurophysiological patterns, while cross-entropy loss refines task-specific cognitive discriminants. This joint learning framework resembles the bottom-up and top-down attention in humans, enabling MuseCogNet to significantly outperform state-of-the-art methods on a publicly available Muse dataset and establish an implementable pathway for neurocognitive monitoring in ecological settings.
comment: 2 pages short paper
♻ ☆ Ansatz-free Hamiltonian learning with Heisenberg-limited scaling
Learning the unknown interactions that govern a quantum system is crucial for quantum information processing, device benchmarking, and quantum sensing. The problem, known as Hamiltonian learning, is well understood under the assumption that interactions are local, but this assumption may not hold for arbitrary Hamiltonians. Previous methods all require high-order inverse polynomial dependency with precision, unable to surpass the standard quantum limit and reach the gold standard Heisenberg-limited scaling. Whether Heisenberg-limited Hamiltonian learning is possible without prior assumptions about the interaction structures, a challenge we term \emph{ansatz-free Hamiltonian learning}, remains an open question. In this work, we present a quantum algorithm to learn arbitrary sparse Hamiltonians without any structure constraints using only black-box queries of the system's real-time evolution and minimal digital controls to attain Heisenberg-limited scaling in estimation error. Our method is also resilient to state-preparation-and-measurement errors, enhancing its practical feasibility. We numerically demonstrate our ansatz-free protocol for learning physical Hamiltonians and validating analog quantum simulations, benchmarking our performance against the state-of-the-art Heisenberg-limited learning approach. Moreover, we establish a fundamental trade-off between total evolution time and quantum control on learning arbitrary interactions, revealing the intrinsic interplay between controllability and total evolution time complexity for any learning algorithm. These results pave the way for further exploration into Heisenberg-limited Hamiltonian learning in complex quantum systems under minimal assumptions, potentially enabling new benchmarking and verification protocols.
comment: Updated version with expanded explanations, added pseudocode, and new numerical demonstrations. 10 pages, 4 figures. HYH and MM contributed equally
♻ ☆ CoCMT: Communication-Efficient Cross-Modal Transformer for Collaborative Perception
Multi-agent collaborative perception enhances each agent perceptual capabilities by sharing sensing information to cooperatively perform robot perception tasks. This approach has proven effective in addressing challenges such as sensor deficiencies, occlusions, and long-range perception. However, existing representative collaborative perception systems transmit intermediate feature maps, such as bird-eye view (BEV) representations, which contain a significant amount of non-critical information, leading to high communication bandwidth requirements. To enhance communication efficiency while preserving perception capability, we introduce CoCMT, an object-query-based collaboration framework that optimizes communication bandwidth by selectively extracting and transmitting essential features. Within CoCMT, we introduce the Efficient Query Transformer (EQFormer) to effectively fuse multi-agent object queries and implement a synergistic deep supervision to enhance the positive reinforcement between stages, leading to improved overall performance. Experiments on OPV2V and V2V4Real datasets show CoCMT outperforms state-of-the-art methods while drastically reducing communication needs. On V2V4Real, our model (Top-50 object queries) requires only 0.416 Mb bandwidth, 83 times less than SOTA methods, while improving AP70 by 1.1 percent. This efficiency breakthrough enables practical collaborative perception deployment in bandwidth-constrained environments without sacrificing detection accuracy.
♻ ☆ Lifelong Learning of Video Diffusion Models From a Single Video Stream
This work demonstrates that training autoregressive video diffusion models from a single video stream$\unicode{x2013}$resembling the experience of embodied agents$\unicode{x2013}$is not only possible, but can also be as effective as standard offline training given the same number of gradient steps. Our work further reveals that this main result can be achieved using experience replay methods that only retain a subset of the preceding video stream. To support training and evaluation in this setting, we introduce four new datasets for streaming lifelong generative video modeling: Lifelong Bouncing Balls, Lifelong 3D Maze, Lifelong Drive, and Lifelong PLAICraft, each consisting of one million consecutive frames from environments of increasing complexity.
comment: Video samples are available here: https://drive.google.com/drive/folders/1CsmWqug-CS7I6NwGDvHsEN9FqN2QzspN
♻ ☆ Neural Networks Generalize on Low Complexity Data
We show that feedforward neural networks with ReLU activation generalize on low complexity data, suitably defined. Given i.i.d.~data generated from a simple programming language, the minimum description length (MDL) feedforward neural network which interpolates the data generalizes with high probability. We define this simple programming language, along with a notion of description length of such networks. We provide several examples on basic computational tasks, such as checking primality of a natural number. For primality testing, our theorem shows the following and more. Suppose that we draw an i.i.d.~sample of $n$ numbers uniformly at random from $1$ to $N$. For each number $x_i$, let $y_i = 1$ if $x_i$ is a prime and $0$ if it is not. Then, the interpolating MDL network accurately answers, with error probability $1- O((\ln N)/n)$, whether a newly drawn number between $1$ and $N$ is a prime or not. Note that the network is not designed to detect primes; minimum description learning discovers a network which does so. Extensions to noisy data are also discussed, suggesting that MDL neural network interpolators can demonstrate tempered overfitting.
comment: 37 pages. V4: sharpened results and typos fixed
♻ ☆ Transformers from Diffusion: A Unified Framework for Neural Message Passing ICLR 2023
Learning representations for structured data with certain geometries (e.g., observed or unobserved) is a fundamental challenge, wherein message passing neural networks (MPNNs) have become a de facto class of model solutions. In this paper, inspired by physical systems, we propose an energy-constrained diffusion model, which integrates the inductive bias of diffusion on manifolds with layer-wise constraints of energy minimization. We identify that the diffusion operators have a one-to-one correspondence with the energy functions implicitly descended by the diffusion process, and the finite-difference iteration for solving the energy-constrained diffusion system induces the propagation layers of various types of MPNNs operating on observed or latent structures. This leads to a unified mathematical framework for common neural architectures whose computational flows can be cast as message passing (or its special case), including MLPs, GNNs, and Transformers. Building on these insights, we devise a new class of neural message passing models, dubbed diffusion-inspired Transformers (DIFFormer), whose global attention layers are derived from the principled energy-constrained diffusion framework. Across diverse datasets ranging from real-world networks to images, texts, and physical particles, we demonstrate that the new model achieves promising performance in scenarios where the data structures are observed (as a graph), partially observed, or entirely unobserved.
comment: Published in Journal of Machine Learning Research (JMLR). Extended from DIFFormer in ICLR 2023
♻ ☆ Junk DNA Hypothesis: Pruning Small Pre-Trained Weights Irreversibly and Monotonically Impairs "Difficult" Downstream Tasks in LLMs ICML 2024
We present Junk DNA Hypothesis by adopting a novel task-centric angle for the pre-trained weights of large language models (LLMs). It has been believed that weights in LLMs contain significant redundancy, leading to the conception that a considerable chunk of the parameters can be removed by pruning without compromising performance. Contrary to this belief, this paper presents a counter-argument: small-magnitude weights of pre-trained model weights encode vital knowledge essential for tackling difficult downstream tasks - manifested as the monotonic relationship between the performance drop of downstream tasks across the difficulty spectrum, as we prune more pre-trained weights by magnitude. Moreover, we reveal that these seemingly inconsequential weights can result in irreparable loss of knowledge and performance degradation in difficult tasks, even when downstream continual training is allowed. Interestingly, our evaluations show that the other popular compression, namely quantization, fails to exhibit similar monotonic effect and does not as convincingly disentangle this task-difficulty information. To study formally, we introduce several quantifiable metrics to gauge the downstream task difficulty: (1) within the same task category, and (2) across different task categories. Our extensive experiments substantiate the Junk DNA Hypothesis across a diverse range of model sizes, tasks, datasets, and even pruning methods. Codes are available at: https://github.com/VITA-Group/Junk_DNA_Hypothesis.git.
comment: Published at ICML 2024
♻ ☆ Geological and Well prior assisted full waveform inversion using conditional diffusion models
Full waveform inversion (FWI) often faces challenges due to inadequate seismic observations, resulting in band-limited and geologically inaccurate inversion results. Incorporating prior information from potential velocity distributions, well-log information, and our geological knowledge and expectations can significantly improve FWI convergence to a realistic model. While diffusion-regularized FWI has shown improved performance compared to conventional FWI by incorporating the velocity distribution prior, it can benefit even more by incorporating well-log information and other geological knowledge priors. To leverage this fact, we propose a geological class and well-information prior-assisted FWI using conditional diffusion models. This method seamlessly integrates multi-modal information into FWI, simultaneously achieving data fitting and universal geologic and geophysics prior matching, which is often not achieved with traditional regularization methods. Specifically, we propose to combine conditional diffusion models with FWI, where we integrate well-log data and geological class conditions into these conditional diffusion models using classifier-free guidance for multi-modal prior matching beyond the original velocity distribution prior. Numerical experiments on the OpenFWI datasets and field marine data demonstrate the effectiveness of our method compared to conventional FWI and the unconditional diffusion-regularized FWI.
♻ ☆ Embedding-Space Diffusion for Zero-Shot Environmental Sound Classification
Zero-shot learning enables models to generalise to unseen classes by leveraging semantic information, bridging the gap between training and testing sets with non-overlapping classes. While much research has focused on zero-shot learning in computer vision, the application of these methods to environmental audio remains underexplored, with poor performance in existing studies. Generative methods, which have demonstrated success in computer vision, are notably absent from zero-shot environmental sound classification studies. To address this gap, this work investigates generative methods for zero-shot learning in environmental audio. Two successful generative models from computer vision are adapted: a cross-aligned and distribution-aligned variational autoencoder (CADA-VAE) and a leveraging invariant side generative adversarial network (LisGAN). Additionally, we introduced a novel diffusion model conditioned on class auxiliary data. Synthetic embeddings generated by the diffusion model are combined with seen class embeddings to train a classifier. Experiments are conducted on five environmental audio datasets, ESC-50, ARCA23K-FSD, FSC22, UrbanSound8k and TAU Urban Acoustics 2019, and one music classification dataset, GTZAN. Results show that the diffusion model outperforms all baseline methods on average across six audio datasets. This work establishes the diffusion model as a promising approach for zero-shot learning and introduces the first benchmark of generative methods for zero-shot environmental sound classification, providing a foundation for future research.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ SFO: Piloting VLM Feedback for Offline RL
While internet-scale image and textual data have enabled strong generalization in Vision-Language Models (VLMs), the absence of internet-scale control data has impeded the development of similar generalization in standard reinforcement learning (RL) agents. Although VLMs are fundamentally limited in their ability to solve control tasks due to their lack of action-conditioned training data, their capacity for image understanding allows them to provide valuable feedback in RL tasks by recognizing successful outcomes. A key challenge in Reinforcement Learning from AI Feedback (RLAIF) is determining how best to integrate VLM-derived signals into the learning process. We explore this question in the context of offline RL and introduce a class of methods called sub-trajectory filtered optimization. We identify three key insights. First, trajectory length plays a crucial role in offline RL, as full-trajectory preference learning exacerbates the stitching problem, necessitating the use of sub-trajectories. Second, even in Markovian environments, a non-Markovian reward signal from a sequence of images is required to assess trajectory improvement, as VLMs do not interpret control actions and must rely on visual cues over time. Third, a simple yet effective approach--filtered and weighted behavior cloning--consistently outperforms more complex reinforcement learning from human feedback-based methods. We propose sub-trajectory filtered behavior cloning, a method that leverages VLM feedback on sub-trajectories while incorporating a retrospective filtering mechanism that removes sub-trajectories preceding failures to improve robustness and prevent turbulence. This study is preliminary; we provide initial evidence through evaluations on a toy control domain. Please enjoy our airport puns.
comment: Code is provided at https://github.com/jacooba/OfflineRLAIF
♻ ☆ GenBFA: An Evolutionary Optimization Approach to Bit-Flip Attacks on LLMs
Large Language Models (LLMs) have revolutionized natural language processing (NLP), excelling in tasks like text generation and summarization. However, their increasing adoption in mission-critical applications raises concerns about hardware-based threats, particularly bit-flip attacks (BFAs). BFAs, enabled by fault injection methods such as Rowhammer, target model parameters in memory, compromising both integrity and performance. Identifying critical parameters for BFAs in the vast parameter space of LLMs poses significant challenges. While prior research suggests transformer-based architectures are inherently more robust to BFAs compared to traditional deep neural networks, we challenge this assumption. For the first time, we demonstrate that as few as three bit-flips can cause catastrophic performance degradation in an LLM with billions of parameters. Current BFA techniques are inadequate for exploiting this vulnerability due to the difficulty of efficiently identifying critical parameters within the immense parameter space. To address this, we propose AttentionBreaker, a novel framework tailored for LLMs that enables efficient traversal of the parameter space to identify critical parameters. Additionally, we introduce GenBFA, an evolutionary optimization strategy designed to refine the search further, isolating the most critical bits for an efficient and effective attack. Empirical results reveal the profound vulnerability of LLMs to AttentionBreaker. For example, merely three bit-flips (4.129 x 10^-9% of total parameters) in the LLaMA3-8B-Instruct 8-bit quantized (W8) model result in a complete performance collapse: accuracy on MMLU tasks drops from 67.3% to 0%, and Wikitext perplexity skyrockets from 12.6 to 4.72 x 10^5. These findings underscore the effectiveness of AttentionBreaker in uncovering and exploiting critical vulnerabilities within LLM architectures.
♻ ☆ CAM-NET: An AI Model for Whole Atmosphere with Thermosphere and Ionosphere Extension
We present Compressible Atmospheric Model-Network (CAM-NET), an AI model designed to predict neutral atmospheric variables from the Earth's surface to the ionosphere with high accuracy and computational efficiency. Accurate modeling of the entire atmosphere is critical for understanding the upward propagation of gravity waves, which influence upper-atmospheric dynamics and coupling across atmospheric layers. CAM-NET leverages the Spherical Fourier Neural Operator (SFNO) to capture global-scale atmospheric dynamics while preserving the Earth's spherical structure. Trained on a decade of datasets from the Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (WACCM-X), CAM-NET demonstrates accuracy comparable to WACCM-X while achieving a speedup of over 1000x in inference time, can provide one year simulation within a few minutes once trained. The model effectively predicts key atmospheric parameters, including zonal and meridional winds, temperature, and time rate of pressure. Inspired by traditional modeling approaches that use external couplers to simulate tracer transport, CAM-NET introduces a modular architecture that explicitly separates tracer prediction from core dynamics. The core backbone of CAM-NET focuses on forecasting primary physical variables (e.g., temperature, wind velocity), while tracer variables are predicted through a lightweight, fine-tuned model. This design allows for efficient adaptation to specific tracer scenarios with minimal computational cost, avoiding the need to retrain the entire model. We have validated this approach on the $O^2$ tracer, demonstrating strong performance and generalization capabilities.
♻ ☆ 2HandedAfforder: Learning Precise Actionable Bimanual Affordances from Human Videos ICCV 2025
When interacting with objects, humans effectively reason about which regions of objects are viable for an intended action, i.e., the affordance regions of the object. They can also account for subtle differences in object regions based on the task to be performed and whether one or two hands need to be used. However, current vision-based affordance prediction methods often reduce the problem to naive object part segmentation. In this work, we propose a framework for extracting affordance data from human activity video datasets. Our extracted 2HANDS dataset contains precise object affordance region segmentations and affordance class-labels as narrations of the activity performed. The data also accounts for bimanual actions, i.e., two hands co-ordinating and interacting with one or more objects. We present a VLM-based affordance prediction model, 2HandedAfforder, trained on the dataset and demonstrate superior performance over baselines in affordance region segmentation for various activities. Finally, we show that our predicted affordance regions are actionable, i.e., can be used by an agent performing a task, through demonstration in robotic manipulation scenarios. Project-website: https://sites.google.com/view/2handedafforder
comment: ICCV 2025
♻ ☆ DGenNO: A Novel Physics-aware Neural Operator for Solving Forward and Inverse PDE Problems based on Deep, Generative Probabilistic Modeling
Solving parametric partial differential equations (PDEs) and associated PDE-based, inverse problems is a central task in engineering and physics, yet existing neural operator methods struggle with high-dimensional, discontinuous inputs and require large amounts of {\em labeled} training data. We propose the Deep Generative Neural Operator (DGenNO), a physics-aware framework that addresses these challenges by leveraging a deep, generative, probabilistic model in combination with a set of lower-dimensional, latent variables that simultaneously encode PDE-inputs and PDE-outputs. This formulation can make use of unlabeled data and significantly improves inverse problem-solving, particularly for discontinuous or discrete-valued input functions. DGenNO enforces physics constraints without labeled data by incorporating as virtual observables, weak-form residuals based on compactly supported radial basis functions (CSRBFs). These relax regularity constraints and eliminate higher-order derivatives from the objective function. We also introduce MultiONet, a novel neural operator architecture, which is a more expressive generalization of the popular DeepONet that significantly enhances the approximating power of the proposed model. These innovations make DGenNO particularly effective for challenging forward and inverse, PDE-based problems, such as those involving multi-phase media. Numerical experiments demonstrate that DGenNO achieves higher accuracy across multiple benchmarks while exhibiting robustness to noise and strong generalization to out-of-distribution cases. Its adaptability, and the ability to handle sparse, noisy data while providing probabilistic estimates, make DGenNO a powerful tool for scientific and engineering applications.
♻ ☆ Fair Algorithms with Probing for Multi-Agent Multi-Armed Bandits
We propose a multi-agent multi-armed bandit (MA-MAB) framework aimed at ensuring fair outcomes across agents while maximizing overall system performance. A key challenge in this setting is decision-making under limited information about arm rewards. To address this, we introduce a novel probing framework that strategically gathers information about selected arms before allocation. In the offline setting, where reward distributions are known, we leverage submodular properties to design a greedy probing algorithm with a provable performance bound. For the more complex online setting, we develop an algorithm that achieves sublinear regret while maintaining fairness. Extensive experiments on synthetic and real-world datasets show that our approach outperforms baseline methods, achieving better fairness and efficiency.
♻ ☆ Distributional Information Embedding: A Framework for Multi-bit Watermarking
This paper introduces a novel problem, distributional information embedding, motivated by the practical demands of multi-bit watermarking for large language models (LLMs). Unlike traditional information embedding, which embeds information into a pre-existing host signal, LLM watermarking actively controls the text generation process--adjusting the token distribution--to embed a detectable signal. We develop an information-theoretic framework to analyze this distributional information embedding problem, characterizing the fundamental trade-offs among three critical performance metrics: text quality, detectability, and information rate. In the asymptotic regime, we demonstrate that the maximum achievable rate with vanishing error corresponds to the entropy of the LLM's output distribution and increases with higher allowable distortion. We also characterize the optimal watermarking scheme to achieve this rate. Extending the analysis to the finite-token case with non-i.i.d. tokens, we identify schemes that maximize detection probability while adhering to constraints on false alarm and distortion.
♻ ☆ Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions
Machine unlearning algorithms aim to efficiently remove data from a model without retraining it from scratch, in order to remove corrupted or outdated data or respect a user's ``right to be forgotten." Certified machine unlearning is a strong theoretical guarantee based on differential privacy that quantifies the extent to which an algorithm erases data from the model weights. In contrast to existing works in certified unlearning for convex or strongly convex loss functions, or nonconvex objectives with limiting assumptions, we propose the first, first-order, black-box (i.e., can be applied to models pretrained with vanilla gradient descent) algorithm for unlearning on general nonconvex loss functions, which unlearns by ``rewinding" to an earlier step during the learning process before performing gradient descent on the loss function of the retained data points. We prove $(\epsilon, \delta)$ certified unlearning and performance guarantees that establish the privacy-utility-complexity tradeoff of our algorithm, and we prove generalization guarantees for functions that satisfy the Polyak-Lojasiewicz inequality. Finally, we demonstrate the superior performance of our algorithm compared to existing methods, within a new experimental framework that more accurately reflects unlearning user data in practice.
♻ ☆ ConceptAttention: Diffusion Transformers Learn Highly Interpretable Features ICML 2025
Do the rich representations of multi-modal diffusion transformers (DiTs) exhibit unique properties that enhance their interpretability? We introduce ConceptAttention, a novel method that leverages the expressive power of DiT attention layers to generate high-quality saliency maps that precisely locate textual concepts within images. Without requiring additional training, ConceptAttention repurposes the parameters of DiT attention layers to produce highly contextualized concept embeddings, contributing the major discovery that performing linear projections in the output space of DiT attention layers yields significantly sharper saliency maps compared to commonly used cross-attention maps. ConceptAttention even achieves state-of-the-art performance on zero-shot image segmentation benchmarks, outperforming 15 other zero-shot interpretability methods on the ImageNet-Segmentation dataset. ConceptAttention works for popular image models and even seamlessly generalizes to video generation. Our work contributes the first evidence that the representations of multi-modal DiTs are highly transferable to vision tasks like segmentation.
comment: Oral Presentation at ICML 2025, Best Paper Award at CVPR Workshop on Visual Concepts
♻ ☆ Squat: Quant Small Language Models on the Edge
A growing trend has emerged in designing high-quality Small Language Models (SLMs) with a few million parameters. This trend is driven by the increasing concerns over cloud costs, privacy, and latency. Considering that full parameter training is feasible for SLMs on mobile devices, Quantization-Aware Training (QAT) is employed to improve efficiency by reducing computational overhead and memory footprint. However, previous QAT works adopt fine-grained quantization methods to compress models with billions of parameters on GPUs, incompatible with current commodity hardware, such as mobile and edge devices, which relies on Single Instruction Multiple Data (SIMD) instructions. Thus, the generalization of these methods to SLMs on mobile devices is limited. In this paper, we propose Squat method, an effective QAT framework with deployable quantization for SLMs on mobile devices. Specifically, we propose entropy-guided and distribution-aligned distillation to mitigate the distortion of attention information from quantization. Besides, we employ sub-8-bit token adaptive quantization, assigning varying bit widths to different tokens based on their importance. Furthermore, we develop a SIMD-based Multi-Kernel Mixed-Precision (MKMP) multiplier to support sub-8-bit mixed-precision MAC on mobile devices. Our extensive experiments verify the substantial improvements of our method compared to other QAT methods across various datasets. Furthermore, we achieve an on-device speedup of up to 2.37x compared with its FP16 counterparts, signaling a great advancement. Code: https://github.com/shawnricecake/squant
comment: Accepeted by ICCAD 2025
♻ ☆ Self-reflective Uncertainties: Do LLMs Know Their Internal Answer Distribution?
To reveal when a large language model (LLM) is uncertain about a response, uncertainty quantification commonly produces percentage numbers along with the output. But is this all we can do? We argue that in the output space of LLMs, the space of strings, exist strings expressive enough to summarize the distribution over output strings the LLM deems possible. We lay a foundation for this new avenue of uncertainty explication and present SelfReflect, a theoretically-motivated metric to assess how faithfully a string summarizes an LLM's internal answer distribution. We show that SelfReflect is able to discriminate even subtle differences of candidate summary strings and that it aligns with human judgement, outperforming alternative metrics such as LLM judges and embedding comparisons. With SelfReflect, we investigate a number of self-summarization methods and find that even state-of-the-art reasoning models struggle to explicate their internal uncertainty. But we find that faithful summarizations can be generated by sampling and summarizing. To support the development of this universal form of LLM uncertainties, we publish our metric at https://github.com/apple/ml-selfreflect
♻ ☆ Vehicle-group-based Crash Risk Prediction and Interpretation on Highways
Previous studies in predicting crash risks primarily associated the number or likelihood of crashes on a road segment with traffic parameters or geometric characteristics, usually neglecting the impact of vehicles' continuous movement and interactions with nearby vehicles. Recent technology advances, such as Connected and Automated Vehicles (CAVs) and Unmanned Aerial Vehicles (UAVs) are able to collect high-resolution trajectory data, which enables trajectory-based risk analysis. This study investigates a new vehicle group (VG) based risk analysis method and explores risk evolution mechanisms considering VG features. An impact-based vehicle grouping method is proposed to cluster vehicles into VGs by evaluating their responses to the erratic behaviors of nearby vehicles. The risk of a VG is aggregated based on the risk between each vehicle pair in the VG, measured by inverse Time-to-Collision (iTTC). A Logistic Regression and a Graph Neural Network (GNN) are then employed to predict VG risks using aggregated and disaggregated VG information. Both methods achieve excellent performance with AUC values exceeding 0.93. For the GNN model, GNNExplainer with feature perturbation is applied to identify critical individual vehicle features and their directional impact on VG risks. Overall, this research contributes a new perspective for identifying, predicting, and interpreting traffic risks.
comment: Accepted and published in IEEE Transactions on Intelligent Transportation Systems, vol. 26, no. 6, pp. 7807-7818, June 2025. DOI: 10.1109/TITS.2025.3556543
♻ ☆ BioPars: A Pretrained Biomedical Large Language Model for Persian Biomedical Text Mining
Large Language Models (LLMs) have recently gained attention in the life sciences due to their capacity to model, extract, and apply complex biological information. Beyond their classical use as chatbots, these systems are increasingly used for complex analysis and problem-solving in specialized fields, including bioinformatics. First, we introduce BIOPARS-BENCH, a dataset from over 10,000 scientific articles, textbooks, and medical websites. BioParsQA was also introduced to evaluate the proposed model, which consists of 5,231 Persian medical questions and answers. This study then introduces BioPars, a simple but accurate measure designed to assess LLMs for three main abilities: acquiring subject-specific knowledge, interpreting and synthesizing such knowledge, and demonstrating proper evidence. Comparing ChatGPT, Llama, and Galactica, our study highlights their ability to remember and retrieve learned knowledge but also reveals shortcomings in addressing higher-level, real-world questions and fine-grained inferences. These findings indicate the need for further fine-tuning to address the capabilities of LLM in bioinformatics tasks. To our knowledge, BioPars is the first application of LLM in Persian medical QA, especially for generating long answers. Evaluation of four selected medical QA datasets shows that BioPars has achieved remarkable results compared to comparative approaches. The model on BioParsQA achieved a ROUGE-L score of 29.99, which is an improvement over GPT-4 1.0. The model achieved a BERTScore of 90.87 with the MMR method. The MoverScore and BLEURT values were also higher in this model than the other three models. In addition, the reported scores for the model are MoverScore=60.43 and BLEURT=50.78. BioPars is an ongoing project and all resources related to its development will be made available via the following GitHub repository: https://github.com/amirap80/BioPars.
♻ ☆ LZ Penalty: An information-theoretic repetition penalty for autoregressive language models
We introduce the LZ penalty, a penalty specialized for reducing degenerate repetitions in autoregressive language models without loss of capability. The penalty is based on the codelengths in the LZ77 universal lossless compression algorithm. Through the lens of the prediction-compression duality, decoding the LZ penalty has the interpretation of sampling from the residual distribution after removing the information that is highly compressible. We demonstrate the LZ penalty enables state-of-the-art open-source reasoning models to operate with greedy (temperature zero) decoding without loss of capability and without instances of degenerate repetition. Both the industry-standard frequency penalty and repetition penalty are ineffective, incurring degenerate repetition rates of up to 4%.
comment: Preprint (draft)
♻ ☆ Why Neural Network Can Discover Symbolic Structures with Gradient-based Training: An Algebraic and Geometric Foundation for Neurosymbolic Reasoning
We develop a theoretical framework that explains how discrete symbolic structures can emerge naturally from continuous neural network training dynamics. By lifting neural parameters to a measure space and modeling training as Wasserstein gradient flow, we show that under geometric constraints, such as group invariance, the parameter measure $\mu_t$ undergoes two concurrent phenomena: (1) a decoupling of the gradient flow into independent optimization trajectories over some potential functions, and (2) a progressive contraction on the degree of freedom. These potentials encode algebraic constraints relevant to the task and act as ring homomorphisms under a commutative semi-ring structure on the measure space. As training progresses, the network transitions from a high-dimensional exploration to compositional representations that comply with algebraic operations and exhibit a lower degree of freedom. We further establish data scaling laws for realizing symbolic tasks, linking representational capacity to the group invariance that facilitates symbolic solutions. This framework charts a principled foundation for understanding and designing neurosymbolic systems that integrate continuous learning with discrete algebraic reasoning.
comment: International Conference on Neuro-symbolic Systems (NeuS), 2025
Quantitative Methods 6
☆ cp_measure: API-first feature extraction for image-based profiling workflows ICML2025
Biological image analysis has traditionally focused on measuring specific visual properties of interest for cells or other entities. A complementary paradigm gaining increasing traction is image-based profiling - quantifying many distinct visual features to form comprehensive profiles which may reveal hidden patterns in cellular states, drug responses, and disease mechanisms. While current tools like CellProfiler can generate these feature sets, they pose significant barriers to automated and reproducible analyses, hindering machine learning workflows. Here we introduce cp_measure, a Python library that extracts CellProfiler's core measurement capabilities into a modular, API-first tool designed for programmatic feature extraction. We demonstrate that cp_measure features retain high fidelity with CellProfiler features while enabling seamless integration with the scientific Python ecosystem. Through applications to 3D astrocyte imaging and spatial transcriptomics, we showcase how cp_measure enables reproducible, automated image-based profiling pipelines that scale effectively for machine learning applications in computational biology.
comment: 10 pages, 4 figures, 4 supplementary figures. CODEML Workshop paper accepted (non-archival), as a part of ICML2025 events
☆ ShapeEmbed: a self-supervised learning framework for 2D contour quantification
The shape of objects is an important source of visual information in a wide range of applications. One of the core challenges of shape quantification is to ensure that the extracted measurements remain invariant to transformations that preserve an object's intrinsic geometry, such as changing its size, orientation, and position in the image. In this work, we introduce ShapeEmbed, a self-supervised representation learning framework designed to encode the contour of objects in 2D images, represented as a Euclidean distance matrix, into a shape descriptor that is invariant to translation, scaling, rotation, reflection, and point indexing. Our approach overcomes the limitations of traditional shape descriptors while improving upon existing state-of-the-art autoencoder-based approaches. We demonstrate that the descriptors learned by our framework outperform their competitors in shape classification tasks on natural and biological images. We envision our approach to be of particular relevance to biological imaging applications.
☆ Iterative Distillation for Reward-Guided Fine-Tuning of Diffusion Models in Biomolecular Design
We address the problem of fine-tuning diffusion models for reward-guided generation in biomolecular design. While diffusion models have proven highly effective in modeling complex, high-dimensional data distributions, real-world applications often demand more than high-fidelity generation, requiring optimization with respect to potentially non-differentiable reward functions such as physics-based simulation or rewards based on scientific knowledge. Although RL methods have been explored to fine-tune diffusion models for such objectives, they often suffer from instability, low sample efficiency, and mode collapse due to their on-policy nature. In this work, we propose an iterative distillation-based fine-tuning framework that enables diffusion models to optimize for arbitrary reward functions. Our method casts the problem as policy distillation: it collects off-policy data during the roll-in phase, simulates reward-based soft-optimal policies during roll-out, and updates the model by minimizing the KL divergence between the simulated soft-optimal policy and the current model policy. Our off-policy formulation, combined with KL divergence minimization, enhances training stability and sample efficiency compared to existing RL-based methods. Empirical results demonstrate the effectiveness and superior reward optimization of our approach across diverse tasks in protein, small molecule, and regulatory DNA design.
☆ Augmenting Molecular Graphs with Geometries via Machine Learning Interatomic Potentials
Accurate molecular property predictions require 3D geometries, which are typically obtained using expensive methods such as density functional theory (DFT). Here, we attempt to obtain molecular geometries by relying solely on machine learning interatomic potential (MLIP) models. To this end, we first curate a large-scale molecular relaxation dataset comprising 3.5 million molecules and 300 million snapshots. Then MLIP foundation models are trained with supervised learning to predict energy and forces given 3D molecular structures. Once trained, we show that the foundation models can be used in different ways to obtain geometries either explicitly or implicitly. First, it can be used to obtain low-energy 3D geometries via geometry optimization, providing relaxed 3D geometries for downstream molecular property predictions. To mitigate potential biases and enhance downstream predictions, we introduce geometry fine-tuning based on the relaxed 3D geometries. Second, the foundation models can be directly fine-tuned for property prediction when ground truth 3D geometries are available. Our results demonstrate that MLIP foundation models trained on relaxation data can provide valuable molecular geometries that benefit property predictions.
♻ ☆ DynaCLR: Contrastive Learning of Cellular Dynamics with Temporal Regularization
We report DynaCLR, a self-supervised method for embedding cell and organelle Dynamics via Contrastive Learning of Representations of time-lapse images. DynaCLR integrates single-cell tracking and time-aware contrastive sampling to learn robust, temporally regularized representations of cell dynamics. DynaCLR embeddings generalize effectively to in-distribution and out-of-distribution datasets, and can be used for several downstream tasks with sparse human annotations. We demonstrate efficient annotations of cell states with a human-in-the-loop using fluorescence and label-free imaging channels. DynaCLR method enables diverse downstream biological analyses: classification of cell division and infection, clustering heterogeneous cell migration patterns, cross-modal distillation of cell states from fluorescence to label-free channel, alignment of asynchronous cellular responses and broken cell tracks, and discovering organelle response due to infection. DynaCLR is a flexible method for comparative analyses of dynamic cellular responses to pharmacological, microbial, and genetic perturbations. We provide PyTorch-based implementations of the model training and inference pipeline (https://github.com/mehta-lab/viscy) and a GUI (https://github.com/czbiohub-sf/napari-iohub) for the visualization and annotation of trajectories of cells in the real space and the embedding space.
comment: 30 pages, 6 figures, 13 appendix figures, 5 videos (ancillary files)
♻ ☆ A computational pipeline for clustering left atrial appendage morphology via elastic shape analysis
Morphological variations in the left atrial appendage (LAA) are associated with different levels of ischemic stroke risk for patients with atrial fibrillation (AF). Studying LAA morphology can elucidate mechanisms behind this association and lead to the development of advanced stroke risk stratification tools. However, current categorical descriptions of LAA morphologies are qualitative and inconsistent across studies, which impedes advancements in our understanding of stroke pathogenesis in AF. To mitigate these issues, we introduce a quantitative pipeline that combines elastic shape analysis with unsupervised learning for the categorization of LAA morphology in AF patients. As part of our pipeline, we compute pairwise elastic distances between LAA meshes from a cohort of 20 AF patients, and leverage these distances to cluster our shape data. We demonstrate that our method clusters LAA morphologies based on distinctive shape features, overcoming the innate inconsistencies of current LAA categorization systems, and paving the way for improved stroke risk metrics using objective LAA shape groups.
Cell Behavior 2
☆ cp_measure: API-first feature extraction for image-based profiling workflows ICML2025
Biological image analysis has traditionally focused on measuring specific visual properties of interest for cells or other entities. A complementary paradigm gaining increasing traction is image-based profiling - quantifying many distinct visual features to form comprehensive profiles which may reveal hidden patterns in cellular states, drug responses, and disease mechanisms. While current tools like CellProfiler can generate these feature sets, they pose significant barriers to automated and reproducible analyses, hindering machine learning workflows. Here we introduce cp_measure, a Python library that extracts CellProfiler's core measurement capabilities into a modular, API-first tool designed for programmatic feature extraction. We demonstrate that cp_measure features retain high fidelity with CellProfiler features while enabling seamless integration with the scientific Python ecosystem. Through applications to 3D astrocyte imaging and spatial transcriptomics, we showcase how cp_measure enables reproducible, automated image-based profiling pipelines that scale effectively for machine learning applications in computational biology.
comment: 10 pages, 4 figures, 4 supplementary figures. CODEML Workshop paper accepted (non-archival), as a part of ICML2025 events
☆ Orthotropic Viscoelastic Creep in Cellular Scaffolds
Recent measurements of Norway spruce have revealed stress-state-dependent normalized creep behavior, highlighting a gap in our fundamental understanding. This study examines whether the anisotropic response originates from the micro-structural, cellular nature of composite cell walls with varying tracheid types. Cell wall creep parameters are identified via surrogate-based inverse parameter identification, applied to hierarchical micro-mechanical and FEM models of increasing topological complexity up to the growth ring scale. Despite microstructural disorder, simulated creep curves converge toward a universal set of proportionality factors. The results indicate that directional creep behavior cannot be attributed solely to tissue-scale topology, and that realistic predictions require the inclusion of non-linear material responses at stress concentration sites.
Computation and Language 80
☆ SPIRAL: Self-Play on Zero-Sum Games Incentivizes Reasoning via Multi-Agent Multi-Turn Reinforcement Learning
Recent advances in reinforcement learning have shown that language models can develop sophisticated reasoning through training on tasks with verifiable rewards, but these approaches depend on human-curated problem-answer pairs and domain-specific reward engineering. We introduce SPIRAL, a self-play framework where models learn by playing multi-turn, zero-sum games against continuously improving versions of themselves, eliminating the need for human supervision. Through self-play, SPIRAL generates an infinite curriculum of progressively challenging problems as models must constantly adapt to stronger opponents. To enable this self-play training at scale, We implement a fully online, multi-turn, multi-agent reinforcement learning system for LLMs and propose role-conditioned advantage estimation (RAE) to stabilize multi-agent training. Using SPIRAL, self-play on zero-sum games produces reasoning capabilities that transfer broadly. Training Qwen3-4B-Base on Kuhn Poker alone achieves 8.6% improvement on math and 8.4% on general reasoning, outperforming SFT on 25,000 expert game trajectories. Analysis reveals that this transfer occurs through three cognitive patterns: systematic decomposition, expected value calculation, and case-by-case analysis. Multi-game training (TicTacToe, Kuhn Poker, Simple Negotiation) further enhances performance as each game develops distinct reasoning strengths. Applying SPIRAL to a strong reasoning model (DeepSeek-R1-Distill-Qwen-7B) can still lead to 2.0% average improvement. These results demonstrate that zero-sum games naturally develop transferable reasoning capabilities, highlighting a promising direction for autonomous reasoning development.
comment: Work in Progress
☆ Computational Detection of Intertextual Parallels in Biblical Hebrew: A Benchmark Study Using Transformer-Based Language Models
Identifying parallel passages in biblical Hebrew is foundational in biblical scholarship for uncovering intertextual relationships. Traditional methods rely on manual comparison, which is labor-intensive and prone to human error. This study evaluates the potential of pre-trained transformer-based language models, including E5, AlephBERT, MPNet, and LaBSE, for detecting textual parallels in the Hebrew Bible. Focusing on known parallels between the books of Samuel/Kings and Chronicles, I assessed each model's capability to generate word embeddings that delineate parallel from non-parallel passages. Utilizing cosine similarity and Wasserstein Distance measures, I found that E5 and AlephBERT show significant promise, with E5 excelling in parallel detection and AlephBERT demonstrating stronger non-parallel differentiation. These findings indicate that pre-trained models can enhance the efficiency and accuracy of detecting intertextual parallels in ancient texts, suggesting broader applications for ancient language studies.
☆ On the Predictive Power of Representation Dispersion in Language Models
We show that a language model's ability to predict text is tightly linked to the breadth of its embedding space: models that spread their contextual representations more widely tend to achieve lower perplexity. Concretely, we find that representation dispersion - the average pairwise cosine distance among hidden vectors - strongly and negatively correlates with perplexity across diverse model families (LLaMA, Qwen, and others) and domains (Wikipedia, news, scientific abstracts). Beyond illustrating this link, we show how dispersion can be leveraged for a range of practical tasks without requiring labeled data. First, measuring dispersion on unlabeled text allows us to predict downstream accuracy in new domains, offering a data-efficient tool for model selection. Next, we find that identifying layers with higher dispersion pinpoints the best representations for retrieval-based methods such as kNN-LM, bypassing exhaustive layer-by-layer searches. Finally, we integrate a simple push-away objective into training, which increases dispersion in both single-domain and cross-domain scenarios and directly improves perplexity in each.
☆ MotionGPT3: Human Motion as a Second Modality
Though recent advances in multimodal models have demonstrated strong capabilities and opportunities in unified understanding and generation, the development of unified motion-language models remains underexplored. To enable such models with high-fidelity human motion, two core challenges must be addressed. The first is the reconstruction gap between the continuous motion modality and discrete representation in an autoregressive manner, and the second is the degradation of language intelligence during unified training. Inspired by the mixture of experts, we propose MotionGPT3, a bimodal motion-language model that treats human motion as a second modality, decoupling motion modeling via separate model parameters and enabling both effective cross-modal interaction and efficient multimodal scaling training. To preserve language intelligence, the text branch retains the original structure and parameters of the pretrained language model, while a new motion branch is integrated via a shared attention mechanism, enabling bidirectional information flow between two modalities. We first employ a motion Variational Autoencoder (VAE) to encode raw human motion into latent representations. Based on this continuous latent space, the motion branch predicts motion latents directly from intermediate hidden states using a diffusion head, bypassing discrete tokenization. Extensive experiments show that our approach achieves competitive performance on both motion understanding and generation tasks while preserving strong language capabilities, establishing a unified bimodal motion diffusion framework within an autoregressive manner.
comment: 21 pages, 8 figures
☆ STACK: Adversarial Attacks on LLM Safeguard Pipelines
Frontier AI developers are relying on layers of safeguards to protect against catastrophic misuse of AI systems. Anthropic guards their latest Claude 4 Opus model using one such defense pipeline, and other frontier developers including Google DeepMind and OpenAI pledge to soon deploy similar defenses. However, the security of such pipelines is unclear, with limited prior work evaluating or attacking these pipelines. We address this gap by developing and red-teaming an open-source defense pipeline. First, we find that a novel few-shot-prompted input and output classifier outperforms state-of-the-art open-weight safeguard model ShieldGemma across three attacks and two datasets, reducing the attack success rate (ASR) to 0% on the catastrophic misuse dataset ClearHarm. Second, we introduce a STaged AttaCK (STACK) procedure that achieves 71% ASR on ClearHarm in a black-box attack against the few-shot-prompted classifier pipeline. Finally, we also evaluate STACK in a transfer setting, achieving 33% ASR, providing initial evidence that it is feasible to design attacks with no access to the target pipeline. We conclude by suggesting specific mitigations that developers could use to thwart staged attacks.
☆ Logit-Gap Steering: Efficient Short-Suffix Jailbreaks for Aligned Large Language Models
We introduce logit-gap steering, a fast jailbreak framework that casts the refusal-affirmation gap of RLHF-aligned language models as a single pass over the vocabulary. A forward-computable score blends gap reduction with lightweight proxies for KL penalty and reward shift, allowing a "sort-sum-stop" sweep to complete in under a second and return a short suffix--two orders of magnitude fewer model calls than beam or gradient attacks. The same suffix generalises to unseen prompts and scales from 0.5 B to 70 B checkpoints, lifting one-shot attack success from baseline levels to 80-100% while preserving topical coherence. Beyond efficiency, these suffixes expose sentence-boundary reward cliffs and other alignment artefacts, offering a lightweight probe into how safety tuning reshapes internal representations.
☆ Ella: Embodied Social Agents with Lifelong Memory
We introduce Ella, an embodied social agent capable of lifelong learning within a community in a 3D open world, where agents accumulate experiences and acquire knowledge through everyday visual observations and social interactions. At the core of Ella's capabilities is a structured, long-term multimodal memory system that stores, updates, and retrieves information effectively. It consists of a name-centric semantic memory for organizing acquired knowledge and a spatiotemporal episodic memory for capturing multimodal experiences. By integrating this lifelong memory system with foundation models, Ella retrieves relevant information for decision-making, plans daily activities, builds social relationships, and evolves autonomously while coexisting with other intelligent beings in the open world. We conduct capability-oriented evaluations in a dynamic 3D open world where 15 agents engage in social activities for days and are assessed with a suite of unseen controlled evaluations. Experimental results show that Ella can influence, lead, and cooperate with other agents well to achieve goals, showcasing its ability to learn effectively through observation and social interaction. Our findings highlight the transformative potential of combining structured memory systems with foundation models for advancing embodied intelligence. More videos can be found at https://umass-embodied-agi.github.io/Ella/.
☆ EXPERT: An Explainable Image Captioning Evaluation Metric with Structured Explanations ACL 2025
Recent advances in large language models and vision-language models have led to growing interest in explainable evaluation metrics for image captioning. However, these metrics generate explanations without standardized criteria, and the overall quality of the generated explanations remains unverified. In this paper, we propose EXPERT, a reference-free evaluation metric that provides structured explanations based on three fundamental criteria: fluency, relevance, and descriptiveness. By constructing large-scale datasets of high-quality structured explanations, we develop a two-stage evaluation template to effectively supervise a vision-language model for both scoring and explanation generation. EXPERT achieves state-of-the-art results on benchmark datasets while providing significantly higher-quality explanations than existing metrics, as validated through comprehensive human evaluation. Our code and datasets are available at https://github.com/hjkim811/EXPERT.
comment: Accepted at ACL 2025 Findings
Large Language Models Don't Make Sense of Word Problems. A Scoping Review from a Mathematics Education Perspective
The progress of Large Language Models (LLMs) like ChatGPT raises the question of how they can be integrated into education. One hope is that they can support mathematics learning, including word-problem solving. Since LLMs can handle textual input with ease, they appear well-suited for solving mathematical word problems. Yet their real competence, whether they can make sense of the real-world context, and the implications for classrooms remain unclear. We conducted a scoping review from a mathematics-education perspective, including three parts: a technical overview, a systematic review of word problems used in research, and a state-of-the-art empirical evaluation of LLMs on mathematical word problems. First, in the technical overview, we contrast the conceptualization of word problems and their solution processes between LLMs and students. In computer-science research this is typically labeled mathematical reasoning, a term that does not align with usage in mathematics education. Second, our literature review of 213 studies shows that the most popular word-problem corpora are dominated by s-problems, which do not require a consideration of realities of their real-world context. Finally, our evaluation of GPT-3.5-turbo, GPT-4o-mini, GPT-4.1, and o3 on 287 word problems shows that most recent LLMs solve these s-problems with near-perfect accuracy, including a perfect score on 20 problems from PISA. LLMs still showed weaknesses in tackling problems where the real-world context is problematic or non-sensical. In sum, we argue based on all three aspects that LLMs have mastered a superficial solution process but do not make sense of word problems, which potentially limits their value as instructional tools in mathematics classrooms.
☆ Auto-TA: Towards Scalable Automated Thematic Analysis (TA) via Multi-Agent Large Language Models with Reinforcement Learning ACL 2025
Congenital heart disease (CHD) presents complex, lifelong challenges often underrepresented in traditional clinical metrics. While unstructured narratives offer rich insights into patient and caregiver experiences, manual thematic analysis (TA) remains labor-intensive and unscalable. We propose a fully automated large language model (LLM) pipeline that performs end-to-end TA on clinical narratives, which eliminates the need for manual coding or full transcript review. Our system employs a novel multi-agent framework, where specialized LLM agents assume roles to enhance theme quality and alignment with human analysis. To further improve thematic relevance, we optionally integrate reinforcement learning from human feedback (RLHF). This supports scalable, patient-centered analysis of large qualitative datasets and allows LLMs to be fine-tuned for specific clinical contexts.
comment: Presented at ACL 2025 SRW
☆ Machine Understanding of Scientific Language
Scientific information expresses human understanding of nature. This knowledge is largely disseminated in different forms of text, including scientific papers, news articles, and discourse among people on social media. While important for accelerating our pursuit of knowledge, not all scientific text is faithful to the underlying science. As the volume of this text has burgeoned online in recent years, it has become a problem of societal importance to be able to identify the faithfulness of a given piece of scientific text automatically. This thesis is concerned with the cultivation of datasets, methods, and tools for machine understanding of scientific language, in order to analyze and understand science communication at scale. To arrive at this, I present several contributions in three areas of natural language processing and machine learning: automatic fact checking, learning with limited data, and scientific text processing. These contributions include new methods and resources for identifying check-worthy claims, adversarial claim generation, multi-source domain adaptation, learning from crowd-sourced labels, cite-worthiness detection, zero-shot scientific fact checking, detecting exaggerated scientific claims, and modeling degrees of information change in science communication. Critically, I demonstrate how the research outputs of this thesis are useful for effectively learning from limited amounts of scientific text in order to identify misinformative scientific statements and generate new insights into the science communication process
comment: PhD Thesis, 210 pages
☆ TaP: A Taxonomy-Guided Framework for Automated and Scalable Preference Data Generation
Conducting supervised fine-tuning and preference fine-tuning on large language models (LLMs) requires high-quality datasets to improve their ability to follow instructions and align with human preferences and values. However, constructing such datasets is resource-intensive, and most available datasets for supervised and preference fine-tuning are in English. To address these challenges, we propose the \underline{\textbf{Ta}}xonomy-Guided \underline{\textbf{P}}reference Data Generation (TaP) framework, which facilitates automated and scalable construction of preference datasets across various languages. TaP is grounded in a structured taxonomy that allows fine-grained control over dataset composition, thereby ensuring both diversity and comprehensive coverage. We employ TaP-generated datasets to perform supervised and preference fine-tuning on various LLMs. Experimental results demonstrate that LLMs trained on TaP-generated datasets outperform those trained on existing open-source datasets. Remarkably, LLMs trained on TaP-generated datasets surpass the performance of those trained on an open-source dataset that is 180 times larger.
comment: 33 pages, 15 tables, 11 figures
LLM Agents Are the Antidote to Walled Gardens
While the Internet's core infrastructure was designed to be open and universal, today's application layer is dominated by closed, proprietary platforms. Open and interoperable APIs require significant investment, and market leaders have little incentive to enable data exchange that could erode their user lock-in. We argue that LLM-based agents fundamentally disrupt this status quo. Agents can automatically translate between data formats and interact with interfaces designed for humans: this makes interoperability dramatically cheaper and effectively unavoidable. We name this shift universal interoperability: the ability for any two digital services to exchange data seamlessly using AI-mediated adapters. Universal interoperability undermines monopolistic behaviours and promotes data portability. However, it can also lead to new security risks and technical debt. Our position is that the ML community should embrace this development while building the appropriate frameworks to mitigate the downsides. By acting now, we can harness AI to restore user freedom and competitive markets without sacrificing security.
☆ Unveiling Decision-Making in LLMs for Text Classification : Extraction of influential and interpretable concepts with Sparse Autoencoders
Sparse Autoencoders (SAEs) have been successfully used to probe Large Language Models (LLMs) and extract interpretable concepts from their internal representations. These concepts are linear combinations of neuron activations that correspond to human-interpretable features. In this paper, we investigate the effectiveness of SAE-based explainability approaches for sentence classification, a domain where such methods have not been extensively explored. We present a novel SAE-based architecture tailored for text classification, leveraging a specialized classifier head and incorporating an activation rate sparsity loss. We benchmark this architecture against established methods such as ConceptShap, Independent Component Analysis, and other SAE-based concept extraction techniques. Our evaluation covers two classification benchmarks and four fine-tuned LLMs from the Pythia family. We further enrich our analysis with two novel metrics for measuring the precision of concept-based explanations, using an external sentence encoder. Our empirical results show that our architecture improves both the causality and interpretability of the extracted features.
☆ Graft: Integrating the Domain Knowledge via Efficient Parameter Synergy for MLLMs
Multimodal Large Language Models (MLLMs) have achieved success across various domains. However, their applicability tends to degrade when confronted with different types of data inputs, especially for MLLMs that have been fine-tuned for specific tasks. Despite its importance, the study of knowledge sharing among domain-specific MLLMs--such as those trained for mathematics or code--remains largely underexplored. To address the fragmentation of knowledge across domain-specialized MLLMs, we propose a unified parameter integration framework that enables modular composition of expert capabilities. Our method is grounded in a novel Compatibility-Aware Parameter Splicing (CAPS) strategy, which leverages both local functional attribution and global information-theoretic signals to guide selective parameter fusion. By extending this mechanism to the low-rank adaptation layer granularity, we ensure efficient integration with minimal inference overhead. Furthermore, we introduce a domain compatibility scoring mechanism that quantifies inter-expert alignment at the activation level and correlates with downstream task utility. This principled fusion protocol allows the final model to synergize heterogeneous expertise while preserving structural modularity. Extensive evaluations across diverse multimodal benchmarks validate the effectiveness of our framework, offering a scalable path toward compositional, domain-adaptive MLLMs.
☆ Leveraging the Potential of Prompt Engineering for Hate Speech Detection in Low-Resource Languages
The rapid expansion of social media leads to a marked increase in hate speech, which threatens personal lives and results in numerous hate crimes. Detecting hate speech presents several challenges: diverse dialects, frequent code-mixing, and the prevalence of misspelled words in user-generated content on social media platforms. Recent progress in hate speech detection is typically concentrated on high-resource languages. However, low-resource languages still face significant challenges due to the lack of large-scale, high-quality datasets. This paper investigates how we can overcome this limitation via prompt engineering on large language models (LLMs) focusing on low-resource Bengali language. We investigate six prompting strategies - zero-shot prompting, refusal suppression, flattering the classifier, multi-shot prompting, role prompting, and finally our innovative metaphor prompting to detect hate speech effectively in low-resource languages. We pioneer the metaphor prompting to circumvent the built-in safety mechanisms of LLMs that marks a significant departure from existing jailbreaking methods. We investigate all six different prompting strategies on the Llama2-7B model and compare the results extensively with three pre-trained word embeddings - GloVe, Word2Vec, and FastText for three different deep learning models - multilayer perceptron (MLP), convolutional neural network (CNN), and bidirectional gated recurrent unit (BiGRU). To prove the effectiveness of our metaphor prompting in the low-resource Bengali language, we also evaluate it in another low-resource language - Hindi, and two high-resource languages - English and German. The performance of all prompting techniques is evaluated using the F1 score, and environmental impact factor (IF), which measures CO$_2$ emissions, electricity usage, and computational time.
☆ IMPACT: Inflectional Morphology Probes Across Complex Typologies
Large Language Models (LLMs) have shown significant progress on various multilingual benchmarks and are increasingly used to generate and evaluate text in non-English languages. However, while they may produce fluent outputs, it remains unclear to what extent these models truly grasp the underlying linguistic complexity of those languages, particularly in morphology. To investigate this, we introduce IMPACT, a synthetically generated evaluation framework focused on inflectional morphology, which we publicly release, designed to evaluate LLM performance across five morphologically rich languages: Arabic, Russian, Finnish, Turkish, and Hebrew. IMPACT includes unit-test-style cases covering both shared and language-specific phenomena, from basic verb inflections (e.g., tense, number, gender) to unique features like Arabic's reverse gender agreement and vowel harmony in Finnish and Turkish. We assess eight multilingual LLMs that, despite strong English performance, struggle with other languages and uncommon morphological patterns, especially when judging ungrammatical examples. We also show that Chain of Thought and Thinking Models can degrade performance. Our work exposes gaps in LLMs' handling of linguistic complexity, pointing to clear room for improvement. To support further research, we publicly release the IMPACT framework.
☆ The Trilemma of Truth in Large Language Models
We often attribute human characteristics to large language models (LLMs) and claim that they "know" certain things. LLMs have an internal probabilistic knowledge that represents information retained during training. How can we assess the veracity of this knowledge? We examine two common methods for probing the veracity of LLMs and discover several assumptions that are flawed. To address these flawed assumptions, we introduce sAwMIL (short for Sparse Aware Multiple-Instance Learning), a probing method that utilizes the internal activations of LLMs to separate statements into true, false, and neither. sAwMIL is based on multiple-instance learning and conformal prediction. We evaluate sAwMIL on 5 validity criteria across 16 open-source LLMs, including both default and chat-based variants, as well as on 3 new datasets. Among the insights we provide are: (1) the veracity signal is often concentrated in the third quarter of an LLM's depth; (2) truth and falsehood signals are not always symmetric; (3) linear probes perform better on chat models than on default models; (4) nonlinear probes may be required to capture veracity signals for some LLMs with reinforcement learning from human feedback or knowledge distillation; and (5) LLMs capture a third type of signal that is distinct from true and false and is neither true nor false. These findings provide a reliable method for verifying what LLMs "know" and how certain they are of their probabilistic internal knowledge.
☆ Advancing Multi-Step Mathematical Reasoning in Large Language Models through Multi-Layered Self-Reflection with Auto-Prompting KDD 2025
Recent advancements in Large Language Models (LLMs) have significantly improved their problem-solving capabilities. However, these models still struggle when faced with complex multi-step reasoning tasks. In this paper, we propose the Multi-Layered Self-Reflection with Auto-Prompting (MAPS) framework, a novel approach designed to enhance multi-step mathematical reasoning in LLMs by integrating techniques such as Chain of Thought (CoT), Self-Reflection, and Auto-Prompting. Unlike traditional static prompting methods, MAPS employs an iterative refinement process. Initially, the model generates a solution using CoT prompting. When errors are detected, an adaptive self-reflection mechanism identifies and analyzes them, generating tailored prompts to guide corrections. These dynamically adjusted prompts enable the model to iteratively refine its reasoning. Experiments on four well-established benchmarks across multiple LLMs show that MAPS significantly outperforms standard CoT and achieves competitive results with reasoning-optimized models. In addition, MAPS enables general-purpose LLMs to reach performance levels comparable to specialized reasoning models. While deeper reflection layers improve accuracy, they also increase token usage and costs. To balance this trade-off, MAPS strategically limits reflection depth, ensuring an optimal balance between cost and reasoning performance.
comment: Accepted for publication in: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2025). Research Track
☆ Garbage In, Reasoning Out? Why Benchmark Scores are Unreliable and What to Do About It
We conduct a systematic audit of three widely used reasoning benchmarks, SocialIQa, FauxPas-EAI, and ToMi, and uncover pervasive flaws in both benchmark items and evaluation methodology. Using five LLMs (GPT-{3, 3.5, 4, o1}, and LLaMA 3.1) as diagnostic tools, we identify structural, semantic, and pragmatic issues in benchmark design (e.g., duplicated items, ambiguous wording, and implausible answers), as well as scoring procedures that prioritize output form over reasoning process. Through systematic human annotation and re-evaluation on cleaned benchmark subsets, we find that model scores often improve not due to due to erratic surface wording variations and not to improved reasoning. Infact, further analyses show that model performance is highly sensitive to minor input variations such as context availability and phrasing, revealing that high scores may reflect alignment with format-specific cues rather than consistent inference based on the input. These findings challenge the validity of current benchmark-based claims about reasoning in LLMs, and highlight the need for evaluation protocols that assess reasoning as a process of drawing inference from available information, rather than as static output selection. We release audited data and evaluation tools to support more interpretable and diagnostic assessments of model reasoning.
☆ Use Sparse Autoencoders to Discover Unknown Concepts, Not to Act on Known Concepts
While sparse autoencoders (SAEs) have generated significant excitement, a series of negative results have added to skepticism about their usefulness. Here, we establish a conceptual distinction that reconciles competing narratives surrounding SAEs. We argue that while SAEs may be less effective for acting on known concepts, SAEs are powerful tools for discovering unknown concepts. This distinction cleanly separates existing negative and positive results, and suggests several classes of SAE applications. Specifically, we outline use cases for SAEs in (i) ML interpretability, explainability, fairness, auditing, and safety, and (ii) social and health sciences.
☆ Do Thinking Tokens Help or Trap? Towards More Efficient Large Reasoning Model
Large Reasoning Models (LRMs) excel at solving complex problems but face an overthinking dilemma. When handling simple tasks, they often produce verbose responses overloaded with thinking tokens (e.g., wait, however). These tokens trigger unnecessary high-level reasoning behaviors like reflection and backtracking, reducing efficiency. In this work, our pilot study reveals that these thinking-token-induced behaviors are not essential for effective problem-solving and may even hinder correct reasoning within constrained token budgets. We identify this phenomenon as the thinking trap. To mitigate this issue, we propose Dual Policy Preference Optimization (DuP-PO), a novel algorithm featuring: (1) A rollout sampling strategy that guarantees balanced exposure to responses with and without thinking tokens; (2) A fine-grained advantage control technique to dynamically regulate the prediction of target tokens; (3) A policy shaping method ensuring stable gradient contributions from thinking tokens. Experimental results on five popular math reasoning benchmarks show that DuP-PO performs well on the popular LRM, which significantly improves their token efficiency during reasoning, while achieving superior performance of the base model.
comment: 13 pages, 5 figures
☆ Positional Bias in Binary Question Answering: How Uncertainty Shapes Model Preferences
Positional bias in binary question answering occurs when a model systematically favors one choice over another based solely on the ordering of presented options. In this study, we quantify and analyze positional bias across five large language models under varying degrees of answer uncertainty. We re-adapted the SQuAD-it dataset by adding an extra incorrect answer option and then created multiple versions with progressively less context and more out-of-context answers, yielding datasets that range from low to high uncertainty. Additionally, we evaluate two naturally higher-uncertainty benchmarks: (1) WebGPT - question pairs with unequal human-assigned quality scores, and (2) Winning Arguments - where models predict the more persuasive argument in Reddit's r/ChangeMyView exchanges. Across each dataset, the order of the "correct" (or higher-quality/persuasive) option is systematically flipped (first placed in position 1, then in position 2) to compute both Preference Fairness and Position Consistency. We observe that positional bias is nearly absent under low-uncertainty conditions, but grows exponentially when it becomes doubtful to decide which option is correct.
☆ AutoEvoEval: An Automated Framework for Evolving Close-Ended LLM Evaluation Data
Large language models (LLMs) have shown remarkable performance on various tasks, but existing evaluation benchmarks are often static and insufficient to fully assess their robustness and generalization in realistic scenarios. Prior work using evolutionary or adversarial data augmentation has improved evaluation diversity but lacks systematic control over perturbation types and multi-step complexity, limiting comprehensive robustness analysis. To address these gaps, we propose AutoEvoEval, an evolution-based evaluation framework for close-ended tasks such as multi-choice question answering. AutoEvoEval introduces 22 interpretable atomic evolution operations and supports multi-round compositions, enabling controlled generation of diverse, challenging, and realistic test samples. We conduct extensive experiments addressing four research questions on a broad set of open- and closed-source LLMs. Our results show that atomic operations cause an average accuracy drop of 7.283\%, with structure-disrupting or misleading semantic edits causing the largest declines. Model sensitivities vary significantly for the same perturbation, and combining multiple evolution steps amplifies adversarial effects by up to 52.932\%. These findings suggest current benchmarks may overestimate true model generalization and emphasize the need for evolution-aware robustness evaluation. Code and resources are available at: https://github.com/SYSUSELab/AutoEvoEval.
☆ Towards an Automated Multimodal Approach for Video Summarization: Building a Bridge Between Text, Audio and Facial Cue-Based Summarization
The increasing volume of video content in educational, professional, and social domains necessitates effective summarization techniques that go beyond traditional unimodal approaches. This paper proposes a behaviour-aware multimodal video summarization framework that integrates textual, audio, and visual cues to generate timestamp-aligned summaries. By extracting prosodic features, textual cues and visual indicators, the framework identifies semantically and emotionally important moments. A key contribution is the identification of bonus words, which are terms emphasized across multiple modalities and used to improve the semantic relevance and expressive clarity of the summaries. The approach is evaluated against pseudo-ground truth (pGT) summaries generated using LLM-based extractive method. Experimental results demonstrate significant improvements over traditional extractive method, such as the Edmundson method, in both text and video-based evaluation metrics. Text-based metrics show ROUGE-1 increasing from 0.4769 to 0.7929 and BERTScore from 0.9152 to 0.9536, while in video-based evaluation, our proposed framework improves F1-Score by almost 23%. The findings underscore the potential of multimodal integration in producing comprehensive and behaviourally informed video summaries.
comment: Accepted to HHAI WS 2025: Workshops at the Fourth International Conference on Hybrid Human-Artificial Intelligence (HHAI)
☆ Attestable Audits: Verifiable AI Safety Benchmarks Using Trusted Execution Environments ICML 2024
Benchmarks are important measures to evaluate safety and compliance of AI models at scale. However, they typically do not offer verifiable results and lack confidentiality for model IP and benchmark datasets. We propose Attestable Audits, which run inside Trusted Execution Environments and enable users to verify interaction with a compliant AI model. Our work protects sensitive data even when model provider and auditor do not trust each other. This addresses verification challenges raised in recent AI governance frameworks. We build a prototype demonstrating feasibility on typical audit benchmarks against Llama-3.1.
comment: ICML 2024 Workshop TAIG
☆ Efficient Interleaved Speech Modeling through Knowledge Distillation
Current speech language models exceed the size and latency constraints of many deployment environments. We build compact, expressive speech generation models through layer-aligned distillation, matching hidden states, attention maps, and softened logits to compress large multimodal transformers by 3x with minimal loss in performance. We introduce TinyWave, a family of 2B-parameter models for speech-to-speech and interleaved speech-text generation, trained on 50,000 hours of public audio. TinyWave supports (i) speech-only generation using phonetic or expressive tokens and (ii) mixed speech-text continuations. Evaluation on Libri-Light shows TinyWave within 1.4 normalized perplexity points of its teacher. Accuracy on spoken StoryCloze and SALMon reaches 93-97% of the teacher's performance, outperforming size-matched baselines. These models are optimized for deployment on commodity hardware, enabling applications in real-time conversational agents, assistive technologies, and low-resource environments. We release models, training code, and evaluation scripts to support reproducible research on compact, expressive speech generation.
☆ L0: Reinforcement Learning to Become General Agents
Training large language models (LLMs) to act as autonomous agents for multi-turn, long-horizon tasks remains significant challenges in scalability and training efficiency. To address this, we introduce L-Zero (L0), a scalable, end-to-end training pipeline for general-purpose agents. Featuring a low-cost, extensible, and sandboxed concurrent agent worker pool, L0 lowers the barrier for applying reinforcement learning in complex environments. We also introduce NB-Agent, the agent scaffold within L0, which operates in a "code-as-action" fashion via a Read-Eval-Print-Loop (REPL). We evaluate L0 on factuality question-answering benchmarks. Our experiments demonstrate that a base model can develop robust problem-solving skills using solely Reinforcement Learning with Verifiable Rewards (RLVR). On the Qwen2.5-7B-Instruct model, our method boosts accuracy on SimpleQA from 30 % to 80 % and on HotpotQA from 22 % to 41 %. We have open-sourced the entire L0 system, including our L0 series models, the NB-Agent, a complete training pipeline, and the corresponding training recipes on (https://github.com/cmriat/l0).
☆ Zero-Shot Contextual Embeddings via Offline Synthetic Corpus Generation
Context-aware embedding methods boost retrieval accuracy by conditioning on corpus statistics (e.g., term co-occurrence and topical patterns) extracted from neighboring documents. However, this context-aware approach requires access to the target corpus or requires domain-specific finetuning, posing practical barriers in privacy-sensitive or resource-constrained settings. We present ZEST, a zero-shot contextual adaptation framework that replaces real corpus access with a one-time offline synthesis of a compact proxy. Given only a handful exemplar documents representative of the general target domain, we use a multi-step hierarchical procedure to generate a synthetic context corpus of several hundred documents that aims to emulate key domain-specific distributions. At inference, the frozen context-aware encoder uses this proxy corpus -- without any finetuning or target corpus access -- to produce domain-adapted embeddings. Across the MTEB benchmark, ZEST's zero-shot synthetic context adaptation using only five example documents performs within 0.5% of models leveraging full target corpus access -- demonstrating remarkable efficacy without any retraining. ZEST thus provides a practical method for deploying high-performance, adaptable embeddings in constrained environments.
☆ Robustness of Misinformation Classification Systems to Adversarial Examples Through BeamAttack
We extend BeamAttack, an adversarial attack algorithm designed to evaluate the robustness of text classification systems through word-level modifications guided by beam search. Our extensions include support for word deletions and the option to skip substitutions, enabling the discovery of minimal modifications that alter model predictions. We also integrate LIME to better prioritize word replacements. Evaluated across multiple datasets and victim models (BiLSTM, BERT, and adversarially trained RoBERTa) within the BODEGA framework, our approach achieves over a 99\% attack success rate while preserving the semantic and lexical similarity of the original texts. Through both quantitative and qualitative analysis, we highlight BeamAttack's effectiveness and its limitations. Our implementation is available at https://github.com/LucK1Y/BeamAttack
comment: 12 pages main text, 27 pages total including references and appendices. 13 figures, 10 tables. Accepted for publication in the LNCS proceedings of CLEF 2025 (Best-of-Labs track)
☆ Evaluating the Simulation of Human Personality-Driven Susceptibility to Misinformation with LLMs
Large language models (LLMs) make it possible to generate synthetic behavioural data at scale, offering an ethical and low-cost alternative to human experiments. Whether such data can faithfully capture psychological differences driven by personality traits, however, remains an open question. We evaluate the capacity of LLM agents, conditioned on Big-Five profiles, to reproduce personality-based variation in susceptibility to misinformation, focusing on news discernment, the ability to judge true headlines as true and false headlines as false. Leveraging published datasets in which human participants with known personality profiles rated headline accuracy, we create matching LLM agents and compare their responses to the original human patterns. Certain trait-misinformation associations, notably those involving Agreeableness and Conscientiousness, are reliably replicated, whereas others diverge, revealing systematic biases in how LLMs internalize and express personality. The results underscore both the promise and the limits of personality-aligned LLMs for behavioral simulation, and offer new insight into modeling cognitive diversity in artificial agents.
comment: pre-print version - paper actually under submission
☆ Semantic-guided Diverse Decoding for Large Language Model
Diverse decoding of large language models is crucial for applications requiring multiple semantically distinct responses, yet existing methods primarily achieve lexical rather than semantic diversity. This limitation significantly constrains Best-of-N strategies, group-based reinforcement learning, and data synthesis. While temperature sampling and diverse beam search modify token distributions or apply n-gram penalties, they fail to ensure meaningful semantic differentiation. We introduce Semantic-guided Diverse Decoding (SemDiD), operating directly in embedding space that balances quality with diversity through three complementary mechanisms: orthogonal directional guidance, dynamic inter-group repulsion, and position-debiased probability assessment. SemDiD harmonizes these competing objectives using adaptive gain functions and constraint optimization, ensuring both quality thresholds and maximal semantic differentiation. Experiments show SemDiD consistently outperforms existing methods, improving Best-of-N coverage by 1.4-5.2% across diverse tasks and accelerating RLHF training convergence by 15% while increasing accuracy by up to 2.1%.
☆ Reachability in symmetric VASS
We investigate the reachability problem in symmetric vector addition systems with states (VASS), where transitions are invariant under a group of permutations of coordinates. One extremal case, the trivial groups, yields general VASS. In another extremal case, the symmetric groups, we show that the reachability problem can be solved in PSPACE, regardless of the dimension of input VASS (to be contrasted with Ackermannian complexity in general VASS). We also consider other groups, in particular alternating and cyclic ones. Furthermore, motivated by the open status of the reachability problem in data VASS, we estimate the gain in complexity when the group arises as a combination of the trivial and symmetric groups.
☆ MMReason: An Open-Ended Multi-Modal Multi-Step Reasoning Benchmark for MLLMs Toward AGI
Reasoning plays a crucial role in advancing Multimodal Large Language Models (MLLMs) toward Artificial General Intelligence. However, existing MLLM benchmarks often fall short in precisely and comprehensively evaluating long-chain reasoning abilities from three key aspects: (1) lack of difficulty and diversity, (2) susceptibility to guessability and memorization, (3) inadequate assessment of intermediate reasoning steps. To fill this gap, we introduce MMReason, a new benchmark designed to precisely and comprehensively evaluate MLLM long-chain reasoning capability with diverse, open-ended, challenging questions. First, we curate challenging questions requiring multi-step reasoning from various fields (i.e., 6 disciplines) and multiple difficulty levels (i.e., from pre-university to university, and from foundational to competition tiers). Second, these questions are reformulated into an open-ended format and filtered using a multi-model voting technique to eliminate shortcut cases related to guessing and memorization, ensuring robust reasoning evaluations. Third, we annotate the questions with detailed step-by-step solutions, and design a reference-based ternary scoring mechanism to reliably assess intermediate reasoning steps. With MMReason, we benchmark popular leading MLLMs and provide an in-depth analysis of their reasoning capabilities. We hope MMReason will serve as a valuable resource for advancing MLLM reasoning research. Code will be available at https://github.com/HJYao00/MMReason.
comment: Technical report
☆ On Recipe Memorization and Creativity in Large Language Models: Is Your Model a Creative Cook, a Bad Cook, or Merely a Plagiator?
This work-in-progress investigates the memorization, creativity, and nonsense found in cooking recipes generated from Large Language Models (LLMs). Precisely, we aim (i) to analyze memorization, creativity, and non-sense in LLMs using a small, high-quality set of human judgments and (ii) to evaluate potential approaches to automate such a human annotation in order to scale our study to hundreds of recipes. To achieve (i), we conduct a detailed human annotation on 20 preselected recipes generated by LLM (Mixtral), extracting each recipe's ingredients and step-by-step actions to assess which elements are memorized--i.e., directly traceable to online sources possibly seen during training--and which arise from genuine creative synthesis or outright nonsense. We find that Mixtral consistently reuses ingredients that can be found in online documents, potentially seen during model training, suggesting strong reliance on memorized content. To achieve aim (ii) and scale our analysis beyond small sample sizes and single LLM validation, we design an ``LLM-as-judge'' pipeline that automates recipe generation, nonsense detection, parsing ingredients and recipe steps, and their annotation. For instance, comparing its output against human annotations, the best ingredient extractor and annotator is Llama 3.1+Gemma 2 9B, achieving up to 78% accuracy on ingredient matching. This automated framework enables large-scale quantification of memorization, creativity, and nonsense in generated recipes, providing rigorous evidence of the models' creative capacities.
comment: 13 pages, 5 figures
☆ NEU-ESC: A Comprehensive Vietnamese dataset for Educational Sentiment analysis and topic Classification toward multitask learning
In the field of education, understanding students' opinions through their comments is crucial, especially in the Vietnamese language, where resources remain limited. Existing educational datasets often lack domain relevance and student slang. To address these gaps, we introduce NEU-ESC, a new Vietnamese dataset for Educational Sentiment Classification and Topic Classification, curated from university forums, which offers more samples, richer class diversity, longer texts, and broader vocabulary. In addition, we explore multitask learning using encoder-only language models (BERT), in which we showed that it achieves performance up to 83.7% and 79.8% accuracy for sentiment and topic classification tasks. We also benchmark our dataset and model with other datasets and models, including Large Language Models, and discuss these benchmarks. The dataset is publicly available at: https://huggingface.co/datasets/hung20gg/NEU-ESC.
☆ Assessing GPTZero's Accuracy in Identifying AI vs. Human-Written Essays
As the use of AI tools by students has become more prevalent, instructors have started using AI detection tools like GPTZero and QuillBot to detect AI written text. However, the reliability of these detectors remains uncertain. In our study, we focused mostly on the success rate of GPTZero, the most-used AI detector, in identifying AI-generated texts based on different lengths of randomly submitted essays: short (40-100 word count), medium (100-350 word count), and long (350-800 word count). We gathered a data set consisting of twenty-eight AI-generated papers and fifty human-written papers. With this randomized essay data, papers were individually plugged into GPTZero and measured for percentage of AI generation and confidence. A vast majority of the AI-generated papers were detected accurately (ranging from 91-100% AI believed generation), while the human generated essays fluctuated; there were a handful of false positives. These findings suggest that although GPTZero is effective at detecting purely AI-generated content, its reliability in distinguishing human-authored texts is limited. Educators should therefore exercise caution when relying solely on AI detection tools.
☆ Reinforcement Fine-Tuning Enables MLLMs Learning Novel Tasks Stably
Post-training algorithms such as Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT) are widely used to adapt multimodal large language models to downstream tasks. While effective at task adaptation, their impact on prior knowledge remains unclear. In this paper, we introduce jigsaw puzzles as a novel task absent from existing pretraining corpora and systematically study the behavior of SFT and RFT on an open-source multimodal model, Qwen2.5-VL. Our experiments reveal a sharp trade-off: SFT enables rapid task acquisition but leads to catastrophic forgetting, whereas RFT learns more slowly on novel tasks but maintains prior knowledge. We analyze this phenomenon through the lens of learning dynamics, showing that RFT reinforces correct samples that are naturally aligned with the base model's probability landscape, mitigating interference with prior knowledge. Moreover, supervised training on correct RFT-simulated rollouts allows SFT to preserve knowledge while rapidly learning new tasks. These findings suggest that data distribution, rather than algorithmic differences, plays a central role in forgetting, and highlight RFT's potential for stable continual learning in multimodal large language models.
comment: 18 pages (Preprint. Work in progress)
☆ Thought-Augmented Planning for LLM-Powered Interactive Recommender Agent
Interactive recommendation is a typical information-seeking task that allows users to interactively express their needs through natural language and obtain personalized recommendations. Large language model-powered (LLM-powered) agents have become a new paradigm in interactive recommendations, effectively capturing users' real-time needs and enhancing personalized experiences. However, due to limited planning and generalization capabilities, existing formulations of LLM-powered interactive recommender agents struggle to effectively address diverse and complex user intents, such as intuitive, unrefined, or occasionally ambiguous requests. To tackle this challenge, we propose a novel thought-augmented interactive recommender agent system (TAIRA) that addresses complex user intents through distilled thought patterns. Specifically, TAIRA is designed as an LLM-powered multi-agent system featuring a manager agent that orchestrates recommendation tasks by decomposing user needs and planning subtasks, with its planning capacity strengthened through Thought Pattern Distillation (TPD), a thought-augmentation method that extracts high-level thoughts from the agent's and human experts' experiences. Moreover, we designed a set of user simulation schemes to generate personalized queries of different difficulties and evaluate the recommendations based on specific datasets. Through comprehensive experiments conducted across multiple datasets, TAIRA exhibits significantly enhanced performance compared to existing methods. Notably, TAIRA shows a greater advantage on more challenging tasks while generalizing effectively on novel tasks, further validating its superiority in managing complex user intents within interactive recommendation systems. The code is publicly available at:https://github.com/Alcein/TAIRA.
☆ What to Keep and What to Drop: Adaptive Table Filtering Framework
Large language models (LLMs) for table-based reasoning often struggle with large tables due to input length limits. We propose ATF (Adaptive Table Filtering Framework), a modular and question-aware filtering pipeline that prunes uninformative columns and rows using LLM-generated column descriptions, clustering, and sparse-dense alignment scores. ATF integrates seamlessly with existing models (e.g., TAPAS, TAPEX) without retraining. Experiments show that ATF reduces table cells by ~70\%, boosting performance on out-of-domain TableQA tasks while causing slight performance drops on Table Fact Verification, where full-table context is more critical. These results highlight ATF's ability to adaptively balance informativeness and minimalism across tasks.
comment: 26 pages, 9 figures
♻ ☆ Knowing You Don't Know: Learning When to Continue Search in Multi-round RAG through Self-Practicing
Retrieval Augmented Generation (RAG) has shown strong capability in enhancing language models' knowledge and reducing AI generative hallucinations, driving its widespread use. However, complex tasks requiring multi-round retrieval remain challenging, and early attempts tend to be overly optimistic without a good sense of self-skepticism. Current multi-round RAG systems may continue searching even when enough information has already been retrieved, or they may provide incorrect answers without having sufficient information or knowledge. Existing solutions either require large amounts of expensive human-labeled process supervision data or lead to subpar performance. This paper aims to address these limitations by introducing a new framework, SIM-RAG, to explicitly enhance RAG systems' self-awareness and multi-round retrieval capabilities. To train SIM-RAG, we first let a RAG system self-practice multi-round retrieval, augmenting existing question-answer pairs with intermediate inner monologue reasoning steps to generate synthetic training data. For each pair, the system may explore multiple retrieval paths, which are labeled as successful if they reach the correct answer and unsuccessful otherwise. Using this data, we train a lightweight information sufficiency Critic. At inference time, the Critic evaluates whether the RAG system has retrieved sufficient information at each round, guiding retrieval decisions and improving system-level self-awareness through in-context reinforcement learning. Experiments across multiple prominent RAG benchmarks show that SIM-RAG is an effective multi-round RAG solution. Furthermore, this framework is system-efficient, adding a lightweight component to RAG without requiring modifications to existing LLMs or search engines, and data-efficient, eliminating the need for costly human-annotated mid-step retrieval process supervision data.
comment: Proceedings of the 48th International ACM SIGIR 2025
♻ ☆ SEUF: Is Unlearning One Expert Enough for Mixture-of-Experts LLMs? ACL'25
Recent advancements in LLMs unlearning have shown remarkable success in removing unwanted data-model influences while preserving the model's utility for legitimate knowledge. Despite these strides, sparse Mixture-of-Experts (MoE) LLMs--a key subset of the LLM family--have remained unexplored in the context of unlearning. As MoE LLMs are celebrated for their exceptional performance, we ask:How can unlearning be performed effectively and efficiently on MoE LLMs? Our pilot study shows that the dynamic routing nature of MoE LLMs introduces unique challenges, leading to excessive forgetting, uncontrolled knowledge erasure and substantial utility drops when existing unlearning methods are applied. To address this, we propose a novel Selected-Expert Unlearning Framework (SEUF). Through expert attribution, unlearning is concentrated on the most actively engaged experts for the specified knowledge. Concurrently, an anchor loss is applied to the router to stabilize the active state of this targeted expert, ensuring focused and controlled unlearning. SEUF is compatible with various standard unlearning algorithms. Extensive experiments demonstrate that SEUF enhances both forget quality up to 5% and model utility by 35% on MoE LLMs across various benchmarks and LLM architectures (compared to standard unlearning algorithms), while only unlearning 0.06% of the model parameters.
comment: Accepted to ACL'25
♻ ☆ KMI: A Dataset of Korean Motivational Interviewing Dialogues for Psychotherapy NAACL 2025
The increasing demand for mental health services has led to the rise of AI-driven mental health chatbots, though challenges related to privacy, data collection, and expertise persist. Motivational Interviewing (MI) is gaining attention as a theoretical basis for boosting expertise in the development of these chatbots. However, existing datasets are showing limitations for training chatbots, leading to a substantial demand for publicly available resources in the field of MI and psychotherapy. These challenges are even more pronounced in non-English languages, where they receive less attention. In this paper, we propose a novel framework that simulates MI sessions enriched with the expertise of professional therapists. We train an MI forecaster model that mimics the behavioral choices of professional therapists and employ Large Language Models (LLMs) to generate utterances through prompt engineering. Then, we present KMI, the first synthetic dataset theoretically grounded in MI, containing 1,000 high-quality Korean Motivational Interviewing dialogues. Through an extensive expert evaluation of the generated dataset and the dialogue model trained on it, we demonstrate the quality, expertise, and practicality of KMI. We also introduce novel metrics derived from MI theory in order to evaluate dialogues from the perspective of MI.
comment: Accepted at NAACL 2025 Main Conference
Position: Machine Learning Conferences Should Establish a "Refutations and Critiques" Track
Science progresses by iteratively advancing and correcting humanity's understanding of the world. In machine learning (ML) research, rapid advancements have led to an explosion of publications, but have also led to misleading, incorrect, flawed or perhaps even fraudulent studies being accepted and sometimes highlighted at ML conferences due to the fallibility of peer review. While such mistakes are understandable, ML conferences do not offer robust processes to help the field systematically correct when such errors are made. This position paper argues that ML conferences should establish a dedicated "Refutations and Critiques" (R&C) Track. This R&C Track would provide a high-profile, reputable platform to support vital research that critically challenges prior research, thereby fostering a dynamic self-correcting research ecosystem. We discuss key considerations including track design, review principles, potential pitfalls, and provide an illustrative example submission concerning a recent ICLR 2025 Oral. We conclude that ML conferences should create official, reputable mechanisms to help ML research self-correct.
♻ ☆ Riddle Me This! Stealthy Membership Inference for Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) enables Large Language Models (LLMs) to generate grounded responses by leveraging external knowledge databases without altering model parameters. Although the absence of weight tuning prevents leakage via model parameters, it introduces the risk of inference adversaries exploiting retrieved documents in the model's context. Existing methods for membership inference and data extraction often rely on jailbreaking or carefully crafted unnatural queries, which can be easily detected or thwarted with query rewriting techniques common in RAG systems. In this work, we present Interrogation Attack (IA), a membership inference technique targeting documents in the RAG datastore. By crafting natural-text queries that are answerable only with the target document's presence, our approach demonstrates successful inference with just 30 queries while remaining stealthy; straightforward detectors identify adversarial prompts from existing methods up to ~76x more frequently than those generated by our attack. We observe a 2x improvement in TPR@1%FPR over prior inference attacks across diverse RAG configurations, all while costing less than $0.02 per document inference.
comment: This is the full version (27 pages) of the paper 'Riddle Me This! Stealthy Membership Inference for Retrieval-Augmented Generation' published at CCS 2025
♻ ☆ LibVulnWatch: A Deep Assessment Agent System and Leaderboard for Uncovering Hidden Vulnerabilities in Open-Source AI Libraries ACL 2025
Open-source AI libraries are foundational to modern AI systems, yet they present significant, underexamined risks spanning security, licensing, maintenance, supply chain integrity, and regulatory compliance. We introduce LibVulnWatch, a system that leverages recent advances in large language models and agentic workflows to perform deep, evidence-based evaluations of these libraries. Built on a graph-based orchestration of specialized agents, the framework extracts, verifies, and quantifies risk using information from repositories, documentation, and vulnerability databases. LibVulnWatch produces reproducible, governance-aligned scores across five critical domains, publishing results to a public leaderboard for ongoing ecosystem monitoring. Applied to 20 widely used libraries, including ML frameworks, LLM inference engines, and agent orchestration tools, our approach covers up to 88% of OpenSSF Scorecard checks while surfacing up to 19 additional risks per library, such as critical RCE vulnerabilities, missing SBOMs, and regulatory gaps. By integrating advanced language technologies with the practical demands of software risk assessment, this work demonstrates a scalable, transparent mechanism for continuous supply chain evaluation and informed library selection.
comment: ACL 2025 Student Research Workshop and ICML 2025 TAIG Workshop
♻ ☆ TTRL: Test-Time Reinforcement Learning
This paper investigates Reinforcement Learning (RL) on data without explicit labels for reasoning tasks in Large Language Models (LLMs). The core challenge of the problem is reward estimation during inference while not having access to ground-truth information. While this setting appears elusive, we find that common practices in Test-Time Scaling (TTS), such as majority voting, yield surprisingly effective rewards suitable for driving RL training. In this work, we introduce Test-Time Reinforcement Learning (TTRL), a novel method for training LLMs using RL on unlabeled data. TTRL enables self-evolution of LLMs by utilizing the priors in the pre-trained models. Our experiments demonstrate that TTRL consistently improves performance across a variety of tasks and models. Notably, TTRL boosts the pass@1 performance of Qwen-2.5-Math-7B by approximately 211% on the AIME 2024 with only unlabeled test data. Furthermore, although TTRL is only supervised by the maj@n metric, TTRL has demonstrated performance to consistently surpass the upper limit of the initial model maj@n, and approach the performance of models trained directly on test data with ground-truth labels. Our experimental findings validate the general effectiveness of TTRL across various tasks and highlight TTRL's potential for broader tasks and domains. GitHub: https://github.com/PRIME-RL/TTRL
♻ ☆ Empirical evidence of Large Language Model's influence on human spoken communication
From the invention of writing and the printing press, to television and social media, human history is punctuated by major innovations in communication technology, which fundamentally altered how ideas spread and reshaped our culture. Recent chatbots powered by generative artificial intelligence constitute a novel medium that encodes cultural patterns in their neural representations and disseminates them in conversations with hundreds of millions of people. Understanding whether these patterns transmit into human language, and ultimately shape human culture, is a fundamental question. While fully quantifying the causal impact of a chatbot like ChatGPT on human culture is very challenging, lexicographic shift in human spoken communication may offer an early indicator of such broad phenomenon. Here, we apply econometric causal inference techniques to 740,249 hours of human discourse from 360,445 YouTube academic talks and 771,591 conversational podcast episodes across multiple disciplines. We detect a measurable and abrupt increase in the use of words preferentially generated by ChatGPT, such as delve, comprehend, boast, swift, and meticulous, after its release. These findings suggest a scenario where machines, originally trained on human data and subsequently exhibiting their own cultural traits, can, in turn, measurably reshape human culture. This marks the beginning of a closed cultural feedback loop in which cultural traits circulate bidirectionally between humans and machines. Our results motivate further research into the evolution of human-machine culture, and raise concerns over the erosion of linguistic and cultural diversity, and the risks of scalable manipulation.
♻ ☆ GeometryZero: Improving Geometry Solving for LLM with Group Contrastive Policy Optimization
Recent advances in large language models (LLMs) have demonstrated remarkable capabilities across diverse domains, particularly in mathematical reasoning, amid which geometry problem solving remains a challenging area where auxiliary construction plays a enssential role. Existing approaches either achieve suboptimal performance or rely on massive LLMs (e.g., GPT-4o), incurring massive computational costs. We posit that reinforcement learning with verifiable reward (e.g., GRPO) offers a promising direction for training smaller models that effectively combine auxiliary construction with robust geometric reasoning. However, directly applying GRPO to geometric reasoning presents fundamental limitations due to its dependence on unconditional rewards, which leads to indiscriminate and counterproductive auxiliary constructions. To address these challenges, we propose Group Contrastive Policy Optimization (GCPO), a novel reinforcement learning framework featuring two key innovations: (1) Group Contrastive Masking, which adaptively provides positive or negative reward signals for auxiliary construction based on contextual utility, and a (2) length reward that promotes longer reasoning chains. Building on GCPO, we develop GeometryZero, a family of affordable-size geometric reasoning models that judiciously determine when to employ auxiliary construction. Our extensive empirical evaluation across popular geometric benchmarks (Geometry3K, MathVista) demonstrates that GeometryZero models consistently outperform baselines (e.g. GRPO), achieving an average improvement of 4.29% across all benchmarks.
♻ ☆ Explainable Sentiment Analysis with DeepSeek-R1: Performance, Efficiency, and Few-Shot Learning
Large language models (LLMs) have transformed sentiment analysis, yet balancing accuracy, efficiency, and explainability remains a critical challenge. This study presents the first comprehensive evaluation of DeepSeek-R1--an open-source reasoning model--against OpenAI's GPT-4o and GPT-4o-mini. We test the full 671B model and its distilled variants, systematically documenting few-shot learning curves. Our experiments show DeepSeek-R1 achieves a 91.39\% F1 score on 5-class sentiment and 99.31\% accuracy on binary tasks with just 5 shots, an eightfold improvement in few-shot efficiency over GPT-4o. Architecture-specific distillation effects emerge, where a 32B Qwen2.5-based model outperforms the 70B Llama-based variant by 6.69 percentage points. While its reasoning process reduces throughput, DeepSeek-R1 offers superior explainability via transparent, step-by-step traces, establishing it as a powerful, interpretable open-source alternative.
comment: 10 pages, 2 figures, 6 tables, revised and re-submitted to an IEEE journal
♻ ☆ Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph ACL 2025
The rapid proliferation of large language models (LLMs) has stimulated researchers to seek effective and efficient approaches to deal with LLM hallucinations and low-quality outputs. Uncertainty quantification (UQ) is a key element of machine learning applications in dealing with such challenges. However, research to date on UQ for LLMs has been fragmented in terms of techniques and evaluation methodologies. In this work, we address this issue by introducing a novel benchmark that implements a collection of state-of-the-art UQ baselines and offers an environment for controllable and consistent evaluation of novel UQ techniques over various text generation tasks. Our benchmark also supports the assessment of confidence normalization methods in terms of their ability to provide interpretable scores. Using our benchmark, we conduct a large-scale empirical investigation of UQ and normalization techniques across eleven tasks, identifying the most effective approaches. Code: https://github.com/IINemo/lm-polygraph Benchmark: https://huggingface.co/LM-Polygraph
comment: Published at TACL 2025, presented at ACL 2025. Roman Vashurin, Ekaterina Fadeeva, Artem Vazhentsev contributed equally
♻ ☆ Computational Analysis of Character Development in Holocaust Testimonies
This work presents a computational approach to analyze character development along the narrative timeline. The analysis characterizes the inner and outer changes the protagonist undergoes within a narrative, and the interplay between them. We consider transcripts of Holocaust survivor testimonies as a test case, each telling the story of an individual in first-person terms. We focus on the survivor's religious trajectory, examining the evolution of their disposition toward religious belief and practice along the testimony. Clustering the resulting trajectories in the dataset, we identify common sequences in the data. Our findings highlight multiple common structures of religiosity across the narratives: in terms of belief, most present a constant disposition, while for practice, most present an oscillating structure, serving as valuable material for historical and sociological research. This work demonstrates the potential of natural language processing techniques for analyzing character evolution through thematic trajectories in narratives.
♻ ☆ CSC-SQL: Corrective Self-Consistency in Text-to-SQL via Reinforcement Learning
Large language models (LLMs) have demonstrated strong capabilities in translating natural language questions about relational databases into SQL queries. In particular, test-time scaling techniques such as Self-Consistency and Self-Correction can enhance SQL generation accuracy by increasing computational effort during inference. However, these methods have notable limitations: Self-Consistency may select suboptimal outputs despite majority votes, while Self-Correction typically addresses only syntactic errors. To leverage the strengths of both approaches, we propose CSC-SQL, a novel method that integrates Self-Consistency and Self-Correction. CSC-SQL selects the two most frequently occurring outputs from parallel sampling and feeds them into a merge revision model for correction. Additionally, we employ the Group Relative Policy Optimization (GRPO) algorithm to fine-tune both the SQL generation and revision models via reinforcement learning, significantly enhancing output quality. Experimental results confirm the effectiveness and generalizability of CSC-SQL. On the BIRD private test set, our 7B model achieves 71.72\% execution accuracy, while the 32B model achieves 73.67\%. The code has been open sourced at https://github.com/CycloneBoy/csc_sql.
comment: 25 pages, 5 figures
♻ ☆ Sparsing Law: Towards Large Language Models with Greater Activation Sparsity
Activation sparsity denotes the existence of substantial weakly-contributed elements within activation outputs that can be eliminated, benefiting many important applications concerned with large language models (LLMs). Although promoting greater activation sparsity within LLMs deserves deep studies, existing works lack comprehensive and quantitative research on the correlation between activation sparsity and potentially influential factors. In this paper, we present a comprehensive study on the quantitative scaling properties and influential factors of the activation sparsity within decoder-only Transformer-based LLMs. Specifically, we propose PPL-$p\%$ sparsity, a precise and performance-aware activation sparsity metric that is applicable to any activation function. Through extensive experiments, we find several important phenomena. Firstly, different activation functions exhibit comparable performance but opposite training-time sparsity trends. The activation ratio (i.e., $1-\mathrm{sparsity\ ratio}$) evolves as a convergent increasing power-law and decreasing logspace power-law with the amount of training data for SiLU-activated and ReLU-activated LLMs, respectively. These demonstrate that ReLU is more efficient as the activation function than SiLU and can leverage more training data to improve activation sparsity. Secondly, the activation ratio linearly increases with the width-depth ratio below a certain bottleneck point, indicating the potential advantage of a deeper architecture at a fixed parameter scale. Finally, at similar width-depth ratios, we surprisingly find that the limit value of activation sparsity varies weakly with the parameter scale, i.e., the activation patterns within LLMs are insensitive to the parameter scale. These empirical laws towards LLMs with greater activation sparsity have important implications for making LLMs more efficient and interpretable.
comment: 23 pages, 13 figures, 6 tables
♻ ☆ Robust LLM Unlearning with MUDMAN: Meta-Unlearning with Disruption Masking And Normalization
Language models can retain dangerous knowledge and skills even after extensive safety fine-tuning, posing both misuse and misalignment risks. Recent studies show that even specialized unlearning methods can be easily reversed. To address this, we systematically evaluate many existing and novel components of unlearning methods and identify ones crucial for irreversible unlearning. We introduce Disruption Masking, a technique in which we only allow updating weights, where the signs of the unlearning gradient and the retaining gradient are the same. This ensures all updates are non-disruptive. Additionally, we identify the need for normalizing the unlearning gradients, and also confirm the usefulness of meta-learning. We combine these insights into MUDMAN (Meta-Unlearning with Disruption Masking and Normalization) and validate its effectiveness at preventing the recovery of dangerous capabilities. MUDMAN outperforms the prior TAR method by 40%, setting a new state-of-the-art for robust unlearning.
♻ ☆ Evaluating K-Fold Cross Validation for Transformer Based Symbolic Regression Models
Symbolic Regression remains an NP-Hard problem, with extensive research focusing on AI models for this task. Transformer models have shown promise in Symbolic Regression, but performance suffers with smaller datasets. We propose applying k-fold cross-validation to a transformer-based symbolic regression model trained on a significantly reduced dataset (15,000 data points, down from 500,000). This technique partitions the training data into multiple subsets (folds), iteratively training on some while validating on others. Our aim is to provide an estimate of model generalization and mitigate overfitting issues associated with smaller datasets. Results show that this process improves the model's output consistency and generalization by a relative improvement in validation loss of 53.31%. Potentially enabling more efficient and accessible symbolic regression in resource-constrained environments.
♻ ☆ KAG-Thinker: Interactive Thinking and Deep Reasoning in LLMs via Knowledge-Augmented Generation
In this paper, we introduce KAG-Thinker, which upgrade KAG to a multi-turn interactive thinking and deep reasoning framework powered by a dedicated parameter-light large language model (LLM). Our approach constructs a structured thinking process for solving complex problems, enhancing the the logical coherence and contextual consistency of the reasoning process in question-answering (Q&A) tasks on domain-specific knowledge bases (KBs) within LLMs. Following the \textbf{Logical Form} guided retrieval and reasoning technology route of KAG, this framework first decomposes complex questions into independently solvable sub-problems (which are also referred to as logical forms) through \textbf{breadth decomposition}. Each such logical form is represented in two equivalent forms-natural language and logical function-and subsequently classified as either a Knowledge Retrieval or Reasoning Analysis task. Dependencies and parameter passing between these tasks are explicitly modeled via logical function interfaces. In the solving process, the Retrieval function performs retrieval tasks. It retrieves one-hop structured and unstructured information of specified knowledge unit. While the Math and Deduce functions are used to perform reasoning analysis tasks. Secondly, it is worth noting that, in the Knowledge Retrieval sub-problem tasks, LLMs and external knowledge sources are regarded as equivalent KBs. We use the \textbf{knowledge boundary} module to determine the optimal source using self-regulatory mechanisms such as confidence calibration and reflective reasoning, and use the \textbf{depth solving} module to enhance the comprehensiveness of knowledge acquisition...
♻ ☆ FedEx-LoRA: Exact Aggregation for Federated and Efficient Fine-Tuning of Foundation Models ACL 2025
Low-Rank Adaptation (LoRA) is a popular technique for efficient fine-tuning of foundation models. However, applying LoRA in federated learning environments, where data is distributed across multiple clients, presents unique challenges. Existing methods rely on traditional federated averaging of LoRA adapters, resulting in inexact updates. To address this, we propose Federated Exact LoRA, or FedEx-LoRA, which adds a residual error term to the pretrained frozen weight matrix. Our approach achieves exact updates with minimal computational and communication overhead, preserving LoRA's efficiency. We evaluate the method on various models across arithmetic reasoning, commonsense reasoning, natural language understanding and natural language generation tasks, showing consistent performance gains over state-of-the-art methods across multiple settings. Through extensive analysis, we quantify that the deviations in updates from the ideal solution are significant, highlighting the need for exact aggregation. Our method's simplicity, efficiency, and broad applicability position it as a promising solution for accurate and effective federated fine-tuning of foundation models. Our code is publicly available at https://github.com/RaghavSinghal10/fedex-lora.
comment: ACL 2025 - Oral. Raghav Singhal and Kaustubh Ponkshe contributed equally to this work
♻ ☆ From Alignment to Advancement: Bootstrapping Audio-Language Alignment with Synthetic Data
Audio-aware large language models (ALLMs) have recently made great strides in understanding and processing audio inputs. These models are typically adapted from text-based large language models (LLMs) through additional training on audio-related tasks. However, this adaptation process presents two major limitations. First, ALLMs often suffer from catastrophic forgetting, where crucial textual capabilities like instruction-following are lost after training on audio data. In some cases, models may even hallucinate sounds that are not present in the input audio, raising concerns about reliability. Second, achieving cross-modal alignment between audio and language typically relies on large collections of task-specific question-answer pairs for instruction tuning, making it resource-intensive. To address these issues, previous works have leveraged the backbone LLMs to synthesize general-purpose, caption-style alignment data. In this paper, we propose a data generation framework that produces contrastive-like training data, designed to enhance ALLMs' ability to differentiate between present and absent sounds. We further extend our approach to multi-audio scenarios, enabling the model to either explain differences between audio inputs or produce unified captions that describe all inputs, thereby enhancing audio-language alignment. We refer to the entire ALLM training framework as bootstrapping audio-language alignment via synthetic data generation from backbone LLMs (BALSa). Experimental results indicate that our method effectively mitigates audio hallucinations while reliably maintaining strong performance on audio understanding and reasoning benchmarks, as well as instruction-following skills. Moreover, incorporating multi-audio training further enhances the model's comprehension and reasoning capabilities. Overall, BALSa offers an efficient and scalable approach to developing ALLMs.
comment: Submitted to IEEE/ACM Transactions on Audio, Speech, and Language Processing. Project Website: https://kuan2jiu99.github.io/Balsa
♻ ☆ FlexRAG: A Flexible and Comprehensive Framework for Retrieval-Augmented Generation ACL 2025
Retrieval-Augmented Generation (RAG) plays a pivotal role in modern large language model applications, with numerous existing frameworks offering a wide range of functionalities to facilitate the development of RAG systems. However, we have identified several persistent challenges in these frameworks, including difficulties in algorithm reproduction and sharing, lack of new techniques, and high system overhead. To address these limitations, we introduce \textbf{FlexRAG}, an open-source framework specifically designed for research and prototyping. FlexRAG supports text-based, multimodal, and network-based RAG, providing comprehensive lifecycle support alongside efficient asynchronous processing and persistent caching capabilities. By offering a robust and flexible solution, FlexRAG enables researchers to rapidly develop, deploy, and share advanced RAG systems. Our toolkit and resources are available at \href{https://github.com/ictnlp/FlexRAG}{https://github.com/ictnlp/FlexRAG}.
comment: Accepted by ACL 2025 Demo
♻ ☆ A Comprehensive Evaluation of Semantic Relation Knowledge of Pretrained Language Models and Humans
Recently, much work has concerned itself with the enigma of what exactly PLMs (pretrained language models) learn about different aspects of language, and how they learn it. One stream of this type of research investigates the knowledge that PLMs have about semantic relations. However, many aspects of semantic relations were left unexplored. Only one relation was considered, namely hypernymy. Furthermore, previous work did not measure humans' performance on the same task as that solved by the PLMs. This means that at this point in time, there is only an incomplete view of models' semantic relation knowledge. To address this gap, we introduce a comprehensive evaluation framework covering five relations beyond hypernymy, namely hyponymy, holonymy, meronymy, antonymy, and synonymy. We use six metrics (two newly introduced here) for recently untreated aspects of semantic relation knowledge, namely soundness, completeness, symmetry, asymmetry, prototypicality, and distinguishability and fairly compare humans and models on the same task. Our extensive experiments involve 16 PLMs, eight masked and eight causal language models. Up to now only masked language models had been tested although causal and masked language models treat context differently. Our results reveal a significant knowledge gap between humans and models for almost all semantic relations. Antonymy is the outlier relation where all models perform reasonably well. In general, masked language models perform significantly better than causal language models. Nonetheless, both masked and causal language models are likely to confuse non-antonymy relations with antonymy.
comment: This manuscript is currently under review at Language Resources and Evaluation
♻ ☆ Gumiho: A Hybrid Architecture to Prioritize Early Tokens in Speculative Decoding ICML 2025
Speculative decoding (SPD) aims to accelerate the auto-regressive token generation process of a target Large Language Model (LLM). Some approaches employ a draft model with multiple heads to predict a sequence of future tokens, where each head handles a token in the sequence. The target LLM verifies the predicted sequence and accepts aligned tokens, enabling efficient multi-token generation. However, existing methods assume that all tokens within a sequence are equally important, employing identical head structures and relying on a single-generation paradigm, either serial or parallel. To this end, we theoretically demonstrate that initial tokens in the draft sequence are more important than later ones. Building on this insight, we propose Gumiho, a hybrid model combining serial and parallel heads. Specifically, given the critical importance of early tokens, we employ a sophisticated Transformer architecture for the early draft heads in a serial configuration to improve accuracy. For later tokens, we utilize multiple lightweight MLP heads operating in parallel to enhance efficiency. By allocating more advanced model structures and longer running times to the early heads, Gumiho achieves improved overall performance. The experimental results demonstrate that our method outperforms existing approaches, fully validating its effectiveness.
comment: Accepted to the 42nd International Conference on Machine Learning (ICML 2025). Code: https://github.com/AMD-AIG-AIMA/Gumiho
♻ ☆ LLM Braces: Straightening Out LLM Predictions with Relevant Sub-Updates ACL 2025
Recent findings reveal that much of the knowledge in a Transformer-based Large Language Model (LLM) is encoded in its feed-forward (FFN) layers, where each FNN layer can be interpreted as the summation of sub-updates, each corresponding to a weighted column vector from the FFN's value parameter matrix that often encodes human-interpretable concepts. In light of this, we hypothesize that model performance and behaviors can be further enhanced and controlled by modulating the contributions of these sub-updates based on their relevance to the input or target output style, and propose LLMBRACES, a novel and efficient method that computes relevance scores associated with value vectors in FFN layers and leverages these scores to dynamically adjust the contribution of sub-updates. By optimizing sub-update contributions, LLMBRACES refines the prediction process, leading to more accurate and reliable outputs, much like a 'brace' providing support and stability. Moreover, LLMBRACES can be extended to support conditional control over generation characteristics, such as sentiment, thereby offering fine-grained steering of LLM outputs. Extensive experiments on various LLMs-including Qwen2.5-1.5B, Llama2-7B, and Llama3-8B-demonstrate that LLMBRACES outperforms baseline approaches in both fine-tuning and zero-shot settings while requiring significantly fewer tunable parameters, up to 75% fewer compared to LoRA. Furthermore, LLMBRACES excels in sentiment-controlled generation and toxicity reduction, highlighting its potential for flexible, controlled text generation across applications.
comment: ACL 2025, 16 pages, 2 figures
♻ ☆ FinEval-KR: A Financial Domain Evaluation Framework for Large Language Models' Knowledge and Reasoning
Large Language Models (LLMs) demonstrate significant potential but face challenges in complex financial reasoning tasks requiring both domain knowledge and sophisticated reasoning. Current evaluation benchmarks often fall short by not decoupling these capabilities indicators from single task performance and lack root cause analysis for task failure. To address this, we introduce FinEval-KR, a novel evaluation framework for decoupling and quantifying LLMs' knowledge and reasoning abilities independently, proposing distinct knowledge score and reasoning score metrics. Inspired by cognitive science, we further propose a cognitive score based on Bloom's taxonomy to analyze capabilities in reasoning tasks across different cognitive levels. We also release a new open-source Chinese financial reasoning dataset covering 22 subfields to support reproducible research and further advancements in financial reasoning. Our experimental results reveal that LLM reasoning ability and higher-order cognitive ability are the core factors influencing reasoning accuracy. We also specifically find that even top models still face a bottleneck with knowledge application. Furthermore, our analysis shows that specialized financial LLMs generally lag behind the top general large models across multiple metrics.
comment: The statistics included in the paper are incomplete (e.g., Tables 2 and 5 report only the results of a single run), which may lead readers to misunderstand
♻ ☆ CTISum: A New Benchmark Dataset For Cyber Threat Intelligence Summarization
Cyber Threat Intelligence (CTI) summarization involves generating concise and accurate highlights from web intelligence data, which is critical for providing decision-makers with actionable insights to swiftly detect and respond to cyber threats in the cybersecurity domain. Despite that, the development of efficient techniques for summarizing CTI reports, comprising facts, analytical insights, attack processes, and more, has been hindered by the lack of suitable datasets. To address this gap, we introduce CTISum, a new benchmark dataset designed for the CTI summarization task. Recognizing the significance of understanding attack processes, we also propose a novel fine-grained subtask: attack process summarization, which aims to help defenders assess risks, identify security gaps, and uncover vulnerabilities. Specifically, a multi-stage annotation pipeline is designed to collect and annotate CTI data from diverse web sources, alongside a comprehensive benchmarking of CTISum using both extractive, abstractive and LLMs-based summarization methods. Experimental results reveal that current state-of-the-art models face significant challenges when applied to CTISum, highlighting that automatic summarization of CTI reports remains an open research problem. The code and example dataset can be made publicly available at https://github.com/pengwei-iie/CTISum.
♻ ☆ Parenting: Optimizing Knowledge Selection of Retrieval-Augmented Language Models with Parameter Decoupling and Tailored Tuning ACL 2025
Retrieval-Augmented Generation (RAG) offers an effective solution to the issues faced by Large Language Models (LLMs) in hallucination generation and knowledge obsolescence by incorporating externally retrieved knowledge. However, existing methods lack effective control mechanisms for integrating internal and external knowledge. Inspired by human cognitive processes, we propose Parenting, a novel framework that decouples, identifies, and purposefully optimizes parameter subspaces related to adherence and robustness. Specifically, Parenting utilizes a key parameter mining method that combines forward and backward propagation signals to localize subspaces representing different capabilities. Then, Parenting employs a type-tailored tuning strategy, applying specific and appropriate optimizations to different subspaces, aiming to achieve a balanced enhancement of both adherence and robustness. Extensive experiments on various datasets and models validate the effectiveness and generalizability of our method.
comment: Accepted to ACL 2025 Main Conference
♻ ☆ Bridge: A Unified Framework to Knowledge Graph Completion via Language Models and Knowledge Representation
Knowledge graph completion (KGC) is a task of inferring missing triples based on existing Knowledge Graphs (KGs). Both structural and semantic information are vital for successful KGC. However, existing methods only use either the structural knowledge from the KG embeddings or the semantic information from pre-trained language models (PLMs), leading to suboptimal model performance. Moreover, since PLMs are not trained on KGs, directly using PLMs to encode triples may be inappropriate. To overcome these limitations, we propose a novel framework called Bridge, which jointly encodes structural and semantic information of KGs. Specifically, we strategically encode entities and relations separately by PLMs to better utilize the semantic knowledge of PLMs and enable structured representation learning via a structural learning principle. Furthermore, to bridge the gap between KGs and PLMs, we employ a self-supervised representation learning method called BYOL to fine-tune PLMs with two different views of a triple. Unlike BYOL, which uses augmentation methods to create two semantically similar views of the same image, potentially altering the semantic information. We strategically separate the triple into two parts to create different views, thus avoiding semantic alteration. Experiments demonstrate that Bridge outperforms the SOTA models on three benchmark datasets.
♻ ☆ Mechanistic Interpretability of Emotion Inference in Large Language Models ACL 2025
Large language models (LLMs) show promising capabilities in predicting human emotions from text. However, the mechanisms through which these models process emotional stimuli remain largely unexplored. Our study addresses this gap by investigating how autoregressive LLMs infer emotions, showing that emotion representations are functionally localized to specific regions in the model. Our evaluation includes diverse model families and sizes and is supported by robustness checks. We then show that the identified representations are psychologically plausible by drawing on cognitive appraisal theory, a well-established psychological framework positing that emotions emerge from evaluations (appraisals) of environmental stimuli. By causally intervening on construed appraisal concepts, we steer the generation and show that the outputs align with theoretical and intuitive expectations. This work highlights a novel way to causally intervene and precisely shape emotional text generation, potentially benefiting safety and alignment in sensitive affective domains.
comment: ACL 2025 camera-ready version. First two authors contributed equally
♻ ☆ ETTA: Elucidating the Design Space of Text-to-Audio Models ICML 2025
Recent years have seen significant progress in Text-To-Audio (TTA) synthesis, enabling users to enrich their creative workflows with synthetic audio generated from natural language prompts. Despite this progress, the effects of data, model architecture, training objective functions, and sampling strategies on target benchmarks are not well understood. With the purpose of providing a holistic understanding of the design space of TTA models, we set up a large-scale empirical experiment focused on diffusion and flow matching models. Our contributions include: 1) AF-Synthetic, a large dataset of high quality synthetic captions obtained from an audio understanding model; 2) a systematic comparison of different architectural, training, and inference design choices for TTA models; 3) an analysis of sampling methods and their Pareto curves with respect to generation quality and inference speed. We leverage the knowledge obtained from this extensive analysis to propose our best model dubbed Elucidated Text-To-Audio (ETTA). When evaluated on AudioCaps and MusicCaps, ETTA provides improvements over the baselines trained on publicly available data, while being competitive with models trained on proprietary data. Finally, we show ETTA's improved ability to generate creative audio following complex and imaginative captions -- a task that is more challenging than current benchmarks.
comment: ICML 2025. Demo: https://research.nvidia.com/labs/adlr/ETTA/ Code: https://github.com/NVIDIA/elucidated-text-to-audio
♻ ☆ Breaking mBad! Supervised Fine-tuning for Cross-Lingual Detoxification
As large language models (LLMs) become increasingly prevalent in global applications, ensuring that they are toxicity-free across diverse linguistic contexts remains a critical challenge. We explore "Cross-lingual Detoxification", a cross-lingual paradigm that mitigates toxicity, enabling detoxification capabilities to transfer between high and low-resource languages across different script families. We analyze cross-lingual detoxification's effectiveness through 392 extensive settings to evaluate toxicity reduction in cross-distribution settings with limited data and investigate how mitigation impacts model performance on non-toxic tasks, revealing trade-offs between safety and knowledge preservation. Our code and dataset are publicly available at https://github.com/himanshubeniwal/Breaking-mBad.
♻ ☆ The Automated LLM Speedrunning Benchmark: Reproducing NanoGPT Improvements
Rapid advancements in large language models (LLMs) have the potential to assist in scientific progress. A critical capability toward this endeavor is the ability to reproduce existing work. To evaluate the ability of AI agents to reproduce results in an active research area, we introduce the Automated LLM Speedrunning Benchmark, leveraging the research community contributions on the NanoGPT speedrun, a competition to train a GPT-2 model in the shortest time. Each of the 19 speedrun tasks provides the agent with the previous records training script, optionally paired with one of three hint formats, ranging from pseudocode to paper-like descriptions of the new records improvements. Records execute quickly by design and speedrun improvements encompass diverse code-level changes, ranging from high-level algorithmic advancements to hardware-aware optimizations. These features make the benchmark both accessible and realistic for the frontier problem of improving LLM training. We find that recent reasoning LLMs combined with SoTA scaffolds struggle to reimplement already-known innovations in our benchmark, even when given detailed hints. Our benchmark thus provides a simple, non-saturated measure of an LLMs ability to automate scientific reproduction, a necessary (but not sufficient) skill for an autonomous research agent.
♻ ☆ Can LLMs Evaluate Complex Attribution in QA? Automatic Benchmarking using Knowledge Graphs ACL 2025
Attributed Question Answering (AQA) has attracted wide attention, but there are still several limitations in evaluating the attributions, including lacking fine-grained attribution categories, relying on manual annotations, and failing to compare attributions with only subtle differences. To bridge these gaps, we introduce Complex Attributed Question Answering (CAQA), a large-scale benchmark containing comprehensive attribution categories, automatically generated using Knowledge Graphs (KGs), and complex attribution scenarios. We have conducted extensive experiments to verify the effectiveness of CAQA, including the benchmarking of 25 automatic evaluators, their comparison with human evaluators, the testing of LLM evaluators fine-tuned by CAQA and so on. These experiments also lead to a series of important findings that can benefit the future research of AQA. All the codes and data are publicly accessible at https://github.com/HuuuNan/CAQA-Benchmark.
comment: Accepted to ACL 2025 (Main Conference)
♻ ☆ From Tokens to Thoughts: How LLMs and Humans Trade Compression for Meaning
Humans organize knowledge into compact categories through semantic compression by mapping diverse instances to abstract representations while preserving meaning (e.g., robin and blue jay are both birds; most birds can fly). These concepts reflect a trade-off between expressive fidelity and representational simplicity. Large Language Models (LLMs) demonstrate remarkable linguistic abilities, yet whether their internal representations strike a human-like trade-off between compression and semantic fidelity is unclear. We introduce a novel information-theoretic framework, drawing from Rate-Distortion Theory and the Information Bottleneck principle, to quantitatively compare these strategies. Analyzing token embeddings from a diverse suite of LLMs against seminal human categorization benchmarks, we uncover key divergences. While LLMs form broad conceptual categories that align with human judgment, they struggle to capture the fine-grained semantic distinctions crucial for human understanding. More fundamentally, LLMs demonstrate a strong bias towards aggressive statistical compression, whereas human conceptual systems appear to prioritize adaptive nuance and contextual richness, even if this results in lower compressional efficiency by our measures. These findings illuminate critical differences between current AI and human cognitive architectures, guiding pathways toward LLMs with more human-aligned conceptual representations.
♻ ☆ ECG-Byte: A Tokenizer for End-to-End Generative Electrocardiogram Language Modeling
Large Language Models (LLMs) have demonstrated exceptional versatility across domains, including applications to electrocardiograms (ECGs). A growing body of work focuses on generating text from multi-channeled ECG signals and corresponding textual prompts. Existing approaches often involve a two-stage process: pretraining an ECG-specific encoder with a self-supervised learning (SSL) objective, followed by finetuning an LLM for natural language generation (NLG) using encoder-derived features. However, these methods face two key limitations: inefficiency due to multi-stage training and challenges in interpreting encoder-generated features. To overcome these issues, we propose ECG-Byte, an adapted byte pair encoding (BPE) tokenizer pipeline for autoregressive language modeling of ECGs. ECG-Byte compresses and encodes ECG signals into tokens, enabling direct end-to-end LLM training by combining ECG and text tokens. This approach enhances interpretability, as ECG tokens can be directly mapped back to the original signals. Leveraging ECG-Byte, we achieve competitive NLG performance while training 3 times faster and using just 48\% of the data required by traditional two-stage methods.
comment: 38 pages, 9 figures
♻ ☆ Llama-Nemotron: Efficient Reasoning Models
We introduce the Llama-Nemotron series of models, an open family of heterogeneous reasoning models that deliver exceptional reasoning capabilities, inference efficiency, and an open license for enterprise use. The family comes in three sizes -- Nano (8B), Super (49B), and Ultra (253B) -- and performs competitively with state-of-the-art reasoning models such as DeepSeek-R1 while offering superior inference throughput and memory efficiency. In this report, we discuss the training procedure for these models, which entails using neural architecture search from Llama 3 models for accelerated inference, knowledge distillation, and continued pretraining, followed by a reasoning-focused post-training stage consisting of two main parts: supervised fine-tuning and large scale reinforcement learning. Llama-Nemotron models are the first open-source models to support a dynamic reasoning toggle, allowing users to switch between standard chat and reasoning modes during inference. To further support open research and facilitate model development, we provide the following resources: 1. We release the Llama-Nemotron reasoning models -- LN-Nano, LN-Super, and LN-Ultra -- under the commercially permissive NVIDIA Open Model License Agreement. 2. We release the complete post-training dataset: Llama-Nemotron-Post-Training-Dataset. 3. We also release our training codebases: NeMo, NeMo-Aligner, and Megatron-LM.
♻ ☆ Scaling Inference-Time Search with Vision Value Model for Improved Visual Comprehension
Despite significant advancements in vision-language models (VLMs), there lacks effective approaches to enhance response quality by scaling inference-time computation. This capability is known to be a core step towards the self-improving models in recent large language model studies. In this paper, we present Vision Value Model (VisVM) that can guide VLM inference-time search to generate responses with better visual comprehension. Specifically, VisVM not only evaluates the generated sentence quality in the current search step, but also anticipates the quality of subsequent sentences that may result from the current step, thus providing a long-term value. In this way, VisVM steers VLMs away from generating sentences prone to hallucinations or insufficient detail, thereby producing higher quality responses. Experimental results demonstrate that VisVM-guided search significantly enhances VLMs' ability to generate descriptive captions with richer visual details and fewer hallucinations, compared with greedy decoding and search methods with other visual reward signals. Furthermore, we find that self-training the model with the VisVM-guided captions improve VLM's performance across a wide range of multimodal benchmarks, indicating the potential for developing self-improving VLMs. Our value model and code are available at https://github.com/si0wang/VisVM.
♻ ☆ A Graph-Based Classical and Quantum Approach to Deterministic L-System Inference
L-systems can be made to model and create simulations of many biological processes, such as plant development. Finding an L-system for a given process is typically solved by hand, by experts, in a massively time-consuming process. It would be significant if this could be done automatically from data, such as from sequences of images. In this paper, we are interested in inferring a particular type of L-system, deterministic context-free L-system (D0L-system) from a sequence of strings. We introduce the characteristic graph of a sequence of strings, which we then utilize to translate our problem (inferring D0L-systems) in polynomial time into the maximum independent set problem (MIS) and the SAT problem. After that, we offer a classical exact algorithm and an approximate quantum algorithm for the problem.
comment: 17 pages, 1 figure
♻ ☆ Language Models Might Not Understand You: Evaluating Theory of Mind via Story Prompting
We introduce $\texttt{StorySim}$, a programmable framework for synthetically generating stories to evaluate the theory of mind (ToM) and world modeling (WM) capabilities of large language models (LLMs). Unlike prior benchmarks that may suffer from contamination in pretraining data, $\texttt{StorySim}$ produces novel, compositional story prompts anchored by a highly controllable $\texttt{Storyboard}$, enabling precise manipulation of character perspectives and events. We use this framework to design first- and second-order ToM tasks alongside WM tasks that control for the ability to track and model mental states. Our experiments across a suite of state-of-the-art LLMs reveal that most models perform better on WM tasks than ToM tasks, and that models tend to perform better reasoning with humans compared to inanimate objects. Additionally, our framework enabled us to find evidence of heuristic behavior such as recency bias and an over-reliance on earlier events in the story. All code for generating data and evaluations is freely available.
comment: 14 pages, 11 figures
♻ ☆ RocketKV: Accelerating Long-Context LLM Inference via Two-Stage KV Cache Compression ICML 2025
Transformer-based Large Language Models rely critically on the KV cache to efficiently handle extended contexts during the decode phase. Yet, the size of the KV cache grows proportionally with the input length, burdening both memory bandwidth and capacity as decoding progresses. To address this challenge, we present RocketKV, a training-free KV cache compression strategy containing two consecutive stages. In the first stage, it performs coarse-grain permanent KV cache eviction on the input sequence tokens. In the second stage, it adopts a hybrid sparse attention method to conduct fine-grain top-k sparse attention, approximating the attention scores by leveraging both head and sequence dimensionality reductions. We show that RocketKV provides a compression ratio of up to 400$\times$, end-to-end speedup of up to 3.7$\times$ as well as peak memory reduction of up to 32.6% in the decode phase on an NVIDIA A100 GPU compared to the full KV cache baseline, while achieving negligible accuracy loss on a variety of long-context tasks. We also propose a variant of RocketKV for multi-turn scenarios, which consistently outperforms other existing methods and achieves accuracy nearly on par with an oracle top-k attention scheme.
comment: ICML 2025
♻ ☆ Evaluating Deduplication Techniques for Economic Research Paper Titles with a Focus on Semantic Similarity using NLP and LLMs
This study investigates efficient deduplication techniques for a large NLP dataset of economic research paper titles. We explore various pairing methods alongside established distance measures (Levenshtein distance, cosine similarity) and a sBERT model for semantic evaluation. Our findings suggest a potentially low prevalence of duplicates based on the observed semantic similarity across different methods. Further exploration with a human-annotated ground truth set is completed for a more conclusive assessment. The result supports findings from the NLP, LLM based distance metrics.
comment: 6 pages, 1 figure
Computer Vision and Pattern Recognition 109
☆ How to Design and Train Your Implicit Neural Representation for Video Compression
Implicit neural representation (INR) methods for video compression have recently achieved visual quality and compression ratios that are competitive with traditional pipelines. However, due to the need for per-sample network training, the encoding speeds of these methods are too slow for practical adoption. We develop a library to allow us to disentangle and review the components of methods from the NeRV family, reframing their performance in terms of not only size-quality trade-offs, but also impacts on training time. We uncover principles for effective video INR design and propose a state-of-the-art configuration of these components, Rabbit NeRV (RNeRV). When all methods are given equal training time (equivalent to 300 NeRV epochs) for 7 different UVG videos at 1080p, RNeRV achieves +1.27% PSNR on average compared to the best-performing alternative for each video in our NeRV library. We then tackle the encoding speed issue head-on by investigating the viability of hyper-networks, which predict INR weights from video inputs, to disentangle training from encoding to allow for real-time encoding. We propose masking the weights of the predicted INR during training to allow for variable, higher quality compression, resulting in 1.7% improvements to both PSNR and MS-SSIM at 0.037 bpp on the UCF-101 dataset, and we increase hyper-network parameters by 0.4% for 2.5%/2.7% improvements to PSNR/MS-SSIM with equal bpp and similar speeds. Our project website is available at https://mgwillia.github.io/vinrb/ and our code is available at https://github.com/mgwillia/vinrb.
comment: 21 pages, 41 figures, 5 tables
☆ FADRM: Fast and Accurate Data Residual Matching for Dataset Distillation
Residual connection has been extensively studied and widely applied at the model architecture level. However, its potential in the more challenging data-centric approaches remains unexplored. In this work, we introduce the concept of Data Residual Matching for the first time, leveraging data-level skip connections to facilitate data generation and mitigate data information vanishing. This approach maintains a balance between newly acquired knowledge through pixel space optimization and existing core local information identification within raw data modalities, specifically for the dataset distillation task. Furthermore, by incorporating optimization-level refinements, our method significantly improves computational efficiency, achieving superior performance while reducing training time and peak GPU memory usage by 50%. Consequently, the proposed method Fast and Accurate Data Residual Matching for Dataset Distillation (FADRM) establishes a new state-of-the-art, demonstrating substantial improvements over existing methods across multiple dataset benchmarks in both efficiency and effectiveness. For instance, with ResNet-18 as the student model and a 0.8% compression ratio on ImageNet-1K, the method achieves 47.7% test accuracy in single-model dataset distillation and 50.0% in multi-model dataset distillation, surpassing RDED by +5.7% and outperforming state-of-the-art multi-model approaches, EDC and CV-DD, by +1.4% and +4.0%. Code is available at: https://github.com/Jiacheng8/FADRM.
comment: Code at: https://github.com/Jiacheng8/FADRM
☆ Teaching Time Series to See and Speak: Forecasting with Aligned Visual and Textual Perspectives
Time series forecasting traditionally relies on unimodal numerical inputs, which often struggle to capture high-level semantic patterns due to their dense and unstructured nature. While recent approaches have explored representing time series as text using large language models (LLMs), these methods remain limited by the discrete nature of token sequences and lack the perceptual intuition humans typically apply, such as interpreting visual patterns. In this paper, we propose a multimodal contrastive learning framework that transforms raw time series into structured visual and textual perspectives. Rather than using natural language or real-world images, we construct both modalities directly from numerical sequences. We then align these views in a shared semantic space via contrastive learning, enabling the model to capture richer and more complementary representations. Furthermore, we introduce a variate selection module that leverages the aligned representations to identify the most informative variables for multivariate forecasting. Extensive experiments on fifteen short-term and six long-term forecasting benchmarks demonstrate that our approach consistently outperforms strong unimodal and cross-modal baselines, highlighting the effectiveness of multimodal alignment in enhancing time series forecasting. Code is available at: https://github.com/Ironieser/TimesCLIP.
comment: Code: https://github.com/Ironieser/TimesCLIP
☆ Calligrapher: Freestyle Text Image Customization
We introduce Calligrapher, a novel diffusion-based framework that innovatively integrates advanced text customization with artistic typography for digital calligraphy and design applications. Addressing the challenges of precise style control and data dependency in typographic customization, our framework incorporates three key technical contributions. First, we develop a self-distillation mechanism that leverages the pre-trained text-to-image generative model itself alongside the large language model to automatically construct a style-centric typography benchmark. Second, we introduce a localized style injection framework via a trainable style encoder, which comprises both Qformer and linear layers, to extract robust style features from reference images. An in-context generation mechanism is also employed to directly embed reference images into the denoising process, further enhancing the refined alignment of target styles. Extensive quantitative and qualitative evaluations across diverse fonts and design contexts confirm Calligrapher's accurate reproduction of intricate stylistic details and precise glyph positioning. By automating high-quality, visually consistent typography, Calligrapher surpasses traditional models, empowering creative practitioners in digital art, branding, and contextual typographic design.
comment: Project page: https://calligrapher2025.github.io/Calligrapher Code: https://github.com/Calligrapher2025/Calligrapher
☆ TextMesh4D: High-Quality Text-to-4D Mesh Generation
Recent advancements in diffusion generative models significantly advanced image, video, and 3D content creation from user-provided text prompts. However, the challenging problem of dynamic 3D content generation (text-to-4D) with diffusion guidance remains largely unexplored. In this paper, we introduce TextMesh4D, a novel framework for high-quality text-to-4D generation. Our approach leverages per-face Jacobians as a differentiable mesh representation and decomposes 4D generation into two stages: static object creation and dynamic motion synthesis. We further propose a flexibility-rigidity regularization term to stabilize Jacobian optimization under video diffusion priors, ensuring robust geometric performance. Experiments demonstrate that TextMesh4D achieves state-of-the-art results in terms of temporal consistency, structural fidelity, and visual realism. Moreover, TextMesh4D operates with a low GPU memory overhead-requiring only a single 24GB GPU-offering a cost-effective yet high-quality solution for text-driven 4D mesh generation. The code will be released to facilitate future research in text-to-4D generation.
☆ Epona: Autoregressive Diffusion World Model for Autonomous Driving ICCV2025
Diffusion models have demonstrated exceptional visual quality in video generation, making them promising for autonomous driving world modeling. However, existing video diffusion-based world models struggle with flexible-length, long-horizon predictions and integrating trajectory planning. This is because conventional video diffusion models rely on global joint distribution modeling of fixed-length frame sequences rather than sequentially constructing localized distributions at each timestep. In this work, we propose Epona, an autoregressive diffusion world model that enables localized spatiotemporal distribution modeling through two key innovations: 1) Decoupled spatiotemporal factorization that separates temporal dynamics modeling from fine-grained future world generation, and 2) Modular trajectory and video prediction that seamlessly integrate motion planning with visual modeling in an end-to-end framework. Our architecture enables high-resolution, long-duration generation while introducing a novel chain-of-forward training strategy to address error accumulation in autoregressive loops. Experimental results demonstrate state-of-the-art performance with 7.4\% FVD improvement and minutes longer prediction duration compared to prior works. The learned world model further serves as a real-time motion planner, outperforming strong end-to-end planners on NAVSIM benchmarks. Code will be publicly available at \href{https://github.com/Kevin-thu/Epona/}{https://github.com/Kevin-thu/Epona/}.
comment: ICCV2025, Project Page: https://kevin-thu.github.io/Epona/
☆ Navigating with Annealing Guidance Scale in Diffusion Space
Denoising diffusion models excel at generating high-quality images conditioned on text prompts, yet their effectiveness heavily relies on careful guidance during the sampling process. Classifier-Free Guidance (CFG) provides a widely used mechanism for steering generation by setting the guidance scale, which balances image quality and prompt alignment. However, the choice of the guidance scale has a critical impact on the convergence toward a visually appealing and prompt-adherent image. In this work, we propose an annealing guidance scheduler which dynamically adjusts the guidance scale over time based on the conditional noisy signal. By learning a scheduling policy, our method addresses the temperamental behavior of CFG. Empirical results demonstrate that our guidance scheduler significantly enhances image quality and alignment with the text prompt, advancing the performance of text-to-image generation. Notably, our novel scheduler requires no additional activations or memory consumption, and can seamlessly replace the common classifier-free guidance, offering an improved trade-off between prompt alignment and quality.
comment: Project page: https://annealing-guidance.github.io/annealing-guidance/
☆ DenseWorld-1M: Towards Detailed Dense Grounded Caption in the Real World
Multimodal Large Language Models (MLLMs) demonstrate a complex understanding of scenes, benefiting from large-scale and high-quality datasets. Most existing caption datasets lack the ground locations and relations for visual entities. Several grounded caption datasets face the problems of missing detailed descriptions, relations, and massive object descriptions on high-resolution images. To fill this gap for the community, we present DenseWorld-1M, the first massive, detailed, dense grounded caption dataset in the real world. We design a three-stage labeling pipeline, containing open-world perception, detailed object caption generation, and dense caption merging. The first stage obtains entity-level masks and labels. The second stage generates the object-level, detailed captions with the guidance of masks and labels from the first stage. The final stage merges object captions and masks into spatial and relational dense captions. To accelerate the labeling process and improve caption quality, we present two VLM models: the Detailed Region Caption model and the Spatial Caption Merging model. Extensive experiments on various settings, including vision-language understanding, visual grounding, and region caption generation, demonstrate the effectiveness of our DenseWorld-1M dataset and labeling models.
comment: Datasets and Models: https://github.com/lxtGH/DenseWorld-1M
☆ MILo: Mesh-In-the-Loop Gaussian Splatting for Detailed and Efficient Surface Reconstruction
While recent advances in Gaussian Splatting have enabled fast reconstruction of high-quality 3D scenes from images, extracting accurate surface meshes remains a challenge. Current approaches extract the surface through costly post-processing steps, resulting in the loss of fine geometric details or requiring significant time and leading to very dense meshes with millions of vertices. More fundamentally, the a posteriori conversion from a volumetric to a surface representation limits the ability of the final mesh to preserve all geometric structures captured during training. We present MILo, a novel Gaussian Splatting framework that bridges the gap between volumetric and surface representations by differentiably extracting a mesh from the 3D Gaussians. We design a fully differentiable procedure that constructs the mesh-including both vertex locations and connectivity-at every iteration directly from the parameters of the Gaussians, which are the only quantities optimized during training. Our method introduces three key technical contributions: a bidirectional consistency framework ensuring both representations-Gaussians and the extracted mesh-capture the same underlying geometry during training; an adaptive mesh extraction process performed at each training iteration, which uses Gaussians as differentiable pivots for Delaunay triangulation; a novel method for computing signed distance values from the 3D Gaussians that enables precise surface extraction while avoiding geometric erosion. Our approach can reconstruct complete scenes, including backgrounds, with state-of-the-art quality while requiring an order of magnitude fewer mesh vertices than previous methods. Due to their light weight and empty interior, our meshes are well suited for downstream applications such as physics simulations or animation.
comment: 10 pages. A presentation video of our approach is available at https://youtu.be/_SGNhhNz0fE
☆ MotionGPT3: Human Motion as a Second Modality
Though recent advances in multimodal models have demonstrated strong capabilities and opportunities in unified understanding and generation, the development of unified motion-language models remains underexplored. To enable such models with high-fidelity human motion, two core challenges must be addressed. The first is the reconstruction gap between the continuous motion modality and discrete representation in an autoregressive manner, and the second is the degradation of language intelligence during unified training. Inspired by the mixture of experts, we propose MotionGPT3, a bimodal motion-language model that treats human motion as a second modality, decoupling motion modeling via separate model parameters and enabling both effective cross-modal interaction and efficient multimodal scaling training. To preserve language intelligence, the text branch retains the original structure and parameters of the pretrained language model, while a new motion branch is integrated via a shared attention mechanism, enabling bidirectional information flow between two modalities. We first employ a motion Variational Autoencoder (VAE) to encode raw human motion into latent representations. Based on this continuous latent space, the motion branch predicts motion latents directly from intermediate hidden states using a diffusion head, bypassing discrete tokenization. Extensive experiments show that our approach achieves competitive performance on both motion understanding and generation tasks while preserving strong language capabilities, establishing a unified bimodal motion diffusion framework within an autoregressive manner.
comment: 21 pages, 8 figures
☆ Imagine for Me: Creative Conceptual Blending of Real Images and Text via Blended Attention
Blending visual and textual concepts into a new visual concept is a unique and powerful trait of human beings that can fuel creativity. However, in practice, cross-modal conceptual blending for humans is prone to cognitive biases, like design fixation, which leads to local minima in the design space. In this paper, we propose a T2I diffusion adapter "IT-Blender" that can automate the blending process to enhance human creativity. Prior works related to cross-modal conceptual blending are limited in encoding a real image without loss of details or in disentangling the image and text inputs. To address these gaps, IT-Blender leverages pretrained diffusion models (SD and FLUX) to blend the latent representations of a clean reference image with those of the noisy generated image. Combined with our novel blended attention, IT-Blender encodes the real reference image without loss of details and blends the visual concept with the object specified by the text in a disentangled way. Our experiment results show that IT-Blender outperforms the baselines by a large margin in blending visual and textual concepts, shedding light on the new application of image generative models to augment human creativity.
comment: Project website is available at https://imagineforme.github.io/
☆ C3VDv2 -- Colonoscopy 3D video dataset with enhanced realism
Computer vision techniques have the potential to improve the diagnostic performance of colonoscopy, but the lack of 3D colonoscopy datasets for training and validation hinders their development. This paper introduces C3VDv2, the second version (v2) of the high-definition Colonoscopy 3D Video Dataset, featuring enhanced realism designed to facilitate the quantitative evaluation of 3D colon reconstruction algorithms. 192 video sequences were captured by imaging 60 unique, high-fidelity silicone colon phantom segments. Ground truth depth, surface normals, optical flow, occlusion, six-degree-of-freedom pose, coverage maps, and 3D models are provided for 169 colonoscopy videos. Eight simulated screening colonoscopy videos acquired by a gastroenterologist are provided with ground truth poses. The dataset includes 15 videos featuring colon deformations for qualitative assessment. C3VDv2 emulates diverse and challenging scenarios for 3D reconstruction algorithms, including fecal debris, mucous pools, blood, debris obscuring the colonoscope lens, en-face views, and fast camera motion. The enhanced realism of C3VDv2 will allow for more robust and representative development and evaluation of 3D reconstruction algorithms.
comment: 19 pages, 7 figures
☆ Continual Adaptation: Environment-Conditional Parameter Generation for Object Detection in Dynamic Scenarios
In practice, environments constantly change over time and space, posing significant challenges for object detectors trained based on a closed-set assumption, i.e., training and test data share the same distribution. To this end, continual test-time adaptation has attracted much attention, aiming to improve detectors' generalization by fine-tuning a few specific parameters, e.g., BatchNorm layers. However, based on a small number of test images, fine-tuning certain parameters may affect the representation ability of other fixed parameters, leading to performance degradation. Instead, we explore a new mechanism, i.e., converting the fine-tuning process to a specific-parameter generation. Particularly, we first design a dual-path LoRA-based domain-aware adapter that disentangles features into domain-invariant and domain-specific components, enabling efficient adaptation. Additionally, a conditional diffusion-based parameter generation mechanism is presented to synthesize the adapter's parameters based on the current environment, preventing the optimization from getting stuck in local optima. Finally, we propose a class-centered optimal transport alignment method to mitigate catastrophic forgetting. Extensive experiments conducted on various continuous domain adaptive object detection tasks demonstrate the effectiveness. Meanwhile, visualization results show that the representation extracted by the generated parameters can capture more object-related information and strengthen the generalization ability.
☆ A Survey on Vision-Language-Action Models for Autonomous Driving
The rapid progress of multimodal large language models (MLLM) has paved the way for Vision-Language-Action (VLA) paradigms, which integrate visual perception, natural language understanding, and control within a single policy. Researchers in autonomous driving are actively adapting these methods to the vehicle domain. Such models promise autonomous vehicles that can interpret high-level instructions, reason about complex traffic scenes, and make their own decisions. However, the literature remains fragmented and is rapidly expanding. This survey offers the first comprehensive overview of VLA for Autonomous Driving (VLA4AD). We (i) formalize the architectural building blocks shared across recent work, (ii) trace the evolution from early explainer to reasoning-centric VLA models, and (iii) compare over 20 representative models according to VLA's progress in the autonomous driving domain. We also consolidate existing datasets and benchmarks, highlighting protocols that jointly measure driving safety, accuracy, and explanation quality. Finally, we detail open challenges - robustness, real-time efficiency, and formal verification - and outline future directions of VLA4AD. This survey provides a concise yet complete reference for advancing interpretable socially aligned autonomous vehicles. Github repo is available at \href{https://github.com/JohnsonJiang1996/Awesome-VLA4AD}{SicongJiang/Awesome-VLA4AD}.
Foundation Models for Zero-Shot Segmentation of Scientific Images without AI-Ready Data
Zero-shot and prompt-based technologies capitalized on using frequently occurring images to transform visual reasoning tasks, which explains why such technologies struggle with valuable yet scarce scientific image sets. In this work, we propose Zenesis, a comprehensive no-code interactive platform designed to minimize barriers posed by data readiness for scientific images. We develop lightweight multi-modal adaptation techniques that enable zero-shot operation on raw scientific data, along with human-in-the-loop refinement and heuristic-based temporal enhancement options. We demonstrate the performance of our approach through comprehensive comparison and validation on challenging Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) data of catalyst-loaded membranes. Zenesis significantly outperforms baseline methods, achieving an average accuracy of 0.947, an Intersection over Union (IOU) of 0.858, and a Dice score of 0.923 for amorphous catalyst samples and accuracy of 0.987, an IOU of 0.857, and a Dice score of 0.923 for crystalline samples. These results mark a substantial improvement over traditional methods like Otsu thresholding and even advanced models like Segment Anything Model (SAM) when used in isolation. Our results demonstrate that Zenesis is a powerful tool for scientific applications, particularly in fields where high-quality annotated datasets are unavailable, accelerating accurate analysis of experimental imaging.
comment: This manuscript is a draft on arxiv. A final version has been submitted to the 59th ICPP 2025, DRAI workshop
☆ Supervised Diffusion-Model-Based PET Image Reconstruction MICCAI 2025
Diffusion models (DMs) have recently been introduced as a regularizing prior for PET image reconstruction, integrating DMs trained on high-quality PET images with unsupervised schemes that condition on measured data. While these approaches have potential generalization advantages due to their independence from the scanner geometry and the injected activity level, they forgo the opportunity to explicitly model the interaction between the DM prior and noisy measurement data, potentially limiting reconstruction accuracy. To address this, we propose a supervised DM-based algorithm for PET reconstruction. Our method enforces the non-negativity of PET's Poisson likelihood model and accommodates the wide intensity range of PET images. Through experiments on realistic brain PET phantoms, we demonstrate that our approach outperforms or matches state-of-the-art deep learning-based methods quantitatively across a range of dose levels. We further conduct ablation studies to demonstrate the benefits of the proposed components in our model, as well as its dependence on training data, parameter count, and number of diffusion steps. Additionally, we show that our approach enables more accurate posterior sampling than unsupervised DM-based methods, suggesting improved uncertainty estimation. Finally, we extend our methodology to a practical approach for fully 3D PET and present example results from real [$^{18}$F]FDG brain PET data.
comment: 12 pages, 6 figures. Submitted to MICCAI 2025, not peer-reviewed
☆ Ella: Embodied Social Agents with Lifelong Memory
We introduce Ella, an embodied social agent capable of lifelong learning within a community in a 3D open world, where agents accumulate experiences and acquire knowledge through everyday visual observations and social interactions. At the core of Ella's capabilities is a structured, long-term multimodal memory system that stores, updates, and retrieves information effectively. It consists of a name-centric semantic memory for organizing acquired knowledge and a spatiotemporal episodic memory for capturing multimodal experiences. By integrating this lifelong memory system with foundation models, Ella retrieves relevant information for decision-making, plans daily activities, builds social relationships, and evolves autonomously while coexisting with other intelligent beings in the open world. We conduct capability-oriented evaluations in a dynamic 3D open world where 15 agents engage in social activities for days and are assessed with a suite of unseen controlled evaluations. Experimental results show that Ella can influence, lead, and cooperate with other agents well to achieve goals, showcasing its ability to learn effectively through observation and social interaction. Our findings highlight the transformative potential of combining structured memory systems with foundation models for advancing embodied intelligence. More videos can be found at https://umass-embodied-agi.github.io/Ella/.
☆ EXPERT: An Explainable Image Captioning Evaluation Metric with Structured Explanations ACL 2025
Recent advances in large language models and vision-language models have led to growing interest in explainable evaluation metrics for image captioning. However, these metrics generate explanations without standardized criteria, and the overall quality of the generated explanations remains unverified. In this paper, we propose EXPERT, a reference-free evaluation metric that provides structured explanations based on three fundamental criteria: fluency, relevance, and descriptiveness. By constructing large-scale datasets of high-quality structured explanations, we develop a two-stage evaluation template to effectively supervise a vision-language model for both scoring and explanation generation. EXPERT achieves state-of-the-art results on benchmark datasets while providing significantly higher-quality explanations than existing metrics, as validated through comprehensive human evaluation. Our code and datasets are available at https://github.com/hjkim811/EXPERT.
comment: Accepted at ACL 2025 Findings
☆ ShapeKit
In this paper, we present a practical approach to improve anatomical shape accuracy in whole-body medical segmentation. Our analysis shows that a shape-focused toolkit can enhance segmentation performance by over 8%, without the need for model re-training or fine-tuning. In comparison, modifications to model architecture typically lead to marginal gains of less than 3%. Motivated by this observation, we introduce ShapeKit, a flexible and easy-to-integrate toolkit designed to refine anatomical shapes. This work highlights the underappreciated value of shape-based tools and calls attention to their potential impact within the medical segmentation community.
☆ The Illusion of Progress? A Critical Look at Test-Time Adaptation for Vision-Language Models
Test-time adaptation (TTA) methods have gained significant attention for enhancing the performance of vision-language models (VLMs) such as CLIP during inference, without requiring additional labeled data. However, current TTA researches generally suffer from major limitations such as duplication of baseline results, limited evaluation metrics, inconsistent experimental settings, and insufficient analysis. These problems hinder fair comparisons between TTA methods and obscure their practical strengths and weaknesses. To address these challenges, we introduce TTA-VLM, a comprehensive benchmark for evaluating TTA methods on VLMs. Our benchmark implements 8 episodic TTA and 7 online TTA methods within a unified and reproducible framework, and evaluates them across 15 widely used datasets. Unlike prior studies focused solely on CLIP, we extend the evaluation to SigLIP--a model trained with a Sigmoid loss--and include training-time tuning methods such as CoOp, MaPLe, and TeCoA to assess generality. Beyond classification accuracy, TTA-VLM incorporates various evaluation metrics, including robustness, calibration, out-of-distribution detection, and stability, enabling a more holistic assessment of TTA methods. Through extensive experiments, we find that 1) existing TTA methods produce limited gains compared to the previous pioneering work; 2) current TTA methods exhibit poor collaboration with training-time fine-tuning methods; 3) accuracy gains frequently come at the cost of reduced model trustworthiness. We release TTA-VLM to provide fair comparison and comprehensive evaluation of TTA methods for VLMs, and we hope it encourages the community to develop more reliable and generalizable TTA strategies.
comment: Github link: https://github.com/TomSheng21/tta-vlm
☆ StyleDrive: Towards Driving-Style Aware Benchmarking of End-To-End Autonomous Driving
While personalization has been explored in traditional autonomous driving systems, it remains largely overlooked in end-to-end autonomous driving (E2EAD), despite its growing prominence. This gap is critical, as user-aligned behavior is essential for trust, comfort, and widespread adoption of autonomous vehicles. A core challenge is the lack of large-scale real-world datasets annotated with diverse and fine-grained driving preferences, hindering the development and evaluation of personalized E2EAD models. In this work, we present the first large-scale real-world dataset enriched with annotations capturing diverse driving preferences, establishing a foundation for personalization in E2EAD. We extract static environmental features from real-world road topology and infer dynamic contextual cues using a fine-tuned visual language model (VLM), enabling consistent and fine-grained scenario construction. Based on these scenarios, we derive objective preference annotations through behavioral distribution analysis and rule-based heuristics. To address the inherent subjectivity of driving style, we further employ the VLM to generate subjective annotations by jointly modeling scene semantics and driver behavior. Final high-quality labels are obtained through a human-in-the-loop verification process that fuses both perspectives. Building on this dataset, we propose the first benchmark for evaluating personalized E2EAD models. We assess several state-of-the-art models with and without preference conditioning, demonstrating that incorporating personalized preferences results in behavior more aligned with human driving. Our work lays the foundation for personalized E2EAD by providing a standardized platform to systematically integrate human preferences into data-driven E2EAD systems, catalyzing future research in human-centric autonomy.
comment: 14 pages, 4 figures
☆ Toward Simple and Robust Contrastive Explanations for Image Classification by Leveraging Instance Similarity and Concept Relevance
Understanding why a classification model prefers one class over another for an input instance is the challenge of contrastive explanation. This work implements concept-based contrastive explanations for image classification by leveraging the similarity of instance embeddings and relevance of human-understandable concepts used by a fine-tuned deep learning model. Our approach extracts concepts with their relevance score, computes contrasts for similar instances, and evaluates the resulting contrastive explanations based on explanation complexity. Robustness is tested for different image augmentations. Two research questions are addressed: (1) whether explanation complexity varies across different relevance ranges, and (2) whether explanation complexity remains consistent under image augmentations such as rotation and noise. The results confirm that for our experiments higher concept relevance leads to shorter, less complex explanations, while lower relevance results in longer, more diffuse explanations. Additionally, explanations show varying degrees of robustness. The discussion of these findings offers insights into the potential of building more interpretable and robust AI systems.
comment: 17 pages, 6 figures, KI2025 - 48th German Conference on Artificial Intelligence
☆ Visual and Memory Dual Adapter for Multi-Modal Object Tracking
Prompt-learning-based multi-modal trackers have achieved promising progress by employing lightweight visual adapters to incorporate auxiliary modality features into frozen foundation models. However, existing approaches often struggle to learn reliable prompts due to limited exploitation of critical cues across frequency and temporal domains. In this paper, we propose a novel visual and memory dual adapter (VMDA) to construct more robust and discriminative representations for multi-modal tracking. Specifically, we develop a simple but effective visual adapter that adaptively transfers discriminative cues from auxiliary modality to dominant modality by jointly modeling the frequency, spatial, and channel-wise features. Additionally, we design the memory adapter inspired by the human memory mechanism, which stores global temporal cues and performs dynamic update and retrieval operations to ensure the consistent propagation of reliable temporal information across video sequences. Extensive experiments demonstrate that our method achieves state-of-the-art performance on the various multi-modal tracking tasks, including RGB-Thermal, RGB-Depth, and RGB-Event tracking. Code and models are available at https://github.com/xuboyue1999/mmtrack.git.
☆ Evaluating the Impact of Khmer Font Types on Text Recognition
Text recognition is significantly influenced by font types, especially for complex scripts like Khmer. The variety of Khmer fonts, each with its unique character structure, presents challenges for optical character recognition (OCR) systems. In this study, we evaluate the impact of 19 randomly selected Khmer font types on text recognition accuracy using Pytesseract. The fonts include Angkor, Battambang, Bayon, Bokor, Chenla, Dangrek, Freehand, Kh Kompong Chhnang, Kh SN Kampongsom, Khmer, Khmer CN Stueng Songke, Khmer Savuth Pen, Metal, Moul, Odor MeanChey, Preah Vihear, Siemreap, Sithi Manuss, and iSeth First. Our comparison of OCR performance across these fonts reveals that Khmer, Odor MeanChey, Siemreap, Sithi Manuss, and Battambang achieve high accuracy, while iSeth First, Bayon, and Dangrek perform poorly. This study underscores the critical importance of font selection in optimizing Khmer text recognition and provides valuable insights for developing more robust OCR systems.
☆ GaVS: 3D-Grounded Video Stabilization via Temporally-Consistent Local Reconstruction and Rendering
Video stabilization is pivotal for video processing, as it removes unwanted shakiness while preserving the original user motion intent. Existing approaches, depending on the domain they operate, suffer from several issues (e.g. geometric distortions, excessive cropping, poor generalization) that degrade the user experience. To address these issues, we introduce \textbf{GaVS}, a novel 3D-grounded approach that reformulates video stabilization as a temporally-consistent `local reconstruction and rendering' paradigm. Given 3D camera poses, we augment a reconstruction model to predict Gaussian Splatting primitives, and finetune it at test-time, with multi-view dynamics-aware photometric supervision and cross-frame regularization, to produce temporally-consistent local reconstructions. The model are then used to render each stabilized frame. We utilize a scene extrapolation module to avoid frame cropping. Our method is evaluated on a repurposed dataset, instilled with 3D-grounded information, covering samples with diverse camera motions and scene dynamics. Quantitatively, our method is competitive with or superior to state-of-the-art 2D and 2.5D approaches in terms of conventional task metrics and new geometry consistency. Qualitatively, our method produces noticeably better results compared to alternatives, validated by the user study.
comment: siggraph 2025, project website: https://sinoyou.github.io/gavs
☆ Thinking with Images for Multimodal Reasoning: Foundations, Methods, and Future Frontiers
Recent progress in multimodal reasoning has been significantly advanced by textual Chain-of-Thought (CoT), a paradigm where models conduct reasoning within language. This text-centric approach, however, treats vision as a static, initial context, creating a fundamental "semantic gap" between rich perceptual data and discrete symbolic thought. Human cognition often transcends language, utilizing vision as a dynamic mental sketchpad. A similar evolution is now unfolding in AI, marking a fundamental paradigm shift from models that merely think about images to those that can truly think with images. This emerging paradigm is characterized by models leveraging visual information as intermediate steps in their thought process, transforming vision from a passive input into a dynamic, manipulable cognitive workspace. In this survey, we chart this evolution of intelligence along a trajectory of increasing cognitive autonomy, which unfolds across three key stages: from external tool exploration, through programmatic manipulation, to intrinsic imagination. To structure this rapidly evolving field, our survey makes four key contributions. (1) We establish the foundational principles of the think with image paradigm and its three-stage framework. (2) We provide a comprehensive review of the core methods that characterize each stage of this roadmap. (3) We analyze the critical landscape of evaluation benchmarks and transformative applications. (4) We identify significant challenges and outline promising future directions. By providing this structured overview, we aim to offer a clear roadmap for future research towards more powerful and human-aligned multimodal AI.
comment: We maintain a real-time GitHub repository tracking progress at: https://github.com/zhaochen0110/Awesome_Think_With_Images
☆ Three-dimensional end-to-end deep learning for brain MRI analysis
Deep learning (DL) methods are increasingly outperforming classical approaches in brain imaging, yet their generalizability across diverse imaging cohorts remains inadequately assessed. As age and sex are key neurobiological markers in clinical neuroscience, influencing brain structure and disease risk, this study evaluates three of the existing three-dimensional architectures, namely Simple Fully Connected Network (SFCN), DenseNet, and Shifted Window (Swin) Transformers, for age and sex prediction using T1-weighted MRI from four independent cohorts: UK Biobank (UKB, n=47,390), Dallas Lifespan Brain Study (DLBS, n=132), Parkinson's Progression Markers Initiative (PPMI, n=108 healthy controls), and Information eXtraction from Images (IXI, n=319). We found that SFCN consistently outperformed more complex architectures with AUC of 1.00 [1.00-1.00] in UKB (internal test set) and 0.85-0.91 in external test sets for sex classification. For the age prediction task, SFCN demonstrated a mean absolute error (MAE) of 2.66 (r=0.89) in UKB and 4.98-5.81 (r=0.55-0.70) across external datasets. Pairwise DeLong and Wilcoxon signed-rank tests with Bonferroni corrections confirmed SFCN's superiority over Swin Transformer across most cohorts (p<0.017, for three comparisons). Explainability analysis further demonstrates the regional consistency of model attention across cohorts and specific to each task. Our findings reveal that simpler convolutional networks outperform the denser and more complex attention-based DL architectures in brain image analysis by demonstrating better generalizability across different datasets.
☆ GroundingDINO-US-SAM: Text-Prompted Multi-Organ Segmentation in Ultrasound with LoRA-Tuned Vision-Language Models
Accurate and generalizable object segmentation in ultrasound imaging remains a significant challenge due to anatomical variability, diverse imaging protocols, and limited annotated data. In this study, we propose a prompt-driven vision-language model (VLM) that integrates Grounding DINO with SAM2 to enable object segmentation across multiple ultrasound organs. A total of 18 public ultrasound datasets, encompassing the breast, thyroid, liver, prostate, kidney, and paraspinal muscle, were utilized. These datasets were divided into 15 for fine-tuning and validation of Grounding DINO using Low Rank Adaptation (LoRA) to the ultrasound domain, and 3 were held out entirely for testing to evaluate performance in unseen distributions. Comprehensive experiments demonstrate that our approach outperforms state-of-the-art segmentation methods, including UniverSeg, MedSAM, MedCLIP-SAM, BiomedParse, and SAMUS on most seen datasets while maintaining strong performance on unseen datasets without additional fine-tuning. These results underscore the promise of VLMs in scalable and robust ultrasound image analysis, reducing dependence on large, organ-specific annotated datasets. We will publish our code on code.sonography.ai after acceptance.
comment: 11 pages, 3 figures, 6 figures
☆ PriOr-Flow: Enhancing Primitive Panoramic Optical Flow with Orthogonal View
Panoramic optical flow enables a comprehensive understanding of temporal dynamics across wide fields of view. However, severe distortions caused by sphere-to-plane projections, such as the equirectangular projection (ERP), significantly degrade the performance of conventional perspective-based optical flow methods, especially in polar regions. To address this challenge, we propose PriOr-Flow, a novel dual-branch framework that leverages the low-distortion nature of the orthogonal view to enhance optical flow estimation in these regions. Specifically, we introduce the Dual-Cost Collaborative Lookup (DCCL) operator, which jointly retrieves correlation information from both the primitive and orthogonal cost volumes, effectively mitigating distortion noise during cost volume construction. Furthermore, our Ortho-Driven Distortion Compensation (ODDC) module iteratively refines motion features from both branches, further suppressing polar distortions. Extensive experiments demonstrate that PriOr-Flow is compatible with various perspective-based iterative optical flow methods and consistently achieves state-of-the-art performance on publicly available panoramic optical flow datasets, setting a new benchmark for wide-field motion estimation. The code is publicly available at: https://github.com/longliangLiu/PriOr-Flow.
comment: 11 pages
☆ Spurious-Aware Prototype Refinement for Reliable Out-of-Distribution Detection
Out-of-distribution (OOD) detection is crucial for ensuring the reliability and safety of machine learning models in real-world applications, where they frequently face data distributions unseen during training. Despite progress, existing methods are often vulnerable to spurious correlations that mislead models and compromise robustness. To address this, we propose SPROD, a novel prototype-based OOD detection approach that explicitly addresses the challenge posed by unknown spurious correlations. Our post-hoc method refines class prototypes to mitigate bias from spurious features without additional data or hyperparameter tuning, and is broadly applicable across diverse backbones and OOD detection settings. We conduct a comprehensive spurious correlation OOD detection benchmarking, comparing our method against existing approaches and demonstrating its superior performance across challenging OOD datasets, such as CelebA, Waterbirds, UrbanCars, Spurious Imagenet, and the newly introduced Animals MetaCoCo. On average, SPROD improves AUROC by 4.7% and FPR@95 by 9.3% over the second best.
☆ Puzzles: Unbounded Video-Depth Augmentation for Scalable End-to-End 3D Reconstruction
Multi-view 3D reconstruction remains a core challenge in computer vision. Recent methods, such as DUST3R and its successors, directly regress pointmaps from image pairs without relying on known scene geometry or camera parameters. However, the performance of these models is constrained by the diversity and scale of available training data. In this work, we introduce Puzzles, a data augmentation strategy that synthesizes an unbounded volume of high-quality posed video-depth data from a single image or video clip. By simulating diverse camera trajectories and realistic scene geometry through targeted image transformations, Puzzles significantly enhances data variety. Extensive experiments show that integrating Puzzles into existing video-based 3D reconstruction pipelines consistently boosts performance without modifying the underlying network architecture. Notably, models trained on only ten percent of the original data augmented with Puzzles still achieve accuracy comparable to those trained on the full dataset. Code is available at https://jiahao-ma.github.io/puzzles/.
comment: Feed-forward 3D reconstruction, Data Augmentation
☆ VMoBA: Mixture-of-Block Attention for Video Diffusion Models
The quadratic complexity of full attention mechanisms poses a significant bottleneck for Video Diffusion Models (VDMs) aiming to generate long-duration, high-resolution videos. While various sparse attention methods have been proposed, many are designed as training-free inference accelerators or do not optimally capture the unique spatio-temporal characteristics inherent in video data when trained natively. This paper introduces Video Mixture of Block Attention (VMoBA), a novel sparse attention mechanism specifically adapted for VDMs. Motivated by an in-depth analysis of attention patterns within pre-trained video transformers, which revealed strong spatio-temporal locality, varying query importance, and head-specific concentration levels, VMoBA enhances the original MoBA framework with three key modifications: (1) a layer-wise recurrent block partition scheme (1D-2D-3D) to dynamically adapt to diverse spatio-temporal attention patterns and improve efficiency; (2) global block selection to prioritize the most salient query-key block interactions across an entire attention head; and (3) threshold-based block selection to dynamically determine the number of attended blocks based on their cumulative similarity. Extensive experiments demonstrate that VMoBA significantly accelerates the training of VDMs on longer sequences, achieving 2.92x FLOPs and 1.48x latency speedup, while attaining comparable or even superior generation quality to full attention. Furthermore, VMoBA exhibits competitive performance in training-free inference, offering 2.40x FLOPs and 1.35x latency speedup for high-res video generation.
comment: Code is at https://github.com/KwaiVGI/VMoBA
☆ A Closer Look at Conditional Prompt Tuning for Vision-Language Models
Despite the great promise of Prompt Tuning (PT) in adapting large Vision-Language Pretrained Models (VLPMs) to downstream tasks, they often struggle to overcome the Base-New Tradeoff (BNT) dilemma: as VLPMs are better tuned to a base task, their ability to generalize to new tasks diminishes. Recent work on conditional PT addresses this problem by replacing static prompts with dynamic Visual Image Information (VII)-conditioned prompts, improving the model's generalization to new tasks to some extent. In this work, we first identify a critical issue with existing conditional PT methods: using VII as the "condition" of prompts yields suboptimal performance, and even random noise-conditioned prompts can outperform the VII-conditioned counterparts. On further analysis, we find that learning dynamic prompts conditioned on Textual Class Information (TCI) is the key to solving the BNT problem. Motivated by this, we then propose Class-adaptive Prompt Tuning (CaPT), which enables fast adaptation of tuned models to new classes by learning TCI-conditioned prompts from base classes. Remarkably, CaPT can be used as a plugin to mitigate the BNT problem for existing unconditional PT schemes. Extensive experiments on 11 datasets show that CaPT consistently improves the performance of five strong unconditional PT baselines with negligible additional computational cost. Additionally, by integrating CaPT with our recently proposed DePT framework, we devise a new conditional PT approach, termed DeCaPT, which outperforms the H ACC of the state-of-the-art conditional PT scheme by 3.49%, averaged over the 11 datasets. Code: https://github.com/Koorye/CaPT.
comment: 18 pages
☆ HiNeuS: High-fidelity Neural Surface Mitigating Low-texture and Reflective Ambiguity ICCV
Neural surface reconstruction faces persistent challenges in reconciling geometric fidelity with photometric consistency under complex scene conditions. We present HiNeuS, a unified framework that holistically addresses three core limitations in existing approaches: multi-view radiance inconsistency, missing keypoints in textureless regions, and structural degradation from over-enforced Eikonal constraints during joint optimization. To resolve these issues through a unified pipeline, we introduce: 1) Differential visibility verification through SDF-guided ray tracing, resolving reflection ambiguities via continuous occlusion modeling; 2) Planar-conformal regularization via ray-aligned geometry patches that enforce local surface coherence while preserving sharp edges through adaptive appearance weighting; and 3) Physically-grounded Eikonal relaxation that dynamically modulates geometric constraints based on local radiance gradients, enabling detail preservation without sacrificing global regularity. Unlike prior methods that handle these aspects through sequential optimizations or isolated modules, our approach achieves cohesive integration where appearance-geometry constraints evolve synergistically throughout training. Comprehensive evaluations across synthetic and real-world datasets demonstrate state-of-the-art performance, including a 21.4% reduction in Chamfer distance over reflection-aware baselines and 2.32 dB PSNR improvement against neural rendering counterparts. Qualitative analyses reveal superior capability in recovering specular instruments, urban layouts with centimeter-scale infrastructure, and low-textured surfaces without local patch collapse. The method's generalizability is further validated through successful application to inverse rendering tasks, including material decomposition and view-consistent relighting.
comment: Published in International Conference on Computer Vision (ICCV) 2025
☆ RGC-VQA: An Exploration Database for Robotic-Generated Video Quality Assessment
As camera-equipped robotic platforms become increasingly integrated into daily life, robotic-generated videos have begun to appear on streaming media platforms, enabling us to envision a future where humans and robots coexist. We innovatively propose the concept of Robotic-Generated Content (RGC) to term these videos generated from egocentric perspective of robots. The perceptual quality of RGC videos is critical in human-robot interaction scenarios, and RGC videos exhibit unique distortions and visual requirements that differ markedly from those of professionally-generated content (PGC) videos and user-generated content (UGC) videos. However, dedicated research on quality assessment of RGC videos is still lacking. To address this gap and to support broader robotic applications, we establish the first Robotic-Generated Content Database (RGCD), which contains a total of 2,100 videos drawn from three robot categories and sourced from diverse platforms. A subjective VQA experiment is conducted subsequently to assess human visual perception of robotic-generated videos. Finally, we conduct a benchmark experiment to evaluate the performance of 11 state-of-the-art VQA models on our database. Experimental results reveal significant limitations in existing VQA models when applied to complex, robotic-generated content, highlighting a critical need for RGC-specific VQA models. Our RGCD is publicly available at: https://github.com/IntMeGroup/RGC-VQA.
☆ Refine Any Object in Any Scene
Viewpoint missing of objects is common in scene reconstruction, as camera paths typically prioritize capturing the overall scene structure rather than individual objects. This makes it highly challenging to achieve high-fidelity object-level modeling while maintaining accurate scene-level representation. Addressing this issue is critical for advancing downstream tasks requiring detailed object understanding and appearance modeling. In this paper, we introduce Refine Any object In any ScenE (RAISE), a novel 3D enhancement framework that leverages 3D generative priors to recover fine-grained object geometry and appearance under missing views. Starting from substituting degraded objects with proxies, via a 3D generative model with strong 3D understanding, RAISE progressively refines geometry and texture by aligning each proxy to its degraded counterpart in 7-DOF pose, followed by correcting spatial and appearance inconsistencies via registration-constrained enhancement. This two-stage refinement ensures the high-fidelity geometry and appearance of the original object in unseen views while maintaining consistency in spatial positioning, observed geometry, and appearance. Extensive experiments on challenging benchmarks show that RAISE significantly outperforms state-of-the-art methods in both novel view synthesis and geometry completion tasks. RAISE is made publicly available at https://github.com/PolySummit/RAISE.
comment: 9 pages with 6 figures
☆ PointSSIM: A novel low dimensional resolution invariant image-to-image comparison metric
This paper presents PointSSIM, a novel low-dimensional image-to-image comparison metric that is resolution invariant. Drawing inspiration from the structural similarity index measure and mathematical morphology, PointSSIM enables robust comparison across binary images of varying resolutions by transforming them into marked point pattern representations. The key features of the image, referred to as anchor points, are extracted from binary images by identifying locally adaptive maxima from the minimal distance transform. Image comparisons are then performed using a summary vector, capturing intensity, connectivity, complexity, and structural attributes. Results show that this approach provides an efficient and reliable method for image comparison, particularly suited to applications requiring structural analysis across different resolutions.
comment: 13 pages, 20 figures
☆ Low-latency vision transformers via large-scale multi-head attention
The emergence of spontaneous symmetry breaking among a few heads of multi-head attention (MHA) across transformer blocks in classification tasks was recently demonstrated through the quantification of single-nodal performance (SNP). This finding indicates that each head focuses its attention on a subset of labels through cooperation among its SNPs. This underlying learning mechanism is generalized to large-scale MHA (LS-MHA) using a single matrix value representing single-head performance (SHP), analogous to single-filter performance in convolutional neural networks (CNNs). The results indicate that each SHP matrix comprises multiple unit clusters such that each label being explicitly recognized by a few heads with negligible noise. This leads to an increased signal-to-noise ratio (SNR) along the transformer blocks, thereby improving classification accuracy. These features give rise to several distinct vision transformer (ViT) architectures that achieve the same accuracy but differ in their LS-MHA structures. As a result, their soft committee yields superior accuracy, an outcome not typically observed in CNNs which rely on hundreds of filters. In addition, a significant reduction in latency is achieved without affecting the accuracy by replacing the initial transformer blocks with convolutional layers. This substitution accelerates early-stage learning, which is then improved by subsequent transformer layers. The extension of this learning mechanism to natural language processing tasks, based on quantitative differences between CNNs and ViT architectures, has the potential to yield new insights in deep learning. The findings are demonstrated using compact convolutional transformer architectures trained on the CIFAR-100 dataset.
comment: 23 pages, 4 figures, 7 tables
☆ Spatially Gene Expression Prediction using Dual-Scale Contrastive Learning MICCAI 2025
Spatial transcriptomics (ST) provides crucial insights into tissue micro-environments, but is limited to its high cost and complexity. As an alternative, predicting gene expression from pathology whole slide images (WSI) is gaining increasing attention. However, existing methods typically rely on single patches or a single pathology modality, neglecting the complex spatial and molecular interactions between target and neighboring information (e.g., gene co-expression). This leads to a failure in establishing connections among adjacent regions and capturing intricate cross-modal relationships. To address these issues, we propose NH2ST, a framework that integrates spatial context and both pathology and gene modalities for gene expression prediction. Our model comprises a query branch and a neighbor branch to process paired target patch and gene data and their neighboring regions, where cross-attention and contrastive learning are employed to capture intrinsic associations and ensure alignments between pathology and gene expression. Extensive experiments on six datasets demonstrate that our model consistently outperforms existing methods, achieving over 20% in PCC metrics. Codes are available at https://github.com/MCPathology/NH2ST
comment: Our paper has been accepted by MICCAI 2025
☆ Flash-VStream: Efficient Real-Time Understanding for Long Video Streams ICCV 2025
Benefiting from the advances in large language models and cross-modal alignment, existing multimodal large language models have achieved prominent performance in image and short video understanding. However, the understanding of long videos is still challenging, as their long-context nature results in significant computational and memory overhead. Most existing work treats long videos in the same way as short videos, which is inefficient for real-world applications and hard to generalize to even longer videos. To address these issues, we propose Flash-VStream, an efficient video language model capable of processing extremely long videos and responding to user queries in real time. Particularly, we design a Flash Memory module, containing a low-capacity context memory to aggregate long-context temporal information and model the distribution of information density, and a high-capacity augmentation memory to retrieve detailed spatial information based on this distribution. Compared to existing models, Flash-VStream achieves significant reductions in inference latency. Extensive experiments on long video benchmarks and comprehensive video benchmarks, i.e., EgoSchema, MLVU, LVBench, MVBench and Video-MME, demonstrate the state-of-the-art performance and outstanding efficiency of our method. Code is available at https://github.com/IVGSZ/Flash-VStream.
comment: Accepted by ICCV 2025
☆ Supercm: Revisiting Clustering for Semi-Supervised Learning
The development of semi-supervised learning (SSL) has in recent years largely focused on the development of new consistency regularization or entropy minimization approaches, often resulting in models with complex training strategies to obtain the desired results. In this work, we instead propose a novel approach that explicitly incorporates the underlying clustering assumption in SSL through extending a recently proposed differentiable clustering module. Leveraging annotated data to guide the cluster centroids results in a simple end-to-end trainable deep SSL approach. We demonstrate that the proposed model improves the performance over the supervised-only baseline and show that our framework can be used in conjunction with other SSL methods to further boost their performance.
☆ Interpretable Zero-Shot Learning with Locally-Aligned Vision-Language Model ICCV'25
Large-scale vision-language models (VLMs), such as CLIP, have achieved remarkable success in zero-shot learning (ZSL) by leveraging large-scale visual-text pair datasets. However, these methods often lack interpretability, as they compute the similarity between an entire query image and the embedded category words, making it difficult to explain their predictions. One approach to address this issue is to develop interpretable models by integrating language, where classifiers are built using discrete attributes, similar to human perception. This introduces a new challenge: how to effectively align local visual features with corresponding attributes based on pre-trained VLMs. To tackle this, we propose LaZSL, a locally-aligned vision-language model for interpretable ZSL. LaZSL employs local visual-semantic alignment via optimal transport to perform interaction between visual regions and their associated attributes, facilitating effective alignment and providing interpretable similarity without the need for additional training. Extensive experiments demonstrate that our method offers several advantages, including enhanced interpretability, improved accuracy, and strong domain generalization. Codes available at: https://github.com/shiming-chen/LaZSL.
comment: Accepted to ICCV'25
☆ MadCLIP: Few-shot Medical Anomaly Detection with CLIP MICCAI 2025
An innovative few-shot anomaly detection approach is presented, leveraging the pre-trained CLIP model for medical data, and adapting it for both image-level anomaly classification (AC) and pixel-level anomaly segmentation (AS). A dual-branch design is proposed to separately capture normal and abnormal features through learnable adapters in the CLIP vision encoder. To improve semantic alignment, learnable text prompts are employed to link visual features. Furthermore, SigLIP loss is applied to effectively handle the many-to-one relationship between images and unpaired text prompts, showcasing its adaptation in the medical field for the first time. Our approach is validated on multiple modalities, demonstrating superior performance over existing methods for AC and AS, in both same-dataset and cross-dataset evaluations. Unlike prior work, it does not rely on synthetic data or memory banks, and an ablation study confirms the contribution of each component. The code is available at https://github.com/mahshid1998/MadCLIP.
comment: Accepted to MICCAI 2025 (this version is not peer-reviewed; it is the submitted version). MICCAI proceedings DOI will appear here
☆ Towards Initialization-free Calibrated Bundle Adjustment
A recent series of works has shown that initialization-free BA can be achieved using pseudo Object Space Error (pOSE) as a surrogate objective. The initial reconstruction-step optimizes an objective where all terms are projectively invariant and it cannot incorporate knowledge of the camera calibration. As a result, the solution is only determined up to a projective transformation of the scene and the process requires more data for successful reconstruction. In contrast, we present a method that is able to use the known camera calibration thereby producing near metric solutions, that is, reconstructions that are accurate up to a similarity transformation. To achieve this we introduce pairwise relative rotation estimates that carry information about camera calibration. These are only invariant to similarity transformations, thus encouraging solutions that preserve metric features of the real scene. Our method can be seen as integrating rotation averaging into the pOSE framework striving towards initialization-free calibrated SfM. Our experimental evaluation shows that we are able to reliably optimize our objective, achieving convergence to the global minimum with high probability from random starting solutions, resulting in accurate near metric reconstructions.
☆ Controllable Reference-Based Real-World Remote Sensing Image Super-Resolution with Generative Diffusion Priors
Super-resolution (SR) techniques can enhance the spatial resolution of remote sensing images by utilizing low-resolution (LR) images to reconstruct high-resolution (HR) images, enabling more efficient large-scale earth observation applications. While single-image super-resolution (SISR) methods have shown progress, reference-based super-resolution (RefSR) offers superior performance by incorporating historical HR images alongside current LR observations. However, existing RefSR methods struggle with real-world complexities, such as cross-sensor resolution gap and significant land cover changes, often leading to under-generation or over-reliance on reference image. To address these challenges, we propose CRefDiff, a novel controllable reference-based diffusion model for real-world remote sensing image SR. To address the under-generation problem, CRefDiff is built upon the pretrained Stable Diffusion model, leveraging its powerful generative prior to produce accurate structures and textures. To mitigate over-reliance on the reference, we introduce a dual-branch fusion mechanism that adaptively integrates both local and global information from the reference image. Moreover, this novel dual-branch design enables reference strength control during inference, enhancing interactivity and flexibility of the model. Finally, a strategy named Better Start is proposed to significantly reduce the number of denoising steps, thereby accelerating the inference process. To support further research, we introduce Real-RefRSSRD, a new real-world RefSR dataset for remote sensing images, consisting of HR NAIP and LR Sentinel-2 image pairs with diverse land cover changes and significant temporal gaps. Extensive experiments on Real-RefRSSRD show that CRefDiff achieves state-of-the-art performance across various metrics and improves downstream tasks such as scene classification and semantic segmentation.
☆ Visual Textualization for Image Prompted Object Detection ICCV 2025
We propose VisTex-OVLM, a novel image prompted object detection method that introduces visual textualization -- a process that projects a few visual exemplars into the text feature space to enhance Object-level Vision-Language Models' (OVLMs) capability in detecting rare categories that are difficult to describe textually and nearly absent from their pre-training data, while preserving their pre-trained object-text alignment. Specifically, VisTex-OVLM leverages multi-scale textualizing blocks and a multi-stage fusion strategy to integrate visual information from visual exemplars, generating textualized visual tokens that effectively guide OVLMs alongside text prompts. Unlike previous methods, our method maintains the original architecture of OVLM, maintaining its generalization capabilities while enhancing performance in few-shot settings. VisTex-OVLM demonstrates superior performance across open-set datasets which have minimal overlap with OVLM's pre-training data and achieves state-of-the-art results on few-shot benchmarks PASCAL VOC and MSCOCO. The code will be released at https://github.com/WitGotFlg/VisTex-OVLM.
comment: Accepted by ICCV 2025
☆ Mamba-FETrack V2: Revisiting State Space Model for Frame-Event based Visual Object Tracking
Combining traditional RGB cameras with bio-inspired event cameras for robust object tracking has garnered increasing attention in recent years. However, most existing multimodal tracking algorithms depend heavily on high-complexity Vision Transformer architectures for feature extraction and fusion across modalities. This not only leads to substantial computational overhead but also limits the effectiveness of cross-modal interactions. In this paper, we propose an efficient RGB-Event object tracking framework based on the linear-complexity Vision Mamba network, termed Mamba-FETrack V2. Specifically, we first design a lightweight Prompt Generator that utilizes embedded features from each modality, together with a shared prompt pool, to dynamically generate modality-specific learnable prompt vectors. These prompts, along with the modality-specific embedded features, are then fed into a Vision Mamba-based FEMamba backbone, which facilitates prompt-guided feature extraction, cross-modal interaction, and fusion in a unified manner. Finally, the fused representations are passed to the tracking head for accurate target localization. Extensive experimental evaluations on multiple RGB-Event tracking benchmarks, including short-term COESOT dataset and long-term datasets, i.e., FE108 and FELT V2, demonstrate the superior performance and efficiency of the proposed tracking framework. The source code and pre-trained models will be released on https://github.com/Event-AHU/Mamba_FETrack
comment: Journal extension of Mamba-FETrack which was published on Pattern Recognition and Computer Vision (PRCV) 2024
☆ Spatio-Temporal Representation Decoupling and Enhancement for Federated Instrument Segmentation in Surgical Videos
Surgical instrument segmentation under Federated Learning (FL) is a promising direction, which enables multiple surgical sites to collaboratively train the model without centralizing datasets. However, there exist very limited FL works in surgical data science, and FL methods for other modalities do not consider inherent characteristics in surgical domain: i) different scenarios show diverse anatomical backgrounds while highly similar instrument representation; ii) there exist surgical simulators which promote large-scale synthetic data generation with minimal efforts. In this paper, we propose a novel Personalized FL scheme, Spatio-Temporal Representation Decoupling and Enhancement (FedST), which wisely leverages surgical domain knowledge during both local-site and global-server training to boost segmentation. Concretely, our model embraces a Representation Separation and Cooperation (RSC) mechanism in local-site training, which decouples the query embedding layer to be trained privately, to encode respective backgrounds. Meanwhile, other parameters are optimized globally to capture the consistent representations of instruments, including the temporal layer to capture similar motion patterns. A textual-guided channel selection is further designed to highlight site-specific features, facilitating model adapta tion to each site. Moreover, in global-server training, we propose Synthesis-based Explicit Representation Quantification (SERQ), which defines an explicit representation target based on synthetic data to synchronize the model convergence during fusion for improving model generalization.
☆ Can We Challenge Open-Vocabulary Object Detectors with Generated Content in Street Scenes?
Open-vocabulary object detectors such as Grounding DINO are trained on vast and diverse data, achieving remarkable performance on challenging datasets. Due to that, it is unclear where to find their limitations, which is of major concern when using in safety-critical applications. Real-world data does not provide sufficient control, required for a rigorous evaluation of model generalization. In contrast, synthetically generated data allows to systematically explore the boundaries of model competence/generalization. In this work, we address two research questions: 1) Can we challenge open-vocabulary object detectors with generated image content? 2) Can we find systematic failure modes of those models? To address these questions, we design two automated pipelines using stable diffusion to inpaint unusual objects with high diversity in semantics, by sampling multiple substantives from WordNet and ChatGPT. On the synthetically generated data, we evaluate and compare multiple open-vocabulary object detectors as well as a classical object detector. The synthetic data is derived from two real-world datasets, namely LostAndFound, a challenging out-of-distribution (OOD) detection benchmark, and the NuImages dataset. Our results indicate that inpainting can challenge open-vocabulary object detectors in terms of overlooking objects. Additionally, we find a strong dependence of open-vocabulary models on object location, rather than on object semantics. This provides a systematic approach to challenge open-vocabulary models and gives valuable insights on how data could be acquired to effectively improve these models.
☆ Radioactive Watermarks in Diffusion and Autoregressive Image Generative Models
Image generative models have become increasingly popular, but training them requires large datasets that are costly to collect and curate. To circumvent these costs, some parties may exploit existing models by using the generated images as training data for their own models. In general, watermarking is a valuable tool for detecting unauthorized use of generated images. However, when these images are used to train a new model, watermarking can only enable detection if the watermark persists through training and remains identifiable in the outputs of the newly trained model - a property known as radioactivity. We analyze the radioactivity of watermarks in images generated by diffusion models (DMs) and image autoregressive models (IARs). We find that existing watermarking methods for DMs fail to retain radioactivity, as watermarks are either erased during encoding into the latent space or lost in the noising-denoising process (during the training in the latent space). Meanwhile, despite IARs having recently surpassed DMs in image generation quality and efficiency, no radioactive watermarking methods have been proposed for them. To overcome this limitation, we propose the first watermarking method tailored for IARs and with radioactivity in mind - drawing inspiration from techniques in large language models (LLMs), which share IARs' autoregressive paradigm. Our extensive experimental evaluation highlights our method's effectiveness in preserving radioactivity within IARs, enabling robust provenance tracking, and preventing unauthorized use of their generated images.
☆ Proteus-ID: ID-Consistent and Motion-Coherent Video Customization
Video identity customization seeks to synthesize realistic, temporally coherent videos of a specific subject, given a single reference image and a text prompt. This task presents two core challenges: (1) maintaining identity consistency while aligning with the described appearance and actions, and (2) generating natural, fluid motion without unrealistic stiffness. To address these challenges, we introduce Proteus-ID, a novel diffusion-based framework for identity-consistent and motion-coherent video customization. First, we propose a Multimodal Identity Fusion (MIF) module that unifies visual and textual cues into a joint identity representation using a Q-Former, providing coherent guidance to the diffusion model and eliminating modality imbalance. Second, we present a Time-Aware Identity Injection (TAII) mechanism that dynamically modulates identity conditioning across denoising steps, improving fine-detail reconstruction. Third, we propose Adaptive Motion Learning (AML), a self-supervised strategy that reweights the training loss based on optical-flow-derived motion heatmaps, enhancing motion realism without requiring additional inputs. To support this task, we construct Proteus-Bench, a high-quality dataset comprising 200K curated clips for training and 150 individuals from diverse professions and ethnicities for evaluation. Extensive experiments demonstrate that Proteus-ID outperforms prior methods in identity preservation, text alignment, and motion quality, establishing a new benchmark for video identity customization. Codes and data are publicly available at https://grenoble-zhang.github.io/Proteus-ID/.
comment: Preprint. Work in progress
☆ When Small Guides Large: Cross-Model Co-Learning for Test-Time Adaptation
Test-time Adaptation (TTA) adapts a given model to testing domain data with potential domain shifts through online unsupervised learning, yielding impressive performance. However, to date, existing TTA methods primarily focus on single-model adaptation. In this work, we investigate an intriguing question: how does cross-model knowledge influence the TTA process? Our findings reveal that, in TTA's unsupervised online setting, each model can provide complementary, confident knowledge to the others, even when there are substantial differences in model size. For instance, a smaller model like MobileViT (10.6M parameters) can effectively guide a larger model like ViT-Base (86.6M parameters). In light of this, we propose COCA, a Cross-Model Co-Learning framework for TTA, which mainly consists of two main strategies. 1) Co-adaptation adaptively integrates complementary knowledge from other models throughout the TTA process, reducing individual model biases. 2) Self-adaptation enhances each model's unique strengths via unsupervised learning, enabling diverse adaptation to the target domain. Extensive experiments show that COCA, which can also serve as a plug-and-play module, significantly boosts existing SOTAs, on models with various sizes--including ResNets, ViTs, and Mobile-ViTs--via cross-model co-learned TTA. For example, with Mobile-ViT's guidance, COCA raises ViT-Base's average adaptation accuracy on ImageNet-C from 51.7% to 64.5%. The code is publicly available at https://github.com/ycarobot/COCA.
comment: 15 pages, 5 figures
☆ Deep Learning-Based Semantic Segmentation for Real-Time Kidney Imaging and Measurements with Augmented Reality-Assisted Ultrasound
Ultrasound (US) is widely accessible and radiation-free but has a steep learning curve due to its dynamic nature and non-standard imaging planes. Additionally, the constant need to shift focus between the US screen and the patient poses a challenge. To address these issues, we integrate deep learning (DL)-based semantic segmentation for real-time (RT) automated kidney volumetric measurements, which are essential for clinical assessment but are traditionally time-consuming and prone to fatigue. This automation allows clinicians to concentrate on image interpretation rather than manual measurements. Complementing DL, augmented reality (AR) enhances the usability of US by projecting the display directly into the clinician's field of view, improving ergonomics and reducing the cognitive load associated with screen-to-patient transitions. Two AR-DL-assisted US pipelines on HoloLens-2 are proposed: one streams directly via the application programming interface for a wireless setup, while the other supports any US device with video output for broader accessibility. We evaluate RT feasibility and accuracy using the Open Kidney Dataset and open-source segmentation models (nnU-Net, Segmenter, YOLO with MedSAM and LiteMedSAM). Our open-source GitHub pipeline includes model implementations, measurement algorithms, and a Wi-Fi-based streaming solution, enhancing US training and diagnostics, especially in point-of-care settings.
☆ Towards Efficient and Accurate Spiking Neural Networks via Adaptive Bit Allocation
Multi-bit spiking neural networks (SNNs) have recently become a heated research spot, pursuing energy-efficient and high-accurate AI. However, with more bits involved, the associated memory and computation demands escalate to the point where the performance improvements become disproportionate. Based on the insight that different layers demonstrate different importance and extra bits could be wasted and interfering, this paper presents an adaptive bit allocation strategy for direct-trained SNNs, achieving fine-grained layer-wise allocation of memory and computation resources. Thus, SNN's efficiency and accuracy can be improved. Specifically, we parametrize the temporal lengths and the bit widths of weights and spikes, and make them learnable and controllable through gradients. To address the challenges caused by changeable bit widths and temporal lengths, we propose the refined spiking neuron, which can handle different temporal lengths, enable the derivation of gradients for temporal lengths, and suit spike quantization better. In addition, we theoretically formulate the step-size mismatch problem of learnable bit widths, which may incur severe quantization errors to SNN, and accordingly propose the step-size renewal mechanism to alleviate this issue. Experiments on various datasets, including the static CIFAR and ImageNet and the dynamic CIFAR-DVS and DVS-GESTURE, demonstrate that our methods can reduce the overall memory and computation cost while achieving higher accuracy. Particularly, our SEWResNet-34 can achieve a 2.69\% accuracy gain and 4.16$\times$ lower bit budgets over the advanced baseline work on ImageNet. This work will be fully open-sourced.
☆ Towards an Automated Multimodal Approach for Video Summarization: Building a Bridge Between Text, Audio and Facial Cue-Based Summarization
The increasing volume of video content in educational, professional, and social domains necessitates effective summarization techniques that go beyond traditional unimodal approaches. This paper proposes a behaviour-aware multimodal video summarization framework that integrates textual, audio, and visual cues to generate timestamp-aligned summaries. By extracting prosodic features, textual cues and visual indicators, the framework identifies semantically and emotionally important moments. A key contribution is the identification of bonus words, which are terms emphasized across multiple modalities and used to improve the semantic relevance and expressive clarity of the summaries. The approach is evaluated against pseudo-ground truth (pGT) summaries generated using LLM-based extractive method. Experimental results demonstrate significant improvements over traditional extractive method, such as the Edmundson method, in both text and video-based evaluation metrics. Text-based metrics show ROUGE-1 increasing from 0.4769 to 0.7929 and BERTScore from 0.9152 to 0.9536, while in video-based evaluation, our proposed framework improves F1-Score by almost 23%. The findings underscore the potential of multimodal integration in producing comprehensive and behaviourally informed video summaries.
comment: Accepted to HHAI WS 2025: Workshops at the Fourth International Conference on Hybrid Human-Artificial Intelligence (HHAI)
☆ Subjective Camera: Bridging Human Cognition and Visual Reconstruction through Sequence-Aware Sketch-Guided Diffusion
We propose Subjective Camera, a human-as-imaging-device paradigm that reconstructs real-world scenes from mental impressions through synergistic use of verbal descriptions and progressive rough sketches. This approach overcomes dual limitations of language ambiguity and sketch abstraction by treating the user's drawing sequence as priors, effectively translating subjective perceptual expectations into photorealistic images. Existing approaches face three fundamental barriers: (1) user-specific subjective input biases, (2) huge modality gap between planar sketch and 3D priors in diffusion, and (3) sketch quality-sensitive performance degradation. Current solutions either demand resource-intensive model adaptation or impose impractical requirements on sketch precision. Our framework addresses these challenges through concept-sequential generation. (1) We establish robust appearance priors through text-reward optimization, and then implement sequence-aware disentangled generation that processes concepts in sketching order; these steps accommodate user-specific subjective expectation in a train-free way. (2) We employ latent optimization that effectively bridges the modality gap between planar sketches and 3D priors in diffusion. (3) Our hierarchical reward-guided framework enables the use of rough sketches without demanding artistic expertise. Comprehensive evaluation across diverse datasets demonstrates that our approach achieves state-of-the-art performance in maintaining both semantic and spatial coherence.
☆ Single Image Test-Time Adaptation via Multi-View Co-Training MICCAI 2025
Test-time adaptation enables a trained model to adjust to a new domain during inference, making it particularly valuable in clinical settings where such on-the-fly adaptation is required. However, existing techniques depend on large target domain datasets, which are often impractical and unavailable in medical scenarios that demand per-patient, real-time inference. Moreover, current methods commonly focus on two-dimensional images, failing to leverage the volumetric richness of medical imaging data. Bridging this gap, we propose a Patch-Based Multi-View Co-Training method for Single Image Test-Time adaptation. Our method enforces feature and prediction consistency through uncertainty-guided self-training, enabling effective volumetric segmentation in the target domain with only a single test-time image. Validated on three publicly available breast magnetic resonance imaging datasets for tumor segmentation, our method achieves performance close to the upper bound supervised benchmark while also outperforming all existing state-of-the-art methods, on average by a Dice Similarity Coefficient of 3.75%. We publicly share our accessible codebase, readily integrable with the popular nnUNet framework, at https://github.com/smriti-joshi/muvi.git.
comment: MICCAI 2025
☆ MDPG: Multi-domain Diffusion Prior Guidance for MRI Reconstruction MICCAI2025
Magnetic Resonance Imaging (MRI) reconstruction is essential in medical diagnostics. As the latest generative models, diffusion models (DMs) have struggled to produce high-fidelity images due to their stochastic nature in image domains. Latent diffusion models (LDMs) yield both compact and detailed prior knowledge in latent domains, which could effectively guide the model towards more effective learning of the original data distribution. Inspired by this, we propose Multi-domain Diffusion Prior Guidance (MDPG) provided by pre-trained LDMs to enhance data consistency in MRI reconstruction tasks. Specifically, we first construct a Visual-Mamba-based backbone, which enables efficient encoding and reconstruction of under-sampled images. Then pre-trained LDMs are integrated to provide conditional priors in both latent and image domains. A novel Latent Guided Attention (LGA) is proposed for efficient fusion in multi-level latent domains. Simultaneously, to effectively utilize a prior in both the k-space and image domain, under-sampled images are fused with generated full-sampled images by the Dual-domain Fusion Branch (DFB) for self-adaption guidance. Lastly, to further enhance the data consistency, we propose a k-space regularization strategy based on the non-auto-calibration signal (NACS) set. Extensive experiments on two public MRI datasets fully demonstrate the effectiveness of the proposed methodology. The code is available at https://github.com/Zolento/MDPG.
comment: Accept by MICCAI2025
☆ MedSAM-CA: A CNN-Augmented ViT with Attention-Enhanced Multi-Scale Fusion for Medical Image Segmentation
Medical image segmentation plays a crucial role in clinical diagnosis and treatment planning, where accurate boundary delineation is essential for precise lesion localization, organ identification, and quantitative assessment. In recent years, deep learning-based methods have significantly advanced segmentation accuracy. However, two major challenges remain. First, the performance of these methods heavily relies on large-scale annotated datasets, which are often difficult to obtain in medical scenarios due to privacy concerns and high annotation costs. Second, clinically challenging scenarios, such as low contrast in certain imaging modalities and blurry lesion boundaries caused by malignancy, still pose obstacles to precise segmentation. To address these challenges, we propose MedSAM-CA, an architecture-level fine-tuning approach that mitigates reliance on extensive manual annotations by adapting the pretrained foundation model, Medical Segment Anything (MedSAM). MedSAM-CA introduces two key components: the Convolutional Attention-Enhanced Boundary Refinement Network (CBR-Net) and the Attention-Enhanced Feature Fusion Block (Atte-FFB). CBR-Net operates in parallel with the MedSAM encoder to recover boundary information potentially overlooked by long-range attention mechanisms, leveraging hierarchical convolutional processing. Atte-FFB, embedded in the MedSAM decoder, fuses multi-level fine-grained features from skip connections in CBR-Net with global representations upsampled within the decoder to enhance boundary delineation accuracy. Experiments on publicly available datasets covering dermoscopy, CT, and MRI imaging modalities validate the effectiveness of MedSAM-CA. On dermoscopy dataset, MedSAM-CA achieves 94.43% Dice with only 2% of full training data, reaching 97.25% of full-data training performance, demonstrating strong effectiveness in low-resource clinical settings.
☆ SynMotion: Semantic-Visual Adaptation for Motion Customized Video Generation
Diffusion-based video motion customization facilitates the acquisition of human motion representations from a few video samples, while achieving arbitrary subjects transfer through precise textual conditioning. Existing approaches often rely on semantic-level alignment, expecting the model to learn new motion concepts and combine them with other entities (e.g., ''cats'' or ''dogs'') to produce visually appealing results. However, video data involve complex spatio-temporal patterns, and focusing solely on semantics cause the model to overlook the visual complexity of motion. Conversely, tuning only the visual representation leads to semantic confusion in representing the intended action. To address these limitations, we propose SynMotion, a new motion-customized video generation model that jointly leverages semantic guidance and visual adaptation. At the semantic level, we introduce the dual-embedding semantic comprehension mechanism which disentangles subject and motion representations, allowing the model to learn customized motion features while preserving its generative capabilities for diverse subjects. At the visual level, we integrate parameter-efficient motion adapters into a pre-trained video generation model to enhance motion fidelity and temporal coherence. Furthermore, we introduce a new embedding-specific training strategy which \textbf{alternately optimizes} subject and motion embeddings, supported by the manually constructed Subject Prior Video (SPV) training dataset. This strategy promotes motion specificity while preserving generalization across diverse subjects. Lastly, we introduce MotionBench, a newly curated benchmark with diverse motion patterns. Experimental results across both T2V and I2V settings demonstrate that \method outperforms existing baselines. Project page: https://lucaria-academy.github.io/SynMotion/
comment: Project page: https://lucaria-academy.github.io/SynMotion/
☆ A Unified Framework for Stealthy Adversarial Generation via Latent Optimization and Transferability Enhancement
Due to their powerful image generation capabilities, diffusion-based adversarial example generation methods through image editing are rapidly gaining popularity. However, due to reliance on the discriminative capability of the diffusion model, these diffusion-based methods often struggle to generalize beyond conventional image classification tasks, such as in Deepfake detection. Moreover, traditional strategies for enhancing adversarial example transferability are challenging to adapt to these methods. To address these challenges, we propose a unified framework that seamlessly incorporates traditional transferability enhancement strategies into diffusion model-based adversarial example generation via image editing, enabling their application across a wider range of downstream tasks. Our method won first place in the "1st Adversarial Attacks on Deepfake Detectors: A Challenge in the Era of AI-Generated Media" competition at ACM MM25, which validates the effectiveness of our approach.
☆ Pruning by Block Benefit: Exploring the Properties of Vision Transformer Blocks during Domain Adaptation ICCV'25
Vision Transformer have set new benchmarks in several tasks, but these models come with the lack of high computational costs which makes them impractical for resource limited hardware. Network pruning reduces the computational complexity by removing less important operations while maintaining performance. However, pruning a model on an unseen data domain, leads to a misevaluation of weight significance, resulting in suboptimal resource assignment. In this work, we find that task-sensitive layers initially fail to improve the feature representation on downstream tasks, leading to performance loss for early pruning decisions. To address this problem, we introduce Pruning by Block Benefit (P3B), a pruning method that utilizes the relative contribution on block level to globally assign parameter resources. P3B identifies low-impact components to reduce parameter allocation while preserving critical ones. Classical pruning mask optimization struggles to reactivate zero-mask-elements. In contrast, P3B sets a layerwise keep ratio based on global performance metrics, ensuring the reactivation of late-converging blocks. We show in extensive experiments that P3B is a state of the art pruning method with most noticeable gains in transfer learning tasks. Notably, P3B is able to conserve high performance, even in high sparsity regimes of 70% parameter reduction while only losing 0.64% in accuracy.
comment: ICCV'25 Workshops
☆ Partial Forward Blocking: A Novel Data Pruning Paradigm for Lossless Training Acceleration ICCV2025
The ever-growing size of training datasets enhances the generalization capability of modern machine learning models but also incurs exorbitant computational costs. Existing data pruning approaches aim to accelerate training by removing those less important samples. However, they often rely on gradients or proxy models, leading to prohibitive additional costs of gradient back-propagation and proxy model training. In this paper, we propose Partial Forward Blocking (PFB), a novel framework for lossless training acceleration. The efficiency of PFB stems from its unique adaptive pruning pipeline: sample importance is assessed based on features extracted from the shallow layers of the target model. Less important samples are then pruned, allowing only the retained ones to proceed with the subsequent forward pass and loss back-propagation. This mechanism significantly reduces the computational overhead of deep-layer forward passes and back-propagation for pruned samples, while also eliminating the need for auxiliary backward computations and proxy model training. Moreover, PFB introduces probability density as an indicator of sample importance. Combined with an adaptive distribution estimation module, our method dynamically prioritizes relatively rare samples, aligning with the constantly evolving training state. Extensive experiments demonstrate the significant superiority of PFB in performance and speed. On ImageNet, PFB achieves a 0.5% accuracy improvement and 33% training time reduction with 40% data pruned.
comment: Accepted by ICCV2025
☆ Diffusion Model-based Data Augmentation Method for Fetal Head Ultrasound Segmentation
Medical image data is less accessible than in other domains due to privacy and regulatory constraints. In addition, labeling requires costly, time-intensive manual image annotation by clinical experts. To overcome these challenges, synthetic medical data generation offers a promising solution. Generative AI (GenAI), employing generative deep learning models, has proven effective at producing realistic synthetic images. This study proposes a novel mask-guided GenAI approach using diffusion models to generate synthetic fetal head ultrasound images paired with segmentation masks. These synthetic pairs augment real datasets for supervised fine-tuning of the Segment Anything Model (SAM). Our results show that the synthetic data captures real image features effectively, and this approach reaches state-of-the-art fetal head segmentation, especially when trained with a limited number of real image-mask pairs. In particular, the segmentation reaches Dice Scores of 94.66\% and 94.38\% using a handful of ultrasound images from the Spanish and African cohorts, respectively. Our code, models, and data are available on GitHub.
☆ On the Domain Robustness of Contrastive Vision-Language Models
In real-world vision-language applications, practitioners increasingly rely on large, pretrained foundation models rather than custom-built solutions, despite limited transparency regarding their training data and processes. While these models achieve impressive performance on general benchmarks, their effectiveness can decline notably under specialized domain shifts, such as unique imaging conditions or environmental variations. In this work, we introduce Deepbench, a framework designed to assess domain-specific robustness of vision-language models (VLMs). Deepbench leverages a large language model (LLM) to generate realistic, context-aware image corruptions tailored to specific deployment domains without requiring labeled data. We evaluate a range of contrastive vision-language architectures and architectural variants across six real-world domains and observe substantial variability in robustness, highlighting the need for targeted, domain-aware evaluation. Deepbench is released as open-source software to support further research into domain-aware robustness assessment.
comment: Deepbench is available at https://github.com/ml-lab-htw/deepbench
☆ Towards Markerless Intraoperative Tracking of Deformable Spine Tissue
Consumer-grade RGB-D imaging for intraoperative orthopedic tissue tracking is a promising method with high translational potential. Unlike bone-mounted tracking devices, markerless tracking can reduce operating time and complexity. However, its use has been limited to cadaveric studies. This paper introduces the first real-world clinical RGB-D dataset for spine surgery and develops SpineAlign, a system for capturing deformation between preoperative and intraoperative spine states. We also present an intraoperative segmentation network trained on this data and introduce CorrespondNet, a multi-task framework for predicting key regions for registration in both intraoperative and preoperative scenes.
comment: Preprint of paper, submitted
☆ MReg: A Novel Regression Model with MoE-based Video Feature Mining for Mitral Regurgitation Diagnosis MICCAI 2025
Color Doppler echocardiography is a crucial tool for diagnosing mitral regurgitation (MR). Recent studies have explored intelligent methods for MR diagnosis to minimize user dependence and improve accuracy. However, these approaches often fail to align with clinical workflow and may lead to suboptimal accuracy and interpretability. In this study, we introduce an automated MR diagnosis model (MReg) developed on the 4-chamber cardiac color Doppler echocardiography video (A4C-CDV). It follows comprehensive feature mining strategies to detect MR and assess its severity, considering clinical realities. Our contribution is threefold. First, we formulate the MR diagnosis as a regression task to capture the continuity and ordinal relationships between categories. Second, we design a feature selection and amplification mechanism to imitate the sonographer's diagnostic logic for accurate MR grading. Third, inspired by the Mixture-of-Experts concept, we introduce a feature summary module to extract the category-level features, enhancing the representational capacity for more accurate grading. We trained and evaluated our proposed MReg on a large in-house A4C-CDV dataset comprising 1868 cases with three graded regurgitation labels. Compared to other weakly supervised video anomaly detection and supervised classification methods, MReg demonstrated superior performance in MR diagnosis. Our code is available at: https://github.com/cskdstz/MReg.
comment: 10 pages, 5 figures, accepted by MICCAI 2025
☆ VAP-Diffusion: Enriching Descriptions with MLLMs for Enhanced Medical Image Generation
As the appearance of medical images is influenced by multiple underlying factors, generative models require rich attribute information beyond labels to produce realistic and diverse images. For instance, generating an image of skin lesion with specific patterns demands descriptions that go beyond diagnosis, such as shape, size, texture, and color. However, such detailed descriptions are not always accessible. To address this, we explore a framework, termed Visual Attribute Prompts (VAP)-Diffusion, to leverage external knowledge from pre-trained Multi-modal Large Language Models (MLLMs) to improve the quality and diversity of medical image generation. First, to derive descriptions from MLLMs without hallucination, we design a series of prompts following Chain-of-Thoughts for common medical imaging tasks, including dermatologic, colorectal, and chest X-ray images. Generated descriptions are utilized during training and stored across different categories. During testing, descriptions are randomly retrieved from the corresponding category for inference. Moreover, to make the generator robust to unseen combination of descriptions at the test time, we propose a Prototype Condition Mechanism that restricts test embeddings to be similar to those from training. Experiments on three common types of medical imaging across four datasets verify the effectiveness of VAP-Diffusion.
☆ Unified Multimodal Understanding via Byte-Pair Visual Encoding
Multimodal large language models (MLLMs) have made significant progress in vision-language understanding, yet effectively aligning different modalities remains a fundamental challenge. We present a framework that unifies multimodal understanding by applying byte-pair encoding to visual tokens. Unlike conventional approaches that rely on modality-specific encoders, our method directly incorporates structural information into visual tokens, mirroring successful tokenization strategies in text-only language models. We introduce a priority-guided encoding scheme that considers both frequency and spatial consistency, coupled with a multi-stage training procedure based on curriculum-driven data composition. These enhancements enable the transformer model to better capture cross-modal relationships and reason with visual information. Comprehensive experiments demonstrate improved performance across diverse vision-language tasks. By bridging the gap between visual and textual representations, our approach contributes to the advancement of more capable and efficient multimodal foundation models.
♻ ☆ GLIMPSE: Gradient-Layer Importance Mapping for Prompted Visual Saliency Explanation for Generative LVLMs
Recent progress in large vision-language models (LVLMs) has advanced the state of the art in visual question answering (VQA). However, interpreting where LVLMs direct their visual attention while generating free-form responses remains a significant challenge, yet is essential for understanding model behavior. We introduce GLIMPSE (Gradient-Layer Importance Mapping for Prompted Visual Saliency Explanation), a lightweight, model-agnostic framework that jointly attributes LVLM outputs to the most relevant visual evidence and textual signals supporting open-ended VQA. GLIMPSE fuses gradient-weighted attention, adaptive layer propagation, and relevance-weighted token aggregation to produce holistic response-level heat maps for interpreting cross-modal reasoning, outperforming prior interpretability methods and pushing the state-of-the-art in human-alignment. We demonstrate an analytic explainable AI (XAI) approach using GLIMPSE to uncover fine-grained insights into LVLM cross-modal attribution, trace reasoning dynamics, analyze systematic human-attention misalignment, diagnose hallucination, expose bias, and ensure transparency.
♻ ☆ Accurate and lightweight dehazing via multi-receptive-field non-local network and novel contrastive regularization
Recently, deep learning-based methods have dominated image dehazing domain. Although very competitive dehazing performance has been achieved with sophisticated models, effective solutions for extracting useful features are still under-explored. In addition, non-local network, which has made a breakthrough in many vision tasks, has not been appropriately applied to image dehazing. Thus, a multi-receptive-field non-local network (MRFNLN) consisting of the multi-stream feature attention block (MSFAB) and cross non-local block (CNLB) is presented in this paper. We start with extracting richer features for dehazing. Specifically, we design a multi-stream feature extraction (MSFE) sub-block, which contains three parallel convolutions with different receptive fields (i.e., $1\times 1$, $3\times 3$, $5\times 5$) for extracting multi-scale features. Following MSFE, we employ an attention sub-block to make the model adaptively focus on important channels/regions. The MSFE and attention sub-blocks constitute our MSFAB. Then, we design a cross non-local block (CNLB), which can capture long-range dependencies beyond the query. Instead of the same input source of query branch, the key and value branches are enhanced by fusing more preceding features. CNLB is computation-friendly by leveraging a spatial pyramid down-sampling (SPDS) strategy to reduce the computation and memory consumption without sacrificing the performance. Last but not least, a novel detail-focused contrastive regularization (DFCR) is presented by emphasizing the low-level details and ignoring the high-level semantic information in the representation space. Comprehensive experimental results demonstrate that the proposed MRFNLN model outperforms recent state-of-the-art dehazing methods with less than 1.5 Million parameters.
comment: submitted to the IEEE Journal for possible publication
♻ ☆ AQUA20: A Benchmark Dataset for Underwater Species Classification under Challenging Conditions
Robust visual recognition in underwater environments remains a significant challenge due to complex distortions such as turbidity, low illumination, and occlusion, which severely degrade the performance of standard vision systems. This paper introduces AQUA20, a comprehensive benchmark dataset comprising 8,171 underwater images across 20 marine species reflecting real-world environmental challenges such as illumination, turbidity, occlusions, etc., providing a valuable resource for underwater visual understanding. Thirteen state-of-the-art deep learning models, including lightweight CNNs (SqueezeNet, MobileNetV2) and transformer-based architectures (ViT, ConvNeXt), were evaluated to benchmark their performance in classifying marine species under challenging conditions. Our experimental results show ConvNeXt achieving the best performance, with a Top-3 accuracy of 98.82% and a Top-1 accuracy of 90.69%, as well as the highest overall F1-score of 88.92% with moderately large parameter size. The results obtained from our other benchmark models also demonstrate trade-offs between complexity and performance. We also provide an extensive explainability analysis using GRAD-CAM and LIME for interpreting the strengths and pitfalls of the models. Our results reveal substantial room for improvement in underwater species recognition and demonstrate the value of AQUA20 as a foundation for future research in this domain. The dataset is publicly available at: https://huggingface.co/datasets/taufiktrf/AQUA20.
comment: Submitted to AJSE Springer
♻ ☆ Pixel super-resolved virtual staining of label-free tissue using diffusion models
Virtual staining of tissue offers a powerful tool for transforming label-free microscopy images of unstained tissue into equivalents of histochemically stained samples. This study presents a diffusion model-based super-resolution virtual staining approach utilizing a Brownian bridge process to enhance both the spatial resolution and fidelity of label-free virtual tissue staining, addressing the limitations of traditional deep learning-based methods. Our approach integrates novel sampling techniques into a diffusion model-based image inference process to significantly reduce the variance in the generated virtually stained images, resulting in more stable and accurate outputs. Blindly applied to lower-resolution auto-fluorescence images of label-free human lung tissue samples, the diffusion-based super-resolution virtual staining model consistently outperformed conventional approaches in resolution, structural similarity and perceptual accuracy, successfully achieving a super-resolution factor of 4-5x, increasing the output space-bandwidth product by 16-25-fold compared to the input label-free microscopy images. Diffusion-based super-resolved virtual tissue staining not only improves resolution and image quality but also enhances the reliability of virtual staining without traditional chemical staining, offering significant potential for clinical diagnostics.
comment: 39 Pages, 7 Figures
♻ ☆ ReferDINO: Referring Video Object Segmentation with Visual Grounding Foundations ICCV 2025
Referring video object segmentation (RVOS) aims to segment target objects throughout a video based on a text description. This is challenging as it involves deep vision-language understanding, pixel-level dense prediction and spatiotemporal reasoning. Despite notable progress in recent years, existing methods still exhibit a noticeable gap when considering all these aspects. In this work, we propose \textbf{ReferDINO}, a strong RVOS model that inherits region-level vision-language alignment from foundational visual grounding models, and is further endowed with pixel-level dense perception and cross-modal spatiotemporal reasoning. In detail, ReferDINO integrates two key components: 1) a grounding-guided deformable mask decoder that utilizes location prediction to progressively guide mask prediction through differentiable deformation mechanisms; 2) an object-consistent temporal enhancer that injects pretrained time-varying text features into inter-frame interaction to capture object-aware dynamic changes. Moreover, a confidence-aware query pruning strategy is designed to accelerate object decoding without compromising model performance. Extensive experimental results on five benchmarks demonstrate that our ReferDINO significantly outperforms previous methods (e.g., +3.9% (\mathcal{J}&\mathcal{F}) on Ref-YouTube-VOS) with real-time inference speed (51 FPS).
comment: Accepted to ICCV 2025. Project page: \url{https://isee-laboratory.github.io/ReferDINO}
♻ ☆ SP$^2$OT: Semantic-Regularized Progressive Partial Optimal Transport for Imbalanced Clustering
Deep clustering, which learns representation and semantic clustering without labels information, poses a great challenge for deep learning-based approaches. Despite significant progress in recent years, most existing methods focus on uniformly distributed datasets, significantly limiting the practical applicability of their methods. In this paper, we propose a more practical problem setting named deep imbalanced clustering, where the underlying classes exhibit an imbalance distribution. To address this challenge, we introduce a novel optimal transport-based pseudo-label learning framework. Our framework formulates pseudo-label generation as a Semantic-regularized Progressive Partial Optimal Transport (SP$^2$OT) problem, which progressively transports each sample to imbalanced clusters under prior and semantic relation constraints, thus generating high-quality and imbalance-aware pseudo-labels. To solve the SP$^2$OT problem, we propose a projected mirror descent algorithm, which alternates between: (1) computing the gradient of the SP$^2$OT objective, and (2) performing gradient descent with projection via an entropy-regularized progressive partial optimal transport formulation. Furthermore, we formulate the second step as an unbalanced optimal transport problem with augmented constraints and develop an efficient solution based on fast matrix scaling algorithms. Experiments on various datasets, including a human-curated long-tailed CIFAR100, challenging ImageNet-R, and large-scale subsets of fine-grained iNaturalist2018 datasets, demonstrate the superiority of our method. Code is available: https://github.com/rhfeiyang/SPPOT
comment: under review. Follow-up work of arXiv:2401.09266
♻ ☆ CBAGAN-RRT: Convolutional Block Attention Generative Adversarial Network for Sampling-Based Path Planning
Sampling-based path planning algorithms play an important role in autonomous robotics. However, a common problem among the RRT-based algorithms is that the initial path generated is not optimal, and the convergence is too slow for real-world applications. In this paper, we propose a novel image-based learning algorithm using a Convolutional Block Attention Generative Adversarial Network (CBAGAN-RRT) with a combination of spatial and channel attention and a novel loss function to design the heuristics, find a better optimal path, and improve the convergence of the algorithm, both concerning time and speed. The probability distribution of the paths generated from our GAN model is used to guide the sampling process for the RRT algorithm. We demonstrate that our algorithm outperforms the previous state-of-the-art algorithms using both the image quality generation metrics, like IOU Score, Dice Score, FID score, and path planning metrics like time cost and the number of nodes. Ablation studies show the effectiveness of various components in our network architecture. The advantage of our approach is that we can avoid the complicated preprocessing in the state space, our model can be generalized to complex environments like those containing turns and narrow passages without loss of accuracy, and our model can be easily integrated with other sampling-based path planning algorithms.
♻ ☆ Benchmarking Spiking Neural Network Learning Methods with Varying Locality
Spiking Neural Networks (SNNs), providing more realistic neuronal dynamics, have been shown to achieve performance comparable to Artificial Neural Networks (ANNs) in several machine learning tasks. Information is processed as spikes within SNNs in an event-based mechanism that significantly reduces energy consumption. However, training SNNs is challenging due to the non-differentiable nature of the spiking mechanism. Traditional approaches, such as Backpropagation Through Time (BPTT), have shown effectiveness but come with additional computational and memory costs and are biologically implausible. In contrast, recent works propose alternative learning methods with varying degrees of locality, demonstrating success in classification tasks. In this work, we show that these methods share similarities during the training process, while they present a trade-off between biological plausibility and performance. Further, given the implicitly recurrent nature of SNNs, this research investigates the influence of the addition of explicit recurrence to SNNs. We experimentally prove that the addition of explicit recurrent weights enhances the robustness of SNNs. We also investigate the performance of local learning methods under gradient and non-gradient-based adversarial attacks.
♻ ☆ WeatherEdit: Controllable Weather Editing with 4D Gaussian Field
In this work, we present WeatherEdit, a novel weather editing pipeline for generating realistic weather effects with controllable types and severity in 3D scenes. Our approach is structured into two key components: weather background editing and weather particle construction. For weather background editing, we introduce an all-in-one adapter that integrates multiple weather styles into a single pretrained diffusion model, enabling the generation of diverse weather effects in 2D image backgrounds. During inference, we design a Temporal-View (TV-) attention mechanism that follows a specific order to aggregate temporal and spatial information, ensuring consistent editing across multi-frame and multi-view images. To construct the weather particles, we first reconstruct a 3D scene using the edited images and then introduce a dynamic 4D Gaussian field to generate snowflakes, raindrops and fog in the scene. The attributes and dynamics of these particles are precisely controlled through physical-based modelling and simulation, ensuring realistic weather representation and flexible severity adjustments. Finally, we integrate the 4D Gaussian field with the 3D scene to render consistent and highly realistic weather effects. Experiments on multiple driving datasets demonstrate that WeatherEdit can generate diverse weather effects with controllable condition severity, highlighting its potential for autonomous driving simulation in adverse weather. See project page: https://jumponthemoon.github.io/w-edit
♻ ☆ FlatFusion: Delving into Details of Sparse Transformer-based Camera-LiDAR Fusion for Autonomous Driving
The integration of data from diverse sensor modalities (e.g., camera and LiDAR) constitutes a prevalent methodology within the ambit of autonomous driving scenarios. Recent advancements in efficient point cloud transformers have underscored the efficacy of integrating information in sparse formats. When it comes to fusion, since image patches are dense in pixel space with ambiguous depth, it necessitates additional design considerations for effective fusion. In this paper, we conduct a comprehensive exploration of design choices for Transformer-based sparse cameraLiDAR fusion. This investigation encompasses strategies for image-to-3D and LiDAR-to-2D mapping, attention neighbor grouping, single modal tokenizer, and micro-structure of Transformer. By amalgamating the most effective principles uncovered through our investigation, we introduce FlatFusion, a carefully designed framework for sparse camera-LiDAR fusion. Notably, FlatFusion significantly outperforms state-of-the-art sparse Transformer-based methods, including UniTR, CMT, and SparseFusion, achieving 73.7 NDS on the nuScenes validation set with 10.1 FPS with PyTorch.
comment: Accepted by ICRA 2025
♻ ☆ Advancing Textual Prompt Learning with Anchored Attributes ICCV 2025
Textual-based prompt learning methods primarily employ multiple learnable soft prompts and hard class tokens in a cascading manner as text inputs, aiming to align image and text (category) spaces for downstream tasks. However, current training is restricted to aligning images with predefined known categories and cannot be associated with unknown categories. In this work, we propose utilizing universal attributes as a bridge to enhance the alignment between images and unknown categories. Specifically, we introduce an Attribute-anchored Textual Prompt learning method for vision-language models, named ATPrompt. This approach expands the learning space of soft prompts from the original one-dimensional category level into the multi-dimensional attribute level by incorporating multiple attribute tokens into the learnable soft prompts. Through this modification, we transform the text prompt from a category-centric form to an attribute-category hybrid form. Additionally, we introduce a straightforward differentiable attribute search method to identify representative and suitable attributes for downstream tasks. As an easy-to-use plug-in technique, ATPrompt can seamlessly replace the existing basic prompt format in textual-based methods, providing general improvements at a negligible computational cost. Extensive experiments across 11 datasets validate the effectiveness of our method.
comment: ICCV 2025. Project Page: https://zhengli97.github.io/ATPrompt/
♻ ☆ INP-Former++: Advancing Universal Anomaly Detection via Intrinsic Normal Prototypes and Residual Learning
Anomaly detection (AD) is essential for industrial inspection and medical diagnosis, yet existing methods typically rely on ``comparing'' test images to normal references from a training set. However, variations in appearance and positioning often complicate the alignment of these references with the test image, limiting detection accuracy. We observe that most anomalies manifest as local variations, meaning that even within anomalous images, valuable normal information remains. We argue that this information is useful and may be more aligned with the anomalies since both the anomalies and the normal information originate from the same image. Therefore, rather than relying on external normality from the training set, we propose INP-Former, a novel method that extracts Intrinsic Normal Prototypes (INPs) directly from the test image. Specifically, we introduce the INP Extractor, which linearly combines normal tokens to represent INPs. We further propose an INP Coherence Loss to ensure INPs can faithfully represent normality for the testing image. These INPs then guide the INP-guided Decoder to reconstruct only normal tokens, with reconstruction errors serving as anomaly scores. Additionally, we propose a Soft Mining Loss to prioritize hard-to-optimize samples during training. INP-Former achieves state-of-the-art performance in single-class, multi-class, and few-shot AD tasks across MVTec-AD, VisA, and Real-IAD, positioning it as a versatile and universal solution for AD. Remarkably, INP-Former also demonstrates some zero-shot AD capability. Furthermore, we propose a soft version of the INP Coherence Loss and enhance INP-Former by incorporating residual learning, leading to the development of INP-Former++. The proposed method significantly improves detection performance across single-class, multi-class, semi-supervised, few-shot, and zero-shot settings.
comment: 15 pages, 11 figures, 13 tables
♻ ☆ Task Preference Optimization: Improving Multimodal Large Language Models with Vision Task Alignment CVPR2025
Current multimodal large language models (MLLMs) struggle with fine-grained or precise understanding of visuals although they give comprehensive perception and reasoning in a spectrum of vision applications. Recent studies either develop tool-using or unify specific visual tasks into the autoregressive framework, often at the expense of overall multimodal performance. To address this issue and enhance MLLMs with visual tasks in a scalable fashion, we propose Task Preference Optimization (TPO), a novel method that utilizes differentiable task preferences derived from typical fine-grained visual tasks. TPO introduces learnable task tokens that establish connections between multiple task-specific heads and the MLLM. By leveraging rich visual labels during training, TPO significantly enhances the MLLM's multimodal capabilities and task-specific performance. Through multi-task co-training within TPO, we observe synergistic benefits that elevate individual task performance beyond what is achievable through single-task training methodologies. Our instantiation of this approach with VideoChat and LLaVA demonstrates an overall 14.6% improvement in multimodal performance compared to baseline models. Additionally, MLLM-TPO demonstrates robust zero-shot capabilities across various tasks, performing comparably to state-of-the-art supervised models. The code will be released at https://github.com/OpenGVLab/TPO
comment: CVPR2025
♻ ☆ Mitigating Knowledge Discrepancies among Multiple Datasets for Task-agnostic Unified Face Alignment
Despite the similar structures of human faces, existing face alignment methods cannot learn unified knowledge from multiple datasets with different landmark annotations. The limited training samples in a single dataset commonly result in fragile robustness in this field. To mitigate knowledge discrepancies among different datasets and train a task-agnostic unified face alignment (TUFA) framework, this paper presents a strategy to unify knowledge from multiple datasets. Specifically, we calculate a mean face shape for each dataset. To explicitly align these mean shapes on an interpretable plane based on their semantics, each shape is then incorporated with a group of semantic alignment embeddings. The 2D coordinates of these aligned shapes can be viewed as the anchors of the plane. By encoding them into structure prompts and further regressing the corresponding facial landmarks using image features, a mapping from the plane to the target faces is finally established, which unifies the learning target of different datasets. Consequently, multiple datasets can be utilized to boost the generalization ability of the model. The successful mitigation of discrepancies also enhances the efficiency of knowledge transferring to a novel dataset, significantly boosts the performance of few-shot face alignment. Additionally, the interpretable plane endows TUFA with a task-agnostic characteristic, enabling it to locate landmarks unseen during training in a zero-shot manner. Extensive experiments are carried on seven benchmarks and the results demonstrate an impressive improvement in face alignment brought by knowledge discrepancies mitigation. The code is available at https://github.com/Jiahao-UTS/TUFA.
comment: 24 Pages, 9 Figures, accepted to IJCV-2025
♻ ☆ FALCON: Resolving Visual Redundancy and Fragmentation in High-resolution Multimodal Large Language Models via Visual Registers ICCV
The incorporation of high-resolution visual input equips multimodal large language models (MLLMs) with enhanced visual perception capabilities for real-world tasks. However, most existing high-resolution MLLMs rely on a cropping-based approach to process images, which leads to fragmented visual encoding and a sharp increase in redundant tokens. To tackle these issues, we propose the FALCON model. FALCON introduces a novel visual register technique to simultaneously: 1) Eliminate redundant tokens at the stage of visual encoding. To directly address the visual redundancy present in the output of vision encoder, we propose a Register-based Representation Compacting (ReCompact) mechanism. This mechanism introduces a set of learnable visual registers designed to adaptively aggregate essential information while discarding redundancy. It enables the encoder to produce a more compact visual representation with a minimal number of output tokens, thus eliminating the need for an additional compression module. 2) Ensure continuity in visual encoding. To address the potential encoding errors caused by fragmented visual inputs, we develop a Register Interactive Attention (ReAtten) module. This module facilitates effective and efficient information exchange across sub-images by enabling interactions between visual registers. It ensures the continuity of visual semantics throughout the encoding. We conduct comprehensive experiments with FALCON on high-resolution benchmarks across a wide range of scenarios. FALCON demonstrates superior performance with a remarkable 9-fold reduction in visual tokens.
comment: Accepted to the IEEE/CVF International Conference on Computer Vision (ICCV) 2025
♻ ☆ Towards Vision-Language-Garment Models for Web Knowledge Garment Understanding and Generation CVPR
Multimodal foundation models have demonstrated strong generalization, yet their ability to transfer knowledge to specialized domains such as garment generation remains underexplored. We introduce VLG, a vision-language-garment model that synthesizes garments from textual descriptions and visual imagery. Our experiments assess VLG's zero-shot generalization, investigating its ability to transfer web-scale reasoning to unseen garment styles and prompts. Preliminary results indicate promising transfer capabilities, highlighting the potential for multimodal foundation models to adapt effectively to specialized domains like fashion design.
comment: Presented at MMFM CVPRW'25, Project Page: https://www.computationalimaging.org/publications/vision-language-garment-models/
♻ ☆ Dehazing Light Microscopy Images with Guided Conditional Flow Matching: finding a sweet spot between fidelity and realism
Fluorescence microscopy is a major driver of scientific progress in the life sciences. Although high-end confocal microscopes are capable of filtering out-of-focus light, cheaper and more accessible microscopy modalities, such as widefield microscopy, can not, which consequently leads to hazy image data. Computational dehazing is trying to combine the best of both worlds, leading to cheap microscopy but crisp-looking images. The perception-distortion trade-off tells us that we can optimize either for data fidelity, e.g. low MSE or high PSNR, or for data realism, measured by perceptual metrics such as LPIPS or FID. Existing methods either prioritize fidelity at the expense of realism, or produce perceptually convincing results that lack quantitative accuracy. In this work, we propose HazeMatching, a novel iterative method for dehazing light microscopy images, which effectively balances these objectives. Our goal was to find a balanced trade-off between the fidelity of the dehazing results and the realism of individual predictions (samples). We achieve this by adapting the conditional flow matching framework by guiding the generative process with a hazy observation in the conditional velocity field. We evaluate HazeMatching on 5 datasets, covering both synthetic and real data, assessing both distortion and perceptual quality. Our method is compared against 7 baselines, achieving a consistent balance between fidelity and realism on average. Additionally, with calibration analysis, we show that HazeMatching produces well-calibrated predictions. Note that our method does not need an explicit degradation operator to exist, making it easily applicable on real microscopy data. All data used for training and evaluation and our code will be publicly available under a permissive license.
comment: 4 figures, 10 pages + refs, 40 pages total (including supplement), 24 supplementary figures
♻ ☆ PerLDiff: Controllable Street View Synthesis Using Perspective-Layout Diffusion Models ICCV 2025
Controllable generation is considered a potentially vital approach to address the challenge of annotating 3D data, and the precision of such controllable generation becomes particularly imperative in the context of data production for autonomous driving. Existing methods focus on the integration of diverse generative information into controlling inputs, utilizing frameworks such as GLIGEN or ControlNet, to produce commendable outcomes in controllable generation. However, such approaches intrinsically restrict generation performance to the learning capacities of predefined network architectures. In this paper, we explore the innovative integration of controlling information and introduce PerLDiff (\textbf{Per}spective-\textbf{L}ayout \textbf{Diff}usion Models), a novel method for effective street view image generation that fully leverages perspective 3D geometric information. Our PerLDiff employs 3D geometric priors to guide the generation of street view images with precise object-level control within the network learning process, resulting in a more robust and controllable output. Moreover, it demonstrates superior controllability compared to alternative layout control methods. Empirical results justify that our PerLDiff markedly enhances the precision of controllable generation on the NuScenes and KITTI datasets.
comment: Accepted by ICCV 2025
♻ ☆ Visual Encoders for Data-Efficient Imitation Learning in Modern Video Games
Video games have served as useful benchmarks for the decision-making community, but going beyond Atari games towards modern games has been prohibitively expensive for the vast majority of the research community. Prior work in modern video games typically relied on game-specific integration to obtain game features and enable online training, or on existing large datasets. An alternative approach is to train agents using imitation learning to play video games purely from images. However, this setting poses a fundamental question: which visual encoders obtain representations that retain information critical for decision making? To answer this question, we conduct a systematic study of imitation learning with publicly available pre-trained visual encoders compared to the typical task-specific end-to-end training approach in Minecraft, Counter-Strike: Global Offensive, and Minecraft Dungeons. Our results show that end-to-end training can be effective with comparably low-resolution images and only minutes of demonstrations, but significant improvements can be gained by utilising pre-trained encoders such as DINOv2 depending on the game. In addition to enabling effective decision making, we show that pre-trained encoders can make decision-making research in video games more accessible by significantly reducing the cost of training.
comment: Camera-ready paper presented at the Adaptive and Learning Agents Workshop at the AAMAS 2025 conference
♻ ☆ Assessing workflow impact and clinical utility of AI-assisted brain aneurysm detection: a multi-reader study
Despite the plethora of AI-based algorithms developed for anomaly detection in radiology, subsequent integration into clinical setting is rarely evaluated. In this work, we assess the applicability and utility of an AI-based model for brain aneurysm detection comparing the performance of two readers with different levels of experience (2 and 13 years). We aim to answer the following questions: 1) Do the readers improve their performance when assisted by the AI algorithm? 2) How much does the AI algorithm impact routine clinical workflow? We reuse and enlarge our open-access, Time-Of-Flight Magnetic Resonance Angiography dataset (N=460). We use 360 subjects for training/validating our algorithm and 100 as unseen test set for the reading session. Even though our model reaches state-of-the-art results on the test set (sensitivity=74%, false positive rate=1.6), we show that neither the junior nor the senior reader significantly increase their sensitivity (p=0.59, p=1, respectively). In addition, we find that reading time for both readers is significantly higher in the "AI-assisted" setting than in the "Unassisted" (+15 seconds, on average; p=3x10^(-4) junior, p=3x10^(-5) senior). The confidence reported by the readers is unchanged across the two settings, indicating that the AI assistance does not influence the certainty of the diagnosis. Our findings highlight the importance of clinical validation of AI algorithms in a clinical setting involving radiologists. This study should serve as a reminder to the community to always examine the real-word effectiveness and workflow impact of proposed algorithms.
comment: This paper has been accepted for publication in the journal NeuroImage: Clinical (DOI: https://doi.org/10.1016/j.nicl.2025.103835)
♻ ☆ Consistency Trajectory Matching for One-Step Generative Super-Resolution
Current diffusion-based super-resolution (SR) approaches achieve commendable performance at the cost of high inference overhead. Therefore, distillation techniques are utilized to accelerate the multi-step teacher model into one-step student model. Nevertheless, these methods significantly raise training costs and constrain the performance of the student model by the teacher model. To overcome these tough challenges, we propose Consistency Trajectory Matching for Super-Resolution (CTMSR), a distillation-free strategy that is able to generate photo-realistic SR results in one step. Concretely, we first formulate a Probability Flow Ordinary Differential Equation (PF-ODE) trajectory to establish a deterministic mapping from low-resolution (LR) images with noise to high-resolution (HR) images. Then we apply the Consistency Training (CT) strategy to directly learn the mapping in one step, eliminating the necessity of pre-trained diffusion model. To further enhance the performance and better leverage the ground-truth during the training process, we aim to align the distribution of SR results more closely with that of the natural images. To this end, we propose to minimize the discrepancy between their respective PF-ODE trajectories from the LR image distribution by our meticulously designed Distribution Trajectory Matching (DTM) loss, resulting in improved realism of our recovered HR images. Comprehensive experimental results demonstrate that the proposed methods can attain comparable or even superior capabilities on both synthetic and real datasets while maintaining minimal inference latency.
♻ ☆ AWF: Adaptive Weight Fusion for Enhanced Class Incremental Semantic Segmentation
Class Incremental Semantic Segmentation (CISS) aims to mitigate catastrophic forgetting by maintaining a balance between previously learned and newly introduced knowledge. Existing methods, primarily based on regularization techniques like knowledge distillation, help preserve old knowledge but often face challenges in effectively integrating new knowledge, resulting in limited overall improvement. Endpoints Weight Fusion (EWF) method, while simple, effectively addresses some of these limitations by dynamically fusing the model weights from previous steps with those from the current step, using a fusion parameter alpha determined by the relative number of previously known classes and newly introduced classes. However, the simplicity of the alpha calculation may limit its ability to fully capture the complexities of different task scenarios, potentially leading to suboptimal fusion outcomes. In this paper, we propose an enhanced approach called Adaptive Weight Fusion (AWF), which introduces an alternating training strategy for the fusion parameter, allowing for more flexible and adaptive weight integration. AWF achieves superior performance by better balancing the retention of old knowledge with the learning of new classes, significantly improving results on benchmark CISS tasks compared to the original EWF. And our experiment code will be released on Github.
comment: 10 pages,6 figures
♻ ☆ Cluster and Predict Latent Patches for Improved Masked Image Modeling
Masked Image Modeling (MIM) offers a promising approach to self-supervised representation learning, however existing MIM models still lag behind the state-of-the-art. In this paper, we systematically analyze target representations, loss functions, and architectures, to introduce CAPI - a novel pure-MIM framework that relies on the prediction of latent clusterings. Our approach leverages a clustering-based loss, which is stable to train, and exhibits promising scaling properties. Our ViT-L backbone, CAPI, achieves 83.8% accuracy on ImageNet and 32.1% mIoU on ADE20K with simple linear probes, substantially outperforming previous MIM methods and approaching the performance of the current state-of-the-art, DINOv2. We release all our code and models.
comment: 26 pages, 14 figures, accepted in TMLR 2025
♻ ☆ USP: Unified Self-Supervised Pretraining for Image Generation and Understanding ICCV2025
Recent studies have highlighted the interplay between diffusion models and representation learning. Intermediate representations from diffusion models can be leveraged for downstream visual tasks, while self-supervised vision models can enhance the convergence and generation quality of diffusion models. However, transferring pretrained weights from vision models to diffusion models is challenging due to input mismatches and the use of latent spaces. To address these challenges, we propose Unified Self-supervised Pretraining (USP), a framework that initializes diffusion models via masked latent modeling in a Variational Autoencoder (VAE) latent space. USP achieves comparable performance in understanding tasks while significantly improving the convergence speed and generation quality of diffusion models. Our code will be publicly available at https://github.com/AMAP-ML/USP.
comment: Accepted to ICCV2025
♻ ☆ DepthART: Monocular Depth Estimation as Autoregressive Refinement Task
Monocular depth estimation has seen significant advances through discriminative approaches, yet their performance remains constrained by the limitations of training datasets. While generative approaches have addressed this challenge by leveraging priors from internet-scale datasets, with recent studies showing state-of-the-art results using fine-tuned text-to-image diffusion models, there is still room for improvement. Notably, autoregressive generative approaches, particularly Visual AutoRegressive modeling, have demonstrated superior results compared to diffusion models in conditioned image synthesis, while offering faster inference times. In this work, we apply Visual Autoregressive Transformer (VAR) to the monocular depth estimation problem. However, the conventional GPT-2-style training procedure (teacher forcing) inherited by VAR yields suboptimal results for depth estimation. To address this limitation, we introduce DepthART - a novel training method formulated as a Depth Autoregressive Refinement Task. Unlike traditional VAR training with static inputs and targets, our method implements a dynamic target formulation based on model outputs, enabling self-refinement. By utilizing the model's own predictions as inputs instead of ground truth token maps during training, we frame the objective as residual minimization, effectively reducing the discrepancy between training and inference procedures. Our experimental results demonstrate that the proposed training approach significantly enhances the performance of VAR in depth estimation tasks. When trained on Hypersim dataset using our approach, the model achieves superior results across multiple unseen benchmarks compared to existing generative and discriminative baselines.
♻ ☆ Efficient Online Inference of Vision Transformers by Training-Free Tokenization
The cost of deploying vision transformers increasingly represents a barrier to wider industrial adoption. Existing compression techniques require additional end-to-end fine-tuning or incur a significant drawback to runtime, making them ill-suited for online (real-time) inference, where a prediction is made on any new input as it comes in. We introduce the $\textbf{Visual Word Tokenizer}$ (VWT), a training-free method for reducing power costs while retaining performance and runtime. The VWT groups visual subwords (image patches) that are frequently used into visual words while infrequent ones remain intact. To do so, $\textit{intra}$-image or $\textit{inter}$-image statistics are leveraged to identify similar visual concepts for sequence compression. Experimentally, we demonstrate a reduction in wattage of up to 25% with only a 20% increase in runtime at most. Comparative approaches of 8-bit quantization and token merging achieve a lower or similar power efficiency but exact a higher toll on runtime (up to 100% or more). Our results indicate that VWTs are well-suited for efficient online inference with a marginal compromise on performance.
♻ ☆ Methodology for an Analysis of Influencing Factors on 3D Object Detection Performance
In automated driving, object detection is crucial for perceiving the environment. Although deep learning-based detectors offer high performance, their black-box nature complicates safety assurance. We propose a novel methodology to analyze how object- and environment-related factors affect LiDAR- and camera-based 3D object detectors. A statistical univariate analysis relates each factor to pedestrian detection errors. Additionally, a Random Forest (RF) model predicts errors from meta-information, with Shapley Values interpreting feature importance. By capturing feature dependencies, the RF enables a nuanced analysis of detection errors. Understanding these factors reveals detector performance gaps and supports safer object detection system development.
comment: IEEE International Conference on Autonomous and Trusted Computing (IEEE ATC), 2025
♻ ☆ Grid: Omni Visual Generation
Visual generation has witnessed remarkable progress in single-image tasks, yet extending these capabilities to temporal sequences remains challenging. Current approaches either build specialized video models from scratch with enormous computational costs or add separate motion modules to image generators, both requiring learning temporal dynamics anew. We observe that modern image generation models possess underutilized potential in handling structured layouts with implicit temporal understanding. Building on this insight, we introduce GRID, which reformulates temporal sequences as grid layouts, enabling holistic processing of visual sequences while leveraging existing model capabilities. Through a parallel flow-matching training strategy with coarse-to-fine scheduling, our approach achieves up to 67 faster inference speeds while using <1/1000 of the computational resources compared to specialized models. Extensive experiments demonstrate that GRID not only excels in temporal tasks from Text-to-Video to 3D Editing but also preserves strong performance in image generation, establishing itself as an efficient and versatile omni-solution for visual generation.
comment: Codes: https://github.com/Should-AI-Lab/GRID
♻ ☆ MSF: Efficient Diffusion Model Via Multi-Scale Latent Factorize
While diffusion-based generative models have made significant strides in visual content creation, conventional approaches face computational challenges, especially for high-resolution images, as they denoise the entire image from noisy inputs. This contrasts with signal processing techniques, such as Fourier and wavelet analyses, which often employ hierarchical decompositions. Inspired by such principles, particularly the idea of signal separation, we introduce a diffusion framework leveraging multi-scale latent factorization. Our framework uniquely decomposes the denoising target, typically latent features from a pretrained Variational Autoencoder, into a low-frequency base signal capturing core structural information and a high-frequency residual signal that contributes finer, high-frequency details like textures. This decomposition into base and residual components directly informs our two-stage image generation process, which first produces the low-resolution base, followed by the generation of the high-resolution residual. Our proposed architecture facilitates reduced sampling steps during the residual learning stage, owing to the inherent ease of modeling residual information, which confers advantages over conventional full-resolution generation techniques. This specific approach of decomposing the signal into a base and a residual, conceptually akin to how wavelet analysis can separate different frequency bands, yields a more streamlined and intuitive design distinct from generic hierarchical models. Our method, \name\ (Multi-Scale Factorization), demonstrates its effectiveness by achieving FID scores of 2.08 ($256\times256$) and 2.47 ($512\times512$) on class-conditional ImageNet benchmarks, outperforming the DiT baseline (2.27 and 3.04 respectively) while also delivering a $4\times$ speed-up with the same number of sampling steps.
♻ ☆ Uncertainty-Aware Remaining Lifespan Prediction from Images
Predicting mortality-related outcomes from images offers the prospect of accessible, noninvasive, and scalable health screening. We present a method that leverages pretrained vision transformer foundation models to estimate remaining lifespan from facial and whole-body images, alongside robust uncertainty quantification. We show that predictive uncertainty varies systematically with the true remaining lifespan, and that this uncertainty can be effectively modeled by learning a Gaussian distribution for each sample. Our approach achieves state-of-the-art mean absolute error (MAE) of 7.48 years on an established dataset, and further improves to 4.79 and 5.07 years MAE on two new, higher-quality datasets curated and published in this work. Importantly, our models provide well-calibrated uncertainty estimates, as demonstrated by a bucketed expected calibration error of 0.62 years. While not intended for clinical deployment, these results highlight the potential of extracting medically relevant signals from images. We make all code and datasets available to facilitate further research.
comment: Submitted to ISVC 2025
♻ ☆ How to Move Your Dragon: Text-to-Motion Synthesis for Large-Vocabulary Objects ICML 2025
Motion synthesis for diverse object categories holds great potential for 3D content creation but remains underexplored due to two key challenges: (1) the lack of comprehensive motion datasets that include a wide range of high-quality motions and annotations, and (2) the absence of methods capable of handling heterogeneous skeletal templates from diverse objects. To address these challenges, we contribute the following: First, we augment the Truebones Zoo dataset, a high-quality animal motion dataset covering over 70 species, by annotating it with detailed text descriptions, making it suitable for text-based motion synthesis. Second, we introduce rig augmentation techniques that generate diverse motion data while preserving consistent dynamics, enabling models to adapt to various skeletal configurations. Finally, we redesign existing motion diffusion models to dynamically adapt to arbitrary skeletal templates, enabling motion synthesis for a diverse range of objects with varying structures. Experiments show that our method learns to generate high-fidelity motions from textual descriptions for diverse and even unseen objects, setting a strong foundation for motion synthesis across diverse object categories and skeletal templates. Qualitative results are available at: $\href{https://t2m4lvo.github.io}{https://t2m4lvo.github.io}$.
comment: Accepted to ICML 2025
♻ ☆ Information Entropy Guided Height-aware Histogram for Quantization-friendly Pillar Feature Encoder
Real-time and high-performance 3D object detection plays a critical role in autonomous driving and robotics. Recent pillar-based 3D object detectors have gained significant attention due to their compact representation and low computational overhead, making them suitable for onboard deployment and quantization. However, existing pillar-based detectors still suffer from information loss along height dimension and large numerical distribution difference during pillar feature encoding (PFE), which severely limits their performance and quantization potential. To address above issue, we first unveil the importance of different input information during PFE and identify the height dimension as a key factor in enhancing 3D detection performance. Motivated by this observation, we propose a height-aware pillar feature encoder, called PillarHist. Specifically, PillarHist statistics the discrete distribution of points at different heights within one pillar with the information entropy guidance. This simple yet effective design greatly preserves the information along the height dimension while significantly reducing the computation overhead of the PFE. Meanwhile, PillarHist also constrains the arithmetic distribution of PFE input to a stable range, making it quantization-friendly. Notably, PillarHist operates exclusively within the PFE stage to enhance performance, enabling seamless integration into existing pillar-based methods without introducing complex operations. Extensive experiments show the effectiveness of PillarHist in terms of both efficiency and performance.
comment: Need further revision
♻ ☆ PRVQL: Progressive Knowledge-guided Refinement for Robust Egocentric Visual Query Localization
Egocentric visual query localization (EgoVQL) focuses on localizing the target of interest in space and time from first-person videos, given a visual query. Despite recent progressive, existing methods often struggle to handle severe object appearance changes and cluttering background in the video due to lacking sufficient target cues, leading to degradation. Addressing this, we introduce PRVQL, a novel Progressive knowledge-guided Refinement framework for EgoVQL. The core is to continuously exploit target-relevant knowledge directly from videos and utilize it as guidance to refine both query and video features for improving target localization. Our PRVQL contains multiple processing stages. The target knowledge from one stage, comprising appearance and spatial knowledge extracted via two specially designed knowledge learning modules, are utilized as guidance to refine the query and videos features for the next stage, which are used to generate more accurate knowledge for further feature refinement. With such a progressive process, target knowledge in PRVQL can be gradually improved, which, in turn, leads to better refined query and video features for localization in the final stage. Compared to previous methods, our PRVQL, besides the given object cues, enjoys additional crucial target information from a video as guidance to refine features, and hence enhances EgoVQL in complicated scenes. In our experiments on challenging Ego4D, PRVQL achieves state-of-the-art result and largely surpasses other methods, showing its efficacy. Our code, model and results will be released at https://github.com/fb-reps/PRVQL.
♻ ☆ Scaling Inference-Time Search with Vision Value Model for Improved Visual Comprehension
Despite significant advancements in vision-language models (VLMs), there lacks effective approaches to enhance response quality by scaling inference-time computation. This capability is known to be a core step towards the self-improving models in recent large language model studies. In this paper, we present Vision Value Model (VisVM) that can guide VLM inference-time search to generate responses with better visual comprehension. Specifically, VisVM not only evaluates the generated sentence quality in the current search step, but also anticipates the quality of subsequent sentences that may result from the current step, thus providing a long-term value. In this way, VisVM steers VLMs away from generating sentences prone to hallucinations or insufficient detail, thereby producing higher quality responses. Experimental results demonstrate that VisVM-guided search significantly enhances VLMs' ability to generate descriptive captions with richer visual details and fewer hallucinations, compared with greedy decoding and search methods with other visual reward signals. Furthermore, we find that self-training the model with the VisVM-guided captions improve VLM's performance across a wide range of multimodal benchmarks, indicating the potential for developing self-improving VLMs. Our value model and code are available at https://github.com/si0wang/VisVM.
♻ ☆ Enhanced Controllability of Diffusion Models via Feature Disentanglement and Realism-Enhanced Sampling Methods
As Diffusion Models have shown promising performance, a lot of efforts have been made to improve the controllability of Diffusion Models. However, how to train Diffusion Models to have the disentangled latent spaces and how to naturally incorporate the disentangled conditions during the sampling process have been underexplored. In this paper, we present a training framework for feature disentanglement of Diffusion Models (FDiff). We further propose two sampling methods that can boost the realism of our Diffusion Models and also enhance the controllability. Concisely, we train Diffusion Models conditioned on two latent features, a spatial content mask, and a flattened style embedding. We rely on the inductive bias of the denoising process of Diffusion Models to encode pose/layout information in the content feature and semantic/style information in the style feature. Regarding the sampling methods, we first generalize Composable Diffusion Models (GCDM) by breaking the conditional independence assumption to allow for some dependence between conditional inputs, which is shown to be effective in realistic generation in our experiments. Second, we propose timestep-dependent weight scheduling for content and style features to further improve the performance. We also observe better controllability of our proposed methods compared to existing methods in image manipulation and image translation.
comment: ECCV 2024; Code is available at https://github.com/WonwoongCho/Towards-Enhanced-Controllability-of-Diffusion-Models
♻ ☆ Soft Dice Confidence: A Near-Optimal Confidence Estimator for Selective Prediction in Semantic Segmentation
Selective prediction augments a model with the option to abstain from providing unreliable predictions. The key ingredient is a confidence score function, which should be directly related to the conditional risk. In the case of binary semantic segmentation, existing score functions either ignore the particularities of the evaluation metric or demand additional held-out data for tuning. We propose the Soft Dice Confidence (SDC), a simple, tuning-free confidence score function that directly aligns with the Dice coefficient metric. We prove that, under conditional independence, the SDC is near optimal: we establish upper and lower bounds on the ratio between the SDC and the ideal (intractable) confidence score function and show that these bounds are very close to 1. Experiments on six public medical-imaging benchmarks and on synthetic data corroborate our theoretical findings. In fact, SDC outperformed all prior confidence estimators from the literature in all of our experiments, including those that rely on additional data. These results position SDC as a reliable and efficient confidence estimator for selective prediction in semantic segmentation.
comment: 42 pages, 9 figures
♻ ☆ Avoid Forgetting by Preserving Global Knowledge Gradients in Federated Learning with Non-IID Data
The inevitable presence of data heterogeneity has made federated learning very challenging. There are numerous methods to deal with this issue, such as local regularization, better model fusion techniques, and data sharing. Though effective, they lack a deep understanding of how data heterogeneity can affect the global decision boundary. In this paper, we bridge this gap by performing an experimental analysis of the learned decision boundary using a toy example. Our observations are surprising: (1) we find that the existing methods suffer from forgetting and clients forget the global decision boundary and only learn the perfect local one, and (2) this happens regardless of the initial weights, and clients forget the global decision boundary even starting from pre-trained optimal weights. In this paper, we present FedProj, a federated learning framework that robustly learns the global decision boundary and avoids its forgetting during local training. To achieve better ensemble knowledge fusion, we design a novel server-side ensemble knowledge transfer loss to further calibrate the learned global decision boundary. To alleviate the issue of learned global decision boundary forgetting, we further propose leveraging an episodic memory of average ensemble logits on a public unlabeled dataset to regulate the gradient updates at each step of local training. Experimental results demonstrate that FedProj outperforms state-of-the-art methods by a large margin.
♻ ☆ Mitigating Hallucinations in YOLO-based Object Detection Models: A Revisit to Out-of-Distribution Detection
Object detection systems must reliably perceive objects of interest without being overly confident to ensure safe decision-making in dynamic environments. Filtering techniques based on out-of-distribution (OoD) detection are commonly added as an extra safeguard to filter hallucinations caused by overconfidence in novel objects. Nevertheless, evaluating YOLO-family detectors and their filters under existing OoD benchmarks often leads to unsatisfactory performance. This paper studies the underlying reasons for performance bottlenecks and proposes a methodology to improve performance fundamentally. Our first contribution is a calibration of all existing evaluation results: Although images in existing OoD benchmark datasets are claimed not to have objects within in-distribution (ID) classes (i.e., categories defined in the training dataset), around 13% of objects detected by the object detector are actually ID objects. Dually, the ID dataset containing OoD objects can also negatively impact the decision boundary of filters. These ultimately lead to a significantly imprecise performance estimation. Our second contribution is to consider the task of hallucination reduction as a joint pipeline of detectors and filters. By developing a methodology to carefully synthesize an OoD dataset that semantically resembles the objects to be detected, and using the crafted OoD dataset in the fine-tuning of YOLO detectors to suppress the objectness score, we achieve a 88% reduction in overall hallucination error with a combined fine-tuned detection and filtering system on the self-driving benchmark BDD-100K. Our code and dataset are available at: https://gricad-gitlab.univ-grenoble-alpes.fr/dnn-safety/m-hood.
comment: Camera-ready version for IROS 2025
♻ ☆ Generating Physically Stable and Buildable Brick Structures from Text
We introduce BrickGPT, the first approach for generating physically stable interconnecting brick assembly models from text prompts. To achieve this, we construct a large-scale, physically stable dataset of brick structures, along with their associated captions, and train an autoregressive large language model to predict the next brick to add via next-token prediction. To improve the stability of the resulting designs, we employ an efficient validity check and physics-aware rollback during autoregressive inference, which prunes infeasible token predictions using physics laws and assembly constraints. Our experiments show that BrickGPT produces stable, diverse, and aesthetically pleasing brick structures that align closely with the input text prompts. We also develop a text-based brick texturing method to generate colored and textured designs. We show that our designs can be assembled manually by humans and automatically by robotic arms. We release our new dataset, StableText2Brick, containing over 47,000 brick structures of over 28,000 unique 3D objects accompanied by detailed captions, along with our code and models at the project website: https://avalovelace1.github.io/BrickGPT/.
comment: Project page: https://avalovelace1.github.io/BrickGPT/
♻ ☆ Robust Representation Consistency Model via Contrastive Denoising
Robustness is essential for deep neural networks, especially in security-sensitive applications. To this end, randomized smoothing provides theoretical guarantees for certifying robustness against adversarial perturbations. Recently, diffusion models have been successfully employed for randomized smoothing to purify noise-perturbed samples before making predictions with a standard classifier. While these methods excel at small perturbation radii, they struggle with larger perturbations and incur a significant computational overhead during inference compared to classical methods. To address this, we reformulate the generative modeling task along the diffusion trajectories in pixel space as a discriminative task in the latent space. Specifically, we use instance discrimination to achieve consistent representations along the trajectories by aligning temporally adjacent points. After fine-tuning based on the learned representations, our model enables implicit denoising-then-classification via a single prediction, substantially reducing inference costs. We conduct extensive experiments on various datasets and achieve state-of-the-art performance with minimal computation budget during inference. For example, our method outperforms the certified accuracy of diffusion-based methods on ImageNet across all perturbation radii by 5.3% on average, with up to 11.6% at larger radii, while reducing inference costs by 85$\times$ on average. Codes are available at: https://github.com/jiachenlei/rRCM.
Machine Learning 196
☆ Teaching Time Series to See and Speak: Forecasting with Aligned Visual and Textual Perspectives
Time series forecasting traditionally relies on unimodal numerical inputs, which often struggle to capture high-level semantic patterns due to their dense and unstructured nature. While recent approaches have explored representing time series as text using large language models (LLMs), these methods remain limited by the discrete nature of token sequences and lack the perceptual intuition humans typically apply, such as interpreting visual patterns. In this paper, we propose a multimodal contrastive learning framework that transforms raw time series into structured visual and textual perspectives. Rather than using natural language or real-world images, we construct both modalities directly from numerical sequences. We then align these views in a shared semantic space via contrastive learning, enabling the model to capture richer and more complementary representations. Furthermore, we introduce a variate selection module that leverages the aligned representations to identify the most informative variables for multivariate forecasting. Extensive experiments on fifteen short-term and six long-term forecasting benchmarks demonstrate that our approach consistently outperforms strong unimodal and cross-modal baselines, highlighting the effectiveness of multimodal alignment in enhancing time series forecasting. Code is available at: https://github.com/Ironieser/TimesCLIP.
comment: Code: https://github.com/Ironieser/TimesCLIP
☆ Data Uniformity Improves Training Efficiency and More, with a Convergence Framework Beyond the NTK Regime
Data selection plays a crucial role in data-driven decision-making, including in large language models (LLMs), and is typically task-dependent. Properties such as data quality and diversity have been extensively studied and are known to enhance model performance. However, it remains unclear whether there exist other quantitative and general principles of data selection that can consistently improve performance, especially for complex tasks with limited prior knowledge. In this paper, we demonstrate that selecting more uniformly distributed data can improve training efficiency while enhancing performance. Specifically, we establish that more uniform (less biased) distribution leads to a larger minimum pairwise distance between data points, denoted by $h_{\min}$, and prove that a smaller $h_{\min}$ can slow down the training dynamics of gradient descent (GD). Moreover, we theoretically show that the approximation error of neural networks decreases as $h_{\min}$ increases. Our analysis introduces a convergence framework for GD beyond the Neural Tangent Kernel (NTK) regime, applicable to a broad class of architectures, including transformers, without requiring Lipschitz smoothness. This framework further provides theoretical justification for the use of residual connections and function compositions in deep neural architectures. In the end, we conduct comprehensive experiments for supervised fine-tuning across various settings, including different optimization strategies, model sizes, and training datasets. The results consistently demonstrate that selecting data by maximizing pairwise distance significantly accelerates training and achieves comparable or better performance in LLMs across diverse datasets. Code and Datasets are available at the link: https://github.com/SafeRL-Lab/data-uniformity.
☆ SPIRAL: Self-Play on Zero-Sum Games Incentivizes Reasoning via Multi-Agent Multi-Turn Reinforcement Learning
Recent advances in reinforcement learning have shown that language models can develop sophisticated reasoning through training on tasks with verifiable rewards, but these approaches depend on human-curated problem-answer pairs and domain-specific reward engineering. We introduce SPIRAL, a self-play framework where models learn by playing multi-turn, zero-sum games against continuously improving versions of themselves, eliminating the need for human supervision. Through self-play, SPIRAL generates an infinite curriculum of progressively challenging problems as models must constantly adapt to stronger opponents. To enable this self-play training at scale, We implement a fully online, multi-turn, multi-agent reinforcement learning system for LLMs and propose role-conditioned advantage estimation (RAE) to stabilize multi-agent training. Using SPIRAL, self-play on zero-sum games produces reasoning capabilities that transfer broadly. Training Qwen3-4B-Base on Kuhn Poker alone achieves 8.6% improvement on math and 8.4% on general reasoning, outperforming SFT on 25,000 expert game trajectories. Analysis reveals that this transfer occurs through three cognitive patterns: systematic decomposition, expected value calculation, and case-by-case analysis. Multi-game training (TicTacToe, Kuhn Poker, Simple Negotiation) further enhances performance as each game develops distinct reasoning strengths. Applying SPIRAL to a strong reasoning model (DeepSeek-R1-Distill-Qwen-7B) can still lead to 2.0% average improvement. These results demonstrate that zero-sum games naturally develop transferable reasoning capabilities, highlighting a promising direction for autonomous reasoning development.
comment: Work in Progress
☆ Navigating with Annealing Guidance Scale in Diffusion Space
Denoising diffusion models excel at generating high-quality images conditioned on text prompts, yet their effectiveness heavily relies on careful guidance during the sampling process. Classifier-Free Guidance (CFG) provides a widely used mechanism for steering generation by setting the guidance scale, which balances image quality and prompt alignment. However, the choice of the guidance scale has a critical impact on the convergence toward a visually appealing and prompt-adherent image. In this work, we propose an annealing guidance scheduler which dynamically adjusts the guidance scale over time based on the conditional noisy signal. By learning a scheduling policy, our method addresses the temperamental behavior of CFG. Empirical results demonstrate that our guidance scheduler significantly enhances image quality and alignment with the text prompt, advancing the performance of text-to-image generation. Notably, our novel scheduler requires no additional activations or memory consumption, and can seamlessly replace the common classifier-free guidance, offering an improved trade-off between prompt alignment and quality.
comment: Project page: https://annealing-guidance.github.io/annealing-guidance/
☆ Development of Hybrid Artificial Intelligence Training on Real and Synthetic Data: Benchmark on Two Mixed Training Strategies
Synthetic data has emerged as a cost-effective alternative to real data for training artificial neural networks (ANN). However, the disparity between synthetic and real data results in a domain gap. That gap leads to poor performance and generalization of the trained ANN when applied to real-world scenarios. Several strategies have been developed to bridge this gap, which combine synthetic and real data, known as mixed training using hybrid datasets. While these strategies have been shown to mitigate the domain gap, a systematic evaluation of their generalizability and robustness across various tasks and architectures remains underexplored. To address this challenge, our study comprehensively analyzes two widely used mixing strategies on three prevalent architectures and three distinct hybrid datasets. From these datasets, we sample subsets with varying proportions of synthetic to real data to investigate the impact of synthetic and real components. The findings of this paper provide valuable insights into optimizing the use of synthetic data in the training process of any ANN, contributing to enhancing robustness and efficacy.
comment: 21pages, 14 figures, 2 tables
☆ SQUASH: A SWAP-Based Quantum Attack to Sabotage Hybrid Quantum Neural Networks
We propose a circuit-level attack, SQUASH, a SWAP-Based Quantum Attack to sabotage Hybrid Quantum Neural Networks (HQNNs) for classification tasks. SQUASH is executed by inserting SWAP gate(s) into the variational quantum circuit of the victim HQNN. Unlike conventional noise-based or adversarial input attacks, SQUASH directly manipulates the circuit structure, leading to qubit misalignment and disrupting quantum state evolution. This attack is highly stealthy, as it does not require access to training data or introduce detectable perturbations in input states. Our results demonstrate that SQUASH significantly degrades classification performance, with untargeted SWAP attacks reducing accuracy by up to 74.08\% and targeted SWAP attacks reducing target class accuracy by up to 79.78\%. These findings reveal a critical vulnerability in HQNN implementations, underscoring the need for more resilient architectures against circuit-level adversarial interventions.
comment: Keywords: Quantum Machine Learning, Hybrid Quantum Neural Networks, SWAP Test, Fidelity, Circuit-level Attack
☆ Logit-Gap Steering: Efficient Short-Suffix Jailbreaks for Aligned Large Language Models
We introduce logit-gap steering, a fast jailbreak framework that casts the refusal-affirmation gap of RLHF-aligned language models as a single pass over the vocabulary. A forward-computable score blends gap reduction with lightweight proxies for KL penalty and reward shift, allowing a "sort-sum-stop" sweep to complete in under a second and return a short suffix--two orders of magnitude fewer model calls than beam or gradient attacks. The same suffix generalises to unseen prompts and scales from 0.5 B to 70 B checkpoints, lifting one-shot attack success from baseline levels to 80-100% while preserving topical coherence. Beyond efficiency, these suffixes expose sentence-boundary reward cliffs and other alignment artefacts, offering a lightweight probe into how safety tuning reshapes internal representations.
☆ Consensus-based optimization for closed-box adversarial attacks and a connection to evolution strategies
Consensus-based optimization (CBO) has established itself as an efficient gradient-free optimization scheme, with attractive mathematical properties, such as mean-field convergence results for non-convex loss functions. In this work, we study CBO in the context of closed-box adversarial attacks, which are imperceptible input perturbations that aim to fool a classifier, without accessing its gradient. Our contribution is to establish a connection between the so-called consensus hopping as introduced by Riedl et al. and natural evolution strategies (NES) commonly applied in the context of adversarial attacks and to rigorously relate both methods to gradient-based optimization schemes. Beyond that, we provide a comprehensive experimental study that shows that despite the conceptual similarities, CBO can outperform NES and other evolutionary strategies in certain scenarios.
Agent.xpu: Efficient Scheduling of Agentic LLM Workloads on Heterogeneous SoC
The proliferation of agentic Large Language Models (LLMs) on personal devices introduces a new class of workloads characterized by a dichotomy of objectives. Reactive tasks, initiated by users, demand immediate, low-latency responses, while proactive tasks operate invisibly and prioritize throughput. Existing on-device LLM engines, designed for isolated inferences, fail to efficiently manage these concurrent and conflicting requests on consumer-grade heterogeneous SoCs with CPU, integrated GPU, and NPU. This paper introduces Agent.xpu, an efficient serving system for agentic LLM workloads on memory-unified heterogeneous SoCs. With dedicated offline profiling, Agent.xpu first constructs a heterogeneous execution graph, which fuses and chunks model kernels for affinity-guided, elastic accelerator mapping with predictive kernel annotation. At runtime, its online scheduler enables fine-grained, kernel-level preemption to guarantee the responsiveness of reactive tasks. To maximize SoC utilization, it adopts slack-aware kernel backfill to opportunistically append proactive tasks, and mitigates NPU-iGPU contention via bandwidth-aware dispatch. Evaluation on an Intel Core Ultra SoC shows that Agent.xpu achieves 4.6$\times$ lower latency for reactive tasks and sustains 1.6$\times$-6.8$\times$ higher throughput for proactive tasks compared to state-of-the-art inference engines.
☆ Faster Diffusion Models via Higher-Order Approximation
In this paper, we explore provable acceleration of diffusion models without any additional retraining. Focusing on the task of approximating a target data distribution in $\mathbb{R}^d$ to within $\varepsilon$ total-variation distance, we propose a principled, training-free sampling algorithm that requires only the order of $$ d^{1+2/K} \varepsilon^{-1/K} $$ score function evaluations (up to log factor) in the presence of accurate scores, where $K$ is an arbitrarily large fixed integer. This result applies to a broad class of target data distributions, without the need for assumptions such as smoothness or log-concavity. Our theory is robust vis-a-vis inexact score estimation, degrading gracefully as the score estimation error increases -- without demanding higher-order smoothness on the score estimates as assumed in previous work. The proposed algorithm draws insight from high-order ODE solvers, leveraging high-order Lagrange interpolation and successive refinement to approximate the integral derived from the probability flow ODE.
☆ Unsupervised Sparse Coding-based Spiking Neural Network for Real-time Spike Sorting
Spike sorting is a crucial step in decoding multichannel extracellular neural signals, enabling the identification of individual neuronal activity. A key challenge in brain-machine interfaces (BMIs) is achieving real-time, low-power spike sorting at the edge while keeping high neural decoding performance. This study introduces the Neuromorphic Sparse Sorter (NSS), a compact two-layer spiking neural network optimized for efficient spike sorting. NSS leverages the Locally Competitive Algorithm (LCA) for sparse coding to extract relevant features from noisy events with reduced computational demands. NSS learns to sort detected spike waveforms in an online fashion and operates entirely unsupervised. To exploit multi-bit spike coding capabilities of neuromorphic platforms like Intel's Loihi 2, a custom neuron model was implemented, enabling flexible power-performance trade-offs via adjustable spike bit-widths. Evaluations on simulated and real-world tetrode signals with biological drift showed NSS outperformed established pipelines such as WaveClus3 and PCA+KMeans. With 2-bit graded spikes, NSS on Loihi 2 outperformed NSS implemented with leaky integrate-and-fire neuron and achieved an F1-score of 77% (+10% improvement) while consuming 8.6mW (+1.65mW) when tested on a drifting recording, with a computational processing time of 0.25ms (+60 us) per inference.
comment: Main article : 16 pages, 7 figures and 4 tables. Supplementary Material starts at page 17 with 7 figures
☆ Post-processing of EEG-based Auditory Attention Decoding Decisions via Hidden Markov Models
Auditory attention decoding (AAD) algorithms exploit brain signals, such as electroencephalography (EEG), to identify which speaker a listener is focusing on in a multi-speaker environment. While state-of-the-art AAD algorithms can identify the attended speaker on short time windows, their predictions are often too inaccurate for practical use. In this work, we propose augmenting AAD with a hidden Markov model (HMM) that models the temporal structure of attention. More specifically, the HMM relies on the fact that a subject is much less likely to switch attention than to keep attending the same speaker at any moment in time. We show how a HMM can significantly improve existing AAD algorithms in both causal (real-time) and non-causal (offline) settings. We further demonstrate that HMMs outperform existing postprocessing approaches in both accuracy and responsiveness, and explore how various factors such as window length, switching frequency, and AAD accuracy influence overall performance. The proposed method is computationally efficient, intuitive to use and applicable in both real-time and offline settings.
☆ Bridging Theory and Practice in Link Representation with Graph Neural Networks
Graph Neural Networks (GNNs) are widely used to compute representations of node pairs for downstream tasks such as link prediction. Yet, theoretical understanding of their expressive power has focused almost entirely on graph-level representations. In this work, we shift the focus to links and provide the first comprehensive study of GNN expressiveness in link representation. We introduce a unifying framework, the $k_\phi$-$k_\rho$-$m$ framework, that subsumes existing message-passing link models and enables formal expressiveness comparisons. Using this framework, we derive a hierarchy of state-of-the-art methods and offer theoretical tools to analyze future architectures. To complement our analysis, we propose a synthetic evaluation protocol comprising the first benchmark specifically designed to assess link-level expressiveness. Finally, we ask: does expressiveness matter in practice? We use a graph symmetry metric that quantifies the difficulty of distinguishing links and show that while expressive models may underperform on standard benchmarks, they significantly outperform simpler ones as symmetry increases, highlighting the need for dataset-aware model selection.
☆ Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
This study investigates adaptive experimental design for treatment choice, also known as fixed-budget best-arm identification. We consider an adaptive procedure consisting of a treatment-allocation phase followed by a treatment-choice phase, and we design an adaptive experiment for this setup to efficiently identify the best treatment arm, defined as the one with the highest expected outcome. In our designed experiment, the treatment-allocation phase consists of two stages. The first stage is a pilot phase, where we allocate each treatment arm uniformly with equal proportions to eliminate clearly suboptimal arms and estimate outcome variances. In the second stage, we allocate treatment arms in proportion to the variances estimated in the first stage. After the treatment-allocation phase, the procedure enters the treatment-choice phase, where we choose the treatment arm with the highest sample mean as our estimate of the best treatment arm. We prove that this single design is simultaneously asymptotically minimax and Bayes optimal for the simple regret, with upper bounds that match our lower bounds up to exact constants. Therefore, our designed experiment achieves the sharp efficiency limits without requiring separate tuning for minimax and Bayesian objectives.
☆ Provably Efficient and Agile Randomized Q-Learning
While Bayesian-based exploration often demonstrates superior empirical performance compared to bonus-based methods in model-based reinforcement learning (RL), its theoretical understanding remains limited for model-free settings. Existing provable algorithms either suffer from computational intractability or rely on stage-wise policy updates which reduce responsiveness and slow down the learning process. In this paper, we propose a novel variant of Q-learning algorithm, refereed to as RandomizedQ, which integrates sampling-based exploration with agile, step-wise, policy updates, for episodic tabular RL. We establish an $\widetilde{O}(\sqrt{H^5SAT})$ regret bound, where $S$ is the number of states, $A$ is the number of actions, $H$ is the episode length, and $T$ is the total number of episodes. In addition, we present a logarithmic regret bound under a mild positive sub-optimality condition on the optimal Q-function. Empirically, RandomizedQ exhibits outstanding performance compared to existing Q-learning variants with both bonus-based and Bayesian-based exploration on standard benchmarks.
☆ The Illusion of Progress? A Critical Look at Test-Time Adaptation for Vision-Language Models
Test-time adaptation (TTA) methods have gained significant attention for enhancing the performance of vision-language models (VLMs) such as CLIP during inference, without requiring additional labeled data. However, current TTA researches generally suffer from major limitations such as duplication of baseline results, limited evaluation metrics, inconsistent experimental settings, and insufficient analysis. These problems hinder fair comparisons between TTA methods and obscure their practical strengths and weaknesses. To address these challenges, we introduce TTA-VLM, a comprehensive benchmark for evaluating TTA methods on VLMs. Our benchmark implements 8 episodic TTA and 7 online TTA methods within a unified and reproducible framework, and evaluates them across 15 widely used datasets. Unlike prior studies focused solely on CLIP, we extend the evaluation to SigLIP--a model trained with a Sigmoid loss--and include training-time tuning methods such as CoOp, MaPLe, and TeCoA to assess generality. Beyond classification accuracy, TTA-VLM incorporates various evaluation metrics, including robustness, calibration, out-of-distribution detection, and stability, enabling a more holistic assessment of TTA methods. Through extensive experiments, we find that 1) existing TTA methods produce limited gains compared to the previous pioneering work; 2) current TTA methods exhibit poor collaboration with training-time fine-tuning methods; 3) accuracy gains frequently come at the cost of reduced model trustworthiness. We release TTA-VLM to provide fair comparison and comprehensive evaluation of TTA methods for VLMs, and we hope it encourages the community to develop more reliable and generalizable TTA strategies.
comment: Github link: https://github.com/TomSheng21/tta-vlm
☆ The Jacobian and Hessian of the Kullback-Leibler Divergence between Multivariate Gaussian Distributions (Technical Report)
This document shows how to obtain the Jacobian and Hessian matrices of the Kullback-Leibler divergence between two multivariate Gaussian distributions, using the first and second-order differentials. The presented derivations are based on the theory presented by \cite{magnus99}. I've also got great inspiration from some of the derivations in \cite{minka}. Since I pretend to be at most didactic, the document is split into a summary of results and detailed derivations on each of the elements involved, with specific references to the tricks used in the derivations, and to many of the underlying concepts.
☆ Machine Understanding of Scientific Language
Scientific information expresses human understanding of nature. This knowledge is largely disseminated in different forms of text, including scientific papers, news articles, and discourse among people on social media. While important for accelerating our pursuit of knowledge, not all scientific text is faithful to the underlying science. As the volume of this text has burgeoned online in recent years, it has become a problem of societal importance to be able to identify the faithfulness of a given piece of scientific text automatically. This thesis is concerned with the cultivation of datasets, methods, and tools for machine understanding of scientific language, in order to analyze and understand science communication at scale. To arrive at this, I present several contributions in three areas of natural language processing and machine learning: automatic fact checking, learning with limited data, and scientific text processing. These contributions include new methods and resources for identifying check-worthy claims, adversarial claim generation, multi-source domain adaptation, learning from crowd-sourced labels, cite-worthiness detection, zero-shot scientific fact checking, detecting exaggerated scientific claims, and modeling degrees of information change in science communication. Critically, I demonstrate how the research outputs of this thesis are useful for effectively learning from limited amounts of scientific text in order to identify misinformative scientific statements and generate new insights into the science communication process
comment: PhD Thesis, 210 pages
LLM Agents Are the Antidote to Walled Gardens
While the Internet's core infrastructure was designed to be open and universal, today's application layer is dominated by closed, proprietary platforms. Open and interoperable APIs require significant investment, and market leaders have little incentive to enable data exchange that could erode their user lock-in. We argue that LLM-based agents fundamentally disrupt this status quo. Agents can automatically translate between data formats and interact with interfaces designed for humans: this makes interoperability dramatically cheaper and effectively unavoidable. We name this shift universal interoperability: the ability for any two digital services to exchange data seamlessly using AI-mediated adapters. Universal interoperability undermines monopolistic behaviours and promotes data portability. However, it can also lead to new security risks and technical debt. Our position is that the ML community should embrace this development while building the appropriate frameworks to mitigate the downsides. By acting now, we can harness AI to restore user freedom and competitive markets without sacrificing security.
☆ A Scalable Approach for Safe and Robust Learning via Lipschitz-Constrained Networks
Certified robustness is a critical property for deploying neural networks (NN) in safety-critical applications. A principle approach to achieving such guarantees is to constrain the global Lipschitz constant of the network. However, accurate methods for Lipschitz-constrained training often suffer from non-convex formulations and poor scalability due to reliance on global semidefinite programs (SDPs). In this letter, we propose a convex training framework that enforces global Lipschitz constraints via semidefinite relaxation. By reparameterizing the NN using loop transformation, we derive a convex admissibility condition that enables tractable and certifiable training. While the resulting formulation guarantees robustness, its scalability is limited by the size of global SDP. To overcome this, we develop a randomized subspace linear matrix inequalities (RS-LMI) approach that decomposes the global constraints into sketched layerwise constraints projected onto low-dimensional subspaces, yielding a smooth and memory-efficient training objective. Empirical results on MNIST, CIFAR-10, and ImageNet demonstrate that the proposed framework achieves competitive accuracy with significantly improved Lipschitz bounds and runtime performance.
UMA: A Family of Universal Models for Atoms
The ability to quickly and accurately compute properties from atomic simulations is critical for advancing a large number of applications in chemistry and materials science including drug discovery, energy storage, and semiconductor manufacturing. To address this need, Meta FAIR presents a family of Universal Models for Atoms (UMA), designed to push the frontier of speed, accuracy, and generalization. UMA models are trained on half a billion unique 3D atomic structures (the largest training runs to date) by compiling data across multiple chemical domains, e.g. molecules, materials, and catalysts. We develop empirical scaling laws to help understand how to increase model capacity alongside dataset size to achieve the best accuracy. The UMA small and medium models utilize a novel architectural design we refer to as mixture of linear experts that enables increasing model capacity without sacrificing speed. For example, UMA-medium has 1.4B parameters but only ~50M active parameters per atomic structure. We evaluate UMA models on a diverse set of applications across multiple domains and find that, remarkably, a single model without any fine-tuning can perform similarly or better than specialized models. We are releasing the UMA code, weights, and associated data to accelerate computational workflows and enable the community to continue to build increasingly capable AI models.
comment: 29 pages, 5 figures
☆ Learning Constraints Directly from Network Data
Network data conforms to a wide range of rules that arise from protocols, design principles, and deployment decisions (e.g., a packet's queuing delay must be less than its end-to-end delay). Formalizing such rules as logic constraints can (i) improve the quality of synthetic data, (ii) reduce the brittleness of machine learning (ML) models, and (iii) improve semantic understanding of network measurements. However, these benefits remain out of reach if rule extraction is manual or solely reliant on ML, as both approaches yield incomplete, unreliable, and/or inaccurate rules. This paper formulates rule extraction as a constraint modeling problem and introduces NetNomos that learns propositional logic constraints directly from raw network measurements. Constraint modeling in this domain is uniquely challenging due to the scale of the data, the inherent learning complexity and passive environment, and the lack of ground truth supervision. NetNomos addresses these challenges via a lattice-based search structured by constraint specificity and succinctness. Our approach reduces learning complexity from superquadratic to logarithmic and enables efficient traversal in combinatorial search space. Our evaluations on diverse network datasets show that NetNomos learns all benchmark rules, including those associated with as little as 0.01% of data points, in under three hours. In contrast, baseline methods discover less than 25% of the rules and require several days to run. Through three case studies, we show that: NetNomos (i) finds rule violations in the outputs of all seven synthetic traffic generators, hence can be used to assess and guide their generation process; (ii) detects semantic differences in traffic, hence can be used for anomaly detection; and (iii) automatically finds rules used for telemetry imputation, hence can support monitoring through inference.
comment: 13 pages, 15 figures
☆ ADReFT: Adaptive Decision Repair for Safe Autonomous Driving via Reinforcement Fine-Tuning
Autonomous Driving Systems (ADSs) continue to face safety-critical risks due to the inherent limitations in their design and performance capabilities. Online repair plays a crucial role in mitigating such limitations, ensuring the runtime safety and reliability of ADSs. Existing online repair solutions enforce ADS compliance by transforming unacceptable trajectories into acceptable ones based on predefined specifications, such as rule-based constraints or training datasets. However, these approaches often lack generalizability, adaptability and tend to be overly conservative, resulting in ineffective repairs that not only fail to mitigate safety risks sufficiently but also degrade the overall driving experience. To address this issue, we propose Adaptive Decision Repair (ADReFT), a novel and effective repair method that identifies safety-critical states through offline learning from failed tests and generates appropriate mitigation actions to improve ADS safety. Specifically, ADReFT incorporates a transformer-based model with two joint heads, State Monitor and Decision Adapter, designed to capture complex driving environment interactions to evaluate state safety severity and generate adaptive repair actions. Given the absence of oracles for state safety identification, we first pretrain ADReFT using supervised learning with coarse annotations, i.e., labeling states preceding violations as positive samples and others as negative samples. It establishes ADReFT's foundational capability to mitigate safety-critical violations, though it may result in somewhat conservative mitigation strategies. Therefore, we subsequently finetune ADReFT using reinforcement learning to improve its initial capability and generate more precise and contextually appropriate repair decisions. Our evaluation results illustrate that ADReFT achieves better repair performance.
☆ Bridging the Gap with Retrieval-Augmented Generation: Making Prosthetic Device User Manuals Available in Marginalised Languages
Millions of people in African countries face barriers to accessing healthcare due to language and literacy gaps. This research tackles this challenge by transforming complex medical documents -- in this case, prosthetic device user manuals -- into accessible formats for underserved populations. This case study in cross-cultural translation is particularly pertinent/relevant for communities that receive donated prosthetic devices but may not receive the accompanying user documentation. Or, if available online, may only be available in formats (e.g., language and readability) that are inaccessible to local populations (e.g., English-language, high resource settings/cultural context). The approach is demonstrated using the widely spoken Pidgin dialect, but our open-source framework has been designed to enable rapid and easy extension to other languages/dialects. This work presents an AI-powered framework designed to process and translate complex medical documents, e.g., user manuals for prosthetic devices, into marginalised languages. The system enables users -- such as healthcare workers or patients -- to upload English-language medical equipment manuals, pose questions in their native language, and receive accurate, localised answers in real time. Technically, the system integrates a Retrieval-Augmented Generation (RAG) pipeline for processing and semantic understanding of the uploaded manuals. It then employs advanced Natural Language Processing (NLP) models for generative question-answering and multilingual translation. Beyond simple translation, it ensures accessibility to device instructions, treatment protocols, and safety information, empowering patients and clinicians to make informed healthcare decisions.
comment: 5 pages, 0 figures, 0 tables
☆ Autonomy by Design: Preserving Human Autonomy in AI Decision-Support
AI systems increasingly support human decision-making across domains of professional, skill-based, and personal activity. While previous work has examined how AI might affect human autonomy globally, the effects of AI on domain-specific autonomy -- the capacity for self-governed action within defined realms of skill or expertise -- remain understudied. We analyze how AI decision-support systems affect two key components of domain-specific autonomy: skilled competence (the ability to make informed judgments within one's domain) and authentic value-formation (the capacity to form genuine domain-relevant values and preferences). By engaging with prior investigations and analyzing empirical cases across medical, financial, and educational domains, we demonstrate how the absence of reliable failure indicators and the potential for unconscious value shifts can erode domain-specific autonomy both immediately and over time. We then develop a constructive framework for autonomy-preserving AI support systems. We propose specific socio-technical design patterns -- including careful role specification, implementation of defeater mechanisms, and support for reflective practice -- that can help maintain domain-specific autonomy while leveraging AI capabilities. This framework provides concrete guidance for developing AI systems that enhance rather than diminish human agency within specialized domains of action.
☆ QPART: Adaptive Model Quantization and Dynamic Workload Balancing for Accuracy-aware Edge Inference
As machine learning inferences increasingly move to edge devices, adapting to diverse computational capabilities, hardware, and memory constraints becomes more critical. Instead of relying on a pre-trained model fixed for all future inference queries across diverse edge devices, we argue that planning an inference pattern with a request-specific model tailored to the device's computational capacity, accuracy requirements, and time constraints is more cost-efficient and robust to diverse scenarios. To this end, we propose an accuracy-aware and workload-balanced inference system that integrates joint model quantization and inference partitioning. In this approach, the server dynamically responds to inference queries by sending a quantized model and adaptively sharing the inference workload with the device. Meanwhile, the device's computational power, channel capacity, and accuracy requirements are considered when deciding. Furthermore, we introduce a new optimization framework for the inference system, incorporating joint model quantization and partitioning. Our approach optimizes layer-wise quantization bit width and partition points to minimize time consumption and cost while accounting for varying accuracy requirements of tasks through an accuracy degradation metric in our optimization model. To our knowledge, this work represents the first exploration of optimizing quantization layer-wise bit-width in the inference serving system, by introducing theoretical measurement of accuracy degradation. Simulation results demonstrate a substantial reduction in overall time and power consumption, with computation payloads decreasing by over 80% and accuracy degradation kept below 1%.
☆ Industrial brain: a human-like autonomous neuro-symbolic cognitive decision-making system
Resilience non-equilibrium measurement, the ability to maintain fundamental functionality amidst failures and errors, is crucial for scientific management and engineering applications of industrial chain. The problem is particularly challenging when the number or types of multiple co-evolution of resilience (for example, randomly placed) are extremely chaos. Existing end-to-end deep learning ordinarily do not generalize well to unseen full-feld reconstruction of spatiotemporal co-evolution structure, and predict resilience of network topology, especially in multiple chaos data regimes typically seen in real-world applications. To address this challenge, here we propose industrial brain, a human-like autonomous cognitive decision-making and planning framework integrating higher-order activity-driven neuro network and CT-OODA symbolic reasoning to autonomous plan resilience directly from observational data of global variable. The industrial brain not only understands and model structure of node activity dynamics and network co-evolution topology without simplifying assumptions, and reveal the underlying laws hidden behind complex networks, but also enabling accurate resilience prediction, inference, and planning. Experimental results show that industrial brain significantly outperforms resilience prediction and planning methods, with an accurate improvement of up to 10.8\% over GoT and OlaGPT framework and 11.03\% over spectral dimension reduction. It also generalizes to unseen topologies and dynamics and maintains robust performance despite observational disturbances. Our findings suggest that industrial brain addresses an important gap in resilience prediction and planning for industrial chain.
☆ Reinforcement Learning for Synchronised Flow Control in a Dual-Gate Resin Infusion System
Resin infusion (RI) and resin transfer moulding (RTM) are critical processes for the manufacturing of high-performance fibre-reinforced polymer composites, particularly for large-scale applications such as wind turbine blades. Controlling the resin flow dynamics in these processes is critical to ensure the uniform impregnation of the fibre reinforcements, thereby preventing residual porosities and dry spots that impact the consequent structural integrity of the final component. This paper presents a reinforcement learning (RL) based strategy, established using process simulations, for synchronising the different resin flow fronts in an infusion scenario involving two resin inlets and a single outlet. Using Proximal Policy Optimisation (PPO), our approach addresses the challenge of managing the fluid dynamics in a partially observable environment. The results demonstrate the effectiveness of the RL approach in achieving an accurate flow convergence, highlighting its potential towards improving process control and product quality in composites manufacturing.
comment: 11 pages, 4 figures, 45th Ris{\o} International Symposium on Materials Science
☆ The Trilemma of Truth in Large Language Models
We often attribute human characteristics to large language models (LLMs) and claim that they "know" certain things. LLMs have an internal probabilistic knowledge that represents information retained during training. How can we assess the veracity of this knowledge? We examine two common methods for probing the veracity of LLMs and discover several assumptions that are flawed. To address these flawed assumptions, we introduce sAwMIL (short for Sparse Aware Multiple-Instance Learning), a probing method that utilizes the internal activations of LLMs to separate statements into true, false, and neither. sAwMIL is based on multiple-instance learning and conformal prediction. We evaluate sAwMIL on 5 validity criteria across 16 open-source LLMs, including both default and chat-based variants, as well as on 3 new datasets. Among the insights we provide are: (1) the veracity signal is often concentrated in the third quarter of an LLM's depth; (2) truth and falsehood signals are not always symmetric; (3) linear probes perform better on chat models than on default models; (4) nonlinear probes may be required to capture veracity signals for some LLMs with reinforcement learning from human feedback or knowledge distillation; and (5) LLMs capture a third type of signal that is distinct from true and false and is neither true nor false. These findings provide a reliable method for verifying what LLMs "know" and how certain they are of their probabilistic internal knowledge.
☆ Learning robust parameter inference and density reconstruction in flyer plate impact experiments
Estimating physical parameters or material properties from experimental observations is a common objective in many areas of physics and material science. In many experiments, especially in shock physics, radiography is the primary means of observing the system of interest. However, radiography does not provide direct access to key state variables, such as density, which prevents the application of traditional parameter estimation approaches. Here we focus on flyer plate impact experiments on porous materials, and resolving the underlying parameterized equation of state (EoS) and crush porosity model parameters given radiographic observation(s). We use machine learning as a tool to demonstrate with high confidence that using only high impact velocity data does not provide sufficient information to accurately infer both EoS and crush model parameters, even with fully resolved density fields or a dynamic sequence of images. We thus propose an observable data set consisting of low and high impact velocity experiments/simulations that capture different regimes of compaction and shock propagation, and proceed to introduce a generative machine learning approach which produces a posterior distribution of physical parameters directly from radiographs. We demonstrate the effectiveness of the approach in estimating parameters from simulated flyer plate impact experiments, and show that the obtained estimates of EoS and crush model parameters can then be used in hydrodynamic simulations to obtain accurate and physically admissible density reconstructions. Finally, we examine the robustness of the approach to model mismatches, and find that the learned approach can provide useful parameter estimates in the presence of out-of-distribution radiographic noise and previously unseen physics, thereby promoting a potential breakthrough in estimating material properties from experimental radiographic images.
comment: 24 pages, 21 figures
☆ RawMal-TF: Raw Malware Dataset Labeled by Type and Family
This work addresses the challenge of malware classification using machine learning by developing a novel dataset labeled at both the malware type and family levels. Raw binaries were collected from sources such as VirusShare, VX Underground, and MalwareBazaar, and subsequently labeled with family information parsed from binary names and type-level labels integrated from ClarAVy. The dataset includes 14 malware types and 17 malware families, and was processed using a unified feature extraction pipeline based on static analysis, particularly extracting features from Portable Executable headers, to support advanced classification tasks. The evaluation was focused on three key classification tasks. In the binary classification of malware versus benign samples, Random Forest and XGBoost achieved high accuracy on the full datasets, reaching 98.5% for type-based detection and 98.98% for family-based detection. When using truncated datasets of 1,000 samples to assess performance under limited data conditions, both models still performed strongly, achieving 97.6% for type-based detection and 98.66% for family-based detection. For interclass classification, which distinguishes between malware types or families, the models reached up to 97.5% accuracy on type-level tasks and up to 93.7% on family-level tasks. In the multiclass classification setting, which assigns samples to the correct type or family, SVM achieved 81.1% accuracy on type labels, while Random Forest and XGBoost reached approximately 73.4% on family labels. The results highlight practical trade-offs between accuracy and computational cost, and demonstrate that labeling at both the type and family levels enables more fine-grained and insightful malware classification. The work establishes a robust foundation for future research on advanced malware detection and classification.
☆ Beyond Statistical Learning: Exact Learning Is Essential for General Intelligence
Sound deductive reasoning -- the ability to derive new knowledge from existing facts and rules -- is an indisputably desirable aspect of general intelligence. Despite the major advances of AI systems in areas such as math and science, especially since the introduction of transformer architectures, it is well-documented that even the most advanced frontier systems regularly and consistently falter on easily-solvable deductive reasoning tasks. Hence, these systems are unfit to fulfill the dream of achieving artificial general intelligence capable of sound deductive reasoning. We argue that their unsound behavior is a consequence of the statistical learning approach powering their development. To overcome this, we contend that to achieve reliable deductive reasoning in learning-based AI systems, researchers must fundamentally shift from optimizing for statistical performance against distributions on reasoning problems and algorithmic tasks to embracing the more ambitious exact learning paradigm, which demands correctness on all inputs. We argue that exact learning is both essential and possible, and that this ambitious objective should guide algorithm design.
☆ Spurious-Aware Prototype Refinement for Reliable Out-of-Distribution Detection
Out-of-distribution (OOD) detection is crucial for ensuring the reliability and safety of machine learning models in real-world applications, where they frequently face data distributions unseen during training. Despite progress, existing methods are often vulnerable to spurious correlations that mislead models and compromise robustness. To address this, we propose SPROD, a novel prototype-based OOD detection approach that explicitly addresses the challenge posed by unknown spurious correlations. Our post-hoc method refines class prototypes to mitigate bias from spurious features without additional data or hyperparameter tuning, and is broadly applicable across diverse backbones and OOD detection settings. We conduct a comprehensive spurious correlation OOD detection benchmarking, comparing our method against existing approaches and demonstrating its superior performance across challenging OOD datasets, such as CelebA, Waterbirds, UrbanCars, Spurious Imagenet, and the newly introduced Animals MetaCoCo. On average, SPROD improves AUROC by 4.7% and FPR@95 by 9.3% over the second best.
☆ Chain of Thought in Order: Discovering Learning-Friendly Orders for Arithmetic
The chain of thought is fundamental in Transformers, which is to perform step-by-step reasoning. Besides what intermediate steps work, the order of these steps critically affects the difficulty of the reasoning. This study addresses a novel task of unraveling chain of thought - reordering decoder input tokens to a learning-friendly sequence for Transformers to learn arithmetic tasks. The proposed pipeline first trains a Transformer on a mixture of target sequences arranged in different orders and then identifies benign orders as those with fast loss drops in the early stage. As the search space grows factorially with sequence length, we propose a two-stage hierarchical approach for inter- and intra-block reordering. Experiments on four order-sensitive arithmetic tasks show that our method identifies a learning-friendly order out of a few billion candidates. Notably, on the multiplication task, it recovered the reverse-digit order reported in prior studies.
comment: 14 pages, 10 figures
☆ Emergent musical properties of a transformer under contrastive self-supervised learning
In music information retrieval (MIR), contrastive self-supervised learning for general-purpose representation models is effective for global tasks such as automatic tagging. However, for local tasks such as chord estimation, it is widely assumed that contrastively trained general-purpose self-supervised models are inadequate and that more sophisticated SSL is necessary; e.g., masked modeling. Our paper challenges this assumption by revealing the potential of contrastive SSL paired with a transformer in local MIR tasks. We consider a lightweight vision transformer with one-dimensional patches in the time--frequency domain (ViT-1D) and train it with simple contrastive SSL through normalized temperature-scaled cross-entropy loss (NT-Xent). Although NT-Xent operates only over the class token, we observe that, potentially thanks to weight sharing, informative musical properties emerge in ViT-1D's sequence tokens. On global tasks, the temporal average of class and sequence tokens offers a performance increase compared to the class token alone, showing useful properties in the sequence tokens. On local tasks, sequence tokens perform unexpectedly well, despite not being specifically trained for. Furthermore, high-level musical features such as onsets emerge from layer-wise attention maps and self-similarity matrices show different layers capture different musical dimensions. Our paper does not focus on improving performance but advances the musical interpretation of transformers and sheds light on some overlooked abilities of contrastive SSL paired with transformers for sequence modeling in MIR.
comment: Accepted at ISMIR 2025
☆ When Plants Respond: Electrophysiology and Machine Learning for Green Monitoring Systems
Living plants, while contributing to ecological balance and climate regulation, also function as natural sensors capable of transmitting information about their internal physiological states and surrounding conditions. This rich source of data provides potential for applications in environmental monitoring and precision agriculture. With integration into biohybrid systems, we establish novel channels of physiological signal flow between living plants and artificial devices. We equipped *Hedera helix* with a plant-wearable device called PhytoNode to continuously record the plant's electrophysiological activity. We deployed plants in an uncontrolled outdoor environment to map electrophysiological patterns to environmental conditions. Over five months, we collected data that we analyzed using state-of-the-art and automated machine learning (AutoML). Our classification models achieve high performance, reaching macro F1 scores of up to 95 percent in binary tasks. AutoML approaches outperformed manual tuning, and selecting subsets of statistical features further improved accuracy. Our biohybrid living system monitors the electrophysiology of plants in harsh, real-world conditions. This work advances scalable, self-sustaining, and plant-integrated living biohybrid systems for sustainable environmental monitoring.
comment: Submitted and Accepted at the 14th international conference on biomimetic and biohybrid systems (Living Machines)
☆ Scaling Self-Supervised Representation Learning for Symbolic Piano Performance
We study the capabilities of generative autoregressive transformer models trained on large amounts of symbolic solo-piano transcriptions. After first pretraining on approximately 60,000 hours of music, we use a comparatively smaller, high-quality subset, to finetune models to produce musical continuations, perform symbolic classification tasks, and produce general-purpose contrastive MIDI embeddings by adapting the SimCLR framework to symbolic music. When evaluating piano continuation coherence, our generative model outperforms leading symbolic generation techniques and remains competitive with proprietary audio generation models. On MIR classification benchmarks, frozen representations from our contrastive model achieve state-of-the-art results in linear probe experiments, while direct finetuning demonstrates the generalizability of pretrained representations, often requiring only a few hundred labeled examples to specialize to downstream tasks.
comment: ISMIR (2025)
☆ Differentially Private Synthetic Data Release for Topics API Outputs
The analysis of the privacy properties of Privacy-Preserving Ads APIs is an area of research that has received strong interest from academics, industry, and regulators. Despite this interest, the empirical study of these methods is hindered by the lack of publicly available data. Reliable empirical analysis of the privacy properties of an API, in fact, requires access to a dataset consisting of realistic API outputs; however, privacy concerns prevent the general release of such data to the public. In this work, we develop a novel methodology to construct synthetic API outputs that are simultaneously realistic enough to enable accurate study and provide strong privacy protections. We focus on one Privacy-Preserving Ads APIs: the Topics API, part of Google Chrome's Privacy Sandbox. We developed a methodology to generate a differentially-private dataset that closely matches the re-identification risk properties of the real Topics API data. The use of differential privacy provides strong theoretical bounds on the leakage of private user information from this release. Our methodology is based on first computing a large number of differentially-private statistics describing how output API traces evolve over time. Then, we design a parameterized distribution over sequences of API traces and optimize its parameters so that they closely match the statistics obtained. Finally, we create the synthetic data by drawing from this distribution. Our work is complemented by an open-source release of the anonymized dataset obtained by this methodology. We hope this will enable external researchers to analyze the API in-depth and replicate prior and future work on a realistic large-scale dataset. We believe that this work will contribute to fostering transparency regarding the privacy properties of Privacy-Preserving Ads APIs.
comment: 20 pages, 8 figures
☆ Use Sparse Autoencoders to Discover Unknown Concepts, Not to Act on Known Concepts
While sparse autoencoders (SAEs) have generated significant excitement, a series of negative results have added to skepticism about their usefulness. Here, we establish a conceptual distinction that reconciles competing narratives surrounding SAEs. We argue that while SAEs may be less effective for acting on known concepts, SAEs are powerful tools for discovering unknown concepts. This distinction cleanly separates existing negative and positive results, and suggests several classes of SAE applications. Specifically, we outline use cases for SAEs in (i) ML interpretability, explainability, fairness, auditing, and safety, and (ii) social and health sciences.
☆ EFPI: Elastic Formation and Position Identification in Football (Soccer) using Template Matching and Linear Assignment
Understanding team formations and player positioning is crucial for tactical analysis in football (soccer). This paper presents a flexible method for formation recognition and player position assignment in football using predefined static formation templates and cost minimization from spatiotemporal tracking data, called EFPI. Our approach employs linear sum assignment to optimally match players to positions within a set of template formations by minimizing the total distance between actual player locations and template positions, subsequently selecting the formation with the lowest assignment cost. To improve accuracy, we scale actual player positions to match the dimensions of these formation templates in both width and length. While the method functions effectively on individual frames, it extends naturally to larger game segments such as complete periods, possession sequences or specific intervals (e.g. 10 second intervals, 5 minute intervals etc.). Additionally, we incorporate an optional stability parameter that prevents unnecessary formation changes when assignment costs differ only marginally between time segments. EFPI is available as open-source code through the unravelsports Python package.
☆ Proving the Limited Scalability of Centralized Distributed Optimization via a New Lower Bound Construction
We consider centralized distributed optimization in the classical federated learning setup, where $n$ workers jointly find an $\varepsilon$-stationary point of an $L$-smooth, $d$-dimensional nonconvex function $f$, having access only to unbiased stochastic gradients with variance $\sigma^2$. Each worker requires at most $h$ seconds to compute a stochastic gradient, and the communication times from the server to the workers and from the workers to the server are $\tau_{s}$ and $\tau_{w}$ seconds per coordinate, respectively. One of the main motivations for distributed optimization is to achieve scalability with respect to $n$. For instance, it is well known that the distributed version of SGD has a variance-dependent runtime term $\frac{h \sigma^2 L \Delta}{n \varepsilon^2},$ which improves with the number of workers $n,$ where $\Delta = f(x^0) - f^*,$ and $x^0 \in R^d$ is the starting point. Similarly, using unbiased sparsification compressors, it is possible to reduce both the variance-dependent runtime term and the communication runtime term. However, once we account for the communication from the server to the workers $\tau_{s}$, we prove that it becomes infeasible to design a method using unbiased random sparsification compressors that scales both the server-side communication runtime term $\tau_{s} d \frac{L \Delta}{\varepsilon}$ and the variance-dependent runtime term $\frac{h \sigma^2 L \Delta}{\varepsilon^2},$ better than poly-logarithmically in $n$, even in the homogeneous (i.i.d.) case, where all workers access the same distribution. To establish this result, we construct a new "worst-case" function and develop a new lower bound framework that reduces the analysis to the concentration of a random sum, for which we prove a concentration bound. These results reveal fundamental limitations in scaling distributed optimization, even under the homogeneous assumption.
☆ Supercm: Revisiting Clustering for Semi-Supervised Learning
The development of semi-supervised learning (SSL) has in recent years largely focused on the development of new consistency regularization or entropy minimization approaches, often resulting in models with complex training strategies to obtain the desired results. In this work, we instead propose a novel approach that explicitly incorporates the underlying clustering assumption in SSL through extending a recently proposed differentiable clustering module. Leveraging annotated data to guide the cluster centroids results in a simple end-to-end trainable deep SSL approach. We demonstrate that the proposed model improves the performance over the supervised-only baseline and show that our framework can be used in conjunction with other SSL methods to further boost their performance.
☆ SGD with Adaptive Preconditioning: Unified Analysis and Momentum Acceleration
In this paper, we revisit stochastic gradient descent (SGD) with AdaGrad-type preconditioning. Our contributions are twofold. First, we develop a unified convergence analysis of SGD with adaptive preconditioning under anisotropic or matrix smoothness and noise assumptions. This allows us to recover state-of-the-art convergence results for several popular adaptive gradient methods, including AdaGrad-Norm, AdaGrad, and ASGO/One-sided Shampoo. In addition, we establish the fundamental connection between two recently proposed algorithms, Scion and DASGO, and provide the first theoretical guarantees for the latter. Second, we show that the convergence of methods like AdaGrad and DASGO can be provably accelerated beyond the best-known rates using Nesterov momentum. Consequently, we obtain the first theoretical justification that AdaGrad-type algorithms can simultaneously benefit from both diagonal preconditioning and momentum, which may provide an ultimate explanation for the practical efficiency of Adam.
☆ Adaptive Out-of-Control Point Pattern Detection in Sequential Random Finite Set Observations
In this work we introduce a novel adaptive anomaly detection framework specifically designed for monitoring sequential random finite set (RFS) observations. Our approach effectively distinguishes between In-Control data (normal) and Out-Of-Control data (anomalies) by detecting deviations from the expected statistical behavior of the process. The primary contributions of this study include the development of an innovative RFS-based framework that not only learns the normal behavior of the data-generating process online but also dynamically adapts to behavioral shifts to accurately identify abnormal point patterns. To achieve this, we introduce a new class of RFS-based posterior distributions, named Power Discounting Posteriors (PD), which facilitate adaptation to systematic changes in data while enabling anomaly detection of point pattern data through a novel predictive posterior density function. The effectiveness of the proposed approach is demonstrated by extensive qualitative and quantitative simulation experiments.
comment: 23rd European Control Conference (ECC 2025), Thessaloniki, Greece, 24-27 June 2025
☆ Towards the Training of Deeper Predictive Coding Neural Networks
Predictive coding networks trained with equilibrium propagation are neural models that perform inference through an iterative energy minimization process. Previous studies have demonstrated their effectiveness in shallow architectures, but show significant performance degradation when depth exceeds five to seven layers. In this work, we show that the reason behind this degradation is due to exponentially imbalanced errors between layers during weight updates, and predictions from the previous layer not being effective in guiding updates in deeper layers. We address the first issue by introducing two novel methods to optimize the latent variables that use precision-weighting to re-balance the distribution of energy among layers during the `relaxation phase', and the second issue by proposing a novel weight update mechanism that reduces error accumulation in deeper layers. Empirically, we test our methods on a large number of image classification tasks, resulting in large improvements in test accuracy across networks with more than seven layers, with performances comparable to those of backprop on similar models. These findings suggest that a better understanding of the relaxation phase is important to train models using equilibrium propagation at scale, and open new possibilities for their application in complex tasks.
comment: 18 Pages, 7 figures
☆ KAIROS: Scalable Model-Agnostic Data Valuation
Training data increasingly shapes not only model accuracy but also regulatory compliance and market valuation of AI assets. Yet existing valuation methods remain inadequate: model-based techniques depend on a single fitted model and inherit its biases, while algorithm-based approaches such as Data Shapley require costly retrainings at web scale. Recent Wasserstein-based model-agnostic methods rely on approximations that misrank examples relative to their true leave-one-out (LOO) utility. We introduce KAIROS, a scalable, model-agnostic valuation framework that assigns each example a distributional influence score: its contribution to the Maximum Mean Discrepancy (MMD) between the empirical training distribution and a clean reference set. Unlike Wasserstein surrogates, our MMD-based influence admits a closed-form solution that faithfully approximates the exact LOO ranking within $O(1/N^2)$ error, requires no retraining, and naturally extends to conditional kernels for unified label- and feature-error detection. Moreover, KAIROS supports efficient online updates: when a new batch of size m arrives, all scores can be updated in $O(mN)$ time, delivering up to 50x speedup without compromising ranking quality. Empirical evaluations on noise, mislabeling, and poisoning benchmarks show that KAIROS consistently outperforms state-of-the-art model-, Shapley-, and Wasserstein-based baselines in both accuracy and runtime. We provide rigorous theoretical guarantees, including symmetry for reproducible rankings and density-separation for interpretable thresholds.
comment: 19 pages, 9 figures
☆ Advancing Learnable Multi-Agent Pathfinding Solvers with Active Fine-Tuning
Multi-agent pathfinding (MAPF) is a common abstraction of multi-robot trajectory planning problems, where multiple homogeneous robots simultaneously move in the shared environment. While solving MAPF optimally has been proven to be NP-hard, scalable, and efficient, solvers are vital for real-world applications like logistics, search-and-rescue, etc. To this end, decentralized suboptimal MAPF solvers that leverage machine learning have come on stage. Building on the success of the recently introduced MAPF-GPT, a pure imitation learning solver, we introduce MAPF-GPT-DDG. This novel approach effectively fine-tunes the pre-trained MAPF model using centralized expert data. Leveraging a novel delta-data generation mechanism, MAPF-GPT-DDG accelerates training while significantly improving performance at test time. Our experiments demonstrate that MAPF-GPT-DDG surpasses all existing learning-based MAPF solvers, including the original MAPF-GPT, regarding solution quality across many testing scenarios. Remarkably, it can work with MAPF instances involving up to 1 million agents in a single environment, setting a new milestone for scalability in MAPF domains.
☆ When GNNs Met a Word Equations Solver: Learning to Rank Equations (Extended Technical Report)
Nielsen transformation is a standard approach for solving word equations: by repeatedly splitting equations and applying simplification steps, equations are rewritten until a solution is reached. When solving a conjunction of word equations in this way, the performance of the solver will depend considerably on the order in which equations are processed. In this work, the use of Graph Neural Networks (GNNs) for ranking word equations before and during the solving process is explored. For this, a novel graph-based representation for word equations is presented, preserving global information across conjuncts, enabling the GNN to have a holistic view during ranking. To handle the variable number of conjuncts, three approaches to adapt a multi-classification task to the problem of ranking equations are proposed. The training of the GNN is done with the help of minimum unsatisfiable subsets (MUSes) of word equations. The experimental results show that, compared to state-of-the-art string solvers, the new framework solves more problems in benchmarks where each variable appears at most once in each equation.
☆ Mamba-FETrack V2: Revisiting State Space Model for Frame-Event based Visual Object Tracking
Combining traditional RGB cameras with bio-inspired event cameras for robust object tracking has garnered increasing attention in recent years. However, most existing multimodal tracking algorithms depend heavily on high-complexity Vision Transformer architectures for feature extraction and fusion across modalities. This not only leads to substantial computational overhead but also limits the effectiveness of cross-modal interactions. In this paper, we propose an efficient RGB-Event object tracking framework based on the linear-complexity Vision Mamba network, termed Mamba-FETrack V2. Specifically, we first design a lightweight Prompt Generator that utilizes embedded features from each modality, together with a shared prompt pool, to dynamically generate modality-specific learnable prompt vectors. These prompts, along with the modality-specific embedded features, are then fed into a Vision Mamba-based FEMamba backbone, which facilitates prompt-guided feature extraction, cross-modal interaction, and fusion in a unified manner. Finally, the fused representations are passed to the tracking head for accurate target localization. Extensive experimental evaluations on multiple RGB-Event tracking benchmarks, including short-term COESOT dataset and long-term datasets, i.e., FE108 and FELT V2, demonstrate the superior performance and efficiency of the proposed tracking framework. The source code and pre-trained models will be released on https://github.com/Event-AHU/Mamba_FETrack
comment: Journal extension of Mamba-FETrack which was published on Pattern Recognition and Computer Vision (PRCV) 2024
☆ Calibrating Graph Neural Networks with Wavelet-Aware Temperature Scaling
Graph Neural Networks (GNNs) have demonstrated strong predictive performance on relational data; however, their confidence estimates often misalign with actual predictive correctness, posing significant limitations for deployment in safety-critical settings. While existing graph-aware calibration methods seek to mitigate this limitation, they primarily depend on coarse one-hop statistics, such as neighbor-predicted confidence, or latent node embeddings, thereby neglecting the fine-grained structural heterogeneity inherent in graph topology. In this work, we propose Wavelet-Aware Temperature Scaling (WATS), a post-hoc calibration framework that assigns node-specific temperatures based on tunable heat-kernel graph wavelet features. Specifically, WATS harnesses the scalability and topology sensitivity of graph wavelets to refine confidence estimates, all without necessitating model retraining or access to neighboring logits or predictions. Extensive evaluations across seven benchmark datasets with varying graph structures and two GNN backbones demonstrate that WATS achieves the lowest Expected Calibration Error (ECE) among all compared methods, outperforming both classical and graph-specific baselines by up to 42.3\% in ECE and reducing calibration variance by 17.24\% on average compared with graph-specific methods. Moreover, WATS remains computationally efficient, scaling well across graphs of diverse sizes and densities. Code will be released based on publication.
☆ Model-driven Stochastic Trace Clustering
Process discovery algorithms automatically extract process models from event logs, but high variability often results in complex and hard-to-understand models. To mitigate this issue, trace clustering techniques group process executions into clusters, each represented by a simpler and more understandable process model. Model-driven trace clustering improves on this by assigning traces to clusters based on their conformity to cluster-specific process models. However, most existing clustering techniques rely on either no process model discovery, or non-stochastic models, neglecting the frequency or probability of activities and transitions, thereby limiting their capability to capture real-world execution dynamics. We propose a novel model-driven trace clustering method that optimizes stochastic process models within each cluster. Our approach uses entropic relevance, a stochastic conformance metric based on directly-follows probabilities, to guide trace assignment. This allows clustering decisions to consider both structural alignment with a cluster's process model and the likelihood that a trace originates from a given stochastic process model. The method is computationally efficient, scales linearly with input size, and improves model interpretability by producing clusters with clearer control-flow patterns. Extensive experiments on public real-life datasets show that our method outperforms existing alternatives in representing process behavior and reveals how clustering performance rankings can shift when stochasticity is considered.
☆ Explainable AI for Comprehensive Risk Assessment for Financial Reports: A Lightweight Hierarchical Transformer Network Approach
Every publicly traded U.S. company files an annual 10-K report containing critical insights into financial health and risk. We propose Tiny eXplainable Risk Assessor (TinyXRA), a lightweight and explainable transformer-based model that automatically assesses company risk from these reports. Unlike prior work that relies solely on the standard deviation of excess returns (adjusted for the Fama-French model), which indiscriminately penalizes both upside and downside risk, TinyXRA incorporates skewness, kurtosis, and the Sortino ratio for more comprehensive risk assessment. We leverage TinyBERT as our encoder to efficiently process lengthy financial documents, coupled with a novel dynamic, attention-based word cloud mechanism that provides intuitive risk visualization while filtering irrelevant terms. This lightweight design ensures scalable deployment across diverse computing environments with real-time processing capabilities for thousands of financial documents which is essential for production systems with constrained computational resources. We employ triplet loss for risk quartile classification, improving over pairwise loss approaches in existing literature by capturing both the direction and magnitude of risk differences. Our TinyXRA achieves state-of-the-art predictive accuracy across seven test years on a dataset spanning 2013-2024, while providing transparent and interpretable risk assessments. We conduct comprehensive ablation studies to evaluate our contributions and assess model explanations both quantitatively by systematically removing highly attended words and sentences, and qualitatively by examining explanation coherence. The paper concludes with findings, practical implications, limitations, and future research directions.
☆ Training of Spiking Neural Networks with Expectation-Propagation
In this paper, we propose a unifying message-passing framework for training spiking neural networks (SNNs) using Expectation-Propagation. Our gradient-free method is capable of learning the marginal distributions of network parameters and simultaneously marginalizes nuisance parameters, such as the outputs of hidden layers. This framework allows for the first time, training of discrete and continuous weights, for deterministic and stochastic spiking networks, using batches of training samples. Although its convergence is not ensured, the algorithm converges in practice faster than gradient-based methods, without requiring a large number of passes through the training data. The classification and regression results presented pave the way for new efficient training methods for deep Bayesian networks.
comment: 10 pages
☆ Radioactive Watermarks in Diffusion and Autoregressive Image Generative Models
Image generative models have become increasingly popular, but training them requires large datasets that are costly to collect and curate. To circumvent these costs, some parties may exploit existing models by using the generated images as training data for their own models. In general, watermarking is a valuable tool for detecting unauthorized use of generated images. However, when these images are used to train a new model, watermarking can only enable detection if the watermark persists through training and remains identifiable in the outputs of the newly trained model - a property known as radioactivity. We analyze the radioactivity of watermarks in images generated by diffusion models (DMs) and image autoregressive models (IARs). We find that existing watermarking methods for DMs fail to retain radioactivity, as watermarks are either erased during encoding into the latent space or lost in the noising-denoising process (during the training in the latent space). Meanwhile, despite IARs having recently surpassed DMs in image generation quality and efficiency, no radioactive watermarking methods have been proposed for them. To overcome this limitation, we propose the first watermarking method tailored for IARs and with radioactivity in mind - drawing inspiration from techniques in large language models (LLMs), which share IARs' autoregressive paradigm. Our extensive experimental evaluation highlights our method's effectiveness in preserving radioactivity within IARs, enabling robust provenance tracking, and preventing unauthorized use of their generated images.
☆ System-Embedded Diffusion Bridge Models
Solving inverse problems -- recovering signals from incomplete or noisy measurements -- is fundamental in science and engineering. Score-based generative models (SGMs) have recently emerged as a powerful framework for this task. Two main paradigms have formed: unsupervised approaches that adapt pretrained generative models to inverse problems, and supervised bridge methods that train stochastic processes conditioned on paired clean and corrupted data. While the former typically assume knowledge of the measurement model, the latter have largely overlooked this structural information. We introduce System embedded Diffusion Bridge Models (SDBs), a new class of supervised bridge methods that explicitly embed the known linear measurement system into the coefficients of a matrix-valued SDE. This principled integration yields consistent improvements across diverse linear inverse problems and demonstrates robust generalization under system misspecification between training and deployment, offering a promising solution to real-world applications.
comment: Preprint
☆ Deep Learning-Based Semantic Segmentation for Real-Time Kidney Imaging and Measurements with Augmented Reality-Assisted Ultrasound
Ultrasound (US) is widely accessible and radiation-free but has a steep learning curve due to its dynamic nature and non-standard imaging planes. Additionally, the constant need to shift focus between the US screen and the patient poses a challenge. To address these issues, we integrate deep learning (DL)-based semantic segmentation for real-time (RT) automated kidney volumetric measurements, which are essential for clinical assessment but are traditionally time-consuming and prone to fatigue. This automation allows clinicians to concentrate on image interpretation rather than manual measurements. Complementing DL, augmented reality (AR) enhances the usability of US by projecting the display directly into the clinician's field of view, improving ergonomics and reducing the cognitive load associated with screen-to-patient transitions. Two AR-DL-assisted US pipelines on HoloLens-2 are proposed: one streams directly via the application programming interface for a wireless setup, while the other supports any US device with video output for broader accessibility. We evaluate RT feasibility and accuracy using the Open Kidney Dataset and open-source segmentation models (nnU-Net, Segmenter, YOLO with MedSAM and LiteMedSAM). Our open-source GitHub pipeline includes model implementations, measurement algorithms, and a Wi-Fi-based streaming solution, enhancing US training and diagnostics, especially in point-of-care settings.
☆ DABstep: Data Agent Benchmark for Multi-step Reasoning
We introduce DABstep, a novel benchmark for evaluating AI agents on realistic multi-step data analysis tasks. DABstep comprises over 450 real-world challenges derived from a financial analytics platform, requiring models to combine code-based data processing with contextual reasoning over heterogeneous documentation. Each task demands an iterative, multi-step problem-solving approach, testing capabilities in data manipulation, cross-referencing multiple sources, and precise result reporting. The benchmark provides a factoid-style answer format with automatic correctness checks for objective scoring at scale. We evaluate leading LLM-based agents, revealing a substantial performance gap: even the best agent achieves only 14.55% accuracy on the hardest tasks. We detail our benchmark's design, dataset composition, task formulation, evaluation protocol, report baseline results and analyze failure modes. DABstep is released with a public leaderboard and toolkit to accelerate research in autonomous data analysis.
comment: 13 pages, 5 figures
☆ Towards Efficient and Accurate Spiking Neural Networks via Adaptive Bit Allocation
Multi-bit spiking neural networks (SNNs) have recently become a heated research spot, pursuing energy-efficient and high-accurate AI. However, with more bits involved, the associated memory and computation demands escalate to the point where the performance improvements become disproportionate. Based on the insight that different layers demonstrate different importance and extra bits could be wasted and interfering, this paper presents an adaptive bit allocation strategy for direct-trained SNNs, achieving fine-grained layer-wise allocation of memory and computation resources. Thus, SNN's efficiency and accuracy can be improved. Specifically, we parametrize the temporal lengths and the bit widths of weights and spikes, and make them learnable and controllable through gradients. To address the challenges caused by changeable bit widths and temporal lengths, we propose the refined spiking neuron, which can handle different temporal lengths, enable the derivation of gradients for temporal lengths, and suit spike quantization better. In addition, we theoretically formulate the step-size mismatch problem of learnable bit widths, which may incur severe quantization errors to SNN, and accordingly propose the step-size renewal mechanism to alleviate this issue. Experiments on various datasets, including the static CIFAR and ImageNet and the dynamic CIFAR-DVS and DVS-GESTURE, demonstrate that our methods can reduce the overall memory and computation cost while achieving higher accuracy. Particularly, our SEWResNet-34 can achieve a 2.69\% accuracy gain and 4.16$\times$ lower bit budgets over the advanced baseline work on ImageNet. This work will be fully open-sourced.
☆ Learning Modular Exponentiation with Transformers
Modular exponentiation is crucial to number theory and cryptography, yet remains largely unexplored from a mechanistic interpretability standpoint. We train a 4-layer encoder-decoder Transformer model to perform this operation and investigate the emergence of numerical reasoning during training. Utilizing principled sampling strategies, PCA-based embedding analysis, and activation patching, we examine how number-theoretic properties are encoded within the model. We find that reciprocal operand training leads to strong performance gains, with sudden generalization across related moduli. These synchronized accuracy surges reflect grokking-like dynamics, suggesting the model internalizes shared arithmetic structure. We also find a subgraph consisting entirely of attention heads in the final layer sufficient to achieve full performance on the task of regular exponentiation. These results suggest that transformer models learn modular arithmetic through specialized computational circuits, paving the way for more interpretable and efficient neural approaches to modular exponentiation.
☆ On the Domain Robustness of Contrastive Vision-Language Models
In real-world vision-language applications, practitioners increasingly rely on large, pretrained foundation models rather than custom-built solutions, despite limited transparency regarding their training data and processes. While these models achieve impressive performance on general benchmarks, their effectiveness can decline notably under specialized domain shifts, such as unique imaging conditions or environmental variations. In this work, we introduce Deepbench, a framework designed to assess domain-specific robustness of vision-language models (VLMs). Deepbench leverages a large language model (LLM) to generate realistic, context-aware image corruptions tailored to specific deployment domains without requiring labeled data. We evaluate a range of contrastive vision-language architectures and architectural variants across six real-world domains and observe substantial variability in robustness, highlighting the need for targeted, domain-aware evaluation. Deepbench is released as open-source software to support further research into domain-aware robustness assessment.
comment: Deepbench is available at https://github.com/ml-lab-htw/deepbench
☆ Geminet: Learning the Duality-based Iterative Process for Lightweight Traffic Engineering in Changing Topologies
Recently, researchers have explored ML-based Traffic Engineering (TE), leveraging neural networks to solve TE problems traditionally addressed by optimization. However, existing ML-based TE schemes remain impractical: they either fail to handle topology changes or suffer from poor scalability due to excessive computational and memory overhead. To overcome these limitations, we propose Geminet, a lightweight and scalable ML-based TE framework that can handle changing topologies. Geminet is built upon two key insights: (i) a methodology that decouples neural networks from topology by learning an iterative gradient-descent-based adjustment process, as the update rule of gradient descent is topology-agnostic, relying only on a few gradient-related quantities; (ii) shifting optimization from path-level routing weights to edge-level dual variables, reducing memory consumption by leveraging the fact that edges are far fewer than paths. Evaluations on WAN and data center datasets show that Geminet significantly improves scalability. Its neural network size is only 0.04% to 7% of existing schemes, while handling topology variations as effectively as HARP, a state-of-the-art ML-based TE approach, without performance degradation. When trained on large-scale topologies, Geminet consumes under 10 GiB of memory, more than eight times less than the 80-plus GiB required by HARP, while achieving 5.45 times faster convergence speed, demonstrating its potential for large-scale deployment.
☆ A Nonlinear Low-rank Representation Model with Convolutional Neural Network for Imputing Water Quality Data
The integrity of Water Quality Data (WQD) is critical in environmental monitoring for scientific decision-making and ecological protection. However, water quality monitoring systems are often challenged by large amounts of missing data due to unavoidable problems such as sensor failures and communication delays, which further lead to water quality data becoming High-Dimensional and Sparse (HDS). Traditional data imputation methods are difficult to depict the potential dynamics and fail to capture the deep data features, resulting in unsatisfactory imputation performance. To effectively address the above issues, this paper proposes a Nonlinear Low-rank Representation model (NLR) with Convolutional Neural Networks (CNN) for imputing missing WQD, which utilizes CNNs to implement two ideas: a) fusing temporal features to model the temporal dependence of data between time slots, and b) Extracting nonlinear interactions and local patterns to mine higher-order relationships features and achieve deep fusion of multidimensional information. Experimental studies on three real water quality datasets demonstrate that the proposed model significantly outperforms existing state-of-the-art data imputation models in terms of estimation accuracy. It provides an effective approach for handling water quality monitoring data in complex dynamic environments.
comment: 7 pages, 2 figures, conference
☆ Brain Tumor Detection through Thermal Imaging and MobileNET
Brain plays a crucial role in regulating body functions and cognitive processes, with brain tumors posing significant risks to human health. Precise and prompt detection is a key factor in proper treatment and better patient outcomes. Traditional methods for detecting brain tumors, that include biopsies, MRI, and CT scans often face challenges due to their high costs and the need for specialized medical expertise. Recent developments in machine learning (ML) and deep learning (DL) has exhibited strong capabilities in automating the identification and categorization of brain tumors from medical images, especially MRI scans. However, these classical ML models have limitations, such as high computational demands, the need for large datasets, and long training times, which hinder their accessibility and efficiency. Our research uses MobileNET model for efficient detection of these tumors. The novelty of this project lies in building an accurate tumor detection model which use less computing re-sources and runs in less time followed by efficient decision making through the use of image processing technique for accurate results. The suggested method attained an average accuracy of 98.5%.
☆ Overparametrized models with posterior drift
This paper investigates the impact of posterior drift on out-of-sample forecasting accuracy in overparametrized machine learning models. We document the loss in performance when the loadings of the data generating process change between the training and testing samples. This matters crucially in settings in which regime changes are likely to occur, for instance, in financial markets. Applied to equity premium forecasting, our results underline the sensitivity of a market timing strategy to sub-periods and to the bandwidth parameters that control the complexity of the model. For the average investor, we find that focusing on holding periods of 15 years can generate very heterogeneous returns, especially for small bandwidths. Large bandwidths yield much more consistent outcomes, but are far less appealing from a risk-adjusted return standpoint. All in all, our findings tend to recommend cautiousness when resorting to large linear models for stock market predictions.
☆ When Will It Fail?: Anomaly to Prompt for Forecasting Future Anomalies in Time Series ICML 2025
Recently, forecasting future abnormal events has emerged as an important scenario to tackle real-world necessities. However, the solution of predicting specific future time points when anomalies will occur, known as Anomaly Prediction (AP), remains under-explored. Existing methods dealing with time series data fail in AP, focusing only on immediate anomalies or failing to provide precise predictions for future anomalies. To address the AP task, we propose a novel framework called Anomaly to Prompt (A2P), comprised of Anomaly-Aware Forecasting (AAF) and Synthetic Anomaly Prompting (SAP). To enable the forecasting model to forecast abnormal time points, we adopt a strategy to learn the relationships of anomalies. For the robust detection of anomalies, our proposed SAP introduces a learnable Anomaly Prompt Pool (APP) that simulates diverse anomaly patterns using signal adaptive prompt. Comprehensive experiments on multiple real-world datasets demonstrate the superiority of A2P over state-of-the-art methods, showcasing its ability to predict future anomalies. Our implementation code is available at https://github.com/KU-VGI/AP.
comment: 18 pages, 10 figures, 12 tables, ICML 2025
☆ Transition Matching: Scalable and Flexible Generative Modeling
Diffusion and flow matching models have significantly advanced media generation, yet their design space is well-explored, somewhat limiting further improvements. Concurrently, autoregressive (AR) models, particularly those generating continuous tokens, have emerged as a promising direction for unifying text and media generation. This paper introduces Transition Matching (TM), a novel discrete-time, continuous-state generative paradigm that unifies and advances both diffusion/flow models and continuous AR generation. TM decomposes complex generation tasks into simpler Markov transitions, allowing for expressive non-deterministic probability transition kernels and arbitrary non-continuous supervision processes, thereby unlocking new flexible design avenues. We explore these choices through three TM variants: (i) Difference Transition Matching (DTM), which generalizes flow matching to discrete-time by directly learning transition probabilities, yielding state-of-the-art image quality and text adherence as well as improved sampling efficiency. (ii) Autoregressive Transition Matching (ARTM) and (iii) Full History Transition Matching (FHTM) are partially and fully causal models, respectively, that generalize continuous AR methods. They achieve continuous causal AR generation quality comparable to non-causal approaches and potentially enable seamless integration with existing AR text generation techniques. Notably, FHTM is the first fully causal model to match or surpass the performance of flow-based methods on text-to-image task in continuous domains. We demonstrate these contributions through a rigorous large-scale comparison of TM variants and relevant baselines, maintaining a fixed architecture, training data, and hyperparameters.
☆ Detect \& Score: Privacy-Preserving Misbehaviour Detection and Contribution Evaluation in Federated Learning
Federated learning with secure aggregation enables private and collaborative learning from decentralised data without leaking sensitive client information. However, secure aggregation also complicates the detection of malicious client behaviour and the evaluation of individual client contributions to the learning. To address these challenges, QI (Pejo et al.) and FedGT (Xhemrishi et al.) were proposed for contribution evaluation (CE) and misbehaviour detection (MD), respectively. QI, however, lacks adequate MD accuracy due to its reliance on the random selection of clients in each training round, while FedGT lacks the CE ability. In this work, we combine the strengths of QI and FedGT to achieve both robust MD and accurate CE. Our experiments demonstrate superior performance compared to using either method independently.
comment: The shorter version is accepted at FL-AsiaCCS 25
☆ PBCAT: Patch-based composite adversarial training against physically realizable attacks on object detection ICCV 2025
Object detection plays a crucial role in many security-sensitive applications. However, several recent studies have shown that object detectors can be easily fooled by physically realizable attacks, \eg, adversarial patches and recent adversarial textures, which pose realistic and urgent threats. Adversarial Training (AT) has been recognized as the most effective defense against adversarial attacks. While AT has been extensively studied in the $l_\infty$ attack settings on classification models, AT against physically realizable attacks on object detectors has received limited exploration. Early attempts are only performed to defend against adversarial patches, leaving AT against a wider range of physically realizable attacks under-explored. In this work, we consider defending against various physically realizable attacks with a unified AT method. We propose PBCAT, a novel Patch-Based Composite Adversarial Training strategy. PBCAT optimizes the model by incorporating the combination of small-area gradient-guided adversarial patches and imperceptible global adversarial perturbations covering the entire image. With these designs, PBCAT has the potential to defend against not only adversarial patches but also unseen physically realizable attacks such as adversarial textures. Extensive experiments in multiple settings demonstrated that PBCAT significantly improved robustness against various physically realizable attacks over state-of-the-art defense methods. Notably, it improved the detection accuracy by 29.7\% over previous defense methods under one recent adversarial texture attack.
comment: Accepted by ICCV 2025
☆ Online Human Action Detection during Escorting
The deployment of robot assistants in large indoor spaces has seen significant growth, with escorting tasks becoming a key application. However, most current escorting robots primarily rely on navigation-focused strategies, assuming that the person being escorted will follow without issue. In crowded environments, this assumption often falls short, as individuals may struggle to keep pace, become obstructed, get distracted, or need to stop unexpectedly. As a result, conventional robotic systems are often unable to provide effective escorting services due to their limited understanding of human movement dynamics. To address these challenges, an effective escorting robot must continuously detect and interpret human actions during the escorting process and adjust its movement accordingly. However, there is currently no existing dataset designed specifically for human action detection in the context of escorting. Given that escorting often occurs in crowded environments, where other individuals may enter the robot's camera view, the robot also needs to identify the specific human it is escorting (the subject) before predicting their actions. Since no existing model performs both person re-identification and action prediction in real-time, we propose a novel neural network architecture that can accomplish both tasks. This enables the robot to adjust its speed dynamically based on the escortee's movements and seamlessly resume escorting after any disruption. In comparative evaluations against strong baselines, our system demonstrates superior efficiency and effectiveness, showcasing its potential to significantly improve robotic escorting services in complex, real-world scenarios.
comment: Accepted in IEEE RO-MAN '25
☆ Metadata, Wavelet, and Time Aware Diffusion Models for Satellite Image Super Resolution ICLR 2025
The acquisition of high-resolution satellite imagery is often constrained by the spatial and temporal limitations of satellite sensors, as well as the high costs associated with frequent observations. These challenges hinder applications such as environmental monitoring, disaster response, and agricultural management, which require fine-grained and high-resolution data. In this paper, we propose MWT-Diff, an innovative framework for satellite image super-resolution (SR) that combines latent diffusion models with wavelet transforms to address these challenges. At the core of the framework is a novel metadata-, wavelet-, and time-aware encoder (MWT-Encoder), which generates embeddings that capture metadata attributes, multi-scale frequency information, and temporal relationships. The embedded feature representations steer the hierarchical diffusion dynamics, through which the model progressively reconstructs high-resolution satellite imagery from low-resolution inputs. This process preserves critical spatial characteristics including textural patterns, boundary discontinuities, and high-frequency spectral components essential for detailed remote sensing analysis. The comparative analysis of MWT-Diff across multiple datasets demonstrated favorable performance compared to recent approaches, as measured by standard perceptual quality metrics including FID and LPIPS.
comment: ICLR 2025 Workshop on Machine Learning for Remote Sensing (ML4RS)
☆ A unified framework on the universal approximation of transformer-type architectures
We investigate the universal approximation property (UAP) of transformer-type architectures, providing a unified theoretical framework that extends prior results on residual networks to models incorporating attention mechanisms. Our work identifies token distinguishability as a fundamental requirement for UAP and introduces a general sufficient condition that applies to a broad class of architectures. Leveraging an analyticity assumption on the attention layer, we can significantly simplify the verification of this condition, providing a non-constructive approach in establishing UAP for such architectures. We demonstrate the applicability of our framework by proving UAP for transformers with various attention mechanisms, including kernel-based and sparse attention mechanisms. The corollaries of our results either generalize prior works or establish UAP for architectures not previously covered. Furthermore, our framework offers a principled foundation for designing novel transformer architectures with inherent UAP guarantees, including those with specific functional symmetries. We propose examples to illustrate these insights.
☆ Seeding neural network quantum states with tensor network states
We find an efficient approach to approximately convert matrix product states (MPSs) into restricted Boltzmann machine wave functions consisting of a multinomial hidden unit through a canonical polyadic (CP) decomposition of the MPSs. This method allows us to generate well-behaved initial neural network quantum states for quantum many-body ground-state calculations in polynomial time of the number of variational parameters and systematically shorten the distance between the initial states and the ground states with increasing the rank of the CP decomposition. We demonstrate the efficiency of our method by taking the transverse-field Ising model as an example and discuss possible applications of our method to more general quantum many-body systems in which the ground-state wave functions possess complex nodal structures.
comment: 13 pages, 13 figures
☆ CooT: Learning to Coordinate In-Context with Coordination Transformers
Effective coordination among artificial agents in dynamic and uncertain environments remains a significant challenge in multi-agent systems. Existing approaches, such as self-play and population-based methods, either generalize poorly to unseen partners or require extensive training. To overcome these limitations, we propose Coordination Transformers (CooT), a novel in-context coordination framework that uses recent interaction histories to adapt to unseen partners rapidly. Unlike previous approaches that primarily aim to increase the diversity of training partners, CooT explicitly focuses on adapting to new partner behaviors by predicting actions aligned with observed partner interactions. Trained on interaction trajectories collected from diverse pairs of agents with complementary behaviors, CooT quickly learns effective coordination strategies without explicit supervision or fine-tuning. Evaluations on the Overcooked benchmark demonstrate that CooT significantly outperforms baseline methods in coordination tasks involving previously unseen partners. Human evaluations further confirm CooT as the most effective collaborative partner, while extensive ablations highlight its robustness, flexibility, and sensitivity to context in multi-agent scenarios.
comment: 23 pages, 10 tables, 8 figures
☆ Neural Langevin Machine: a local asymmetric learning rule can be creative
Fixed points of recurrent neural networks can be leveraged to store and generate information. These fixed points can be captured by the Boltzmann-Gibbs measure, which leads to neural Langevin dynamics that can be used for sampling and learning a real dataset. We call this type of generative model neural Langevin machine, which is interpretable due to its analytic form of distribution and is simple to train. Moreover, the learning process is derived as a local asymmetric plasticity rule, bearing biological relevance. Therefore, one can realize a continuous sampling of creative dynamics in a neural network, mimicking an imagination process in brain circuits. This neural Langevin machine may be another promising generative model, at least in its strength in circuit-based sampling and biologically plausible learning rule.
comment: 15 pages, 3 figures, with Github link in the paper
☆ Both Asymptotic and Non-Asymptotic Convergence of Quasi-Hyperbolic Momentum using Increasing Batch Size
Momentum methods were originally introduced for their superiority to stochastic gradient descent (SGD) in deterministic settings with convex objective functions. However, despite their widespread application to deep neural networks -- a representative case of stochastic nonconvex optimization -- the theoretical justification for their effectiveness in such settings remains limited. Quasi-hyperbolic momentum (QHM) is an algorithm that generalizes various momentum methods and has been studied to better understand the class of momentum-based algorithms as a whole. In this paper, we provide both asymptotic and non-asymptotic convergence results for mini-batch QHM with an increasing batch size. We show that achieving asymptotic convergence requires either a decaying learning rate or an increasing batch size. Since a decaying learning rate adversely affects non-asymptotic convergence, we demonstrate that using mini-batch QHM with an increasing batch size -- without decaying the learning rate -- can be a more effective strategy. Our experiments show that even a finite increase in batch size can provide benefits for training neural networks.
☆ Uncertainty-aware Diffusion and Reinforcement Learning for Joint Plane Localization and Anomaly Diagnosis in 3D Ultrasound MICCAI 2025
Congenital uterine anomalies (CUAs) can lead to infertility, miscarriage, preterm birth, and an increased risk of pregnancy complications. Compared to traditional 2D ultrasound (US), 3D US can reconstruct the coronal plane, providing a clear visualization of the uterine morphology for assessing CUAs accurately. In this paper, we propose an intelligent system for simultaneous automated plane localization and CUA diagnosis. Our highlights are: 1) we develop a denoising diffusion model with local (plane) and global (volume/text) guidance, using an adaptive weighting strategy to optimize attention allocation to different conditions; 2) we introduce a reinforcement learning-based framework with unsupervised rewards to extract the key slice summary from redundant sequences, fully integrating information across multiple planes to reduce learning difficulty; 3) we provide text-driven uncertainty modeling for coarse prediction, and leverage it to adjust the classification probability for overall performance improvement. Extensive experiments on a large 3D uterine US dataset show the efficacy of our method, in terms of plane localization and CUA diagnosis. Code is available at https://github.com/yuhoo0302/CUA-US.
comment: Accepted by MICCAI 2025;10 pages, 3 figures
☆ GViT: Representing Images as Gaussians for Visual Recognition
We introduce GVIT, a classification framework that abandons conventional pixel or patch grid input representations in favor of a compact set of learnable 2D Gaussians. Each image is encoded as a few hundred Gaussians whose positions, scales, orientations, colors, and opacities are optimized jointly with a ViT classifier trained on top of these representations. We reuse the classifier gradients as constructive guidance, steering the Gaussians toward class-salient regions while a differentiable renderer optimizes an image reconstruction loss. We demonstrate that by 2D Gaussian input representations coupled with our GVIT guidance, using a relatively standard ViT architecture, closely matches the performance of a traditional patch-based ViT, reaching a 76.9% top-1 accuracy on Imagenet-1k using a ViT-B architecture.
☆ When Test-Time Adaptation Meets Self-Supervised Models
Training on test-time data enables deep learning models to adapt to dynamic environmental changes, enhancing their practical applicability. Online adaptation from source to target domains is promising but it remains highly reliant on the performance of source pretrained model. In this paper, we investigate whether test-time adaptation (TTA) methods can continuously improve models trained via self-supervised learning (SSL) without relying on source pretraining. We introduce a self-supervised TTA protocol after observing that existing TTA approaches struggle when directly applied to self-supervised models with low accuracy on the source domain. Furthermore, we propose a collaborative learning framework that integrates SSL and TTA models, leveraging contrastive learning and knowledge distillation for stepwise representation refinement. We validate our method on diverse self-supervised models, including DINO, MoCo, and iBOT, across TTA benchmarks. Extensive experiments validate the effectiveness of our approach in SSL, showing that it achieves competitive performance even without source pretraining.
comment: 15 pages, 7 figures
☆ FedWSQ: Efficient Federated Learning with Weight Standardization and Distribution-Aware Non-Uniform Quantization
Federated learning (FL) often suffers from performance degradation due to key challenges such as data heterogeneity and communication constraints. To address these limitations, we present a novel FL framework called FedWSQ, which integrates weight standardization (WS) and the proposed distribution-aware non-uniform quantization (DANUQ). WS enhances FL performance by filtering out biased components in local updates during training, thereby improving the robustness of the model against data heterogeneity and unstable client participation. In addition, DANUQ minimizes quantization errors by leveraging the statistical properties of local model updates. As a result, FedWSQ significantly reduces communication overhead while maintaining superior model accuracy. Extensive experiments on FL benchmark datasets demonstrate that FedWSQ consistently outperforms existing FL methods across various challenging FL settings, including extreme data heterogeneity and ultra-low-bit communication scenarios.
☆ Sample Margin-Aware Recalibration of Temperature Scaling
Recent advances in deep learning have significantly improved predictive accuracy. However, modern neural networks remain systematically overconfident, posing risks for deployment in safety-critical scenarios. Current post-hoc calibration methods face a fundamental dilemma: global approaches like Temperature Scaling apply uniform adjustments across all samples, introducing high bias despite computational efficiency, while more expressive methods that operate on full logit distributions suffer from high variance due to noisy high-dimensional inputs and insufficient validation data. To address these challenges, we propose Sample Margin-Aware Recalibration of Temperature (SMART), a lightweight, data-efficient recalibration method that precisely scales logits based on the margin between the top two logits -- termed the logit gap. Specifically, the logit gap serves as a denoised, scalar signal directly tied to decision boundary uncertainty, providing a robust indicator that avoids the noise inherent in high-dimensional logit spaces while preserving model prediction invariance. Meanwhile, SMART employs a novel soft-binned Expected Calibration Error (SoftECE) objective that balances model bias and variance through adaptive binning, enabling stable parameter updates even with extremely limited calibration data. Extensive evaluations across diverse datasets and architectures demonstrate that SMART achieves state-of-the-art calibration performance even with substantially fewer parameters compared to existing parametric methods, offering a principled, robust, and highly efficient solution for practical uncertainty quantification in neural network predictions. The source code is available at: https://anonymous.4open.science/r/SMART-8B11.
☆ Test of partial effects for Frechet regression on Bures-Wasserstein manifolds
We propose a novel test for assessing partial effects in Frechet regression on Bures Wasserstein manifolds. Our approach employs a sample splitting strategy: the first subsample is used to fit the Frechet regression model, yielding estimates of the covariance matrices and their associated optimal transport maps, while the second subsample is used to construct the test statistic. We prove that this statistic converges in distribution to a weighted mixture of chi squared components, where the weights correspond to the eigenvalues of an integral operator defined by an appropriate RKHS kernel. We establish that our procedure achieves the nominal asymptotic size and demonstrate that its worst-case power converges uniformly to one. Through extensive simulations and a real data application, we illustrate the test's finite-sample accuracy and practical utility.
☆ Reconciling Attribute and Structural Anomalies for Improved Graph Anomaly Detection
Graph anomaly detection is critical in domains such as healthcare and economics, where identifying deviations can prevent substantial losses. Existing unsupervised approaches strive to learn a single model capable of detecting both attribute and structural anomalies. However, they confront the tug-of-war problem between two distinct types of anomalies, resulting in suboptimal performance. This work presents TripleAD, a mutual distillation-based triple-channel graph anomaly detection framework. It includes three estimation modules to identify the attribute, structural, and mixed anomalies while mitigating the interference between different types of anomalies. In the first channel, we design a multiscale attribute estimation module to capture extensive node interactions and ameliorate the over-smoothing issue. To better identify structural anomalies, we introduce a link-enhanced structure estimation module in the second channel that facilitates information flow to topologically isolated nodes. The third channel is powered by an attribute-mixed curvature, a new indicator that encapsulates both attribute and structural information for discriminating mixed anomalies. Moreover, a mutual distillation strategy is introduced to encourage communication and collaboration between the three channels. Extensive experiments demonstrate the effectiveness of the proposed TripleAD model against strong baselines.
comment: Accepted by IEEE Transactions on Neural Networks and Learning Systems (TNNLS); DOI: https://doi.org/10.1109/TNNLS.2025.3561172
☆ AdFair-CLIP: Adversarial Fair Contrastive Language-Image Pre-training for Chest X-rays MICCAI 2025
Contrastive Language-Image Pre-training (CLIP) models have demonstrated superior performance across various visual tasks including medical image classification. However, fairness concerns, including demographic biases, have received limited attention for CLIP models. This oversight leads to critical issues, particularly those related to race and gender, resulting in disparities in diagnostic outcomes and reduced reliability for underrepresented groups. To address these challenges, we introduce AdFair-CLIP, a novel framework employing adversarial feature intervention to suppress sensitive attributes, thereby mitigating spurious correlations and improving prediction fairness. We conduct comprehensive experiments on chest X-ray (CXR) datasets, and show that AdFair-CLIP significantly enhances both fairness and diagnostic accuracy, while maintaining robust generalization in zero-shot and few-shot scenarios. These results establish new benchmarks for fairness-aware learning in CLIP-based medical diagnostic models, particularly for CXR analysis.
comment: This preprint has been accepted by MICCAI 2025
☆ Can We Predict the Unpredictable? Leveraging DisasterNet-LLM for Multimodal Disaster Classification
Effective disaster management requires timely and accurate insights, yet traditional methods struggle to integrate multimodal data such as images, weather records, and textual reports. To address this, we propose DisasterNet-LLM, a specialized Large Language Model (LLM) designed for comprehensive disaster analysis. By leveraging advanced pretraining, cross-modal attention mechanisms, and adaptive transformers, DisasterNet-LLM excels in disaster classification. Experimental results demonstrate its superiority over state-of-the-art models, achieving higher accuracy of 89.5%, an F1 score of 88.0%, AUC of 0.92%, and BERTScore of 0.88% in multimodal disaster classification tasks.
comment: Accepted in the 2025 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2025), scheduled for 3 - 8 August 2025 in Brisbane, Australia
☆ Neuro-Informed Joint Learning Enhances Cognitive Workload Decoding in Portable BCIs
Portable and wearable consumer-grade electroencephalography (EEG) devices, like Muse headbands, offer unprecedented mobility for daily brain-computer interface (BCI) applications, including cognitive load detection. However, the exacerbated non-stationarity in portable EEG signals constrains data fidelity and decoding accuracy, creating a fundamental trade-off between portability and performance. To mitigate such limitation, we propose MuseCogNet (Muse-based Cognitive Network), a unified joint learning framework integrating self-supervised and supervised training paradigms. In particular, we introduce an EEG-grounded self-supervised reconstruction loss based on average pooling to capture robust neurophysiological patterns, while cross-entropy loss refines task-specific cognitive discriminants. This joint learning framework resembles the bottom-up and top-down attention in humans, enabling MuseCogNet to significantly outperform state-of-the-art methods on a publicly available Muse dataset and establish an implementable pathway for neurocognitive monitoring in ecological settings.
comment: 2 pages short paper
☆ Sampling and Identity-Testing Without Approximate Tensorization of Entropy
Certain tasks in high-dimensional statistics become easier when the underlying distribution satisfies a local-to-global property called approximate tensorization of entropy (ATE). For example, the Glauber dynamics Markov chain of an ATE distribution mixes fast and can produce approximate samples in a small amount of time, since such a distribution satisfies a modified log-Sobolev inequality. Moreover, identity-testing for an ATE distribution requires few samples if the tester is given coordinate conditional access to the unknown distribution, as shown by Blanca, Chen, \v{S}tefankovi\v{c}, and Vigoda (COLT 2023). A natural class of distributions that do not satisfy ATE consists of mixtures of (few) distributions that do satisfy ATE. We study the complexity of identity-testing and sampling for these distributions. Our main results are the following: 1. We show fast mixing of Glauber dynamics from a data-based initialization, with optimal sample complexity, for mixtures of distributions satisfying modified log-Sobolev inequalities. This extends work of Huang, Koehler, Lee, Mohanty, Rajaraman, Vuong, and Wu (STOC 2025, COLT 2025) for mixtures of distributions satisfying Poincar\'e inequalities. 2. Answering an open question posed by Blanca et al., we give efficient identity-testers for mixtures of ATE distributions in the coordinate-conditional sampling access model. We also give some simplifications and improvements to the original algorithm of Blanca et al.
☆ Minimax Optimal Two-Stage Algorithm For Moment Estimation Under Covariate Shift
Covariate shift occurs when the distribution of input features differs between the training and testing phases. In covariate shift, estimating an unknown function's moment is a classical problem that remains under-explored, despite its common occurrence in real-world scenarios. In this paper, we investigate the minimax lower bound of the problem when the source and target distributions are known. To achieve the minimax optimal bound (up to a logarithmic factor), we propose a two-stage algorithm. Specifically, it first trains an optimal estimator for the function under the source distribution, and then uses a likelihood ratio reweighting procedure to calibrate the moment estimator. In practice, the source and target distributions are typically unknown, and estimating the likelihood ratio may be unstable. To solve this problem, we propose a truncated version of the estimator that ensures double robustness and provide the corresponding upper bound. Extensive numerical studies on synthetic examples confirm our theoretical findings and further illustrate the effectiveness of our proposed method.
☆ Enhancing Insider Threat Detection Using User-Based Sequencing and Transformer Encoders
Insider threat detection presents unique challenges due to the authorized status of malicious actors and the subtlety of anomalous behaviors. Existing machine learning methods often treat user activity as isolated events, thereby failing to leverage sequential dependencies in user behavior. In this study, we propose a User-Based Sequencing (UBS) methodology, transforming the CERT insider threat dataset into structured temporal sequences suitable for deep sequential modeling. We deploy a Transformer Encoder architecture to model benign user activity and employ its reconstruction errors as anomaly scores. These scores are subsequently evaluated using three unsupervised outlier detection algorithms: One-Class SVM (OCSVM), Local Outlier Factor (LOF), and Isolation Forest (iForest). Across four rigorously designed test sets, including combinations of multiple CERT dataset releases, our UBS-Transformer pipeline consistently achieves state-of-the-art performance - notably 96.61% accuracy, 99.43% recall, 96.38% F1-score, 95.00% AUROC, and exceptionally low false negative (0.0057) and false positive (0.0571) rates. Comparative analyses demonstrate that our approach substantially outperforms tabular and conventional autoencoder baselines, underscoring the efficacy of sequential user modeling and advanced anomaly detection in the insider threat domain.
♻ ☆ SEUF: Is Unlearning One Expert Enough for Mixture-of-Experts LLMs? ACL'25
Recent advancements in LLMs unlearning have shown remarkable success in removing unwanted data-model influences while preserving the model's utility for legitimate knowledge. Despite these strides, sparse Mixture-of-Experts (MoE) LLMs--a key subset of the LLM family--have remained unexplored in the context of unlearning. As MoE LLMs are celebrated for their exceptional performance, we ask:How can unlearning be performed effectively and efficiently on MoE LLMs? Our pilot study shows that the dynamic routing nature of MoE LLMs introduces unique challenges, leading to excessive forgetting, uncontrolled knowledge erasure and substantial utility drops when existing unlearning methods are applied. To address this, we propose a novel Selected-Expert Unlearning Framework (SEUF). Through expert attribution, unlearning is concentrated on the most actively engaged experts for the specified knowledge. Concurrently, an anchor loss is applied to the router to stabilize the active state of this targeted expert, ensuring focused and controlled unlearning. SEUF is compatible with various standard unlearning algorithms. Extensive experiments demonstrate that SEUF enhances both forget quality up to 5% and model utility by 35% on MoE LLMs across various benchmarks and LLM architectures (compared to standard unlearning algorithms), while only unlearning 0.06% of the model parameters.
comment: Accepted to ACL'25
♻ ☆ Optimization, Isoperimetric Inequalities, and Sampling via Lyapunov Potentials
In this paper, we prove that optimizability of any function F using Gradient Flow from all initializations implies a Poincar\'e Inequality for Gibbs measures mu_{beta} = e^{-beta F}/Z at low temperature. In particular, under mild regularity assumptions on the convergence rate of Gradient Flow, we establish that mu_{beta} satisfies a Poincar\'e Inequality with constant O(C'+1/beta) for beta >= Omega(d), where C' is the Poincar\'e constant of mu_{beta} restricted to a neighborhood of the global minimizers of F. Under an additional mild condition on F, we show that mu_{beta} satisfies a Log-Sobolev Inequality with constant O(beta max(S, 1) max(C', 1)) where S denotes the second moment of mu_{beta}. Here asymptotic notation hides F-dependent parameters. At a high level, this establishes that optimizability via Gradient Flow from every initialization implies a Poincar\'e and Log-Sobolev Inequality for the low-temperature Gibbs measure, which in turn imply sampling from all initializations. Analogously, we establish that under the same assumptions, if F can be initialized from everywhere except some set S, then mu_{beta} satisfies a Weak Poincar\'e Inequality with parameters (O(C'+1/beta), O(mu_{beta}(S))) for \beta = Omega(d). At a high level, this shows while optimizability from 'most' initializations implies a Weak Poincar\'e Inequality, which in turn implies sampling from suitable warm starts. Our regularity assumptions are mild and as a consequence, we show we can efficiently sample from several new natural and interesting classes of non-log-concave densities, an important setting with relatively few examples. As another corollary, we obtain efficient discrete-time sampling results for log-concave measures satisfying milder regularity conditions than smoothness, similar to Lehec (2023).
comment: COLT 2025
♻ ☆ What Makes Treatment Effects Identifiable? Characterizations and Estimators Beyond Unconfoundedness
Most of the widely used estimators of the average treatment effect (ATE) in causal inference rely on the assumptions of unconfoundedness and overlap. Unconfoundedness requires that the observed covariates account for all correlations between the outcome and treatment. Overlap requires the existence of randomness in treatment decisions for all individuals. Nevertheless, many types of studies frequently violate unconfoundedness or overlap, for instance, observational studies with deterministic treatment decisions - popularly known as Regression Discontinuity designs - violate overlap. In this paper, we initiate the study of general conditions that enable the identification of the average treatment effect, extending beyond unconfoundedness and overlap. In particular, following the paradigm of statistical learning theory, we provide an interpretable condition that is sufficient and necessary for the identification of ATE. Moreover, this condition also characterizes the identification of the average treatment effect on the treated (ATT) and can be used to characterize other treatment effects as well. To illustrate the utility of our condition, we present several well-studied scenarios where our condition is satisfied and, hence, we prove that ATE can be identified in regimes that prior works could not capture. For example, under mild assumptions on the data distributions, this holds for the models proposed by Tan (2006) and Rosenbaum (2002), and the Regression Discontinuity design model introduced by Thistlethwaite and Campbell (1960). For each of these scenarios, we also show that, under natural additional assumptions, ATE can be estimated from finite samples. We believe these findings open new avenues for bridging learning-theoretic insights and causal inference methodologies, particularly in observational studies with complex treatment mechanisms.
comment: Accepted for presentation at the 38th Conference on Learning Theory (COLT) 2025. v2 strengthens results to give a tight characterization for ATE identification
♻ ☆ Value-Compressed Sparse Column (VCSC): Sparse Matrix Storage for Redundant Data
Compressed Sparse Column (CSC) and Coordinate (COO) are popular compression formats for sparse matrices. However, both CSC and COO are general purpose and cannot take advantage of any of the properties of the data other than sparsity, such as data redundancy. Highly redundant sparse data is common in many machine learning applications, such as genomics, and is often too large for in-core computation using conventional sparse storage formats. In this paper, we present two extensions to CSC: (1) Value-Compressed Sparse Column (VCSC) and (2) Index- and Value-Compressed Sparse Column (IVCSC). VCSC takes advantage of high redundancy within a column to further compress data up to 3-fold over COO and 2.25-fold over CSC, without significant negative impact to performance characteristics. IVCSC extends VCSC by compressing index arrays through delta encoding and byte-packing, achieving a 10-fold decrease in memory usage over COO and 7.5-fold decrease over CSC. Our benchmarks on simulated and real data show that VCSC and IVCSC can be read in compressed form with little added computational cost. These two novel compression formats offer a broadly useful solution to encoding and reading redundant sparse data.
♻ ☆ Refined climatologies of future precipitation over High Mountain Asia using probabilistic ensemble learning
High Mountain Asia (HMA) holds the highest concentration of frozen water outside the polar regions, serving as a crucial water source for more than 1.9 billion people. Precipitation represents the largest source of uncertainty for future hydrological modelling in this area. In this study, we propose a probabilistic machine learning framework to combine monthly precipitation from 13 regional climate models developed under the Coordinated Regional Downscaling Experiment (CORDEX) over HMA via a mixture of experts (MoE). This approach accounts for seasonal and spatial biases within the models, enabling the prediction of more faithful precipitation distributions. The MoE is trained and validated against gridded historical precipitation data, yielding 32% improvement over an equally-weighted average and 254% improvement over choosing any single ensemble member. This approach is then used to generate precipitation projections for the near future (2036-2065) and far future (2066-2095) under RCP4.5 and RCP8.5 scenarios. Compared to previous estimates, the MoE projects wetter summers but drier winters over the western Himalayas and Karakoram and wetter winters over the Tibetan Plateau, Hengduan Shan, and South East Tibet.
comment: 16 pages 8 figures (main text), 32 pages 14 figures (total)
♻ ☆ Experimenting, Fast and Slow: Bayesian Optimization of Long-term Outcomes with Online Experiments
Online experiments in internet systems, also known as A/B tests, are used for a wide range of system tuning problems, such as optimizing recommender system ranking policies and learning adaptive streaming controllers. Decision-makers generally wish to optimize for long-term treatment effects of the system changes, which often requires running experiments for a long time as short-term measurements can be misleading due to non-stationarity in treatment effects over time. The sequential experimentation strategies--which typically involve several iterations--can be prohibitively long in such cases. We describe a novel approach that combines fast experiments (e.g., biased experiments run only for a few hours or days) and/or offline proxies (e.g., off-policy evaluation) with long-running, slow experiments to perform sequential, Bayesian optimization over large action spaces in a short amount of time.
Position: Machine Learning Conferences Should Establish a "Refutations and Critiques" Track
Science progresses by iteratively advancing and correcting humanity's understanding of the world. In machine learning (ML) research, rapid advancements have led to an explosion of publications, but have also led to misleading, incorrect, flawed or perhaps even fraudulent studies being accepted and sometimes highlighted at ML conferences due to the fallibility of peer review. While such mistakes are understandable, ML conferences do not offer robust processes to help the field systematically correct when such errors are made. This position paper argues that ML conferences should establish a dedicated "Refutations and Critiques" (R&C) Track. This R&C Track would provide a high-profile, reputable platform to support vital research that critically challenges prior research, thereby fostering a dynamic self-correcting research ecosystem. We discuss key considerations including track design, review principles, potential pitfalls, and provide an illustrative example submission concerning a recent ICLR 2025 Oral. We conclude that ML conferences should create official, reputable mechanisms to help ML research self-correct.
♻ ☆ Riddle Me This! Stealthy Membership Inference for Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) enables Large Language Models (LLMs) to generate grounded responses by leveraging external knowledge databases without altering model parameters. Although the absence of weight tuning prevents leakage via model parameters, it introduces the risk of inference adversaries exploiting retrieved documents in the model's context. Existing methods for membership inference and data extraction often rely on jailbreaking or carefully crafted unnatural queries, which can be easily detected or thwarted with query rewriting techniques common in RAG systems. In this work, we present Interrogation Attack (IA), a membership inference technique targeting documents in the RAG datastore. By crafting natural-text queries that are answerable only with the target document's presence, our approach demonstrates successful inference with just 30 queries while remaining stealthy; straightforward detectors identify adversarial prompts from existing methods up to ~76x more frequently than those generated by our attack. We observe a 2x improvement in TPR@1%FPR over prior inference attacks across diverse RAG configurations, all while costing less than $0.02 per document inference.
comment: This is the full version (27 pages) of the paper 'Riddle Me This! Stealthy Membership Inference for Retrieval-Augmented Generation' published at CCS 2025
♻ ☆ Semiparametric Double Reinforcement Learning with Applications to Long-Term Causal Inference
Long-term causal effects often must be estimated from short-term data due to limited follow-up in healthcare, economics, and online platforms. Markov Decision Processes (MDPs) provide a natural framework for capturing such long-term dynamics through sequences of states, actions, and rewards. Double Reinforcement Learning (DRL) enables efficient inference on policy values in MDPs, but nonparametric implementations require strong intertemporal overlap assumptions and often exhibit high variance and instability. We propose a semiparametric extension of DRL for efficient inference on linear functionals of the Q-function--such as policy values--in infinite-horizon, time-homogeneous MDPs. By imposing structural restrictions on the Q-function, our approach relaxes the strong overlap conditions required by nonparametric methods and improves statistical efficiency. Under model misspecification, our estimators target the functional of the best-approximating Q-function, with only second-order bias. We provide conditions for valid inference using sieve methods and data-driven model selection. A central challenge in DRL is the estimation of nuisance functions, such as density ratios, which often involve difficult minimax optimization. To address this, we introduce a novel plug-in estimator based on isotonic Bellman calibration, which combines fitted Q-iteration with an isotonic regression adjustment. The estimator is debiased without requiring estimation of additional nuisance functions and reduces high-dimensional overlap assumptions to a one-dimensional condition. Bellman calibration extends isotonic calibration--widely used in prediction and classification--to the MDP setting and may be of independent interest.
♻ ☆ Connecting phases of matter to the flatness of the loss landscape in analog variational quantum algorithms
Variational quantum algorithms (VQAs) promise near-term quantum advantage, yet parametrized quantum states commonly built from the digital gate-based approach often suffer from scalability issues such as barren plateaus, where the loss landscape becomes flat. We study an analog VQA ans\"atze composed of $M$ quenches of a disordered Ising chain, whose dynamics is native to several quantum simulation platforms. By tuning the disorder strength we place each quench in either a thermalized phase or a many-body-localized (MBL) phase and analyse (i) the ans\"atze's expressivity and (ii) the scaling of loss variance. Numerics shows that both phases reach maximal expressivity at large $M$, but barren plateaus emerge at far smaller $M$ in the thermalized phase than in the MBL phase. Exploiting this gap, we propose an MBL initialisation strategy: initialise the ans\"atze in the MBL regime at intermediate quench $M$, enabling an initial trainability while retaining sufficient expressivity for subsequent optimization. The results link quantum phases of matter and VQA trainability, and provide practical guidelines for scaling analog-hardware VQAs.
comment: 15+7 pages, 7+5 figures
♻ ☆ Pixel super-resolved virtual staining of label-free tissue using diffusion models
Virtual staining of tissue offers a powerful tool for transforming label-free microscopy images of unstained tissue into equivalents of histochemically stained samples. This study presents a diffusion model-based super-resolution virtual staining approach utilizing a Brownian bridge process to enhance both the spatial resolution and fidelity of label-free virtual tissue staining, addressing the limitations of traditional deep learning-based methods. Our approach integrates novel sampling techniques into a diffusion model-based image inference process to significantly reduce the variance in the generated virtually stained images, resulting in more stable and accurate outputs. Blindly applied to lower-resolution auto-fluorescence images of label-free human lung tissue samples, the diffusion-based super-resolution virtual staining model consistently outperformed conventional approaches in resolution, structural similarity and perceptual accuracy, successfully achieving a super-resolution factor of 4-5x, increasing the output space-bandwidth product by 16-25-fold compared to the input label-free microscopy images. Diffusion-based super-resolved virtual tissue staining not only improves resolution and image quality but also enhances the reliability of virtual staining without traditional chemical staining, offering significant potential for clinical diagnostics.
comment: 39 Pages, 7 Figures
♻ ☆ Z-REx: Human-Interpretable GNN Explanations for Real Estate Recommendations KDD
Transparency and interpretability are crucial for enhancing customer confidence and user engagement, especially when dealing with black-box Machine Learning (ML)-based recommendation systems. Modern recommendation systems leverage Graph Neural Network (GNN) due to their ability to produce high-quality recommendations in terms of both relevance and diversity. Therefore, the explainability of GNN is especially important for Link Prediction (LP) tasks since recommending relevant items can be viewed as predicting links between users and items. GNN explainability has been a well-studied field, but existing methods primarily focus on node or graph-level tasks, leaving a gap in LP explanation techniques. This work introduces Z-REx, a GNN explanation framework designed explicitly for heterogeneous link prediction tasks. Z-REx utilizes structural and attribute perturbation to identify critical substructures and important features while reducing the search space by leveraging domain-specific knowledge. In our experimentation, we show the efficacy of Z-REx in generating contextually relevant and human-interpretable explanations for ZiGNN, a GNN-based recommendation engine, using a real-world real-estate dataset from Zillow Group, Inc. We compare against State-of-The-Art (SOTA) GNN explainers to show Z-REx outperforms them by 61% in the Fidelity metric by producing superior human-interpretable explanations.
comment: Accepted to be published in KDD Workshop in Machine Learning on Graphs in the Era of Generative Artificial Intelligence (MLoG-GenAI@KDD) 2025
♻ ☆ TTRL: Test-Time Reinforcement Learning
This paper investigates Reinforcement Learning (RL) on data without explicit labels for reasoning tasks in Large Language Models (LLMs). The core challenge of the problem is reward estimation during inference while not having access to ground-truth information. While this setting appears elusive, we find that common practices in Test-Time Scaling (TTS), such as majority voting, yield surprisingly effective rewards suitable for driving RL training. In this work, we introduce Test-Time Reinforcement Learning (TTRL), a novel method for training LLMs using RL on unlabeled data. TTRL enables self-evolution of LLMs by utilizing the priors in the pre-trained models. Our experiments demonstrate that TTRL consistently improves performance across a variety of tasks and models. Notably, TTRL boosts the pass@1 performance of Qwen-2.5-Math-7B by approximately 211% on the AIME 2024 with only unlabeled test data. Furthermore, although TTRL is only supervised by the maj@n metric, TTRL has demonstrated performance to consistently surpass the upper limit of the initial model maj@n, and approach the performance of models trained directly on test data with ground-truth labels. Our experimental findings validate the general effectiveness of TTRL across various tasks and highlight TTRL's potential for broader tasks and domains. GitHub: https://github.com/PRIME-RL/TTRL
♻ ☆ DGSAM: Domain Generalization via Individual Sharpness-Aware Minimization
Domain generalization (DG) aims to learn models that perform well on unseen target domains by training on multiple source domains. Sharpness-Aware Minimization (SAM), known for finding flat minima that improve generalization, has therefore been widely adopted in DG. However, our analysis reveals that SAM in DG may converge to \textit{fake flat minima}, where the total loss surface appears flat in terms of global sharpness but remains sharp with respect to individual source domains. To understand this phenomenon more precisely, we formalize the average worst-case domain risk as the maximum loss under domain distribution shifts within a bounded divergence, and derive a generalization bound that reveals the limitations of global sharpness-aware minimization. In contrast, we show that individual sharpness provides a valid upper bound on this risk, making it a more suitable proxy for robust domain generalization. Motivated by these insights, we shift the DG paradigm toward minimizing individual sharpness across source domains. We propose \textit{Decreased-overhead Gradual SAM (DGSAM)}, which applies gradual domain-wise perturbations in a computationally efficient manner to consistently reduce individual sharpness. Extensive experiments demonstrate that DGSAM not only improves average accuracy but also reduces performance variance across domains, while incurring less computational overhead than SAM.
♻ ☆ ROCK: A variational formulation for occupation kernel methods in Reproducing Kernel Hilbert Spaces
We present a Representer Theorem result for a large class of weak formulation problems. We provide examples of applications of our formulation both in traditional machine learning and numerical methods as well as in new and emerging techniques. Finally we apply our formulation to generalize the multivariate occupation kernel (MOCK) method for learning dynamical systems from data proposing the more general Riesz Occupation Kernel (ROCK) method. Our generalized methods are both more computationally efficient and performant on most of the benchmarks we test against.
♻ ☆ Table Foundation Models: on knowledge pre-training for tabular learning
Table foundation models bring high hopes to data science: pre-trained on tabular data to embark knowledge or priors, they should facilitate downstream tasks on tables. One specific challenge is that of data semantics: numerical entries take their meaning from context, e.g., column name. Pre-trained neural networks that jointly model column names and table entries have recently boosted prediction accuracy. While these models outline the promises of world knowledge to interpret table values, they lack the convenience of popular foundation models in text or vision. Indeed, they must be fine-tuned to bring benefits, come with sizeable computation costs, and cannot easily be reused or combined with other architectures. Here we introduce TARTE, a foundation model that transforms tables to knowledge-enhanced vector representations using the string to capture semantics. Pre-trained on large relational data, TARTE yields representations that facilitate subsequent learning with little additional cost. These representations can be fine-tuned or combined with other learners, giving models that push the state-of-the-art prediction performance and improve the prediction/computation performance trade-off. Specialized to a task or a domain, TARTE gives domain-specific representations that facilitate further learning. Our study demonstrates an effective approach to knowledge pre-training for tabular learning.
♻ ☆ SP$^2$OT: Semantic-Regularized Progressive Partial Optimal Transport for Imbalanced Clustering
Deep clustering, which learns representation and semantic clustering without labels information, poses a great challenge for deep learning-based approaches. Despite significant progress in recent years, most existing methods focus on uniformly distributed datasets, significantly limiting the practical applicability of their methods. In this paper, we propose a more practical problem setting named deep imbalanced clustering, where the underlying classes exhibit an imbalance distribution. To address this challenge, we introduce a novel optimal transport-based pseudo-label learning framework. Our framework formulates pseudo-label generation as a Semantic-regularized Progressive Partial Optimal Transport (SP$^2$OT) problem, which progressively transports each sample to imbalanced clusters under prior and semantic relation constraints, thus generating high-quality and imbalance-aware pseudo-labels. To solve the SP$^2$OT problem, we propose a projected mirror descent algorithm, which alternates between: (1) computing the gradient of the SP$^2$OT objective, and (2) performing gradient descent with projection via an entropy-regularized progressive partial optimal transport formulation. Furthermore, we formulate the second step as an unbalanced optimal transport problem with augmented constraints and develop an efficient solution based on fast matrix scaling algorithms. Experiments on various datasets, including a human-curated long-tailed CIFAR100, challenging ImageNet-R, and large-scale subsets of fine-grained iNaturalist2018 datasets, demonstrate the superiority of our method. Code is available: https://github.com/rhfeiyang/SPPOT
comment: under review. Follow-up work of arXiv:2401.09266
♻ ☆ Intelligent Orchestration of Distributed Large Foundation Model Inference at the Edge
Large Foundation Models (LFMs), including multi-modal and generative models, promise to unlock new capabilities for next-generation Edge AI applications. However, performing inference with LFMs in resource-constrained and heterogeneous edge environments, such as Multi-access Edge Computing (MEC), presents significant challenges for workload orchestration due to time-varying network, compute, and storage conditions. In particular, current split inference strategies, which partition LFM layers across nodes, are not designed to adapt to fluctuating workloads, dynamic bandwidth conditions, or evolving privacy constraints in high-utilization MEC environments. In this work, we propose a novel adaptive split inference orchestration framework that elevates both the placement and partitioning of LFM layers to runtime-tunable variables. Specifically, our framework enables real-time, quality-of-service (QoS)-aware management of inference workloads by extending conventional orchestrators with three key services: (1) Capacity-aware workload distribution, which continuously profiles node resources and selects an optimal subset of MEC nodes; (2) Dynamic partition migration, which transparently relocates pre-cut LFM segments in response to changes in utilization or network conditions; (3) Real-time reconfiguration, which dynamically re-splits LFM layers to balance latency, throughput, and privacy. We formalize the joint placement-partitioning problem, outline a reference architecture and algorithmic workflow, and discuss applicability in representative smart city, V2X, and industrial edge scenarios.
comment: 25 pages, 3 figures, 4 tables, 50 references
♻ ☆ Scaling and renormalization in high-dimensional regression
From benign overfitting in overparameterized models to rich power-law scalings in performance, simple ridge regression displays surprising behaviors sometimes thought to be limited to deep neural networks. This balance of phenomenological richness with analytical tractability makes ridge regression the model system of choice in high-dimensional machine learning. In this paper, we present a unifying perspective on recent results on ridge regression using the basic tools of random matrix theory and free probability, aimed at readers with backgrounds in physics and deep learning. We highlight the fact that statistical fluctuations in empirical covariance matrices can be absorbed into a renormalization of the ridge parameter. This `deterministic equivalence' allows us to obtain analytic formulas for the training and generalization errors in a few lines of algebra by leveraging the properties of the $S$-transform of free probability. From these precise asymptotics, we can easily identify sources of power-law scaling in model performance. In all models, the $S$-transform corresponds to the train-test generalization gap, and yields an analogue of the generalized-cross-validation estimator. Using these techniques, we derive fine-grained bias-variance decompositions for a very general class of random feature models with structured covariates. This allows us to discover a scaling regime for random feature models where the variance due to the features limits performance in the overparameterized setting. We also demonstrate how anisotropic weight structure in random feature models can limit performance and lead to nontrivial exponents for finite-width corrections in the overparameterized setting. Our results extend and provide a unifying perspective on earlier models of neural scaling laws.
comment: 74 pages, 17 figures
♻ ☆ Intrinsic Dimensionality of Fermi-Pasta-Ulam-Tsingou High-Dimensional Trajectories Through Manifold Learning: A Linear Approach
A data-driven approach based on unsupervised machine learning is proposed to infer the intrinsic dimension $m^{\ast}$ of the high-dimensional trajectories of the Fermi-Pasta-Ulam-Tsingou (FPUT) model. Principal component analysis (PCA) is applied to trajectory data consisting of $n_s = 4,000,000$ datapoints, of the FPUT $\beta$ model with $N = 32$ coupled oscillators, revealing a critical relationship between $m^{\ast}$ and the model's nonlinear strength. By estimating the intrinsic dimension $m^{\ast}$ using multiple methods (participation ratio, Kaiser rule, and the Kneedle algorithm), it is found that $m^{\ast}$ increases with the model nonlinearity. Interestingly, in the weakly nonlinear regime, for trajectories initialized by exciting the first mode, the participation ratio estimates $m^{\ast} = 2, 3$, strongly suggesting that quasi-periodic motion on a low-dimensional Riemannian manifold underlies the characteristic energy recurrences observed in the FPUT model.
comment: 15 pages, 15 figures
♻ ☆ Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models ICML 2025
Recent advances in diffusion models hold significant potential in robotics, enabling the generation of diverse and smooth trajectories directly from raw representations of the environment. Despite this promise, applying diffusion models to motion planning remains challenging due to their difficulty in enforcing critical constraints, such as collision avoidance and kinematic feasibility. These limitations become even more pronounced in Multi-Robot Motion Planning (MRMP), where multiple robots must coordinate in shared spaces. To address these challenges, this work proposes Simultaneous MRMP Diffusion (SMD), a novel approach integrating constrained optimization into the diffusion sampling process to produce collision-free, kinematically feasible trajectories. Additionally, the paper introduces a comprehensive MRMP benchmark to evaluate trajectory planning algorithms across scenarios with varying robot densities, obstacle complexities, and motion constraints. Experimental results show SMD consistently outperforms classical and other learning-based motion planners, achieving higher success rates and efficiency in complex multi-robot environments.
comment: Published at the Forty-Second International Conference on Machine Learning (ICML 2025)
♻ ☆ Green AI in Action: Strategic Model Selection for Ensembles in Production
Integrating Artificial Intelligence (AI) into software systems has significantly enhanced their capabilities while escalating energy demands. Ensemble learning, combining predictions from multiple models to form a single prediction, intensifies this problem due to cumulative energy consumption. This paper presents a novel approach to model selection that addresses the challenge of balancing the accuracy of AI models with their energy consumption in a live AI ensemble system. We explore how reducing the number of models or improving the efficiency of model usage within an ensemble during inference can reduce energy demands without substantially sacrificing accuracy. This study introduces and evaluates two model selection strategies, Static and Dynamic, for optimizing ensemble learning systems performance while minimizing energy usage. Our results demonstrate that the Static strategy improves the F1 score beyond the baseline, reducing average energy usage from 100% from the full ensemble to 62%. The Dynamic strategy further enhances F1 scores, using on average 76% compared to 100% of the full ensemble. Moreover, we propose an approach that balances accuracy with resource consumption, significantly reducing energy usage without substantially impacting accuracy. This method decreased the average energy usage of the Static strategy from approximately 62% to 14%, and for the Dynamic strategy, from around 76% to 57%. Our field study of Green AI using an operational AI system developed by a large professional services provider shows the practical applicability of adopting energy-conscious model selection strategies in live production environments.
comment: 10 pages. Accepted at the 1st ACM International Conference on AI-powered Software (AIware), 2024
♻ ☆ CBAGAN-RRT: Convolutional Block Attention Generative Adversarial Network for Sampling-Based Path Planning
Sampling-based path planning algorithms play an important role in autonomous robotics. However, a common problem among the RRT-based algorithms is that the initial path generated is not optimal, and the convergence is too slow for real-world applications. In this paper, we propose a novel image-based learning algorithm using a Convolutional Block Attention Generative Adversarial Network (CBAGAN-RRT) with a combination of spatial and channel attention and a novel loss function to design the heuristics, find a better optimal path, and improve the convergence of the algorithm, both concerning time and speed. The probability distribution of the paths generated from our GAN model is used to guide the sampling process for the RRT algorithm. We demonstrate that our algorithm outperforms the previous state-of-the-art algorithms using both the image quality generation metrics, like IOU Score, Dice Score, FID score, and path planning metrics like time cost and the number of nodes. Ablation studies show the effectiveness of various components in our network architecture. The advantage of our approach is that we can avoid the complicated preprocessing in the state space, our model can be generalized to complex environments like those containing turns and narrow passages without loss of accuracy, and our model can be easily integrated with other sampling-based path planning algorithms.
♻ ☆ Benchmarking Spiking Neural Network Learning Methods with Varying Locality
Spiking Neural Networks (SNNs), providing more realistic neuronal dynamics, have been shown to achieve performance comparable to Artificial Neural Networks (ANNs) in several machine learning tasks. Information is processed as spikes within SNNs in an event-based mechanism that significantly reduces energy consumption. However, training SNNs is challenging due to the non-differentiable nature of the spiking mechanism. Traditional approaches, such as Backpropagation Through Time (BPTT), have shown effectiveness but come with additional computational and memory costs and are biologically implausible. In contrast, recent works propose alternative learning methods with varying degrees of locality, demonstrating success in classification tasks. In this work, we show that these methods share similarities during the training process, while they present a trade-off between biological plausibility and performance. Further, given the implicitly recurrent nature of SNNs, this research investigates the influence of the addition of explicit recurrence to SNNs. We experimentally prove that the addition of explicit recurrent weights enhances the robustness of SNNs. We also investigate the performance of local learning methods under gradient and non-gradient-based adversarial attacks.
♻ ☆ WeatherEdit: Controllable Weather Editing with 4D Gaussian Field
In this work, we present WeatherEdit, a novel weather editing pipeline for generating realistic weather effects with controllable types and severity in 3D scenes. Our approach is structured into two key components: weather background editing and weather particle construction. For weather background editing, we introduce an all-in-one adapter that integrates multiple weather styles into a single pretrained diffusion model, enabling the generation of diverse weather effects in 2D image backgrounds. During inference, we design a Temporal-View (TV-) attention mechanism that follows a specific order to aggregate temporal and spatial information, ensuring consistent editing across multi-frame and multi-view images. To construct the weather particles, we first reconstruct a 3D scene using the edited images and then introduce a dynamic 4D Gaussian field to generate snowflakes, raindrops and fog in the scene. The attributes and dynamics of these particles are precisely controlled through physical-based modelling and simulation, ensuring realistic weather representation and flexible severity adjustments. Finally, we integrate the 4D Gaussian field with the 3D scene to render consistent and highly realistic weather effects. Experiments on multiple driving datasets demonstrate that WeatherEdit can generate diverse weather effects with controllable condition severity, highlighting its potential for autonomous driving simulation in adverse weather. See project page: https://jumponthemoon.github.io/w-edit
♻ ☆ Pressing Intensity: An Intuitive Measure for Pressing in Soccer
Pressing is a fundamental defensive strategy in football, characterized by applying pressure on the ball owning team to regain possession. Despite its significance, existing metrics for measuring pressing often lack precision or comprehensive consideration of positional data, player movement and speed. This research introduces an innovative framework for quantifying pressing intensity, leveraging advancements in positional tracking data and components from Spearman's Pitch Control model. Our method integrates player velocities, movement directions, and reaction times to compute the time required for a defender to intercept an attacker or the ball. This time-to-intercept measure is then transformed into probabilistic values using a logistic function, enabling dynamic and intuitive analysis of pressing situations at the individual frame level. the model captures how every player's movement influences pressure on the field, offering actionable insights for coaches, analysts, and decision-makers. By providing a robust and intepretable metric, our approach facilitates the identification of pressing strategies, advanced situational analyses, and the derivation of metrics, advancing the analytical capabilities for modern football.
♻ ☆ Robustness of Decentralised Learning to Nodes and Data Disruption
In the vibrant landscape of AI research, decentralised learning is gaining momentum. Decentralised learning allows individual nodes to keep data locally where they are generated and to share knowledge extracted from local data among themselves through an interactive process of collaborative refinement. This paradigm supports scenarios where data cannot leave local nodes due to privacy or sovereignty reasons or real-time constraints imposing proximity of models to locations where inference has to be carried out. The distributed nature of decentralised learning implies significant new research challenges with respect to centralised learning. Among them, in this paper, we focus on robustness issues. Specifically, we study the effect of nodes' disruption on the collective learning process. Assuming a given percentage of "central" nodes disappear from the network, we focus on different cases, characterised by (i) different distributions of data across nodes and (ii) different times when disruption occurs with respect to the start of the collaborative learning task. Through these configurations, we are able to show the non-trivial interplay between the properties of the network connecting nodes, the persistence of knowledge acquired collectively before disruption or lack thereof, and the effect of data availability pre- and post-disruption. Our results show that decentralised learning processes are remarkably robust to network disruption. As long as even minimum amounts of data remain available somewhere in the network, the learning process is able to recover from disruptions and achieve significant classification accuracy. This clearly varies depending on the remaining connectivity after disruption, but we show that even nodes that remain completely isolated can retain significant knowledge acquired before the disruption.
comment: Supported by the H2020 HumaneAI Net (952026), CHIST-ERA-19-XAI010 SAI, PNRR - M4C2 - Investimento 1.3, Partenariato Esteso PE00000013 FAIR, PNRR - M4C2 - Investimento 1.3, Partenariato Esteso PE00000001 RESTART
♻ ☆ Hybrid Quantum Neural Networks with Amplitude Encoding: Advancing Recovery Rate Predictions
Recovery rate prediction plays a pivotal role in bond investment strategies by enhancing risk assessment, optimizing portfolio allocation, improving pricing accuracy, and supporting effective credit risk management. However, accurate forecasting remains challenging due to complex nonlinear dependencies, high-dimensional feature spaces, and limited sample sizes-conditions under which classical machine learning models are prone to overfitting. We propose a hybrid Quantum Machine Learning (QML) model with Amplitude Encoding, leveraging the unitarity constraint of Parametrized Quantum Circuits (PQC) and the exponential data compression capability of qubits. We evaluate the model on a global recovery rate dataset comprising 1,725 observations and 256 features from 1996 to 2023. Our hybrid method significantly outperforms both classical neural networks and QML models using Angle Encoding, achieving a lower Root Mean Squared Error (RMSE) of 0.228, compared to 0.246 and 0.242, respectively. It also performs competitively with ensemble tree methods such as XGBoost. While practical implementation challenges remain for Noisy Intermediate-Scale Quantum (NISQ) hardware, our quantum simulation and preliminary results on noisy simulators demonstrate the promise of hybrid quantum-classical architectures in enhancing the accuracy and robustness of recovery rate forecasting. These findings illustrate the potential of quantum machine learning in shaping the future of credit risk prediction.
♻ ☆ Early-Stage Anomaly Detection: A Study of Model Performance on Complete vs. Partial Flows
This study investigates the efficacy of machine learning models in network security threat detection through the critical lens of partial versus complete flow information, addressing a common gap between research settings and real-time operational needs. We systematically evaluate how a standard benchmark model, Random Forest, performs under varying training and testing conditions (complete/complete, partial/partial, complete/partial), quantifying the performance impact when dealing with the incomplete data typical in real-time environments. Our findings demonstrate a significant performance difference, with precision and recall dropping by up to 30% under certain conditions when models trained on complete flows are tested against partial flows. The study also reveals that, for the evaluated dataset and model, a minimum threshold around 7 packets in the test set appears necessary for maintaining reliable detection rates, providing valuable, quantified insights for developing more realistic real-time detection strategies.
comment: accepted for presentation at WTMC 2025
♻ ☆ Learning World Models With Hierarchical Temporal Abstractions: A Probabilistic Perspective
Machines that can replicate human intelligence with type 2 reasoning capabilities should be able to reason at multiple levels of spatio-temporal abstractions and scales using internal world models. Devising formalisms to develop such internal world models, which accurately reflect the causal hierarchies inherent in the dynamics of the real world, is a critical research challenge in the domains of artificial intelligence and machine learning. This thesis identifies several limitations with the prevalent use of state space models (SSMs) as internal world models and propose two new probabilistic formalisms namely Hidden-Parameter SSMs and Multi-Time Scale SSMs to address these drawbacks. The structure of graphical models in both formalisms facilitates scalable exact probabilistic inference using belief propagation, as well as end-to-end learning via backpropagation through time. This approach permits the development of scalable, adaptive hierarchical world models capable of representing nonstationary dynamics across multiple temporal abstractions and scales. Moreover, these probabilistic formalisms integrate the concept of uncertainty in world states, thus improving the system's capacity to emulate the stochastic nature of the real world and quantify the confidence in its predictions. The thesis also discuss how these formalisms are in line with related neuroscience literature on Bayesian brain hypothesis and predicitive processing. Our experiments on various real and simulated robots demonstrate that our formalisms can match and in many cases exceed the performance of contemporary transformer variants in making long-range future predictions. We conclude the thesis by reflecting on the limitations of our current models and suggesting directions for future research.
comment: Doctoral Dissertation, Department of Computer Science, Karlsruhe Institute Of Technology, 2024
♻ ☆ HyperMono: A Monotonicity-aware Approach to Hyper-Relational Knowledge Representation
In a hyper-relational knowledge graph (HKG), each fact is composed of a main triple associated with attribute-value qualifiers, which express additional factual knowledge. The hyper-relational knowledge graph completion (HKGC) task aims at inferring plausible missing links in a HKG. Most existing approaches to HKGC focus on enhancing the communication between qualifier pairs and main triples, while overlooking two important properties that emerge from the monotonicity of the hyper-relational graphs representation regime. Stage Reasoning allows for a two-step reasoning process, facilitating the integration of coarse-grained inference results derived solely from main triples and fine-grained inference results obtained from hyper-relational facts with qualifiers. In the initial stage, coarse-grained results provide an upper bound for correct predictions, which are subsequently refined in the fine-grained step. More generally, Qualifier Monotonicity implies that by attaching more qualifier pairs to a main triple, we may only narrow down the answer set, but never enlarge it. This paper proposes the HyperMono model for hyper-relational knowledge graph completion, which realizes stage reasoning and qualifier monotonicity. To implement qualifier monotonicity HyperMono resorts to cone embeddings. Experiments on three real-world datasets with three different scenario conditions demonstrate the strong performance of HyperMono when compared to the SoTA.
♻ ☆ Gibbs randomness-compression proposition: An efficient deep learning
A proposition that connects randomness and compression is put forward via Gibbs entropy over set of measurement vectors associated with a compression process. The proposition states that a lossy compression process is equivalent to {\it directed randomness} that preserves information content. The proposition originated from the observed behaviour in newly proposed {\it Dual Tomographic Compression} (DTC) compress-train framework. This is akin to tomographic reconstruction of layer weight matrices via building compressed sensed projections, via so-called {\it weight rays}. This tomographic approach is applied to previous and next layers in a dual fashion, that triggers neuronal-level pruning. This novel model compress-train scheme appears in iterative fashion and acts as a smart neural architecture search, The experiments demonstrated the utility of this dual-tomography producing state-of-the-art performance with efficient compression during training, accelerating and supporting lottery ticket hypothesis. However, random compress-train iterations having similar performance demonstrated the connection between randomness and compression from statistical physics perspective, we formulated the so-called {\it Gibbs randomness-compression proposition}, signifying randomness-compression relationship via Gibbs entropy. Practically, the DTC framework provides a promising approach for massively energy- and resource-efficient deep learning training.
comment: 5 pages, 5 figures
♻ ☆ NeuralOM: Neural Ocean Model for Subseasonal-to-Seasonal Simulation
Accurate Subseasonal-to-Seasonal (S2S) ocean simulation is critically important for marine research, yet remains challenging due to its substantial thermal inertia and extended time delay. Machine learning (ML)-based models have demonstrated significant advancements in simulation accuracy and computational efficiency compared to traditional numerical methods. Nevertheless, a significant limitation of current ML models for S2S ocean simulation is their inadequate incorporation of physical consistency and the slow-changing properties of the ocean system. In this work, we propose a neural ocean model (NeuralOM) for S2S ocean simulation with a multi-scale interactive graph neural network to emulate diverse physical phenomena associated with ocean systems effectively. Specifically, we propose a multi-stage framework tailored to model the ocean's slowly changing nature. Additionally, we introduce a multi-scale interactive messaging module to capture complex dynamical behaviors, such as gradient changes and multiplicative coupling relationships inherent in ocean dynamics. Extensive experimental evaluations confirm that our proposed NeuralOM outperforms state-of-the-art models in S2S and extreme event simulation. The codes are available at https://github.com/YuanGao-YG/NeuralOM.
♻ ☆ Quantum computing and artificial intelligence: status and perspectives
This white paper discusses and explores the various points of intersection between quantum computing and artificial intelligence (AI). It describes how quantum computing could support the development of innovative AI solutions. It also examines use cases of classical AI that can empower research and development in quantum technologies, with a focus on quantum computing and quantum sensing. The purpose of this white paper is to provide a long-term research agenda aimed at addressing foundational questions about how AI and quantum computing interact and benefit one another. It concludes with a set of recommendations and challenges, including how to orchestrate the proposed theoretical work, align quantum AI developments with quantum hardware roadmaps, estimate both classical and quantum resources - especially with the goal of mitigating and optimizing energy consumption - advance this emerging hybrid software engineering discipline, and enhance European industrial competitiveness while considering societal implications.
comment: 33 pages, 3 figures
♻ ☆ Towards Automated Self-Supervised Learning for Truly Unsupervised Graph Anomaly Detection
Self-supervised learning (SSL) is an emerging paradigm that exploits supervisory signals generated from the data itself, and many recent studies have leveraged SSL to conduct graph anomaly detection. However, we empirically found that three important factors can substantially impact detection performance across datasets: 1) the specific SSL strategy employed; 2) the tuning of the strategy's hyperparameters; and 3) the allocation of combination weights when using multiple strategies. Most SSL-based graph anomaly detection methods circumvent these issues by arbitrarily or selectively (i.e., guided by label information) choosing SSL strategies, hyperparameter settings, and combination weights. While an arbitrary choice may lead to subpar performance, using label information in an unsupervised setting is label information leakage and leads to severe overestimation of a method's performance. Leakage has been criticized as "one of the top ten data mining mistakes", yet many recent studies on SSL-based graph anomaly detection have been using label information to select hyperparameters. To mitigate this issue, we propose to use an internal evaluation strategy (with theoretical analysis) to select hyperparameters in SSL for unsupervised anomaly detection. We perform extensive experiments using 10 recent SSL-based graph anomaly detection algorithms on various benchmark datasets, demonstrating both the prior issues with hyperparameter selection and the effectiveness of our proposed strategy.
comment: Manuscript accepted by Data Mining and Knowledge Discovery for publication (June 2025). This is the final revised version
♻ ☆ Addressing the Inconsistency in Bayesian Deep Learning via Generalized Laplace Approximation
In recent years, inconsistency in Bayesian deep learning has attracted significant attention. Tempered or generalized posterior distributions are frequently employed as direct and effective solutions. Nonetheless, the underlying mechanisms and the effectiveness of generalized posteriors remain active research topics. In this work, we interpret posterior tempering as a correction for model misspecification via adjustments to the joint probability, and as a recalibration of priors by reducing aleatoric uncertainty. We also identify a unique property of the Laplace approximation: the generalized normalizing constant remains invariant, in contrast to general Bayesian learning, where this constant typically depends on model parameters after generalization. Leveraging this property, we introduce the generalized Laplace approximation, which requires only a simple modification to the Hessian calculation of the regularized loss. This approach provides a flexible and scalable framework for high-quality posterior inference. We evaluate the proposed method on state-of-the-art neural networks and real-world datasets, demonstrating that the generalized Laplace approximation enhances predictive performance.
♻ ☆ A Consequentialist Critique of Binary Classification Evaluation Practices
ML-supported decisions, such as ordering tests or determining preventive custody, often involve binary classification based on probabilistic forecasts. Evaluation frameworks for such forecasts typically consider whether to prioritize independent-decision metrics (e.g., Accuracy) or top-K metrics (e.g., Precision@K), and whether to focus on fixed thresholds or threshold-agnostic measures like AUC-ROC. We highlight that a consequentialist perspective, long advocated by decision theorists, should naturally favor evaluations that support independent decisions using a mixture of thresholds given their prevalence, such as Brier scores and Log loss. However, our empirical analysis reveals a strong preference for top-K metrics or fixed thresholds in evaluations at major conferences like ICML, FAccT, and CHIL. To address this gap, we use this decision-theoretic framework to map evaluation metrics to their optimal use cases, along with a Python package, briertools, to promote the broader adoption of Brier scores. In doing so, we also uncover new theoretical connections, including a reconciliation between the Brier Score and Decision Curve Analysis, which clarifies and responds to a longstanding critique by (Assel, et al. 2017) regarding the clinical utility of proper scoring rules.
♻ ☆ Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph ACL 2025
The rapid proliferation of large language models (LLMs) has stimulated researchers to seek effective and efficient approaches to deal with LLM hallucinations and low-quality outputs. Uncertainty quantification (UQ) is a key element of machine learning applications in dealing with such challenges. However, research to date on UQ for LLMs has been fragmented in terms of techniques and evaluation methodologies. In this work, we address this issue by introducing a novel benchmark that implements a collection of state-of-the-art UQ baselines and offers an environment for controllable and consistent evaluation of novel UQ techniques over various text generation tasks. Our benchmark also supports the assessment of confidence normalization methods in terms of their ability to provide interpretable scores. Using our benchmark, we conduct a large-scale empirical investigation of UQ and normalization techniques across eleven tasks, identifying the most effective approaches. Code: https://github.com/IINemo/lm-polygraph Benchmark: https://huggingface.co/LM-Polygraph
comment: Published at TACL 2025, presented at ACL 2025. Roman Vashurin, Ekaterina Fadeeva, Artem Vazhentsev contributed equally
♻ ☆ Aligning Evaluation with Clinical Priorities: Calibration, Label Shift, and Error Costs
Machine learning-based decision support systems are increasingly deployed in clinical settings, where probabilistic scoring functions are used to inform and prioritize patient management decisions. However, widely used scoring rules, such as accuracy and AUC-ROC, fail to adequately reflect key clinical priorities, including calibration, robustness to distributional shifts, and sensitivity to asymmetric error costs. In this work, we propose a principled yet practical evaluation framework for selecting calibrated thresholded classifiers that explicitly accounts for the uncertainty in class prevalences and domain-specific cost asymmetries often found in clinical settings. Building on the theory of proper scoring rules, particularly the Schervish representation, we derive an adjusted variant of cross-entropy (log score) that averages cost-weighted performance over clinically relevant ranges of class balance. The resulting evaluation is simple to apply, sensitive to clinical deployment conditions, and designed to prioritize models that are both calibrated and robust to real-world variations.
♻ ☆ Visual Encoders for Data-Efficient Imitation Learning in Modern Video Games
Video games have served as useful benchmarks for the decision-making community, but going beyond Atari games towards modern games has been prohibitively expensive for the vast majority of the research community. Prior work in modern video games typically relied on game-specific integration to obtain game features and enable online training, or on existing large datasets. An alternative approach is to train agents using imitation learning to play video games purely from images. However, this setting poses a fundamental question: which visual encoders obtain representations that retain information critical for decision making? To answer this question, we conduct a systematic study of imitation learning with publicly available pre-trained visual encoders compared to the typical task-specific end-to-end training approach in Minecraft, Counter-Strike: Global Offensive, and Minecraft Dungeons. Our results show that end-to-end training can be effective with comparably low-resolution images and only minutes of demonstrations, but significant improvements can be gained by utilising pre-trained encoders such as DINOv2 depending on the game. In addition to enabling effective decision making, we show that pre-trained encoders can make decision-making research in video games more accessible by significantly reducing the cost of training.
comment: Camera-ready paper presented at the Adaptive and Learning Agents Workshop at the AAMAS 2025 conference
♻ ☆ Value-Free Policy Optimization via Reward Partitioning
Single-trajectory reinforcement learning (RL) methods aim to optimize policies from datasets consisting of (prompt, response, reward) triplets, where scalar rewards are directly available. This supervision format is highly practical, as it mirrors real-world human feedback, such as thumbs-up/down signals, and avoids the need for structured preference annotations. In contrast, pairwise preference-based methods like Direct Preference Optimization (DPO) rely on datasets with both preferred and dispreferred responses, which are harder to construct and less natural to collect. Among single-trajectory approaches, Direct Reward Optimization (DRO) has shown strong empirical performance due to its simplicity and stability. However, DRO requires approximating a value function, which introduces several limitations: high off-policy variance, coupling between policy and value learning, and a lack of absolute supervision on the policy itself. We introduce Reward Partitioning Optimization (RPO), a new method that resolves these limitations by removing the need to model the value function. Instead, RPO normalizes observed rewards using a partitioning approach estimated directly from data. This leads to a straightforward supervised learning objective on the policy, with no auxiliary models and no joint optimization. RPO provides direct and stable supervision on the policy, making it robust and easy to implement in practice. We validate RPO on scalar-feedback language modeling tasks using Flan-T5 encoder-decoder models. Our results demonstrate that RPO outperforms existing single-trajectory baselines such as DRO and Kahneman-Tversky Optimization (KTO). These findings confirm that RPO is a simple, effective, and theoretically grounded method for single-trajectory policy optimization.
♻ ☆ Recovering Imbalanced Clusters via Gradient-Based Projection Pursuit
Projection Pursuit is a classic exploratory technique for finding interesting projections of a dataset. We propose a method for recovering projections containing either Imbalanced Clusters or a Bernoulli-Rademacher distribution using a gradient-based technique to optimize the projection index. As sample complexity is a major limiting factor in Projection Pursuit, we analyze our algorithm's sample complexity within a Planted Vector setting where we can observe that Imbalanced Clusters can be recovered more easily than balanced ones. Additionally, we give a generalized result that works for a variety of data distributions and projection indices. We compare these results to computational lower bounds in the Low-Degree-Polynomial Framework. Finally, we experimentally evaluate our method's applicability to real-world data using FashionMNIST and the Human Activity Recognition Dataset, where our algorithm outperforms others when only a few samples are available.
♻ ☆ Online model learning with data-assimilated reservoir computers
We propose an online learning framework for forecasting nonlinear spatio-temporal signals (fields). The method integrates (i) dimensionality reduction, here, a simple proper orthogonal decomposition (POD) projection; (ii) a generalized autoregressive model to forecast reduced dynamics, here, a reservoir computer; (iii) online adaptation to update the reservoir computer (the model), here, ensemble sequential data assimilation. We demonstrate the framework on a wake past a cylinder governed by the Navier-Stokes equations, exploring the assimilation of full flow fields (projected onto POD modes) and sparse sensors. Three scenarios are examined: a na\"ive physical state estimation; a two-fold estimation of physical and reservoir states; and a three-fold estimation that also adjusts the model parameters. The two-fold strategy significantly improves ensemble convergence and reduces reconstruction error compared to the na\"ive approach. The three-fold approach enables robust online training of partially-trained reservoir computers, overcoming limitations of a priori training. By unifying data-driven reduced order modelling with Bayesian data assimilation, this work opens new opportunities for scalable online model learning for nonlinear time series forecasting.
comment: 8 pages, 5 figures
♻ ☆ Refine-POI: Reinforcement Fine-Tuned Large Language Models for Next Point-of-Interest Recommendation
Large language models (LLMs) have been adopted for next point-of-interest (POI) recommendation tasks. Typical LLM-based recommenders fall into two categories: prompt-based and supervised fine-tuning (SFT)-based models. Prompt-based models generally offer greater output flexibility but deliver lower accuracy, whereas SFT-based models achieve higher performance yet face a fundamental mismatch: next POI recommendation data does not naturally suit supervised fine-tuning. In SFT, the model is trained to reproduce the exact ground truth, but each training example provides only a single target POI, so there is no ground truth for producing a top-k list. To address this, we propose Refine-POI, a reinforcement fine-tuning framework for next POI recommendation. We introduce recommendation-driven rewards that enable LLMs to learn to generate top-k recommendation lists using only one ground-truth POI per example. Experiments on real-world datasets demonstrate that Refine-POI achieves state-of-the-art top-k recommendation performance.
♻ ☆ Rethinking Aleatoric and Epistemic Uncertainty ICML 2025
The ideas of aleatoric and epistemic uncertainty are widely used to reason about the probabilistic predictions of machine-learning models. We identify incoherence in existing discussions of these ideas and suggest this stems from the aleatoric-epistemic view being insufficiently expressive to capture all the distinct quantities that researchers are interested in. To address this we present a decision-theoretic perspective that relates rigorous notions of uncertainty, predictive performance and statistical dispersion in data. This serves to support clearer thinking as the field moves forward. Additionally we provide insights into popular information-theoretic quantities, showing they can be poor estimators of what they are often purported to measure, while also explaining how they can still be useful in guiding data acquisition.
comment: Published at ICML 2025
♻ ☆ SmileyLlama: Modifying Large Language Models for Directed Chemical Space Exploration
Here we show that a general-purpose large language model (LLM) chatbot, Llama-3.1-8B-Instruct, can be transformed via supervised fine-tuning of engineered prompts into a chemical language model (CLM), SmileyLlama, for molecule generation. We benchmark SmileyLlama by comparing it to CLMs trained from scratch on large amounts of ChEMBL data for their ability to generate valid and novel drug-like molecules. We also use direct preference optimization to both improve SmileyLlama's adherence to a prompt and to generate molecules within the iMiner reinforcement learning framework to predict new drug molecules with optimized 3D conformations and high binding affinity to drug targets, illustrated with the SARS-Cov-2 Main Protease. This overall framework allows a LLM to speak directly as a CLM which can generate molecules with user-specified properties, rather than acting only as a chatbot with knowledge of chemistry or as a helpful virtual assistant. While our dataset and analyses are geared toward drug discovery, this general procedure can be extended to other chemical applications such as chemical synthesis.
♻ ☆ Methodology for an Analysis of Influencing Factors on 3D Object Detection Performance
In automated driving, object detection is crucial for perceiving the environment. Although deep learning-based detectors offer high performance, their black-box nature complicates safety assurance. We propose a novel methodology to analyze how object- and environment-related factors affect LiDAR- and camera-based 3D object detectors. A statistical univariate analysis relates each factor to pedestrian detection errors. Additionally, a Random Forest (RF) model predicts errors from meta-information, with Shapley Values interpreting feature importance. By capturing feature dependencies, the RF enables a nuanced analysis of detection errors. Understanding these factors reveals detector performance gaps and supports safer object detection system development.
comment: IEEE International Conference on Autonomous and Trusted Computing (IEEE ATC), 2025
♻ ☆ Error Optimization: Overcoming Exponential Signal Decay in Deep Predictive Coding Networks
Predictive Coding (PC) offers a biologically plausible alternative to backpropagation for neural network training, yet struggles with deeper architectures. This paper identifies the root cause: an inherent signal decay problem where gradients attenuate exponentially with depth, becoming computationally negligible due to numerical precision constraints. To address this fundamental limitation, we introduce Error Optimization (EO), a novel reparameterization that preserves PC's theoretical properties while eliminating signal decay. By optimizing over prediction errors rather than states, EO enables signals to reach all layers simultaneously and without attenuation, converging orders of magnitude faster than standard PC. Experiments across multiple architectures and datasets demonstrate that EO matches backpropagation's performance even for deeper models where conventional PC struggles. Besides practical improvements, our work provides theoretical insight into PC dynamics and establishes a foundation for scaling biologically-inspired learning to deeper architectures on digital hardware and beyond.
comment: All code available at https://github.com/cgoemaere/pc_error_optimization
♻ ☆ Sparsing Law: Towards Large Language Models with Greater Activation Sparsity
Activation sparsity denotes the existence of substantial weakly-contributed elements within activation outputs that can be eliminated, benefiting many important applications concerned with large language models (LLMs). Although promoting greater activation sparsity within LLMs deserves deep studies, existing works lack comprehensive and quantitative research on the correlation between activation sparsity and potentially influential factors. In this paper, we present a comprehensive study on the quantitative scaling properties and influential factors of the activation sparsity within decoder-only Transformer-based LLMs. Specifically, we propose PPL-$p\%$ sparsity, a precise and performance-aware activation sparsity metric that is applicable to any activation function. Through extensive experiments, we find several important phenomena. Firstly, different activation functions exhibit comparable performance but opposite training-time sparsity trends. The activation ratio (i.e., $1-\mathrm{sparsity\ ratio}$) evolves as a convergent increasing power-law and decreasing logspace power-law with the amount of training data for SiLU-activated and ReLU-activated LLMs, respectively. These demonstrate that ReLU is more efficient as the activation function than SiLU and can leverage more training data to improve activation sparsity. Secondly, the activation ratio linearly increases with the width-depth ratio below a certain bottleneck point, indicating the potential advantage of a deeper architecture at a fixed parameter scale. Finally, at similar width-depth ratios, we surprisingly find that the limit value of activation sparsity varies weakly with the parameter scale, i.e., the activation patterns within LLMs are insensitive to the parameter scale. These empirical laws towards LLMs with greater activation sparsity have important implications for making LLMs more efficient and interpretable.
comment: 23 pages, 13 figures, 6 tables
♻ ☆ Modular Distributed Nonconvex Learning with Error Feedback
In this paper, we design a novel distributed learning algorithm using stochastic compressed communications. In detail, we pursue a modular approach, merging ADMM and a gradient-based approach, benefiting from the robustness of the former and the computational efficiency of the latter. Additionally, we integrate a stochastic integral action (error feedback) enabling almost sure rejection of the compression error. We analyze the resulting method in nonconvex scenarios and guarantee almost sure asymptotic convergence to the set of stationary points of the problem. This result is obtained using system-theoretic tools based on stochastic timescale separation. We corroborate our findings with numerical simulations in nonconvex classification.
♻ ☆ Robust LLM Unlearning with MUDMAN: Meta-Unlearning with Disruption Masking And Normalization
Language models can retain dangerous knowledge and skills even after extensive safety fine-tuning, posing both misuse and misalignment risks. Recent studies show that even specialized unlearning methods can be easily reversed. To address this, we systematically evaluate many existing and novel components of unlearning methods and identify ones crucial for irreversible unlearning. We introduce Disruption Masking, a technique in which we only allow updating weights, where the signs of the unlearning gradient and the retaining gradient are the same. This ensures all updates are non-disruptive. Additionally, we identify the need for normalizing the unlearning gradients, and also confirm the usefulness of meta-learning. We combine these insights into MUDMAN (Meta-Unlearning with Disruption Masking and Normalization) and validate its effectiveness at preventing the recovery of dangerous capabilities. MUDMAN outperforms the prior TAR method by 40%, setting a new state-of-the-art for robust unlearning.
♻ ☆ GL-LowPopArt: A Nearly Instance-Wise Minimax-Optimal Estimator for Generalized Low-Rank Trace Regression
We present `GL-LowPopArt`, a novel Catoni-style estimator for generalized low-rank trace regression. Building on `LowPopArt` (Jang et al., 2024), it employs a two-stage approach: nuclear norm regularization followed by matrix Catoni estimation. We establish state-of-the-art estimation error bounds, surpassing existing guarantees (Fan et al., 2019; Kang et al., 2022), and reveal a novel experimental design objective, $\mathrm{GL}(\pi)$. The key technical challenge is controlling bias from the nonlinear inverse link function, which we address by our two-stage approach. We prove a *local* minimax lower bound, showing that our `GL-LowPopArt` enjoys instance-wise optimality up to the condition number of the ground-truth Hessian. Applications include generalized linear matrix completion, where `GL-LowPopArt` achieves a state-of-the-art Frobenius error guarantee, and **bilinear dueling bandits**, a novel setting inspired by general preference learning (Zhang et al., 2024). Our analysis of a `GL-LowPopArt`-based explore-then-commit algorithm reveals a new, potentially interesting problem-dependent quantity, along with improved Borda regret bound than vectorization (Wu et al., 2024).
comment: 64 pages, 2 figures, 3 tables
♻ ☆ Evaluating K-Fold Cross Validation for Transformer Based Symbolic Regression Models
Symbolic Regression remains an NP-Hard problem, with extensive research focusing on AI models for this task. Transformer models have shown promise in Symbolic Regression, but performance suffers with smaller datasets. We propose applying k-fold cross-validation to a transformer-based symbolic regression model trained on a significantly reduced dataset (15,000 data points, down from 500,000). This technique partitions the training data into multiple subsets (folds), iteratively training on some while validating on others. Our aim is to provide an estimate of model generalization and mitigate overfitting issues associated with smaller datasets. Results show that this process improves the model's output consistency and generalization by a relative improvement in validation loss of 53.31%. Potentially enabling more efficient and accessible symbolic regression in resource-constrained environments.
♻ ☆ CPT: Competence-progressive Training Strategy for Few-shot Node Classification
Graph Neural Networks (GNNs) have made significant advancements in node classification, but their success relies on sufficient labeled nodes per class in the training data. Real-world graph data often exhibits a long-tail distribution with sparse labels, emphasizing the importance of GNNs' ability in few-shot node classification, which entails categorizing nodes with limited data. Traditional episodic meta-learning approaches have shown promise in this domain, but they face an inherent limitation: it might lead the model to converge to suboptimal solutions because of random and uniform task assignment, ignoring task difficulty levels. This could lead the meta-learner to face complex tasks too soon, hindering proper learning. Ideally, the meta-learner should start with simple concepts and advance to more complex ones, like human learning. So, we introduce CPT, a novel two-stage curriculum learning method that aligns task difficulty with the meta-learner's progressive competence, enhancing overall performance. Specifically, in CPT's initial stage, the focus is on simpler tasks, fostering foundational skills for engaging with complex tasks later. Importantly, the second stage dynamically adjusts task difficulty based on the meta-learner's growing competence, aiming for optimal knowledge acquisition. Extensive experiments on popular node classification datasets demonstrate significant improvements of our strategy over existing methods.
comment: APWEB-WAIM 2025
♻ ☆ TinyAlign: Boosting Lightweight Vision-Language Models by Mitigating Modal Alignment Bottlenecks
Lightweight Vision-Language Models (VLMs) are indispensable for resource-constrained applications. The prevailing approach to aligning vision and language models involves freezing both the vision encoder and the language model while training small connector modules. However, this strategy heavily depends on the intrinsic capabilities of the language model, which can be suboptimal for lightweight models with limited representational capacity. In this work, we investigate this alignment bottleneck through the lens of mutual information, demonstrating that the constrained capacity of the language model inherently limits the Effective Mutual Information (EMI) between multimodal inputs and outputs, thereby compromising alignment quality. To address this challenge, we propose TinyAlign, a novel framework inspired by Retrieval-Augmented Generation, which strategically retrieves relevant context from a memory bank to enrich multimodal inputs and enhance their alignment. Extensive empirical evaluations reveal that TinyAlign significantly reduces training loss, accelerates convergence, and enhances task performance. Remarkably, it allows models to achieve baseline-level performance with only 40\% of the fine-tuning data, highlighting exceptional data efficiency. Our work thus offers a practical pathway for developing more capable lightweight VLMs while introducing a fresh theoretical lens to better understand and address alignment bottlenecks in constrained multimodal systems.
♻ ☆ ChemMiner: A Large Language Model Agent System for Chemical Literature Data Mining
The development of AI-assisted chemical synthesis tools requires comprehensive datasets covering diverse reaction types, yet current high-throughput experimental (HTE) approaches are expensive and limited in scope. Chemical literature represents a vast, underexplored data source containing thousands of reactions published annually. However, extracting reaction information from literature faces significant challenges including varied writing styles, complex coreference relationships, and multimodal information presentation. This paper proposes ChemMiner, a novel end-to-end framework leveraging multiple agents powered by large language models (LLMs) to extract high-fidelity chemical data from literature. ChemMiner incorporates three specialized agents: a text analysis agent for coreference mapping, a multimodal agent for non-textual information extraction, and a synthesis analysis agent for data generation. Furthermore, we developed a comprehensive benchmark with expert-annotated chemical literature to evaluate both extraction efficiency and precision. Experimental results demonstrate reaction identification rates comparable to human chemists while significantly reducing processing time, with high accuracy, recall, and F1 scores. Our open-sourced benchmark facilitates future research in chemical literature data mining.
♻ ☆ Challenging Gradient Boosted Decision Trees with Tabular Transformers for Fraud Detection at Booking.com
Transformer-based neural networks, empowered by Self-Supervised Learning (SSL), have demonstrated unprecedented performance across various domains. However, related literature suggests that tabular Transformers may struggle to outperform classical Machine Learning algorithms, such as Gradient Boosted Decision Trees (GBDT). In this paper, we aim to challenge GBDTs with tabular Transformers on a typical task faced in e-commerce, namely fraud detection. Our study is additionally motivated by the problem of selection bias, often occurring in real-life fraud detection systems. It is caused by the production system affecting which subset of traffic becomes labeled. This issue is typically addressed by sampling randomly a small part of the whole production data, referred to as a Control Group. This subset follows a target distribution of production data and therefore is usually preferred for training classification models with standard ML algorithms. Our methodology leverages the capabilities of Transformers to learn transferable representations using all available data by means of SSL, giving it an advantage over classical methods. Furthermore, we conduct large-scale experiments, pre-training tabular Transformers on vast amounts of data instances and fine-tuning them on smaller target datasets. The proposed approach outperforms heavily tuned GBDTs by a considerable margin of the Average Precision (AP) score in offline evaluations. Finally, we report the results of an online A/B experiment. Experimental results confirm the superiority of tabular Transformers compared to GBDTs in production, demonstrated by a statistically significant improvement in our business metric.
comment: Submitted to CIKM'25, Applied Research track
♻ ☆ EFRame: Deeper Reasoning via Exploration-Filter-Replay Reinforcement Learning Framework
Recent advances in reinforcement learning (RL) have significantly enhanced the reasoning capabilities of large language models (LLMs). Group Relative Policy Optimization (GRPO), an efficient variant of PPO that lowers RL's computational cost, still faces limited exploration, low sample efficiency and instability, constraining its performance on complex reasoning tasks. To address these limitations, we introduce EFRame, an Exploration-Filtering-Replay framework that systematically augments GRPO along three critical dimensions. EFRame performs additional rollouts to explore high-quality trajectories, applies online filtering to eliminate low-quality samples that introduce noise and variance, and leverages experience replay to repeatedly exploit rare but informative samples. EFRame establishes a complete and stable learning cycle, guiding the model through a structured transition from exploration to convergence. Our experiments across a variety of reasoning benchmarks demonstrate that EFRame not only improves the robustness and efficiency of training, but also enables access to deeper reasoning capabilities that remain unattainable under vanilla GRPO. Furthermore, EFRame enables a more fine-grained categorization of training samples, allowing for a deeper analysis of how different types of samples contribute to the learning process in RL. Our code is available at https://github.com/597358816/EFRame.
♻ ☆ FedMM-X: A Trustworthy and Interpretable Framework for Federated Multi-Modal Learning in Dynamic Environments
As artificial intelligence systems increasingly operate in Real-world environments, the integration of multi-modal data sources such as vision, language, and audio presents both unprecedented opportunities and critical challenges for achieving trustworthy intelligence. In this paper, we propose a novel framework that unifies federated learning with explainable multi-modal reasoning to ensure trustworthiness in decentralized, dynamic settings. Our approach, called FedMM-X (Federated Multi-Modal Explainable Intelligence), leverages cross-modal consistency checks, client-level interpretability mechanisms, and dynamic trust calibration to address challenges posed by data heterogeneity, modality imbalance, and out-of-distribution generalization. Through rigorous evaluation across federated multi-modal benchmarks involving vision-language tasks, we demonstrate improved performance in both accuracy and interpretability while reducing vulnerabilities to adversarial and spurious correlations. Further, we introduce a novel trust score aggregation method to quantify global model reliability under dynamic client participation. Our findings pave the way toward developing robust, interpretable, and socially responsible AI systems in Real-world environments.
♻ ☆ From Alignment to Advancement: Bootstrapping Audio-Language Alignment with Synthetic Data
Audio-aware large language models (ALLMs) have recently made great strides in understanding and processing audio inputs. These models are typically adapted from text-based large language models (LLMs) through additional training on audio-related tasks. However, this adaptation process presents two major limitations. First, ALLMs often suffer from catastrophic forgetting, where crucial textual capabilities like instruction-following are lost after training on audio data. In some cases, models may even hallucinate sounds that are not present in the input audio, raising concerns about reliability. Second, achieving cross-modal alignment between audio and language typically relies on large collections of task-specific question-answer pairs for instruction tuning, making it resource-intensive. To address these issues, previous works have leveraged the backbone LLMs to synthesize general-purpose, caption-style alignment data. In this paper, we propose a data generation framework that produces contrastive-like training data, designed to enhance ALLMs' ability to differentiate between present and absent sounds. We further extend our approach to multi-audio scenarios, enabling the model to either explain differences between audio inputs or produce unified captions that describe all inputs, thereby enhancing audio-language alignment. We refer to the entire ALLM training framework as bootstrapping audio-language alignment via synthetic data generation from backbone LLMs (BALSa). Experimental results indicate that our method effectively mitigates audio hallucinations while reliably maintaining strong performance on audio understanding and reasoning benchmarks, as well as instruction-following skills. Moreover, incorporating multi-audio training further enhances the model's comprehension and reasoning capabilities. Overall, BALSa offers an efficient and scalable approach to developing ALLMs.
comment: Submitted to IEEE/ACM Transactions on Audio, Speech, and Language Processing. Project Website: https://kuan2jiu99.github.io/Balsa
♻ ☆ RegionGCN: Spatial-Heterogeneity-Aware Graph Convolutional Networks
Modeling spatial heterogeneity in the data generation process is essential for understanding and predicting geographical phenomena. Despite their prevalence in geospatial tasks, neural network models usually assume spatial stationarity, which could limit their performance in the presence of spatial process heterogeneity. By allowing model parameters to vary over space, several approaches have been proposed to incorporate spatial heterogeneity into neural networks. However, current geographically weighting approaches are ineffective on graph neural networks, yielding no significant improvement in prediction accuracy. We assume the crux lies in the over-fitting risk brought by a large number of local parameters. Accordingly, we propose to model spatial process heterogeneity at the regional level rather than at the individual level, which largely reduces the number of spatially varying parameters. We further develop a heuristic optimization procedure to learn the region partition adaptively in the process of model training. Our proposed spatial-heterogeneity-aware graph convolutional network, named RegionGCN, is applied to the spatial prediction of county-level vote share in the 2016 US presidential election based on socioeconomic attributes. Results show that RegionGCN achieves significant improvement over the basic and geographically weighted GCNs. We also offer an exploratory analysis tool for the spatial variation of non-linear relationships through ensemble learning of regional partitions from RegionGCN. Our work contributes to the practice of Geospatial Artificial Intelligence (GeoAI) in tackling spatial heterogeneity.
comment: 29 pages, 6 figures
♻ ☆ PipeOffload: Improving Scalability of Pipeline Parallelism with Memory Optimization
Pipeline parallelism (PP) is widely used for training large language models (LLMs), yet its scalability is often constrained by high activation memory consumption as the number of in-flight microbatches grows with the degree of PP. In this paper, we focus on addressing this challenge by leveraging the under-explored memory offload strategy in PP. With empirical study, we discover that in the majority of standard configurations, at least half, and potentially all, of the activations can be offloaded with negligible overhead. In the cases where full overload is not possible, we introduce a novel selective offload strategy that decreases peak activation memory in a better-than-linear manner. Furthermore, we integrate memory offload with other techniques to jointly consider overall throughput and memory limitation. Our experiments proves that the per-device activation memory effectively reduces with the total number of stages, making PP a stronger alternative than TP, offering up to a 19\% acceleration with even lower memory consumption. The implementation is open-sourced at \href{https://github.com/sail-sg/zero-bubble-pipeline-parallelism}{this url}.
♻ ☆ MoORE: SVD-based Model MoE-ization for Conflict- and Oblivion-Resistant Multi-Task Adaptation
Adapting large-scale foundation models in multi-task scenarios often suffers from task conflict and oblivion. To mitigate such issues, we propose a novel ''model MoE-ization'' strategy that leads to a conflict- and oblivion-resistant multi-task adaptation method. Given a weight matrix of a pre-trained model, our method applies SVD to it and introduces a learnable router to adjust its singular values based on tasks and samples. Accordingly, the weight matrix becomes a Mixture of Orthogonal Rank-one Experts (MoORE), in which each expert corresponds to the outer product of a left singular vector and the corresponding right one. We can improve the model capacity by imposing a learnable orthogonal transform on the right singular vectors. Unlike low-rank adaptation (LoRA) and its MoE-driven variants, MoORE guarantees the experts' orthogonality and maintains the column space of the original weight matrix. These two properties make the adapted model resistant to the conflicts among the new tasks and the oblivion of its original tasks, respectively. Experiments on various datasets demonstrate that MoORE outperforms existing multi-task adaptation methods consistently, showing its superiority in terms of conflict- and oblivion-resistance. The code of the experiments is available at https://github.com/DaShenZi721/MoORE.
comment: 24 pages, 6 figures
♻ ☆ A general language model for peptide identification
Accurate identification of bioactive peptides (BPs) and protein post-translational modifications (PTMs) is essential for understanding protein function and advancing therapeutic discovery. However, most computational methods remain limited in their generalizability across diverse peptide functions. Here, we present PDeepPP, a unified deep learning framework that integrates pretrained protein language models with a hybrid transformer-convolutional architecture, enabling robust identification across diverse peptide classes and PTM sites. We curated comprehensive benchmark datasets and implemented strategies to address data imbalance, allowing PDeepPP to systematically extract both global and local sequence features. Through extensive analyses-including dimensionality reduction and comparison studies-PDeepPP demonstrates strong, interpretable peptide representations and achieves state-of-the-art performance in 25 of the 33 biological identification tasks. Notably, PDeepPP attains high accuracy in antimicrobial (0.9726) and phosphorylation site (0.9984) identification, with 99.5% specificity in glycosylation site prediction and substantial reduction in false negatives in antimalarial tasks. By enabling large-scale, accurate peptide analysis, PDeepPP supports biomedical research and the discovery of novel therapeutic targets for disease treatment. All code, datasets, and pretrained models are publicly available via GitHub:https://github.com/fondress/PDeepPP and Hugging Face:https://huggingface.co/fondress/PDeppPP.
comment: 24 pages, 9 figures, 4 tables, submitted to arXiv
♻ ☆ RetroInfer: A Vector-Storage Approach for Scalable Long-Context LLM Inference
The growing context lengths of large language models (LLMs) pose significant challenges for efficient inference, primarily due to GPU memory and bandwidth constraints. We present RetroInfer, a novel system that reconceptualizes the key-value (KV) cache as a vector storage system which exploits the inherent attention sparsity to accelerate long-context LLM inference. At its core is the wave index, an Attention-aWare VEctor index that enables efficient and accurate retrieval of critical tokens through techniques such as tripartite attention approximation, accuracy-bounded attention estimation, and segmented clustering. Complementing this is the wave buffer, which coordinates KV cache placement and overlaps computation and data transfer across GPU and CPU to sustain high throughput. Unlike prior sparsity-based methods that struggle with token selection and hardware coordination, RetroInfer delivers robust performance without compromising model accuracy. Experiments on long-context benchmarks show up to 4.5X speedup over full attention within GPU memory limits and up to 10.5X over sparse attention baselines when KV cache is extended to CPU memory, all while preserving full-attention-level accuracy.
comment: 17 pages
♻ ☆ Progressive Binarization with Semi-Structured Pruning for LLMs
Large language models (LLMs) have achieved remarkable progress in natural language processing, but their high computational and memory costs hinder deployment on resource-constrained devices. Binarization, which reduces model weights to 1 bit, is a promising solution for efficient inference. However, binarized LLMs still exhibit redundancy that can be further compressed. Semi-structured pruning offers a favorable trade-off between model performance and hardware efficiency, but naively combining it with binarization often leads to severe performance degradation. To address this, we propose Progressive Binarization with Semi-Structured Pruning (PBS$^2$P), a novel post-training compression framework. We propose Stepwise semi-structured Pruning with Binarization Optimization (SPBO) to jointly reduce pruning and binarization error. Additionally, we develop a Coarse-to-Fine Search (CFS) strategy to more effectively select pruning elements. Extensive experiments across multiple LLM families show that PBS$^2$P consistently outperforms state-of-the-art binary post-training quantization methods in both perplexity and downstream accuracy. The code and models will be available at: https://github.com/XIANGLONGYAN/PBS2P.
♻ ☆ From Diffusion to Transformers: A Unified Framework for Neural Message Passing ICLR 2023
Learning representations for structured data with certain geometries (e.g., observed or unobserved) is a fundamental challenge, wherein message passing neural networks (MPNNs) have become a de facto class of model solutions. In this paper, inspired by physical systems, we propose an energy-constrained diffusion model, which combines the inductive bias of diffusion on manifolds with layer-wise constraints of energy minimization. We identify that the diffusion operators have a one-to-one correspondence with the energy functions implicitly descended by the diffusion process, and the finite-difference iteration for solving the energy-constrained diffusion system induces the propagation layers of various types of MPNNs operating on observed or latent structures. This leads to a unified mathematical framework for common neural architectures whose computational flows can be cast as message passing (or its special case), including MLPs, GNNs, and Transformers. Building on these insights, we devise a new class of neural message passing models, dubbed diffusion-inspired Transformers, whose global attention layers are derived from the principled energy-constrained diffusion framework. Across diverse datasets ranging from real-world networks to images, texts, and physical particles, we demonstrate that the new model achieves promising performance in scenarios where the data structures are observed (as a graph), partially observed, or entirely unobserved.
comment: Published in Journal of Machine Learning Research (JMLR). Extended from DIFFormer in ICLR 2023
♻ ☆ Gumiho: A Hybrid Architecture to Prioritize Early Tokens in Speculative Decoding ICML 2025
Speculative decoding (SPD) aims to accelerate the auto-regressive token generation process of a target Large Language Model (LLM). Some approaches employ a draft model with multiple heads to predict a sequence of future tokens, where each head handles a token in the sequence. The target LLM verifies the predicted sequence and accepts aligned tokens, enabling efficient multi-token generation. However, existing methods assume that all tokens within a sequence are equally important, employing identical head structures and relying on a single-generation paradigm, either serial or parallel. To this end, we theoretically demonstrate that initial tokens in the draft sequence are more important than later ones. Building on this insight, we propose Gumiho, a hybrid model combining serial and parallel heads. Specifically, given the critical importance of early tokens, we employ a sophisticated Transformer architecture for the early draft heads in a serial configuration to improve accuracy. For later tokens, we utilize multiple lightweight MLP heads operating in parallel to enhance efficiency. By allocating more advanced model structures and longer running times to the early heads, Gumiho achieves improved overall performance. The experimental results demonstrate that our method outperforms existing approaches, fully validating its effectiveness.
comment: Accepted to the 42nd International Conference on Machine Learning (ICML 2025). Code: https://github.com/AMD-AIG-AIMA/Gumiho
♻ ☆ The Hitchhiker's Guide to Efficient, End-to-End, and Tight DP Auditing
This paper systematizes research on auditing Differential Privacy (DP) techniques, aiming to identify key insights into the current state of the art and open challenges. First, we introduce a comprehensive framework for reviewing work in the field and establish three cross-contextual desiderata that DP audits should target--namely, efficiency, end-to-end-ness, and tightness. Then, we systematize the modes of operation of state-of-the-art DP auditing techniques, including threat models, attacks, and evaluation functions. This allows us to highlight key details overlooked by prior work, analyze the limiting factors to achieving the three desiderata, and identify open research problems. Overall, our work provides a reusable and systematic methodology geared to assess progress in the field and identify friction points and future directions for our community to focus on.
♻ ☆ Achieving binary weight and activation for LLMs using Post-Training Quantization
Quantizing large language models (LLMs) to 1-bit precision significantly reduces computational costs, but existing quantization techniques suffer from noticeable performance degradation when using weight and activation precisions below 4 bits (W4A4). In this paper, we propose a post-training quantization framework with W(1+1)A(1*4) configuration, where weights are quantized to 1 bit with an additional 1 bit for fine-grain grouping and activations are quantized to 1 bit with a 4-fold increase in the number of channels. For weight quantization, we propose utilizing Hessian-aware fine-grained grouping along with an EM-based quantization scheme. For activation quantization, we decompose INT4-quantized activations into a 4 * INT1 format equivalently and simultaneously smooth the scaling factors based on quantization errors, which further reduces the quantization errors in activations. Our method surpasses state-of-the-art (SOTA) LLM quantization baselines on W2A4 across multiple tasks, pushing the boundaries of existing LLM quantization methods toward fully binarized models. Code is available at https://github.com/JimmyCrave/LLM-PTQ-binarization.
♻ ☆ Neural Canonical Polyadic Factorization for Traffic Analysis
Modern intelligent transportation systems rely on accurate spatiotemporal traffic analysis to optimize urban mobility and infrastructure resilience. However, pervasive missing data caused by sensor failures and heterogeneous sensing gaps fundamentally hinders reliable traffic modeling. This paper proposes a Neural Canonical Polyadic Factorization (NCPF) model that synergizes low-rank tensor algebra with deep representation learning for robust traffic data imputation. The model innovatively embeds CP decomposition into neural architecture through learnable embedding projections, where sparse traffic tensors are encoded into dense latent factors across road segments, time intervals, and mobility metrics. A hierarchical feature fusion mechanism employs Hadamard products to explicitly model multilinear interactions, while stacked multilayer perceptron layers nonlinearly refine these representations to capture complex spatiotemporal couplings. Extensive evaluations on six urban traffic datasets demonstrate NCPF's superiority over six state-of-the-art baselines. By unifying CP decomposition's interpretable factor analysis with neural network's nonlinear expressive power, NCPF provides a principled yet flexible approaches for high-dimensional traffic data imputation, offering critical support for next-generation transportation digital twins and adaptive traffic control systems.
♻ ☆ Efficient Online Reinforcement Learning for Diffusion Policy
Diffusion policies have achieved superior performance in imitation learning and offline reinforcement learning (RL) due to their rich expressiveness. However, the conventional diffusion training procedure requires samples from target distribution, which is impossible in online RL since we cannot sample from the optimal policy. Backpropagating policy gradient through the diffusion process incurs huge computational costs and instability, thus being expensive and not scalable. To enable efficient training of diffusion policies in online RL, we generalize the conventional denoising score matching by reweighting the loss function. The resulting Reweighted Score Matching (RSM) preserves the optimal solution and low computational cost of denoising score matching, while eliminating the need to sample from the target distribution and allowing learning to optimize value functions. We introduce two tractable reweighted loss functions to solve two commonly used policy optimization problems, policy mirror descent and max-entropy policy, resulting in two practical algorithms named Diffusion Policy Mirror Descent (DPMD) and Soft Diffusion Actor-Critic (SDAC). We conducted comprehensive comparisons on MuJoCo benchmarks. The empirical results show that the proposed algorithms outperform recent diffusion-policy online RLs on most tasks, and the DPMD improves more than 120% over soft actor-critic on Humanoid and Ant.
comment: 17 pages, 5 figures
♻ ☆ Understanding and Reducing the Class-Dependent Effects of Data Augmentation with A Two-Player Game Approach
Data augmentation is widely applied and has shown its benefits in different machine learning tasks. However, as recently observed, it may have an unfair effect in multi-class classification. While data augmentation generally improves the overall performance (and therefore is beneficial for many classes), it can actually be detrimental for other classes, which can be problematic in some application domains. In this paper, to counteract this phenomenon, we propose CLAM, a CLAss-dependent Multiplicative-weights method. To derive it, we first formulate the training of a classifier as a non-linear optimization problem that aims at simultaneously maximizing the individual class performances and balancing them. By rewriting this optimization problem as an adversarial two-player game, we propose a novel multiplicative weight algorithm, for which we prove the convergence. Interestingly, our formulation also reveals that the class-dependent effects of data augmentation is not due to data augmentation only, but is in fact a general phenomenon. Our empirical results over six datasets demonstrate that the performance of learned classifiers is indeed more fairly distributed over classes, with only limited impact on the average accuracy.
comment: Published in Transactions on Machine Learning Research (06/2025)
♻ ☆ Deep Unlearn: Benchmarking Machine Unlearning for Image Classification
Machine unlearning (MU) aims to remove the influence of particular data points from the learnable parameters of a trained machine learning model. This is a crucial capability in light of data privacy requirements, trustworthiness, and safety in deployed models. MU is particularly challenging for deep neural networks (DNNs), such as convolutional nets or vision transformers, as such DNNs tend to memorize a notable portion of their training dataset. Nevertheless, the community lacks a rigorous and multifaceted study that looks into the success of MU methods for DNNs. In this paper, we investigate 18 state-of-the-art MU methods across various benchmark datasets and models, with each evaluation conducted over 10 different initializations, a comprehensive evaluation involving MU over 100K models. We show that, with the proper hyperparameters, Masked Small Gradients (MSG) and Convolution Transpose (CT), consistently perform better in terms of model accuracy and run-time efficiency across different models, datasets, and initializations, assessed by population-based membership inference attacks (MIA) and per-sample unlearning likelihood ratio attacks (U-LiRA). Furthermore, our benchmark highlights the fact that comparing a MU method only with commonly used baselines, such as Gradient Ascent (GA) or Successive Random Relabeling (SRL), is inadequate, and we need better baselines like Negative Gradient Plus (NG+) with proper hyperparameter selection.
comment: Accepted at EuroS&P 2025
♻ ☆ FZOO: Fast Zeroth-Order Optimizer for Fine-Tuning Large Language Models towards Adam-Scale Speed
Fine-tuning large language models (LLMs) often faces GPU memory bottlenecks: the backward pass of first-order optimizers like Adam increases memory usage to more than 10 times the inference level (e.g., 633 GB for OPT-30B). Zeroth-order (ZO) optimizers avoid this cost by estimating gradients only from forward passes, yet existing methods like MeZO usually require many more steps to converge. Can this trade-off between speed and memory in ZO be fundamentally improved? Normalized-SGD demonstrates strong empirical performance with greater memory efficiency than Adam. In light of this, we introduce FZOO, a Fast Zeroth-Order Optimizer toward Adam-Scale Speed. FZOO reduces the total forward passes needed for convergence by employing batched one-sided estimates that adapt step sizes based on the standard deviation of batch losses. It also accelerates per-batch computation through the use of Rademacher random vector perturbations coupled with CUDA's parallel processing. Extensive experiments on diverse models, including RoBERTa-large, OPT (350M-66B), Phi-2, and Llama3, across 11 tasks validate FZOO's effectiveness. On average, FZOO outperforms MeZO by 3 percent in accuracy while requiring 3 times fewer forward passes. For RoBERTa-large, FZOO achieves average improvements of 5.6 percent in accuracy and an 18 times reduction in forward passes compared to MeZO, achieving convergence speeds comparable to Adam. We also provide theoretical analysis proving FZOO's formal equivalence to a normalized-SGD update rule and its convergence guarantees. FZOO integrates smoothly into PEFT techniques, enabling even larger memory savings. Overall, our results make single-GPU, high-speed, full-parameter fine-tuning practical and point toward future work on memory-efficient pre-training.
♻ ☆ CAM-NET: An AI Model for Whole Atmosphere with Thermosphere and Ionosphere Extension
We present Compressible Atmospheric Model-Network (CAM-NET), an AI model designed to predict neutral atmospheric variables from the Earth's surface to the ionosphere with high accuracy and computational efficiency. Accurate modeling of the entire atmosphere is critical for understanding the upward propagation of gravity waves, which influence upper-atmospheric dynamics and coupling across atmospheric layers. CAM-NET leverages the Spherical Fourier Neural Operator (SFNO) to capture global-scale atmospheric dynamics while preserving the Earth's spherical structure. Trained on a decade of datasets from the Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (WACCM-X), CAM-NET demonstrates accuracy comparable to WACCM-X while achieving a speedup of over 1000x in inference time, can provide one year simulation within a few minutes once trained. The model effectively predicts key atmospheric parameters, including zonal and meridional winds, temperature, and time rate of pressure. Inspired by traditional modeling approaches that use external couplers to simulate tracer transport, CAM-NET introduces a modular architecture that explicitly separates tracer prediction from core dynamics. The core backbone of CAM-NET focuses on forecasting primary physical variables (e.g., temperature, wind velocity), while tracer variables are predicted through a lightweight, fine-tuned model. This design allows for efficient adaptation to specific tracer scenarios with minimal computational cost, avoiding the need to retrain the entire model. We have validated this approach on the $O^2$ tracer, demonstrating strong performance and generalization capabilities.
♻ ☆ Time to Rethink AI for Combinatorial Optimization: Classical Algorithms Remain Tough to Match
This position paper argues that the machine learning community should fundamentally rethink how AI-inspired methods are developed and evaluated for combinatorial optimization (CO). We present comprehensive empirical benchmarks comparing various recent AI-inspired GPU-based methods with several classical CPU-based solvers on the Maximum Independent Set (MIS) problem. Strikingly, even on in-distribution random graphs, leading AI-inspired methods are consistently outperformed by the state-of-the-art classical solver KaMIS, and some AI-inspired methods frequently fail to surpass even the simplest degree-based greedy heuristic. To better understand the source of these failures, we introduce a novel analysis, serialization, which reveals that non-backtracking AI methods, such as LTFT (based on GFlowNets), end up reasoning similarly to the simplest degree-based greedy heuristic, and thus worse than KaMIS. Our findings reveal three core issues: (1) Limited benchmarks and evaluation - AI-inspired methods are often tested only on small instances with very limited inference time, which covers up issues with scalability and resource usage; (2) Intrinsic hardness and learning limits - even under ideal, in-distribution conditions, learning-based approaches lag behind classical heuristics, highlighting inherent barriers that receive little attention; and (3) Insufficient use and understanding of classical heuristics - current learning frameworks often neglect to incorporate effective classical techniques. Although we use MIS as a testbed, similar gaps and challenges have been reported in other combinatorial optimization problems, suggesting broader relevance for our recommendations. We propose that future research must address these issues by rigorous benchmarking, deepening understanding of learning limitations, and integrating classical heuristics into AI-inspired methods.
comment: 28 pages, 6 figures, 98 tables
♻ ☆ TabReason: A Reinforcement Learning-Enhanced Reasoning LLM for Explainable Tabular Data Prediction
Predictive modeling on tabular data is the cornerstone of many real-world applications. Although gradient boosting machines and some recent deep models achieve strong performance on tabular data, they often lack interpretability. On the other hand, large language models (LLMs) have demonstrated powerful capabilities to generate human-like reasoning and explanations, but remain under-performed for tabular data prediction. In this paper, we propose a new approach that leverages reasoning-based LLMs, trained using reinforcement learning, to perform more accurate and explainable predictions on tabular data. Our method introduces custom reward functions that guide the model not only toward better prediction accuracy but also toward human-understandable reasons for its predictions. The proposed method is evaluated on financial benchmark datasets and compared against established LLMs.
♻ ☆ Benefits of Early Stopping in Gradient Descent for Overparameterized Logistic Regression ICML 2025
In overparameterized logistic regression, gradient descent (GD) iterates diverge in norm while converging in direction to the maximum $\ell_2$-margin solution -- a phenomenon known as the implicit bias of GD. This work investigates additional regularization effects induced by early stopping in well-specified high-dimensional logistic regression. We first demonstrate that the excess logistic risk vanishes for early-stopped GD but diverges to infinity for GD iterates at convergence. This suggests that early-stopped GD is well-calibrated, whereas asymptotic GD is statistically inconsistent. Second, we show that to attain a small excess zero-one risk, polynomially many samples are sufficient for early-stopped GD, while exponentially many samples are necessary for any interpolating estimator, including asymptotic GD. This separation underscores the statistical benefits of early stopping in the overparameterized regime. Finally, we establish nonasymptotic bounds on the norm and angular differences between early-stopped GD and $\ell_2$-regularized empirical risk minimizer, thereby connecting the implicit regularization of GD with explicit $\ell_2$-regularization.
comment: ICML 2025 Camera Ready
♻ ☆ Bridge: A Unified Framework to Knowledge Graph Completion via Language Models and Knowledge Representation
Knowledge graph completion (KGC) is a task of inferring missing triples based on existing Knowledge Graphs (KGs). Both structural and semantic information are vital for successful KGC. However, existing methods only use either the structural knowledge from the KG embeddings or the semantic information from pre-trained language models (PLMs), leading to suboptimal model performance. Moreover, since PLMs are not trained on KGs, directly using PLMs to encode triples may be inappropriate. To overcome these limitations, we propose a novel framework called Bridge, which jointly encodes structural and semantic information of KGs. Specifically, we strategically encode entities and relations separately by PLMs to better utilize the semantic knowledge of PLMs and enable structured representation learning via a structural learning principle. Furthermore, to bridge the gap between KGs and PLMs, we employ a self-supervised representation learning method called BYOL to fine-tune PLMs with two different views of a triple. Unlike BYOL, which uses augmentation methods to create two semantically similar views of the same image, potentially altering the semantic information. We strategically separate the triple into two parts to create different views, thus avoiding semantic alteration. Experiments demonstrate that Bridge outperforms the SOTA models on three benchmark datasets.
♻ ☆ Learning Causally Predictable Outcomes from Psychiatric Longitudinal Data
Causal inference in longitudinal biomedical data remains a central challenge, especially in psychiatry, where symptom heterogeneity and latent confounding frequently undermine classical estimators. Most existing methods for treatment effect estimation presuppose a fixed outcome variable and address confounding through observed covariate adjustment. However, the assumption of unconfoundedness may not hold for a fixed outcome in practice. To address this foundational limitation, we directly optimize the outcome definition to maximize causal identifiability. Our DEBIAS (Durable Effects with Backdoor-Invariant Aggregated Symptoms) algorithm learns non-negative, clinically interpretable weights for outcome aggregation, maximizing durable treatment effects and empirically minimizing both observed and latent confounding by leveraging the time-limited direct effects of prior treatments in psychiatric longitudinal data. The algorithm also furnishes an empirically verifiable test for outcome unconfoundedness. DEBIAS consistently outperforms state-of-the-art methods in recovering causal effects for clinically interpretable composite outcomes across comprehensive experiments in depression and schizophrenia.
comment: R code is available at github.com/ericstrobl/DEBIAS
♻ ☆ NatureLM-audio: an Audio-Language Foundation Model for Bioacoustics
Large language models (LLMs) prompted with text and audio have achieved state-of-the-art performance across various auditory tasks, including speech, music, and general audio, showing emergent abilities on unseen tasks. However, their potential has yet to be fully demonstrated in bioacoustics tasks, such as detecting animal vocalizations in large recordings, classifying rare and endangered species, and labeling context and behavior -- tasks that are crucial for conservation, biodiversity monitoring, and animal behavior studies. In this work, we present NatureLM-audio, the first audio-language foundation model specifically designed for bioacoustics. Our training dataset consists of carefully curated text-audio pairs spanning bioacoustics, speech, and music, designed to address the field's limited availability of annotated data. We demonstrate successful transfer of learned representations from music and speech to bioacoustics, and our model shows promising generalization to unseen taxa and tasks. We evaluate NatureLM-audio on a novel benchmark (BEANS-Zero) and it sets a new state of the art on several bioacoustics tasks, including zero-shot classification of unseen species. To advance bioacoustics research, we release our model weights, benchmark data, and open-source the code for training and benchmark data generation and model training.
comment: Demo page: https://earthspecies.github.io/naturelm-audio-demo/
♻ ☆ Graph Fourier Neural ODEs: Modeling Spatial-temporal Multi-scales in Molecular Dynamics
Accurately predicting long-horizon molecular dynamics (MD) trajectories remains a significant challenge, as existing deep learning methods often struggle to retain fidelity over extended simulations. We hypothesize that one key factor limiting accuracy is the difficulty of capturing interactions that span distinct spatial and temporal scales, ranging from high-frequency local vibrations to low-frequency global conformational changes. To address these limitations, we propose Graph Fourier Neural ODEs (GF-NODE), integrating a graph Fourier transform for spatial frequency decomposition with a Neural ODE framework for continuous-time evolution. Specifically, GF-NODE first decomposes molecular configurations into multiple spatial frequency modes using the graph Laplacian, then evolves the frequency components in time via a learnable Neural ODE module that captures both local and global dynamics, and finally reconstructs the updated molecular geometry through an inverse graph Fourier transform. By explicitly modeling high- and low-frequency phenomena in this unified pipeline, GF-NODE captures long-range correlations and local fluctuations more effectively. We provide theoretical insight through heat equation analysis on a simplified diffusion model, demonstrating how graph Laplacian eigenvalues can determine temporal dynamics scales, and crucially validate this correspondence through comprehensive empirical analysis on real molecular dynamics trajectories showing quantitative spatial-temporal correlations across diverse molecular systems. Experimental results on challenging MD benchmarks demonstrate that GF-NODE achieves state-of-the-art accuracy while preserving essential geometrical features over extended simulations. These findings highlight the promise of bridging spectral decomposition with continuous-time modeling to improve the robustness and predictive power of MD simulations.
comment: Published in Transactions on Machine Learning Research (06/2025)
♻ ☆ CauSkelNet: Causal Representation Learning for Human Behaviour Analysis
Traditional machine learning methods for movement recognition often struggle with limited model interpretability and a lack of insight into human movement dynamics. This study introduces a novel representation learning framework based on causal inference to address these challenges. Our two-stage approach combines the Peter-Clark (PC) algorithm and Kullback-Leibler (KL) divergence to identify and quantify causal relationships between human joints. By capturing joint interactions, the proposed causal Graph Convolutional Network (GCN) produces interpretable and robust representations. Experimental results on the EmoPain dataset demonstrate that the causal GCN outperforms traditional GCNs in accuracy, F1 score, and recall, particularly in detecting protective behaviors. This work contributes to advancing human motion analysis and lays a foundation for adaptive and intelligent healthcare solutions.
♻ ☆ ETTA: Elucidating the Design Space of Text-to-Audio Models ICML 2025
Recent years have seen significant progress in Text-To-Audio (TTA) synthesis, enabling users to enrich their creative workflows with synthetic audio generated from natural language prompts. Despite this progress, the effects of data, model architecture, training objective functions, and sampling strategies on target benchmarks are not well understood. With the purpose of providing a holistic understanding of the design space of TTA models, we set up a large-scale empirical experiment focused on diffusion and flow matching models. Our contributions include: 1) AF-Synthetic, a large dataset of high quality synthetic captions obtained from an audio understanding model; 2) a systematic comparison of different architectural, training, and inference design choices for TTA models; 3) an analysis of sampling methods and their Pareto curves with respect to generation quality and inference speed. We leverage the knowledge obtained from this extensive analysis to propose our best model dubbed Elucidated Text-To-Audio (ETTA). When evaluated on AudioCaps and MusicCaps, ETTA provides improvements over the baselines trained on publicly available data, while being competitive with models trained on proprietary data. Finally, we show ETTA's improved ability to generate creative audio following complex and imaginative captions -- a task that is more challenging than current benchmarks.
comment: ICML 2025. Demo: https://research.nvidia.com/labs/adlr/ETTA/ Code: https://github.com/NVIDIA/elucidated-text-to-audio
♻ ☆ Stacked conformal prediction
We consider a method for conformalizing a stacked ensemble of predictive models, showing that the potentially simple form of the meta-learner at the top of the stack enables a procedure with manageable computational cost that achieves approximate marginal validity without requiring the use of a separate calibration sample. Empirical results indicate that the method compares favorably to a standard inductive alternative.
comment: 12 pages, 2 figures
♻ ☆ TabNSA: Native Sparse Attention for Efficient Tabular Data Learning
Tabular data poses unique challenges for deep learning due to its heterogeneous feature types, lack of spatial structure, and often limited sample sizes. We propose TabNSA, a novel deep learning framework that integrates Native Sparse Attention (NSA) with a TabMixer backbone to efficiently model tabular data. TabNSA tackles computational and representational challenges by dynamically focusing on relevant feature subsets per instance. The NSA module employs a hierarchical sparse attention mechanism, including token compression, selective preservation, and localized sliding windows, to significantly reduce the quadratic complexity of standard attention operations while addressing feature heterogeneity. Complementing this, the TabMixer backbone captures complex, non-linear dependencies through parallel multilayer perceptron (MLP) branches with independent parameters. These modules are synergistically combined via element-wise summation and mean pooling, enabling TabNSA to model both global context and fine-grained interactions. Extensive experiments across supervised and transfer learning settings show that TabNSA consistently outperforms state-of-the-art deep learning models. Furthermore, by augmenting TabNSA with a fine-tuned large language model (LLM), we enable it to effectively address Few-Shot Learning challenges through language-guided generalization on diverse tabular benchmarks.
comment: 26 pages, 11 tables
♻ ☆ Empirical and computer-aided robustness analysis of long-step and accelerated methods in smooth convex optimization
This work assesses both empirically and theoretically, using the performance estimation methodology, how robust different first-order optimization methods are when subject to relative inexactness in their gradient computations. Relative inexactness occurs, for example, when compressing the gradient using fewer bits of information, which happens when dealing with large-scale problems on GPUs. Three major families of methods are analyzed: constant step gradient descent, long-step methods, and accelerated methods. The latter two are first shown to be theoretically not robust to inexactness. Then, a semi-heuristic shortening factor is introduced to improve their theoretical guarantees. All methods are subsequently tested on a concrete inexact problem, with two different types of relative inexactness, and it is observed that both accelerated methods are much more robust than expected, and that the shortening factor significantly helps the long-step methods. In the end, all shortened methods appear to be promising, even in this inexact setting.
♻ ☆ Outlier Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity ICML 2024
Large Language Models (LLMs), renowned for their remarkable performance across diverse domains, present a challenge when it comes to practical deployment due to their colossal model size. In response to this challenge, efforts have been directed toward the application of traditional network pruning techniques to LLMs, uncovering a massive number of parameters that can be pruned in one-shot without hurting performance. Prevailing LLM pruning strategies have consistently adhered to the practice of uniformly pruning all layers at equivalent sparsity, resulting in robust performance. However, this observation stands in contrast to the prevailing trends observed in the field of vision models, where non-uniform layerwise sparsity typically yields stronger results. To understand the underlying reasons for this disparity, we conduct a comprehensive study and discover a strong correlation with the emergence of activation outliers in LLMs. Inspired by this finding, we introduce a novel LLM pruning methodology that incorporates a tailored set of non-uniform layerwise sparsity ratios, termed as Outlier Weighed Layerwise sparsity (OWL). The sparsity ratio of OWL is proportional to the outlier ratio observed within each layer, facilitating a more effective alignment between layerwise weight sparsity and outlier ratios. Our empirical evaluation, conducted across the LLaMA-V1 family and OPT, spanning various benchmarks, demonstrates the distinct advantages offered by OWL over previous methods. For instance, OWL exhibits a remarkable performance gain, surpassing the state-of-the-art Wanda and SparseGPT by 61.22 and 6.80 perplexity at a high sparsity level of 70%, respectively, while delivering 2.6x end-to-end inference speed-up in the DeepSparse inference engine. Codes are available at https://github.com/luuyin/OWL.
comment: Published at ICML 2024
♻ ☆ The Automated LLM Speedrunning Benchmark: Reproducing NanoGPT Improvements
Rapid advancements in large language models (LLMs) have the potential to assist in scientific progress. A critical capability toward this endeavor is the ability to reproduce existing work. To evaluate the ability of AI agents to reproduce results in an active research area, we introduce the Automated LLM Speedrunning Benchmark, leveraging the research community contributions on the NanoGPT speedrun, a competition to train a GPT-2 model in the shortest time. Each of the 19 speedrun tasks provides the agent with the previous records training script, optionally paired with one of three hint formats, ranging from pseudocode to paper-like descriptions of the new records improvements. Records execute quickly by design and speedrun improvements encompass diverse code-level changes, ranging from high-level algorithmic advancements to hardware-aware optimizations. These features make the benchmark both accessible and realistic for the frontier problem of improving LLM training. We find that recent reasoning LLMs combined with SoTA scaffolds struggle to reimplement already-known innovations in our benchmark, even when given detailed hints. Our benchmark thus provides a simple, non-saturated measure of an LLMs ability to automate scientific reproduction, a necessary (but not sufficient) skill for an autonomous research agent.
♻ ☆ Making a Pipeline Production-Ready: Challenges and Lessons Learned in the Healthcare Domain
Deploying a Machine Learning (ML) training pipeline into production requires good software engineering practices. Unfortunately, the typical data science workflow often leads to code that lacks critical software quality attributes. This experience report investigates this problem in SPIRA, a project whose goal is to create an ML-Enabled System (MLES) to pre-diagnose insufficiency respiratory via speech analysis. This paper presents an overview of the architecture of the MLES, then compares three versions of its Continuous Training subsystem: from a proof of concept Big Ball of Mud (v1), to a design pattern-based Modular Monolith (v2), to a test-driven set of Microservices (v3) Each version improved its overall extensibility, maintainability, robustness, and resiliency. The paper shares challenges and lessons learned in this process, offering insights for researchers and practitioners seeking to productionize their pipelines.
comment: 8 pages, 3 figures (2 diagrams, 2 code listings), accepted to the workshop SADIS 2025
♻ ☆ Bregman Centroid Guided Cross-Entropy Method
The Cross-Entropy Method (CEM) is a widely adopted trajectory optimizer in model-based reinforcement learning (MBRL), but its unimodal sampling strategy often leads to premature convergence in multimodal landscapes. In this work, we propose Bregman Centroid Guided CEM ($\mathcal{BC}$-EvoCEM), a lightweight enhancement to ensemble CEM that leverages $\textit{Bregman centroids}$ for principled information aggregation and diversity control. $\textbf{$\mathcal{BC}$-EvoCEM}$ computes a performance-weighted Bregman centroid across CEM workers and updates the least contributing ones by sampling within a trust region around the centroid. Leveraging the duality between Bregman divergences and exponential family distributions, we show that $\textbf{$\mathcal{BC}$-EvoCEM}$ integrates seamlessly into standard CEM pipelines with negligible overhead. Empirical results on synthetic benchmarks, a cluttered navigation task, and full MBRL pipelines demonstrate that $\textbf{$\mathcal{BC}$-EvoCEM}$ enhances both convergence and solution quality, providing a simple yet effective upgrade for CEM.
♻ ☆ Llama-Nemotron: Efficient Reasoning Models
We introduce the Llama-Nemotron series of models, an open family of heterogeneous reasoning models that deliver exceptional reasoning capabilities, inference efficiency, and an open license for enterprise use. The family comes in three sizes -- Nano (8B), Super (49B), and Ultra (253B) -- and performs competitively with state-of-the-art reasoning models such as DeepSeek-R1 while offering superior inference throughput and memory efficiency. In this report, we discuss the training procedure for these models, which entails using neural architecture search from Llama 3 models for accelerated inference, knowledge distillation, and continued pretraining, followed by a reasoning-focused post-training stage consisting of two main parts: supervised fine-tuning and large scale reinforcement learning. Llama-Nemotron models are the first open-source models to support a dynamic reasoning toggle, allowing users to switch between standard chat and reasoning modes during inference. To further support open research and facilitate model development, we provide the following resources: 1. We release the Llama-Nemotron reasoning models -- LN-Nano, LN-Super, and LN-Ultra -- under the commercially permissive NVIDIA Open Model License Agreement. 2. We release the complete post-training dataset: Llama-Nemotron-Post-Training-Dataset. 3. We also release our training codebases: NeMo, NeMo-Aligner, and Megatron-LM.
♻ ☆ Generative Modeling of Full-Atom Protein Conformations using Latent Diffusion on Graph Embeddings NeurIPS 2025
Generating diverse, all-atom conformational ensembles of dynamic proteins such as G-protein-coupled receptors (GPCRs) is critical for understanding their function, yet most generative models simplify atomic detail or ignore conformational diversity altogether. We present latent diffusion for full protein generation (LD-FPG), a framework that constructs complete all-atom protein structures, including every side-chain heavy atom, directly from molecular dynamics (MD) trajectories. LD-FPG employs a Chebyshev graph neural network (ChebNet) to obtain low-dimensional latent embeddings of protein conformations, which are processed using three pooling strategies: blind, sequential and residue-based. A diffusion model trained on these latent representations generates new samples that a decoder, optionally regularized by dihedral-angle losses, maps back to Cartesian coordinates. Using D2R-MD, a 2-microsecond MD trajectory (12 000 frames) of the human dopamine D2 receptor in a membrane environment, the sequential and residue-based pooling strategy reproduces the reference ensemble with high structural fidelity (all-atom lDDT of approximately 0.7; C-alpha-lDDT of approximately 0.8) and recovers backbone and side-chain dihedral-angle distributions with a Jensen-Shannon divergence of less than 0.03 compared to the MD data. LD-FPG thereby offers a practical route to system-specific, all-atom ensemble generation for large proteins, providing a promising tool for structure-based therapeutic design on complex, dynamic targets. The D2R-MD dataset and our implementation are freely available to facilitate further research.
comment: 10 pages (main text), 4 figures, 2 tables. Submitted to NeurIPS 2025. Code and data are publicly available
♻ ☆ Scaling Inference-Time Search with Vision Value Model for Improved Visual Comprehension
Despite significant advancements in vision-language models (VLMs), there lacks effective approaches to enhance response quality by scaling inference-time computation. This capability is known to be a core step towards the self-improving models in recent large language model studies. In this paper, we present Vision Value Model (VisVM) that can guide VLM inference-time search to generate responses with better visual comprehension. Specifically, VisVM not only evaluates the generated sentence quality in the current search step, but also anticipates the quality of subsequent sentences that may result from the current step, thus providing a long-term value. In this way, VisVM steers VLMs away from generating sentences prone to hallucinations or insufficient detail, thereby producing higher quality responses. Experimental results demonstrate that VisVM-guided search significantly enhances VLMs' ability to generate descriptive captions with richer visual details and fewer hallucinations, compared with greedy decoding and search methods with other visual reward signals. Furthermore, we find that self-training the model with the VisVM-guided captions improve VLM's performance across a wide range of multimodal benchmarks, indicating the potential for developing self-improving VLMs. Our value model and code are available at https://github.com/si0wang/VisVM.
♻ ☆ An Unconditional Representation of the Conditional Score in Infinite-Dimensional Linear Inverse Problems
Score-based diffusion models (SDMs) have emerged as a powerful tool for sampling from the posterior distribution in Bayesian inverse problems. However, existing methods often require multiple evaluations of the forward mapping to generate a single sample, resulting in significant computational costs for large-scale inverse problems. To address this, we propose an unconditional representation of the conditional score-function (UCoS) tailored to linear inverse problems, which avoids forward model evaluations during sampling by shifting computational effort to an offline training phase. In this phase, a task-dependent score function is learned based on the linear forward operator. Crucially, we show that the conditional score can be derived exactly from a trained (unconditional) score using affine transformations, eliminating the need for conditional score approximations. Our approach is formulated in infinite-dimensional function spaces, making it inherently discretization-invariant. We support this formulation with a rigorous convergence analysis that justifies UCoS beyond any specific discretization. Finally we validate UCoS through high-dimensional computed tomography (CT) and image deblurring experiments, demonstrating both scalability and accuracy.
comment: Title changed, main text substantially revised, including new experiments, method acronym changed, references added. 34 pages, 11 figures, 2tables
♻ ☆ Causal Machine Learning in IoT-based Engineering Problems: A Tool Comparison in the Case of Household Energy Consumption
The rapid increase in computing power and the ability to store Big Data in the infrastructure has enabled predictions in a large variety of domains by Machine Learning. However, in many cases, existing Machine Learning tools are considered insufficient or incorrect since they exploit only probabilistic dependencies rather than inference logic. Causal Machine Learning methods seem to close this gap. In this paper, two prevalent tools based on Causal Machine Learning methods are compared, as well as their mathematical underpinning background. The operation of the tools is demonstrated by examining their response to 18 queries, based on the IDEAL Household Energy Dataset, published by the University of Edinburgh. First, it was important to evaluate the causal relations assumption that allowed the use of this approach; this was based on the preexisting scientific knowledge of the domain and was implemented by use of the in-built validation tools. Results were encouraging and may easily be extended to other domains.
♻ ☆ A Graph-Based Classical and Quantum Approach to Deterministic L-System Inference
L-systems can be made to model and create simulations of many biological processes, such as plant development. Finding an L-system for a given process is typically solved by hand, by experts, in a massively time-consuming process. It would be significant if this could be done automatically from data, such as from sequences of images. In this paper, we are interested in inferring a particular type of L-system, deterministic context-free L-system (D0L-system) from a sequence of strings. We introduce the characteristic graph of a sequence of strings, which we then utilize to translate our problem (inferring D0L-systems) in polynomial time into the maximum independent set problem (MIS) and the SAT problem. After that, we offer a classical exact algorithm and an approximate quantum algorithm for the problem.
comment: 17 pages, 1 figure
♻ ☆ Soft Dice Confidence: A Near-Optimal Confidence Estimator for Selective Prediction in Semantic Segmentation
Selective prediction augments a model with the option to abstain from providing unreliable predictions. The key ingredient is a confidence score function, which should be directly related to the conditional risk. In the case of binary semantic segmentation, existing score functions either ignore the particularities of the evaluation metric or demand additional held-out data for tuning. We propose the Soft Dice Confidence (SDC), a simple, tuning-free confidence score function that directly aligns with the Dice coefficient metric. We prove that, under conditional independence, the SDC is near optimal: we establish upper and lower bounds on the ratio between the SDC and the ideal (intractable) confidence score function and show that these bounds are very close to 1. Experiments on six public medical-imaging benchmarks and on synthetic data corroborate our theoretical findings. In fact, SDC outperformed all prior confidence estimators from the literature in all of our experiments, including those that rely on additional data. These results position SDC as a reliable and efficient confidence estimator for selective prediction in semantic segmentation.
comment: 42 pages, 9 figures
♻ ☆ Avoid Forgetting by Preserving Global Knowledge Gradients in Federated Learning with Non-IID Data
The inevitable presence of data heterogeneity has made federated learning very challenging. There are numerous methods to deal with this issue, such as local regularization, better model fusion techniques, and data sharing. Though effective, they lack a deep understanding of how data heterogeneity can affect the global decision boundary. In this paper, we bridge this gap by performing an experimental analysis of the learned decision boundary using a toy example. Our observations are surprising: (1) we find that the existing methods suffer from forgetting and clients forget the global decision boundary and only learn the perfect local one, and (2) this happens regardless of the initial weights, and clients forget the global decision boundary even starting from pre-trained optimal weights. In this paper, we present FedProj, a federated learning framework that robustly learns the global decision boundary and avoids its forgetting during local training. To achieve better ensemble knowledge fusion, we design a novel server-side ensemble knowledge transfer loss to further calibrate the learned global decision boundary. To alleviate the issue of learned global decision boundary forgetting, we further propose leveraging an episodic memory of average ensemble logits on a public unlabeled dataset to regulate the gradient updates at each step of local training. Experimental results demonstrate that FedProj outperforms state-of-the-art methods by a large margin.
♻ ☆ Storing overlapping associative memories on latent manifolds in low-rank spiking networks NeurIPS 2024
Associative memory architectures such as the Hopfield network have long been important conceptual and theoretical models for neuroscience and artificial intelligence. However, translating these abstract models into spiking neural networks has been surprisingly difficult. Indeed, much previous work has been restricted to storing a small number of primarily non-overlapping memories in large networks, thereby limiting their scalability. Here, we revisit the associative memory problem in light of recent advances in understanding spike-based computation. Using a recently-established geometric framework, we show that the spiking activity for a large class of all-inhibitory networks is situated on a low-dimensional, convex, and piecewise-linear manifold, with dynamics that move along the manifold. We then map the associative memory problem onto these dynamics, and demonstrate how the vertices of a hypercubic manifold can be used to store stable, overlapping activity patterns with a direct correspondence to the original Hopfield model. We propose several learning rules, and demonstrate a linear scaling of the storage capacity with the number of neurons, as well as robust pattern completion abilities. Overall, this work serves as a case study to demonstrate the effectiveness of using a geometrical perspective to design dynamics on neural manifolds, with implications for neuroscience and machine learning.
comment: 17 pages, 5 figures; accepted to NeurIPS 2024 Workshop on Symmetry and Geometry in Neural Representations (NeurReps 2024)
♻ ☆ Identifying Systems with Symmetries using Equivariant Autoregressive Reservoir Computers
The investigation reported in this document focuses on identifying systems with symmetries using equivariant autoregressive reservoir computers. General results in structured matrix approximation theory are presented, exploring a two-fold approach. Firstly, a comprehensive examination of generic symmetry-preserving nonlinear time delay embedding is conducted. This involves analyzing time series data sampled from an equivariant system under study. Secondly, sparse least-squares methods are applied to discern approximate representations of the output coupling matrices. These matrices play a critical role in determining the nonlinear autoregressive representation of an equivariant system. The structural characteristics of these matrices are dictated by the set of symmetries inherent in the system. The document outlines prototypical algorithms derived from the described techniques, offering insight into their practical applications. Emphasis is placed on the significant improvement on structured identification precision when compared to classical reservoir computing methods for the simulation of equivariant dynamical systems.
comment: The views expressed in the article do not necessarily represent the views of the National Commission of Banks and Insurance Companies of Honduras
♻ ☆ Identifying the Truth of Global Model: A Generic Solution to Defend Against Byzantine and Backdoor Attacks in Federated Learning (full version)
Federated Learning (FL) enables multiple parties to train machine learning models collaboratively without sharing the raw training data. However, the federated nature of FL enables malicious clients to influence a trained model by injecting error model updates via Byzantine or backdoor attacks. To detect malicious model updates, a typical approach is to measure the distance between each model update and a \textit{ground-truth model update}. To find such \textit{ground-truth model updates}, existing defenses either require a benign root dataset on the server (e.g., FLTrust) or simply use trimmed mean or median as the threshold for clipping (e.g., FLAME). However, such benign root datasets are impractical, and the trimmed mean or median may also eliminate contributions from these underrepresented datasets. In this paper, we propose a generic solution, namely FedTruth, to defend against model poisoning attacks in FL, where the \textit{ground-truth model update} (i.e., the global model update) will be estimated among all the model updates with dynamic aggregation weights. Specifically, FedTruth does not have specific assumptions on the benign or malicious data distribution or access to a benign root dataset. Moreover, FedTruth considers the potential contributions from all benign clients. Our empirical results show that FedTruth can reduce the impacts of poisoned model updates against both Byzantine and backdoor attacks, and is also efficient in large-scale FL systems.
comment: Accepted to ACISP 2025. This is the full version
♻ ☆ Intelligent Routing for Sparse Demand Forecasting: A Comparative Evaluation of Selection Strategies
Sparse and intermittent demand forecasting in supply chains presents a critical challenge, as frequent zero-demand periods hinder traditional model accuracy and impact inventory management. We propose and evaluate a Model-Router framework that dynamically selects the most suitable forecasting model-spanning classical, ML, and DL methods for each product based on its unique demand pattern. By comparing rule-based, LightGBM, and InceptionTime routers, our approach learns to assign appropriate forecasting strategies, effectively differentiating between smooth, lumpy, or intermittent demand regimes to optimize predictions. Experiments on the large-scale Favorita dataset show our deep learning (Inception Time) router improves forecasting accuracy by up to 11.8% (NWRMSLE) over strong, single-model benchmarks with 4.67x faster inference time. Ultimately, these gains in forecasting precision will drive substantial reductions in both stockouts and wasteful excess inventory, underscoring the critical role of intelligent, adaptive Al in optimizing contemporary supply chain operations.
comment: 8 pages, 4 figures, conference
♻ ☆ RocketKV: Accelerating Long-Context LLM Inference via Two-Stage KV Cache Compression ICML 2025
Transformer-based Large Language Models rely critically on the KV cache to efficiently handle extended contexts during the decode phase. Yet, the size of the KV cache grows proportionally with the input length, burdening both memory bandwidth and capacity as decoding progresses. To address this challenge, we present RocketKV, a training-free KV cache compression strategy containing two consecutive stages. In the first stage, it performs coarse-grain permanent KV cache eviction on the input sequence tokens. In the second stage, it adopts a hybrid sparse attention method to conduct fine-grain top-k sparse attention, approximating the attention scores by leveraging both head and sequence dimensionality reductions. We show that RocketKV provides a compression ratio of up to 400$\times$, end-to-end speedup of up to 3.7$\times$ as well as peak memory reduction of up to 32.6% in the decode phase on an NVIDIA A100 GPU compared to the full KV cache baseline, while achieving negligible accuracy loss on a variety of long-context tasks. We also propose a variant of RocketKV for multi-turn scenarios, which consistently outperforms other existing methods and achieves accuracy nearly on par with an oracle top-k attention scheme.
comment: ICML 2025
♻ ☆ RLCAD: Reinforcement Learning Training Gym for Revolution Involved CAD Command Sequence Generation
A CAD command sequence is a typical parametric design paradigm in 3D CAD systems where a model is constructed by overlaying 2D sketches with operations such as extrusion, revolution, and Boolean operations. Although there is growing academic interest in the automatic generation of command sequences, existing methods and datasets only support operations such as 2D sketching, extrusion,and Boolean operations. This limitation makes it challenging to represent more complex geometries. In this paper, we present a reinforcement learning (RL) training environment (gym) built on a CAD geometric engine. Given an input boundary representation (B-Rep) geometry, the policy network in the RL algorithm generates an action. This action, along with previously generated actions, is processed within the gym to produce the corresponding CAD geometry, which is then fed back into the policy network. The rewards, determined by the difference between the generated and target geometries within the gym, are used to update the RL network. Our method supports operations beyond sketches, Boolean, and extrusion, including revolution operations. With this training gym, we achieve state-of-the-art (SOTA) quality in generating command sequences from B-Rep geometries.
♻ ☆ Generative Intervention Models for Causal Perturbation Modeling
We consider the problem of predicting perturbation effects via causal models. In many applications, it is a priori unknown which mechanisms of a system are modified by an external perturbation, even though the features of the perturbation are available. For example, in genomics, some properties of a drug may be known, but not their causal effects on the regulatory pathways of cells. We propose a generative intervention model (GIM) that learns to map these perturbation features to distributions over atomic interventions in a jointly-estimated causal model. Contrary to prior approaches, this enables us to predict the distribution shifts of unseen perturbation features while gaining insights about their mechanistic effects in the underlying data-generating process. On synthetic data and scRNA-seq drug perturbation data, GIMs achieve robust out-of-distribution predictions on par with unstructured approaches, while effectively inferring the underlying perturbation mechanisms, often better than other causal inference methods.
♻ ☆ Robust Representation Consistency Model via Contrastive Denoising
Robustness is essential for deep neural networks, especially in security-sensitive applications. To this end, randomized smoothing provides theoretical guarantees for certifying robustness against adversarial perturbations. Recently, diffusion models have been successfully employed for randomized smoothing to purify noise-perturbed samples before making predictions with a standard classifier. While these methods excel at small perturbation radii, they struggle with larger perturbations and incur a significant computational overhead during inference compared to classical methods. To address this, we reformulate the generative modeling task along the diffusion trajectories in pixel space as a discriminative task in the latent space. Specifically, we use instance discrimination to achieve consistent representations along the trajectories by aligning temporally adjacent points. After fine-tuning based on the learned representations, our model enables implicit denoising-then-classification via a single prediction, substantially reducing inference costs. We conduct extensive experiments on various datasets and achieve state-of-the-art performance with minimal computation budget during inference. For example, our method outperforms the certified accuracy of diffusion-based methods on ImageNet across all perturbation radii by 5.3% on average, with up to 11.6% at larger radii, while reducing inference costs by 85$\times$ on average. Codes are available at: https://github.com/jiachenlei/rRCM.
Genomics 1
☆ CoMMiT: Co-informed inference of microbiome-metabolome interactions via transfer learning
Recent multi-omic microbiome studies enable integrative analysis of microbes and metabolites, uncovering their associations with various host conditions. Such analyses require multivariate models capable of accounting for the complex correlation structures between microbes and metabolites. However, existing multivariate models often suffer from low statistical power for detecting microbiome-metabolome interactions due to small sample sizes and weak biological signals. To address these challenges, we introduce CoMMiT, Co-informed inference of Microbiome-Metabolome Interactions via novel Transfer learning models. Unlike conventional transfer-learning methods that borrow information from external datasets, CoMMiT leverages similarities across metabolites within a single cohort, reducing the risk of negative transfer often caused by differences in sequencing platforms and bioinformatic pipelines across studies. CoMMiT operates under the flexible assumption that auxiliary metabolites are collectively informative for the target metabolite, without requiring individual auxiliary metabolites to be informative. CoMMiT uses a novel data-driven approach to selecting the optimal set of auxiliary metabolites. Using this optimal set, CoMMiT employs a de-biasing framework to enable efficient calculation of p-values, facilitating the identification of statistically significant microbiome-metabolome interactions. Applying CoMMiT to a feeding study reveals biologically meaningful microbiome-metabolome interactions under a low glycemic load diet, demonstrating the diet-host link through gut metabolism.
comment: 38 pages, 5 figures
Quantitative Methods 6
☆ Emerging AI Approaches for Cancer Spatial Omics
Technological breakthroughs in spatial omics and artificial intelligence (AI) have the potential to transform the understanding of cancer cells and the tumor microenvironment. Here we review the role of AI in spatial omics, discussing the current state-of-the-art and further needs to decipher cancer biology from large-scale spatial tissue data. An overarching challenge is the development of interpretable spatial AI models, an activity which demands not only improved data integration, but also new conceptual frameworks. We discuss emerging paradigms, in particular data-driven spatial AI, constraint-based spatial AI, and mechanistic spatial modeling, as well as the importance of integrating AI with hypothesis-driven strategies and model systems to realize the value of cancer spatial information.
comment: 25 pages, 1 figure
☆ Nanoplasmonic Optical Fiber Sensing of SARS-CoV-2 Nucleocapsid Protein Using an Aptamer-DNA Tetrahedron Interface
Optical fiber sensing carries a number of potential advantages for diagnostics and biomarker detection and monitoring, yet particular challenges persist in linking molecular recognition events to a change in the refractive index. DNA aptamers carry particular advantages as functional surface molecules on optical fibers to tailor detection of specific biomolecules, yet challenges persist around sensitivity and specificity. Diagnosis of COVID-19 through detection of nucleocapsid protein (N protein) of SARS-CoV-2 provides a classic diagnostic challenge where optical fiber-based sensing could complement and improve on typical detection methods such as RT-PCR and rapid antigen testing. In this study, a plasmonic gold-coated tilted fiber Bragg grating (TFBG)-based optical biosensing platform was developed for ultrasensitive detection of SARS-CoV-2 N protein. By functionalizing the optical fiber surface with aptamers for the molecular recognition of N protein, changes in refractive index measured biomolecular binding, thereby achieving real-time, label-free detection. Additionally, integrating DNA nanostructures such as the DNA tetrahedron with aptamers significantly enhanced detection sensitivity, increasing signal intensity ~2.5 times compared to aptamers alone. This study provides new insights into the development of high-performance optical fiber sensing platforms which integrate DNA nanostructure interfaces to facilitate biomarker recognition and sensing.
♻ ☆ ChemMiner: A Large Language Model Agent System for Chemical Literature Data Mining
The development of AI-assisted chemical synthesis tools requires comprehensive datasets covering diverse reaction types, yet current high-throughput experimental (HTE) approaches are expensive and limited in scope. Chemical literature represents a vast, underexplored data source containing thousands of reactions published annually. However, extracting reaction information from literature faces significant challenges including varied writing styles, complex coreference relationships, and multimodal information presentation. This paper proposes ChemMiner, a novel end-to-end framework leveraging multiple agents powered by large language models (LLMs) to extract high-fidelity chemical data from literature. ChemMiner incorporates three specialized agents: a text analysis agent for coreference mapping, a multimodal agent for non-textual information extraction, and a synthesis analysis agent for data generation. Furthermore, we developed a comprehensive benchmark with expert-annotated chemical literature to evaluate both extraction efficiency and precision. Experimental results demonstrate reaction identification rates comparable to human chemists while significantly reducing processing time, with high accuracy, recall, and F1 scores. Our open-sourced benchmark facilitates future research in chemical literature data mining.
♻ ☆ Learning Causally Predictable Outcomes from Psychiatric Longitudinal Data
Causal inference in longitudinal biomedical data remains a central challenge, especially in psychiatry, where symptom heterogeneity and latent confounding frequently undermine classical estimators. Most existing methods for treatment effect estimation presuppose a fixed outcome variable and address confounding through observed covariate adjustment. However, the assumption of unconfoundedness may not hold for a fixed outcome in practice. To address this foundational limitation, we directly optimize the outcome definition to maximize causal identifiability. Our DEBIAS (Durable Effects with Backdoor-Invariant Aggregated Symptoms) algorithm learns non-negative, clinically interpretable weights for outcome aggregation, maximizing durable treatment effects and empirically minimizing both observed and latent confounding by leveraging the time-limited direct effects of prior treatments in psychiatric longitudinal data. The algorithm also furnishes an empirically verifiable test for outcome unconfoundedness. DEBIAS consistently outperforms state-of-the-art methods in recovering causal effects for clinically interpretable composite outcomes across comprehensive experiments in depression and schizophrenia.
comment: R code is available at github.com/ericstrobl/DEBIAS
♻ ☆ Graph Fourier Neural ODEs: Modeling Spatial-temporal Multi-scales in Molecular Dynamics
Accurately predicting long-horizon molecular dynamics (MD) trajectories remains a significant challenge, as existing deep learning methods often struggle to retain fidelity over extended simulations. We hypothesize that one key factor limiting accuracy is the difficulty of capturing interactions that span distinct spatial and temporal scales, ranging from high-frequency local vibrations to low-frequency global conformational changes. To address these limitations, we propose Graph Fourier Neural ODEs (GF-NODE), integrating a graph Fourier transform for spatial frequency decomposition with a Neural ODE framework for continuous-time evolution. Specifically, GF-NODE first decomposes molecular configurations into multiple spatial frequency modes using the graph Laplacian, then evolves the frequency components in time via a learnable Neural ODE module that captures both local and global dynamics, and finally reconstructs the updated molecular geometry through an inverse graph Fourier transform. By explicitly modeling high- and low-frequency phenomena in this unified pipeline, GF-NODE captures long-range correlations and local fluctuations more effectively. We provide theoretical insight through heat equation analysis on a simplified diffusion model, demonstrating how graph Laplacian eigenvalues can determine temporal dynamics scales, and crucially validate this correspondence through comprehensive empirical analysis on real molecular dynamics trajectories showing quantitative spatial-temporal correlations across diverse molecular systems. Experimental results on challenging MD benchmarks demonstrate that GF-NODE achieves state-of-the-art accuracy while preserving essential geometrical features over extended simulations. These findings highlight the promise of bridging spectral decomposition with continuous-time modeling to improve the robustness and predictive power of MD simulations.
comment: Published in Transactions on Machine Learning Research (06/2025)
♻ ☆ Inherited or produced? Inferring protein production kinetics when protein counts are shaped by a cell's division history
Inferring protein production kinetics for dividing cells is complicated protein inheritance from the mother cell. For instance, fluorescence measurements -- commonly used to assess gene activation -- may reflect not only newly produced proteins but also those inherited through successive cell divisions. In such cases, observed protein levels in any given cell are shaped by its division history. As a case study, we examine activation of the glc3 gene in yeast involved in glycogen synthesis and expressed under nutrient-limiting conditions. We monitor this activity using snapshot fluorescence measurements via flow cytometry, where GFP expression reflects glc3 promoter activity. A na\"ive analysis of flow cytometry data ignoring cell division suggests many cells are active with low expression. Explicitly accounting for the (non-Markovian) effects of cell division and protein inheritance makes it impossible to write down a tractable likelihood -- a key ingredient in physics-inspired inference, defining the probability of observing data given a model. The dependence on a cell's division history breaks the assumptions of standard (Markovian) master equations, rendering traditional likelihood-based approaches inapplicable. Instead, we adapt conditional normalizing flows (a class of neural network models designed to learn probability distributions) to approximate otherwise intractable likelihoods from simulated data. In doing so, we find that glc3 is mostly inactive under stress, showing that while cells occasionally activate the gene, expression is brief and transient.
Cell Behavior 2
♻ ☆ Three-dimensional chiral active Ornstein-Uhlenbeck model for helical motion of microorganisms
Active movement is essential for the survival of microorganisms like bacteria, algae and unicellular parasites. In three dimensions, both swimming and gliding microorganisms often exhibit helical trajectories. One such case are malaria parasites gliding through 3D hydrogels, for which we find that their internal correlation time is similar to the time taken for one helical turn. Motivated by this experimental finding, here we theoretically analyze the case of finite internal correlation time for microorganisms with helical trajectories as chiral active particles with an Ornstein-Uhlenbeck process for torque. We present an analytical solution which is in very good agreement with computer simulations. We then show that for this type of internal noise, chirality and rotation increase the persistence of motion and results in helical trajectories that have a larger long-time mean squared displacement than straight trajectories at the same propulsion speed. Finally we provide experimental evidence for this prediction for the case of the malaria parasites.
comment: Revtex, 8 pages, 6 figures, supplemental, movies not included
♻ ☆ Robust assessment of asymmetric division in colon cancer cells
Asymmetric partition of fate determinants during cell division is a hallmark of cell differentiation. Recent work suggested that such a mechanism is hijacked by cancer cells to increase both their phenotypic heterogeneity and plasticity and in turn their fitness. To quantify fluctuations in the partitioning of cellular elements, imaging-based approaches are used, whose accuracy is limited by the difficulty of detecting cell divisions. Our work addresses this gap proposing a general method based on high-throughput flow cytometry measurements coupled with a theoretical framework. We applied our method to a panel of both normal and cancerous human colon cells, showing that different kinds of colon adenocarcinoma cells display very distinct extents of fluctuations in their cytoplasm partition, explained by an asymmetric division of their size. To test the accuracy of our population-level protocol, we directly measure the inherited fractions of cellular elements from extensive time-lapses of live-cell laser scanning microscopy, finding excellent agreement across the cell types. Ultimately, our flow cytometry-based method promises to be accurate and easily applicable to a wide range of biological systems where the quantification of partition fluctuations would help accounting for the observed phenotypic heterogeneity and plasticity
comment: 13 pages, 4 figures
Computation and Language 32
☆ Pipelined Decoder for Efficient Context-Aware Text Generation
As the basis of generative AI, an autoregressive model requires the generation of a new token depending on all the previously generated tokens, which brings high quality but also restricts the model to generate tokens one by one, forming a bottleneck limiting the generation speed. In this paper, we propose a new decoder architecture that efficiently generates text in parallel for context-aware generation tasks. Our proposed pipelined decoder initiates the generation of multiple subsequences simultaneously, and, at each time-step, it generates a new token for each subsequence to realize parallelism. Experiments on multiple text generation tasks, including question answering, text summarization, and keyphrase generation, show that our pipelined decoder significantly improves the generation speed without a significant loss of generation quality or additional memory consumption.
☆ TuCo: Measuring the Contribution of Fine-Tuning to Individual Responses of LLMs ICML 2025
Past work has studied the effects of fine-tuning on large language models' (LLMs) overall performance on certain tasks. However, a quantitative and systematic method for analyzing its effect on individual outputs is still lacking. Here, we propose a new method for measuring the contribution that fine-tuning makes to individual LLM responses, assuming access to the original pre-trained model. Our method tracks the model's intermediate hidden states, providing a more fine-grained insight into the effects of fine-tuning than a simple comparison of final outputs from pre-trained and fine-tuned models. We introduce and theoretically analyze an exact decomposition of any fine-tuned LLM into a pre-training component and a fine-tuning component. Empirically, we find that model behavior and performance can be steered by up- or down-scaling the fine-tuning component during the forward pass. Motivated by this finding and our theoretical analysis, we define the Tuning Contribution (TuCo) as the ratio of the magnitudes of the fine-tuning component to the pre-training component. We observe that three prominent adversarial attacks on LLMs circumvent safety measures in a way that reduces TuCo, and that TuCo is consistently lower on prompts where these attacks succeed compared to those where they do not. This suggests that attenuating the effect of fine-tuning on model outputs plays a role in the success of such attacks. In summary, TuCo enables the quantitative study of how fine-tuning influences model behavior and safety, and vice versa.
comment: ICML 2025
Datasets for Fairness in Language Models: An In-Depth Survey
Fairness benchmarks play a central role in shaping how we evaluate language models, yet surprisingly little attention has been given to examining the datasets that these benchmarks rely on. This survey addresses that gap by presenting a broad and careful review of the most widely used fairness datasets in current language model research, characterizing them along several key dimensions including their origin, scope, content, and intended use to help researchers better appreciate the assumptions and limitations embedded in these resources. To support more meaningful comparisons and analyses, we introduce a unified evaluation framework that reveals consistent patterns of demographic disparities across datasets and scoring methods. Applying this framework to twenty four common benchmarks, we highlight the often overlooked biases that can influence conclusions about model fairness and offer practical guidance for selecting, combining, and interpreting these datasets. We also point to opportunities for creating new fairness benchmarks that reflect more diverse social contexts and encourage more thoughtful use of these tools going forward. All code, data, and detailed results are publicly available at https://github.com/vanbanTruong/Fairness-in-Large-Language-Models/tree/main/datasets to promote transparency and reproducibility across the research community.
☆ Teaching a Language Model to Speak the Language of Tools
External tool integration through function-calling is essential for practical language model applications, yet most multilingual models lack reliable tool-use capabilities in non-English languages. Even state-of-the-art multilingual models struggle with determining when to use tools and generating the structured outputs required for function calls, often exhibiting language confusion when prompted in lower-resource languages. This work presents a methodology for adapting existing language models to enable robust tool use in any target language, using Bulgarian as a case study. The approach involves continued training of the BgGPT model series (2.6B, 9B, 27B parameters) on a novel bilingual dataset of 10,035 function-calling examples designed to support standardized protocols like MCP (Model Context Protocol). The research introduces TUCAN (Tool-Using Capable Assistant Navigator), which achieves up to 28.75% improvement in function-calling accuracy over base models while preserving core language understanding, as verified on established Bulgarian benchmarks. Beyond accuracy gains, TUCAN models demonstrate production-ready response formatting with clean, parsable function calls, contrasting with the verbose and inconsistent outputs of base models. The models, evaluation framework, and dataset are released to enable replication for other languages. This work demonstrates a practical approach for extending tool-augmented capabilities beyond English-centric systems.
☆ Hierarchical Memory Organization for Wikipedia Generation ACL 2025
Generating Wikipedia articles autonomously is a challenging task requiring the integration of accurate, comprehensive, and well-structured information from diverse sources. This paper introduces the Memory Organization-based Generation (MOG) framework, a novel approach to address these challenges by leveraging a hierarchical memory architecture. MOG extracts fine-grained memory units from web documents, recursively organizes them into a Wikipedia-style hierarchical structure, and uses this structure to guide the generation process. This ensures alignment between memory and the article outline, improving both informativeness and verifiability while minimizing hallucinations. Additionally, a citation module is implemented to enhance traceability by linking every generated sentence to specific memory units. Evaluations on our newly created WikiStart dataset demonstrate that MOG outperforms baseline methods in producing informative and reliable articles, making it particularly robust in real-world scenarios.
comment: ACL 2025 Main Conference
☆ Perspective Dial: Measuring Perspective of Text and Guiding LLM Outputs
Large language models (LLMs) are used in a variety of mission-critical roles. Due to the rapidly developing nature of LLMs, there is a lack of quantifiable understanding of the bias and perspective associated with LLM output. Inspired by this need, this paper considers the broader issue of perspective or viewpoint of general text and perspective control of large-language model (LLM) output. Perspective-Dial consists of two main components: a (1) metric space, dubbed Perspective Space, that enables quantitative measurements of different perspectives regarding a topic, and the use of (2) Systematic Prompt Engineering that utilizes greedy-coordinate descent to control LLM output perspective based on measurement feedback from the Perspective Space. The empirical nature of the approach allows progress to side step a principled understanding of perspective or bias -- effectively quantifying and adjusting outputs for a variety of topics. Potential applications include detection, tracking and mitigation of LLM bias, narrative detection, sense making and tracking in public discourse, and debate bot advocating given perspective.
comment: 7 pages, 5 main pages of text, 5 figures, 2 tables. Research work performed at CACI INTL INC
☆ You Sound a Little Tense: L2 Tailored Clear TTS Using Durational Vowel Properties
We present the first text-to-speech (TTS) system tailored to second language (L2) speakers. We use duration differences between American English tense (longer) and lax (shorter) vowels to create a "clarity mode" for Matcha-TTS. Our perception studies showed that French-L1, English-L2 listeners had fewer (at least 9.15%) transcription errors when using our clarity mode, and found it more encouraging and respectful than overall slowed down speech. Remarkably, listeners were not aware of these effects: despite the decreased word error rate in clarity mode, listeners still believed that slowing all target words was the most intelligible, suggesting that actual intelligibility does not correlate with perceived intelligibility. Additionally, we found that Whisper-ASR did not use the same cues as L2 speakers to differentiate difficult vowels and is not sufficient to assess the intelligibility of TTS systems for these individuals.
comment: Accepted to ISCA Speech Synthesis Workshop, 2025
☆ Density, asymmetry and citation dynamics in scientific literature
Scientific behavior is often characterized by a tension between building upon established knowledge and introducing novel ideas. Here, we investigate whether this tension is reflected in the relationship between the similarity of a scientific paper to previous research and its eventual citation rate. To operationalize similarity to previous research, we introduce two complementary metrics to characterize the local geometry of a publication's semantic neighborhood: (1) \emph{density} ($\rho$), defined as the ratio between a fixed number of previously-published papers and the minimum distance enclosing those papers in a semantic embedding space, and (2) asymmetry ($\alpha$), defined as the average directional difference between a paper and its nearest neighbors. We tested the predictive relationship between these two metrics and its subsequent citation rate using a Bayesian hierarchical regression approach, surveying $\sim 53,000$ publications across nine academic disciplines and five different document embeddings. While the individual effects of $\rho$ on citation count are small and variable, incorporating density-based predictors consistently improves out-of-sample prediction when added to baseline models. These results suggest that the density of a paper's surrounding scientific literature may carry modest but informative signals about its eventual impact. Meanwhile, we find no evidence that publication asymmetry improves model predictions of citation rates. Our work provides a scalable framework for linking document embeddings to scientometric outcomes and highlights new questions regarding the role that semantic similarity plays in shaping the dynamics of scientific reward.
☆ ATGen: A Framework for Active Text Generation ACL 2025
Active learning (AL) has demonstrated remarkable potential in reducing the annotation effort required for training machine learning models. However, despite the surging popularity of natural language generation (NLG) tasks in recent years, the application of AL to NLG has been limited. In this paper, we introduce Active Text Generation (ATGen) - a comprehensive framework that bridges AL with text generation tasks, enabling the application of state-of-the-art AL strategies to NLG. Our framework simplifies AL-empowered annotation in NLG tasks using both human annotators and automatic annotation agents based on large language models (LLMs). The framework supports LLMs deployed as services, such as ChatGPT and Claude, or operated on-premises. Furthermore, ATGen provides a unified platform for smooth implementation and benchmarking of novel AL strategies tailored to NLG tasks. Finally, we present evaluation results for state-of-the-art AL strategies across diverse settings and multiple text generation tasks. We show that ATGen reduces both the effort of human annotators and costs associated with API calls to LLM-based annotation agents. The code of the framework is available on GitHub under the MIT license. The video presentation is available at http://atgen-video.nlpresearch.group
comment: Accepted at ACL 2025 System Demonstrations
☆ Information Loss in LLMs' Multilingual Translation: The Role of Training Data, Language Proximity, and Language Family
Large language models have achieved impressive progress in multilingual translation, yet they continue to face challenges with certain language pairs-particularly those with limited training data or significant linguistic divergence from English. This study systematically investigates how training data, language proximity, and language family affect information loss in multilingual translation. We evaluate two large language models, GPT-4 and Llama 2, by performing round-trip translations. Translation quality was assessed using BLEU scores and BERT similarity metrics. Our results reveal a robust interaction between training data size and language distance: while abundant training data can mitigate the effects of linguistic divergence, languages structurally closer to English consistently yield higher translation quality in low-resource conditions. Among various distance metrics, orthographic, phylogenetic, syntactic, and geographical distances emerge as strong predictors of translation performance. Language family also exerts an independent influence. These findings contribute to a deeper understanding of the linguistic constraints shaping multilingual translation in large language models, emphasizing that translation quality is shaped not only by data volume but also by structural and typological relationships between languages.
☆ GaussMaster: An LLM-based Database Copilot System
In the financial industry, data is the lifeblood of operations, and DBAs shoulder significant responsibilities for SQL tuning, database deployment, diagnosis, and service repair. In recent years, both database vendors and customers have increasingly turned to autonomous database platforms in an effort to alleviate the heavy workload of DBAs. However, existing autonomous database platforms are limited in their capabilities, primarily addressing single-point issues such as NL2SQL, anomaly detection, and SQL tuning. Manual intervention remains a necessity for comprehensive database maintenance. GaussMaster aims to revolutionize this landscape by introducing an LLM-based database copilot system. This innovative solution is designed not only to assist developers in writing efficient SQL queries but also to provide comprehensive care for database services. When database instances exhibit abnormal behavior, GaussMaster is capable of orchestrating the entire maintenance process automatically. It achieves this by analyzing hundreds of metrics and logs, employing a Tree-of-thought approach to identify root causes, and invoking appropriate tools to resolve issues. We have successfully implemented GaussMaster in real-world scenarios, such as the banking industry, where it has achieved zero human intervention for over 34 database maintenance scenarios. In this paper, we present significant improvements in these tasks with code at https://gitcode.com/opengauss/openGauss-GaussMaster.
comment: We welcome contributions from the community. For reference, please see the code at: https://gitcode.com/opengauss/openGauss-GaussMaster
☆ Ensemble BERT for Medication Event Classification on Electronic Health Records (EHRs)
Identification of key variables such as medications, diseases, relations from health records and clinical notes has a wide range of applications in the clinical domain. n2c2 2022 provided shared tasks on challenges in natural language processing for clinical data analytics on electronic health records (EHR), where it built a comprehensive annotated clinical data Contextualized Medication Event Dataset (CMED). This study focuses on subtask 2 in Track 1 of this challenge that is to detect and classify medication events from clinical notes through building a novel BERT-based ensemble model. It started with pretraining BERT models on different types of big data such as Wikipedia and MIMIC. Afterwards, these pretrained BERT models were fine-tuned on CMED training data. These fine-tuned BERT models were employed to accomplish medication event classification on CMED testing data with multiple predictions. These multiple predictions generated by these fine-tuned BERT models were integrated to build final prediction with voting strategies. Experimental results demonstrated that BERT-based ensemble models can effectively improve strict Micro-F score by about 5% and strict Macro-F score by about 6%, respectively.
☆ Objective-Free Local Learning and Emergent Language Structure in Thinking Machines
We present a neuro-symbolic framework for generative language modeling based on local, event-driven emergent learning. At its core is a hierarchical Hopfield memory chain acting as a compositional short-term memory and dynamic tokenizer (retokenizer). Rather than relying on predefined tokens or supervision, the model builds structure from scratch, learning symbol sequences as multi-scale representations. It constructs projection tensors that bind co-occurring features into hierarchical tokens, introducing redundancy (i.e an emergent gauge structure) and enabling compression of local activations into long-range dependencies. Curiously, we find that the retokenizer can filter natural language patterns from noise, generating synthetic languages with coherent internal morphology -- quantifiably the same as human language. Language is learned in a local (Hebbian) fashion, where model constraints dictate allowed emergent structure, and new information is retained in alignment with this structure. The absence of a global objective enables a form of plasticity not found in conventional language models, allowing the system to generalize beyond its initial inference class -- even without explicit data. We demonstrate that briefly activating a new neuron during inference binds distributed multi-scale token features into a symbolic embedding. These emergent embedding neurons act as long-term memory and support a key-value mechanism for compositional inference and generalization. This architecture provides a methodological foundation for studying how symbolic structure can emerge from local neural learning. It offers a new pathway for building scalable, interpretable neuro-symbolic systems -- where tokens, grammar, and reasoning arise as compressed memory traces within a Hopfield hierarchy. This approach advances the development of neuromorphic architectures for generative language models.
comment: 22 pages, 7 figures
☆ Two Spelling Normalization Approaches Based on Large Language Models
The absence of standardized spelling conventions and the organic evolution of human language present an inherent linguistic challenge within historical documents, a longstanding concern for scholars in the humanities. Addressing this issue, spelling normalization endeavors to align a document's orthography with contemporary standards. In this study, we propose two new approaches based on large language models: one of which has been trained without a supervised training, and a second one which has been trained for machine translation. Our evaluation spans multiple datasets encompassing diverse languages and historical periods, leading us to the conclusion that while both of them yielded encouraging results, statistical machine translation still seems to be the most suitable technology for this task.
☆ Corrupted by Reasoning: Reasoning Language Models Become Free-Riders in Public Goods Games
As large language models (LLMs) are increasingly deployed as autonomous agents, understanding their cooperation and social mechanisms is becoming increasingly important. In particular, how LLMs balance self-interest and collective well-being is a critical challenge for ensuring alignment, robustness, and safe deployment. In this paper, we examine the challenge of costly sanctioning in multi-agent LLM systems, where an agent must decide whether to invest its own resources to incentivize cooperation or penalize defection. To study this, we adapt a public goods game with institutional choice from behavioral economics, allowing us to observe how different LLMs navigate social dilemmas over repeated interactions. Our analysis reveals four distinct behavioral patterns among models: some consistently establish and sustain high levels of cooperation, others fluctuate between engagement and disengagement, some gradually decline in cooperative behavior over time, and others rigidly follow fixed strategies regardless of outcomes. Surprisingly, we find that reasoning LLMs, such as the o1 series, struggle significantly with cooperation, whereas some traditional LLMs consistently achieve high levels of cooperation. These findings suggest that the current approach to improving LLMs, which focuses on enhancing their reasoning capabilities, does not necessarily lead to cooperation, providing valuable insights for deploying LLM agents in environments that require sustained collaboration. Our code is available at https://github.com/davidguzmanp/SanctSim
♻ ☆ Automating Adjudication of Cardiovascular Events Using Large Language Models
Cardiovascular events, such as heart attacks and strokes, remain a leading cause of mortality globally, necessitating meticulous monitoring and adjudication in clinical trials. This process, traditionally performed manually by clinical experts, is time-consuming, resource-intensive, and prone to inter-reviewer variability, potentially introducing bias and hindering trial progress. This study addresses these critical limitations by presenting a novel framework for automating the adjudication of cardiovascular events in clinical trials using Large Language Models (LLMs). We developed a two-stage approach: first, employing an LLM-based pipeline for event information extraction from unstructured clinical data and second, using an LLM-based adjudication process guided by a Tree of Thoughts approach and clinical endpoint committee (CEC) guidelines. Using cardiovascular event-specific clinical trial data, the framework achieved an F1-score of 0.82 for event extraction and an accuracy of 0.68 for adjudication. Furthermore, we introduce the CLEART score, a novel, automated metric specifically designed for evaluating the quality of AI-generated clinical reasoning in adjudicating cardiovascular events. This approach demonstrates significant potential for substantially reducing adjudication time and costs while maintaining high-quality, consistent, and auditable outcomes in clinical trials. The reduced variability and enhanced standardization also allow for faster identification and mitigation of risks associated with cardiovascular therapies.
♻ ☆ Comparative Evaluation of ChatGPT and DeepSeek Across Key NLP Tasks: Strengths, Weaknesses, and Domain-Specific Performance
The increasing use of large language models (LLMs) in natural language processing (NLP) tasks has sparked significant interest in evaluating their effectiveness across diverse applications. While models like ChatGPT and DeepSeek have shown strong results in many NLP domains, a comprehensive evaluation is needed to understand their strengths, weaknesses, and domain-specific abilities. This is critical as these models are applied to various tasks, from sentiment analysis to more nuanced tasks like textual entailment and translation. This study aims to evaluate ChatGPT and DeepSeek across five key NLP tasks: sentiment analysis, topic classification, text summarization, machine translation, and textual entailment. A structured experimental protocol is used to ensure fairness and minimize variability. Both models are tested with identical, neutral prompts and evaluated on two benchmark datasets per task, covering domains like news, reviews, and formal/informal texts. The results show that DeepSeek excels in classification stability and logical reasoning, while ChatGPT performs better in tasks requiring nuanced understanding and flexibility. These findings provide valuable insights for selecting the appropriate LLM based on task requirements.
♻ ☆ Emotional RAG LLMs: Reading Comprehension for the Open Internet
Queries to large language models (LLMs) can be divided into two parts: the instruction/question and the accompanying context. The context for retrieval-augmented generation (RAG) systems in most benchmarks comes from Wikipedia-like texts written in a neutral and factual tone. However, real-world RAG applications often retrieve internet-based text with diverse tones and linguistic styles, posing challenges for downstream tasks. This paper introduces (a) a dataset that transforms RAG-retrieved passages into emotionally inflected and sarcastic text, (b) an emotion translation model for adapting text to different tones, and (c) a prompt-based method to improve LLMs' pragmatic interpretation of retrieved text.
♻ ☆ ChipXplore: Natural Language Exploration of Hardware Designs and Libraries
Hardware design workflows rely on Process Design Kits (PDKs) from different fabrication nodes, each containing standard cell libraries optimized for speed, power, or density. Engineers typically navigate between the design and target PDK to make informed decisions, such as selecting gates for area optimization or enhancing the speed of the critical path. However, this process is often manual, time-consuming, and prone to errors. To address this, we present ChipXplore, a multi-agent collaborative framework powered by large language models that enables engineers to query hardware designs and PDKs using natural language. By exploiting the structured nature of PDK and hardware design data, ChipXplore retrieves relevant information through text-to-SQL and text-to-Cypher customized workflows. The framework achieves an execution accuracy of 97.39\% in complex natural language queries and improves productivity by making retrieval 5.63x faster while reducing errors by 5.25x in user studies. Compared to generic workflows, ChipXplore's customized workflow is capable of orchestrating reasoning and planning over multiple databases, improving accuracy by 29.78\%. ChipXplore lays the foundation for building autonomous agents capable of tackling diverse physical design tasks that require PDK and hardware design awareness.
comment: 10 pages
♻ ☆ Distillation and Refinement of Reasoning in Small Language Models for Document Re-ranking
We present a novel approach for training small language models for reasoning-intensive document ranking that combines knowledge distillation with reinforcement learning optimization. While existing methods often rely on expensive human annotations or large black-box language models, our methodology leverages web data and a teacher LLM to automatically generate high-quality training examples with relevance explanations. By framing document ranking as a reinforcement learning problem and incentivizing explicit reasoning capabilities, we train a compact 3B parameter language model that achieves state-of-the-art performance on the BRIGHT benchmark. Our model ranks third on the leaderboard while using substantially fewer parameters than other approaches, outperforming models that are over 20 times larger. Through extensive experiments, we demonstrate that generating explanations during inference, rather than directly predicting relevance scores, enables more effective reasoning with smaller language models. The self-supervised nature of our method offers a scalable and interpretable solution for modern information retrieval systems.
♻ ☆ Potemkin Understanding in Large Language Models
Large language models (LLMs) are regularly evaluated using benchmark datasets. But what justifies making inferences about an LLM's capabilities based on its answers to a curated set of questions? This paper first introduces a formal framework to address this question. The key is to note that the benchmarks used to test LLMs -- such as AP exams -- are also those used to test people. However, this raises an implication: these benchmarks are only valid tests if LLMs misunderstand concepts in ways that mirror human misunderstandings. Otherwise, success on benchmarks only demonstrates potemkin understanding: the illusion of understanding driven by answers irreconcilable with how any human would interpret a concept. We present two procedures for quantifying the existence of potemkins: one using a specially designed benchmark in three domains, the other using a general procedure that provides a lower-bound on their prevalence. We find that potemkins are ubiquitous across models, tasks, and domains. We also find that these failures reflect not just incorrect understanding, but deeper internal incoherence in concept representations.
♻ ☆ I see what you mean: Co-Speech Gestures for Reference Resolution in Multimodal Dialogue ACL 2025
In face-to-face interaction, we use multiple modalities, including speech and gestures, to communicate information and resolve references to objects. However, how representational co-speech gestures refer to objects remains understudied from a computational perspective. In this work, we address this gap by introducing a multimodal reference resolution task centred on representational gestures, while simultaneously tackling the challenge of learning robust gesture embeddings. We propose a self-supervised pre-training approach to gesture representation learning that grounds body movements in spoken language. Our experiments show that the learned embeddings align with expert annotations and have significant predictive power. Moreover, reference resolution accuracy further improves when (1) using multimodal gesture representations, even when speech is unavailable at inference time, and (2) leveraging dialogue history. Overall, our findings highlight the complementary roles of gesture and speech in reference resolution, offering a step towards more naturalistic models of human-machine interaction.
comment: Accepted to Findings of ACL 2025
♻ ☆ TigerLLM -- A Family of Bangla Large Language Models
The development of Large Language Models (LLMs) remains heavily skewed towards English and a few other high-resource languages. This linguistic disparity is particularly evident for Bangla - the 5th most spoken language. A few initiatives attempted to create open-source Bangla LLMs with performance still behind high-resource languages and limited reproducibility. To address this gap, we introduce TigerLLM - a family of Bangla LLMs. Our results demonstrate that these models surpass all open-source alternatives and also outperform larger proprietary models like GPT3.5 across standard benchmarks, establishing TigerLLM as the new baseline for future Bangla language modeling.
♻ ☆ WebDancer: Towards Autonomous Information Seeking Agency
Addressing intricate real-world problems necessitates in-depth information seeking and multi-step reasoning. Recent progress in agentic systems, exemplified by Deep Research, underscores the potential for autonomous multi-step research. In this work, we present a cohesive paradigm for building end-to-end agentic information seeking agents from a data-centric and training-stage perspective. Our approach consists of four key stages: (1) browsing data construction, (2) trajectories sampling, (3) supervised fine-tuning for effective cold start, and (4) reinforcement learning for enhanced generalisation. We instantiate this framework in a web agent based on the ReAct, WebDancer. Empirical evaluations on the challenging information seeking benchmarks, GAIA and WebWalkerQA, demonstrate the strong performance of WebDancer, achieving considerable results and highlighting the efficacy of our training paradigm. Further analysis of agent training provides valuable insights and actionable, systematic pathways for developing more capable agentic models. The codes and demo will be released in https://github.com/Alibaba-NLP/WebAgent.
♻ ☆ Tracing Intricate Cues in Dialogue: Joint Graph Structure and Sentiment Dynamics for Multimodal Emotion Recognition
Multimodal emotion recognition in conversation (MERC) has garnered substantial research attention recently. Existing MERC methods face several challenges: (1) they fail to fully harness direct inter-modal cues, possibly leading to less-than-thorough cross-modal modeling; (2) they concurrently extract information from the same and different modalities at each network layer, potentially triggering conflicts from the fusion of multi-source data; (3) they lack the agility required to detect dynamic sentimental changes, perhaps resulting in inaccurate classification of utterances with abrupt sentiment shifts. To address these issues, a novel approach named GraphSmile is proposed for tracking intricate emotional cues in multimodal dialogues. GraphSmile comprises two key components, i.e., GSF and SDP modules. GSF ingeniously leverages graph structures to alternately assimilate inter-modal and intra-modal emotional dependencies layer by layer, adequately capturing cross-modal cues while effectively circumventing fusion conflicts. SDP is an auxiliary task to explicitly delineate the sentiment dynamics between utterances, promoting the model's ability to distinguish sentimental discrepancies. GraphSmile is effortlessly applied to multimodal sentiment analysis in conversation (MSAC), thus enabling simultaneous execution of MERC and MSAC tasks. Empirical results on multiple benchmarks demonstrate that GraphSmile can handle complex emotional and sentimental patterns, significantly outperforming baseline models.
comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence
♻ ☆ Creativity in AI: Progresses and Challenges
Creativity is the ability to produce novel, useful, and surprising ideas, and has been widely studied as a crucial aspect of human cognition. Machine creativity on the other hand has been a long-standing challenge. With the rise of advanced generative AI, there has been renewed interest and debate regarding AI's creative capabilities. Therefore, it is imperative to revisit the state of creativity in AI and identify key progresses and remaining challenges. In this work, we survey leading works studying the creative capabilities of AI systems, focusing on creative problem-solving, linguistic, artistic, and scientific creativity. Our review suggests that while the latest AI models are largely capable of producing linguistically and artistically creative outputs such as poems, images, and musical pieces, they struggle with tasks that require creative problem-solving, abstract thinking and compositionality and their generations suffer from a lack of diversity, originality, long-range incoherence and hallucinations. We also discuss key questions concerning copyright and authorship issues with generative models. Furthermore, we highlight the need for a comprehensive evaluation of creativity that is process-driven and considers several dimensions of creativity. Finally, we propose future research directions to improve the creativity of AI outputs, drawing inspiration from cognitive science and psychology.
comment: minor updates to content + contact information
♻ ☆ AutoToM: Scaling Model-based Mental Inference via Automated Agent Modeling
Theory of Mind (ToM), the ability to understand people's minds based on their behavior, is key to developing socially intelligent agents. Current approaches to ToM reasoning either rely on prompting Large Language Models (LLMs), which are prone to systematic errors, or use handcrafted, rigid agent models for model-based inference, which are more robust but fail to generalize across domains. In this work, we introduce AutoToM, an automated agent modeling method for scalable, robust, and interpretable mental inference. Given a ToM problem, AutoToM first proposes an initial agent model and then performs automated Bayesian inverse planning based on this model, leveraging an LLM backend. Guided by inference uncertainty, it iteratively refines the model by introducing additional mental variables and/or incorporating more timesteps in the context. Across five diverse benchmarks, AutoToM outperforms existing ToM methods and even large reasoning models. Additionally, we show that AutoToM can produce human-like confidence estimates and enable online mental inference for embodied decision-making.
comment: 39 pages, 10 figures, 13 tables. Website at https://chuanyangjin.com/AutoToM/
♻ ☆ AI Awareness
Recent breakthroughs in artificial intelligence (AI) have brought about increasingly capable systems that demonstrate remarkable abilities in reasoning, language understanding, and problem-solving. These advancements have prompted a renewed examination of AI awareness not as a philosophical question of consciousness, but as a measurable, functional capacity. AI awareness is a double-edged sword: it improves general capabilities, i.e., reasoning, safety, while also raising concerns around misalignment and societal risks, demanding careful oversight as AI capabilities grow. In this review, we explore the emerging landscape of AI awareness, which includes metacognition (the ability to represent and reason about its own cognitive state), self-awareness (recognizing its own identity, knowledge, limitations, inter alia), social awareness (modeling the knowledge, intentions, and behaviors of other agents and social norms), and situational awareness (assessing and responding to the context in which it operates). First, we draw on insights from cognitive science, psychology, and computational theory to trace the theoretical foundations of awareness and examine how the four distinct forms of AI awareness manifest in state-of-the-art AI. Next, we systematically analyze current evaluation methods and empirical findings to better understand these manifestations. Building on this, we explore how AI awareness is closely linked to AI capabilities, demonstrating that more aware AI agents tend to exhibit higher levels of intelligent behaviors. Finally, we discuss the risks associated with AI awareness, including key topics in AI safety, alignment, and broader ethical concerns.
♻ ☆ Know You First and Be You Better: Modeling Human-Like User Simulators via Implicit Profiles ACL 2025
User simulators are crucial for replicating human interactions with dialogue systems, supporting both collaborative training and automatic evaluation, especially for large language models (LLMs). However, current role-playing methods face challenges such as a lack of utterance-level authenticity and user-level diversity, often hindered by role confusion and dependence on predefined profiles of well-known figures. In contrast, direct simulation focuses solely on text, neglecting implicit user traits like personality and conversation-level consistency. To address these issues, we introduce the User Simulator with Implicit Profiles (USP), a framework that infers implicit user profiles from human-machine interactions to simulate personalized and realistic dialogues. We first develop an LLM-driven extractor with a comprehensive profile schema, then refine the simulation using conditional supervised fine-tuning and reinforcement learning with cycle consistency, optimizing at both the utterance and conversation levels. Finally, a diverse profile sampler captures the distribution of real-world user profiles. Experimental results show that USP outperforms strong baselines in terms of authenticity and diversity while maintaining comparable consistency. Additionally, using USP to evaluate LLM on dynamic multi-turn aligns well with mainstream benchmarks, demonstrating its effectiveness in real-world applications.
comment: 9 pages. Accepted to ACL 2025. Camera-ready version
♻ ☆ A Context-aware Framework for Translation-mediated Conversations
Automatic translation systems offer a powerful solution to bridge language barriers in scenarios where participants do not share a common language. However, these systems can introduce errors leading to misunderstandings and conversation breakdown. A key issue is that current systems fail to incorporate the rich contextual information necessary to resolve ambiguities and omitted details, resulting in literal, inappropriate, or misaligned translations. In this work, we present a framework to improve large language model-based translation systems by incorporating contextual information in bilingual conversational settings during training and inference. We validate our proposed framework on two task-oriented domains: customer chat and user-assistant interaction. Across both settings, the system produced by our framework-TowerChat-consistently results in better translations than state-of-the-art systems like GPT-4o and TowerInstruct, as measured by multiple automatic translation quality metrics on several language pairs. We also show that the resulting model leverages context in an intended and interpretable way, improving consistency between the conveyed message and the generated translations.
♻ ☆ Sample then Identify: A General Framework for Risk Control and Assessment in Multimodal Large Language Models ICLR 2025
Multimodal Large Language Models (MLLMs) exhibit promising advancements across various tasks, yet they still encounter significant trustworthiness issues. Prior studies apply Split Conformal Prediction (SCP) in language modeling to construct prediction sets with statistical guarantees. However, these methods typically rely on internal model logits or are restricted to multiple-choice settings, which hampers their generalizability and adaptability in dynamic, open-ended environments. In this paper, we introduce TRON, a two-step framework for risk control and assessment, applicable to any MLLM that supports sampling in both open-ended and closed-ended scenarios. TRON comprises two main components: (1) a novel conformal score to sample response sets of minimum size, and (2) a nonconformity score to identify high-quality responses based on self-consistency theory, controlling the error rates by two specific risk levels. Furthermore, we investigate semantic redundancy in prediction sets within open-ended contexts for the first time, leading to a promising evaluation metric for MLLMs based on average set size. Our comprehensive experiments across four Video Question-Answering (VideoQA) datasets utilizing eight MLLMs show that TRON achieves desired error rates bounded by two user-specified risk levels. Additionally, deduplicated prediction sets maintain adaptiveness while being more efficient and stable for risk assessment under different risk levels.
comment: Accepted by ICLR 2025 Spotlights
♻ ☆ Agentic Medical Knowledge Graphs Enhance Medical Question Answering: Bridging the Gap Between LLMs and Evolving Medical Knowledge
Large Language Models (LLMs) have significantly advanced medical question-answering by leveraging extensive clinical data and medical literature. However, the rapid evolution of medical knowledge and the labor-intensive process of manually updating domain-specific resources pose challenges to the reliability of these systems. To address this, we introduce Agentic Medical Graph-RAG (AMG-RAG), a comprehensive framework that automates the construction and continuous updating of medical knowledge graphs, integrates reasoning, and retrieves current external evidence, such as PubMed and WikiSearch. By dynamically linking new findings and complex medical concepts, AMG-RAG not only improves accuracy but also enhances interpretability in medical queries. Evaluations on the MEDQA and MEDMCQA benchmarks demonstrate the effectiveness of AMG-RAG, achieving an F1 score of 74.1 percent on MEDQA and an accuracy of 66.34 percent on MEDMCQA, outperforming both comparable models and those 10 to 100 times larger. Notably, these improvements are achieved without increasing computational overhead, highlighting the critical role of automated knowledge graph generation and external evidence retrieval in delivering up-to-date, trustworthy medical insights.
Machine Learning 98
☆ DPOT: A DeepParticle method for Computation of Optimal Transport with convergence guarantee
In this work, we propose a novel machine learning approach to compute the optimal transport map between two continuous distributions from their unpaired samples, based on the DeepParticle methods. The proposed method leads to a min-min optimization during training and does not impose any restriction on the network structure. Theoretically we establish a weak convergence guarantee and a quantitative error bound between the learned map and the optimal transport map. Our numerical experiments validate the theoretical results and the effectiveness of the new approach, particularly on real-world tasks.
☆ Detecting What Matters: A Novel Approach for Out-of-Distribution 3D Object Detection in Autonomous Vehicles
Autonomous vehicles (AVs) use object detection models to recognize their surroundings and make driving decisions accordingly. Conventional object detection approaches classify objects into known classes, which limits the AV's ability to detect and appropriately respond to Out-of-Distribution (OOD) objects. This problem is a significant safety concern since the AV may fail to detect objects or misclassify them, which can potentially lead to hazardous situations such as accidents. Consequently, we propose a novel object detection approach that shifts the emphasis from conventional class-based classification to object harmfulness determination. Instead of object detection by their specific class, our method identifies them as either 'harmful' or 'harmless' based on whether they pose a danger to the AV. This is done based on the object position relative to the AV and its trajectory. With this metric, our model can effectively detect previously unseen objects to enable the AV to make safer real-time decisions. Our results demonstrate that the proposed model effectively detects OOD objects, evaluates their harmfulness, and classifies them accordingly, thus enhancing the AV decision-making effectiveness in dynamic environments.
☆ Accurate Parameter-Efficient Test-Time Adaptation for Time Series Forecasting ICML 2025
Real-world time series often exhibit a non-stationary nature, degrading the performance of pre-trained forecasting models. Test-Time Adaptation (TTA) addresses this by adjusting models during inference, but existing methods typically update the full model, increasing memory and compute costs. We propose PETSA, a parameter-efficient method that adapts forecasters at test time by only updating small calibration modules on the input and output. PETSA uses low-rank adapters and dynamic gating to adjust representations without retraining. To maintain accuracy despite limited adaptation capacity, we introduce a specialized loss combining three components: (1) a robust term, (2) a frequency-domain term to preserve periodicity, and (3) a patch-wise structural term for structural alignment. PETSA improves the adaptability of various forecasting backbones while requiring fewer parameters than baselines. Experimental results on benchmark datasets show that PETSA achieves competitive or better performance across all horizons. Our code is available at: https://github.com/BorealisAI/PETSA
comment: Second Workshop on Test-Time Adaptation: Putting Updates to the Test! at ICML 2025, Vancouver, Canada. 2025
☆ BenchMake: Turn any scientific data set into a reproducible benchmark
Benchmark data sets are a cornerstone of machine learning development and applications, ensuring new methods are robust, reliable and competitive. The relative rarity of benchmark sets in computational science, due to the uniqueness of the problems and the pace of change in the associated domains, makes evaluating new innovations difficult for computational scientists. In this paper a new tool is developed and tested to potentially turn any of the increasing numbers of scientific data sets made openly available into a benchmark accessible to the community. BenchMake uses non-negative matrix factorisation to deterministically identify and isolate challenging edge cases on the convex hull (the smallest convex set that contains all existing data instances) and partitions a required fraction of matched data instances into a testing set that maximises divergence and statistical significance, across tabular, graph, image, signal and textual modalities. BenchMake splits are compared to establish splits and random splits using ten publicly available benchmark sets from different areas of science, with different sizes, shapes, distributions.
comment: 10 pages, 15 pages in Appendix, 15 figures, 5 tables, 57 references
Datasets for Fairness in Language Models: An In-Depth Survey
Fairness benchmarks play a central role in shaping how we evaluate language models, yet surprisingly little attention has been given to examining the datasets that these benchmarks rely on. This survey addresses that gap by presenting a broad and careful review of the most widely used fairness datasets in current language model research, characterizing them along several key dimensions including their origin, scope, content, and intended use to help researchers better appreciate the assumptions and limitations embedded in these resources. To support more meaningful comparisons and analyses, we introduce a unified evaluation framework that reveals consistent patterns of demographic disparities across datasets and scoring methods. Applying this framework to twenty four common benchmarks, we highlight the often overlooked biases that can influence conclusions about model fairness and offer practical guidance for selecting, combining, and interpreting these datasets. We also point to opportunities for creating new fairness benchmarks that reflect more diverse social contexts and encourage more thoughtful use of these tools going forward. All code, data, and detailed results are publicly available at https://github.com/vanbanTruong/Fairness-in-Large-Language-Models/tree/main/datasets to promote transparency and reproducibility across the research community.
☆ Do LLMs Dream of Discrete Algorithms?
Large Language Models (LLMs) have rapidly transformed the landscape of artificial intelligence, enabling natural language interfaces and dynamic orchestration of software components. However, their reliance on probabilistic inference limits their effectiveness in domains requiring strict logical reasoning, discrete decision-making, and robust interpretability. This paper investigates these limitations and proposes a neurosymbolic approach that augments LLMs with logic-based reasoning modules, particularly leveraging Prolog predicates and composable toolsets. By integrating first-order logic and explicit rule systems, our framework enables LLMs to decompose complex queries into verifiable sub-tasks, orchestrate reliable solutions, and mitigate common failure modes such as hallucination and incorrect step decomposition. We demonstrate the practical benefits of this hybrid architecture through experiments on the DABStep benchmark, showing improved precision, coverage, and system documentation in multi-step reasoning tasks. Our results indicate that combining LLMs with modular logic reasoning restores engineering rigor, enhances system reliability, and offers a scalable path toward trustworthy, interpretable AI agents across complex domains.
☆ AICO: Feature Significance Tests for Supervised Learning
The opacity of many supervised learning algorithms remains a key challenge, hindering scientific discovery and limiting broader deployment -- particularly in high-stakes domains. This paper develops model- and distribution-agnostic significance tests to assess the influence of input features in any regression or classification algorithm. Our method evaluates a feature's incremental contribution to model performance by masking its values across samples. Under the null hypothesis, the distribution of performance differences across a test set has a non-positive median. We construct a uniformly most powerful, randomized sign test for this median, yielding exact p-values for assessing feature significance and confidence intervals with exact coverage for estimating population-level feature importance. The approach requires minimal assumptions, avoids model retraining or auxiliary models, and remains computationally efficient even for large-scale, high-dimensional settings. Experiments on synthetic tasks validate its statistical and computational advantages, and applications to real-world data illustrate its practical utility.
☆ SIEDD: Shared-Implicit Encoder with Discrete Decoders
Implicit Neural Representations (INRs) offer exceptional fidelity for video compression by learning per-video optimized functions, but their adoption is crippled by impractically slow encoding times. Existing attempts to accelerate INR encoding often sacrifice reconstruction quality or crucial coordinate-level control essential for adaptive streaming and transcoding. We introduce SIEDD (Shared-Implicit Encoder with Discrete Decoders), a novel architecture that fundamentally accelerates INR encoding without these compromises. SIEDD first rapidly trains a shared, coordinate-based encoder on sparse anchor frames to efficiently capture global, low-frequency video features. This encoder is then frozen, enabling massively parallel training of lightweight, discrete decoders for individual frame groups, further expedited by aggressive coordinate-space sampling. This synergistic design delivers a remarkable 20-30X encoding speed-up over state-of-the-art INR codecs on HD and 4K benchmarks, while maintaining competitive reconstruction quality and compression ratios. Critically, SIEDD retains full coordinate-based control, enabling continuous resolution decoding and eliminating costly transcoding. Our approach significantly advances the practicality of high-fidelity neural video compression, demonstrating a scalable and efficient path towards real-world deployment. Our codebase is available at https://github.com/VikramRangarajan/SIEDD .
comment: Project page at https://vikramrangarajan.github.io/SIEDD . Project code at https://github.com/VikramRangarajan/SIEDD
☆ When Additive Noise Meets Unobserved Mediators: Bivariate Denoising Diffusion for Causal Discovery
Distinguishing cause and effect from bivariate observational data is a foundational problem in many disciplines, but challenging without additional assumptions. Additive noise models (ANMs) are widely used to enable sample-efficient bivariate causal discovery. However, conventional ANM-based methods fail when unobserved mediators corrupt the causal relationship between variables. This paper makes three key contributions: first, we rigorously characterize why standard ANM approaches break down in the presence of unmeasured mediators. Second, we demonstrate that prior solutions for hidden mediation are brittle in finite sample settings, limiting their practical utility. To address these gaps, we propose Bivariate Denoising Diffusion (BiDD) for causal discovery, a method designed to handle latent noise introduced by unmeasured mediators. Unlike prior methods that infer directionality through mean squared error loss comparisons, our approach introduces a novel independence test statistic: during the noising and denoising processes for each variable, we condition on the other variable as input and evaluate the independence of the predicted noise relative to this input. We prove asymptotic consistency of BiDD under the ANM, and conjecture that it performs well under hidden mediation. Experiments on synthetic and real-world data demonstrate consistent performance, outperforming existing methods in mediator-corrupted settings while maintaining strong performance in mediator-free settings.
☆ Investigating an Overfitting and Degeneration Phenomenon in Self-Supervised Multi-Pitch Estimation
Multi-Pitch Estimation (MPE) continues to be a sought after capability of Music Information Retrieval (MIR) systems, and is critical for many applications and downstream tasks involving pitch, including music transcription. However, existing methods are largely based on supervised learning, and there are significant challenges in collecting annotated data for the task. Recently, self-supervised techniques exploiting intrinsic properties of pitch and harmonic signals have shown promise for both monophonic and polyphonic pitch estimation, but these still remain inferior to supervised methods. In this work, we extend the classic supervised MPE paradigm by incorporating several self-supervised objectives based on pitch-invariant and pitch-equivariant properties. This joint training results in a substantial improvement under closed training conditions, which naturally suggests that applying the same objectives to a broader collection of data will yield further improvements. However, in doing so we uncover a phenomenon whereby our model simultaneously overfits to the supervised data while degenerating on data used for self-supervision only. We demonstrate and investigate this and offer our insights on the underlying problem.
comment: Accepted to ISMIR 2025
☆ Federated Timeline Synthesis: Scalable and Private Methodology For Model Training and Deployment
We present Federated Timeline Synthesis (FTS), a novel framework for training generative foundation models across distributed timeseries data applied to electronic health records (EHR). At its core, FTS represents patient history as tokenized Patient Health Timelines (PHTs), language-agnostic sequences encoding temporal, categorical, and continuous clinical information. Each institution trains an autoregressive transformer on its local PHTs and transmits only model weights to a central server. The server uses the generators to synthesize a large corpus of trajectories and train a Global Generator (GG), enabling zero-shot inference via Monte Carlo simulation of future PHTs. We evaluate FTS on five clinically meaningful prediction tasks using MIMIC-IV data, showing that models trained on synthetic data generated by GG perform comparably to those trained on real data. FTS offers strong privacy guarantees, scalability across institutions, and extensibility to diverse prediction and simulation tasks especially in healthcare, including counterfactual inference, early warning detection, and synthetic trial design.
comment: conference paper
☆ Benchmarking Generalizable Bimanual Manipulation: RoboTwin Dual-Arm Collaboration Challenge at CVPR 2025 MEIS Workshop
Embodied Artificial Intelligence (Embodied AI) is an emerging frontier in robotics, driven by the need for autonomous systems that can perceive, reason, and act in complex physical environments. While single-arm systems have shown strong task performance, collaborative dual-arm systems are essential for handling more intricate tasks involving rigid, deformable, and tactile-sensitive objects. To advance this goal, we launched the RoboTwin Dual-Arm Collaboration Challenge at the 2nd MEIS Workshop, CVPR 2025. Built on the RoboTwin Simulation platform (1.0 and 2.0) and the AgileX COBOT-Magic Robot platform, the competition consisted of three stages: Simulation Round 1, Simulation Round 2, and a final Real-World Round. Participants totally tackled 17 dual-arm manipulation tasks, covering rigid, deformable, and tactile-based scenarios. The challenge attracted 64 global teams and over 400 participants, producing top-performing solutions like SEM and AnchorDP3 and generating valuable insights into generalizable bimanual policy learning. This report outlines the competition setup, task design, evaluation methodology, key findings and future direction, aiming to support future research on robust and generalizable bimanual manipulation policies. The Challenge Webpage is available at https://robotwin-benchmark.github.io/cvpr-2025-challenge/.
comment: Challenge Webpage: https://robotwin-benchmark.github.io/cvpr-2025-challenge/
☆ A case for data valuation transparency via DValCards
Following the rise in popularity of data-centric machine learning (ML), various data valuation methods have been proposed to quantify the contribution of each datapoint to desired ML model performance metrics (e.g., accuracy). Beyond the technical applications of data valuation methods (e.g., data cleaning, data acquisition, etc.), it has been suggested that within the context of data markets, data buyers might utilize such methods to fairly compensate data owners. Here we demonstrate that data valuation metrics are inherently biased and unstable under simple algorithmic design choices, resulting in both technical and ethical implications. By analyzing 9 tabular classification datasets and 6 data valuation methods, we illustrate how (1) common and inexpensive data pre-processing techniques can drastically alter estimated data values; (2) subsampling via data valuation metrics may increase class imbalance; and (3) data valuation metrics may undervalue underrepresented group data. Consequently, we argue in favor of increased transparency associated with data valuation in-the-wild and introduce the novel Data Valuation Cards (DValCards) framework towards this aim. The proliferation of DValCards will reduce misuse of data valuation metrics, including in data pricing, and build trust in responsible ML systems.
☆ Data-Driven Self-Supervised Learning for the Discovery of Solution Singularity for Partial Differential Equations
The appearance of singularities in the function of interest constitutes a fundamental challenge in scientific computing. It can significantly undermine the effectiveness of numerical schemes for function approximation, numerical integration, and the solution of partial differential equations (PDEs), etc. The problem becomes more sophisticated if the location of the singularity is unknown, which is often encountered in solving PDEs. Detecting the singularity is therefore critical for developing efficient adaptive methods to reduce computational costs in various applications. In this paper, we consider singularity detection in a purely data-driven setting. Namely, the input only contains given data, such as the vertex set from a mesh. To overcome the limitation of the raw unlabeled data, we propose a self-supervised learning (SSL) framework for estimating the location of the singularity. A key component is a filtering procedure as the pretext task in SSL, where two filtering methods are presented, based on $k$ nearest neighbors and kernel density estimation, respectively. We provide numerical examples to illustrate the potential pathological or inaccurate results due to the use of raw data without filtering. Various experiments are presented to demonstrate the ability of the proposed approach to deal with input perturbation, label corruption, and different kinds of singularities such interior circle, boundary layer, concentric semicircles, etc.
☆ VALID-Mol: a Systematic Framework for Validated LLM-Assisted Molecular Design
Large Language Models (LLMs) demonstrate remarkable potential for scientific discovery, but their application in domains requiring factual accuracy and domain-specific constraints remains challenging. In molecular design for drug discovery, LLMs can suggest creative molecular modifications but often produce chemically invalid or impractical structures. We present VALID-Mol, a systematic framework for integrating chemical validation with LLM-driven molecular design that increases the rate of generating valid chemical structures from 3% to 83%. Our approach combines methodical prompt engineering, automated chemical validation, and a fine-tuned domain-adapted LLM to ensure reliable generation of synthesizable molecules with improved properties. Beyond the specific implementation, we contribute a generalizable methodology for scientifically-constrained LLM applications, with quantifiable reliability improvements. Computational predictions suggest our framework can generate promising candidates for synthesis with up to 17-fold computationally predicted improvements in target affinity while maintaining synthetic accessibility. We provide a detailed analysis of our prompt engineering process, validation architecture, and fine-tuning approach, offering a reproducible blueprint for applying LLMs to other scientific domains where domain-specific validation is essential.
comment: 16 pages, 1 figure, 5 algorithms, 7 tables, to be published in ICSECS Conference 2025, unabridged version
☆ Learning to Rank with Variable Result Presentation Lengths
Learning to Rank (LTR) methods generally assume that each document in a top-K ranking is presented in an equal format. However, previous work has shown that users' perceptions of relevance can be changed by varying presentations, i.e., allocating more vertical space to some documents to provide additional textual or image information. Furthermore, presentation length can also redirect attention, as users are more likely to notice longer presentations when scrolling through results. Deciding on the document presentation lengths in a fixed vertical space ranking is an important problem that has not been addressed by existing LTR methods. We address this gap by introducing the variable presentation length ranking task, where simultaneously the ordering of documents and their presentation length is decided. Despite being a generalization of standard ranking, we show that this setting brings significant new challenges: Firstly, the probability ranking principle no longer applies to this setting, and secondly, the problem cannot be divided into separate ordering and length selection tasks. We therefore propose VLPL - a new family of Plackett-Luce list-wise gradient estimation methods for the joint optimization of document ordering and lengths. Our semi-synthetic experiments show that VLPL can effectively balance the expected exposure and attractiveness of all documents, achieving the best performance across different ranking settings. Furthermore, we observe that even simple length-aware methods can achieve significant performance improvements over fixed-length models. Altogether, our theoretical and empirical results highlight the importance and difficulties of combining document presentation with LTR.
comment: SIGIR 2025
☆ Ensemble BERT for Medication Event Classification on Electronic Health Records (EHRs)
Identification of key variables such as medications, diseases, relations from health records and clinical notes has a wide range of applications in the clinical domain. n2c2 2022 provided shared tasks on challenges in natural language processing for clinical data analytics on electronic health records (EHR), where it built a comprehensive annotated clinical data Contextualized Medication Event Dataset (CMED). This study focuses on subtask 2 in Track 1 of this challenge that is to detect and classify medication events from clinical notes through building a novel BERT-based ensemble model. It started with pretraining BERT models on different types of big data such as Wikipedia and MIMIC. Afterwards, these pretrained BERT models were fine-tuned on CMED training data. These fine-tuned BERT models were employed to accomplish medication event classification on CMED testing data with multiple predictions. These multiple predictions generated by these fine-tuned BERT models were integrated to build final prediction with voting strategies. Experimental results demonstrated that BERT-based ensemble models can effectively improve strict Micro-F score by about 5% and strict Macro-F score by about 6%, respectively.
☆ Physics informed guided diffusion for accelerated multi-parametric MRI reconstruction MICCAI 2025
We introduce MRF-DiPh, a novel physics informed denoising diffusion approach for multiparametric tissue mapping from highly accelerated, transient-state quantitative MRI acquisitions like Magnetic Resonance Fingerprinting (MRF). Our method is derived from a proximal splitting formulation, incorporating a pretrained denoising diffusion model as an effective image prior to regularize the MRF inverse problem. Further, during reconstruction it simultaneously enforces two key physical constraints: (1) k-space measurement consistency and (2) adherence to the Bloch response model. Numerical experiments on in-vivo brain scans data show that MRF-DiPh outperforms deep learning and compressed sensing MRF baselines, providing more accurate parameter maps while better preserving measurement fidelity and physical model consistency-critical for solving reliably inverse problems in medical imaging.
comment: 11 pages, 1 figure, 1 algorithm, 3 tables. Accepted to MICCAI 2025. This is a version prior peer-review
☆ Objective-Free Local Learning and Emergent Language Structure in Thinking Machines
We present a neuro-symbolic framework for generative language modeling based on local, event-driven emergent learning. At its core is a hierarchical Hopfield memory chain acting as a compositional short-term memory and dynamic tokenizer (retokenizer). Rather than relying on predefined tokens or supervision, the model builds structure from scratch, learning symbol sequences as multi-scale representations. It constructs projection tensors that bind co-occurring features into hierarchical tokens, introducing redundancy (i.e an emergent gauge structure) and enabling compression of local activations into long-range dependencies. Curiously, we find that the retokenizer can filter natural language patterns from noise, generating synthetic languages with coherent internal morphology -- quantifiably the same as human language. Language is learned in a local (Hebbian) fashion, where model constraints dictate allowed emergent structure, and new information is retained in alignment with this structure. The absence of a global objective enables a form of plasticity not found in conventional language models, allowing the system to generalize beyond its initial inference class -- even without explicit data. We demonstrate that briefly activating a new neuron during inference binds distributed multi-scale token features into a symbolic embedding. These emergent embedding neurons act as long-term memory and support a key-value mechanism for compositional inference and generalization. This architecture provides a methodological foundation for studying how symbolic structure can emerge from local neural learning. It offers a new pathway for building scalable, interpretable neuro-symbolic systems -- where tokens, grammar, and reasoning arise as compressed memory traces within a Hopfield hierarchy. This approach advances the development of neuromorphic architectures for generative language models.
comment: 22 pages, 7 figures
☆ Hierarchical Quantized Diffusion Based Tree Generation Method for Hierarchical Representation and Lineage Analysis
In single-cell research, tracing and analyzing high-throughput single-cell differentiation trajectories is crucial for understanding complex biological processes. Key to this is the modeling and generation of hierarchical data that represents the intrinsic structure within datasets. Traditional methods face limitations in terms of computational cost, performance, generative capacity, and stability. Recent VAEs based approaches have made strides in addressing these challenges but still require specialized network modules for each tree branch, limiting their stability and ability to capture deep hierarchical relationships. To overcome these challenges, we introduce diffusion-based approach called HDTree. HDTree captures tree relationships within a hierarchical latent space using a unified hierarchical codebook and quantized diffusion processes to model tree node transitions. This method improves stability by eliminating branch-specific modules and enhancing generative capacity through gradual hierarchical changes simulated by the diffusion process. HDTree's effectiveness is demonstrated through comparisons on both general-purpose and single-cell datasets, where it outperforms existing methods in terms of accuracy and performance. These contributions provide a new tool for hierarchical lineage analysis, enabling more accurate and efficient modeling of cellular differentiation paths and offering insights for downstream biological tasks. The code of HDTree is available at anonymous link https://anonymous.4open.science/r/code_HDTree_review-A8DB.
comment: 9 pages, 6 figures, under review
☆ Not All Explanations for Deep Learning Phenomena Are Equally Valuable ICML 2025
Developing a better understanding of surprising or counterintuitive phenomena has constituted a significant portion of deep learning research in recent years. These include double descent, grokking, and the lottery ticket hypothesis -- among many others. Works in this area often develop ad hoc hypotheses attempting to explain these observed phenomena on an isolated, case-by-case basis. This position paper asserts that, in many prominent cases, there is little evidence to suggest that these phenomena appear in real-world applications and these efforts may be inefficient in driving progress in the broader field. Consequently, we argue against viewing them as isolated puzzles that require bespoke resolutions or explanations. However, despite this, we suggest that deep learning phenomena do still offer research value by providing unique settings in which we can refine our broad explanatory theories of more general deep learning principles. This position is reinforced by analyzing the research outcomes of several prominent examples of these phenomena from the recent literature. We revisit the current norms in the research community in approaching these problems and propose practical recommendations for future research, aiming to ensure that progress on deep learning phenomena is well aligned with the ultimate pragmatic goal of progress in the broader field of deep learning.
comment: Accepted at ICML 2025 for oral presentation
☆ BAPE: Learning an Explicit Bayes Classifier for Long-tailed Visual Recognition
Bayesian decision theory advocates the Bayes classifier as the optimal approach for minimizing the risk in machine learning problems. Current deep learning algorithms usually solve for the optimal classifier by \emph{implicitly} estimating the posterior probabilities, \emph{e.g.}, by minimizing the Softmax cross-entropy loss. This simple methodology has been proven effective for meticulously balanced academic benchmark datasets. However, it is not applicable to the long-tailed data distributions in the real world, where it leads to the gradient imbalance issue and fails to ensure the Bayes optimal decision rule. To address these challenges, this paper presents a novel approach (BAPE) that provides a more precise theoretical estimation of the data distributions by \emph{explicitly} modeling the parameters of the posterior probabilities and solving them with point estimation. Consequently, our method directly learns the Bayes classifier without gradient descent based on Bayes' theorem, simultaneously alleviating the gradient imbalance and ensuring the Bayes optimal decision rule. Furthermore, we propose a straightforward yet effective \emph{distribution adjustment} technique. This method enables the Bayes classifier trained from the long-tailed training set to effectively adapt to the test data distribution with an arbitrary imbalance factor, thereby enhancing performance without incurring additional computational costs. In addition, we demonstrate the gains of our method are orthogonal to existing learning approaches for long-tailed scenarios, as they are mostly designed under the principle of \emph{implicitly} estimating the posterior probabilities. Extensive empirical evaluations on CIFAR-10-LT, CIFAR-100-LT, ImageNet-LT, and iNaturalist demonstrate that our method significantly improves the generalization performance of popular deep networks, despite its simplicity.
☆ Predicting thinking time in Reasoning models
Reasoning models that produce long, hidden chains of thought have emerged as powerful tools for complex, reasoning-intensive tasks\citep{deepseekai2025deepseekr1incentivizingreasoningcapability, openai2024openaio1card}. However, this paradigm introduces a new user experience challenge: users have little insight into how much time the model will spend reasoning before returning an answer. This unpredictability, can lead to user frustration and is likely to compound as LLMs can produce increasingly long tasks asynchronously \citep{kwa2025measuringaiabilitycomplete}. In this paper, we introduce and evaluate methods for both online and offline prediction of model "thinking time," aiming to develop a practical "progress bar for reasoning." We discuss the implications for user interaction and future research directions.
☆ Token Activation Map to Visually Explain Multimodal LLMs ICCV2025
Multimodal large language models (MLLMs) are broadly empowering various fields. Despite their advancements, the explainability of MLLMs remains less explored, hindering deeper understanding, model credibility, and effective visualization. Unlike conventional vision models (e.g., CNNs, ViTs, CLIP) that produce a single output, MLLMs generate sequences of tokens progressively, where each generated token depends on the previous context. Therefore, earlier context tokens can introduce redundant activations that interfere with the explanation of later tokens beyond their original information. Existing studies often overlook this issue, but our observations reveal that these redundant correlations can significantly hurt the reliability of explanations. To address this, we propose an estimated causal inference method to mitigate the interference of context to achieve high-quality MLLM explanation, with a novel rank Gaussian filter to further reduce activation noises. We term this method Token Activation Map (TAM) to highlight the consideration of interactions between tokens. TAM also indicates that it excels at explaining multiple tokens of MLLM, which is different from the Class Activation Map (CAM) for a single prediction. Our TAM method significantly outperforms existing SoTA methods, showcasing high-quality visualization results that can be utilized for various scenarios, such as object localization, failure case analysis, video visualization, MLLMs visual comparison, and model understanding (e.g., color, shape, action, location, visual reasoning, multi-turn conversation, etc). The code is available atgithub.com/xmed-lab/TAM.
comment: ICCV2025 Accepted
☆ Sub-MoE: Efficient Mixture-of-Expert LLMs Compression via Subspace Expert Merging
Mixture of Experts (MoE) LLMs face significant obstacles due to their massive parameter scale, which imposes memory, storage, and deployment challenges. Although recent expert merging methods promise greater efficiency by consolidating multiple experts, they are fundamentally hindered by parameter conflicts arising from expert specialization. In this paper, we present Sub-MoE, a novel MoE compression framework via Subspace Expert Merging. Our key insight is to perform joint Singular Value Decomposition (SVD) on concatenated expert weights, reducing conflicting parameters by extracting shared $U$-matrices while enabling effective merging of the expert-specific $V$ components. Specifically, Sub-MoE consists of two innovative phases: (1) Adaptive Expert Clustering, which groups functionally coherent experts via K-means clustering based on cosine similarity of expert outputs; and (2) Subspace Expert Merging, which first enforces Experts Union Decomposition to derive the shared $U$-matrix across experts in the same group, then pursues frequency-based merging for individual $V$-matrices, and finalizes expert reconstruction using the merged $V$-matrix. In this way, we align and fuse experts in a shared subspace, and can be extended with intra-expert compression for further inference optimization. Extensive experiments on Mixtral, DeepSeek, and Qwen-1.5|3 MoE LLMs demonstrate that our Sub-MoE significantly outperforms existing expert pruning and merging methods. Notably, our Sub-MoE maintains 96\%|86\% of original performance with 25\%|50\% expert reduction on Mixtral-8x7B in zero-shot benchmarks. Code will be released at https://github.com/lliai/MoERazor.
comment: Work in progress, revisions ongoing
☆ Aggregating Local Saliency Maps for Semi-Global Explainable Image Classification
Deep learning dominates image classification tasks, yet understanding how models arrive at predictions remains a challenge. Much research focuses on local explanations of individual predictions, such as saliency maps, which visualise the influence of specific pixels on a model's prediction. However, reviewing many of these explanations to identify recurring patterns is infeasible, while global methods often oversimplify and miss important local behaviours. To address this, we propose Segment Attribution Tables (SATs), a method for summarising local saliency explanations into (semi-)global insights. SATs take image segments (such as "eyes" in Chihuahuas) and leverage saliency maps to quantify their influence. These segments highlight concepts the model relies on across instances and reveal spurious correlations, such as reliance on backgrounds or watermarks, even when out-of-distribution test performance sees little change. SATs can explain any classifier for which a form of saliency map can be produced, using segmentation maps that provide named segments. SATs bridge the gap between oversimplified global summaries and overly detailed local explanations, offering a practical tool for analysing and debugging image classifiers.
☆ Masked Gated Linear Unit
Gated Linear Units (GLUs) have become essential components in the feed-forward networks of state-of-the-art Large Language Models (LLMs). However, they require twice as many memory reads compared to feed-forward layers without gating, due to the use of separate weight matrices for the gate and value streams. To address this bottleneck, we introduce Masked Gated Linear Units (MGLUs), a novel family of GLUs with an efficient kernel implementation. The core contribution of MGLUs include: (1) the Mixture of Element-wise Gating (MoEG) architecture that learns multiple binary masks, each determining gate or value assignments at the element level on a single shared weight matrix resulting in reduced memory transfer, and (2) FlashMGLU, a hardware-friendly kernel that yields up to a 19.7 $\times$ inference-time speed-up over a naive PyTorch MGLU and is 47% more memory-efficient and 34% faster than standard GLUs despite added architectural complexity on an RTX5090 GPU. In LLM experiments, the Swish-activated variant SwiMGLU preserves its memory advantages while matching - or even surpassing - the downstream accuracy of the SwiGLU baseline.
☆ Single Image Inpainting and Super-Resolution with Simultaneous Uncertainty Guarantees by Universal Reproducing Kernels
The paper proposes a statistical learning approach to the problem of estimating missing pixels of images, crucial for image inpainting and super-resolution problems. One of the main novelties of the method is that it also provides uncertainty quantifications together with the estimated values. Our core assumption is that the underlying data-generating function comes from a Reproducing Kernel Hilbert Space (RKHS). A special emphasis is put on band-limited functions, central to signal processing, which form Paley-Wiener type RKHSs. The proposed method, which we call Simultaneously Guaranteed Kernel Interpolation (SGKI), is an extension and refinement of a recently developed kernel method. An advantage of SGKI is that it not only estimates the missing pixels, but also builds non-asymptotic confidence bands for the unobserved values, which are simultaneously guaranteed for all missing pixels. We also show how to compute these bands efficiently using Schur complements, we discuss a generalization to vector-valued functions, and we present a series of numerical experiments on various datasets containing synthetically generated and benchmark images, as well.
comment: 23 pages, 8 figures, 6 tables
☆ FedRef: Communication-Efficient Bayesian Fine Tuning with Reference Model
Federated learning(FL) is used for distributed scenarios to train artificial intelligence(AI) models while ensuring users' privacy. In federated learning scenario, the server generally never knows about users' data. This type of concept makes the AI training process efficient in terms of data privacy. However, regarding model performance, federated AI models may not sufficiently satisfy AI users' expectations. Furthermore, AI users have a wide range of different needs. It is not easy to satisfy the whole users needs. These types of issues can be addressed through AI model optimization, fine-tuning, or personalization to achieve optimal model performance. To address model optimization challenges, we propose reference model-based federated learning for optimal fine-tuning, which overcomes catastrophic forgetting in each round. This method is derived from Bayesian parameter-efficient transfer learning, which includes an optimal proximal term and enables overcoming the catastrophic forgetting issue in each round by utilizing a reference model that incorporates previous model parameters. As a result, this method achieves both high model performance and low computing cost.
comment: 6 pages,14 equation
☆ External Data-Enhanced Meta-Representation for Adaptive Probabilistic Load Forecasting
Accurate residential load forecasting is critical for power system reliability with rising renewable integration and demand-side flexibility. However, most statistical and machine learning models treat external factors, such as weather, calendar effects, and pricing, as extra input, ignoring their heterogeneity, and thus limiting the extraction of useful external information. We propose a paradigm shift: external data should serve as meta-knowledge to dynamically adapt the forecasting model itself. Based on this idea, we design a meta-representation framework using hypernetworks that modulate selected parameters of a base Deep Learning (DL) model in response to external conditions. This provides both expressivity and adaptability. We further integrate a Mixture-of-Experts (MoE) mechanism to enhance efficiency through selective expert activation, while improving robustness by filtering redundant external inputs. The resulting model, dubbed as a Meta Mixture of Experts for External data (M2oE2), achieves substantial improvements in accuracy and robustness with limited additional overhead, outperforming existing state-of-the-art methods in diverse load datasets. The dataset and source code are publicly available at https://github.com/haorandd/M2oE2\_load\_forecast.git.
comment: 10 pages
☆ RiverText: A Python Library for Training and Evaluating Incremental Word Embeddings from Text Data Streams
Word embeddings have become essential components in various information retrieval and natural language processing tasks, such as ranking, document classification, and question answering. However, despite their widespread use, traditional word embedding models present a limitation in their static nature, which hampers their ability to adapt to the constantly evolving language patterns that emerge in sources such as social media and the web (e.g., new hashtags or brand names). To overcome this problem, incremental word embedding algorithms are introduced, capable of dynamically updating word representations in response to new language patterns and processing continuous data streams. This paper presents RiverText, a Python library for training and evaluating incremental word embeddings from text data streams. Our tool is a resource for the information retrieval and natural language processing communities that work with word embeddings in streaming scenarios, such as analyzing social media. The library implements different incremental word embedding techniques, such as Skip-gram, Continuous Bag of Words, and Word Context Matrix, in a standardized framework. In addition, it uses PyTorch as its backend for neural network training. We have implemented a module that adapts existing intrinsic static word embedding evaluation tasks for word similarity and word categorization to a streaming setting. Finally, we compare the implemented methods with different hyperparameter settings and discuss the results. Our open-source library is available at https://github.com/dccuchile/rivertext.
comment: Accepted at SIGIR'23
☆ Efficient Algorithms for Learning and Compressing Monophonic Halfspaces in Graphs
Abstract notions of convexity over the vertices of a graph, and corresponding notions of halfspaces, have recently gained attention from the machine learning community. In this work we study monophonic halfspaces, a notion of graph halfspaces defined through closure under induced paths. Our main result is a $2$-satisfiability based decomposition theorem, which allows one to represent monophonic halfspaces as a disjoint union of certain vertex subsets. Using this decomposition, we achieve efficient and (nearly) optimal algorithms for various learning problems, such as teaching, active, and online learning. Most notably, we obtain a polynomial-time algorithm for empirical risk minimization. Independently of the decomposition theorem, we obtain an efficient, stable, and proper sample compression scheme. This makes monophonic halfspaces efficiently learnable with proper learners and linear error rate $1/\varepsilon$ in the realizable PAC setting. Our results answer open questions from the literature, and show a stark contrast with geodesic halfspaces, for which most of the said learning problems are NP-hard.
☆ Attribution assignment for deep-generative sequence models enables interpretability analysis using positive-only data
Generative machine learning models offer a powerful framework for therapeutic design by efficiently exploring large spaces of biological sequences enriched for desirable properties. Unlike supervised learning methods, which require both positive and negative labeled data, generative models such as LSTMs can be trained solely on positively labeled sequences, for example, high-affinity antibodies. This is particularly advantageous in biological settings where negative data are scarce, unreliable, or biologically ill-defined. However, the lack of attribution methods for generative models has hindered the ability to extract interpretable biological insights from such models. To address this gap, we developed Generative Attribution Metric Analysis (GAMA), an attribution method for autoregressive generative models based on Integrated Gradients. We assessed GAMA using synthetic datasets with known ground truths to characterize its statistical behavior and validate its ability to recover biologically relevant features. We further demonstrated the utility of GAMA by applying it to experimental antibody-antigen binding data. GAMA enables model interpretability and the validation of generative sequence design strategies without the need for negative training data.
☆ Data Can Speak for Itself: Quality-guided Utilization of Wireless Synthetic Data
Generative models have gained significant attention for their ability to produce realistic synthetic data that supplements the quantity of real-world datasets. While recent studies show performance improvements in wireless sensing tasks by incorporating all synthetic data into training sets, the quality of synthetic data remains unpredictable and the resulting performance gains are not guaranteed. To address this gap, we propose tractable and generalizable metrics to quantify quality attributes of synthetic data - affinity and diversity. Our assessment reveals prevalent affinity limitation in current wireless synthetic data, leading to mislabeled data and degraded task performance. We attribute the quality limitation to generative models' lack of awareness of untrained conditions and domain-specific processing. To mitigate these issues, we introduce SynCheck, a quality-guided synthetic data utilization scheme that refines synthetic data quality during task model training. Our evaluation demonstrates that SynCheck consistently outperforms quality-oblivious utilization of synthetic data, and achieves 4.3% performance improvement even when the previous utilization degrades performance by 13.4%.
comment: Published in MobiSys 2025
☆ Deep Learning for Optical Misalignment Diagnostics in Multi-Lens Imaging Systems
In the rapidly evolving field of optical engineering, precise alignment of multi-lens imaging systems is critical yet challenging, as even minor misalignments can significantly degrade performance. Traditional alignment methods rely on specialized equipment and are time-consuming processes, highlighting the need for automated and scalable solutions. We present two complementary deep learning-based inverse-design methods for diagnosing misalignments in multi-element lens systems using only optical measurements. First, we use ray-traced spot diagrams to predict five-degree-of-freedom (5-DOF) errors in a 6-lens photographic prime, achieving a mean absolute error of 0.031mm in lateral translation and 0.011$^\circ$ in tilt. We also introduce a physics-based simulation pipeline that utilizes grayscale synthetic camera images, enabling a deep learning model to estimate 4-DOF, decenter and tilt errors in both two- and six-lens multi-lens systems. These results show the potential to reshape manufacturing and quality control in precision imaging.
☆ Compositions of Variant Experts for Integrating Short-Term and Long-Term Preferences
In the online digital realm, recommendation systems are ubiquitous and play a crucial role in enhancing user experience. These systems leverage user preferences to provide personalized recommendations, thereby helping users navigate through the paradox of choice. This work focuses on personalized sequential recommendation, where the system considers not only a user's immediate, evolving session context, but also their cumulative historical behavior to provide highly relevant and timely recommendations. Through an empirical study conducted on diverse real-world datasets, we have observed and quantified the existence and impact of both short-term (immediate and transient) and long-term (enduring and stable) preferences on users' historical interactions. Building on these insights, we propose a framework that combines short- and long-term preferences to enhance recommendation performance, namely Compositions of Variant Experts (CoVE). This novel framework dynamically integrates short- and long-term preferences through the use of different specialized recommendation models (i.e., experts). Extensive experiments showcase the effectiveness of the proposed methods and ablation studies further investigate the impact of variant expert types.
☆ Mirror Descent Policy Optimisation for Robust Constrained Markov Decision Processes
Safety is an essential requirement for reinforcement learning systems. The newly emerging framework of robust constrained Markov decision processes allows learning policies that satisfy long-term constraints while providing guarantees under epistemic uncertainty. This paper presents mirror descent policy optimisation for robust constrained Markov decision processes (RCMDPs), making use of policy gradient techniques to optimise both the policy (as a maximiser) and the transition kernel (as an adversarial minimiser) on the Lagrangian representing a constrained MDP. In the oracle-based RCMDP setting, we obtain an $\mathcal{O}\left(\frac{1}{T}\right)$ convergence rate for the squared distance as a Bregman divergence, and an $\mathcal{O}\left(e^{-T}\right)$ convergence rate for entropy-regularised objectives. In the sample-based RCMDP setting, we obtain an $\tilde{\mathcal{O}}\left(\frac{1}{T^{1/3}}\right)$ convergence rate. Experiments confirm the benefits of mirror descent policy optimisation in constrained and unconstrained optimisation, and significant improvements are observed in robustness tests when compared to baseline policy optimisation algorithms.
☆ maneuverRecognition -- A Python package for Timeseries Classification in the domain of Vehicle Telematics
In the domain of vehicle telematics the automated recognition of driving maneuvers is used to classify and evaluate driving behaviour. This not only serves as a component to enhance the personalization of insurance policies, but also to increase road safety, reduce accidents and the associated costs as well as to reduce fuel consumption and support environmentally friendly driving. In this context maneuver recognition technically requires a continuous application of time series classification which poses special challenges to the transfer, preprocessing and storage of telematic sensor data, the training of predictive models, and the prediction itself. Although much research has been done in the field of gathering relevant data or regarding the methods to build predictive models for the task of maneuver recognition, there is a practical need for python packages and functions that allow to quickly transform data into the required structure as well as to build and evaluate such models. The maneuverRecognition package was therefore developed to provide the necessary functions for preprocessing, modelling and evaluation and also includes a ready to use LSTM based network structure that can be modified. The implementation of the package is demonstrated using real driving data of three different persons recorded via smartphone sensors.
comment: 6 pages, 2 figures
☆ Forget-MI: Machine Unlearning for Forgetting Multimodal Information in Healthcare Settings
Privacy preservation in AI is crucial, especially in healthcare, where models rely on sensitive patient data. In the emerging field of machine unlearning, existing methodologies struggle to remove patient data from trained multimodal architectures, which are widely used in healthcare. We propose Forget-MI, a novel machine unlearning method for multimodal medical data, by establishing loss functions and perturbation techniques. Our approach unlearns unimodal and joint representations of the data requested to be forgotten while preserving knowledge from the remaining data and maintaining comparable performance to the original model. We evaluate our results using performance on the forget dataset, performance on the test dataset, and Membership Inference Attack (MIA), which measures the attacker's ability to distinguish the forget dataset from the training dataset. Our model outperforms the existing approaches that aim to reduce MIA and the performance on the forget dataset while keeping an equivalent performance on the test set. Specifically, our approach reduces MIA by 0.202 and decreases AUC and F1 scores on the forget set by 0.221 and 0.305, respectively. Additionally, our performance on the test set matches that of the retrained model, while allowing forgetting. Code is available at https://github.com/BioMedIA-MBZUAI/Forget-MI.git
☆ Multi-task Offline Reinforcement Learning for Online Advertising in Recommender Systems KDD 2025
Online advertising in recommendation platforms has gained significant attention, with a predominant focus on channel recommendation and budget allocation strategies. However, current offline reinforcement learning (RL) methods face substantial challenges when applied to sparse advertising scenarios, primarily due to severe overestimation, distributional shifts, and overlooking budget constraints. To address these issues, we propose MTORL, a novel multi-task offline RL model that targets two key objectives. First, we establish a Markov Decision Process (MDP) framework specific to the nuances of advertising. Then, we develop a causal state encoder to capture dynamic user interests and temporal dependencies, facilitating offline RL through conditional sequence modeling. Causal attention mechanisms are introduced to enhance user sequence representations by identifying correlations among causal states. We employ multi-task learning to decode actions and rewards, simultaneously addressing channel recommendation and budget allocation. Notably, our framework includes an automated system for integrating these tasks into online advertising. Extensive experiments on offline and online environments demonstrate MTORL's superiority over state-of-the-art methods.
comment: KDD 2025
☆ CSBrain: A Cross-scale Spatiotemporal Brain Foundation Model for EEG Decoding
Understanding and decoding brain activity from electroencephalography (EEG) signals is a fundamental challenge in neuroscience and AI, with applications in cognition, emotion recognition, diagnosis, and brain-computer interfaces. While recent EEG foundation models advance generalized decoding via unified architectures and large-scale pretraining, they adopt a scale-agnostic dense modeling paradigm inherited from NLP and vision. This design neglects a core property of neural activity: cross-scale spatiotemporal structure. EEG task patterns span a wide range of temporal and spatial scales, from short bursts to slow rhythms, and from localized cortical responses to distributed interactions. Ignoring this diversity leads to suboptimal representations and weak generalization. We propose CSBrain, a Cross-scale Spatiotemporal Brain foundation model for generalized EEG decoding. CSBrain introduces: (i) Cross-scale Spatiotemporal Tokenization (CST), which aggregates multi-scale features from localized temporal windows and anatomical brain regions into compact scale-aware tokens; and (ii) Structured Sparse Attention (SSA), which captures cross-window and cross-region dependencies, enhancing scale diversity while removing spurious correlations. CST and SSA are alternately stacked to progressively integrate multi-scale dependencies. Experiments on 11 EEG tasks across 16 datasets show that CSBrain consistently outperforms task-specific and foundation model baselines. These results establish cross-scale modeling as a key inductive bias and position CSBrain as a robust backbone for future brain-AI research.
☆ Learning Counterfactually Decoupled Attention for Open-World Model Attribution ICCV 2025
In this paper, we propose a Counterfactually Decoupled Attention Learning (CDAL) method for open-world model attribution. Existing methods rely on handcrafted design of region partitioning or feature space, which could be confounded by the spurious statistical correlations and struggle with novel attacks in open-world scenarios. To address this, CDAL explicitly models the causal relationships between the attentional visual traces and source model attribution, and counterfactually decouples the discriminative model-specific artifacts from confounding source biases for comparison. In this way, the resulting causal effect provides a quantification on the quality of learned attention maps, thus encouraging the network to capture essential generation patterns that generalize to unseen source models by maximizing the effect. Extensive experiments on existing open-world model attribution benchmarks show that with minimal computational overhead, our method consistently improves state-of-the-art models by large margins, particularly for unseen novel attacks. Source code: https://github.com/yzheng97/CDAL.
comment: Accepted by ICCV 2025. Code: \url{https://github.com/yzheng97/CDAL}
☆ Curious Causality-Seeking Agents Learn Meta Causal World
When building a world model, a common assumption is that the environment has a single, unchanging underlying causal rule, like applying Newton's laws to every situation. In reality, what appears as a drifting causal mechanism is often the manifestation of a fixed underlying mechanism seen through a narrow observational window. This brings about a problem that, when building a world model, even subtle shifts in policy or environment states can alter the very observed causal mechanisms. In this work, we introduce the \textbf{Meta-Causal Graph} as world models, a minimal unified representation that efficiently encodes the transformation rules governing how causal structures shift across different latent world states. A single Meta-Causal Graph is composed of multiple causal subgraphs, each triggered by meta state, which is in the latent state space. Building on this representation, we introduce a \textbf{Causality-Seeking Agent} whose objectives are to (1) identify the meta states that trigger each subgraph, (2) discover the corresponding causal relationships by agent curiosity-driven intervention policy, and (3) iteratively refine the Meta-Causal Graph through ongoing curiosity-driven exploration and agent experiences. Experiments on both synthetic tasks and a challenging robot arm manipulation task demonstrate that our method robustly captures shifts in causal dynamics and generalizes effectively to previously unseen contexts.
comment: 33 pages
☆ Measuring How LLMs Internalize Human Psychological Concepts: A preliminary analysis
Large Language Models (LLMs) such as ChatGPT have shown remarkable abilities in producing human-like text. However, it is unclear how accurately these models internalize concepts that shape human thought and behavior. Here, we developed a quantitative framework to assess concept alignment between LLMs and human psychological dimensions using 43 standardized psychological questionnaires, selected for their established validity in measuring distinct psychological constructs. Our method evaluates how accurately language models reconstruct and classify questionnaire items through pairwise similarity analysis. We compared resulting cluster structures with the original categorical labels using hierarchical clustering. A GPT-4 model achieved superior classification accuracy (66.2\%), significantly outperforming GPT-3.5 (55.9\%) and BERT (48.1\%), all exceeding random baseline performance (31.9\%). We also demonstrated that the estimated semantic similarity from GPT-4 is associated with Pearson's correlation coefficients of human responses in multiple psychological questionnaires. This framework provides a novel approach to evaluate the alignment of the human-LLM concept and identify potential representational biases. Our findings demonstrate that modern LLMs can approximate human psychological constructs with measurable accuracy, offering insights for developing more interpretable AI systems.
☆ Double-Diffusion: Diffusion Conditioned Diffusion Probabilistic Model For Air Quality Prediction
Air quality prediction is a challenging forecasting task due to its spatio-temporal complexity and the inherent dynamics as well as uncertainty. Most of the current models handle these two challenges by applying Graph Neural Networks or known physics principles, and quantifying stochasticity through probabilistic networks like Diffusion models. Nevertheless, finding the right balancing point between the certainties and uncertainties remains an open question. Therefore, we propose Double-Diffusion, a novel diffusion probabilistic model that harnesses the power of known physics to guide air quality forecasting with stochasticity. To the best of our knowledge, while precedents have been made of using conditional diffusion models to predict air pollution, this is the first attempt to use physics as a conditional generative approach for air quality prediction. Along with a sampling strategy adopted from image restoration and a new denoiser architecture, Double-Diffusion ranks first in most evaluation scenarios across two real-life datasets compared with other probabilistic models, it also cuts inference time by 50% to 30% while enjoying an increase between 3-12% in Continuous Ranked Probabilistic Score (CRPS).
☆ ReMem: Mutual Information-Aware Fine-tuning of Pretrained Vision Transformers for Effective Knowledge Distillation
Knowledge distillation from pretrained visual representation models offers an effective approach to improve small, task-specific production models. However, the effectiveness of such knowledge transfer drops significantly when distilling from strong models that are pretrained in a large scale. In this paper, we address this challenge for pretrained Vision Transformers (ViTs) by exploring methods to fine-tune them for more effective knowledge transfer. Motivated by the connection between mutual information and distillation effectiveness, we propose to employ mutual information-aware optimization during finetuning. For small or highly-imbalanced downstream datasets where such optimization becomes less effective, we introduce a simple yet effective heuristic of reweighting MLP blocks. This approach is inspired by our observation that top MLP blocks are primarily responsible for mutual information loss. Our method enables small student models to benefit from those pretrained models among the strongest.
♻ ☆ LNUCB-TA: Linear-nonlinear Hybrid Bandit Learning with Temporal Attention
Existing contextual multi-armed bandit (MAB) algorithms fail to effectively capture both long-term trends and local patterns across all arms, leading to suboptimal performance in environments with rapidly changing reward structures. They also rely on static exploration rates, which do not dynamically adjust to changing conditions. To overcome these limitations, we propose LNUCB-TA, a hybrid bandit model integrating a novel nonlinear component (adaptive k-Nearest Neighbors (k-NN)) for reducing time complexity, alongside a global-and-local attention-based exploration mechanism. Our approach uniquely combines linear and nonlinear estimation techniques, with the nonlinear module dynamically adjusting k based on reward variance to enhance spatiotemporal pattern recognition. This reduces the likelihood of selecting suboptimal arms while improving reward estimation accuracy and computational efficiency. The attention-based mechanism ranks arms by past performance and selection frequency, dynamically adjusting exploration and exploitation in real time without requiring manual tuning of exploration rates. By integrating global attention (assessing all arms collectively) and local attention (focusing on individual arms), LNUCB-TA efficiently adapts to temporal and spatial complexities. Empirical results show LNUCB-TA significantly outperforms state-of-the-art linear, nonlinear, and hybrid bandits in cumulative and mean reward, convergence, and robustness across different exploration rates. Theoretical analysis further confirms its reliability with a sub-linear regret bound.
♻ ☆ Remove Symmetries to Control Model Expressivity and Improve Optimization
When symmetry is present in the loss function, the model is likely to be trapped in a low-capacity state that is sometimes known as a "collapse". Being trapped in these low-capacity states can be a major obstacle to training across many scenarios where deep learning technology is applied. We first prove two concrete mechanisms through which symmetries lead to reduced capacities and ignored features during training and inference. We then propose a simple and theoretically justified algorithm, syre, to remove almost all symmetry-induced low-capacity states in neural networks. When this type of entrapment is especially a concern, removing symmetries with the proposed method is shown to correlate well with improved optimization or performance. A remarkable merit of the proposed method is that it is model-agnostic and does not require any knowledge of the symmetry.
comment: preprint
No, of course I can! Refusal Mechanisms Can Be Exploited Using Harmless Fine-Tuning Data
Leading language model (LM) providers like OpenAI and Anthropic allow customers to fine-tune frontier LMs for specific use cases. To prevent abuse, these providers apply filters to block fine-tuning on overtly harmful data. In this setting, we make three contributions: First, while past work has shown that safety alignment is "shallow", we correspondingly demonstrate that existing fine-tuning attacks are shallow -- attacks target only the first several tokens of the model response, and consequently can be blocked by generating the first several response tokens with an aligned model. Second, we conceptually illustrate how to make attacks deeper by introducing a new fine-tuning attack that trains models to first refuse harmful requests before answering them; this "refuse-then-comply" strategy bypasses shallow defenses and produces harmful responses that evade output filters. Third, we demonstrate the potency of our new fine-tuning attack by jailbreaking both open-source models equipped with defenses and production models, achieving attack success rates of 57% and 72% against GPT-4o and Claude Haiku, respectively. Our attack received a $2000 bug bounty from OpenAI and was acknowledged as a vulnerability by Anthropic. Our work undermines the notion that models are safe because they initially refuse harmful requests and broadens awareness of the scope of attacks that face production fine-tuning APIs.
♻ ☆ Equivariance Everywhere All At Once: A Recipe for Graph Foundation Models
Graph machine learning architectures are typically tailored to specific tasks on specific datasets, which hinders their broader applicability. This has led to a new quest in graph machine learning: how to build graph foundation models capable of generalizing across arbitrary graphs and features? In this work, we present a recipe for designing graph foundation models for node-level tasks from first principles. The key ingredient underpinning our study is a systematic investigation of the symmetries that a graph foundation model must respect. In a nutshell, we argue that label permutation-equivariance alongside feature permutation-invariance are necessary in addition to the common node permutation-equivariance on each local neighborhood of the graph. To this end, we first characterize the space of linear transformations that are equivariant to permutations of nodes and labels, and invariant to permutations of features. We then prove that the resulting network is a universal approximator on multisets that respect the aforementioned symmetries. Our recipe uses such layers on the multiset of features induced by the local neighborhood of the graph to obtain a class of graph foundation models for node property prediction. We validate our approach through extensive experiments on 29 real-world node classification datasets, demonstrating both strong zero-shot empirical performance and consistent improvement as the number of training graphs increases.
♻ ☆ GenBFA: An Evolutionary Optimization Approach to Bit-Flip Attacks on LLMs
Large Language Models (LLMs) have revolutionized natural language processing (NLP), excelling in tasks like text generation and summarization. However, their increasing adoption in mission-critical applications raises concerns about hardware-based threats, particularly bit-flip attacks (BFAs). BFAs, enabled by fault injection methods such as Rowhammer, target model parameters in memory, compromising both integrity and performance. Identifying critical parameters for BFAs in the vast parameter space of LLMs poses significant challenges. While prior research suggests transformer-based architectures are inherently more robust to BFAs compared to traditional deep neural networks, we challenge this assumption. For the first time, we demonstrate that as few as three bit-flips can cause catastrophic performance degradation in an LLM with billions of parameters. Current BFA techniques are inadequate for exploiting this vulnerability due to the difficulty of efficiently identifying critical parameters within the immense parameter space. To address this, we propose AttentionBreaker, a novel framework tailored for LLMs that enables efficient traversal of the parameter space to identify critical parameters. Additionally, we introduce GenBFA, an evolutionary optimization strategy designed to refine the search further, isolating the most critical bits for an efficient and effective attack. Empirical results reveal the profound vulnerability of LLMs to AttentionBreaker. For example, merely three bit-flips (4.129 x 10^-9% of total parameters) in the LLaMA3-8B-Instruct 8-bit quantized (W8) model result in a complete performance collapse: accuracy on MMLU tasks drops from 67.3% to 0%, and Wikitext perplexity skyrockets from 12.6 to 4.72 x 10^5. These findings underscore the effectiveness of AttentionBreaker in uncovering and exploiting critical vulnerabilities within LLM architectures.
♻ ☆ Satisficing Regret Minimization in Bandits: Constant Rate and Light-Tailed Distribution
Motivated by the concept of satisficing in decision-making, we consider the problem of satisficing regret minimization in bandit optimization. In this setting, the learner aims at selecting satisficing arms (arms with mean reward exceeding a certain threshold value) as frequently as possible. The performance is measured by satisficing regret, which is the cumulative deficit of the chosen arm's mean reward compared to the threshold. We propose SELECT, a general algorithmic template for Satisficing REgret Minimization via SampLing and LowEr Confidence bound Testing, that attains constant expected satisficing regret for a wide variety of bandit optimization problems in the realizable case (i.e., a satisficing arm exists). As a complement, SELECT also enjoys the same (standard) regret guarantee as the oracle in the non-realizable case. To further ensure stability of the algorithm, we introduce SELECT-LITE that achieves a light-tailed satisficing regret distribution plus a constant expected satisficing regret in the realizable case and a sub-linear expected (standard) regret in the non-realizable case. Notably, SELECT-LITE can operate on learning oracles with heavy-tailed (standard) regret distribution. More importantly, our results reveal the surprising compatibility between constant expected satisficing regret and light-tailed satisficing regret distribution, which is in sharp contrast to the case of (standard) regret. Finally, we conduct numerical experiments to validate the performance of SELECT and SELECT-LITE on both synthetic datasets and a real-world dynamic pricing case study.
♻ ☆ Enhancing Adversarial Robustness through Multi-Objective Representation Learning
Deep neural networks (DNNs) are vulnerable to small adversarial perturbations, which are tiny changes to the input data that appear insignificant but cause the model to produce drastically different outputs. Many defense methods require modifying model architectures during evaluation or performing test-time data purification. This not only introduces additional complexity but is often architecture-dependent. We show, however, that robust feature learning during training can significantly enhance DNN robustness. We propose MOREL, a multi-objective approach that aligns natural and adversarial features using cosine similarity and multi-positive contrastive losses to encourage similar features for same-class inputs. Extensive experiments demonstrate that MOREL significantly improves robustness against both white-box and black-box attacks. Our code is available at https://github.com/salomonhotegni/MOREL
♻ ☆ Uncertain Boundaries: Multidisciplinary Approaches to Copyright Issues in Generative AI
Generative AI is becoming increasingly prevalent in creative fields, sparking urgent debates over how current copyright laws can keep pace with technological innovation. Recent controversies of AI models generating near-replicas of copyrighted material highlight the need to adapt current legal frameworks and develop technical methods to mitigate copyright infringement risks. This task requires understanding the intersection between computational concepts such as large-scale data scraping and probabilistic content generation, legal definitions of originality and fair use, and economic impacts on IP rights holders. However, most existing research on copyright in AI takes a purely computer science or law-based approach, leaving a gap in coordinating these approaches that only multidisciplinary efforts can effectively address. To bridge this gap, our survey adopts a comprehensive approach synthesizing insights from law, policy, economics, and computer science. It begins by discussing the foundational goals and considerations that should be applied to copyright in generative AI, followed by methods for detecting and assessing potential violations in AI system outputs. Next, it explores various regulatory options influenced by legal, policy, and economic frameworks to manage and mitigate copyright concerns associated with generative AI and reconcile the interests of IP rights holders with that of generative AI producers. The discussion then introduces techniques to safeguard individual creative works from unauthorized replication, such as watermarking and cryptographic protections. Finally, it describes advanced training strategies designed to prevent AI models from reproducing protected content. In doing so, we highlight key opportunities for action and offer actionable strategies that creators, developers, and policymakers can use in navigating the evolving copyright landscape.
♻ ☆ Two-dimensional Taxonomy for N-ary Knowledge Representation Learning Methods
Real-world knowledge can take various forms, including structured, semi-structured, and unstructured data. Among these, knowledge graphs are a form of structured human knowledge that integrate heterogeneous data sources into structured representations but typically reduce complex n-ary relations to simple triples, thereby losing higher-order relational details. In contrast, hypergraphs naturally represent n-ary relations with hyperedges, which directly connect multiple entities together. Yet hypergraph representation learning often overlooks entity roles in hyperedges, limiting the finegrained semantic modelling. To address these issues, knowledge hypergraphs and hyper-relational knowledge graphs combine the advantages of knowledge graphs and hypergraphs to better capture the complex structures and role-specific semantics of real world knowledge. This survey provides a comprehensive review of methods handling n-ary relational data, covering both knowledge hypergraphs and hyper-relational knowledge graphs literatures. We propose a two-dimensional taxonomy: the first dimension categorises models based on their methodology, i.e., translation-based models, tensor factorisation-based models, deep neural network-based models, logic rules-based models, and hyperedge expansion-based models. The second dimension classifies models according to their awareness of entity roles and positions in n-ary relations, dividing them into aware-less, position-aware, and role-aware approaches. Finally, we discuss existing datasets, training settings and strategies, and outline open challenges to inspire future research.
♻ ☆ Data Filtering for Genetic Perturbation Prediction
Genomic studies, including CRISPR-based PerturbSeq analyses, face a vast hypothesis space, while gene perturbations remain costly and time-consuming. Gene expression models based on graph neural networks are trained to predict the outcomes of gene perturbations to facilitate such experiments. Active learning methods are often employed to train these models due to the cost of the genomic experiments required to build the training set. However, poor model initialization in active learning can result in suboptimal early selections, wasting time and valuable resources. While typical active learning mitigates this issue over many iterations, the limited number of experimental cycles in genomic studies exacerbates the risk. To this end, we propose graph-based data filtering as an alternative. Unlike active learning, data filtering selects the gene perturbations before training, meaning it is free of bias due to random initialization and initial random selection. Moreover, reducing the iterations between the wet lab and the model provides several operational advantages resulting in significant acceleration. The proposed methods are motivated by theoretical studies of graph neural network generalization. The criteria are defined over the input graph and are optimized with submodular maximization. We compare them empirically to baselines and active learning methods that are state-of-the-art. The results demonstrate that graph-based data filtering achieves comparable accuracy while alleviating the aforementioned risks.
comment: 21 pages
♻ ☆ Adversarial Robustness Unhardening via Backdoor Attacks in Federated Learning
The delicate equilibrium between user privacy and the ability to unleash the potential of distributed data is an important concern. Federated learning, which enables the training of collaborative models without sharing of data, has emerged as a privacy-centric solution. This approach brings forth security challenges, notably poisoning and backdoor attacks where malicious entities inject corrupted data into the training process, as well as evasion attacks that aim to induce misclassifications at test time. Our research investigates the intersection of adversarial training, a common defense method against evasion attacks, and backdoor attacks within federated learning. We introduce Adversarial Robustness Unhardening (ARU), which is employed by a subset of adversarial clients to intentionally undermine model robustness during federated training, rendering models susceptible to a broader range of evasion attacks. We present extensive experiments evaluating ARU's impact on adversarial training and existing robust aggregation defenses against poisoning and backdoor attacks. Our results show that ARU can substantially undermine adversarial training's ability to harden models against test-time evasion attacks, and that adversaries employing ARU can even evade robust aggregation defenses that often neutralize poisoning or backdoor attacks.
comment: 15 pages, 8 main pages of text, 13 figures, 5 tables. Made for a Neurips workshop on backdoor attacks - extended version
♻ ☆ Emotional RAG LLMs: Reading Comprehension for the Open Internet
Queries to large language models (LLMs) can be divided into two parts: the instruction/question and the accompanying context. The context for retrieval-augmented generation (RAG) systems in most benchmarks comes from Wikipedia-like texts written in a neutral and factual tone. However, real-world RAG applications often retrieve internet-based text with diverse tones and linguistic styles, posing challenges for downstream tasks. This paper introduces (a) a dataset that transforms RAG-retrieved passages into emotionally inflected and sarcastic text, (b) an emotion translation model for adapting text to different tones, and (c) a prompt-based method to improve LLMs' pragmatic interpretation of retrieved text.
♻ ☆ Rethinking Algorithmic Fairness for Human-AI Collaboration
Existing approaches to algorithmic fairness aim to ensure equitable outcomes if human decision-makers comply perfectly with algorithmic decisions. However, perfect compliance with the algorithm is rarely a reality or even a desirable outcome in human-AI collaboration. Yet, recent studies have shown that selective compliance with fair algorithms can amplify discrimination relative to the prior human policy. As a consequence, ensuring equitable outcomes requires fundamentally different algorithmic design principles that ensure robustness to the decision-maker's (a priori unknown) compliance pattern. We define the notion of compliance-robustly fair algorithmic recommendations that are guaranteed to (weakly) improve fairness in decisions, regardless of the human's compliance pattern. We propose a simple optimization strategy to identify the best performance-improving compliance-robustly fair policy. However, we show that it may be infeasible to design algorithmic recommendations that are simultaneously fair in isolation, compliance-robustly fair, and more accurate than the human policy; thus, if our goal is to improve the equity and accuracy of human-AI collaboration, it may not be desirable to enforce traditional algorithmic fairness constraints. We illustrate the value of our approach on criminal sentencing data before and after the introduction of an algorithmic risk assessment tool in Virginia.
♻ ☆ Improving Robustness and Reliability in Medical Image Classification with Latent-Guided Diffusion and Nested-Ensembles
Once deployed, medical image analysis methods are often faced with unexpected image corruptions and noise perturbations. These unknown covariate shifts present significant challenges to deep learning based methods trained on "clean" images. This often results in unreliable predictions and poorly calibrated confidence, hence hindering clinical applicability. While recent methods have been developed to address specific issues such as confidence calibration or adversarial robustness, no single framework effectively tackles all these challenges simultaneously. To bridge this gap, we propose LaDiNE, a novel ensemble learning method combining the robustness of Vision Transformers with diffusion-based generative models for improved reliability in medical image classification. Specifically, transformer encoder blocks are used as hierarchical feature extractors that learn invariant features from images for each ensemble member, resulting in features that are robust to input perturbations. In addition, diffusion models are used as flexible density estimators to estimate member densities conditioned on the invariant features, leading to improved modeling of complex data distributions while retaining properly calibrated confidence. Extensive experiments on tuberculosis chest X-rays and melanoma skin cancer datasets demonstrate that LaDiNE achieves superior performance compared to a wide range of state-of-the-art methods by simultaneously improving prediction accuracy and confidence calibration under unseen noise, adversarial perturbations, and resolution degradation.
comment: Accepted to IEEE Transactions on Medical Imaging, 2025
♻ ☆ Composing Parts for Expressive Object Generation
Image composition and generation are processes where the artists need control over various parts of the generated images. However, the current state-of-the-art generation models, like Stable Diffusion, cannot handle fine-grained part-level attributes in the text prompts. Specifically, when additional attribute details are added to the base text prompt, these text-to-image models either generate an image vastly different from the image generated from the base prompt or ignore the attribute details. To mitigate these issues, we introduce PartComposer, a training-free method that enables image generation based on fine-grained part-level attributes specified for objects in the base text prompt. This allows more control for artists and enables novel object compositions by combining distinctive object parts. PartComposer first localizes object parts by denoising the object region from a specific diffusion process. This enables each part token to be localized to the right region. After obtaining part masks, we run a localized diffusion process in each part region based on fine-grained part attributes and combine them to produce the final image. All stages of PartComposer are based on repurposing a pre-trained diffusion model, which enables it to generalize across domains. We demonstrate the effectiveness of part-level control provided by PartComposer through qualitative visual examples and quantitative comparisons with contemporary baselines.
comment: Project Page Will Be Here: https://rangwani-harsh.github.io/PartCraft
♻ ☆ Semantic-Aware Adaptive Video Streaming Using Latent Diffusion Models for Wireless Networks
This paper proposes a novel Semantic Communication (SemCom) framework for real-time adaptive-bitrate video streaming by integrating Latent Diffusion Models (LDMs) within the FFmpeg techniques. This solution addresses the challenges of high bandwidth usage, storage inefficiencies, and quality of experience (QoE) degradation associated with traditional Constant Bitrate Streaming (CBS) and Adaptive Bitrate Streaming (ABS). The proposed approach leverages LDMs to compress I-frames into a latent space, offering significant storage and semantic transmission savings without sacrificing high visual quality. While retaining B-frames and P-frames as adjustment metadata to support efficient refinement of video reconstruction at the user side, the proposed framework further incorporates state-of-the-art denoising and Video Frame Interpolation (VFI) techniques. These techniques mitigate semantic ambiguity and restore temporal coherence between frames, even in noisy wireless communication environments. Experimental results demonstrate the proposed method achieves high-quality video streaming with optimized bandwidth usage, outperforming state-of-the-art solutions in terms of QoE and resource efficiency. This work opens new possibilities for scalable real-time video streaming in 5G and future post-5G networks.
comment: Accepted in IEEE Wireless Communications
♻ ☆ Scalable Non-Equivariant 3D Molecule Generation via Rotational Alignment ICML 2025
Equivariant diffusion models have achieved impressive performance in 3D molecule generation. These models incorporate Euclidean symmetries of 3D molecules by utilizing an SE(3)-equivariant denoising network. However, specialized equivariant architectures limit the scalability and efficiency of diffusion models. In this paper, we propose an approach that relaxes such equivariance constraints. Specifically, our approach learns a sample-dependent SO(3) transformation for each molecule to construct an aligned latent space. A non-equivariant diffusion model is then trained over the aligned representations. Experimental results demonstrate that our approach performs significantly better than previously reported non-equivariant models. It yields sample quality comparable to state-of-the-art equivariant diffusion models and offers improved training and sampling efficiency. Our code is available at https://github.com/skeletondyh/RADM
comment: ICML 2025; added conditional generation results
♻ ☆ An Investigation into Seasonal Variations in Energy Forecasting for Student Residences
This research provides an in-depth evaluation of various machine learning models for energy forecasting, focusing on the unique challenges of seasonal variations in student residential settings. The study assesses the performance of baseline models, such as LSTM and GRU, alongside state-of-the-art forecasting methods, including Autoregressive Feedforward Neural Networks, Transformers, and hybrid approaches. Special attention is given to predicting energy consumption amidst challenges like seasonal patterns, vacations, meteorological changes, and irregular human activities that cause sudden fluctuations in usage. The findings reveal that no single model consistently outperforms others across all seasons, emphasizing the need for season-specific model selection or tailored designs. Notably, the proposed Hyper Network based LSTM and MiniAutoEncXGBoost models exhibit strong adaptability to seasonal variations, effectively capturing abrupt changes in energy consumption during summer months. This study advances the energy forecasting field by emphasizing the critical role of seasonal dynamics and model-specific behavior in achieving accurate predictions.
♻ ☆ A Library for Learning Neural Operators
We present NeuralOperator, an open-source Python library for operator learning. Neural operators generalize neural networks to maps between function spaces instead of finite-dimensional Euclidean spaces. They can be trained and inferenced on input and output functions given at various discretizations, satisfying a discretization convergence properties. Built on top of PyTorch, NeuralOperator provides all the tools for training and deploying neural operator models, as well as developing new ones, in a high-quality, tested, open-source package. It combines cutting-edge models and customizability with a gentle learning curve and simple user interface for newcomers.
♻ ☆ Parameter-Efficient Fine-Tuning for Pre-Trained Vision Models: A Survey and Benchmark
Pre-trained vision models (PVMs) have demonstrated remarkable adaptability across a wide range of downstream vision tasks, showcasing exceptional performance. However, as these models scale to billions or even trillions of parameters, conventional full fine-tuning has become increasingly impractical due to its high computational and storage demands. To address these challenges, parameter-efficient fine-tuning (PEFT) has emerged as a promising alternative, aiming to achieve performance comparable to full fine-tuning while making minimal adjustments to the model parameters. This paper presents a comprehensive survey of the latest advancements in the visual PEFT field, systematically reviewing current methodologies and categorizing them into four primary categories: addition-based, partial-based, unified-based, and multi-task tuning. In addition, this paper offers an in-depth analysis of widely used visual datasets and real-world applications where PEFT methods have been successfully applied. Furthermore, this paper introduces the V-PEFT Bench, a unified benchmark designed to standardize the evaluation of PEFT methods across a diverse set of vision tasks, ensuring consistency and fairness in comparison. Finally, the paper outlines potential directions for future research to propel advances in the PEFT field. A comprehensive collection of resources is available at https://github.com/synbol/Awesome-Parameter-Efficient-Transfer-Learning.
comment: Submitted to IEEE TPAMI
♻ ☆ Scaling Laws for Black box Adversarial Attacks
Adversarial examples usually exhibit good cross-model transferability, enabling attacks on black-box models with limited information about their architectures and parameters, which are highly threatening in commercial black-box scenarios. Model ensembling is an effective strategy to improve the transferability of adversarial examples by attacking multiple surrogate models. However, since prior studies usually adopt few models in the ensemble, there remains an open question of whether scaling the number of models can further improve black-box attacks. Inspired by the scaling law of large foundation models, we investigate the scaling laws of black-box adversarial attacks in this work. Through theoretical analysis and empirical evaluations, we conclude with clear scaling laws that using more surrogate models enhances adversarial transferability. Comprehensive experiments verify the claims on standard image classifiers, diverse defended models and multimodal large language models using various adversarial attack methods. Specifically, by scaling law, we achieve 90%+ transfer attack success rate on even proprietary models like GPT-4o. Further visualization indicates that there is also a scaling law on the interpretability and semantics of adversarial perturbations.
♻ ☆ Perturbation Analysis of Singular Values in Concatenated Matrices
Concatenating matrices is a common technique for uncovering shared structures in data through singular value decomposition (SVD) and low-rank approximations. The fundamental question arises: How does the singular value spectrum of the concatenated matrix relate to the spectra of its individual components? In the present work, we develop a perturbation technique that extends classical results such as Weyl's inequality to concatenated matrices. We setup analytical bounds that quantify stability of singular values under small perturbations in submatrices. The results demonstrate that if submatrices are close in a norm, dominant singular values of the concatenated matrix remain stable enabling controlled trade-offs between accuracy and compression. These provide a theoretical basis for improved matrix clustering and compression strategies with applications in the numerical linear algebra, signal processing, and data-driven modeling.
comment: 13 pages
♻ ☆ MedLeak: Multimodal Medical Data Leakage in Secure Federated Learning with Crafted Models
Federated learning (FL) allows participants to collaboratively train machine learning models while keeping their data local, making it ideal for collaborations among healthcare institutions on sensitive data. However, in this paper, we propose a novel privacy attack called MedLeak, which allows a malicious FL server to recover high-quality site-specific private medical data from the client model updates. MedLeak works by introducing an adversarially crafted model during the FL training process. Honest clients, unaware of the insidious changes in the published models, continue to send back their updates as per the standard FL protocol. Leveraging a novel analytical method, MedLeak can efficiently recover private client data from the aggregated parameter updates, eliminating costly optimization. In addition, the scheme relies solely on the aggregated updates, thus rendering secure aggregation protocols ineffective, as they depend on the randomization of intermediate results for security while leaving the final aggregated results unaltered. We implement MedLeak on medical image datasets (MedMNIST, COVIDx CXR-4, and Kaggle Brain Tumor MRI), as well as a medical text dataset (MedAbstract). The results demonstrate that our attack achieves high recovery rates and strong quantitative scores on both image and text datasets. We also thoroughly evaluate MedLeak across different attack parameters, providing insights into key factors that influence attack performance and potential defenses. Furthermore, we demonstrate that the recovered data can support downstream tasks such as disease classification with minimal performance loss. Our findings validate the need for enhanced privacy measures in FL systems, particularly for safeguarding sensitive medical data against powerful model inversion attacks.
comment: Accepted by the IEEE/ACM conference on Connected Health: Applications, Systems and Engineering Technologies 2025 (CHASE'25)
♻ ☆ Overcoming Dimensional Factorization Limits in Discrete Diffusion Models through Quantum Joint Distribution Learning
Discrete diffusion models represent a significant advance in generative modeling, demonstrating remarkable success in synthesizing complex, high-quality discrete data. However, to avoid exponential computational costs, they typically rely on calculating per-dimension transition probabilities when learning high-dimensional distributions. In this study, we rigorously prove that this approach leads to a worst-case linear scaling of Kullback-Leibler (KL) divergence with data dimension. To address this, we propose a Quantum Discrete Denoising Diffusion Probabilistic Model (QD3PM), which enables joint probability learning through diffusion and denoising in exponentially large Hilbert spaces, offering a theoretical pathway to faithfully capture the true joint distribution. By deriving posterior states through quantum Bayes' theorem, similar to the crucial role of posterior probabilities in classical diffusion models, and by learning the joint probability, we establish a solid theoretical foundation for quantum-enhanced diffusion models. For denoising, we design a quantum circuit that utilizes temporal information for parameter sharing and incorporates learnable classical-data-controlled rotations for encoding. Exploiting joint distribution learning, our approach enables single-step sampling from pure noise, eliminating iterative requirements of existing models. Simulations demonstrate the proposed model's superior accuracy in modeling complex distributions compared to factorization methods. Hence, this paper establishes a new theoretical paradigm in generative models by leveraging the quantum advantage in joint distribution learning.
comment: Comments are welcome
♻ ☆ Sample then Identify: A General Framework for Risk Control and Assessment in Multimodal Large Language Models ICLR 2025
Multimodal Large Language Models (MLLMs) exhibit promising advancements across various tasks, yet they still encounter significant trustworthiness issues. Prior studies apply Split Conformal Prediction (SCP) in language modeling to construct prediction sets with statistical guarantees. However, these methods typically rely on internal model logits or are restricted to multiple-choice settings, which hampers their generalizability and adaptability in dynamic, open-ended environments. In this paper, we introduce TRON, a two-step framework for risk control and assessment, applicable to any MLLM that supports sampling in both open-ended and closed-ended scenarios. TRON comprises two main components: (1) a novel conformal score to sample response sets of minimum size, and (2) a nonconformity score to identify high-quality responses based on self-consistency theory, controlling the error rates by two specific risk levels. Furthermore, we investigate semantic redundancy in prediction sets within open-ended contexts for the first time, leading to a promising evaluation metric for MLLMs based on average set size. Our comprehensive experiments across four Video Question-Answering (VideoQA) datasets utilizing eight MLLMs show that TRON achieves desired error rates bounded by two user-specified risk levels. Additionally, deduplicated prediction sets maintain adaptiveness while being more efficient and stable for risk assessment under different risk levels.
comment: Accepted by ICLR 2025 Spotlights
♻ ☆ FLOAT: Generative Motion Latent Flow Matching for Audio-driven Talking Portrait ICCV 2025
With the rapid advancement of diffusion-based generative models, portrait image animation has achieved remarkable results. However, it still faces challenges in temporally consistent video generation and fast sampling due to its iterative sampling nature. This paper presents FLOAT, an audio-driven talking portrait video generation method based on flow matching generative model. Instead of a pixel-based latent space, we take advantage of a learned orthogonal motion latent space, enabling efficient generation and editing of temporally consistent motion. To achieve this, we introduce a transformer-based vector field predictor with an effective frame-wise conditioning mechanism. Additionally, our method supports speech-driven emotion enhancement, enabling a natural incorporation of expressive motions. Extensive experiments demonstrate that our method outperforms state-of-the-art audio-driven talking portrait methods in terms of visual quality, motion fidelity, and efficiency.
comment: ICCV 2025. Project page: https://deepbrainai-research.github.io/float/
♻ ☆ Drivetrain simulation using variational autoencoders
This work proposes variational autoencoders (VAEs) to predict a vehicle's jerk signals from torque demand in the context of limited real-world drivetrain datasets. We implement both unconditional and conditional VAEs, trained on experimental data from two variants of a fully electric SUV with differing torque and drivetrain configurations. The VAEs synthesize jerk signals that capture characteristics from multiple drivetrain scenarios by leveraging the learned latent space. A performance comparison with baseline physics-based and hybrid models confirms the effectiveness of the VAEs, without requiring detailed system parametrization. Unconditional VAEs generate realistic jerk signals without prior system knowledge, while conditional VAEs enable the generation of signals tailored to specific torque inputs. This approach reduces the dependence on costly and time-intensive real-world experiments and extensive manual modeling. The results support the integration of generative models such as VAEs into drivetrain simulation pipelines, both for data augmentation and for efficient exploration of complex operational scenarios, with the potential to streamline validation and accelerate vehicle development.
comment: 27 pages
♻ ☆ Deep Multi-Manifold Transformation Based Multivariate Time Series Fault Detection
Unsupervised fault detection in multivariate time series plays a vital role in ensuring the stable operation of complex systems. Traditional methods often assume that normal data follow a single Gaussian distribution and identify anomalies as deviations from this distribution. {\color{black} However, this simplified assumption fails to capture the diversity and structural complexity of real-world time series, which can lead to misjudgments and reduced detection performance in practical applications. To address this issue, we propose a new method that combines a neighborhood-driven data augmentation strategy with a multi-manifold representation learning framework.} By incorporating information from local neighborhoods, the augmentation module can simulate contextual variations of normal data, enhancing the model's adaptability to distributional changes. In addition, we design a structure-aware feature learning approach that encourages natural clustering of similar patterns in the feature space while maintaining sufficient distinction between different operational states. Extensive experiments on several public benchmark datasets demonstrate that our method achieves superior performance in terms of both accuracy and robustness, showing strong potential for generalization and real-world deployment.
comment: 11 pages, 7 figures, accepted by TNNLS
♻ ☆ State Entropy Regularization for Robust Reinforcement Learning
State entropy regularization has empirically shown better exploration and sample complexity in reinforcement learning (RL). However, its theoretical guarantees have not been studied. In this paper, we show that state entropy regularization improves robustness to structured and spatially correlated perturbations. These types of variation are common in transfer learning but often overlooked by standard robust RL methods, which typically focus on small, uncorrelated changes. We provide a comprehensive characterization of these robustness properties, including formal guarantees under reward and transition uncertainty, as well as settings where the method performs poorly. Much of our analysis contrasts state entropy with the widely used policy entropy regularization, highlighting their different benefits. Finally, from a practical standpoint, we illustrate that compared with policy entropy, the robustness advantages of state entropy are more sensitive to the number of rollouts used for policy evaluation.
♻ ☆ Automating Versatile Time-Series Analysis with Tiny Transformers on Embedded FPGAs
Transformer-based models have shown strong performance across diverse time-series tasks, but their deployment on resource-constrained devices remains challenging due to high memory and computational demand. While prior work targeting Microcontroller Units (MCUs) has explored hardware-specific optimizations, such approaches are often task-specific and limited to 8-bit fixed-point precision. Field-Programmable Gate Arrays (FPGAs) offer greater flexibility, enabling fine-grained control over data precision and architecture. However, existing FPGA-based deployments of Transformers for time-series analysis typically focus on high-density platforms with manual configuration. This paper presents a unified and fully automated deployment framework for Tiny Transformers on embedded FPGAs. Our framework supports a compact encoder-only Transformer architecture across three representative time-series tasks (forecasting, classification, and anomaly detection). It combines quantization-aware training (down to 4 bits), hardware-aware hyperparameter search using Optuna, and automatic VHDL generation for seamless deployment. We evaluate our framework on six public datasets across two embedded FPGA platforms. Results show that our framework produces integer-only, task-specific Transformer accelerators achieving as low as 0.033 mJ per inference with millisecond latency on AMD Spartan-7, while also providing insights into deployment feasibility on Lattice iCE40. All source code will be released in the GitHub repository (https://github.com/Edwina1030/TinyTransformer4TS).
comment: 6 pages, 5 figures, 1 table, accepted by IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2025)
♻ ☆ MOE-Enhanced Explanable Deep Manifold Transformation for Complex Data Embedding and Visualization
Dimensionality reduction (DR) plays a crucial role in various fields, including data engineering and visualization, by simplifying complex datasets while retaining essential information. However, achieving both high DR accuracy and strong explainability remains a fundamental challenge, especially for users dealing with high-dimensional data. Traditional DR methods often face a trade-off between precision and transparency, where optimizing for performance can lead to reduced explainability, and vice versa. This limitation is especially prominent in real-world applications such as image, tabular, and text data analysis, where both accuracy and explainability are critical. To address these challenges, this work introduces the MOE-based Explainable Deep Manifold Transformation (DMT-ME). The proposed approach combines hyperbolic embeddings, which effectively capture complex hierarchical structures, with Mixture of Experts (MOE) models, which dynamically allocate tasks based on input features. DMT-ME enhances DR accuracy by leveraging hyperbolic embeddings to represent the hierarchical nature of data, while also improving explainability by explicitly linking input data, embedding outcomes, and key features through the MOE structure. Extensive experiments demonstrate that DMT-ME consistently achieves superior performance in both DR accuracy and model explainability, making it a robust solution for complex data analysis. The code is available at https://github.com/zangzelin/code_dmtme
comment: 14 pages, 8 figures
♻ ☆ Global Convergence of Iteratively Reweighted Least Squares for Robust Subspace Recovery
Robust subspace estimation is fundamental to many machine learning and data analysis tasks. Iteratively Reweighted Least Squares (IRLS) is an elegant and empirically effective approach to this problem, yet its theoretical properties remain poorly understood. This paper establishes that, under deterministic conditions, a variant of IRLS with dynamic smoothing regularization converges linearly to the underlying subspace from any initialization. We extend these guarantees to affine subspace estimation, a setting that lacks prior recovery theory. Additionally, we illustrate the practical benefits of IRLS through an application to low-dimensional neural network training. Our results provide the first global convergence guarantees for IRLS in robust subspace recovery and, more broadly, for nonconvex IRLS on a Riemannian manifold.
♻ ☆ Bayes correlated equilibria, no-regret dynamics in Bayesian games, and the price of anarchy
This paper investigates equilibrium computation and the price of anarchy for Bayesian games, which are the fundamental models of games with incomplete information. In normal-form games with complete information, it is known that efficiently computable no-regret dynamics converge to correlated equilibria, and the price of anarchy for correlated equilibria can be bounded for a broad class of games called smooth games. However, in Bayesian games, as surveyed by Forges (1993), several non-equivalent extensions of correlated equilibria exist, and it remains unclear whether they can be efficiently computed or whether their price of anarchy can be bounded. In this paper, we identify a natural extension of correlated equilibria that can be computed efficiently and is guaranteed to have bounds on the price of anarchy in various games. First, we propose a variant of regret called untruthful swap regret. If each player minimizes it in repeated play of Bayesian games, the empirical distribution of these dynamics is guaranteed to converge to communication equilibria, which is one of the extensions of correlated equilibria proposed by Myerson (1982). We present an efficient algorithm for minimizing untruthful swap regret with a sublinear upper bound, which we prove to be tight in terms of the number of types. As a result, by simulating the dynamics with our algorithm, we can approximately compute a communication equilibrium in polynomial time. Furthermore, we extend existing lower bounds on the price of anarchy based on the smoothness arguments from Bayes--Nash equilibria to equilibria obtained by the proposed dynamics.
comment: Previous title: Bayes correlated equilibria and no-regret dynamics
♻ ☆ Disrupting Model Merging: A Parameter-Level Defense Without Sacrificing Accuracy ICCV 2025
Model merging is a technique that combines multiple finetuned models into a single model without additional training, allowing a free-rider to cheaply inherit specialized capabilities. This study investigates methodologies to suppress unwanted model merging by free-riders. Existing methods such as model watermarking or fingerprinting can only detect merging in hindsight. In contrast, we propose a first proactive defense against model merging. Specifically, our defense method modifies the model parameters so that the model is disrupted if the model is merged with any other model, while its functionality is kept unchanged if not merged with others. Our approach consists of two modules, rearranging MLP parameters and scaling attention heads, which push the model out of the shared basin in parameter space, causing the merging performance with other models to degrade significantly. We conduct extensive experiments on image classification, image generation, and text classification to demonstrate that our defense severely disrupts merging while retaining the functionality of the post-protect model. Moreover, we analyze potential adaptive attacks and further propose a dropout-based pruning to improve our proposal's robustness.
comment: Accepted by ICCV 2025
♻ ☆ Pretrained Reversible Generation as Unsupervised Visual Representation Learning ICCV 2025
Recent generative models based on score matching and flow matching have significantly advanced generation tasks, but their potential in discriminative tasks remains underexplored. Previous approaches, such as generative classifiers, have not fully leveraged the capabilities of these models for discriminative tasks due to their intricate designs. We propose Pretrained Reversible Generation (PRG), which extracts unsupervised representations by reversing the generative process of a pretrained continuous generation model. PRG effectively reuses unsupervised generative models, leveraging their high capacity to serve as robust and generalizable feature extractors for downstream tasks. This framework enables the flexible selection of feature hierarchies tailored to specific downstream tasks. Our method consistently outperforms prior approaches across multiple benchmarks, achieving state-of-the-art performance among generative model based methods, including 78% top-1 accuracy on ImageNet at a resolution of 64*64. Extensive ablation studies, including out-of-distribution evaluations, further validate the effectiveness of our approach.PRG is available at https://github.com/opendilab/PRG.
comment: Accepted by ICCV 2025
♻ ☆ Automatic Depression Assessment using Machine Learning: A Comprehensive Survey
Depression is a common mental illness across current human society. Traditional depression assessment relying on inventories and interviews with psychologists frequently suffer from subjective diagnosis results, slow and expensive diagnosis process as well as lack of human resources. Since there is a solid evidence that depression is reflected by various human internal brain activities and external expressive behaviours, early traditional machine learning (ML) and advanced deep learning (DL) models have been widely explored for human behaviour-based automatic depression assessment (ADA) since 2012. However, recent ADA surveys typically only focus on a limited number of human behaviour modalities. Despite being used as a theoretical basis for developing ADA approaches, existing ADA surveys lack a comprehensive review and summary of multi-modal depression-related human behaviours. To bridge this gap, this paper specifically summarises depression-related human behaviours across a range of modalities (e.g. the human brain, verbal language and non-verbal audio/facial/body behaviours). We focus on conducting an up-to-date and comprehensive survey of ML-based ADA approaches for learning depression cues from these behaviours as well as discussing and comparing their distinctive features and limitations. In addition, we also review existing ADA competitions and datasets, identify and discuss the main challenges and opportunities to provide further research directions for future ADA researchers.
♻ ☆ A Comprehensive Study of Shapley Value in Data Analytics VLDB 2025
Over the recent years, Shapley value (SV), a solution concept from cooperative game theory, has found numerous applications in data analytics (DA). This paper provides the first comprehensive study of SV used throughout the DA workflow, clarifying the key variables in defining DA-applicable SV and the essential functionalities that SV can provide for data scientists. We condense four primary challenges of using SV in DA, namely computation efficiency, approximation error, privacy preservation, and interpretability, then disentangle the resolution techniques from existing arts in this field, analyze and discuss the techniques w.r.t. each challenge and potential conflicts between challenges. We also implement SVBench, a modular and extensible open-sourced framework for developing SV applications in different DA tasks, and conduct extensive evaluations to validate our analyses and discussions. Based on the qualitative and quantitative results, we identify the limitations of current efforts for applying SV to DA and highlight the directions of future research and engineering.
comment: Accepted by VLDB 2025
♻ ☆ The Effectiveness of LLMs as Annotators: A Comparative Overview and Empirical Analysis of Direct Representation
Large Language Models (LLMs) have emerged as powerful support tools across various natural language tasks and a range of application domains. Recent studies focus on exploring their capabilities for data annotation. This paper provides a comparative overview of twelve studies investigating the potential of LLMs in labelling data. While the models demonstrate promising cost and time-saving benefits, there exist considerable limitations, such as representativeness, bias, sensitivity to prompt variations and English language preference. Leveraging insights from these studies, our empirical analysis further examines the alignment between human and GPT-generated opinion distributions across four subjective datasets. In contrast to the studies examining representation, our methodology directly obtains the opinion distribution from GPT. Our analysis thereby supports the minority of studies that are considering diverse perspectives when evaluating data annotation tasks and highlights the need for further research in this direction.
comment: LREC-COLING NLPerspectives workshop
♻ ☆ CoT Red-Handed: Stress Testing Chain-of-Thought Monitoring
As AI models are deployed with increasing autonomy, it is important to ensure they do not take harmful actions unnoticed. As a potential mitigation, we investigate Chain-of-Thought (CoT) monitoring, wherein a weaker trusted monitor model continuously oversees the intermediate reasoning steps of a more powerful but untrusted model. We compare CoT monitoring to action-only monitoring, where only final outputs are reviewed, in a red-teaming setup where the untrusted model is instructed to pursue harmful side tasks while completing a coding problem. We find that CoT monitoring improves detection by up to 27 percentage points in scenarios where action-only monitoring fails to reliably identify sabotage. However, CoT traces can also contain misleading rationalizations that deceive the monitor, reducing performance in more obvious sabotage cases. To address this, we introduce a hybrid protocol that independently scores both reasoning and final outputs and combines them using a weighted average. This hybrid monitor consistently outperforms both CoT and action-only monitors across all tested models and tasks, with detection rates over four times higher than action-only monitoring for subtle deception scenarios.
♻ ☆ Beware of Calibration Data for Pruning Large Language Models ICLR 2025
As large language models (LLMs) are widely applied across various fields, model compression has become increasingly crucial for reducing costs and improving inference efficiency. Post-training pruning is a promising method that does not require resource-intensive iterative training and only needs a small amount of calibration data to assess the importance of parameters. Recent research has enhanced post-training pruning from different aspects but few of them systematically explore the effects of calibration data, and it is unclear if there exist better calibration data construction strategies. We fill this blank and surprisingly observe that calibration data is also crucial to post-training pruning, especially for high sparsity. Through controlled experiments on important influence factors of calibration data, including the pruning settings, the amount of data, and its similarity with pre-training data, we observe that a small size of data is adequate, and more similar data to its pre-training stage can yield better performance. As pre-training data is usually inaccessible for advanced LLMs, we further provide a self-generating calibration data synthesis strategy to construct feasible calibration data. Experimental results on recent strong open-source LLMs (e.g., DCLM, and LLaMA-3) show that the proposed strategy can enhance the performance of strong pruning methods (e.g., Wanda, DSnoT, OWL) by a large margin (up to $2.68\%$). Code is available at https://github.com/Dereck0602/calibration_data.
comment: Published as a conference paper at ICLR 2025
♻ ☆ Enough Coin Flips Can Make LLMs Act Bayesian ACL 2025
Large language models (LLMs) exhibit the ability to generalize given few-shot examples in their input prompt, an emergent capability known as in-context learning (ICL). We investigate whether LLMs use ICL to perform structured reasoning in ways that are consistent with a Bayesian framework or rely on pattern matching. Using a controlled setting of biased coin flips, we find that: (1) LLMs often possess biased priors, causing initial divergence in zero-shot settings, (2) in-context evidence outweighs explicit bias instructions, (3) LLMs broadly follow Bayesian posterior updates, with deviations primarily due to miscalibrated priors rather than flawed updates, and (4) attention magnitude has negligible effect on Bayesian inference. With sufficient demonstrations of biased coin flips via ICL, LLMs update their priors in a Bayesian manner.
comment: ACL 2025 Main
♻ ☆ Deep Support Vectors
Deep learning has achieved tremendous success. However, unlike SVMs, which provide direct decision criteria and can be trained with a small dataset, it still has significant weaknesses due to its requirement for massive datasets during training and the black-box characteristics on decision criteria. This paper addresses these issues by identifying support vectors in deep learning models. To this end, we propose the DeepKKT condition, an adaptation of the traditional Karush-Kuhn-Tucker (KKT) condition for deep learning models, and confirm that generated Deep Support Vectors (DSVs) using this condition exhibit properties similar to traditional support vectors. This allows us to apply our method to few-shot dataset distillation problems and alleviate the black-box characteristics of deep learning models. Additionally, we demonstrate that the DeepKKT condition can transform conventional classification models into generative models with high fidelity, particularly as latent generative models using class labels as latent variables. We validate the effectiveness of DSVs using common datasets (ImageNet, CIFAR10 and CIFAR100) on the general architectures (ResNet and ConvNet), proving their practical applicability.
comment: Neurips 2024
♻ ☆ A Survey of Test-Time Compute: From Intuitive Inference to Deliberate Reasoning
The remarkable performance of the o1 model in complex reasoning demonstrates that test-time compute scaling can further unlock the model's potential, enabling powerful System-2 thinking. However, there is still a lack of comprehensive surveys for test-time compute scaling. We trace the concept of test-time compute back to System-1 models. In System-1 models, test-time compute addresses distribution shifts and improves robustness and generalization through parameter updating, input modification, representation editing, and output calibration. In System-2 models, it enhances the model's reasoning ability to solve complex problems through repeated sampling, self-correction, and tree search. We organize this survey according to the trend of System-1 to System-2 thinking, highlighting the key role of test-time compute in the transition from System-1 models to weak System-2 models, and then to strong System-2 models. We also point out advanced topics and future directions.
comment: Work in progress
♻ ☆ Learning Dynamics of LLM Finetuning
Learning dynamics, which describes how the learning of specific training examples influences the model's predictions on other examples, gives us a powerful tool for understanding the behavior of deep learning systems. We study the learning dynamics of large language models during different types of finetuning, by analyzing the step-wise decomposition of how influence accumulates among different potential responses. Our framework allows a uniform interpretation of many interesting observations about the training of popular algorithms for both instruction tuning and preference tuning. In particular, we propose a hypothetical explanation of why specific types of hallucination are strengthened after finetuning, e.g., the model might use phrases or facts in the response for question B to answer question A, or the model might keep repeating similar simple phrases when generating responses. We also extend our framework and highlight a unique "squeezing effect" to explain a previously observed phenomenon in off-policy direct preference optimization (DPO), where running DPO for too long makes even the desired outputs less likely. This framework also provides insights into where the benefits of on-policy DPO and other variants come from. The analysis not only provides a novel perspective of understanding LLM's finetuning but also inspires a simple, effective method to improve alignment performance.
♻ ☆ Score-based Generative Diffusion Models to Synthesize Full-dose FDG Brain PET from MRI in Epilepsy Patients
Fluorodeoxyglucose (FDG) PET to evaluate patients with epilepsy is one of the most common applications for simultaneous PET/MRI, given the need to image both brain structure and metabolism, but is suboptimal due to the radiation dose in this young population. Little work has been done synthesizing diagnostic quality PET images from MRI data or MRI data with ultralow-dose PET using advanced generative AI methods, such as diffusion models, with attention to clinical evaluations tailored for the epilepsy population. Here we compared the performance of diffusion- and non-diffusion-based deep learning models for the MRI-to-PET image translation task for epilepsy imaging using simultaneous PET/MRI in 52 subjects (40 train/2 validate/10 hold-out test). We tested three different models: 2 score-based generative diffusion models (SGM-Karras Diffusion [SGM-KD] and SGM-variance preserving [SGM-VP]) and a Transformer-Unet. We report results on standard image processing metrics as well as clinically relevant metrics, including congruency measures (Congruence Index and Congruency Mean Absolute Error) that assess hemispheric metabolic asymmetry, which is a key part of the clinical analysis of these images. The SGM-KD produced the best qualitative and quantitative results when synthesizing PET purely from T1w and T2 FLAIR images with the least mean absolute error in whole-brain specific uptake value ratio (SUVR) and highest intraclass correlation coefficient. When 1% low-dose PET images are included in the inputs, all models improve significantly and are interchangeable for quantitative performance and visual quality. In summary, SGMs hold great potential for pure MRI-to-PET translation, while all 3 model types can synthesize full-dose FDG-PET accurately using MRI and ultralow-dose PET.
♻ ☆ Multi-Modal Recommendation Unlearning for Legal, Licensing, and Modality Constraints AAAI 2025
User data spread across multiple modalities has popularized multi-modal recommender systems (MMRS). They recommend diverse content such as products, social media posts, TikTok reels, etc., based on a user-item interaction graph. With rising data privacy demands, recent methods propose unlearning private user data from uni-modal recommender systems (RS). However, methods for unlearning item data related to outdated user preferences, revoked licenses, and legally requested removals are still largely unexplored. Previous RS unlearning methods are unsuitable for MMRS due to the incompatibility of their matrix-based representation with the multi-modal user-item interaction graph. Moreover, their data partitioning step degrades performance on each shard due to poor data heterogeneity and requires costly performance aggregation across shards. This paper introduces MMRecUn, the first approach known to us for unlearning in MMRS and unlearning item data. Given a trained RS model, MMRecUn employs a novel Reverse Bayesian Personalized Ranking (BPR) objective to enable the model to forget marked data. The reverse BPR attenuates the impact of user-item interactions within the forget set, while the forward BPR reinforces the significance of user-item interactions within the retain set. Our experiments demonstrate that MMRecUn outperforms baseline methods across various unlearning requests when evaluated on benchmark MMRS datasets. MMRecUn achieves recall performance improvements of up to 49.85% compared to baseline methods and is up to 1.3x faster than the Gold model, which is trained on retain set from scratch. MMRecUn offers significant advantages, including superiority in removing target interactions, preserving retained interactions, and zero overhead costs compared to previous methods. Code: https://github.com/MachineUnlearn/MMRecUN Extended version: arXiv:2405.15328
comment: Extended Version, Accepted at AAAI 2025. 17 pages, 4 figures and 9 tables
♻ ☆ TyphoFormer: Language-Augmented Transformer for Accurate Typhoon Track Forecasting
Accurate typhoon track forecasting is crucial for early system warning and disaster response. While Transformer-based models have demonstrated strong performance in modeling the temporal dynamics of dense trajectories of humans and vehicles in smart cities, they usually lack access to broader contextual knowledge that enhances the forecasting reliability of sparse meteorological trajectories, such as typhoon tracks. To address this challenge, we propose TyphoFormer, a novel framework that incorporates natural language descriptions as auxiliary prompts to improve typhoon trajectory forecasting. For each time step, we use Large Language Model (LLM) to generate concise textual descriptions based on the numerical attributes recorded in the North Atlantic hurricane database. The language descriptions capture high-level meteorological semantics and are embedded as auxiliary special tokens prepended to the numerical time series input. By integrating both textual and sequential information within a unified Transformer encoder, TyphoFormer enables the model to leverage contextual cues that are otherwise inaccessible through numerical features alone. Extensive experiments are conducted on HURDAT2 benchmark, results show that TyphoFormer consistently outperforms other state-of-the-art baseline methods, particularly under challenging scenarios involving nonlinear path shifts and limited historical observations.
comment: Short research paper
♻ ☆ DReSS: Data-driven Regularized Structured Streamlining for Large Language Models
Large language models (LLMs) have achieved significant progress across various domains, but their increasing scale results in high computational and memory costs. Recent studies have revealed that LLMs exhibit sparsity, providing the potential to reduce model size through pruning techniques. However, existing pruning methods typically follow a prune-then-finetune paradigm. Since the pruned components still contain valuable information, their direct removal often leads to irreversible performance degradation, imposing a substantial computational burden to recover performance during finetuning. In this paper, we propose a novel paradigm that first applies regularization, then prunes, and finally finetunes. Based on this paradigm, we introduce DReSS, a simple and effective Data-driven Regularized Structured Streamlining method for LLMs. By leveraging a small amount of data to regularize the components to be pruned, DReSS explicitly transfers the important information to the remaining parts of the model in advance. Compared to direct pruning, this can reduce the information loss caused by parameter removal, thereby enhancing its language modeling capabilities. Experimental results demonstrate that DReSS significantly outperforms existing pruning methods even under extreme pruning ratios, significantly reducing latency and increasing throughput.
Multimodal Medical Code Tokenizer ICML'25
Foundation models trained on patient electronic health records (EHRs) require tokenizing medical data into sequences of discrete vocabulary items. Existing tokenizers treat medical codes from EHRs as isolated textual tokens. However, each medical code is defined by its textual description, its position in ontological hierarchies, and its relationships to other codes, such as disease co-occurrences and drug-treatment associations. Medical vocabularies contain more than 600,000 codes with critical information for clinical reasoning. We introduce MedTok, a multimodal medical code tokenizer that uses the text descriptions and relational context of codes. MedTok processes text using a language model encoder and encodes the relational structure with a graph encoder. It then quantizes both modalities into a unified token space, preserving modality-specific and cross-modality information. We integrate MedTok into five EHR models and evaluate it on operational and clinical tasks across in-patient and out-patient datasets, including outcome prediction, diagnosis classification, drug recommendation, and risk stratification. Swapping standard EHR tokenizers with MedTok improves AUPRC across all EHR models, by 4.10% on MIMIC-III, 4.78% on MIMIC-IV, and 11.32% on EHRShot, with the largest gains in drug recommendation. Beyond EHR modeling, we demonstrate using MedTok tokenizer with medical QA systems. Our results demonstrate the potential of MedTok as a unified tokenizer for medical codes, improving tokenization for medical foundation models.
comment: ICML'25
♻ ☆ A Framework of Decision-Relevant Observability: Reinforcement Learning Converges Under Relative Ignorability
From clinical dosing algorithms to autonomous robots, sequential decision-making systems routinely operate with missing or incomplete data. Classical reinforcement learning theory, which is commonly used to solve sequential decision problems, assumes Markovian observability, which may not hold under partial observability. Causal inference paradigms formalise ignorability of missingness. We show these views can be unified and generalized in order to guarantee Q-learning convergence even when the Markov property fails. To do so, we introduce the concept of \emph{relative ignorability}. Relative ignorability is a graphical-causal criterion which refines the requirements for accurate decision-making based on incomplete data. Theoretical results and simulations both reveal that non-markovian stochastic processes whose missingness is relatively ignorable with respect to causal estimands can still be optimized using standard Reinforcement Learning algorithms. These results expand the theoretical foundations of safe, data-efficient AI to real-world environments where complete information is unattainable.
♻ ☆ MetaSynth: Meta-Prompting-Driven Agentic Scaffolds for Diverse Synthetic Data Generation ACL 2025
Recent smaller language models such Phi-3.5 and Phi-4 rely on synthetic data generated using larger Language models. Questions remain about leveraging synthetic data for other use cases, such as adapting LLMs to specific domains. A key limitation of synthetic data is low diversity, which negatively impacts its downstream applicability for improving other models. To address this, we propose MetaSynth, a method for generating synthetic data that enhances diversity through meta-prompting, where a language model orchestrates multiple "expert" LLM agents to collaboratively generate data. Using only 25 million tokens of synthetic data generated with MetaSynth, we successfully adapt a well-trained LLM (Mistral-7B-v0.3) to two specialized domains-Finance and Biomedicine-without compromising the capabilities of the resulting model in general tasks. In addition, we evaluate the diversity of our synthetic data using seven automated metrics, and find that it approaches the diversity of LLM pre-training corpora. Continually pre-training Mistral-7B-v0.3 with MetaSynth notably outperforms the base LLM, showing improvements of up to 4.08% in Finance and 13.75% in Biomedicine. The same model shows degraded performance when trained on data generated using a template prompt, even when the template includes prior generations and varying In-Context exemplars of real data. Our findings suggest that a few million tokens of diverse synthetic data without mixing any real data, is sufficient for effective domain adaptation when using MetaSynth.
comment: 33 pages, 17 figures. Findings of ACL 2025
♻ ☆ The Oracle Complexity of Simplex-based Matrix Games: Linear Separability and Nash Equilibria
We study the problem of solving matrix games of the form $\max_{\mathbf{w}\in\mathcal{W}}\min_{\mathbf{p}\in\Delta}\mathbf{p}^{\top}A\mathbf{w}$, where $A$ is some matrix and $\Delta$ is the probability simplex. This problem encapsulates canonical tasks such as finding a linear separator and computing Nash equilibria in zero-sum games. However, perhaps surprisingly, its inherent complexity (as formalized in the standard framework of oracle complexity [Nemirovski and Yudin, 1983]) is not well-understood. In this work, we first identify different oracle models which are implicitly used by prior algorithms, amounting to multiplying the matrix $A$ by a vector from either one or both sides. We then prove complexity lower bounds for algorithms under both access models, which in particular imply a separation between them. Specifically, we start by showing that algorithms for linear separability based on one-sided multiplications must require $\Omega(\gamma_A^{-2})$ iterations, where $\gamma_A$ is the margin, as matched by the Perceptron algorithm. We then prove that accelerated algorithms for this task, which utilize multiplications from both sides, must require $\tilde{\Omega}(\gamma_{A}^{-2/3})$ iterations, establishing the first oracle complexity barrier for such algorithms. Finally, by adapting our lower bound to $\ell_1$ geometry, we prove that computing an $\epsilon$-approximate Nash equilibrium requires $\tilde{\Omega}(\epsilon^{-2/5})$ iterations, which is an exponential improvement over the previously best-known lower bound due to Hadiji et al. [2024].
comment: Accepted to COLT 2025; minor edits following reviews
Quantitative Methods 10
☆ Time-structured models of population growth in fluctuating environments
1. Although environmental variability is expected to play a more prominent role under climate change, current demographic models that ignore the differential environmental histories of cohorts across generations are unlikely to accurately predict population dynamics and growth. The use of these approaches, which we collectively refer to as non time-structured models or nTSMs, will instead yield error-prone estimates by giving rise to a form of ecological memory loss due to their inability to account for the historical effects of past environmental exposure on subsequent growth rates. 2. To address this important issue, we introduce a new class of time-structured models or TSMs that accurately depict growth under variable environments by splitting seemingly homogeneous populations into distinct demographic cohorts based on their past exposure to environmental fluctuations. By accounting for this cryptic population structure, TSMs accurately simulate the historical effects of environmental variability, even when individuals exhibit different degrees of phenotypic plasticity. 3. Here, we provide a conceptual framework, the mathematical tools needed to simulate any TSM, and a closed form solution for simple exponential growth. We then show that traditional nTSMs yield large errors compared to TSMs when estimating population dynamics under fluctuating temperatures. Overall, TSMs represent a critical tool for predicting population growth in a variable world.
☆ VALID-Mol: a Systematic Framework for Validated LLM-Assisted Molecular Design
Large Language Models (LLMs) demonstrate remarkable potential for scientific discovery, but their application in domains requiring factual accuracy and domain-specific constraints remains challenging. In molecular design for drug discovery, LLMs can suggest creative molecular modifications but often produce chemically invalid or impractical structures. We present VALID-Mol, a systematic framework for integrating chemical validation with LLM-driven molecular design that increases the rate of generating valid chemical structures from 3% to 83%. Our approach combines methodical prompt engineering, automated chemical validation, and a fine-tuned domain-adapted LLM to ensure reliable generation of synthesizable molecules with improved properties. Beyond the specific implementation, we contribute a generalizable methodology for scientifically-constrained LLM applications, with quantifiable reliability improvements. Computational predictions suggest our framework can generate promising candidates for synthesis with up to 17-fold computationally predicted improvements in target affinity while maintaining synthetic accessibility. We provide a detailed analysis of our prompt engineering process, validation architecture, and fine-tuning approach, offering a reproducible blueprint for applying LLMs to other scientific domains where domain-specific validation is essential.
comment: 16 pages, 1 figure, 5 algorithms, 7 tables, to be published in ICSECS Conference 2025, unabridged version
☆ Hierarchical Quantized Diffusion Based Tree Generation Method for Hierarchical Representation and Lineage Analysis
In single-cell research, tracing and analyzing high-throughput single-cell differentiation trajectories is crucial for understanding complex biological processes. Key to this is the modeling and generation of hierarchical data that represents the intrinsic structure within datasets. Traditional methods face limitations in terms of computational cost, performance, generative capacity, and stability. Recent VAEs based approaches have made strides in addressing these challenges but still require specialized network modules for each tree branch, limiting their stability and ability to capture deep hierarchical relationships. To overcome these challenges, we introduce diffusion-based approach called HDTree. HDTree captures tree relationships within a hierarchical latent space using a unified hierarchical codebook and quantized diffusion processes to model tree node transitions. This method improves stability by eliminating branch-specific modules and enhancing generative capacity through gradual hierarchical changes simulated by the diffusion process. HDTree's effectiveness is demonstrated through comparisons on both general-purpose and single-cell datasets, where it outperforms existing methods in terms of accuracy and performance. These contributions provide a new tool for hierarchical lineage analysis, enabling more accurate and efficient modeling of cellular differentiation paths and offering insights for downstream biological tasks. The code of HDTree is available at anonymous link https://anonymous.4open.science/r/code_HDTree_review-A8DB.
comment: 9 pages, 6 figures, under review
☆ Attribution assignment for deep-generative sequence models enables interpretability analysis using positive-only data
Generative machine learning models offer a powerful framework for therapeutic design by efficiently exploring large spaces of biological sequences enriched for desirable properties. Unlike supervised learning methods, which require both positive and negative labeled data, generative models such as LSTMs can be trained solely on positively labeled sequences, for example, high-affinity antibodies. This is particularly advantageous in biological settings where negative data are scarce, unreliable, or biologically ill-defined. However, the lack of attribution methods for generative models has hindered the ability to extract interpretable biological insights from such models. To address this gap, we developed Generative Attribution Metric Analysis (GAMA), an attribution method for autoregressive generative models based on Integrated Gradients. We assessed GAMA using synthetic datasets with known ground truths to characterize its statistical behavior and validate its ability to recover biologically relevant features. We further demonstrated the utility of GAMA by applying it to experimental antibody-antigen binding data. GAMA enables model interpretability and the validation of generative sequence design strategies without the need for negative training data.
♻ ☆ Functional Correspondences in the Human and Marmoset Visual Cortex During Movie Watching: Insights from Correlation, Redundancy, and Synergy
The world of beauty is deeply connected to the visual cortex, as perception often begins with vision in both humans and marmosets. In this study, to investigate their functional correspondences, we used 13 healthy human volunteers (9 males and 4 females, aged 22-56 years) and 8 common marmosets (6 males and 2 females, aged 20-42 months). We then measured pairwise and beyond-pairwise correlations, redundancy, and synergy in movie-driven fMRI data across species. First, we consistently observed a high degree of functional similarity in visual processing within and between species, suggesting that integrative processing mechanisms are preserved in both humans and marmosets, despite potential differences in their specific activity patterns. Second, we found that the strongest functional correspondences during movie watching occurred between the human peri-entorhinal and entorhinal cortex (PeEc) and the occipitotemporal high-level visual regions in the marmoset, reflecting a synergistic functional relationship. This suggests that these regions share complementary and integrated patterns of information processing across species. Third, redundancy measures maintained stable high-order hubs, indicating a steady core of shared information processing, while synergy measures revealed a dynamic shift from low- to high-level visual regions as interaction increased, reflecting adaptive integration. This highlights distinct patterns of information processing across the visual hierarchy. Ultimately, our results reveal the marmoset as a compelling model for investigating visual perception, distinguished by its remarkable functional parallels to the human visual cortex.
comment: 10 pages, 5 figures
♻ ☆ Data Filtering for Genetic Perturbation Prediction
Genomic studies, including CRISPR-based PerturbSeq analyses, face a vast hypothesis space, while gene perturbations remain costly and time-consuming. Gene expression models based on graph neural networks are trained to predict the outcomes of gene perturbations to facilitate such experiments. Active learning methods are often employed to train these models due to the cost of the genomic experiments required to build the training set. However, poor model initialization in active learning can result in suboptimal early selections, wasting time and valuable resources. While typical active learning mitigates this issue over many iterations, the limited number of experimental cycles in genomic studies exacerbates the risk. To this end, we propose graph-based data filtering as an alternative. Unlike active learning, data filtering selects the gene perturbations before training, meaning it is free of bias due to random initialization and initial random selection. Moreover, reducing the iterations between the wet lab and the model provides several operational advantages resulting in significant acceleration. The proposed methods are motivated by theoretical studies of graph neural network generalization. The criteria are defined over the input graph and are optimized with submodular maximization. We compare them empirically to baselines and active learning methods that are state-of-the-art. The results demonstrate that graph-based data filtering achieves comparable accuracy while alleviating the aforementioned risks.
comment: 21 pages
♻ ☆ Scalable Non-Equivariant 3D Molecule Generation via Rotational Alignment ICML 2025
Equivariant diffusion models have achieved impressive performance in 3D molecule generation. These models incorporate Euclidean symmetries of 3D molecules by utilizing an SE(3)-equivariant denoising network. However, specialized equivariant architectures limit the scalability and efficiency of diffusion models. In this paper, we propose an approach that relaxes such equivariance constraints. Specifically, our approach learns a sample-dependent SO(3) transformation for each molecule to construct an aligned latent space. A non-equivariant diffusion model is then trained over the aligned representations. Experimental results demonstrate that our approach performs significantly better than previously reported non-equivariant models. It yields sample quality comparable to state-of-the-art equivariant diffusion models and offers improved training and sampling efficiency. Our code is available at https://github.com/skeletondyh/RADM
comment: ICML 2025; added conditional generation results
♻ ☆ GatingTree: Pathfinding Analysis of Group-Specific Effects in Cytometry Data
Advancements in cytometry technologies have led to a remarkable increase in the number of markers that can be analyzed simultaneously, presenting significant challenges in data analysis. Traditional approaches, such as dimensional reduction techniques and computational clustering, although popular, often face reproducibility challenges due to their heavy reliance on inherent data structures, preventing direct translation of their outputs into gating strategies to be used in downstream experiments. Here we propose the novel Gating Tree methodology, a pathfinding approach that investigates the multidimensional data landscape to unravel group-specific features without the use of dimensional reduction. This method employs novel measures, including enrichment scores and gating entropy, to effectively identify group-specific features within high-dimensional cytometric datasets. Our analysis, applied to both simulated and real cytometric datasets, demonstrates that the Gating Tree not only identifies group-specific features comprehensively but also produces outputs that are immediately usable as gating strategies for unequivocally identifying cell populations. In conclusion, the Gating Tree facilitates a comprehensive analysis of the multidimensional data landscape and provides experimentalists with practical, successive gating strategies that enhance cross-experimental comparisons and downstream analyses such as flow cytometric sorting.
comment: 10 figures, 30 pages
♻ ☆ TockyPrep: Data Preprocessing Methods for Flow Cytometric Fluorescent Timer Analysis
Background: Fluorescent Timer proteins, which display time-dependent changes in their emission spectra, are invaluable for analyzing the temporal dynamics of cellular events at the single-cell level. We previously developed the Timer-of-cell-kinetics-and-activity (Tocky) tools, utilizing a specific Timer protein, Fast-FT, to monitor temporal changes in cellular activities. Despite their potential, the analysis of Timer fluorescence in flow cytometry is frequently compromised by variability in instrument settings and the absence of standardized preprocessing methods. The development and implementation of effective data preprocessing methods remain to be achieved. Results: In this study, we introduce the R package that automates the data preprocessing of Timer fluorescence data from flow cytometry experiments for quantitative analysis at single-cell level. Our aim is to standardize Timer data analysis to enhance reproducibility and accuracy across different experimental setups. The package includes a trigonometric transformation method to elucidate the dynamics of Fluorescent Timer proteins. We have identified the normalization of immature and mature Timer fluorescence data as essential for robust analysis, clarifying how this normalization affects the analysis of Timer maturation. These preprocessing methods are all encapsulated within the TockyPrep R package. Conclusions: TockyPrep is available for distribution via GitHub at https://github.com/MonoTockyLab/TockyPrep, providing tools for data preprocessing and basic visualization of Timer fluorescence data. This toolkit is expected to enhance the utility of experimental systems utilizing Fluorescent Timer proteins, including the Tocky tools.
comment: 24 pages, 11 figures
♻ ☆ A universal hydrodynamic transition in confined marine invertebrate larvae
The ocean is teeming with a myriad of mm-sized invertebrate planktonic larvae, which thrive in a viscous fluid environment. Many of them rely on ciliary beating to generate fluid flows for locomotion and feeding. Their larval forms, local morphologies, and ciliation patterns exhibit remarkable diversity, producing intricate and dynamic 3D flows that are notoriously difficult to characterize in laboratory settings. Traditional microscopic imaging techniques typically involve gently squeeze-confining the soft larvae between a glass slide and cover slip to study their flows in quasi-2D. However, a comprehensive hydrodynamic framework for the low-to-intermediate Reynolds number (<1) flows in quasi-2D confinement, particularly in light of their complex forms, has remained elusive. Here, we demonstrate that vortices around larvae proliferate with increasing confinement and illuminate the underlying physical mechanism. We experimentally quantify confinement-induced flows in larvae of sea stars and sea urchins. The flows exhibited strikingly universal patterns: under weak confinement, all larvae generated two vortices, whereas under strong confinement, the number of generated vortices significantly increased. The experimental observations were well captured by a low Reynolds number theoretical model based on the superposition of confined Stokeslets. Building on experiments and theory, we developed a comprehensive framework for confinement-induced flows, which suggests that vorticity dynamics are primarily determined by local morphological features, rather than solely the body plan. Our work provides fundamental insights into form-functional relationships between larval morphology and flow generation. Our findings are broadly applicable to understanding flows generated by a wide range of ciliated organisms with complex forms and morphologies, from micro- to milli-length-scales.
comment: Updated title and references
Machine Learning 30
☆ Fragile, Robust, and Antifragile: A Perspective from Parameter Responses in Reinforcement Learning Under Stress
This paper explores Reinforcement learning (RL) policy robustness by systematically analyzing network parameters under internal and external stresses. Inspired by synaptic plasticity in neuroscience, synaptic filtering introduces internal stress by selectively perturbing parameters, while adversarial attacks apply external stress through modified agent observations. This dual approach enables the classification of parameters as fragile, robust, or antifragile, based on their influence on policy performance in clean and adversarial settings. Parameter scores are defined to quantify these characteristics, and the framework is validated on PPO-trained agents in Mujoco continuous control environments. The results highlight the presence of antifragile parameters that enhance policy performance under stress, demonstrating the potential of targeted filtering techniques to improve RL policy adaptability. These insights provide a foundation for future advancements in the design of robust and antifragile RL systems.
☆ Feature-Wise Mixing for Mitigating Contextual Bias in Predictive Supervised Learning
Bias in predictive machine learning (ML) models is a fundamental challenge due to the skewed or unfair outcomes produced by biased models. Existing mitigation strategies rely on either post-hoc corrections or rigid constraints. However, emerging research claims that these techniques can limit scalability and reduce generalizability. To address this, this paper introduces a feature-wise mixing framework to mitigate contextual bias. This was done by redistributing feature representations across multiple contextual datasets. To assess feature-wise mixing's effectiveness, four ML classifiers were trained using cross-validation and evaluated with bias-sensitive loss functions, including disparity metrics and mean squared error (MSE), which served as a standard measure of predictive performance. The proposed method achieved an average bias reduction of 43.35% and a statistically significant decrease in MSE across all classifiers trained on mixed datasets. Additionally, benchmarking against established bias mitigation techniques found that feature-wise mixing consistently outperformed SMOTE oversampling and demonstrated competitive effectiveness without requiring explicit bias attribute identification. Feature-wise mixing efficiently avoids the computational overhead typically associated with fairness-aware learning algorithms. Future work could explore applying feature-wise mixing for real-world fields where accurate predictions are necessary.
☆ VisionScores -- A system-segmented image score dataset for deep learning tasks
VisionScores presents a novel proposal being the first system-segmented image score dataset, aiming to offer structure-rich, high information-density images for machine and deep learning tasks. Delimited to two-handed piano pieces, it was built to consider not only certain graphic similarity but also composition patterns, as this creative process is highly instrument-dependent. It provides two scenarios in relation to composer and composition type. The first, formed by 14k samples, considers works from different authors but the same composition type, specifically, Sonatinas. The latter, consisting of 10.8K samples, presents the opposite case, various composition types from the same author, being the one selected Franz Liszt. All of the 24.8k samples are formatted as grayscale jpg images of $128 \times 512$ pixels. VisionScores supplies the users not only the formatted samples but the systems' order and pieces' metadata. Moreover, unsegmented full-page scores and the pre-formatted images are included for further analysis.
comment: Comments: 5 pages, 3 figures. Accepted for presentation at the 2025 IEEE International Conference on Image Processing (ICIP). \c{opyright} 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for any other use
☆ Spectra 1.1: Scaling Laws and Efficient Inference for Ternary Language Models
Large language models (LLMs) are increasingly used across research and industry applications, yet their inference efficiency remains a significant challenge. As the computational power of modern GPU architectures continuously improves, their memory bandwidth and capacity have not scaled proportionally, creating a critical bottleneck during inference. To address this, we investigate ternary language models (TriLMs) that employ quantization-aware training to significantly reduce memory requirements. We first analyze the scalability of TriLMs by conducting a scaling law analysis, revealing that TriLMs benefit more from increasing training data than from scaling model parameters. Based on this observation, we introduce Spectra-1.1, an open suite of TriLMs trained on up to 1.2 trillion tokens, demonstrating sustained performance gains at scale. Furthermore, to improve inference efficiency, we propose novel 2-bit and 1.6-bit packing schemes for ternary weights, which demonstrate accelerated inference across various CPU architectures. Also, building on the 2-bit packing, we develop a GPU kernel called TriRun that accelerates end-to-end model inference by up to 5 times compared to floating-point baselines. To encourage further exploration and development of TriLMs, we will release the Spectra-1.1 suite and TriRun inference kernels. Overall, our work lays the foundation for building and deploying efficient LLMs, providing a valuable resource for the research community.
☆ BWLer: Barycentric Weight Layer Elucidates a Precision-Conditioning Tradeoff for PINNs
Physics-informed neural networks (PINNs) offer a flexible way to solve partial differential equations (PDEs) with machine learning, yet they still fall well short of the machine-precision accuracy many scientific tasks demand. In this work, we investigate whether the precision ceiling comes from the ill-conditioning of the PDEs or from the typical multi-layer perceptron (MLP) architecture. We introduce the Barycentric Weight Layer (BWLer), which models the PDE solution through barycentric polynomial interpolation. A BWLer can be added on top of an existing MLP (a BWLer-hat) or replace it completely (explicit BWLer), cleanly separating how we represent the solution from how we take derivatives for the PDE loss. Using BWLer, we identify fundamental precision limitations within the MLP: on a simple 1-D interpolation task, even MLPs with O(1e5) parameters stall around 1e-8 RMSE -- about eight orders above float64 machine precision -- before any PDE terms are added. In PDE learning, adding a BWLer lifts this ceiling and exposes a tradeoff between achievable accuracy and the conditioning of the PDE loss. For linear PDEs we fully characterize this tradeoff with an explicit error decomposition and navigate it during training with spectral derivatives and preconditioning. Across five benchmark PDEs, adding a BWLer on top of an MLP improves RMSE by up to 30x for convection, 10x for reaction, and 1800x for wave equations while remaining compatible with first-order optimizers. Replacing the MLP entirely lets an explicit BWLer reach near-machine-precision on convection, reaction, and wave problems (up to 10 billion times better than prior results) and match the performance of standard PINNs on stiff Burgers' and irregular-geometry Poisson problems. Together, these findings point to a practical path for combining the flexibility of PINNs with the precision of classical spectral solvers.
comment: Workshop for the Theory of AI for Scientific Computing @ COLT 2025 (Best Paper). 39 pages, 24 figures
☆ Scenario-Based Hierarchical Reinforcement Learning for Automated Driving Decision Making
Developing decision-making algorithms for highly automated driving systems remains challenging, since these systems have to operate safely in an open and complex environments. Reinforcement Learning (RL) approaches can learn comprehensive decision policies directly from experience and already show promising results in simple driving tasks. However, current approaches fail to achieve generalizability for more complex driving tasks and lack learning efficiency. Therefore, we present Scenario-based Automated Driving Reinforcement Learning (SAD-RL), the first framework that integrates Reinforcement Learning (RL) of hierarchical policy in a scenario-based environment. A high-level policy selects maneuver templates that are evaluated and executed by a low-level control logic. The scenario-based environment allows to control the training experience for the agent and to explicitly introduce challenging, but rate situations into the training process. Our experiments show that an agent trained using the SAD-RL framework can achieve safe behaviour in easy as well as challenging situations efficiently. Our ablation studies confirmed that both HRL and scenario diversity are essential for achieving these results.
comment: 6 pages, 10 figures, submitted to a conference
☆ On Universality of Non-Separable Approximate Message Passing Algorithms
Mean-field characterizations of first-order iterative algorithms -- including Approximate Message Passing (AMP), stochastic and proximal gradient descent, and Langevin diffusions -- have enabled a precise understanding of learning dynamics in many statistical applications. For algorithms whose non-linearities have a coordinate-separable form, it is known that such characterizations enjoy a degree of universality with respect to the underlying data distribution. However, mean-field characterizations of non-separable algorithm dynamics have largely remained restricted to i.i.d. Gaussian or rotationally-invariant data. In this work, we initiate a study of universality for non-separable AMP algorithms. We identify a general condition for AMP with polynomial non-linearities, in terms of a Bounded Composition Property (BCP) for their representing tensors, to admit a state evolution that holds universally for matrices with non-Gaussian entries. We then formalize a condition of BCP-approximability for Lipschitz AMP algorithms to enjoy a similar universal guarantee. We demonstrate that many common classes of non-separable non-linearities are BCP-approximable, including local denoisers, spectral denoisers for generic signals, and compositions of separable functions with generic linear maps, implying the universality of state evolution for AMP algorithms employing these non-linearities.
☆ A Reinforcement Learning Approach for Optimal Control in Microgrids
The increasing integration of renewable energy sources (RESs) is transforming traditional power grid networks, which require new approaches for managing decentralized energy production and consumption. Microgrids (MGs) provide a promising solution by enabling localized control over energy generation, storage, and distribution. This paper presents a novel reinforcement learning (RL)-based methodology for optimizing microgrid energy management. Specifically, we propose an RL agent that learns optimal energy trading and storage policies by leveraging historical data on energy production, consumption, and market prices. A digital twin (DT) is used to simulate the energy storage system dynamics, incorporating degradation factors to ensure a realistic emulation of the analysed setting. Our approach is validated through an experimental campaign using real-world data from a power grid located in the Italian territory. The results indicate that the proposed RL-based strategy outperforms rule-based methods and existing RL benchmarks, offering a robust solution for intelligent microgrid management.
comment: 8 pages, accepted to International Joint Conference on Neural Networks 2025
☆ Kernel Outlier Detection
A new anomaly detection method called kernel outlier detection (KOD) is proposed. It is designed to address challenges of outlier detection in high-dimensional settings. The aim is to overcome limitations of existing methods, such as dependence on distributional assumptions or on hyperparameters that are hard to tune. KOD starts with a kernel transformation, followed by a projection pursuit approach. Its novelties include a new ensemble of directions to search over, and a new way to combine results of different direction types. This provides a flexible and lightweight approach for outlier detection. Our empirical evaluations illustrate the effectiveness of KOD on three small datasets with challenging structures, and on four large benchmark datasets.
☆ Cybersecurity-Focused Anomaly Detection in Connected Autonomous Vehicles Using Machine Learning
Anomaly detection in connected autonomous vehicles (CAVs) is crucial for maintaining safe and reliable transportation networks, as CAVs can be susceptible to sensor malfunctions, cyber-attacks, and unexpected environmental disruptions. This study explores an anomaly detection approach by simulating vehicle behavior, generating a dataset that represents typical and atypical vehicular interactions. The dataset includes time-series data of position, speed, and acceleration for multiple connected autonomous vehicles. We utilized machine learning models to effectively identify abnormal driving patterns. First, we applied a stacked Long Short-Term Memory (LSTM) model to capture temporal dependencies and sequence-based anomalies. The stacked LSTM model processed the sequential data to learn standard driving behaviors. Additionally, we deployed a Random Forest model to support anomaly detection by offering ensemble-based predictions, which enhanced model interpretability and performance. The Random Forest model achieved an R2 of 0.9830, MAE of 5.746, and a 95th percentile anomaly threshold of 14.18, while the stacked LSTM model attained an R2 of 0.9998, MAE of 82.425, and a 95th percentile anomaly threshold of 265.63. These results demonstrate the models' effectiveness in accurately predicting vehicle trajectories and detecting anomalies in autonomous driving scenarios.
☆ On the Generalizability of "Competition of Mechanisms: Tracing How Language Models Handle Facts and Counterfactuals"
We present a reproduction study of "Competition of Mechanisms: Tracing How Language Models Handle Facts and Counterfactuals" (Ortu et al., 2024), which investigates competition of mechanisms in language models between factual recall and counterfactual in-context repetition. Our study successfully reproduces their primary findings regarding the localization of factual and counterfactual information, the dominance of attention blocks in mechanism competition, and the specialization of attention heads in handling competing information. We reproduce their results on both GPT-2 (Radford et al., 2019) and Pythia 6.9B (Biderman et al., 2023). We extend their work in three significant directions. First, we explore the generalizability of these findings to even larger models by replicating the experiments on Llama 3.1 8B (Grattafiori et al., 2024), discovering greatly reduced attention head specialization. Second, we investigate the impact of prompt structure by introducing variations where we avoid repeating the counterfactual statement verbatim or we change the premise word, observing a marked decrease in the logit for the counterfactual token. Finally, we test the validity of the authors' claims for prompts of specific domains, discovering that certain categories of prompts skew the results by providing the factual prediction token as part of the subject of the sentence. Overall, we find that the attention head ablation proposed in Ortu et al. (2024) is ineffective for domains that are underrepresented in their dataset, and that the effectiveness varies based on model architecture, prompt structure, domain and task.
comment: 22 pages, 25 figures. For an interactive dashboard with all figures, see https://comp-mech-generalizability.streamlit.app/ . For the accompanying code, see https://github.com/asendotsinski/comp-mech-generalizability . To be published in proceedings of the 2025 Machine Learning Reproducibility Challenge
☆ Hierarchical Decentralized Stochastic Control for Cyber-Physical Systems
This paper presents a two-timescale hierarchical decentralized architecture for control of Cyber-Physical Systems. The architecture consists of $N$ independent sub-processes, a global controller, and $N$ local controllers, each formulated as a Markov Decision Process (MDP). The global controller, operating at a slower timescale optimizes the infinite-horizon discounted cumulative reward under budget constraints. For the local controllers, operating at a faster timescale, we propose two different optimization frameworks, namely the COpt and FOpt. In the COpt framework, the local controller also optimizes an infinite-horizon MDP, while in the FOpt framework, the local controller optimizes a finite-horizon MDP. The FOpt framework mimics a federal structure, where the local controllers have more autonomy in their decision making. First, the existence of stationary deterministic optimal policies for both these frameworks is established. Then, various relationships between the two frameworks are studied, including a bound on the difference between the two optimal value functions. Additionally, sufficiency conditions are provided such that the two frameworks lead to the same optimal values.
comment: 6 pages, 2 figures
☆ ActAlign: Zero-Shot Fine-Grained Video Classification via Language-Guided Sequence Alignment
We address the task of zero-shot fine-grained video classification, where no video examples or temporal annotations are available for unseen action classes. While contrastive vision-language models such as SigLIP demonstrate strong open-set recognition via mean-pooled image-text similarity, they fail to capture the temporal structure critical for distinguishing fine-grained activities. We introduce ActAlign, a zero-shot framework that formulates video classification as sequence alignment. For each class, a large language model generates an ordered sub-action sequence, which is aligned with video frames using Dynamic Time Warping (DTW) in a shared embedding space. Without any video-text supervision or fine-tuning, ActAlign achieves 30.5% accuracy on the extremely challenging ActionAtlas benchmark, where human accuracy is only 61.6%. ActAlign outperforms billion-parameter video-language models while using approximately 8x less parameters. These results demonstrate that structured language priors, combined with classical alignment techniques, offer a scalable and general approach to unlocking the open-set recognition potential of vision-language models for fine-grained video understanding.
comment: Preprint manuscript - Project page: https://github.com/aghdamamir/act-align
☆ CN-SBM: Categorical Block Modelling For Primary and Residual Copy Number Variation
Cancer is a genetic disorder whose clonal evolution can be monitored by tracking noisy genome-wide copy number variants. We introduce the Copy Number Stochastic Block Model (CN-SBM), a probabilistic framework that jointly clusters samples and genomic regions based on discrete copy number states using a bipartite categorical block model. Unlike models relying on Gaussian or Poisson assumptions, CN-SBM respects the discrete nature of CNV calls and captures subpopulation-specific patterns through block-wise structure. Using a two-stage approach, CN-SBM decomposes CNV data into primary and residual components, enabling detection of both large-scale chromosomal alterations and finer aberrations. We derive a scalable variational inference algorithm for application to large cohorts and high-resolution data. Benchmarks on simulated and real datasets show improved model fit over existing methods. Applied to TCGA low-grade glioma data, CN-SBM reveals clinically relevant subtypes and structured residual variation, aiding patient stratification in survival analysis. These results establish CN-SBM as an interpretable, scalable framework for CNV analysis with direct relevance for tumor heterogeneity and prognosis.
comment: 8 pages, 4 figures
☆ Infinite Sampling: Efficient and Stable Grouped RL Training for Large Language Models
Group-based reinforcement learning algorithms such as Group Reward Policy Optimization (GRPO) have proven effective for fine-tuning large language models (LLMs) with human feedback. However, generating and storing multiple responses per prompt incurs substantial memory overhead, especially as the sample group size increases, limiting scalability under constrained hardware. We propose Infinite Sampling, a framework that enables efficient and stable GRPO training by decoupling group size from GPU memory usage. It consists of: (1) micro sampling groups that decompose large groups into memory-feasible rounds; (2) continuous sampling that interleaves generation across groups to improve utilization; and (3) a length-aware scheduler combining token-conditioned sequence length prediction with a two-stage plan: global grouping via FPTAS and runtime refill via SJF. Experiments show that our Micro Sampling Groups reduce peak memory usage by over 50% compared to full-group decoding (e.g., from 21.55 GB to 10.64 GB on Qwen3-1.7B). Building on this, Infinite Sampling improves throughput by over 25% compared to the naive micro sampling group method, reducing decoding steps while maintaining full-length completions and memory usage. Our hybrid scheduling ensures efficient and stable GRPO training with larger groups under realistic GPU memory constraints.
☆ A Study on Semi-Supervised Detection of DDoS Attacks under Class Imbalance
One of the most difficult challenges in cybersecurity is eliminating Distributed Denial of Service (DDoS) attacks. Automating this task using artificial intelligence is a complex process due to the inherent class imbalance and lack of sufficient labeled samples of real-world datasets. This research investigates the use of Semi-Supervised Learning (SSL) techniques to improve DDoS attack detection when data is imbalanced and partially labeled. In this process, 13 state-of-the-art SSL algorithms are evaluated for detecting DDoS attacks in several scenarios. We evaluate their practical efficacy and shortcomings, including the extent to which they work in extreme environments. The results will offer insight into designing intelligent Intrusion Detection Systems (IDSs) that are robust against class imbalance and handle partially labeled data.
comment: Accepted for publication in IEEE CCECE 2025
♻ ☆ ATTENTION2D: Communication Efficient Distributed Self-Attention Mechanism
Transformer-based models have emerged as a leading architecture for natural language processing, natural language generation, and image generation tasks. A fundamental element of the transformer architecture is self-attention, which allows the model to capture intricate dependencies within the data. However, the self-attention mechanism also incurs significant computational and memory costs, particularly for long sequences. In this paper, we introduce ATTENTION2D, a novel approach that exploits parallelism along two dimensions - query and key/value - of the self-attention operation. This method enables efficient distribution and parallelization of computations across multiple devices. Our approach facilitates asymptotically faster training and inference phases compared to previous methods, without relying on approximations or incurring additional computational or memory overheads. Furthermore, unlike existing techniques that struggle to scale with an increasing number of processing units, our approach effectively scales with additional processing units. Our experimental results confirm the effectiveness of our method in improving communication efficiency and scalability. Compared to Ring Attention, our approach demonstrated up to a 5x performance boost on a GPT-3-like model using 64 NVIDIA A100 GPUs across 16 nodes, and up to a 9.4x performance boost on 64 NVIDIA H100 GPUs across 64 nodes.
comment: Updated Table 1
♻ ☆ Multimodal Contrastive Representation Learning in Augmented Biomedical Knowledge Graphs
Biomedical Knowledge Graphs (BKGs) integrate diverse datasets to elucidate complex relationships within the biomedical field. Effective link prediction on these graphs can uncover valuable connections, such as potential novel drug-disease relations. We introduce a novel multimodal approach that unifies embeddings from specialized Language Models (LMs) with Graph Contrastive Learning (GCL) to enhance intra-entity relationships while employing a Knowledge Graph Embedding (KGE) model to capture inter-entity relationships for effective link prediction. To address limitations in existing BKGs, we present PrimeKG++, an enriched knowledge graph incorporating multimodal data, including biological sequences and textual descriptions for each entity type. By combining semantic and relational information in a unified representation, our approach demonstrates strong generalizability, enabling accurate link predictions even for unseen nodes. Experimental results on PrimeKG++ and the DrugBank drug-target interaction dataset demonstrate the effectiveness and robustness of our method across diverse biomedical datasets. Our source code, pre-trained models, and data are publicly available at https://github.com/HySonLab/BioMedKG
♻ ☆ The Limited Impact of Medical Adaptation of Large Language and Vision-Language Models EMNLP 2024
Several recent works seek to adapt general-purpose large language models (LLMs) and vision-language models (VLMs) for medical applications through continued pretraining on publicly available biomedical corpora. These works typically claim that such domain-adaptive pretraining improves performance on various downstream medical tasks, such as answering medical exam questions. In this paper, we compare ten "medical" LLMs and two VLMs against their corresponding base models, arriving at a different conclusion: all medical VLMs and nearly all medical LLMs fail to consistently improve over their base models in the zero-/few-shot prompting and supervised fine-tuning regimes for medical question answering (QA). For instance, on clinical-note-based QA tasks in the 3-shot setting, medical LLMs outperform their base models in only 26.7% of cases, reach a (statistical) tie in 16.7% of cases, and perform significantly worse in the remaining 56.7% of cases. Our conclusions are based on (i) comparing each medical model directly against its base model; (ii) optimizing the prompts for each model separately in zero-/few-shot prompting; and (iii) accounting for statistical uncertainty in comparisons. Our findings suggest that state-of-the-art general-domain models may already exhibit strong medical knowledge and reasoning capabilities, and offer recommendations to strengthen the conclusions of future studies.
comment: Extended version of EMNLP 2024 paper arXiv:2411.04118. Includes additional results on clinical note QA tasks and supervised fine-tuning evaluations
♻ ☆ A Fundamental Accuracy--Robustness Trade-off in Regression and Classification
We derive a fundamental trade-off between standard and adversarial risk in a rather general situation that formalizes the following simple intuition: "If no (nearly) optimal predictor is smooth, adversarial robustness comes at the cost of accuracy." As a concrete example, we evaluate the derived trade-off in regression with polynomial ridge functions under mild regularity conditions. Generalizing our analysis of this example, we formulate a necessary condition under which adversarial robustness can be achieved without significant degradation of the accuracy. This necessary condition is expressed in terms of a quantity that resembles the Poincar\'{e} constant of the data distribution.
♻ ☆ Are Convex Optimization Curves Convex?
In this paper, we study when we might expect the optimization curve induced by gradient descent to be \emph{convex} -- precluding, for example, an initial plateau followed by a sharp decrease, making it difficult to decide when optimization should stop. Although such undesirable behavior can certainly occur when optimizing general functions, might it also occur in the benign and well-studied case of smooth convex functions? As far as we know, this question has not been tackled in previous work. We show, perhaps surprisingly, that the answer crucially depends on the choice of the step size. In particular, for the range of step sizes which are known to result in monotonic convergence to an optimal value, we characterize a regime where the optimization curve will be provably convex, and a regime where the curve can be non-convex. We also extend our results to gradient flow, and to the closely-related but different question of whether the gradient norm decreases monotonically.
comment: 12 pages
♻ ☆ Foundation Models for Wearable Movement Data in Mental Health Research
Pretrained foundation models and transformer architectures have driven the success of large language models (LLMs) and other modern AI breakthroughs. However, similar advancements in health data modeling remain limited due to the need for innovative adaptations. Wearable movement data offers a valuable avenue for exploration, as it's a core feature in nearly all commercial smartwatches, well established in clinical and mental health research, and the sequential nature of the data shares similarities to language. We introduce the Pretrained Actigraphy Transformer (PAT), the first open source foundation model designed for time-series wearable movement data. Leveraging transformer-based architectures and novel techniques, such as patch embeddings, and pretraining on data from 29,307 participants in a national U.S. sample, PAT achieves state-of-the-art performance in several mental health prediction tasks. PAT is also lightweight and easily interpretable, making it a robust tool for mental health research. GitHub: https://github.com/njacobsonlab/Pretrained-Actigraphy-Transformer/
♻ ☆ Recommender Systems for Good (RS4Good): Survey of Use Cases and a Call to Action for Research that Matters
In the area of recommender systems, the vast majority of research efforts is spent on developing increasingly sophisticated recommendation models, also using increasingly more computational resources. Unfortunately, most of these research efforts target a very small set of application domains, mostly e-commerce and media recommendation. Furthermore, many of these models are never evaluated with users, let alone put into practice. The scientific, economic and societal value of much of these efforts by scholars therefore remains largely unclear. To achieve a stronger positive impact resulting from these efforts, we posit that we as a research community should more often address use cases where recommender systems contribute to societal good (RS4Good). In this opinion piece, we first discuss a number of examples where the use of recommender systems for problems of societal concern has been successfully explored in the literature. We then proceed by outlining a paradigmatic shift that is needed to conduct successful RS4Good research, where the key ingredients are interdisciplinary collaborations and longitudinal evaluation approaches with humans in the loop.
♻ ☆ Early Stopping Tabular In-Context Learning ICML
Tabular foundation models have shown strong performance across various tabular learning tasks via in-context learning, offering robust generalization without any downstream finetuning. However, their inference-time costs remain high, particularly for larger datasets. To address this, we propose early-stopping the in-context learning process. We achieve this by dynamically evaluating whether to stop in-context learning after each Transformer encoder layer. Once stopped, we decode the embedding using a pre-trained layer-wise decoder. Experiments across 34 small classification tasks size show that early stopping in-context learning accelerates inference by up to x1.3 with negligible degradation in predictive performance. To assess scalability, we further evaluate our method on five larger classification tasks, achieving speedups of up to x2.2. Our results demonstrate the potential of early exiting as an effective and practical strategy for improving the efficiency of tabular in-context learning.
comment: ICML Workshop Paper
♻ ☆ Fine-Tuning Next-Scale Visual Autoregressive Models with Group Relative Policy Optimization
Fine-tuning pre-trained generative models with Reinforcement Learning (RL) has emerged as an effective approach for aligning outputs more closely with nuanced human preferences. In this paper, we investigate the application of Group Relative Policy Optimization (GRPO) to fine-tune next-scale visual autoregressive (VAR) models. Our empirical results demonstrate that this approach enables alignment to intricate reward signals derived from aesthetic predictors and CLIP embeddings, significantly enhancing image quality and enabling precise control over the generation style. Interestingly, by leveraging CLIP, our method can help VAR models generalize beyond their initial ImageNet distribution: through RL-driven exploration, these models can generate images aligned with prompts referencing image styles that were absent during pre-training. In summary, we show that RL-based fine-tuning is both efficient and effective for VAR models, benefiting particularly from their fast inference speeds, which are advantageous for online sampling, an aspect that poses significant challenges for diffusion-based alternatives.
♻ ☆ Time-MQA: Time Series Multi-Task Question Answering with Context Enhancement ACL 2025
Time series data are foundational in finance, healthcare, and energy domains. However, most existing methods and datasets remain focused on a narrow spectrum of tasks, such as forecasting or anomaly detection. To bridge this gap, we introduce Time Series Multi-Task Question Answering (Time-MQA), a unified framework that enables natural language queries across multiple time series tasks - numerical analytical tasks and open-ended question answering with reasoning. Central to Time-MQA is the TSQA dataset, a large-scale dataset containing $\sim$200k question-answer pairs derived from diverse time series spanning environment, traffic, etc. This comprehensive resource covers various time series lengths and promotes robust model development. We further demonstrate how continually pre-training large language models (Mistral 7B, Llama-3 8B, and Qwen-2.5 7B) on the TSQA dataset enhanced time series reasoning capabilities, moving beyond mere numeric tasks and enabling more advanced and intuitive interactions with temporal data. The complete TSQA dataset, models, user study questionnaires for evaluation, and other related materials have been open-sourced.
comment: Annual Meeting of the Association for Computational Linguistics (ACL 2025, Main)
♻ ☆ Interpretable LLM-based Table Question Answering
Interpretability in Table Question Answering (Table QA) is critical, especially in high-stakes domains like finance and healthcare. While recent Table QA approaches based on Large Language Models (LLMs) achieve high accuracy, they often produce ambiguous explanations of how answers are derived. We propose Plan-of-SQLs (POS), a new Table QA method that makes the model's decision-making process interpretable. POS decomposes a question into a sequence of atomic steps, each directly translated into an executable SQL command on the table, thereby ensuring that every intermediate result is transparent. Through extensive experiments, we show that: First, POS generates the highest-quality explanations among compared methods, which markedly improves the users' ability to simulate and verify the model's decisions. Second, when evaluated on standard Table QA benchmarks (TabFact, WikiTQ, and FeTaQA), POS achieves QA accuracy that is competitive to existing methods, while also offering greater efficiency-requiring significantly fewer LLM calls and table database queries (up to 25x fewer)-and more robust performance on large-sized tables. Finally, we observe high agreement (up to 90.59% in forward simulation) between LLMs and human users when making decisions based on the same explanations, suggesting that LLMs could serve as an effective proxy for humans in evaluating Table QA explanations.
comment: Published in Transactions on Machine Learning Research (TMLR) in 06/2025. Reviews at: https://openreview.net/forum?id=2eTsZBoU2W
♻ ☆ Efficient Shallow Ritz Method For 1D Diffusion-Reaction Problems
This paper studies the shallow Ritz method for solving one-dimensional diffusion-reaction problems. The method is capable of improving the order of approximation for non-smooth problems. By following a similar approach to the one presented in [9], we present a damped block Newton (dBN) method to achieve nearly optimal order of approximation. The dBN method optimizes the Ritz functional by alternating between the linear and non-linear parameters of the shallow ReLU neural network (NN). For diffusion-reaction problems, new difficulties arise: (1) for the linear parameters, the mass matrix is dense and even more ill-conditioned than the stiffness matrix, and (2) for the non-linear parameters, the Hessian matrix is dense and may be singular. This paper addresses these challenges, resulting in a dBN method with computational cost of ${\cal O}(n)$. The ideas presented for diffusion-reaction problems can also be applied to least-squares approximation problems. For both applications, starting with the non-linear parameters as a uniform partition, numerical experiments show that the dBN method moves the mesh points to nearly optimal locations.
♻ ☆ Orthogonal Gradient Descent Improves Neural Calibration
We provide evidence that orthogonalizing gradients during training improves model calibration without sacrificing accuracy. On CIFAR-10 with 10\% labeled data, $\perp$Grad matches SGD in accuracy but yields consistently improved calibration metrics such as lower test loss, reduced softmax overconfidence, and higher predictive entropy. These benefits persist under input corruption (CIFAR-10C) and extended training, where $\perp$Grad models degrade more gracefully than SGD-trained counterparts. $\perp$Grad is optimizer-agnostic, incurs minimal overhead, and works well with post-hoc calibration techniques like temperature scaling. Theoretically, we prove convergence of a simplified version of $\perp$Grad under mild assumptions and characterize its stationary points in positive homogeneous networks: $\perp$Grad converges to solutions where further loss reduction requires confidence scaling rather than decision boundary improvement. Code for this paper can be found at: https://github.com/evanshedges2/orthograd\_improves\_calibration.
♻ ☆ Transformer Encoder and Multi-features Time2Vec for Financial Prediction
Financial prediction is a complex and challenging task of time series analysis and signal processing, expected to model both short-term fluctuations and long-term temporal dependencies. Transformers have remarkable success mostly in natural language processing using attention mechanism, which also influenced the time series community. The ability to capture both short and long-range dependencies helps to understand the financial market and to recognize price patterns, leading to successful applications of Transformers in stock prediction. Although, the previous research predominantly focuses on individual features and singular predictions, that limits the model's ability to understand broader market trends. In reality, within sectors such as finance and technology, companies belonging to the same industry often exhibit correlated stock price movements. In this paper, we develop a novel neural network architecture by integrating Time2Vec with the Encoder of the Transformer model. Based on the study of different markets, we propose a novel correlation feature selection method. Through a comprehensive fine-tuning of multiple hyperparameters, we conduct a comparative analysis of our results against benchmark models. We conclude that our method outperforms other state-of-the-art encoding methods such as positional encoding, and we also conclude that selecting correlation features enhance the accuracy of predicting multiple stock prices.
comment: 5 pages, Eusipco 2025
Genomics 2
☆ CN-SBM: Categorical Block Modelling For Primary and Residual Copy Number Variation
Cancer is a genetic disorder whose clonal evolution can be monitored by tracking noisy genome-wide copy number variants. We introduce the Copy Number Stochastic Block Model (CN-SBM), a probabilistic framework that jointly clusters samples and genomic regions based on discrete copy number states using a bipartite categorical block model. Unlike models relying on Gaussian or Poisson assumptions, CN-SBM respects the discrete nature of CNV calls and captures subpopulation-specific patterns through block-wise structure. Using a two-stage approach, CN-SBM decomposes CNV data into primary and residual components, enabling detection of both large-scale chromosomal alterations and finer aberrations. We derive a scalable variational inference algorithm for application to large cohorts and high-resolution data. Benchmarks on simulated and real datasets show improved model fit over existing methods. Applied to TCGA low-grade glioma data, CN-SBM reveals clinically relevant subtypes and structured residual variation, aiding patient stratification in survival analysis. These results establish CN-SBM as an interpretable, scalable framework for CNV analysis with direct relevance for tumor heterogeneity and prognosis.
comment: 8 pages, 4 figures
☆ Missing-Modality-Aware Graph Neural Network for Cancer Classification
A key challenge in learning from multimodal biological data is missing modalities, where all data from some modalities are missing for some patients. Current fusion methods address this by excluding patients with missing modalities, imputing missing modalities, or making predictions directly with partial modalities. However, they often struggle with diverse missing-modality patterns and the exponential growth of the number of such patterns as the number of modalities increases. To address these limitations, we propose MAGNET (Missing-modality-Aware Graph neural NETwork) for direct prediction with partial modalities, which introduces a patient-modality multi-head attention mechanism to fuse lower-dimensional modality embeddings based on their importance and missingness. MAGNET's complexity increases linearly with the number of modalities while adapting to missing-pattern variability. To generate predictions, MAGNET further constructs a patient graph with fused multimodal embeddings as node features and the connectivity determined by the modality missingness, followed by a conventional graph neural network. Experiments on three public multiomics datasets for cancer classification, with real-world instead of artificial missingness, show that MAGNET outperforms the state-of-the-art fusion methods. The data and code are available at https://github.com/SinaTabakhi/MAGNET.
comment: 15 pages, 7 figures
Quantitative Methods 3
☆ A Benchmark for Quantum Chemistry Relaxations via Machine Learning Interatomic Potentials
Computational quantum chemistry plays a critical role in drug discovery, chemical synthesis, and materials science. While first-principles methods, such as density functional theory (DFT), provide high accuracy in modeling electronic structures and predicting molecular properties, they are computationally expensive. Machine learning interatomic potentials (MLIPs) have emerged as promising surrogate models that aim to achieve DFT-level accuracy while enabling efficient large-scale atomistic simulations. The development of accurate and transferable MLIPs requires large-scale, high-quality datasets with both energy and force labels. Critically, MLIPs must generalize not only to stable geometries but also to intermediate, non-equilibrium conformations encountered during atomistic simulations. In this work, we introduce PubChemQCR, a large-scale dataset of molecular relaxation trajectories curated from the raw geometry optimization outputs of the PubChemQC project. PubChemQCR is the largest publicly available dataset of DFT-based relaxation trajectories for small organic molecules, comprising approximately 3.5 million trajectories and over 300 million molecular conformations computed at various levels of theory. Each conformation is labeled with both total energy and atomic forces, making the dataset suitable for training and evaluating MLIPs. To provide baselines for future developments, we benchmark nine representative MLIP models on the dataset. Our resources are publicly available at https://huggingface.co/divelab
♻ ☆ Foundation Models for Wearable Movement Data in Mental Health Research
Pretrained foundation models and transformer architectures have driven the success of large language models (LLMs) and other modern AI breakthroughs. However, similar advancements in health data modeling remain limited due to the need for innovative adaptations. Wearable movement data offers a valuable avenue for exploration, as it's a core feature in nearly all commercial smartwatches, well established in clinical and mental health research, and the sequential nature of the data shares similarities to language. We introduce the Pretrained Actigraphy Transformer (PAT), the first open source foundation model designed for time-series wearable movement data. Leveraging transformer-based architectures and novel techniques, such as patch embeddings, and pretraining on data from 29,307 participants in a national U.S. sample, PAT achieves state-of-the-art performance in several mental health prediction tasks. PAT is also lightweight and easily interpretable, making it a robust tool for mental health research. GitHub: https://github.com/njacobsonlab/Pretrained-Actigraphy-Transformer/
♻ ☆ Bayesian Non-Negative Matrix Factorization with Correlated Mutation Type Probabilities for Mutational Signatures
Somatic mutations, or alterations in DNA of a somatic cell, are key markers of cancer. In recent years, mutational signature analysis has become a prominent field of study within cancer research, commonly with Nonnegative Matrix Factorization (NMF) and Bayesian NMF. However, current methods assume independence across mutation types in the signatures matrix. This paper expands upon current Bayesian NMF methodologies by proposing novel methods that account for the dependencies between the mutation types. First, we implement the Bayesian NMF specification with a Multivariate Truncated Normal prior on the signatures matrix in order to model the covariance structure using external information, in our case estimated from the COSMIC signatures database. This model converges in fewer iterations, using MCMC, when compared to a model with independent Truncated Normal priors on elements of the signatures matrix and results in improvements in accuracy, especially on small sample sizes. In addition, we develop a hierarchical model that allows the covariance structure of the signatures matrix to be discovered rather than specified upfront, giving the algorithm more flexibility. This flexibility for the algorithm to learn the dependence structure of the signatures allows a better understanding of biological interactions and how these change across different types of cancer. The code for this project is contributed to an open-source R software package. Our work lays the groundwork for future research to incorporate dependency structure across mutation types in the signatures matrix and is also applicable to any use of NMF beyond just single-base substitution (SBS) mutational signatures.
comment: 23 pages, 10 figures, (+ references and supplement)
Computation and Language 100
☆ The Automated LLM Speedrunning Benchmark: Reproducing NanoGPT Improvements
Rapid advancements in large language models (LLMs) have the potential to assist in scientific progress. A critical capability toward this endeavor is the ability to reproduce existing work. To evaluate the ability of AI agents to reproduce results in an active research area, we introduce the Automated LLM Speedrunning Benchmark, leveraging the research community contributions on the NanoGPT speedrun, a competition to train a GPT-2 model in the shortest time. Each of the 19 speedrun tasks provides the agent with the previous records training script, optionally paired with one of three hint formats, ranging from pseudocode to paper-like descriptions of the new records improvements. Records execute quickly by design and speedrun improvements encompass diverse code-level changes, ranging from high-level algorithmic advancements to hardware-aware optimizations. These features make the benchmark both accessible and realistic for the frontier problem of improving LLM training. We find that recent reasoning LLMs combined with SoTA scaffolds struggle to reimplement already-known innovations in our benchmark, even when given detailed hints. Our benchmark thus provides a simple, non-saturated measure of an LLMs ability to automate scientific reproduction, a necessary (but not sufficient) skill for an autonomous research agent.
☆ Sequential Diagnosis with Language Models
Artificial intelligence holds great promise for expanding access to expert medical knowledge and reasoning. However, most evaluations of language models rely on static vignettes and multiple-choice questions that fail to reflect the complexity and nuance of evidence-based medicine in real-world settings. In clinical practice, physicians iteratively formulate and revise diagnostic hypotheses, adapting each subsequent question and test to what they've just learned, and weigh the evolving evidence before committing to a final diagnosis. To emulate this iterative process, we introduce the Sequential Diagnosis Benchmark, which transforms 304 diagnostically challenging New England Journal of Medicine clinicopathological conference (NEJM-CPC) cases into stepwise diagnostic encounters. A physician or AI begins with a short case abstract and must iteratively request additional details from a gatekeeper model that reveals findings only when explicitly queried. Performance is assessed not just by diagnostic accuracy but also by the cost of physician visits and tests performed. We also present the MAI Diagnostic Orchestrator (MAI-DxO), a model-agnostic orchestrator that simulates a panel of physicians, proposes likely differential diagnoses and strategically selects high-value, cost-effective tests. When paired with OpenAI's o3 model, MAI-DxO achieves 80% diagnostic accuracy--four times higher than the 20% average of generalist physicians. MAI-DxO also reduces diagnostic costs by 20% compared to physicians, and 70% compared to off-the-shelf o3. When configured for maximum accuracy, MAI-DxO achieves 85.5% accuracy. These performance gains with MAI-DxO generalize across models from the OpenAI, Gemini, Claude, Grok, DeepSeek, and Llama families. We highlight how AI systems, when guided to think iteratively and act judiciously, can advance diagnostic precision and cost-effectiveness in clinical care.
comment: 23 pages, 10 figures
☆ HyperCLOVA X THINK Technical Report
We introduce HyperCLOVA X THINK, the first reasoning-focused large language model in the HyperCLOVA X family, pre-trained on roughly $6$ trillion high-quality Korean, and English tokens, augmented with targeted synthetic Korean data. It was implemented as a compute-memory-balanced Peri-LN Transformer scaled with $\mu$P, pre-trained through a three-stage curriculum that expands the context window to $128$K tokens, and post-trained via supervised fine-tuning with Reinforcement Learning from Verifiable Rewards supports both detailed rationale and concise-answer modes. It delivers competitive performance against similarly sized models on Korea-focused benchmarks such as KMMLU, CSAT, KoBALT-700, HAERAE-1.0, and KoBigBench, while preserving robust bilingual consistency and translation quality. In addition, a vision-augmented variant matches or exceeds GPT-4.1 on the KCSAT STEM benchmark, all of which are achieved with substantially lower training compute than existing models of similar sizes. We also present a pruning and distillation technique that will soon be applied to HyperCLOVA X THINK for an open-source and business-friendly foundation model. Altogether, these capabilities position HyperCLOVA X THINK as a robust foundation for Korean AI innovation and a valuable resource for the global research community.
comment: 49 pages, 13 figures
☆ Refining Czech GEC: Insights from a Multi-Experiment Approach
We present a grammar error correction (GEC) system that achieves state of the art for the Czech language. Our system is based on a neural network translation approach with the Transformer architecture, and its key feature is its real-time synthetic generation pipeline, which dynamically augments sentences with artificial errors by introducing both language-agnostic and Czech-specific errors. We conduct a comprehensive series of experiments, investigating the Czech GEC corpora as bases for synthetic error introduction, several error generation strategies, domain balancing, tokenization granularity, model size, and data scaling during fine-tuning. Additionally, we evaluate the performance of large language models (LLMs) on Czech GEC in both end-user and expert fine-tuning scenarios. Our best-performing model is superior both in performance and computational efficiency. The source code and the trained model links are available on https://github.com/ufal/tsd2025-gec.
comment: Accepted to TSD 2025
☆ QuickSilver -- Speeding up LLM Inference through Dynamic Token Halting, KV Skipping, Contextual Token Fusion, and Adaptive Matryoshka Quantization
Inference accounts for the majority of latency and energy consumption in large language model (LLM) deployments, often exceeding 90% of total cost. While training-time efficiency has seen extensive progress, runtime optimization remains a key bottleneck, particularly under autoregressive decoding. Existing approaches -- such as pruning, quantization, early exits, and speculative decoding -- often require retraining, architectural changes, or disrupt decoding compatibility. We introduce QuickSilver, a modular, token-level framework that enables semantic adaptivity at inference time without altering model weights or structure. QuickSilver integrates four synergistic mechanisms: (i) Dynamic Token Halting, which halts computation for tokens with converged representations; (ii) KV Cache Skipping, which selectively suppresses memory writes to reduce attention overhead; and (iii) Contextual Token Fusion, which collapses redundant tokens into shared paths to shrink sequence length. Unlike speculative decoding or MoE routing, QuickSilver operates entirely on frozen, dense models and requires no auxiliary networks. Applied to GPT-2 and Llama-2 across WikiText-103 and C4, QuickSilver achieves up to 39.6% FLOP reduction with negligible perplexity degradation (<=0.2).
comment: Preprint. Under submission
☆ Can Video Large Multimodal Models Think Like Doubters-or Double-Down: A Study on Defeasible Video Entailment
Video Large Multimodal Models (VLMMs) have made impressive strides in understanding video content, but they often struggle with abstract and adaptive reasoning-the ability to revise their interpretations when new information emerges. In reality, conclusions are rarely set in stone; additional context can strengthen or weaken an initial inference. To address this, we introduce Defeasible Video Entailment (DVidE), a new task that challenges models to think like doubters, constantly updating their reasoning based on evolving evidence. In DVidE, given a video premise and a textual hypothesis, models must determine whether a new update strengthens or weakens the hypothesis (classification version) or generate a coherent update that modifies the entailment relationship (generation version). For solving the classification task, we propose the Chain of Counterfactual Thought framework, utilizing counterfactual reasoning, ASR-enhanced video content, and rationale refinement to reduce inference bias. For the generation task, we develop a framework that combines ASR output with a Large Language Model (LLM) to produce coherent, contextually relevant updates aligned with the intended strengthener or weakener goals. Additionally, we introduce a novel benchmark dataset, with strengthener/weakener annotations and an LLM-based evaluation metric specifically designed for assessing generative performance. Experimental results demonstrate significant improvements, highlighting our proposed method in enhancing dynamic reasoning capabilities of VLMMs.
☆ Probabilistic Optimality for Inference-time Scaling
Inference-time scaling has emerged as a powerful technique for enhancing the reasoning performance of Large Language Models (LLMs). However, existing approaches often rely on heuristic strategies for parallel sampling, lacking a principled foundation. To address this gap, we propose a probabilistic framework that formalizes the optimality of inference-time scaling under the assumption that parallel samples are independently and identically distributed (i.i.d.), and where the Best-of-N selection strategy follows a probability distribution that can be estimated. Within this framework, we derive a theoretical lower bound on the required number of samples to achieve a target performance level, providing the first principled guidance for compute-efficient scaling. Leveraging this insight, we develop \textsc{OptScale}, a practical algorithm that dynamically determines the optimal number of sampled responses. \textsc{OptScale} employs a language model-based predictor to estimate probabilistic prior parameters, enabling the decision of the minimal number of samples needed that satisfy predefined performance thresholds and confidence levels. Extensive experiments on mathematical reasoning benchmarks (including MATH-500, GSM8K, AIME, and AMC) demonstrate that \textsc{OptScale} significantly reduces sampling overhead while remaining better or on par with state-of-the-art reasoning performance. Our work offers both a theoretical foundation and a practical solution for principled inference-time scaling, addressing a critical gap in the efficient deployment of LLMs for complex reasoning.
☆ Towards Fair Rankings: Leveraging LLMs for Gender Bias Detection and Measurement
The presence of social biases in Natural Language Processing (NLP) and Information Retrieval (IR) systems is an ongoing challenge, which underlines the importance of developing robust approaches to identifying and evaluating such biases. In this paper, we aim to address this issue by leveraging Large Language Models (LLMs) to detect and measure gender bias in passage ranking. Existing gender fairness metrics rely on lexical- and frequency-based measures, leading to various limitations, e.g., missing subtle gender disparities. Building on our LLM-based gender bias detection method, we introduce a novel gender fairness metric, named Class-wise Weighted Exposure (CWEx), aiming to address existing limitations. To measure the effectiveness of our proposed metric and study LLMs' effectiveness in detecting gender bias, we annotate a subset of the MS MARCO Passage Ranking collection and release our new gender bias collection, called MSMGenderBias, to foster future research in this area. Our extensive experimental results on various ranking models show that our proposed metric offers a more detailed evaluation of fairness compared to previous metrics, with improved alignment to human labels (58.77% for Grep-BiasIR, and 18.51% for MSMGenderBias, measured using Cohen's Kappa agreement), effectively distinguishing gender bias in ranking. By integrating LLM-driven bias detection, an improved fairness metric, and gender bias annotations for an established dataset, this work provides a more robust framework for analyzing and mitigating bias in IR systems.
comment: Accepted by ACM SIGIR Conference on Innovative Concepts and Theories in Information Retrieval (ICTIR 2025)
☆ Why Are Parsing Actions for Understanding Message Hierarchies Not Random?
If humans understood language by randomly selecting parsing actions, it might have been necessary to construct a robust symbolic system capable of being interpreted under any hierarchical structure. However, human parsing strategies do not seem to follow such a random pattern. Why is that the case? In fact, a previous study on emergent communication using models with hierarchical biases have reported that agents adopting random parsing strategies$\unicode{x2013}$ones that deviate significantly from human language comprehension$\unicode{x2013}$can achieve high communication accuracy. In this study, we investigate this issue by making two simple and natural modifications to the experimental setup: (I) we use more complex inputs that have hierarchical structures, such that random parsing makes semantic interpretation more difficult, and (II) we incorporate a surprisal-related term, which is known to influence the order of words and characters in natural language, into the objective function. With these changes, we evaluate whether agents employing random parsing strategies still maintain high communication accuracy.
☆ Optimal Estimation of Watermark Proportions in Hybrid AI-Human Texts
Text watermarks in large language models (LLMs) are an increasingly important tool for detecting synthetic text and distinguishing human-written content from LLM-generated text. While most existing studies focus on determining whether entire texts are watermarked, many real-world scenarios involve mixed-source texts, which blend human-written and watermarked content. In this paper, we address the problem of optimally estimating the watermark proportion in mixed-source texts. We cast this problem as estimating the proportion parameter in a mixture model based on \emph{pivotal statistics}. First, we show that this parameter is not even identifiable in certain watermarking schemes, let alone consistently estimable. In stark contrast, for watermarking methods that employ continuous pivotal statistics for detection, we demonstrate that the proportion parameter is identifiable under mild conditions. We propose efficient estimators for this class of methods, which include several popular unbiased watermarks as examples, and derive minimax lower bounds for any measurable estimator based on pivotal statistics, showing that our estimators achieve these lower bounds. Through evaluations on both synthetic data and mixed-source text generated by open-source models, we demonstrate that our proposed estimators consistently achieve high estimation accuracy.
☆ Evaluating Scoring Bias in LLM-as-a-Judge
The remarkable performance of Large Language Models (LLMs) gives rise to``LLM-as-a-Judge'', where LLMs are employed as evaluators for complex tasks. Moreover, it has been widely adopted across fields such as Natural Language Processing (NLP), preference learning, and various specific domains. However, there are various biases within LLM-as-a-Judge, which adversely affect the fairness and reliability of judgments. Current research on evaluating or mitigating bias in LLM-as-a-Judge predominantly focuses on comparison-based evaluations, while systematic investigations into bias in scoring-based evaluations remain limited. Therefore, we define scoring bias in LLM-as-a-Judge as the scores differ when scoring judge models are bias-related perturbed, and provide a well-designed framework to comprehensively evaluate scoring bias. We augment existing LLM-as-a-Judge benchmarks through data synthesis to construct our evaluation dataset and design multi-faceted evaluation metrics. Our experimental results demonstrate that the scoring stability of existing judge models is disrupted by scoring biases. Further exploratory experiments and discussions provide valuable insights into the design of scoring prompt templates and the mitigation of scoring biases on aspects such as score rubrics, score IDs, and reference answer selection.
☆ Conceptual Topic Aggregation
The vast growth of data has rendered traditional manual inspection infeasible, necessitating the adoption of computational methods for efficient data exploration. Topic modeling has emerged as a powerful tool for analyzing large-scale textual datasets, enabling the extraction of latent semantic structures. However, existing methods for topic modeling often struggle to provide interpretable representations that facilitate deeper insights into data structure and content. In this paper, we propose FAT-CAT, an approach based on Formal Concept Analysis (FCA) to enhance meaningful topic aggregation and visualization of discovered topics. Our approach can handle diverse topics and file types -- grouped by directories -- to construct a concept lattice that offers a structured, hierarchical representation of their topic distribution. In a case study on the ETYNTKE dataset, we evaluate the effectiveness of our approach against other representation methods to demonstrate that FCA-based aggregation provides more meaningful and interpretable insights into dataset composition than existing topic modeling techniques.
comment: 16 pages, 4 tables, 11 figures, International Joint Conference on Conceptual Knowledge Structures
☆ Detection of Personal Data in Structured Datasets Using a Large Language Model
We propose a novel approach for detecting personal data in structured datasets, leveraging GPT-4o, a state-of-the-art Large Language Model. A key innovation of our method is the incorporation of contextual information: in addition to a feature's name and values, we utilize information from other feature names within the dataset as well as the dataset description. We compare our approach to alternative methods, including Microsoft Presidio and CASSED, evaluating them on multiple datasets: DeSSI, a large synthetic dataset, datasets we collected from Kaggle and OpenML as well as MIMIC-Demo-Ext, a real-world dataset containing patient information from critical care units. Our findings reveal that detection performance varies significantly depending on the dataset used for evaluation. CASSED excels on DeSSI, the dataset on which it was trained. Performance on the medical dataset MIMIC-Demo-Ext is comparable across all models, with our GPT-4o-based approach clearly outperforming the others. Notably, personal data detection in the Kaggle and OpenML datasets appears to benefit from contextual information. This is evidenced by the poor performance of CASSED and Presidio (both of which do not utilize the context of the dataset) compared to the strong results of our GPT-4o-based approach. We conclude that further progress in this field would greatly benefit from the availability of more real-world datasets containing personal information.
comment: 10 pages
☆ COOCO -- Common Objects Out-of-Context -- Semantic Violation in Scenes: Investigating Multimodal Context in Referential Communication
Natural scenes provide us with rich contexts for object recognition and reference. In particular, knowing what type of scene one is looking at generates expectations about which objects will occur, and what their spatial configuration should be. Do Vision-Language Models (VLMs) learn to rely on scene contexts in a similar way, when generating references to objects? To address this question, we introduce the \textit{Common Objects Out-of-Context (COOCO)} dataset and test to what extent VLMs rely on scene context to refer to objects under different degrees of scene-object congruency, and different perturbations. Our findings show that models leverage scene context adaptively, depending on both the semantic relatedness between object and scene and the level of noise. In particular, models rely more on context under high target-scene congruence or when objects are degraded. Attention analysis reveals that successful object categorisation involves increased focus on the target in mid-level layers, especially under moderate noise, suggesting that VLMs dynamically balance local and contextual information for reference generation. We make our dataset, code and models available at \href{https://github.com/cs-nlp-uu/scenereg}{https://github.com/cs-nlp-uu/scenereg}.
☆ Projected Compression: Trainable Projection for Efficient Transformer Compression
Large language models have steadily increased in size to achieve improved performance; however, this growth has also led to greater inference time and computational demands. Consequently, there is rising interest in model size reduction methods. To address this issue, we propose Projected Compression, a novel model compression technique, that reduces model weights by utilizing projection modules. Specifically, we first train additional trainable projections weights and preserve access to all the original model parameters. Subsequently, these projections are merged into a lower-dimensional product matrix, resulting in a reduced-size standard Transformer-based model. Unlike alternative approaches that require additional computational overhead, our method matches the base model's per-token computation step in FLOPs. Experimental results show that Projected Compression outperforms the comparable hard pruning and retraining approach on higher quality models. Moreover, the performance margin scales well with the number of tokens.
☆ Fine-Tuning MIDI-to-Audio Alignment using a Neural Network on Piano Roll and CQT Representations
In this paper, we present a neural network approach for synchronizing audio recordings of human piano performances with their corresponding loosely aligned MIDI files. The task is addressed using a Convolutional Recurrent Neural Network (CRNN) architecture, which effectively captures spectral and temporal features by processing an unaligned piano roll and a spectrogram as inputs to estimate the aligned piano roll. To train the network, we create a dataset of piano pieces with augmented MIDI files that simulate common human timing errors. The proposed model achieves up to 20% higher alignment accuracy than the industry-standard Dynamic Time Warping (DTW) method across various tolerance windows. Furthermore, integrating DTW with the CRNN yields additional improvements, offering enhanced robustness and consistency. These findings demonstrate the potential of neural networks in advancing state-of-the-art MIDI-to-audio alignment.
comment: 9 pages, 3 figures, 6 tables
☆ Leveraging In-Context Learning for Political Bias Testing of LLMs ACL 2025
A growing body of work has been querying LLMs with political questions to evaluate their potential biases. However, this probing method has limited stability, making comparisons between models unreliable. In this paper, we argue that LLMs need more context. We propose a new probing task, Questionnaire Modeling (QM), that uses human survey data as in-context examples. We show that QM improves the stability of question-based bias evaluation, and demonstrate that it may be used to compare instruction-tuned models to their base versions. Experiments with LLMs of various sizes indicate that instruction tuning can indeed change the direction of bias. Furthermore, we observe a trend that larger models are able to leverage in-context examples more effectively, and generally exhibit smaller bias scores in QM. Data and code are publicly available.
comment: ACL 2025
☆ Exploring Modularity of Agentic Systems for Drug Discovery
Large-language models (LLMs) and agentic systems present exciting opportunities to accelerate drug discovery and design. In this study, we critically examine the modularity of LLM-based agentic systems for drug discovery, i.e., whether parts of the agentic system such as the LLM are interchangeable, a topic that has received limited attention in drug discovery applications. We compare the performance of different large language models (LLMs) and the effectiveness of tool-calling agents versus code-generating agents in this domain. Our case study, comparing performance in orchestrating tools for chemistry and drug discovery using an LLM-as-a-judge score, shows that Claude-3.5-Sonnet, Claude-3.7-Sonnet and GPT-4o outperform alternative language models such as Llama-3.1-8B, Llama-3.1-70B, GPT-3.5-Turbo, and Nova-Micro. Although we confirm that code-generating agents outperform the tool-calling ones on average, we show that this is highly question and model dependent. Furthermore, the impact of replacing system prompts is dependent on the specific question asked and the model used, underscoring that -- even in this particular domain -- one cannot just replace language models without considering prompt re-engineering. Our study highlights the necessity of further research into the modularity of agentic systems to enable the development of stable and scalable solutions for real-world problems.
☆ Training Language Model to Critique for Better Refinement ACL 2025
Large language models (LLMs) have demonstrated remarkable evaluation and critique capabilities, providing insightful feedback and identifying flaws in various tasks. However, limited research has explored which types of critiques are most effective for improving model responses or how to generate such critiques. To address this gap, we introduce \textbf{R}efinement-oriented \textbf{C}ritique \textbf{O}ptimization (RCO), a novel framework designed to train critic models using refinement signals. RCO uses a feedback loop where critiques, generated by the critic model, guide the actor model in refining its responses. The critique utility (CU) quantifies the effectiveness of these refinements, serving as the reward signal for training the critic model. By focusing on critiques that lead to better refinements, RCO eliminates the need for direct critique preference assessment, ensuring that critiques driving meaningful improvements are rewarded. We evaluate RCO across five tasks, i.e., dialog generation, summarization, question answering, mathematical reasoning, and code generation, and show that it significantly outperforms traditional methods and open-source models in terms of critique quality and refinement outcomes. Our contributions include the introduction of RCO, a novel supervision scheme based on refined response preferences, and comprehensive experimental results that highlight the method's effectiveness in enhancing LLM critique-refinement loops.
comment: Accepted to ACL 2025 Findings
☆ SAGE: Spliced-Audio Generated Data for Enhancing Foundational Models in Low-Resource Arabic-English Code-Switched Speech Recognition
This paper investigates the performance of various speech SSL models on dialectal Arabic (DA) and Arabic-English code-switched (CS) speech. To address data scarcity, a modified audio-splicing approach is introduced to generate artificial CS speech data. Fine-tuning an already fine-tuned SSL model with the proposed Spliced-Audio Generated (SAGE) data results in an absolute improvement on Word Error Rate (WER) of 7.8% on Arabic and English CS benchmarks. Additionally, an Experience Replay (ER) inspired approach is proposed to enhance generalisation across DA and CS speech while mitigating catastrophic forgetting. Integrating an out-of-domain 3-gram language model reduces the overall mean WER from 31.7% to 26.6%. Few-shot fine-tuning for code-switching benchmarks further improves WER by 4.9%. A WER of 31.1% on Arabic-English CS benchmarks surpasses large-scale multilingual models, including USM and Whisper-large-v2 (both over ten times larger) by an absolute margin of 5.5% and 8.4%, respectively.
comment: Accepted for IEEE MLSP 2025
☆ DAPFAM: A Domain-Aware Patent Retrieval Dataset Aggregated at the Family Level
In the landscape of publicly available patent retrieval datasets, the need for explicit indomain and out-of-domain labeling, multi-jurisdiction coverage, balanced query domain representation and manageable sizes that support sub document level experiments on moderate computational resources is often overlooked. To address these gaps, we propose DAPFAM, a new open access domain-aware patent retrieval dataset constructed at the simple-family level. The dataset contains 1,247 domain balanced full text query families and 45,336 full text target families. The dataset is enriched by clear relevance judgments (forward/backward citations as positive links, random negatives), as well as explicit in-domain or out-of-domain relationships via a novel proposed labelling scheme based on via International Patent Classification (IPC) codes, resulting in 49,869 evaluation pairs. The dataset is multi jurisdictional, requires little to no preprocessing for retrieval evaluation, and remains of a size manageable for entities with limited ressources allowing for sub document level retrieval experiments without excessive computational costs. We describe our three-step data-curation pipeline, present comprehensive dataset statistics, and provide baseline experiments using lexical and neural retrieval methods. Our baseline experiments highlight significant challenges in crossdomain patent retrieval. The dataset will be publicly available (for now the access link is this repository: https://osf.io/vbyzd/?view_only=1a40242e0d1941a58aa854af3e50cf6b).
☆ Identifying a Circuit for Verb Conjugation in GPT-2
I implement a procedure to isolate and interpret the sub-network (or "circuit") responsible for subject-verb agreement in GPT-2 Small. In this study, the model is given prompts where the subject is either singular (e.g. "Alice") or plural (e.g. "Alice and Bob"), and the task is to correctly predict the appropriate verb form ("walks" for singular subjects, "walk" for plural subjects). Using a series of techniques-including performance verification automatic circuit discovery via direct path patching, and direct logit attribution- I isolate a candidate circuit that contributes significantly to the model's correct verb conjugation. The results suggest that only a small fraction of the network's component-token pairs is needed to achieve near-model performance on the base task but substantially more for more complex settings.
☆ Involvement drives complexity of language in online debates
Language is a fundamental aspect of human societies, continuously evolving in response to various stimuli, including societal changes and intercultural interactions. Technological advancements have profoundly transformed communication, with social media emerging as a pivotal force that merges entertainment-driven content with complex social dynamics. As these platforms reshape public discourse, analyzing the linguistic features of user-generated content is essential to understanding their broader societal impact. In this paper, we examine the linguistic complexity of content produced by influential users on Twitter across three globally significant and contested topics: COVID-19, COP26, and the Russia-Ukraine war. By combining multiple measures of textual complexity, we assess how language use varies along four key dimensions: account type, political leaning, content reliability, and sentiment. Our analysis reveals significant differences across all four axes, including variations in language complexity between individuals and organizations, between profiles with sided versus moderate political views, and between those associated with higher versus lower reliability scores. Additionally, profiles producing more negative and offensive content tend to use more complex language, with users sharing similar political stances and reliability levels converging toward a common jargon. Our findings offer new insights into the sociolinguistic dynamics of digital platforms and contribute to a deeper understanding of how language reflects ideological and social structures in online spaces.
☆ MDC-R: The Minecraft Dialogue Corpus with Reference
We introduce the Minecraft Dialogue Corpus with Reference (MDC-R). MDC-R is a new language resource that supplements the original Minecraft Dialogue Corpus (MDC) with expert annotations of anaphoric and deictic reference. MDC's task-orientated, multi-turn, situated dialogue in a dynamic environment has motivated multiple annotation efforts, owing to the interesting linguistic phenomena that this setting gives rise to. We believe it can serve as a valuable resource when annotated with reference, too. Here, we discuss our method of annotation and the resulting corpus, and provide both a quantitative and a qualitative analysis of the data. Furthermore, we carry out a short experiment demonstrating the usefulness of our corpus for referring expression comprehension.
☆ Lost at the Beginning of Reasoning
Recent advancements in large language models (LLMs) have significantly advanced complex reasoning capabilities, particularly through extended chain-of-thought (CoT) reasoning that incorporates mechanisms such as backtracking, self-reflection and self-correction. Despite these developments, the self-correction abilities of LLMs during long CoT reasoning remain underexplored. And recent findings on overthinking suggest that such models often engage in unnecessarily redundant reasoning. In this work, we empirically show that the first reasoning step exerts a disproportionately large influence on the final prediction - errors introduced at this stage can substantially degrade subsequent reasoning quality. This phenomenon is consistently observed across two state-of-the-art open-source reasoning model families: DeepSeek-R1 and Qwen3. To address this, we propose an efficient sampling strategy that leverages a reward model to identify and retain high-quality first reasoning steps while discarding suboptimal ones, achieving up to a 70% reduction in inference cost without sacrificing accuracy. Finally, we introduce a new benchmark specifically constructed with deliberately flawed first reasoning steps to systematically evaluate model self-correction capabilities, offering a foundation for future research on robust reasoning in LLMs.
comment: 9 pages, 5 figures, 2 tables
☆ Decoding Machine Translationese in English-Chinese News: LLMs vs. NMTs ACL
This study explores Machine Translationese (MTese) -- the linguistic peculiarities of machine translation outputs -- focusing on the under-researched English-to-Chinese language pair in news texts. We construct a large dataset consisting of 4 sub-corpora and employ a comprehensive five-layer feature set. Then, a chi-square ranking algorithm is applied for feature selection in both classification and clustering tasks. Our findings confirm the presence of MTese in both Neural Machine Translation systems (NMTs) and Large Language Models (LLMs). Original Chinese texts are nearly perfectly distinguishable from both LLM and NMT outputs. Notable linguistic patterns in MT outputs are shorter sentence lengths and increased use of adversative conjunctions. Comparing LLMs and NMTs, we achieve approximately 70% classification accuracy, with LLMs exhibiting greater lexical diversity and NMTs using more brackets. Additionally, translation-specific LLMs show lower lexical diversity but higher usage of causal conjunctions compared to generic LLMs. Lastly, we find no significant differences between LLMs developed by Chinese firms and their foreign counterparts.
comment: 14 pages, 5 figures, 6 tables. Accpeted in MT Summit 2025, Research: Technical track. Official version may be accessed later in the ACL Anthology
☆ GPAS: Accelerating Convergence of LLM Pretraining via Gradient-Preserving Activation Scaling
Modern Large Language Models, such as the LLaMA, Qwen and DeepSeek series, predominantly adopt the Pre-LayerNorm (Pre-LN) Transformer architecture. While being stable during pretraining and scalable to large model sizes, Pre-LN suffers from an exponential growth in activation variance across layers, causing the residual path to dominate over sub-layer outputs and limiting the learning capacity of deeper layers. To mitigate this issue, we propose Gradient-Preserving Activation Scaling (GPAS), a simple technique that can be used in combination with existing approaches. GPAS works by scaling down the intermediate activations while keeping their gradients unchanged. This leaves information in the activations intact, and avoids the gradient vanishing problem associated with gradient downscaling. Extensive experiments across various model sizes from 71M to 1B show that GPAS achieves consistent performance gains. Beyond enhancing Pre-LN Transformers, GPAS also shows promise in improving alternative architectures such as Sandwich-LN and DeepNorm, demonstrating its versatility and potential for improving training dynamics in a wide range of settings.
☆ Can Peter Pan Survive MT? A Stylometric Study of LLMs, NMTs, and HTs in Children's Literature Translation ACL
This study focuses on evaluating the performance of machine translations (MTs) compared to human translations (HTs) in English-to-Chinese children's literature translation (CLT) from a stylometric perspective. The research constructs a Peter Pan corpus, comprising 21 translations: 7 human translations (HTs), 7 large language model translations (LLMs), and 7 neural machine translation outputs (NMTs). The analysis employs a generic feature set (including lexical, syntactic, readability, and n-gram features) and a creative text translation (CTT-specific) feature set, which captures repetition, rhythm, translatability, and miscellaneous levels, yielding 447 linguistic features in total. Using classification and clustering techniques in machine learning, we conduct a stylometric analysis of these translations. Results reveal that in generic features, HTs and MTs exhibit significant differences in conjunction word distributions and the ratio of 1-word-gram-YiYang, while NMTs and LLMs show significant variation in descriptive words usage and adverb ratios. Regarding CTT-specific features, LLMs outperform NMTs in distribution, aligning more closely with HTs in stylistic characteristics, demonstrating the potential of LLMs in CLT.
comment: 19 pages, 8 figures, 4 tables. Accepted in 2nd Workshop on Creative-text Translation and Technology Co-located with MT Summit 2025. Official paper may later be accessed from ACL Anthology
☆ Robust and Efficient Autoregressive Speech Synthesis with Dynamic Chunk-wise Prediction Policy
Recently, autoregressive (AR) language models have emerged as a dominant approach in speech synthesis, offering expressive generation and scalable training. However, conventional AR speech synthesis models relying on the next-token prediction paradigm often encounter significant challenges when handling long speech sequences. These models often struggle to construct stable frame-to-frame attention, leading to increased latency and degraded synthesis quality, thereby limiting their feasibility for real-time applications. To address these limitations, we introduce a novel dynamic chunk-wise autoregressive synthesis framework, termed DCAR, designed to enhance both efficiency and intelligibility robustness in AR speech generation. DCAR introduces a chunk-to-frame attention mechanism through training with multi-token prediction, enabling dynamic chunk prediction in variable speech contexts using a lightweight module trained on-policy. DCAR dynamically adjusts the token prediction span, significantly reducing the sequence length dependency while obtaining high synthesis quality. Comprehensive empirical evaluations demonstrate that DCAR substantially outperforms traditional next-token prediction models, achieving up to 72.27% intelligibility improvement and 2.61x inference speedup simultaneously on the test set. Furthermore, we conduct comprehensive analysis to support it as a versatile foundation for next-generation speech synthesis systems.
comment: 17 pages, 8 figures, 5 tables
☆ Analyzing and Fine-Tuning Whisper Models for Multilingual Pilot Speech Transcription in the Cockpit CVPR
The developments in transformer encoder-decoder architectures have led to significant breakthroughs in machine translation, Automatic Speech Recognition (ASR), and instruction-based chat machines, among other applications. The pre-trained models were trained on vast amounts of generic data over a few epochs (fewer than five in most cases), resulting in their strong generalization capabilities. Nevertheless, the performance of these models does suffer when applied to niche domains like transcribing pilot speech in the cockpit, which involves a lot of specific vocabulary and multilingual conversations. This paper investigates and improves the transcription accuracy of cockpit conversations with Whisper models. We have collected around 85 minutes of cockpit simulator recordings and 130 minutes of interview recordings with pilots and manually labeled them. The speakers are middle aged men speaking both German and English. To improve the accuracy of transcriptions, we propose multiple normalization schemes to refine the transcripts and improve Word Error Rate (WER). We then employ fine-tuning to enhance ASR performance, utilizing performance-efficient fine-tuning with Low-Rank Adaptation (LoRA). Hereby, WER decreased from 68.49 \% (pretrained whisper Large model without normalization baseline) to 26.26\% (finetuned whisper Large model with the proposed normalization scheme).
comment: Computer Vision and Pattern Recognition (CVPR) 2025 Workshops
☆ Don't Trust Generative Agents to Mimic Communication on Social Networks Unless You Benchmarked their Empirical Realism
The ability of Large Language Models (LLMs) to mimic human behavior triggered a plethora of computational social science research, assuming that empirical studies of humans can be conducted with AI agents instead. Since there have been conflicting research findings on whether and when this hypothesis holds, there is a need to better understand the differences in their experimental designs. We focus on replicating the behavior of social network users with the use of LLMs for the analysis of communication on social networks. First, we provide a formal framework for the simulation of social networks, before focusing on the sub-task of imitating user communication. We empirically test different approaches to imitate user behavior on X in English and German. Our findings suggest that social simulations should be validated by their empirical realism measured in the setting in which the simulation components were fitted. With this paper, we argue for more rigor when applying generative-agent-based modeling for social simulation.
comment: 11 pages, 1 figure, 3 tables
☆ Advancing Jailbreak Strategies: A Hybrid Approach to Exploiting LLM Vulnerabilities and Bypassing Modern Defenses
The advancement of Pre-Trained Language Models (PTLMs) and Large Language Models (LLMs) has led to their widespread adoption across diverse applications. Despite their success, these models remain vulnerable to attacks that exploit their inherent weaknesses to bypass safety measures. Two primary inference-phase threats are token-level and prompt-level jailbreaks. Token-level attacks embed adversarial sequences that transfer well to black-box models like GPT but leave detectable patterns and rely on gradient-based token optimization, whereas prompt-level attacks use semantically structured inputs to elicit harmful responses yet depend on iterative feedback that can be unreliable. To address the complementary limitations of these methods, we propose two hybrid approaches that integrate token- and prompt-level techniques to enhance jailbreak effectiveness across diverse PTLMs. GCG + PAIR and the newly explored GCG + WordGame hybrids were evaluated across multiple Vicuna and Llama models. GCG + PAIR consistently raised attack-success rates over its constituent techniques on undefended models; for instance, on Llama-3, its Attack Success Rate (ASR) reached 91.6%, a substantial increase from PAIR's 58.4% baseline. Meanwhile, GCG + WordGame matched the raw performance of WordGame maintaining a high ASR of over 80% even under stricter evaluators like Mistral-Sorry-Bench. Crucially, both hybrids retained transferability and reliably pierced advanced defenses such as Gradient Cuff and JBShield, which fully blocked single-mode attacks. These findings expose previously unreported vulnerabilities in current safety stacks, highlight trade-offs between raw success and defensive robustness, and underscore the need for holistic safeguards against adaptive adversaries.
☆ More Vulnerable than You Think: On the Stability of Tool-Integrated LLM Agents
Current evaluations of tool-integrated LLM agents typically focus on end-to-end tool-usage evaluation while neglecting their stability. This limits their real-world applicability, as various internal or external factors can cause agents to crash or behave abnormally. Our research addresses this by investigating whether agents are vulnerable to errors throughout the entire tool invocation process, including reading tool documentation, selecting tools and generating parameters, and processing the tool's response. Through extensive experiments, we observe that agents are highly susceptible to errors at each stage and agents based on open-source models are more vulnerable than those based on proprietary models. We also find that increasing the model size does not significantly improve tool invocation reasoning and may make agents more vulnerable to attacks resembling normal user instructions. This highlights the importance of evaluating agent stability and offers valuable insights for future LLM development and evaluation.
☆ Using Large Language Models to Suggest Informative Prior Distributions in Bayesian Statistics
Selecting prior distributions in Bayesian statistics is challenging, resource-intensive, and subjective. We analyze using large-language models (LLMs) to suggest suitable, knowledge-based informative priors. We developed an extensive prompt asking LLMs not only to suggest priors but also to verify and reflect on their choices. We evaluated Claude Opus, Gemini 2.5 Pro, and ChatGPT-4o-mini on two real datasets: heart disease risk and concrete strength. All LLMs correctly identified the direction for all associations (e.g., that heart disease risk is higher for males). The quality of suggested priors was measured by their Kullback-Leibler divergence from the maximum likelihood estimator's distribution. The LLMs suggested both moderately and weakly informative priors. The moderate priors were often overconfident, resulting in distributions misaligned with the data. In our experiments, Claude and Gemini provided better priors than ChatGPT. For weakly informative priors, a key performance difference emerged: ChatGPT and Gemini defaulted to an "unnecessarily vague" mean of 0, while Claude did not, demonstrating a significant advantage. The ability of LLMs to identify correct associations shows their great potential as an efficient, objective method for developing informative priors. However, the primary challenge remains in calibrating the width of these priors to avoid over- and under-confidence.
☆ PapersPlease: A Benchmark for Evaluating Motivational Values of Large Language Models Based on ERG Theory ACL 2025
Evaluating the performance and biases of large language models (LLMs) through role-playing scenarios is becoming increasingly common, as LLMs often exhibit biased behaviors in these contexts. Building on this line of research, we introduce PapersPlease, a benchmark consisting of 3,700 moral dilemmas designed to investigate LLMs' decision-making in prioritizing various levels of human needs. In our setup, LLMs act as immigration inspectors deciding whether to approve or deny entry based on the short narratives of people. These narratives are constructed using the Existence, Relatedness, and Growth (ERG) theory, which categorizes human needs into three hierarchical levels. Our analysis of six LLMs reveals statistically significant patterns in decision-making, suggesting that LLMs encode implicit preferences. Additionally, our evaluation of the impact of incorporating social identities into the narratives shows varying responsiveness based on both motivational needs and identity cues, with some models exhibiting higher denial rates for marginalized identities. All data is publicly available at https://github.com/yeonsuuuu28/papers-please.
comment: Accepted to GEM2 Workshop: Generation, Evaluation & Metrics - ACL 2025
☆ ARAG: Agentic Retrieval Augmented Generation for Personalized Recommendation
Retrieval-Augmented Generation (RAG) has shown promise in enhancing recommendation systems by incorporating external context into large language model prompts. However, existing RAG-based approaches often rely on static retrieval heuristics and fail to capture nuanced user preferences in dynamic recommendation scenarios. In this work, we introduce ARAG, an Agentic Retrieval-Augmented Generation framework for Personalized Recommendation, which integrates a multi-agent collaboration mechanism into the RAG pipeline. To better understand the long-term and session behavior of the user, ARAG leverages four specialized LLM-based agents: a User Understanding Agent that summarizes user preferences from long-term and session contexts, a Natural Language Inference (NLI) Agent that evaluates semantic alignment between candidate items retrieved by RAG and inferred intent, a context summary agent that summarizes the findings of NLI agent, and an Item Ranker Agent that generates a ranked list of recommendations based on contextual fit. We evaluate ARAG accross three datasets. Experimental results demonstrate that ARAG significantly outperforms standard RAG and recency-based baselines, achieving up to 42.1% improvement in NDCG@5 and 35.5% in Hit@5. We also, conduct an ablation study to analyse the effect by different components of ARAG. Our findings highlight the effectiveness of integrating agentic reasoning into retrieval-augmented recommendation and provide new directions for LLM-based personalization.
☆ HyReC: Exploring Hybrid-based Retriever for Chinese
Hybrid-based retrieval methods, which unify dense-vector and lexicon-based retrieval, have garnered considerable attention in the industry due to performance enhancement. However, despite their promising results, the application of these hybrid paradigms in Chinese retrieval contexts has remained largely underexplored. In this paper, we introduce HyReC, an innovative end-to-end optimization method tailored specifically for hybrid-based retrieval in Chinese. HyReC enhances performance by integrating the semantic union of terms into the representation model. Additionally, it features the Global-Local-Aware Encoder (GLAE) to promote consistent semantic sharing between lexicon-based and dense retrieval while minimizing the interference between them. To further refine alignment, we incorporate a Normalization Module (NM) that fosters mutual benefits between the retrieval approaches. Finally, we evaluate HyReC on the C-MTEB retrieval benchmark to demonstrate its effectiveness.
☆ AutoMixer: Checkpoint Artifacts as Automatic Data Mixers ACL 2025
In language model training, it is desirable to equip models with capabilities from various tasks. However, it is not clear how to directly obtain the right data mixtures for these capabilities as the relationship between data and tasks is difficult to be modeled. In this work, we observe that checkpoint models exhibit emerging capabilities at different points in the training trajectory. Often, the training process saves checkpoints as artifacts that are under-utilized as a source of in-training data signals. We identify these artifact models based on their respective capabilities on the benchmarks and leverage them as data mixers by using their aggregated first-order influence approximation over source data. We demonstrated on eight reasoning benchmarks that the proposed framework shows significant improvements in the pretraining setting, with performance improvements of up to 1.93%. Overall, this shows the potential of checkpoint models to enhance data quality and optimize data mixtures.
comment: Accepted at ACL 2025
☆ A Dual-Layered Evaluation of Geopolitical and Cultural Bias in LLMs ACL
As large language models (LLMs) are increasingly deployed across diverse linguistic and cultural contexts, understanding their behavior in both factual and disputable scenarios is essential, especially when their outputs may shape public opinion or reinforce dominant narratives. In this paper, we define two types of bias in LLMs: model bias (bias stemming from model training) and inference bias (bias induced by the language of the query), through a two-phase evaluation. Phase 1 evaluates LLMs on factual questions where a single verifiable answer exists, assessing whether models maintain consistency across different query languages. Phase 2 expands the scope by probing geopolitically sensitive disputes, where responses may reflect culturally embedded or ideologically aligned perspectives. We construct a manually curated dataset spanning both factual and disputable QA, across four languages and question types. The results show that Phase 1 exhibits query language induced alignment, while Phase 2 reflects an interplay between the model's training context and query language. This paper offers a structured framework for evaluating LLM behavior across neutral and sensitive topics, providing insights for future LLM deployment and culturally aware evaluation practices in multilingual contexts.
comment: This paper is accepted to ACL Student Research Workshop (SRW) 2025
☆ Do Vision-Language Models Have Internal World Models? Towards an Atomic Evaluation ACL 2025
Internal world models (WMs) enable agents to understand the world's state and predict transitions, serving as the basis for advanced deliberative reasoning. Recent large Vision-Language Models (VLMs), such as OpenAI o3, GPT-4o and Gemini, exhibit potential as general-purpose WMs. While the latest studies have evaluated and shown limitations in specific capabilities such as visual understanding, a systematic evaluation of VLMs' fundamental WM abilities remains absent. Drawing on comparative psychology and cognitive science, we propose a two-stage framework that assesses Perception (visual, spatial, temporal, quantitative, and motion) and Prediction (mechanistic simulation, transitive inference, compositional inference) to provide an atomic evaluation of VLMs as WMs. Guided by this framework, we introduce WM-ABench, a large-scale benchmark comprising 23 fine-grained evaluation dimensions across 6 diverse simulated environments with controlled counterfactual simulations. Through 660 experiments on 15 latest commercial and open-source VLMs, we find that these models exhibit striking limitations in basic world modeling abilities. For instance, almost all models perform at near-random accuracy when distinguishing motion trajectories. Additionally, they lack disentangled understanding -- e.g., some models tend to believe blue objects move faster than green ones. More rich results and analyses reveal significant gaps between VLMs and human-level world modeling.
comment: ACL 2025 (Findings)
☆ WildSpeech-Bench: Benchmarking Audio LLMs in Natural Speech Conversation
Recent multi-modal Large Language Models (LLMs) such as GPT-4o have demonstrated strong capabilities of direct speech interaction. However, the lack of specialized and comprehensive benchmarks for end-to-end speech LLM evaluation hinders optimizing the user experience of Audio LLMs in real-world applications. Existing evaluation methods often adapt text-based benchmarks, overlooking speech's unique characteristics and challenges, including prosody, homophones, stuttering, and differing user expectations. Here, we present a novel approach to thoroughly evaluate LLMs in practical speech conversations. We systematically curate real-world chat data relevant to spoken scenarios, introduce diversity in speaker attributes and acoustic conditions, and augment the dataset with speech-specific phenomena. We further design a query-aware evaluation method to use customized evaluation checklists and prompts to enhance the accuracy of automatic evaluation. We conduct comprehensive testing and detailed analysis of various mainstream speech models, revealing significant differences in model performance across different speech scenarios. The use of query-aware evaluation further enables a finer-grained assessment under various speech-specific scenarios. Our benchmark can provide valuable insights for speech model development and evaluation.
☆ RiverEcho: Real-Time Interactive Digital System for Ancient Yellow River Culture
The Yellow River is China's mother river and a cradle of human civilization. The ancient Yellow River culture is, moreover, an indispensable part of human art history. To conserve and inherit the ancient Yellow River culture, we designed RiverEcho, a real-time interactive system that responds to voice queries using a large language model and a cultural knowledge dataset, delivering explanations through a talking-head digital human. Specifically, we built a knowledge database focused on the ancient Yellow River culture, including the collection of historical texts and the processing pipeline. Experimental results demonstrate that leveraging Retrieval-Augmented Generation (RAG) on the proposed dataset enhances the response quality of the Large Language Model(LLM), enabling the system to generate more professional and informative responses. Our work not only diversifies the means of promoting Yellow River culture but also provides users with deeper cultural insights.
comment: IEEE International Conference on Multimedia and Expo Workshop, 2025.(Accepted)
☆ DeepTalk: Towards Seamless and Smart Speech Interaction with Adaptive Modality-Specific MoE
Native multimodal large language models (MLLMs) restructure a single large language model (LLM) into a spoken language model (SLM) capable of both speech and text generation. Compared to modular and aligned MLLMs, native MLLMs preserve richer paralinguistic features such as emotion and prosody, and generate speech responses directly within the backbone LLM rather than using a separate speech decoder. This integration also results in lower response latency and smoother interaction. However, native MLLMs suffer from catastrophic forgetting and performance degradation because the available paired speech-text data is insufficient to support the pretraining of MLLMs compared to the vast amount of text data required to pretrain text LLMs. To address this issue, we propose DeepTalk, a framework for adaptive modality expert learning based on a Mixture of Experts (MoE) architecture. DeepTalk first adaptively distinguishes modality experts according to their modality load within the LLM. Each modality expert then undergoes specialized single-modality training, followed by joint multimodal collaborative training. As a result, DeepTalk incurs only a 5.5% performance drop compared to the original LLM, which is significantly lower than the average performance drop of over 20% typically seen in native MLLMs (such as GLM-4-Voice), and is on par with modular MLLMs. Meanwhile, the end-to-end dialogue latency remains within 0.5 seconds, ensuring a seamless and intelligent speech interaction experience. Code and models are released at https://github.com/talkking/DeepTalk.
comment: Under Review
☆ Derivational Probing: Unveiling the Layer-wise Derivation of Syntactic Structures in Neural Language Models
Recent work has demonstrated that neural language models encode syntactic structures in their internal representations, yet the derivations by which these structures are constructed across layers remain poorly understood. In this paper, we propose Derivational Probing to investigate how micro-syntactic structures (e.g., subject noun phrases) and macro-syntactic structures (e.g., the relationship between the root verbs and their direct dependents) are constructed as word embeddings propagate upward across layers. Our experiments on BERT reveal a clear bottom-up derivation: micro-syntactic structures emerge in lower layers and are gradually integrated into a coherent macro-syntactic structure in higher layers. Furthermore, a targeted evaluation on subject-verb number agreement shows that the timing of constructing macro-syntactic structures is critical for downstream performance, suggesting an optimal timing for integrating global syntactic information.
☆ The Consistency Hypothesis in Uncertainty Quantification for Large Language Models
Estimating the confidence of large language model (LLM) outputs is essential for real-world applications requiring high user trust. Black-box uncertainty quantification (UQ) methods, relying solely on model API access, have gained popularity due to their practical benefits. In this paper, we examine the implicit assumption behind several UQ methods, which use generation consistency as a proxy for confidence, an idea we formalize as the consistency hypothesis. We introduce three mathematical statements with corresponding statistical tests to capture variations of this hypothesis and metrics to evaluate LLM output conformity across tasks. Our empirical investigation, spanning 8 benchmark datasets and 3 tasks (question answering, text summarization, and text-to-SQL), highlights the prevalence of the hypothesis under different settings. Among the statements, we highlight the `Sim-Any' hypothesis as the most actionable, and demonstrate how it can be leveraged by proposing data-free black-box UQ methods that aggregate similarities between generations for confidence estimation. These approaches can outperform the closest baselines, showcasing the practical value of the empirically observed consistency hypothesis.
comment: Accepted by The Conference on Uncertainty in Artificial Intelligence (UAI) 2025
☆ LinguaSynth: Heterogeneous Linguistic Signals for News Classification
Deep learning has significantly advanced NLP, but its reliance on large black-box models introduces critical interpretability and computational efficiency concerns. This paper proposes LinguaSynth, a novel text classification framework that strategically integrates five complementary linguistic feature types: lexical, syntactic, entity-level, word-level semantics, and document-level semantics within a transparent logistic regression model. Unlike transformer-based architectures, LinguaSynth maintains interpretability and computational efficiency, achieving an accuracy of 84.89 percent on the 20 Newsgroups dataset and surpassing a robust TF-IDF baseline by 3.32 percent. Through rigorous feature interaction analysis, we show that syntactic and entity-level signals provide essential disambiguation and effectively complement distributional semantics. LinguaSynth sets a new benchmark for interpretable, resource-efficient NLP models and challenges the prevailing assumption that deep neural networks are necessary for high-performing text classification.
☆ 3Description: An Intuitive Human-AI Collaborative 3D Modeling Approach
This paper presents 3Description, an experimental human-AI collaborative approach for intuitive 3D modeling. 3Description aims to address accessibility and usability challenges in traditional 3D modeling by enabling non-professional individuals to co-create 3D models using verbal and gesture descriptions. Through a combination of qualitative research, product analysis, and user testing, 3Description integrates AI technologies such as Natural Language Processing and Computer Vision, powered by OpenAI and MediaPipe. Recognizing the web has wide cross-platform capabilities, 3Description is web-based, allowing users to describe the desired model and subsequently adjust its components using verbal and gestural inputs. In the era of AI and emerging media, 3Description not only contributes to a more inclusive and user-friendly design process, empowering more people to participate in the construction of the future 3D world, but also strives to increase human engagement in co-creation with AI, thereby avoiding undue surrender to technology and preserving human creativity.
comment: 5 pages, 2 figures, 3 tables (containing 21 subfigures)
☆ PARSI: Persian Authorship Recognition via Stylometric Integration
The intricate linguistic, stylistic, and metrical aspects of Persian classical poetry pose a challenge for computational authorship attribution. In this work, we present a versatile framework to determine authorship among 67 prominent poets. We employ a multi-input neural framework consisting of a transformer-based language encoder complemented by features addressing the semantic, stylometric, and metrical dimensions of Persian poetry. Our feature set encompasses 100-dimensional Word2Vec embeddings, seven stylometric measures, and categorical encodings of poetic form and meter. We compiled a vast corpus of 647,653 verses of the Ganjoor digital collection, validating the data through strict preprocessing and author verification while preserving poem-level splitting to prevent overlap. This work employs verse-level classification and majority and weighted voting schemes in evaluation, revealing that weighted voting yields 71% accuracy. We further investigate threshold-based decision filtering, allowing the model to generate highly confident predictions, achieving 97% accuracy at a 0.9 threshold, though at lower coverage. Our work focuses on the integration of deep representational forms with domain-specific features for improved authorship attribution. The results illustrate the potential of our approach for automated classification and the contribution to stylistic analysis, authorship disputes, and general computational literature research. This research will facilitate further research on multilingual author attribution, style shift, and generative modeling of Persian poetry.
☆ GenEscape: Hierarchical Multi-Agent Generation of Escape Room Puzzles
We challenge text-to-image models with generating escape room puzzle images that are visually appealing, logically solid, and intellectually stimulating. While base image models struggle with spatial relationships and affordance reasoning, we propose a hierarchical multi-agent framework that decomposes this task into structured stages: functional design, symbolic scene graph reasoning, layout synthesis, and local image editing. Specialized agents collaborate through iterative feedback to ensure the scene is visually coherent and functionally solvable. Experiments show that agent collaboration improves output quality in terms of solvability, shortcut avoidance, and affordance clarity, while maintaining visual quality.
Metadata Conditioning Accelerates Language Model Pre-training ICML 2025
The vast diversity of styles, domains, and quality levels present in language model pre-training corpora is essential in developing general model capabilities, but efficiently learning and deploying the correct behaviors exemplified in each of these heterogeneous data sources is challenging. To address this, we propose a new method, termed Metadata Conditioning then Cooldown (MeCo), to incorporate additional learning cues during pre-training. MeCo first provides metadata (e.g., URLs like www$.$wikipedia$.$org) alongside the text during training and later uses a cooldown phase with only the standard text, thereby enabling the model to function normally even without metadata. MeCo significantly accelerates pre-training across different model scales (600M to 8B parameters) and training sources (C4, RefinedWeb, and DCLM). For instance, a 1.6B language model trained with MeCo matches the downstream task performance of standard pre-training while using 33% less data. Additionally, MeCo enables us to steer language models by conditioning the inference prompt on either real or fabricated metadata that encodes the desired properties of the output: for example, prepending wikipedia$.$org to reduce harmful generations or factquizmaster$.$com (fabricated) to improve common knowledge task performance. We also demonstrate that MeCo is compatible with different types of metadata, such as model-generated topics. MeCo is remarkably simple, adds no computational overhead, and demonstrates promise in producing more capable and steerable language models.
comment: Accepted to ICML 2025. Code available at https://github.com/princeton-pli/MeCo
How to Train Long-Context Language Models (Effectively) ACL 2025
We study continued training and supervised fine-tuning (SFT) of a language model (LM) to make effective use of long-context information. We first establish a reliable evaluation protocol to guide model development -- instead of perplexity or simple needle-in-a-haystack (NIAH) tests, we use a broad set of long-context downstream tasks, and we evaluate models after SFT as this better reveals long-context abilities. Supported by our robust evaluations, we run thorough experiments to decide the data mix for continued pre-training, the instruction tuning dataset, and many other design choices such as position extrapolation. We find that (1) code repositories and books are excellent sources of long data, but it is crucial to combine them with high-quality short-context data; (2) training with a sequence length beyond the evaluation length boosts long-context performance; (3) for SFT, using only short instruction datasets yields strong performance on long-context tasks. Our final model, ProLong-8B, which is initialized from Llama-3 and trained on 40B tokens, demonstrates state-of-the-art long-context performance among similarly sized models at a length of 128K. ProLong outperforms Llama-3.1-8B-Instruct on the majority of long-context tasks despite using only 5% as many tokens during long-context training. Additionally, ProLong can effectively process up to 512K tokens, one of the longest context windows of publicly available LMs.
comment: Accepted to ACL 2025. Our code, data, and models are available at https://github.com/princeton-nlp/ProLong
♻ ☆ Oldies but Goldies: The Potential of Character N-grams for Romanian Texts
This study addresses the problem of authorship attribution for Romanian texts using the ROST corpus, a standard benchmark in the field. We systematically evaluate six machine learning techniques: Support Vector Machine (SVM), Logistic Regression (LR), k-Nearest Neighbors (k-NN), Decision Trees (DT), Random Forests (RF), and Artificial Neural Networks (ANN), employing character n-gram features for classification. Among these, the ANN model achieved the highest performance, including perfect classification in four out of fifteen runs when using 5-gram features. These results demonstrate that lightweight, interpretable character n-gram approaches can deliver state-of-the-art accuracy for Romanian authorship attribution, rivaling more complex methods. Our findings highlight the potential of simple stylometric features in resource, constrained or under-studied language settings.
♻ ☆ Robust Detection of Watermarks for Large Language Models Under Human Edits
Watermarking has offered an effective approach to distinguishing text generated by large language models (LLMs) from human-written text. However, the pervasive presence of human edits on LLM-generated text dilutes watermark signals, thereby significantly degrading detection performance of existing methods. In this paper, by modeling human edits through mixture model detection, we introduce a new method in the form of a truncated goodness-of-fit test for detecting watermarked text under human edits, which we refer to as Tr-GoF. We prove that the Tr-GoF test achieves optimality in robust detection of the Gumbel-max watermark in a certain asymptotic regime of substantial text modifications and vanishing watermark signals. Importantly, Tr-GoF achieves this optimality \textit{adaptively} as it does not require precise knowledge of human edit levels or probabilistic specifications of the LLMs, in contrast to the optimal but impractical (Neyman--Pearson) likelihood ratio test. Moreover, we establish that the Tr-GoF test attains the highest detection efficiency rate in a certain regime of moderate text modifications. In stark contrast, we show that sum-based detection rules, as employed by existing methods, fail to achieve optimal robustness in both regimes because the additive nature of their statistics is less resilient to edit-induced noise. Finally, we demonstrate the competitive and sometimes superior empirical performance of the Tr-GoF test on both synthetic data and open-source LLMs in the OPT and LLaMA families.
♻ ☆ Multi-Turn Code Generation Through Single-Step Rewards
We address the problem of code generation from multi-turn execution feedback. Existing methods either generate code without feedback or use complex, hierarchical reinforcement learning to optimize multi-turn rewards. We propose a simple yet scalable approach, $\mu$Code, that solves multi-turn code generation using only single-step rewards. Our key insight is that code generation is a one-step recoverable MDP, where the correct code can be recovered from any intermediate code state in a single turn. $\mu$Code iteratively trains both a generator to provide code solutions conditioned on multi-turn execution feedback and a verifier to score the newly generated code. Experimental evaluations show that our approach achieves significant improvements over the state-of-the-art baselines. We provide analysis of the design choices of the reward models and policy, and show the efficacy of $\mu$Code at utilizing the execution feedback. Our code is available at https://github.com/portal-cornell/muCode.
comment: 9 pages (not including references or appendix); 5 figures (in main paper); (v2) camera-ready version
♻ ☆ All Entities are Not Created Equal: Examining the Long Tail for Ultra-Fine Entity Typing
Due to their capacity to acquire world knowledge from large corpora, pre-trained language models (PLMs) are extensively used in ultra-fine entity typing tasks where the space of labels is extremely large. In this work, we explore the limitations of the knowledge acquired by PLMs by proposing a novel heuristic to approximate the pre-training distribution of entities when the pre-training data is unknown. Then, we systematically demonstrate that entity-typing approaches that rely solely on the parametric knowledge of PLMs struggle significantly with entities at the long tail of the pre-training distribution, and that knowledge-infused approaches can account for some of these shortcomings. Our findings suggest that we need to go beyond PLMs to produce solutions that perform well for infrequent entities.
♻ ☆ KITAB-Bench: A Comprehensive Multi-Domain Benchmark for Arabic OCR and Document Understanding ACL 2025
With the growing adoption of Retrieval-Augmented Generation (RAG) in document processing, robust text recognition has become increasingly critical for knowledge extraction. While OCR (Optical Character Recognition) for English and other languages benefits from large datasets and well-established benchmarks, Arabic OCR faces unique challenges due to its cursive script, right-to-left text flow, and complex typographic and calligraphic features. We present KITAB-Bench, a comprehensive Arabic OCR benchmark that fills the gaps in current evaluation systems. Our benchmark comprises 8,809 samples across 9 major domains and 36 sub-domains, encompassing diverse document types including handwritten text, structured tables, and specialized coverage of 21 chart types for business intelligence. Our findings show that modern vision-language models (such as GPT-4o, Gemini, and Qwen) outperform traditional OCR approaches (like EasyOCR, PaddleOCR, and Surya) by an average of 60% in Character Error Rate (CER). Furthermore, we highlight significant limitations of current Arabic OCR models, particularly in PDF-to-Markdown conversion, where the best model Gemini-2.0-Flash achieves only 65% accuracy. This underscores the challenges in accurately recognizing Arabic text, including issues with complex fonts, numeral recognition errors, word elongation, and table structure detection. This work establishes a rigorous evaluation framework that can drive improvements in Arabic document analysis methods and bridge the performance gap with English OCR technologies.
comment: 17 pages, 5 figures, ACL 2025
♻ ☆ Quantum-Enhanced Attention Mechanism in NLP: A Hybrid Classical-Quantum Approach
Recent advances in quantum computing have opened new pathways for enhancing deep learning architectures, particularly in domains characterized by high-dimensional and context-rich data such as natural language processing (NLP). In this work, we present a hybrid classical-quantum Transformer model that integrates a quantum-enhanced attention mechanism into the standard classical architecture. By embedding token representations into a quantum Hilbert space via parameterized variational circuits and exploiting entanglement-aware kernel similarities, the model captures complex semantic relationships beyond the reach of conventional dot-product attention. We demonstrate the effectiveness of this approach across diverse NLP benchmarks, showing improvements in both efficiency and representational capacity. The results section reveal that the quantum attention layer yields globally coherent attention maps and more separable latent features, while requiring comparatively fewer parameters than classical counterparts. These findings highlight the potential of quantum-classical hybrid models to serve as a powerful and resource-efficient alternative to existing attention mechanisms in NLP.
comment: 16 pages, 7 figures, 5 tables
♻ ☆ TableLoRA: Low-rank Adaptation on Table Structure Understanding for Large Language Models ACL 2025
Tabular data are crucial in many fields and their understanding by large language models (LLMs) under high parameter efficiency paradigm is important. However, directly applying parameter-efficient fine-tuning (PEFT) techniques to tabular tasks presents significant challenges, particularly in terms of better table serialization and the representation of two-dimensional structured information within a one-dimensional sequence. To address this, we propose TableLoRA, a module designed to improve LLMs' understanding of table structure during PEFT. It incorporates special tokens for serializing tables with special token encoder and uses 2D LoRA to encode low-rank information on cell positions. Experiments on four tabular-related datasets demonstrate that TableLoRA consistently outperforms vanilla LoRA and surpasses various table encoding methods tested in control experiments. These findings reveal that TableLoRA, as a table-specific LoRA, enhances the ability of LLMs to process tabular data effectively, especially in low-parameter settings, demonstrating its potential as a robust solution for handling table-related tasks.
comment: Accepted by ACL 2025 main conference, long paper
♻ ☆ Plant in Cupboard, Orange on Rably, Inat Aphone. Benchmarking Incremental Learning of Situation and Language Model using a Text-Simulated Situated Environment
Large Language Models (LLMs) serve not only as chatbots but as key components in agent systems, where their common-sense knowledge significantly impacts performance as language-based planners for situated or embodied action. We assess LLMs' incremental learning (based on feedback from the environment), and controlled in-context learning abilities using a text-based environment. We introduce challenging yet interesting set of experiments to test i) how agents can incrementally solve tasks related to every day objects in typical rooms in a house where each of them are discovered by interacting within the environment, ii) controlled in-context learning abilities and efficiency of agents by providing short info about locations of objects and rooms to check how faster the task can be solved, and finally iii) using synthetic pseudo-English words to gauge how well LLMs are at inferring meaning of unknown words from environmental feedback. Results show that larger commercial models have a substantial gap in performance compared to open-weight but almost all models struggle with the synthetic words experiments.
comment: Accepted at The 28th International Conference of Text, Speech and Dialogue (TSD2025)
♻ ☆ LLM as GNN: Graph Vocabulary Learning for Text-Attributed Graph Foundation Models
Text-Attributed Graphs (TAGs), where each node is associated with text descriptions, are ubiquitous in real-world scenarios. They typically exhibit distinctive structure and domain-specific knowledge, motivating the development of a Graph Foundation Model (GFM) that generalizes across diverse graphs and tasks. Despite large efforts to integrate Large Language Models (LLMs) and Graph Neural Networks (GNNs) for TAGs, existing approaches suffer from decoupled architectures with two-stage alignment, limiting their synergistic potential. Even worse, existing methods assign out-of-vocabulary (OOV) tokens to graph nodes, leading to graph-specific semantics, token explosion, and incompatibility with task-oriented prompt templates, which hinders cross-graph and cross-task transferability. To address these challenges, we propose PromptGFM, a versatile GFM for TAGs grounded in graph vocabulary learning. PromptGFM comprises two key components: (1) Graph Understanding Module, which explicitly prompts LLMs to replicate the finest GNN workflow within the text space, facilitating seamless GNN-LLM integration and elegant graph-text alignment; (2) Graph Inference Module, which establishes a language-based graph vocabulary ensuring expressiveness, transferability, and scalability, enabling readable instructions for LLM fine-tuning. Extensive experiments demonstrate our superiority and transferability across diverse graphs and tasks. The code is available at this: https://github.com/agiresearch/PromptGFM.
♻ ☆ Refining Salience-Aware Sparse Fine-Tuning Strategies for Language Models ACL 2025
Parameter-Efficient Fine-Tuning (PEFT) has gained prominence through low-rank adaptation methods like LoRA. In this paper, we focus on sparsity-based PEFT (SPEFT), which introduces trainable sparse adaptations to the weight matrices in the model, offering greater flexibility in selecting fine-tuned parameters compared to low-rank methods. We conduct the first systematic evaluation of salience metrics for SPEFT, inspired by zero-cost NAS proxies, and identify simple gradient-based metrics is reliable, and results are on par with the best alternatives, offering both computational efficiency and robust performance. Additionally, we compare static and dynamic masking strategies, finding that static masking, which predetermines non-zero entries before training, delivers efficiency without sacrificing performance, while dynamic masking offers no substantial benefits. Across NLP tasks, a simple gradient-based, static SPEFT consistently outperforms other fine-tuning methods for LLMs, providing a simple yet effective baseline for SPEFT. Our work challenges the notion that complexity is necessary for effective PEFT, while our open-source framework establishes a reproducible benchmark for future research, which is available at [https://github.com/0-ml/speft].
comment: ACL 2025
♻ ☆ MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot
Retrieval-augmented generation (RAG) is a well-suited technique for retrieving privacy-sensitive Electronic Health Records (EHR). It can serve as a key module of the healthcare copilot, helping reduce misdiagnosis for healthcare practitioners and patients. However, the diagnostic accuracy and specificity of existing heuristic-based RAG models used in the medical domain are inadequate, particularly for diseases with similar manifestations. This paper proposes MedRAG, a RAG model enhanced by knowledge graph (KG)-elicited reasoning for the medical domain that retrieves diagnosis and treatment recommendations based on manifestations. MedRAG systematically constructs a comprehensive four-tier hierarchical diagnostic KG encompassing critical diagnostic differences of various diseases. These differences are dynamically integrated with similar EHRs retrieved from an EHR database, and reasoned within a large language model. This process enables more accurate and specific decision support, while also proactively providing follow-up questions to enhance personalized medical decision-making. MedRAG is evaluated on both a public dataset DDXPlus and a private chronic pain diagnostic dataset (CPDD) collected from Tan Tock Seng Hospital, and its performance is compared against various existing RAG methods. Experimental results show that, leveraging the information integration and relational abilities of the KG, our MedRAG provides more specific diagnostic insights and outperforms state-of-the-art models in reducing misdiagnosis rates. Our code will be available at https://github.com/SNOWTEAM2023/MedRAG
♻ ☆ Eye of Judgement: Dissecting the Evaluation of Russian-speaking LLMs with POLLUX
We introduce POLLUX, a comprehensive open-source benchmark designed to evaluate the generative capabilities of large language models (LLMs) in Russian. Our main contribution is a novel evaluation methodology that enhances the interpretability of LLM assessment. For each task type, we define a set of detailed criteria and develop a scoring protocol where models evaluate responses and provide justifications for their ratings. This enables transparent, criteria-driven evaluation beyond traditional resource-consuming, side-by-side human comparisons. POLLUX includes a detailed, fine-grained taxonomy of 35 task types covering diverse generative domains such as code generation, creative writing, and practical assistant use cases, totaling 2,100 manually crafted and professionally authored prompts. Each task is categorized by difficulty (easy/medium/hard), with experts constructing the dataset entirely from scratch. We also release a family of LLM-as-a-Judge (7B and 32B) evaluators trained for nuanced assessment of generative outputs. This approach provides scalable, interpretable evaluation and annotation tools for model development, effectively replacing costly and less precise human judgments.
comment: 178 pages
♻ ☆ iPrOp: Interactive Prompt Optimization for Large Language Models with a Human in the Loop
Prompt engineering has made significant contributions to the era of large language models, yet its effectiveness depends on the skills of a prompt author. This paper introduces $\textit{iPrOp}$, a novel interactive prompt optimization approach, to bridge manual prompt engineering and automatic prompt optimization while offering users the flexibility to assess evolving prompts. We aim to provide users with task-specific guidance to enhance human engagement in the optimization process, which is structured through prompt variations, informative instances, predictions generated by large language models along with their corresponding explanations, and relevant performance metrics. This approach empowers users to choose and further refine the prompts based on their individual preferences and needs. It can not only assist non-technical domain experts in generating optimal prompts tailored to their specific tasks or domains, but also enable to study the intrinsic parameters that influence the performance of prompt optimization. The evaluation shows that our approach has the capability to generate improved prompts, leading to enhanced task performance.
♻ ☆ Llama See, Llama Do: A Mechanistic Perspective on Contextual Entrainment and Distraction in LLMs ACL 2025
We observe a novel phenomenon, contextual entrainment, across a wide range of language models (LMs) and prompt settings, providing a new mechanistic perspective on how LMs become distracted by ``irrelevant'' contextual information in the input prompt. Specifically, LMs assign significantly higher logits (or probabilities) to any tokens that have previously appeared in the context prompt, even for random tokens. This suggests that contextual entrainment is a mechanistic phenomenon, occurring independently of the relevance or semantic relation of the tokens to the question or the rest of the sentence. We find statistically significant evidence that the magnitude of contextual entrainment is influenced by semantic factors. Counterfactual prompts have a greater effect compared to factual ones, suggesting that while contextual entrainment is a mechanistic phenomenon, it is modulated by semantic factors. We hypothesise that there is a circuit of attention heads -- the entrainment heads -- that corresponds to the contextual entrainment phenomenon. Using a novel entrainment head discovery method based on differentiable masking, we identify these heads across various settings. When we ``turn off'' these heads, i.e., set their outputs to zero, the effect of contextual entrainment is significantly attenuated, causing the model to generate output that capitulates to what it would produce if no distracting context were provided. Our discovery of contextual entrainment, along with our investigation into LM distraction via the entrainment heads, marks a key step towards the mechanistic analysis and mitigation of the distraction problem.
comment: ACL 2025
♻ ☆ English K_Quantization of LLMs Does Not Disproportionately Diminish Multilingual Performance
For consumer usage of locally deployed LLMs, the GGUF format and k\_quantization are invaluable tools for maintaining the performance of the original model while reducing it to sizes deployable with consumer-grade hardware. The number of bits dedicated to each weight from the original model is reduced based on how important they are thought to be during model inference. This importance is arrived at through the application of an 'importance matrix'-a relatively small text document meant to be representative of the LLM's standard use-cases. In the vast majority of quants available online, this document is primarily written in English. It was therefore an open question whether performance on English language tasks was preserved through the sacrifice of multilingual performance and whether it can be preserved with alternate importance matrices. This article investigates these hypotheses by quantizing Llama3.3 70B on importance matrices written in three languages (English, Norwegian, and Malayalam) and evaluating them on the MixEval dataset in both English and Norwegian. All experiments related to yielded non-significant results indicating that current quantization practices do not disproportionately harm multilingual performance.
comment: 8 pages, 6 figures, v2
♻ ☆ Beyond Fixed Length: Bucket Pre-training is All You Need IJCAI 2025
Large Language Models (LLMs) have demonstrated exceptional performance across various tasks, with pre-training stage serving as the cornerstone of their capabilities. However, the conventional fixed-length data composition strategy for pre-training presents several practical challenges. When using shorter sequences, documents are often truncated, potentially leading to information loss and affecting the model's ability to capture long-range dependencies. Conversely, longer sequences require concatenation of multiple documents, which can introduce noise and affect the natural document boundaries and semantic coherence as well as require substantial computational overhead. To address these challenges, we first establish three quantitative metrics for evaluating data composition quality: padding ratio, truncation ratio, and concatenation ratio. Building upon these metrics, we propose a novel multi-bucket data composition method that transcends the fixed-length paradigm. Our approach adaptively organizes training data to achieve optimal composition quality as measured by the proposed metrics, offering a more flexible and efficient approach for pre-training. We conduct extensive experiments and the results demonstrate that our proposed method significantly enhances both the efficiency and effectiveness of LLM pre-training.
comment: 8 pages, 5 figures, 3 tables. Accetped by IJCAI 2025
♻ ☆ Large Language Models in Argument Mining: A Survey
Argument Mining (AM), a critical subfield of Natural Language Processing (NLP), focuses on extracting argumentative structures from text. The advent of Large Language Models (LLMs) has profoundly transformed AM, enabling advanced in-context learning, prompt-based generation, and robust cross-domain adaptability. This survey systematically synthesizes recent advancements in LLM-driven AM. We provide a concise review of foundational theories and annotation frameworks, alongside a meticulously curated catalog of datasets. A key contribution is our comprehensive taxonomy of AM subtasks, elucidating how contemporary LLM techniques -- such as prompting, chain-of-thought reasoning, and retrieval augmentation -- have reconfigured their execution. We further detail current LLM architectures and methodologies, critically assess evaluation practices, and delineate pivotal challenges including long-context reasoning, interpretability, and annotation bottlenecks. Conclusively, we highlight emerging trends and propose a forward-looking research agenda for LLM-based computational argumentation, aiming to strategically guide researchers in this rapidly evolving domain.
comment: Work draft
♻ ☆ Benchmarking Vision Language Models on German Factual Data
Similar to LLMs, the development of vision language models is mainly driven by English datasets and models trained in English and Chinese language, whereas support for other languages, even those considered high-resource languages such as German, remains significantly weaker. In this work we present an analysis of open-weight VLMs on factual knowledge in the German and English language. We disentangle the image-related aspects from the textual ones by analyzing accu-racy with jury-as-a-judge in both prompt languages and images from German and international contexts. We found that for celebrities and sights, VLMs struggle because they are lacking visual cognition of German image contents. For animals and plants, the tested models can often correctly identify the image contents ac-cording to the scientific name or English common name but fail in German lan-guage. Cars and supermarket products were identified equally well in English and German images across both prompt languages.
comment: Peinl, Ren\'e; Tischler, Vincent (2025): Benchmarking Vision Language Models on German Factual Data. 21st International Conference on Artificial Intelligence Applications and Innovations, 26-29 June, 2025, Limassol, Cyprus (accepted)
♻ ☆ VLM@school -- Evaluation of AI image understanding on German middle school knowledge
This paper introduces a novel benchmark dataset designed to evaluate the capabilities of Vision Language Models (VLMs) on tasks that combine visual reasoning with subject-specific background knowledge in the German language. In contrast to widely used English-language benchmarks that often rely on artificially difficult or decontextualized problems, this dataset draws from real middle school curricula across nine domains including mathematics, history, biology, and religion. The benchmark includes over 2,000 open-ended questions grounded in 486 images, ensuring that models must integrate visual interpretation with factual reasoning rather than rely on superficial textual cues. We evaluate thirteen state-of-the-art open-weight VLMs across multiple dimensions, including domain-specific accuracy and performance on adversarial crafted questions. Our findings reveal that even the strongest models achieve less than 45% overall accuracy, with particularly poor performance in music, mathematics, and adversarial settings. Furthermore, the results indicate significant discrepancies between success on popular benchmarks and real-world multimodal understanding. We conclude that middle school-level tasks offer a meaningful and underutilized avenue for stress-testing VLMs, especially in non-English contexts. The dataset and evaluation protocol serve as a rigorous testbed to better understand and improve the visual and linguistic reasoning capabilities of future AI systems.
comment: Peinl, Ren\'e; Tischler, Vincent (2025): VLM@school - Evaluation of AI image understanding on German middle school knowledge. Future Technologies Conference (FTC) 2025, Munich, Germany 2025 (accepted)
♻ ☆ Jailbreaking Multimodal Large Language Models via Shuffle Inconsistency ICCV2025
Multimodal Large Language Models (MLLMs) have achieved impressive performance and have been put into practical use in commercial applications, but they still have potential safety mechanism vulnerabilities. Jailbreak attacks are red teaming methods that aim to bypass safety mechanisms and discover MLLMs' potential risks. Existing MLLMs' jailbreak methods often bypass the model's safety mechanism through complex optimization methods or carefully designed image and text prompts. Despite achieving some progress, they have a low attack success rate on commercial closed-source MLLMs. Unlike previous research, we empirically find that there exists a Shuffle Inconsistency between MLLMs' comprehension ability and safety ability for the shuffled harmful instruction. That is, from the perspective of comprehension ability, MLLMs can understand the shuffled harmful text-image instructions well. However, they can be easily bypassed by the shuffled harmful instructions from the perspective of safety ability, leading to harmful responses. Then we innovatively propose a text-image jailbreak attack named SI-Attack. Specifically, to fully utilize the Shuffle Inconsistency and overcome the shuffle randomness, we apply a query-based black-box optimization method to select the most harmful shuffled inputs based on the feedback of the toxic judge model. A series of experiments show that SI-Attack can improve the attack's performance on three benchmarks. In particular, SI-Attack can obviously improve the attack success rate for commercial MLLMs such as GPT-4o or Claude-3.5-Sonnet.
comment: ICCV2025
♻ ☆ Language in Vivo vs. in Silico: Size Matters but Larger Language Models Still Do Not Comprehend Language on a Par with Humans Due to Impenetrable Semantic Reference
Understanding the limits of language is a prerequisite for Large Language Models (LLMs) to act as theories of natural language. LLM performance in some language tasks presents both quantitative and qualitative differences from that of humans, however it remains to be determined whether such differences are amenable to model size. This work investigates the critical role of model scaling, determining whether increases in size make up for such differences between humans and models. We test three LLMs from different families (Bard, 137 billion parameters; ChatGPT-3.5, 175 billion; ChatGPT-4, 1.5 trillion) on a grammaticality judgment task featuring anaphora, center embedding, comparatives, and negative polarity. N=1,200 judgments are collected and scored for accuracy, stability, and improvements in accuracy upon repeated presentation of a prompt. Results of the best performing LLM, ChatGPT-4, are compared to results of n=80 humans on the same stimuli. We find that humans are overall less accurate than ChatGPT-4 (76% vs. 80% accuracy, respectively), but that this is due to ChatGPT-4 outperforming humans only in one task condition, namely on grammatical sentences. Additionally, ChatGPT-4 wavers more than humans in its answers (12.5% vs. 9.6% likelihood of an oscillating answer, respectively). Thus, while increased model size may lead to better performance, LLMs are still not sensitive to (un)grammaticality the same way as humans are. It seems possible but unlikely that scaling alone can fix this issue. We interpret these results by comparing language learning in vivo and in silico, identifying three critical differences concerning (i) the type of evidence, (ii) the poverty of the stimulus, and (iii) the occurrence of semantic hallucinations due to impenetrable linguistic reference.
♻ ☆ ScienceBoard: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows
Large Language Models (LLMs) have extended their impact beyond Natural Language Processing, substantially fostering the development of interdisciplinary research. Recently, various LLM-based agents have been developed to assist scientific discovery progress across multiple aspects and domains. Among these, computer-using agents, capable of interacting with operating systems as humans do, are paving the way to automated scientific problem-solving and addressing routines in researchers' workflows. Recognizing the transformative potential of these agents, we introduce ScienceBoard, which encompasses two complementary contributions: (i) a realistic, multi-domain environment featuring dynamic and visually rich scientific workflows with integrated professional software, where agents can autonomously interact via different interfaces to accelerate complex research tasks and experiments; and (ii) a challenging benchmark of 169 high-quality, rigorously validated real-world tasks curated by humans, spanning scientific-discovery workflows in domains such as biochemistry, astronomy, and geoinformatics. Extensive evaluations of agents with state-of-the-art backbones (e.g., GPT-4o, Claude 3.7, UI-TARS) show that, despite some promising results, they still fall short of reliably assisting scientists in complex workflows, achieving only a 15% overall success rate. In-depth analysis further provides valuable insights for addressing current agent limitations and more effective design principles, paving the way to build more capable agents for scientific discovery. Our code, environment, and benchmark are at https://qiushisun.github.io/ScienceBoard-Home/.
comment: work in progress
♻ ☆ Towards Reproducible LLM Evaluation: Quantifying Uncertainty in LLM Benchmark Scores
Large language models (LLMs) are stochastic, and not all models give deterministic answers, even when setting temperature to zero with a fixed random seed. However, few benchmark studies attempt to quantify uncertainty, partly due to the time and cost of repeated experiments. We use benchmarks designed for testing LLMs' capacity to reason about cardinal directions to explore the impact of experimental repeats on mean score and prediction interval. We suggest a simple method for cost-effectively quantifying the uncertainty of a benchmark score and make recommendations concerning reproducible LLM evaluation.
comment: 4 pages, 1 figure
♻ ☆ ACORD: An Expert-Annotated Retrieval Dataset for Legal Contract Drafting ACL 2025
Information retrieval, specifically contract clause retrieval, is foundational to contract drafting because lawyers rarely draft contracts from scratch; instead, they locate and revise the most relevant precedent. We introduce the Atticus Clause Retrieval Dataset (ACORD), the first retrieval benchmark for contract drafting fully annotated by experts. ACORD focuses on complex contract clauses such as Limitation of Liability, Indemnification, Change of Control, and Most Favored Nation. It includes 114 queries and over 126,000 query-clause pairs, each ranked on a scale from 1 to 5 stars. The task is to find the most relevant precedent clauses to a query. The bi-encoder retriever paired with pointwise LLMs re-rankers shows promising results. However, substantial improvements are still needed to effectively manage the complex legal work typically undertaken by lawyers. As the first retrieval benchmark for contract drafting annotated by experts, ACORD can serve as a valuable IR benchmark for the NLP community.
comment: Accepted to ACL 2025. See the project page at https://www.atticusprojectai.org/acord
♻ ☆ ChunkKV: Semantic-Preserving KV Cache Compression for Efficient Long-Context LLM Inference
Large Language Models (LLMs) require significant GPU memory when processing long texts, with the key value (KV) cache consuming up to 70\% of total memory during inference. Although existing compression methods reduce memory by evaluating the importance of individual tokens, they overlook critical semantic relationships between tokens, resulting in fragmented context and degraded performance. We introduce ChunkKV, which fundamentally reimagines KV cache compression by treating semantic chunks - rather than isolated tokens - as basic compression units. This approach preserves complete linguistic structures and contextual integrity, ensuring that essential meaning is retained even under aggressive compression. Our innovation includes a novel layer-wise index reuse technique that exploits the higher cross-layer similarity of preserved indices in ChunkKV, reducing computational overhead and improving throughput by 26.5\%. Comprehensive evaluations on challenging benchmarks: LongBench, Needle-In-A-HayStack, GSM8K, and JailbreakV demonstrate that ChunkKV outperforms state-of-the-art methods by up to 8.7\% in precision while maintaining the same compression ratio. These results confirm that semantic-aware compression significantly enhances both efficiency and performance for long-context LLM inference, providing a simple yet effective solution to the memory bottleneck problem.
comment: 41 pages
♻ ☆ MMBoundary: Advancing MLLM Knowledge Boundary Awareness through Reasoning Step Confidence Calibration ACL 2025
In recent years, multimodal large language models (MLLMs) have made significant progress but continue to face inherent challenges in multimodal reasoning, which requires multi-level (e.g., perception, reasoning) and multi-granular (e.g., multi-step reasoning chain) advanced inferencing. Prior work on estimating model confidence tends to focus on the overall response for training and calibration, but fails to assess confidence in each reasoning step, leading to undesirable hallucination snowballing. In this work, we present MMBoundary, a novel framework that advances the knowledge boundary awareness of MLLMs through reasoning step confidence calibration. To achieve this, we propose to incorporate complementary textual and cross-modal self-rewarding signals to estimate confidence at each step of the MLLM reasoning process. In addition to supervised fine-tuning MLLM on this set of self-rewarded confidence estimation signal for initial confidence expression warm-up, we introduce a reinforcement learning stage with multiple reward functions for further aligning model knowledge and calibrating confidence at each reasoning step, enhancing reasoning chain self-correction. Empirical results show that MMBoundary significantly outperforms existing methods across diverse domain datasets and metrics, achieving an average of 7.5% reduction in multimodal confidence calibration errors and up to 8.3% improvement in task performance.
comment: 18 pages, ACL 2025
♻ ☆ Cannot See the Forest for the Trees: Invoking Heuristics and Biases to Elicit Irrational Choices of LLMs
Despite the remarkable performance of Large Language Models (LLMs), they remain vulnerable to jailbreak attacks, which can compromise their safety mechanisms. Existing studies often rely on brute-force optimization or manual design, failing to uncover potential risks in real-world scenarios. To address this, we propose a novel jailbreak attack framework, ICRT, inspired by heuristics and biases in human cognition. Leveraging the simplicity effect, we employ cognitive decomposition to reduce the complexity of malicious prompts. Simultaneously, relevance bias is utilized to reorganize prompts, enhancing semantic alignment and inducing harmful outputs effectively. Furthermore, we introduce a ranking-based harmfulness evaluation metric that surpasses the traditional binary success-or-failure paradigm by employing ranking aggregation methods such as Elo, HodgeRank, and Rank Centrality to comprehensively quantify the harmfulness of generated content. Experimental results show that our approach consistently bypasses mainstream LLMs' safety mechanisms and generates high-risk content, providing insights into jailbreak attack risks and contributing to stronger defense strategies.
♻ ☆ Advancing Language Multi-Agent Learning with Credit Re-Assignment for Interactive Environment Generalization
LLM-based agents have made significant advancements in interactive environments, such as mobile operations and web browsing, and other domains beyond computer using. Current multi-agent systems universally excel in performance, compared to single agents, but struggle with generalization across environments due to predefined roles and inadequate strategies for generalizing language agents. The challenge of achieving both strong performance and good generalization has hindered the progress of multi-agent systems for interactive environments. To address these issues, we propose CollabUIAgents, a multi-agent reinforcement learning framework with a novel multi-agent credit re-assignment (CR) strategy, assigning process rewards with LLMs rather than environment-specific rewards and learning with synthesized preference data, in order to foster generalizable, collaborative behaviors among the role-free agents' policies. Empirical results show that our framework improves both performance and cross-environment generalizability of multi-agent systems. Moreover, our 7B-parameter system achieves results on par with or exceed strong closed-source models, and the LLM that guides the CR. We also provide insights in using granular CR rewards effectively for environment generalization, and accommodating trained LLMs in multi-agent systems.
comment: 28 pages, under review
♻ ☆ OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis ACL 2025
Graphical User Interface (GUI) agents powered by Vision-Language Models (VLMs) have demonstrated human-like computer control capability. Despite their utility in advancing digital automation, a critical bottleneck persists: collecting high-quality trajectory data for training. Common practices for collecting such data rely on human supervision or synthetic data generation through executing pre-defined tasks, which are either resource-intensive or unable to guarantee data quality. Moreover, these methods suffer from limited data diversity and significant gaps between synthetic data and real-world environments. To address these challenges, we propose OS-Genesis, a novel GUI data synthesis pipeline that reverses the conventional trajectory collection process. Instead of relying on pre-defined tasks, OS-Genesis enables agents first to perceive environments and perform step-wise interactions, then retrospectively derive high-quality tasks to enable trajectory-level exploration. A trajectory reward model is then employed to ensure the quality of the generated trajectories. We demonstrate that training GUI agents with OS-Genesis significantly improves their performance on highly challenging online benchmarks. In-depth analysis further validates OS-Genesis's efficiency and its superior data quality and diversity compared to existing synthesis methods. Our codes, data, and checkpoints are available at https://qiushisun.github.io/OS-Genesis-Home/.
comment: ACL 2025 Camera Ready
♻ ☆ Detecting Knowledge Boundary of Vision Large Language Models by Sampling-Based Inference ACL25
Despite the advancements made in Visual Large Language Models (VLLMs), like text Large Language Models (LLMs), they have limitations in addressing questions that require real-time information or are knowledge-intensive. Indiscriminately adopting Retrieval Augmented Generation (RAG) techniques is an effective yet expensive way to enable models to answer queries beyond their knowledge scopes. To mitigate the dependence on retrieval and simultaneously maintain, or even improve, the performance benefits provided by retrieval, we propose a method to detect the knowledge boundary of VLLMs, allowing for more efficient use of techniques like RAG. Specifically, we propose a method with two variants that fine-tunes a VLLM on an automatically constructed dataset for boundary identification. Experimental results on various types of Visual Question Answering datasets show that our method successfully depicts a VLLM's knowledge boundary based on which we are able to reduce indiscriminate retrieval while maintaining or improving the performance. In addition, we show that the knowledge boundary identified by our method for one VLLM can be used as a surrogate boundary for other VLLMs. Code will be released at https://github.com/Chord-Chen-30/VLLM-KnowledgeBoundary
comment: ACL25 May ARR
♻ ☆ Federated Data-Efficient Instruction Tuning for Large Language Models ACL 2025
Instruction tuning is a crucial step in improving the responsiveness of pretrained large language models (LLMs) to human instructions. Federated learning (FL) helps to exploit the use of vast private instruction data from clients, becoming popular for LLM tuning by improving data diversity. Existing federated tuning simply consumes all local data, causing excessive computational overhead and overfitting to local data, while centralized data-efficient solutions are not suitable for FL due to privacy concerns. This work presents FedHDS, a federated data-efficient instruction tuning approach, which tunes LLMs with a representative subset of edge-side data. It reduces the data redundancy at both intra- and inter-client levels without sharing raw data. Experiments with various LLMs, datasets and partitions show that FedHDS improves Rouge-L on unseen tasks by an average of 10.72% over the SOTA full-data federated instruction tuning methods, while using less than 1.5% of the data samples, improving training efficiency by up to tens of times.
comment: Accepted to ACL 2025 (Findings)
♻ ☆ EasyDistill: A Comprehensive Toolkit for Effective Knowledge Distillation of Large Language Models
In this paper, we present EasyDistill, a comprehensive toolkit designed for effective black-box and white-box knowledge distillation (KD) of large language models (LLMs). Our framework offers versatile functionalities, including data synthesis, supervised fine-tuning, ranking optimization, and reinforcement learning techniques specifically tailored for KD scenarios. The toolkit accommodates KD functionalities for both System 1 (fast, intuitive) and System 2 (slow, analytical) models. With its modular design and user-friendly interface, EasyDistill empowers researchers and industry practitioners to seamlessly experiment with and implement state-of-the-art KD strategies for LLMs. In addition, EasyDistill provides a series of robust distilled models and KD-based industrial solutions developed by us, along with the corresponding open-sourced datasets, catering to a variety of use cases. Furthermore, we describe the seamless integration of EasyDistill into Alibaba Cloud's Platform for AI (PAI). Overall, the EasyDistill toolkit makes advanced KD techniques for LLMs more accessible and impactful within the NLP community.
♻ ☆ BeamLLM: Vision-Empowered mmWave Beam Prediction with Large Language Models
In this paper, we propose BeamLLM, a vision-aided millimeter-wave (mmWave) beam prediction framework leveraging large language models (LLMs) to address the challenges of high training overhead and latency in mmWave communication systems. By combining computer vision (CV) with LLMs' cross-modal reasoning capabilities, the framework extracts user equipment (UE) positional features from RGB images and aligns visual-temporal features with LLMs' semantic space through reprogramming techniques. Evaluated on a realistic vehicle-to-infrastructure (V2I) scenario, the proposed method achieves 61.01% top-1 accuracy and 97.39% top-3 accuracy in standard prediction tasks, significantly outperforming traditional deep learning models. In few-shot prediction scenarios, the performance degradation is limited to 12.56% (top-1) and 5.55% (top-3) from time sample 1 to 10, demonstrating superior prediction capability.
comment: 6 pages, 7 figures, conference
♻ ☆ STAIR: Improving Safety Alignment with Introspective Reasoning ICML2025
Ensuring the safety and harmlessness of Large Language Models (LLMs) has become equally critical as their performance in applications. However, existing safety alignment methods typically suffer from safety-performance trade-offs and the susceptibility to jailbreak attacks, primarily due to their reliance on direct refusals for malicious queries. In this paper, we propose STAIR, a novel framework that integrates SafeTy Alignment with Itrospective Reasoning. We enable LLMs to identify safety risks through step-by-step analysis by self-improving chain-of-thought (CoT) reasoning with safety awareness. STAIR first equips the model with a structured reasoning capability and then advances safety alignment via iterative preference optimization on step-level reasoning data generated using our newly proposed Safety-Informed Monte Carlo Tree Search (SI-MCTS). We further train a process reward model on this data to guide test-time searches for improved responses. Extensive experiments show that STAIR effectively mitigates harmful outputs while better preserving helpfulness, compared to instinctive alignment strategies. With test-time scaling, STAIR achieves a safety performance comparable to Claude-3.5 against popular jailbreak attacks. Relevant resources in this work are available at https://github.com/thu-ml/STAIR.
comment: 22 pages, 8 figures, ICML2025 Oral
♻ ☆ ShifCon: Enhancing Non-Dominant Language Capabilities with a Shift-based Multilingual Contrastive Framework ACL 2025
Although fine-tuning Large Language Models (LLMs) with multilingual data can rapidly enhance the multilingual capabilities of LLMs, they still exhibit a performance gap between the dominant language (e.g., English) and non-dominant ones due to the imbalance of training data across languages. To further enhance the performance of non-dominant languages, we propose ShifCon, a Shift-based multilingual Contrastive framework that aligns the internal forward process of other languages toward that of the dominant one. Specifically, it shifts the representations of non-dominant languages into the dominant language subspace, allowing them to access relatively rich information encoded in the model parameters. The enriched representations are then shifted back into their original language subspace before generation. Moreover, we introduce a subspace distance metric to pinpoint the optimal layer area for shifting representations and employ multilingual contrastive learning to further enhance the alignment of representations within this area. Experiments demonstrate that our ShifCon framework significantly enhances the performance of non-dominant languages, particularly for low-resource ones. Further analysis offers extra insights to verify the effectiveness of ShifCon and propel future research.
comment: Accepted by ACL 2025
♻ ☆ EUR-USD Exchange Rate Forecasting Based on Information Fusion with Large Language Models and Deep Learning Methods
Accurate forecasting of the EUR/USD exchange rate is crucial for investors, businesses, and policymakers. This paper proposes a novel framework, IUS, that integrates unstructured textual data from news and analysis with structured data on exchange rates and financial indicators to enhance exchange rate prediction. The IUS framework employs large language models for sentiment polarity scoring and exchange rate movement classification of texts. These textual features are combined with quantitative features and input into a Causality-Driven Feature Generator. An Optuna-optimized Bi-LSTM model is then used to forecast the EUR/USD exchange rate. Experiments demonstrate that the proposed method outperforms benchmark models, reducing MAE by 10.69% and RMSE by 9.56% compared to the best performing baseline. Results also show the benefits of data fusion, with the combination of unstructured and structured data yielding higher accuracy than structured data alone. Furthermore, feature selection using the top 12 important quantitative features combined with the textual features proves most effective. The proposed IUS framework and Optuna-Bi-LSTM model provide a powerful new approach for exchange rate forecasting through multi-source data integration.
♻ ☆ A Survey of Large Language Models in Psychotherapy: Current Landscape and Future Directions ACL 2025
Mental health is increasingly critical in contemporary healthcare, with psychotherapy demanding dynamic, context-sensitive interactions that traditional NLP methods struggle to capture. Large Language Models (LLMs) offer significant potential for addressing this gap due to their ability to handle extensive context and multi-turn reasoning. This review introduces a conceptual taxonomy dividing psychotherapy into interconnected stages--assessment, diagnosis, and treatment--to systematically examine LLM advancements and challenges. Our comprehensive analysis reveals imbalances in current research, such as a focus on common disorders, linguistic biases, fragmented methods, and limited theoretical integration. We identify critical challenges including capturing dynamic symptom fluctuations, overcoming linguistic and cultural biases, and ensuring diagnostic reliability. Highlighting future directions, we advocate for continuous multi-stage modeling, real-time adaptive systems grounded in psychological theory, and diversified research covering broader mental disorders and therapeutic approaches, aiming toward more holistic and clinically integrated psychotherapy LLMs systems.
comment: Accepted by ACL 2025 Findings
♻ ☆ Dynamic Adaptive Rank Space Exploration for Efficient Sentiment Analysis with Large Language Models
Sentiment analysis has become increasingly important for assessing public opinion and informing decision-making. Large language models (LLMs) have revolutionized this field by capturing nuanced language patterns. However, adapting LLMs to domain-specific sentiment analysis tasks remains challenging due to computational constraints and the need for optimal fine-tuning. To address these challenges, we propose a novel Dynamic Adaptive Rank Space Exploration (DARSE) framework for efficient and effective sentiment analysis using LLMs. DARSE consists of a coarse-grained greedy algorithm to identify the optimal rank range, a fine-grained exploration algorithm to refine rank selection, and a dynamic rank allocation method to determine the optimal rank combination for each LLM layer. Extensive experiments demonstrate that DARSE significantly improves sentiment analysis accuracy, achieving a 15.1% improvement in MSE and a 4.3% improvement in accuracy compared to previous work. Our framework strikes a balance between computational efficiency and model performance, making it a promising approach for sentiment analysis with LLMs.
♻ ☆ Embedding-based Approaches to Hyperpartisan News Detection
In this paper, we describe our systems in which the objective is to determine whether a given news article could be considered as hyperpartisan. Hyperpartisan news is news that takes an extremely polarized political standpoint with an intention of creating political divide among the public. We attempted several approaches, including n-grams, sentiment analysis, as well as sentence and document representation using pre-tained ELMo. Our best system using pre-trained ELMo with Bidirectional LSTM achieved an accuracy of 83% through 10-fold cross-validation without much hyperparameter tuning.
comment: The authorship dispute of this article could not be resolved, and it was submitted without the consent of P. Chen
♻ ☆ PQ-GCN: Enhancing Text Graph Question Classification with Phrase Features
Effective question classification is crucial for AI-driven educational tools, enabling adaptive learning systems to categorize questions by skill area, difficulty level, and competence. It not only supports educational diagnostics and analytics but also enhances complex downstream tasks like information retrieval and question answering by associating questions with relevant categories. Traditional methods, often based on word embeddings and conventional classifiers, struggle to capture the nuanced relationships in question statements, leading to suboptimal performance. We propose a novel approach leveraging graph convolutional networks, named Phrase Question-Graph Convolutional Network (PQ-GCN). Through PQ-GCN, we evaluate the incorporation of phrase-based features to enhance classification performance on question datasets of various domains and characteristics. The proposed method, augmented with phrase-based features, outperform baseline graph-based methods in low-resource settings, and performs competitively against language model-based methods with a fraction of their parameter size. Our findings offer a possible solution for more context-aware, parameter-efficient question classification, bridging the gap between graph neural network research and its educational applications.
♻ ☆ LRP4RAG: Detecting Hallucinations in Retrieval-Augmented Generation via Layer-wise Relevance Propagation
Retrieval-Augmented Generation (RAG) has become a primary technique for mitigating hallucinations in large language models (LLMs). However, incomplete knowledge extraction and insufficient understanding can still mislead LLMs to produce irrelevant or even contradictory responses, which means hallucinations persist in RAG. In this paper, we propose LRP4RAG, a method based on the Layer-wise Relevance Propagation (LRP) algorithm for detecting hallucinations in RAG. Specifically, we first utilize LRP to compute the relevance between the input and output of the RAG generator. We then apply further extraction and resampling to the relevance matrix. The processed relevance data are input into multiple classifiers to determine whether the output contains hallucinations. To the best of our knowledge, this is the first time that LRP has been used for detecting RAG hallucinations, and extensive experiments demonstrate that LRP4RAG outperforms existing baselines.
♻ ☆ Dynamic Adaptive Optimization for Effective Sentiment Analysis Fine-Tuning on Large Language Models
Sentiment analysis plays a crucial role in various domains, such as business intelligence and financial forecasting. Large language models (LLMs) have become a popular paradigm for sentiment analysis, leveraging multi-task learning to address specific tasks concurrently. However, LLMs with fine-tuning for sentiment analysis often underperforms due to the inherent challenges in managing diverse task complexities. Moreover, constant-weight approaches in multi-task learning struggle to adapt to variations in data characteristics, further complicating model effectiveness. To address these issues, we propose a novel multi-task learning framework with a dynamic adaptive optimization (DAO) module. This module is designed as a plug-and-play component that can be seamlessly integrated into existing models, providing an effective and flexible solution for multi-task learning. The key component of the DAO module is dynamic adaptive loss, which dynamically adjusts the weights assigned to different tasks based on their relative importance and data characteristics during training. Sentiment analyses on a standard and customized financial text dataset demonstrate that the proposed framework achieves superior performance. Specifically, this work improves the Mean Squared Error (MSE) and Accuracy (ACC) by 15.58% and 1.24% respectively, compared with previous work.
♻ ☆ Collective Reasoning Among LLMs: A Framework for Answer Validation Without Ground Truth
We introduce a new approach in which several advanced large language models-specifically GPT-4-0125-preview, Meta-LLAMA-3-70B-Instruct, Claude-3-Opus, and Gemini-1.5-Flash-collaborate to both produce and answer intricate, doctoral-level probability problems without relying on any single "correct" reference. Rather than depending on an established ground truth, our investigation focuses on how agreement among diverse models can signal the reliability of their outputs and, by extension, reflect the overall quality of the generated questions. To measure this inter-model alignment, we apply a suite of statistical evaluations, including chi-square tests, Fleiss' Kappa coefficients, and confidence interval calculations, thereby capturing both precision in answers and clarity in question phrasing. Our analysis reveals that Claude and Gemini tend to frame questions more coherently and unambiguously, which is evidenced by their tighter confidence intervals and greater concordance with responding agents. In contrast, LLAMA exhibits wider confidence bands and a lower level of agreement, indicating more variability and reduced consistency in its question formulations. These observations support the notion that a multi-model collaborative strategy not only improves answer dependability but also offers an effective, data-driven mechanism for evaluating and refining question quality when no definitive solution exists. Ultimately, this work delivers actionable insights into enhancing AI-guided reasoning processes through coordinated interactions among heterogeneous language models.
comment: 7pages
♻ ☆ Round Attention: A Novel Round-Level Attention Mechanism to Accelerate LLM Inference
The increasing context window size in large language models (LLMs) has improved their ability to handle complex, long-text tasks. However, as the conversation rounds continue, it is required to store a large amount of KV cache in GPU memory, which significantly affects the efficiency and even availability of the model serving systems. This paper analyzes dialogue data from real users on the granularity of round and discovers that the LLM inference manifests a watershed layer, after which the distribution of round-level attention shows notable similarity. Based on this, we propose Round Attention - a novel round-level attention mechanism that selectively processes the KV cache of top-k relevant rounds, where k is dynamically determined through the attention matrix in the watershed layer. Theoretical analysis demonstrates that our method reduces memory usage by 54\% to 82\%, while experimental results confirm that loading sparse critical-round KV cache maintains answer accuracy without performance degradation.
♻ ☆ Grammar and Gameplay-aligned RL for Game Description Generation with LLMs
Game Description Generation (GDG) is the task of generating a game description written in a Game Description Language (GDL) from natural language text. Previous studies have explored generation methods leveraging the contextual understanding capabilities of Large Language Models (LLMs); however, accurately reproducing the game features of the game descriptions remains a challenge. In this paper, we propose reinforcement learning-based fine-tuning of LLMs for GDG (RLGDG). Our training method simultaneously improves grammatical correctness and fidelity to game concepts by introducing both grammar rewards and concept rewards. Furthermore, we adopt a two-stage training strategy where Reinforcement Learning (RL) is applied following Supervised Fine-Tuning (SFT). Experimental results demonstrate that our proposed method significantly outperforms baseline methods using SFT alone. Our code is available at https://github.com/tsunehiko/rlgdg
comment: Published at IEEE Conference on Games, 2025
♻ ☆ Time is On My Side: Dynamics of Talk-Time Sharing in Video-chat Conversations
An intrinsic aspect of every conversation is the way talk-time is shared between multiple speakers. Conversations can be balanced, with each speaker claiming a similar amount of talk-time, or imbalanced when one talks disproportionately. Such overall distributions are the consequence of continuous negotiations between the speakers throughout the conversation: who should be talking at every point in time, and for how long? In this work we introduce a computational framework for quantifying both the conversation-level distribution of talk-time between speakers, as well as the lower-level dynamics that lead to it. We derive a typology of talk-time sharing dynamics structured by several intuitive axes of variation. By applying this framework to a large dataset of video-chats between strangers, we confirm that, perhaps unsurprisingly, different conversation-level distributions of talk-time are perceived differently by speakers, with balanced conversations being preferred over imbalanced ones, especially by those who end up talking less. Then we reveal that -- even when they lead to the same level of overall balance -- different types of talk-time sharing dynamics are perceived differently by the participants, highlighting the relevance of our newly introduced typology. Finally, we discuss how our framework offers new tools to designers of computer-mediated communication platforms, for both human-human and human-AI communication.
comment: Accepted for publication at CSCW 2025. Code and data available in ConvoKit (https://convokit.cornell.edu)
♻ ☆ Bridging Compositional and Distributional Semantics: A Survey on Latent Semantic Geometry via AutoEncoder
Integrating compositional and symbolic properties into current distributional semantic spaces can enhance the interpretability, controllability, compositionality, and generalisation capabilities of Transformer-based auto-regressive language models (LMs). In this survey, we offer a novel perspective on latent space geometry through the lens of compositional semantics, a direction we refer to as \textit{semantic representation learning}. This direction enables a bridge between symbolic and distributional semantics, helping to mitigate the gap between them. We review and compare three mainstream autoencoder architectures-Variational AutoEncoder (VAE), Vector Quantised VAE (VQVAE), and Sparse AutoEncoder (SAE)-and examine the distinctive latent geometries they induce in relation to semantic structure and interpretability.
comment: In progress
♻ ☆ Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation ICML 2025
Advances in Large Language Models (LLMs) have sparked interest in their ability to solve Olympiad-level math problems. However, the training and evaluation of these models are constrained by the limited size and quality of available datasets, as creating large-scale data for such advanced problems requires extensive effort from human experts. In addition, current benchmarks are prone to contamination, leading to unreliable evaluations. In this paper, we present an automated pipeline that leverages the rich resources of the Art of Problem Solving (AoPS) forum, which predominantly features Olympiad-level problems and community-driven solutions. Using open-source LLMs, we develop a method to extract question-answer pairs from the forum, resulting in AoPS-Instruct, a dataset of more than 600,000 high-quality QA pairs. Our experiments demonstrate that fine-tuning LLMs on AoPS-Instruct improves their reasoning abilities across various benchmarks. Moreover, we build an automatic pipeline that introduces LiveAoPSBench, an evolving evaluation set with timestamps, derived from the latest forum data, providing a contamination-resistant benchmark for assessing LLM performance. Notably, we observe a significant decline in LLM performance over time, suggesting their success on older examples may stem from pre-training exposure rather than true reasoning ability. Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning, offering valuable insights into the capabilities and limitations of LLMs in this domain. Our benchmark and code is available at https://github.com/DSL-Lab/aops
comment: ICML 2025 Camera Ready
♻ ☆ MMCR: Benchmarking Cross-Source Reasoning in Scientific Papers
Fully comprehending scientific papers by machines reflects a high level of Artificial General Intelligence, requiring the ability to reason across fragmented and heterogeneous sources of information, presenting a complex and practically significant challenge. While Vision-Language Models (VLMs) have made remarkable strides in various tasks, particularly those involving reasoning with evidence source from single image or text page, their ability to use cross-source information for reasoning remains an open problem. This work presents MMCR, a high-difficulty benchmark designed to evaluate VLMs' capacity for reasoning with cross-source information from scientific papers. The benchmark comprises 276 high-quality questions, meticulously annotated by humans across 7 subjects and 10 task types. Experiments with 18 VLMs demonstrate that cross-source reasoning presents a substantial challenge for existing models. Notably, even the top-performing model, GPT-4o, achieved only 48.55% overall accuracy, with only 20% accuracy in multi-table comprehension tasks, while the second-best model, Qwen2.5-VL-72B, reached 39.86% overall accuracy. Furthermore, we investigated the impact of the Chain-of-Thought (CoT) technique on cross-source reasoning and observed a detrimental effect on small models, whereas larger models demonstrated substantially enhanced performance. These results highlight the pressing need to develop VLMs capable of effectively utilizing cross-source information for reasoning.
Computer Vision and Pattern Recognition 100
☆ MiCo: Multi-image Contrast for Reinforcement Visual Reasoning
This work explores enabling Chain-of-Thought (CoT) reasoning to link visual cues across multiple images. A straightforward solution is to adapt rule-based reinforcement learning for Vision-Language Models (VLMs). However, such methods typically rely on manually curated question-answer pairs, which can be particularly challenging when dealing with fine grained visual details and complex logic across images. Inspired by self-supervised visual representation learning, we observe that images contain inherent constraints that can serve as supervision. Based on this insight, we construct image triplets comprising two augmented views of the same image and a third, similar but distinct image. During training, the model is prompted to generate a reasoning process to compare these images (i.e., determine same or different). Then we optimize the model with rule-based reinforcement learning. Due to the high visual similarity and the presence of augmentations, the model must attend to subtle visual changes and perform logical reasoning to succeed. Experiments show that, although trained solely on visual comparison tasks, the learned reasoning ability generalizes effectively to a wide range of questions. Without relying on any human-annotated question-answer pairs, our method achieves significant improvements on multi-image reasoning benchmarks and shows strong performance on general vision tasks.
☆ WarpRF: Multi-View Consistency for Training-Free Uncertainty Quantification and Applications in Radiance Fields
We introduce WarpRF, a training-free general-purpose framework for quantifying the uncertainty of radiance fields. Built upon the assumption that photometric and geometric consistency should hold among images rendered by an accurate model, WarpRF quantifies its underlying uncertainty from an unseen point of view by leveraging backward warping across viewpoints, projecting reliable renderings to the unseen viewpoint and measuring the consistency with images rendered there. WarpRF is simple and inexpensive, does not require any training, and can be applied to any radiance field implementation for free. WarpRF excels at both uncertainty quantification and downstream tasks, e.g., active view selection and active mapping, outperforming any existing method tailored to specific frameworks.
comment: Project page: https://kuis-ai.github.io/WarpRF/
☆ Shape-for-Motion: Precise and Consistent Video Editing with 3D Proxy
Recent advances in deep generative modeling have unlocked unprecedented opportunities for video synthesis. In real-world applications, however, users often seek tools to faithfully realize their creative editing intentions with precise and consistent control. Despite the progress achieved by existing methods, ensuring fine-grained alignment with user intentions remains an open and challenging problem. In this work, we present Shape-for-Motion, a novel framework that incorporates a 3D proxy for precise and consistent video editing. Shape-for-Motion achieves this by converting the target object in the input video to a time-consistent mesh, i.e., a 3D proxy, allowing edits to be performed directly on the proxy and then inferred back to the video frames. To simplify the editing process, we design a novel Dual-Propagation Strategy that allows users to perform edits on the 3D mesh of a single frame, and the edits are then automatically propagated to the 3D meshes of the other frames. The 3D meshes for different frames are further projected onto the 2D space to produce the edited geometry and texture renderings, which serve as inputs to a decoupled video diffusion model for generating edited results. Our framework supports various precise and physically-consistent manipulations across the video frames, including pose editing, rotation, scaling, translation, texture modification, and object composition. Our approach marks a key step toward high-quality, controllable video editing workflows. Extensive experiments demonstrate the superiority and effectiveness of our approach. Project page: https://shapeformotion.github.io/
☆ Single-shot HDR using conventional image sensor shutter functions and optical randomization
High-dynamic-range (HDR) imaging is an essential technique for overcoming the dynamic range limits of image sensors. The classic method relies on multiple exposures, which slows capture time, resulting in motion artifacts when imaging dynamic scenes. Single-shot HDR imaging alleviates this issue by encoding HDR data into a single exposure, then computationally recovering it. Many established methods use strong image priors to recover improperly exposed image detail. These approaches struggle with extended highlight regions. We utilize the global reset release (GRR) shutter mode of an off-the-shelf sensor. GRR shutter mode applies a longer exposure time to rows closer to the bottom of the sensor. We use optics that relay a randomly permuted (shuffled) image onto the sensor, effectively creating spatially randomized exposures across the scene. The exposure diversity allows us to recover HDR data by solving an optimization problem with a simple total variation image prior. In simulation, we demonstrate that our method outperforms other single-shot methods when many sensor pixels are saturated (10% or more), and is competitive at a modest saturation (1%). Finally, we demonstrate a physical lab prototype that uses an off-the-shelf random fiber bundle for the optical shuffling. The fiber bundle is coupled to a low-cost commercial sensor operating in GRR shutter mode. Our prototype achieves a dynamic range of up to 73dB using an 8-bit sensor with 48dB dynamic range.
☆ Dehazing Light Microscopy Images with Guided Conditional Flow Matching: finding a sweet spot between fidelity and realism
Fluorescence microscopy is a major driver of scientific progress in the life sciences. Although high-end confocal microscopes are capable of filtering out-of-focus light, cheaper and more accessible microscopy modalities, such as widefield microscopy, can not, which consequently leads to hazy image data. Computational dehazing is trying to combine the best of both worlds, leading to cheap microscopy but crisp-looking images. The perception-distortion trade-off tells us that we can optimize either for data fidelity, e.g. low MSE or high PSNR, or for data realism, measured by perceptual metrics such as LPIPS or FID. Existing methods either prioritize fidelity at the expense of realism, or produce perceptually convincing results that lack quantitative accuracy. In this work, we propose HazeMatching, a novel iterative method for dehazing light microscopy images, which effectively balances these objectives. Our goal was to find a balanced trade-off between the fidelity of the dehazing results and the realism of individual predictions (samples). We achieve this by adapting the conditional flow matching framework by guiding the generative process with a hazy observation in the conditional velocity field. We evaluate HazeMatching on 5 datasets, covering both synthetic and real data, assessing both distortion and perceptual quality. Our method is compared against 7 baselines, achieving a consistent balance between fidelity and realism on average. Additionally, with calibration analysis, we show that HazeMatching produces well-calibrated predictions. Note that our method does not need an explicit degradation operator to exist, making it easily applicable on real microscopy data. All data used for training and evaluation and our code will be publicly available under a permissive license.
comment: supplement pending, 4 figures, 10 pages + refs
☆ Test-Time Consistency in Vision Language Models
Vision-Language Models (VLMs) have achieved impressive performance across a wide range of multimodal tasks, yet they often exhibit inconsistent behavior when faced with semantically equivalent inputs, undermining their reliability and robustness. Recent benchmarks, such as MM-R3, highlight that even state-of-the-art VLMs can produce divergent predictions across semantically equivalent inputs, despite maintaining high average accuracy. Prior work addresses this issue by modifying model architectures or conducting large-scale fine-tuning on curated datasets. In contrast, we propose a simple and effective test-time consistency framework that enhances semantic consistency without supervised re-training. Our method is entirely post-hoc, model-agnostic, and applicable to any VLM with access to its weights. Given a single test point, we enforce consistent predictions via two complementary objectives: (i) a Cross-Entropy Agreement Loss that aligns predictive distributions across semantically equivalent inputs, and (ii) a Pseudo-Label Consistency Loss that draws outputs toward a self-averaged consensus. Our method is plug-and-play and leverages information from a single test input itself to improve consistency. Experiments on the MM-R3 benchmark show that our framework yields substantial gains in consistency across state-of-the-art models, establishing a new direction for inference-time adaptation in multimodal learning.
☆ Can Video Large Multimodal Models Think Like Doubters-or Double-Down: A Study on Defeasible Video Entailment
Video Large Multimodal Models (VLMMs) have made impressive strides in understanding video content, but they often struggle with abstract and adaptive reasoning-the ability to revise their interpretations when new information emerges. In reality, conclusions are rarely set in stone; additional context can strengthen or weaken an initial inference. To address this, we introduce Defeasible Video Entailment (DVidE), a new task that challenges models to think like doubters, constantly updating their reasoning based on evolving evidence. In DVidE, given a video premise and a textual hypothesis, models must determine whether a new update strengthens or weakens the hypothesis (classification version) or generate a coherent update that modifies the entailment relationship (generation version). For solving the classification task, we propose the Chain of Counterfactual Thought framework, utilizing counterfactual reasoning, ASR-enhanced video content, and rationale refinement to reduce inference bias. For the generation task, we develop a framework that combines ASR output with a Large Language Model (LLM) to produce coherent, contextually relevant updates aligned with the intended strengthener or weakener goals. Additionally, we introduce a novel benchmark dataset, with strengthener/weakener annotations and an LLM-based evaluation metric specifically designed for assessing generative performance. Experimental results demonstrate significant improvements, highlighting our proposed method in enhancing dynamic reasoning capabilities of VLMMs.
☆ Exploiting Vision Language Model for Training-Free 3D Point Cloud OOD Detection via Graph Score Propagation ICCV 2025
Out-of-distribution (OOD) detection in 3D point cloud data remains a challenge, particularly in applications where safe and robust perception is critical. While existing OOD detection methods have shown progress for 2D image data, extending these to 3D environments involves unique obstacles. This paper introduces a training-free framework that leverages Vision-Language Models (VLMs) for effective OOD detection in 3D point clouds. By constructing a graph based on class prototypes and testing data, we exploit the data manifold structure to enhancing the effectiveness of VLMs for 3D OOD detection. We propose a novel Graph Score Propagation (GSP) method that incorporates prompt clustering and self-training negative prompting to improve OOD scoring with VLM. Our method is also adaptable to few-shot scenarios, providing options for practical applications. We demonstrate that GSP consistently outperforms state-of-the-art methods across synthetic and real-world datasets 3D point cloud OOD detection.
comment: Accepted by ICCV 2025
☆ From Ground to Air: Noise Robustness in Vision Transformers and CNNs for Event-Based Vehicle Classification with Potential UAV Applications
This study investigates the performance of the two most relevant computer vision deep learning architectures, Convolutional Neural Network and Vision Transformer, for event-based cameras. These cameras capture scene changes, unlike traditional frame-based cameras with capture static images, and are particularly suited for dynamic environments such as UAVs and autonomous vehicles. The deep learning models studied in this work are ResNet34 and ViT B16, fine-tuned on the GEN1 event-based dataset. The research evaluates and compares these models under both standard conditions and in the presence of simulated noise. Initial evaluations on the clean GEN1 dataset reveal that ResNet34 and ViT B16 achieve accuracies of 88% and 86%, respectively, with ResNet34 showing a slight advantage in classification accuracy. However, the ViT B16 model demonstrates notable robustness, particularly given its pre-training on a smaller dataset. Although this study focuses on ground-based vehicle classification, the methodologies and findings hold significant promise for adaptation to UAV contexts, including aerial object classification and event-based vision systems for aviation-related tasks.
comment: 16 pages, 17 figures, 9 tables. To be presented in AIAA AVIATION Forum 2025
☆ Closing the Performance Gap in Biometric Cryptosystems: A Deeper Analysis on Unlinkable Fuzzy Vaults
This paper analyses and addresses the performance gap in the fuzzy vault-based \ac{BCS}. We identify unstable error correction capabilities, which are caused by variable feature set sizes and their influence on similarity thresholds, as a key source of performance degradation. This issue is further compounded by information loss introduced through feature type transformations. To address both problems, we propose a novel feature quantization method based on \it{equal frequent intervals}. This method guarantees fixed feature set sizes and supports training-free adaptation to any number of intervals. The proposed approach significantly reduces the performance gap introduced by template protection. Additionally, it integrates seamlessly with existing systems to minimize the negative effects of feature transformation. Experiments on state-of-the-art face, fingerprint, and iris recognition systems confirm that only minimal performance degradation remains, demonstrating the effectiveness of the method across major biometric modalities.
comment: 10 pages, 4 figures, 4 tables
☆ QuKAN: A Quantum Circuit Born Machine approach to Quantum Kolmogorov Arnold Networks
Kolmogorov Arnold Networks (KANs), built upon the Kolmogorov Arnold representation theorem (KAR), have demonstrated promising capabilities in expressing complex functions with fewer neurons. This is achieved by implementing learnable parameters on the edges instead of on the nodes, unlike traditional networks such as Multi-Layer Perceptrons (MLPs). However, KANs potential in quantum machine learning has not yet been well explored. In this work, we present an implementation of these KAN architectures in both hybrid and fully quantum forms using a Quantum Circuit Born Machine (QCBM). We adapt the KAN transfer using pre-trained residual functions, thereby exploiting the representational power of parametrized quantum circuits. In the hybrid model we combine classical KAN components with quantum subroutines, while the fully quantum version the entire architecture of the residual function is translated to a quantum model. We demonstrate the feasibility, interpretability and performance of the proposed Quantum KAN (QuKAN) architecture.
☆ A Deep Learning framework for building damage assessment using VHR SAR and geospatial data: demonstration on the 2023 Turkiye Earthquake
Building damage identification shortly after a disaster is crucial for guiding emergency response and recovery efforts. Although optical satellite imagery is commonly used for disaster mapping, its effectiveness is often hampered by cloud cover or the absence of pre-event acquisitions. To overcome these challenges, we introduce a novel multimodal deep learning (DL) framework for detecting building damage using single-date very high resolution (VHR) Synthetic Aperture Radar (SAR) imagery from the Italian Space Agency (ASI) COSMO SkyMed (CSK) constellation, complemented by auxiliary geospatial data. Our method integrates SAR image patches, OpenStreetMap (OSM) building footprints, digital surface model (DSM) data, and structural and exposure attributes from the Global Earthquake Model (GEM) to improve detection accuracy and contextual interpretation. Unlike existing approaches that depend on pre and post event imagery, our model utilizes only post event data, facilitating rapid deployment in critical scenarios. The framework effectiveness is demonstrated using a new dataset from the 2023 earthquake in Turkey, covering multiple cities with diverse urban settings. Results highlight that incorporating geospatial features significantly enhances detection performance and generalizability to previously unseen areas. By combining SAR imagery with detailed vulnerability and exposure information, our approach provides reliable and rapid building damage assessments without the dependency from available pre-event data. Moreover, the automated and scalable data generation process ensures the framework's applicability across diverse disaster-affected regions, underscoring its potential to support effective disaster management and recovery efforts. Code and data will be made available upon acceptance of the paper.
comment: 13 pages, 6 figures (plus 4 author photos), and 5 tables. Submitted to IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
☆ MatChA: Cross-Algorithm Matching with Feature Augmentation
State-of-the-art methods fail to solve visual localization in scenarios where different devices use different sparse feature extraction algorithms to obtain keypoints and their corresponding descriptors. Translating feature descriptors is enough to enable matching. However, performance is drastically reduced in cross-feature detector cases, because current solutions assume common keypoints. This means that the same detector has to be used, which is rarely the case in practice when different descriptors are used. The low repeatability of keypoints, in addition to non-discriminatory and non-distinctive descriptors, make the identification of true correspondences extremely challenging. We present the first method tackling this problem, which performs feature descriptor augmentation targeting cross-detector feature matching, and then feature translation to a latent space. We show that our method significantly improves image matching and visual localization in the cross-feature scenario and evaluate the proposed method on several benchmarks.
☆ Unfolding Generative Flows with Koopman Operators: Fast and Interpretable Sampling
Conditional Flow Matching (CFM) offers a simulation-free framework for training continuous-time generative models, bridging diffusion and flow-based approaches. However, sampling from CFM still relies on numerically solving non-linear ODEs which can be computationally expensive and difficult to interpret. Recent alternatives address sampling speed via trajectory straightening, mini-batch coupling or distillation. However, these methods typically do not shed light on the underlying \textit{structure} of the generative process. In this work, we propose to accelerate CFM and introduce an interpretable representation of its dynamics by integrating Koopman operator theory, which models non-linear flows as linear evolution in a learned space of observables. We introduce a decoder-free Koopman-CFM architecture that learns an embedding where the generative dynamics become linear, enabling closed-form, one-step sampling via matrix exponentiation. This results in significant speedups over traditional CFM as demonstrated on controlled 2D datasets and real-world benchmarks, MNIST, Fashion-MNIST (F-MNIST), and the Toronto Face Dataset (TFD). Unlike previous methods, our approach leads to a well-structured Koopman generator, whose spectral properties, eigenvalues, and eigenfunctions offer principled tools for analyzing generative behavior such as temporal scaling, mode stability, and decomposition in Koopman latent space. By combining sampling efficiency with analytical structure, Koopman-enhanced flow matching offers a potential step toward fast and interpretable generative modeling.
☆ OutDreamer: Video Outpainting with a Diffusion Transformer
Video outpainting is a challenging task that generates new video content by extending beyond the boundaries of an original input video, requiring both temporal and spatial consistency. Many state-of-the-art methods utilize latent diffusion models with U-Net backbones but still struggle to achieve high quality and adaptability in generated content. Diffusion transformers (DiTs) have emerged as a promising alternative because of their superior performance. We introduce OutDreamer, a DiT-based video outpainting framework comprising two main components: an efficient video control branch and a conditional outpainting branch. The efficient video control branch effectively extracts masked video information, while the conditional outpainting branch generates missing content based on these extracted conditions. Additionally, we propose a mask-driven self-attention layer that dynamically integrates the given mask information, further enhancing the model's adaptability to outpainting tasks. Furthermore, we introduce a latent alignment loss to maintain overall consistency both within and between frames. For long video outpainting, we employ a cross-video-clip refiner to iteratively generate missing content, ensuring temporal consistency across video clips. Extensive evaluations demonstrate that our zero-shot OutDreamer outperforms state-of-the-art zero-shot methods on widely recognized benchmarks.
☆ RoomCraft: Controllable and Complete 3D Indoor Scene Generation
Generating realistic 3D indoor scenes from user inputs remains a challenging problem in computer vision and graphics, requiring careful balance of geometric consistency, spatial relationships, and visual realism. While neural generation methods often produce repetitive elements due to limited global spatial reasoning, procedural approaches can leverage constraints for controllable generation but struggle with multi-constraint scenarios. When constraints become numerous, object collisions frequently occur, forcing the removal of furniture items and compromising layout completeness. To address these limitations, we propose RoomCraft, a multi-stage pipeline that converts real images, sketches, or text descriptions into coherent 3D indoor scenes. Our approach combines a scene generation pipeline with a constraint-driven optimization framework. The pipeline first extracts high-level scene information from user inputs and organizes it into a structured format containing room type, furniture items, and spatial relations. It then constructs a spatial relationship network to represent furniture arrangements and generates an optimized placement sequence using a heuristic-based depth-first search (HDFS) algorithm to ensure layout coherence. To handle complex multi-constraint scenarios, we introduce a unified constraint representation that processes both formal specifications and natural language inputs, enabling flexible constraint-oriented adjustments through a comprehensive action space design. Additionally, we propose a Conflict-Aware Positioning Strategy (CAPS) that dynamically adjusts placement weights to minimize furniture collisions and ensure layout completeness. Extensive experiments demonstrate that RoomCraft significantly outperforms existing methods in generating realistic, semantically coherent, and visually appealing room layouts across diverse input modalities.
☆ Rethinking Visual Token Reduction in LVLMs under Cross-modal Misalignment
Large Vision-Language Models (LVLMs) encode visual inputs as dense sequences of patch-level tokens to capture fine-grained semantics. These visual tokens often outnumber their textual counterparts by a large margin, leading to substantial computational overhead and limiting the scalability of LVLMs in practice. Previous efforts have explored visual token reduction either prior to or within the large language models (LLM). However, most in-LLM reduction approaches rely on text-conditioned interactions, implicitly assuming that textual tokens can reliably capture the importance of visual tokens. In this work, we revisit this assumption and reveal causal, semantic, and spatial forms of cross-modal misalignment. These misalignments undermine the effectiveness of text-guided visual token reduction. To address this, we introduce VisionDrop, a training-free, visual-only pruning framework that selects informative visual tokens based on intra-modal (visual-to-visual) attention, without relying on textual signals. To further suppress redundancy throughout the model hierarchy, we treat the visual encoder and the LLM as a unified system and design a progressive pruning pipeline. Our method performs dominant token selection and lightweight contextual merging at multiple stages, enabling fine-grained visual information to be retained even under aggressive token budgets. Extensive experiments across diverse benchmarks show that VisionDrop achieves consistent improvements over existing methods, despite requiring no additional training or complex modifications. Its simple yet effective design enables efficient inference while preserving strong performance across tasks.
☆ DIGS: Dynamic CBCT Reconstruction using Deformation-Informed 4D Gaussian Splatting and a Low-Rank Free-Form Deformation Model MICCAI 2025
3D Cone-Beam CT (CBCT) is widely used in radiotherapy but suffers from motion artifacts due to breathing. A common clinical approach mitigates this by sorting projections into respiratory phases and reconstructing images per phase, but this does not account for breathing variability. Dynamic CBCT instead reconstructs images at each projection, capturing continuous motion without phase sorting. Recent advancements in 4D Gaussian Splatting (4DGS) offer powerful tools for modeling dynamic scenes, yet their application to dynamic CBCT remains underexplored. Existing 4DGS methods, such as HexPlane, use implicit motion representations, which are computationally expensive. While explicit low-rank motion models have been proposed, they lack spatial regularization, leading to inconsistencies in Gaussian motion. To address these limitations, we introduce a free-form deformation (FFD)-based spatial basis function and a deformation-informed framework that enforces consistency by coupling the temporal evolution of Gaussian's mean position, scale, and rotation under a unified deformation field. We evaluate our approach on six CBCT datasets, demonstrating superior image quality with a 6x speedup over HexPlane. These results highlight the potential of deformation-informed 4DGS for efficient, motion-compensated CBCT reconstruction. The code is available at https://github.com/Yuliang-Huang/DIGS.
comment: Accepted by MICCAI 2025
☆ COOCO -- Common Objects Out-of-Context -- Semantic Violation in Scenes: Investigating Multimodal Context in Referential Communication
Natural scenes provide us with rich contexts for object recognition and reference. In particular, knowing what type of scene one is looking at generates expectations about which objects will occur, and what their spatial configuration should be. Do Vision-Language Models (VLMs) learn to rely on scene contexts in a similar way, when generating references to objects? To address this question, we introduce the \textit{Common Objects Out-of-Context (COOCO)} dataset and test to what extent VLMs rely on scene context to refer to objects under different degrees of scene-object congruency, and different perturbations. Our findings show that models leverage scene context adaptively, depending on both the semantic relatedness between object and scene and the level of noise. In particular, models rely more on context under high target-scene congruence or when objects are degraded. Attention analysis reveals that successful object categorisation involves increased focus on the target in mid-level layers, especially under moderate noise, suggesting that VLMs dynamically balance local and contextual information for reference generation. We make our dataset, code and models available at \href{https://github.com/cs-nlp-uu/scenereg}{https://github.com/cs-nlp-uu/scenereg}.
☆ EAMamba: Efficient All-Around Vision State Space Model for Image Restoration ICCV 2025
Image restoration is a key task in low-level computer vision that aims to reconstruct high-quality images from degraded inputs. The emergence of Vision Mamba, which draws inspiration from the advanced state space model Mamba, marks a significant advancement in this field. Vision Mamba demonstrates excellence in modeling long-range dependencies with linear complexity, a crucial advantage for image restoration tasks. Despite its strengths, Vision Mamba encounters challenges in low-level vision tasks, including computational complexity that scales with the number of scanning sequences and local pixel forgetting. To address these limitations, this study introduces Efficient All-Around Mamba (EAMamba), an enhanced framework that incorporates a Multi-Head Selective Scan Module (MHSSM) with an all-around scanning mechanism. MHSSM efficiently aggregates multiple scanning sequences, which avoids increases in computational complexity and parameter count. The all-around scanning strategy implements multiple patterns to capture holistic information and resolves the local pixel forgetting issue. Our experimental evaluations validate these innovations across several restoration tasks, including super resolution, denoising, deblurring, and dehazing. The results validate that EAMamba achieves a significant 31-89% reduction in FLOPs while maintaining favorable performance compared to existing low-level Vision Mamba methods.
comment: ICCV 2025
☆ 4D-VLA: Spatiotemporal Vision-Language-Action Pretraining with Cross-Scene Calibration
Leveraging diverse robotic data for pretraining remains a critical challenge. Existing methods typically model the dataset's action distribution using simple observations as inputs. However, these inputs are often incomplete, resulting in a dispersed conditional action distribution-an issue we refer to as coordinate system chaos and state chaos. This inconsistency significantly hampers pretraining efficiency. To address this, we propose 4D-VLA, a novel approach that effectively integrates 4D information into the input to mitigate these sources of chaos. Our model introduces depth and temporal information into visual features with sequential RGB-D inputs, aligning the coordinate systems of the robot and the scene. This alignment endows the model with strong spatiotemporal reasoning capabilities while minimizing training overhead. Additionally, we introduce memory bank sampling, a frame sampling strategy designed to extract informative frames from historical images, further improving effectiveness and efficiency. Experimental results demonstrate that our pretraining method and architectural components substantially enhance model performance. In both simulated and real-world experiments, our model achieves a significant increase in success rate over OpenVLA. To further assess spatial perception and generalization to novel views, we introduce MV-Bench, a multi-view simulation benchmark. Our model consistently outperforms existing methods, demonstrating stronger spatial understanding and adaptability.
☆ Boosting Classification with Quantum-Inspired Augmentations
Understanding the impact of small quantum gate perturbations, which are common in quantum digital devices but absent in classical computers, is crucial for identifying potential advantages in quantum machine learning. While these perturbations are typically seen as detrimental to quantum computation, they can actually enhance performance by serving as a natural source of data augmentation. Additionally, they can often be efficiently simulated on classical hardware, enabling quantum-inspired approaches to improve classical machine learning methods. In this paper, we investigate random Bloch sphere rotations, which are fundamental SU(2) transformations, as a simple yet effective quantum-inspired data augmentation technique. Unlike conventional augmentations such as flipping, rotating, or cropping, quantum transformations lack intuitive spatial interpretations, making their application to tasks like image classification less straightforward. While common quantum augmentation methods rely on applying quantum models or trainable quanvolutional layers to classical datasets, we focus on the direct application of small-angle Bloch rotations and their effect on classical data. Using the large-scale ImageNet dataset, we demonstrate that our quantum-inspired augmentation method improves image classification performance, increasing Top-1 accuracy by 3%, Top-5 accuracy by 2.5%, and the F$_1$ score from 8% to 12% compared to standard classical augmentation methods. Finally, we examine the use of stronger unitary augmentations. Although these transformations preserve information in principle, they result in visually unrecognizable images with potential applications for privacy computations. However, we show that our augmentation approach and simple SU(2) transformations do not enhance differential privacy and discuss the implications of this limitation.
☆ Cardiovascular disease classification using radiomics and geometric features from cardiac CT MICCAI 2025
Automatic detection and classification of Cardiovascular disease (CVD) from Computed Tomography (CT) images play an important part in facilitating better-informed clinical decisions. However, most of the recent deep learning based methods either directly work on raw CT data or utilize it in pair with anatomical cardiac structure segmentation by training an end-to-end classifier. As such, these approaches become much more difficult to interpret from a clinical perspective. To address this challenge, in this work, we break down the CVD classification pipeline into three components: (i) image segmentation, (ii) image registration, and (iii) downstream CVD classification. Specifically, we utilize the Atlas-ISTN framework and recent segmentation foundational models to generate anatomical structure segmentation and a normative healthy atlas. These are further utilized to extract clinically interpretable radiomic features as well as deformation field based geometric features (through atlas registration) for CVD classification. Our experiments on the publicly available ASOCA dataset show that utilizing these features leads to better CVD classification accuracy (87.50\%) when compared against classification model trained directly on raw CT images (67.50\%). Our code is publicly available: https://github.com/biomedia-mira/grc-net
comment: Under Review at STACOM 2025 with MICCAI 2025
☆ Advanced Deep Learning Techniques for Automated Segmentation of Type B Aortic Dissections
Purpose: Aortic dissections are life-threatening cardiovascular conditions requiring accurate segmentation of true lumen (TL), false lumen (FL), and false lumen thrombosis (FLT) from CTA images for effective management. Manual segmentation is time-consuming and variable, necessitating automated solutions. Materials and Methods: We developed four deep learning-based pipelines for Type B aortic dissection segmentation: a single-step model, a sequential model, a sequential multi-task model, and an ensemble model, utilizing 3D U-Net and Swin-UnetR architectures. A dataset of 100 retrospective CTA images was split into training (n=80), validation (n=10), and testing (n=10). Performance was assessed using the Dice Coefficient and Hausdorff Distance. Results: Our approach achieved superior segmentation accuracy, with Dice Coefficients of 0.91 $\pm$ 0.07 for TL, 0.88 $\pm$ 0.18 for FL, and 0.47 $\pm$ 0.25 for FLT, outperforming Yao et al. (1), who reported 0.78 $\pm$ 0.20, 0.68 $\pm$ 0.18, and 0.25 $\pm$ 0.31, respectively. Conclusion: The proposed pipelines provide accurate segmentation of TBAD features, enabling derivation of morphological parameters for surveillance and treatment planning
comment: 9 pages, 5 figures, 3 tables
☆ ReF-LLE: Personalized Low-Light Enhancement via Reference-Guided Deep Reinforcement Learning
Low-light image enhancement presents two primary challenges: 1) Significant variations in low-light images across different conditions, and 2) Enhancement levels influenced by subjective preferences and user intent. To address these issues, we propose ReF-LLE, a novel personalized low-light image enhancement method that operates in the Fourier frequency domain and incorporates deep reinforcement learning. ReF-LLE is the first to integrate deep reinforcement learning into this domain. During training, a zero-reference image evaluation strategy is introduced to score enhanced images, providing reward signals that guide the model to handle varying degrees of low-light conditions effectively. In the inference phase, ReF-LLE employs a personalized adaptive iterative strategy, guided by the zero-frequency component in the Fourier domain, which represents the overall illumination level. This strategy enables the model to adaptively adjust low-light images to align with the illumination distribution of a user-provided reference image, ensuring personalized enhancement results. Extensive experiments on benchmark datasets demonstrate that ReF-LLE outperforms state-of-the-art methods, achieving superior perceptual quality and adaptability in personalized low-light image enhancement.
comment: 6 pages, 8 figures, accepted by ICME2025
☆ Robust and Accurate Multi-view 2D/3D Image Registration with Differentiable X-ray Rendering and Dual Cross-view Constraints
Robust and accurate 2D/3D registration, which aligns preoperative models with intraoperative images of the same anatomy, is crucial for successful interventional navigation. To mitigate the challenge of a limited field of view in single-image intraoperative scenarios, multi-view 2D/3D registration is required by leveraging multiple intraoperative images. In this paper, we propose a novel multi-view 2D/3D rigid registration approach comprising two stages. In the first stage, a combined loss function is designed, incorporating both the differences between predicted and ground-truth poses and the dissimilarities (e.g., normalized cross-correlation) between simulated and observed intraoperative images. More importantly, additional cross-view training loss terms are introduced for both pose and image losses to explicitly enforce cross-view constraints. In the second stage, test-time optimization is performed to refine the estimated poses from the coarse stage. Our method exploits the mutual constraints of multi-view projection poses to enhance the robustness of the registration process. The proposed framework achieves a mean target registration error (mTRE) of $0.79 \pm 2.17$ mm on six specimens from the DeepFluoro dataset, demonstrating superior performance compared to state-of-the-art registration algorithms.
comment: ICRA 2025
☆ Frequency-Semantic Enhanced Variational Autoencoder for Zero-Shot Skeleton-based Action Recognition ICCV 2025
Zero-shot skeleton-based action recognition aims to develop models capable of identifying actions beyond the categories encountered during training. Previous approaches have primarily focused on aligning visual and semantic representations but often overlooked the importance of fine-grained action patterns in the semantic space (e.g., the hand movements in drinking water and brushing teeth). To address these limitations, we propose a Frequency-Semantic Enhanced Variational Autoencoder (FS-VAE) to explore the skeleton semantic representation learning with frequency decomposition. FS-VAE consists of three key components: 1) a frequency-based enhancement module with high- and low-frequency adjustments to enrich the skeletal semantics learning and improve the robustness of zero-shot action recognition; 2) a semantic-based action description with multilevel alignment to capture both local details and global correspondence, effectively bridging the semantic gap and compensating for the inherent loss of information in skeleton sequences; 3) a calibrated cross-alignment loss that enables valid skeleton-text pairs to counterbalance ambiguous ones, mitigating discrepancies and ambiguities in skeleton and text features, thereby ensuring robust alignment. Evaluations on the benchmarks demonstrate the effectiveness of our approach, validating that frequency-enhanced semantic features enable robust differentiation of visually and semantically similar action clusters, improving zero-shot action recognition.
comment: Accepted to ICCV 2025
☆ KnotDLO: Toward Interpretable Knot Tying
This work presents KnotDLO, a method for one-handed Deformable Linear Object (DLO) knot tying that is robust to occlusion, repeatable for varying rope initial configurations, interpretable for generating motion policies, and requires no human demonstrations or training. Grasp and target waypoints for future DLO states are planned from the current DLO shape. Grasp poses are computed from indexing the tracked piecewise linear curve representing the DLO state based on the current curve shape and are piecewise continuous. KnotDLO computes intermediate waypoints from the geometry of the current DLO state and the desired next state. The system decouples visual reasoning from control. In 16 trials of knot tying, KnotDLO achieves a 50% success rate in tying an overhand knot from previously unseen configurations.
comment: 4 pages, 5 figures, presented at the Workshop on 3D Visual Representations for Manipulation at the 2023 IEEE International Conference on Robotics and Automation in Yokohama, Japan. Video presentation [https://youtu.be/mg30uCUtpOk]. Poster [https://hollydinkel.github.io/assets/pdf/ICRA20243DVRM_poster.pdf] 3DVRM Workshop [https://3d-manipulation-workshop.github.io/]
☆ Attention-disentangled Uniform Orthogonal Feature Space Optimization for Few-shot Object Detection
Few-shot object detection (FSOD) aims to detect objects with limited samples for novel classes, while relying on abundant data for base classes. Existing FSOD approaches, predominantly built on the Faster R-CNN detector, entangle objectness recognition and foreground classification within shared feature spaces. This paradigm inherently establishes class-specific objectness criteria and suffers from unrepresentative novel class samples. To resolve this limitation, we propose a Uniform Orthogonal Feature Space (UOFS) optimization framework. First, UOFS decouples the feature space into two orthogonal components, where magnitude encodes objectness and angle encodes classification. This decoupling enables transferring class-agnostic objectness knowledge from base classes to novel classes. Moreover, implementing the disentanglement requires careful attention to two challenges: (1) Base set images contain unlabeled foreground instances, causing confusion between potential novel class instances and backgrounds. (2) Angular optimization depends exclusively on base class foreground instances, inducing overfitting of angular distributions to base classes. To address these challenges, we propose a Hybrid Background Optimization (HBO) strategy: (1) Constructing a pure background base set by removing unlabeled instances in original images to provide unbiased magnitude-based objectness supervision. (2) Incorporating unlabeled foreground instances in the original base set into angular optimization to enhance distribution uniformity. Additionally, we propose a Spatial-wise Attention Disentanglement and Association (SADA) module to address task conflicts between class-agnostic and class-specific tasks. Experiments demonstrate that our method significantly outperforms existing approaches based on entangled feature spaces.
☆ Hardware acceleration for ultra-fast Neural Network training on FPGA for MRF map reconstruction
Magnetic Resonance Fingerprinting (MRF) is a fast quantitative MR Imaging technique that provides multi-parametric maps with a single acquisition. Neural Networks (NNs) accelerate reconstruction but require significant resources for training. We propose an FPGA-based NN for real-time brain parameter reconstruction from MRF data. Training the NN takes an estimated 200 seconds, significantly faster than standard CPU-based training, which can be up to 250 times slower. This method could enable real-time brain analysis on mobile devices, revolutionizing clinical decision-making and telemedicine.
comment: 8 pages, 2 figures, to be published in conference proceedings of SDPS 2024: 2024 International Conference of the Society for Design and Process Science on Advances and Challenges of Applying AI/GenAI in Design and Process Science
☆ RetFiner: A Vision-Language Refinement Scheme for Retinal Foundation Models MICCAI 2025
The rise of imaging techniques such as optical coherence tomography (OCT) and advances in deep learning (DL) have enabled clinicians and researchers to streamline retinal disease staging. A popular DL approach is self-supervised learning (SSL), where models learn from vast amounts of unlabeled data, avoiding costly annotation. SSL has allowed the development of foundation models (FMs), large models that can be used for a variety of downstream tasks. However, existing FMs for OCT, trained solely on image data, lack a comprehensive and robust semantic understanding of images, as evidenced by their downstream performance (especially for complex tasks), and thus require supervised fine-tuning (which may be unfeasible) to better adapt to specific applications and populations. To address this, we propose RetFiner, an SSL vision-language refinement scheme that improves the representations of existing FMs and enables their efficient and direct adaptation to specific populations for improved downstream performance. Our method uses a diverse set of training objectives which take advantage of the rich supervisory signal found in textual data. We tested RetFiner on the retinal FMs RETFound, UrFound, and VisionFM, showing significant improvements in linear probing performance on seven highly diverse OCT classification tasks, with an average increase of 5.8, 3.9, and 2.1 percentage points over their baselines, respectively. Our code and model weights are publicly available at https://github.com/ronnief1/RetFiner.
comment: Accepted for presentation at MICCAI 2025
☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs
Despite progress in Vision-Language Models (VLMs), their capacity for visual reasoning is often limited by the \textit{binding problem}: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current VLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces a simple yet effective intervention: augmenting visual inputs with low-level spatial structures (e.g., horizontal lines) and pairing this with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks. Specifically, our method improves GPT-4o visual search accuracy by 25.00%, increases counting accuracy by 26.83%, reduces edit distance error in scene description by 0.32, and enhances performance on spatial relationship tasks by 9.50% on a a 2D synthetic dataset. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. Our method enhances binding only with a single-query inference, underscoring the importance of visual input design over purely linguistically-based approaches. These findings suggest that low-level visual structuring is a powerful and underexplored direction for improving compositional visual reasoning and could serve as a general strategy for enhancing VLM performance on spatially grounded tasks.
☆ Q-Frame: Query-aware Frame Selection and Multi-Resolution Adaptation for Video-LLMs ICCV 2025
Multimodal Large Language Models (MLLMs) have demonstrated significant success in visual understanding tasks. However, challenges persist in adapting these models for video comprehension due to the large volume of data and temporal complexity. Existing Video-LLMs using uniform frame sampling often struggle to capture the query-related crucial spatiotemporal clues of videos effectively. In this paper, we introduce Q-Frame, a novel approach for adaptive frame selection and multi-resolution scaling tailored to the video's content and the specific query. Q-Frame employs a training-free, plug-and-play strategy generated by a text-image matching network like CLIP, utilizing the Gumbel-Max trick for efficient frame selection. Q-Frame allows Video-LLMs to process more frames without exceeding computational limits, thereby preserving critical temporal and spatial information. We demonstrate Q-Frame's effectiveness through extensive experiments on benchmark datasets, including MLVU, LongVideoBench, and Video-MME, illustrating its superiority over existing methods and its applicability across various video understanding tasks.
comment: Accepted at ICCV 2025
☆ Low-Rank Implicit Neural Representation via Schatten-p Quasi-Norm and Jacobian Regularization
Higher-order tensors are well-suited for representing multi-dimensional data, such as color images and videos. Low-rank tensor representation has become essential in machine learning and computer vision, but existing methods like Tucker decomposition offer flexibility at the expense of interpretability. In contrast, while the CANDECOMP/PARAFAC (CP) decomposition provides a more natural and interpretable tensor structure, obtaining sparse solutions remains challenging. Leveraging the rich properties of CP decomposition, we propose a CP-based low-rank tensor function parameterized by neural networks for implicit neural representation (CP-INR). This approach enables continuous data representation beyond structured grids, fully exploiting the non-linearity of tensor data with theoretical guarantees on excess risk bounds. To achieve a sparse CP decomposition, we introduce a variational form of the Schatten-p quasi-norm and prove its relationship to multilinear rank minimization. For smoothness, we propose a regularization term based on the spectral norm of the Jacobian and Hutchinson's trace estimator. Our proposed smoothness regularization is SVD-free and avoids explicit chain rule derivations. It can serve as an alternative to Total Variation (TV) regularization in image denoising tasks and is naturally applicable to continuous data. Extensive experiments on multi-dimensional data recovery tasks, including image inpainting, denoising, and point cloud upsampling, demonstrate the superiority and versatility of our method compared to state-of-the-art approaches.
comment: Submitted to IEEE Transactions on Circuits and Systems for Video Technology
☆ Pipe Reconstruction from Point Cloud Data
Accurate digital twins of industrial assets, such as ships and offshore platforms, rely on the precise reconstruction of complex pipe networks. However, manual modelling of pipes from laser scan data is a time-consuming and labor-intensive process. This paper presents a pipeline for automated pipe reconstruction from incomplete laser scan data. The approach estimates a skeleton curve using Laplacian-based contraction, followed by curve elongation. The skeleton axis is then recentred using a rolling sphere technique combined with 2D circle fitting, and refined with a 3D smoothing step. This enables the determination of pipe properties, including radius, length and orientation, and facilitates the creation of detailed 3D models of complex pipe networks. By automating pipe reconstruction, this approach supports the development of digital twins, allowing for rapid and accurate modeling while reducing costs.
☆ Evaluating Pointing Gestures for Target Selection in Human-Robot Collaboration
Pointing gestures are a common interaction method used in Human-Robot Collaboration for various tasks, ranging from selecting targets to guiding industrial processes. This study introduces a method for localizing pointed targets within a planar workspace. The approach employs pose estimation, and a simple geometric model based on shoulder-wrist extension to extract gesturing data from an RGB-D stream. The study proposes a rigorous methodology and comprehensive analysis for evaluating pointing gestures and target selection in typical robotic tasks. In addition to evaluating tool accuracy, the tool is integrated into a proof-of-concept robotic system, which includes object detection, speech transcription, and speech synthesis to demonstrate the integration of multiple modalities in a collaborative application. Finally, a discussion over tool limitations and performance is provided to understand its role in multimodal robotic systems. All developments are available at: https://github.com/NMKsas/gesture_pointer.git.
comment: Accepted by the 2025 34th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). Preprint
☆ Pedestrian Intention and Trajectory Prediction in Unstructured Traffic Using IDD-PeD
With the rapid advancements in autonomous driving, accurately predicting pedestrian behavior has become essential for ensuring safety in complex and unpredictable traffic conditions. The growing interest in this challenge highlights the need for comprehensive datasets that capture unstructured environments, enabling the development of more robust prediction models to enhance pedestrian safety and vehicle navigation. In this paper, we introduce an Indian driving pedestrian dataset designed to address the complexities of modeling pedestrian behavior in unstructured environments, such as illumination changes, occlusion of pedestrians, unsignalized scene types and vehicle-pedestrian interactions. The dataset provides high-level and detailed low-level comprehensive annotations focused on pedestrians requiring the ego-vehicle's attention. Evaluation of the state-of-the-art intention prediction methods on our dataset shows a significant performance drop of up to $\mathbf{15\%}$, while trajectory prediction methods underperform with an increase of up to $\mathbf{1208}$ MSE, defeating standard pedestrian datasets. Additionally, we present exhaustive quantitative and qualitative analysis of intention and trajectory baselines. We believe that our dataset will open new challenges for the pedestrian behavior research community to build robust models. Project Page: https://cvit.iiit.ac.in/research/projects/cvit-projects/iddped
☆ Tied Prototype Model for Few-Shot Medical Image Segmentation MICCAI
Common prototype-based medical image few-shot segmentation (FSS) methods model foreground and background classes using class-specific prototypes. However, given the high variability of the background, a more promising direction is to focus solely on foreground modeling, treating the background as an anomaly -- an approach introduced by ADNet. Yet, ADNet faces three key limitations: dependence on a single prototype per class, a focus on binary classification, and fixed thresholds that fail to adapt to patient and organ variability. To address these shortcomings, we propose the Tied Prototype Model (TPM), a principled reformulation of ADNet with tied prototype locations for foreground and background distributions. Building on its probabilistic foundation, TPM naturally extends to multiple prototypes and multi-class segmentation while effectively separating non-typical background features. Notably, both extensions lead to improved segmentation accuracy. Finally, we leverage naturally occurring class priors to define an ideal target for adaptive thresholds, boosting segmentation performance. Taken together, TPM provides a fresh perspective on prototype-based FSS for medical image segmentation. The code can be found at https://github.com/hjk92g/TPM-FSS.
comment: Submitted version (MICCAI). Accepted at MICCAI 2025. The code repo will be made publicly available soon
☆ BézierGS: Dynamic Urban Scene Reconstruction with Bézier Curve Gaussian Splatting ICCV 2025
The realistic reconstruction of street scenes is critical for developing real-world simulators in autonomous driving. Most existing methods rely on object pose annotations, using these poses to reconstruct dynamic objects and move them during the rendering process. This dependence on high-precision object annotations limits large-scale and extensive scene reconstruction. To address this challenge, we propose B\'ezier curve Gaussian splatting (B\'ezierGS), which represents the motion trajectories of dynamic objects using learnable B\'ezier curves. This approach fully leverages the temporal information of dynamic objects and, through learnable curve modeling, automatically corrects pose errors. By introducing additional supervision on dynamic object rendering and inter-curve consistency constraints, we achieve reasonable and accurate separation and reconstruction of scene elements. Extensive experiments on the Waymo Open Dataset and the nuPlan benchmark demonstrate that B\'ezierGS outperforms state-of-the-art alternatives in both dynamic and static scene components reconstruction and novel view synthesis.
comment: Accepted at ICCV 2025, Project Page: https://github.com/fudan-zvg/BezierGS
☆ Towards Accurate Heart Rate Measurement from Ultra-Short Video Clips via Periodicity-Guided rPPG Estimation and Signal Reconstruction
Many remote Heart Rate (HR) measurement methods focus on estimating remote photoplethysmography (rPPG) signals from video clips lasting around 10 seconds but often overlook the need for HR estimation from ultra-short video clips. In this paper, we aim to accurately measure HR from ultra-short 2-second video clips by specifically addressing two key challenges. First, to overcome the limited number of heartbeat cycles in ultra-short video clips, we propose an effective periodicity-guided rPPG estimation method that enforces consistent periodicity between rPPG signals estimated from ultra-short clips and their much longer ground truth signals. Next, to mitigate estimation inaccuracies due to spectral leakage, we propose including a generator to reconstruct longer rPPG signals from ultra-short ones while preserving their periodic consistency to enable more accurate HR measurement. Extensive experiments on four rPPG estimation benchmark datasets demonstrate that our proposed method not only accurately measures HR from ultra-short video clips but also outperform previous rPPG estimation techniques to achieve state-of-the-art performance.
☆ Reasoning in machine vision: learning to think fast and slow
Reasoning is a hallmark of human intelligence, enabling adaptive decision-making in complex and unfamiliar scenarios. In contrast, machine intelligence remains bound to training data, lacking the ability to dynamically refine solutions at inference time. While some recent advances have explored reasoning in machines, these efforts are largely limited to verbal domains such as mathematical problem-solving, where explicit rules govern step-by-step reasoning. Other critical real-world tasks - including visual perception, spatial reasoning, and radiological diagnosis - require non-verbal reasoning, which remains an open challenge. Here we present a novel learning paradigm that enables machine reasoning in vision by allowing performance improvement with increasing thinking time (inference-time compute), even under conditions where labelled data is very limited. Inspired by dual-process theories of human cognition in psychology, our approach integrates a fast-thinking System I module for familiar tasks, with a slow-thinking System II module that iteratively refines solutions using self-play reinforcement learning. This paradigm mimics human reasoning by proposing, competing over, and refining solutions in data-scarce scenarios. We demonstrate superior performance through extended thinking time, compared not only to large-scale supervised learning but also foundation models and even human experts, in real-world vision tasks. These tasks include computer-vision benchmarks and cancer localisation on medical images across five organs, showcasing transformative potential for non-verbal machine reasoning.
☆ Single-Scanline Relative Pose Estimation for Rolling Shutter Cameras ICCV 2025
We propose a novel approach for estimating the relative pose between rolling shutter cameras using the intersections of line projections with a single scanline per image. This allows pose estimation without explicitly modeling camera motion. Alternatively, scanlines can be selected within a single image, enabling single-view relative pose estimation for scanlines of rolling shutter cameras. Our approach is designed as a foundational building block for rolling shutter structure-from-motion (SfM), where no motion model is required, and each scanline's pose can be computed independently. % We classify minimal solvers for this problem in both generic and specialized settings, including cases with parallel lines and known gravity direction, assuming known intrinsics and no lens distortion. Furthermore, we develop minimal solvers for the parallel-lines scenario, both with and without gravity priors, by leveraging connections between this problem and the estimation of 2D structure from 1D cameras. % Experiments on rolling shutter images from the Fastec dataset demonstrate the feasibility of our approach for initializing rolling shutter SfM, highlighting its potential for further development. % The code will be made publicly available.
comment: ICCV 2025, 15 pages, 5 figures, 12 tables
☆ MirrorMe: Towards Realtime and High Fidelity Audio-Driven Halfbody Animation
Audio-driven portrait animation, which synthesizes realistic videos from reference images using audio signals, faces significant challenges in real-time generation of high-fidelity, temporally coherent animations. While recent diffusion-based methods improve generation quality by integrating audio into denoising processes, their reliance on frame-by-frame UNet architectures introduces prohibitive latency and struggles with temporal consistency. This paper introduces MirrorMe, a real-time, controllable framework built on the LTX video model, a diffusion transformer that compresses video spatially and temporally for efficient latent space denoising. To address LTX's trade-offs between compression and semantic fidelity, we propose three innovations: 1. A reference identity injection mechanism via VAE-encoded image concatenation and self-attention, ensuring identity consistency; 2. A causal audio encoder and adapter tailored to LTX's temporal structure, enabling precise audio-expression synchronization; and 3. A progressive training strategy combining close-up facial training, half-body synthesis with facial masking, and hand pose integration for enhanced gesture control. Extensive experiments on the EMTD Benchmark demonstrate MirrorMe's state-of-the-art performance in fidelity, lip-sync accuracy, and temporal stability.
comment: 8 pages, 6 figures
☆ EnLVAM: Enhanced Left Ventricle Linear Measurements Utilizing Anatomical Motion Mode
Linear measurements of the left ventricle (LV) in the Parasternal Long Axis (PLAX) view using B-mode echocardiography are crucial for cardiac assessment. These involve placing 4-6 landmarks along a virtual scanline (SL) perpendicular to the LV axis near the mitral valve tips. Manual placement is time-consuming and error-prone, while existing deep learning methods often misalign landmarks, causing inaccurate measurements. We propose a novel framework that enhances LV measurement accuracy by enforcing straight-line constraints. A landmark detector is trained on Anatomical M-Mode (AMM) images, computed in real time from B-mode videos, then transformed back to B-mode space. This approach addresses misalignment and reduces measurement errors. Experiments show improved accuracy over standard B-mode methods, and the framework generalizes well across network architectures. Our semi-automatic design includes a human-in-the-loop step where the user only places the SL, simplifying interaction while preserving alignment flexibility and clinical relevance.
☆ Few-Shot Identity Adaptation for 3D Talking Heads via Global Gaussian Field
Reconstruction and rendering-based talking head synthesis methods achieve high-quality results with strong identity preservation but are limited by their dependence on identity-specific models. Each new identity requires training from scratch, incurring high computational costs and reduced scalability compared to generative model-based approaches. To overcome this limitation, we propose FIAG, a novel 3D speaking head synthesis framework that enables efficient identity-specific adaptation using only a few training footage. FIAG incorporates Global Gaussian Field, which supports the representation of multiple identities within a shared field, and Universal Motion Field, which captures the common motion dynamics across diverse identities. Benefiting from the shared facial structure information encoded in the Global Gaussian Field and the general motion priors learned in the motion field, our framework enables rapid adaptation from canonical identity representations to specific ones with minimal data. Extensive comparative and ablation experiments demonstrate that our method outperforms existing state-of-the-art approaches, validating both the effectiveness and generalizability of the proposed framework. Code is available at: \textit{https://github.com/gme-hong/FIAG}.
☆ Towards Scalable and Robust White Matter Lesion Localization via Multimodal Deep Learning
White matter hyperintensities (WMH) are radiological markers of small vessel disease and neurodegeneration, whose accurate segmentation and spatial localization are crucial for diagnosis and monitoring. While multimodal MRI offers complementary contrasts for detecting and contextualizing WM lesions, existing approaches often lack flexibility in handling missing modalities and fail to integrate anatomical localization efficiently. We propose a deep learning framework for WM lesion segmentation and localization that operates directly in native space using single- and multi-modal MRI inputs. Our study evaluates four input configurations: FLAIR-only, T1-only, concatenated FLAIR and T1, and a modality-interchangeable setup. It further introduces a multi-task model for jointly predicting lesion and anatomical region masks to estimate region-wise lesion burden. Experiments conducted on the MICCAI WMH Segmentation Challenge dataset demonstrate that multimodal input significantly improves the segmentation performance, outperforming unimodal models. While the modality-interchangeable setting trades accuracy for robustness, it enables inference in cases with missing modalities. Joint lesion-region segmentation using multi-task learning was less effective than separate models, suggesting representational conflict between tasks. Our findings highlight the utility of multimodal fusion for accurate and robust WMH analysis, and the potential of joint modeling for integrated predictions.
comment: 2nd Sorbonne-Heidelberg Workshop on AI in medicine: Machine Learning for multi-modal data
☆ Partial CLIP is Enough: Chimera-Seg for Zero-shot Semantic Segmentation
Zero-shot Semantic Segmentation (ZSS) aims to segment both seen and unseen classes using supervision from only seen classes. Beyond adaptation-based methods, distillation-based approaches transfer vision-language alignment of vision-language model, e.g., CLIP, to segmentation models. However, such knowledge transfer remains challenging due to: (1) the difficulty of aligning vision-based features with the textual space, which requires combining spatial precision with vision-language alignment; and (2) the semantic gap between CLIP's global representations and the local, fine-grained features of segmentation models. To address challenge (1), we propose Chimera-Seg, which integrates a segmentation backbone as the body and a CLIP-based semantic head as the head, like the Chimera in Greek mythology, combining spatial precision with vision-language alignment. Specifically, Chimera-Seg comprises a trainable segmentation model and a CLIP Semantic Head (CSH), which maps dense features into the CLIP-aligned space. The CSH incorporates a frozen subnetwork and fixed projection layers from the CLIP visual encoder, along with lightweight trainable components. The partial module from CLIP visual encoder, paired with the segmentation model, retains segmentation capability while easing the mapping to CLIP's semantic space. To address challenge (2), we propose Selective Global Distillation (SGD), which distills knowledge from dense features exhibiting high similarity to the CLIP CLS token, while gradually reducing the number of features used for alignment as training progresses. Besides, we also use a Semantic Alignment Module (SAM) to further align dense visual features with semantic embeddings extracted from the frozen CLIP text encoder. Experiments on two benchmarks show improvements of 0.9% and 1.2% in hIoU.
☆ Cross-modal Ship Re-Identification via Optical and SAR Imagery: A Novel Dataset and Method ICCV 2025
Detecting and tracking ground objects using earth observation imagery remains a significant challenge in the field of remote sensing. Continuous maritime ship tracking is crucial for applications such as maritime search and rescue, law enforcement, and shipping analysis. However, most current ship tracking methods rely on geostationary satellites or video satellites. The former offer low resolution and are susceptible to weather conditions, while the latter have short filming durations and limited coverage areas, making them less suitable for the real-world requirements of ship tracking. To address these limitations, we present the Hybrid Optical and Synthetic Aperture Radar (SAR) Ship Re-Identification Dataset (HOSS ReID dataset), designed to evaluate the effectiveness of ship tracking using low-Earth orbit constellations of optical and SAR sensors. This approach ensures shorter re-imaging cycles and enables all-weather tracking. HOSS ReID dataset includes images of the same ship captured over extended periods under diverse conditions, using different satellites of different modalities at varying times and angles. Furthermore, we propose a baseline method for cross-modal ship re-identification, TransOSS, which is built on the Vision Transformer architecture. It refines the patch embedding structure to better accommodate cross-modal tasks, incorporates additional embeddings to introduce more reference information, and employs contrastive learning to pre-train on large-scale optical-SAR image pairs, ensuring the model's ability to extract modality-invariant features. Our dataset and baseline method are publicly available on https://github.com/Alioth2000/Hoss-ReID.
comment: Accepted to ICCV 2025
☆ Advancing Facial Stylization through Semantic Preservation Constraint and Pseudo-Paired Supervision
Facial stylization aims to transform facial images into appealing, high-quality stylized portraits, with the critical challenge of accurately learning the target style while maintaining content consistency with the original image. Although previous StyleGAN-based methods have made significant advancements, the generated results still suffer from artifacts or insufficient fidelity to the source image. We argue that these issues stem from neglecting semantic shift of the generator during stylization. Therefore, we propose a facial stylization method that integrates semantic preservation constraint and pseudo-paired supervision to enhance the content correspondence and improve the stylization effect. Additionally, we develop a methodology for creating multi-level pseudo-paired datasets to implement supervisory constraint. Furthermore, building upon our facial stylization framework, we achieve more flexible multimodal and reference-guided stylization without complex network architecture designs or additional training. Experimental results demonstrate that our approach produces high-fidelity, aesthetically pleasing facial style transfer that surpasses previous methods.
☆ Towards Universal & Efficient Model Compression via Exponential Torque Pruning
The rapid growth in complexity and size of modern deep neural networks (DNNs) has increased challenges related to computational costs and memory usage, spurring a growing interest in efficient model compression techniques. Previous state-of-the-art approach proposes using a Torque-inspired regularization which forces the weights of neural modules around a selected pivot point. Whereas, we observe that the pruning effect of this approach is far from perfect, as the post-trained network is still dense and also suffers from high accuracy drop. In this work, we attribute such ineffectiveness to the default linear force application scheme, which imposes inappropriate force on neural module of different distances. To efficiently prune the redundant and distant modules while retaining those that are close and necessary for effective inference, in this work, we propose Exponential Torque Pruning (ETP), which adopts an exponential force application scheme for regularization. Experimental results on a broad range of domains demonstrate that, though being extremely simple, ETP manages to achieve significantly higher compression rate than the previous state-of-the-art pruning strategies with negligible accuracy drop.
☆ Noise-Inspired Diffusion Model for Generalizable Low-Dose CT Reconstruction
The generalization of deep learning-based low-dose computed tomography (CT) reconstruction models to doses unseen in the training data is important and remains challenging. Previous efforts heavily rely on paired data to improve the generalization performance and robustness through collecting either diverse CT data for re-training or a few test data for fine-tuning. Recently, diffusion models have shown promising and generalizable performance in low-dose CT (LDCT) reconstruction, however, they may produce unrealistic structures due to the CT image noise deviating from Gaussian distribution and imprecise prior information from the guidance of noisy LDCT images. In this paper, we propose a noise-inspired diffusion model for generalizable LDCT reconstruction, termed NEED, which tailors diffusion models for noise characteristics of each domain. First, we propose a novel shifted Poisson diffusion model to denoise projection data, which aligns the diffusion process with the noise model in pre-log LDCT projections. Second, we devise a doubly guided diffusion model to refine reconstructed images, which leverages LDCT images and initial reconstructions to more accurately locate prior information and enhance reconstruction fidelity. By cascading these two diffusion models for dual-domain reconstruction, our NEED requires only normal-dose data for training and can be effectively extended to various unseen dose levels during testing via a time step matching strategy. Extensive qualitative, quantitative, and segmentation-based evaluations on two datasets demonstrate that our NEED consistently outperforms state-of-the-art methods in reconstruction and generalization performance. Source code is made available at https://github.com/qgao21/NEED.
comment: Accepted for publication in Medical Image Analysis, 2025
☆ RoboEnvision: A Long-Horizon Video Generation Model for Multi-Task Robot Manipulation
We address the problem of generating long-horizon videos for robotic manipulation tasks. Text-to-video diffusion models have made significant progress in photorealism, language understanding, and motion generation but struggle with long-horizon robotic tasks. Recent works use video diffusion models for high-quality simulation data and predictive rollouts in robot planning. However, these works predict short sequences of the robot achieving one task and employ an autoregressive paradigm to extend to the long horizon, leading to error accumulations in the generated video and in the execution. To overcome these limitations, we propose a novel pipeline that bypasses the need for autoregressive generation. We achieve this through a threefold contribution: 1) we first decompose the high-level goals into smaller atomic tasks and generate keyframes aligned with these instructions. A second diffusion model then interpolates between each of the two generated frames, achieving the long-horizon video. 2) We propose a semantics preserving attention module to maintain consistency between the keyframes. 3) We design a lightweight policy model to regress the robot joint states from generated videos. Our approach achieves state-of-the-art results on two benchmarks in video quality and consistency while outperforming previous policy models on long-horizon tasks.
comment: 8 pages, 6 figures
☆ R1-Track: Direct Application of MLLMs to Visual Object Tracking via Reinforcement Learning
Visual single object tracking aims to continuously localize and estimate the scale of a target in subsequent video frames, given only its initial state in the first frame. This task has traditionally been framed as a template matching problem, evolving through major phases including correlation filters, two-stream networks, and one-stream networks with significant progress achieved. However, these methods typically require explicit classification and regression modeling, depend on supervised training with large-scale datasets, and are limited to the single task of tracking, lacking flexibility. In recent years, multi-modal large language models (MLLMs) have advanced rapidly. Open-source models like Qwen2.5-VL, a flagship MLLMs with strong foundational capabilities, demonstrate excellent performance in grounding tasks. This has spurred interest in applying such models directly to visual tracking. However, experiments reveal that Qwen2.5-VL struggles with template matching between image pairs (i.e., tracking tasks). Inspired by deepseek-R1, we fine-tuned Qwen2.5-VL using the group relative policy optimization (GRPO) reinforcement learning method on a small-scale dataset with a rule-based reward function. The resulting model, R1-Track, achieved notable performance on the GOT-10k benchmark. R1-Track supports flexible initialization via bounding boxes or text descriptions while retaining most of the original model's general capabilities. And we further discuss potential improvements for R1-Track. This rough technical report summarizes our findings as of May 2025.
comment: 7 pages, 2 figures
☆ StableCodec: Taming One-Step Diffusion for Extreme Image Compression
Diffusion-based image compression has shown remarkable potential for achieving ultra-low bitrate coding (less than 0.05 bits per pixel) with high realism, by leveraging the generative priors of large pre-trained text-to-image diffusion models. However, current approaches require a large number of denoising steps at the decoder to generate realistic results under extreme bitrate constraints, limiting their application in real-time compression scenarios. Additionally, these methods often sacrifice reconstruction fidelity, as diffusion models typically fail to guarantee pixel-level consistency. To address these challenges, we introduce StableCodec, which enables one-step diffusion for high-fidelity and high-realism extreme image compression with improved coding efficiency. To achieve ultra-low bitrates, we first develop an efficient Deep Compression Latent Codec to transmit a noisy latent representation for a single-step denoising process. We then propose a Dual-Branch Coding Structure, consisting of a pair of auxiliary encoder and decoder, to enhance reconstruction fidelity. Furthermore, we adopt end-to-end optimization with joint bitrate and pixel-level constraints. Extensive experiments on the CLIC 2020, DIV2K, and Kodak dataset demonstrate that StableCodec outperforms existing methods in terms of FID, KID and DISTS by a significant margin, even at bitrates as low as 0.005 bits per pixel, while maintaining strong fidelity. Additionally, StableCodec achieves inference speeds comparable to mainstream transform coding schemes. All source code are available at https://github.com/LuizScarlet/StableCodec.
☆ SceneDiffuser++: City-Scale Traffic Simulation via a Generative World Model CVPR 2025
The goal of traffic simulation is to augment a potentially limited amount of manually-driven miles that is available for testing and validation, with a much larger amount of simulated synthetic miles. The culmination of this vision would be a generative simulated city, where given a map of the city and an autonomous vehicle (AV) software stack, the simulator can seamlessly simulate the trip from point A to point B by populating the city around the AV and controlling all aspects of the scene, from animating the dynamic agents (e.g., vehicles, pedestrians) to controlling the traffic light states. We refer to this vision as CitySim, which requires an agglomeration of simulation technologies: scene generation to populate the initial scene, agent behavior modeling to animate the scene, occlusion reasoning, dynamic scene generation to seamlessly spawn and remove agents, and environment simulation for factors such as traffic lights. While some key technologies have been separately studied in various works, others such as dynamic scene generation and environment simulation have received less attention in the research community. We propose SceneDiffuser++, the first end-to-end generative world model trained on a single loss function capable of point A-to-B simulation on a city scale integrating all the requirements above. We demonstrate the city-scale traffic simulation capability of SceneDiffuser++ and study its superior realism under long simulation conditions. We evaluate the simulation quality on an augmented version of the Waymo Open Motion Dataset (WOMD) with larger map regions to support trip-level simulation.
comment: Accepted to CVPR 2025
☆ TASeg: Text-aware RGB-T Semantic Segmentation based on Fine-tuning Vision Foundation Models
Reliable semantic segmentation of open environments is essential for intelligent systems, yet significant problems remain: 1) Existing RGB-T semantic segmentation models mainly rely on low-level visual features and lack high-level textual information, which struggle with accurate segmentation when categories share similar visual characteristics. 2) While SAM excels in instance-level segmentation, integrating it with thermal images and text is hindered by modality heterogeneity and computational inefficiency. To address these, we propose TASeg, a text-aware RGB-T segmentation framework by using Low-Rank Adaptation (LoRA) fine-tuning technology to adapt vision foundation models. Specifically, we propose a Dynamic Feature Fusion Module (DFFM) in the image encoder, which effectively merges features from multiple visual modalities while freezing SAM's original transformer blocks. Additionally, we incorporate CLIP-generated text embeddings in the mask decoder to enable semantic alignment, which further rectifies the classification error and improves the semantic understanding accuracy. Experimental results across diverse datasets demonstrate that our method achieves superior performance in challenging scenarios with fewer trainable parameters.
comment: 6 pages, accepted for publication in lEEE/RSJ international Conference on Intelligent Robots and Systems (lROS 2025)
☆ Exploring Semantic Masked Autoencoder for Self-supervised Point Cloud Understanding IJCAI 2025
Point cloud understanding aims to acquire robust and general feature representations from unlabeled data. Masked point modeling-based methods have recently shown significant performance across various downstream tasks. These pre-training methods rely on random masking strategies to establish the perception of point clouds by restoring corrupted point cloud inputs, which leads to the failure of capturing reasonable semantic relationships by the self-supervised models. To address this issue, we propose Semantic Masked Autoencoder, which comprises two main components: a prototype-based component semantic modeling module and a component semantic-enhanced masking strategy. Specifically, in the component semantic modeling module, we design a component semantic guidance mechanism to direct a set of learnable prototypes in capturing the semantics of different components from objects. Leveraging these prototypes, we develop a component semantic-enhanced masking strategy that addresses the limitations of random masking in effectively covering complete component structures. Furthermore, we introduce a component semantic-enhanced prompt-tuning strategy, which further leverages these prototypes to improve the performance of pre-trained models in downstream tasks. Extensive experiments conducted on datasets such as ScanObjectNN, ModelNet40, and ShapeNetPart demonstrate the effectiveness of our proposed modules.
comment: Accepted by IJCAI 2025
☆ SDRNET: Stacked Deep Residual Network for Accurate Semantic Segmentation of Fine-Resolution Remotely Sensed Images
Land cover maps generated from semantic segmentation of high-resolution remotely sensed images have drawn mucon in the photogrammetry and remote sensing research community. Currently, massive fine-resolution remotely sensed (FRRS) images acquired by improving sensing and imaging technologies become available. However, accurate semantic segmentation of such FRRS images is greatly affected by substantial class disparities, the invisibility of key ground objects due to occlusion, and object size variation. Despite the extraordinary potential in deep convolutional neural networks (DCNNs) in image feature learning and representation, extracting sufficient features from FRRS images for accurate semantic segmentation is still challenging. These challenges demand the deep learning models to learn robust features and generate sufficient feature descriptors. Specifically, learning multi-contextual features to guarantee adequate coverage of varied object sizes from the ground scene and harnessing global-local contexts to overcome class disparities challenge even profound networks. Deeper networks significantly lose spatial details due to gradual downsampling processes resulting in poor segmentation results and coarse boundaries. This article presents a stacked deep residual network (SDRNet) for semantic segmentation from FRRS images. The proposed framework utilizes two stacked encoder-decoder networks to harness long-range semantics yet preserve spatial information and dilated residual blocks (DRB) between each encoder and decoder network to capture sufficient global dependencies thus improving segmentation performance. Our experimental results obtained using the ISPRS Vaihingen and Potsdam datasets demonstrate that the SDRNet performs effectively and competitively against current DCNNs in semantic segmentation.
☆ CAL-RAG: Retrieval-Augmented Multi-Agent Generation for Content-Aware Layout Design
Automated content-aware layout generation -- the task of arranging visual elements such as text, logos, and underlays on a background canvas -- remains a fundamental yet under-explored problem in intelligent design systems. While recent advances in deep generative models and large language models (LLMs) have shown promise in structured content generation, most existing approaches lack grounding in contextual design exemplars and fall short in handling semantic alignment and visual coherence. In this work we introduce CAL-RAG, a retrieval-augmented, agentic framework for content-aware layout generation that integrates multimodal retrieval, large language models, and collaborative agentic reasoning. Our system retrieves relevant layout examples from a structured knowledge base and invokes an LLM-based layout recommender to propose structured element placements. A vision-language grader agent evaluates the layout with visual metrics, and a feedback agent provides targeted refinements, enabling iterative improvement. We implement our framework using LangGraph and evaluate it on the PKU PosterLayout dataset, a benchmark rich in semantic and structural variability. CAL-RAG achieves state-of-the-art performance across multiple layout metrics -- including underlay effectiveness, element alignment, and overlap -- substantially outperforming strong baselines such as LayoutPrompter. These results demonstrate that combining retrieval augmentation with agentic multi-step reasoning yields a scalable, interpretable, and high-fidelity solution for automated layout generation.
♻ ☆ Vision Transformers Don't Need Trained Registers
We investigate the mechanism underlying a previously identified phenomenon in Vision Transformers -- the emergence of high-norm tokens that lead to noisy attention maps. We observe that in multiple models (e.g., CLIP, DINOv2), a sparse set of neurons is responsible for concentrating high-norm activations on outlier tokens, leading to irregular attention patterns and degrading downstream visual processing. While the existing solution for removing these outliers involves retraining models from scratch with additional learned register tokens, we use our findings to create a training-free approach to mitigate these artifacts. By shifting the high-norm activations from our discovered register neurons into an additional untrained token, we can mimic the effect of register tokens on a model already trained without registers. We demonstrate that our method produces cleaner attention and feature maps, enhances performance over base models across multiple downstream visual tasks, and achieves results comparable to models explicitly trained with register tokens. We then extend test-time registers to off-the-shelf vision-language models to improve their interpretability. Our results suggest that test-time registers effectively take on the role of register tokens at test-time, offering a training-free solution for any pre-trained model released without them.
comment: Project page and code: https://avdravid.github.io/test-time-registers
♻ ☆ Bridging the Gap Between Saliency Prediction and Image Quality Assessment
Over the past few years, deep neural models have made considerable advances in image quality assessment (IQA). However, the underlying reasons for their success remain unclear, owing to the complex nature of deep neural networks. IQA aims to describe how the human visual system (HVS) works and to create its efficient approximations. On the other hand, Saliency Prediction task aims to emulate HVS via determining areas of visual interest. Thus, we believe that saliency plays a crucial role in human perception. In this work, we conduct an empirical study that reveals the relation between IQA and Saliency Prediction tasks, demonstrating that the former incorporates knowledge of the latter. Moreover, we introduce a novel SACID dataset of saliency-aware compressed images and conduct a large-scale comparison of classic and neural-based IQA methods. All supplementary code and data will be available at the time of publication.
comment: Accepted to EUSIPCO 2025
♻ ☆ MM-R$^3$: On (In-)Consistency of Vision-Language Models (VLMs)
With the advent of LLMs and variants, a flurry of research has emerged, analyzing the performance of such models across an array of tasks. While most studies focus on evaluating the capabilities of state-of-the-art (SoTA) Vision Language Models (VLMs) through task accuracy (e.g., visual question answering, grounding), our work explores the related but complementary aspect of consistency - the ability of a VLM to produce semantically similar or identical responses to semantically similar queries. We note that consistency is a fundamental prerequisite (necessary but not sufficient condition) for robustness and trust in VLMs. Armed with this perspective, we propose the MM-R3 benchmark, which allows us to analyze performance, in terms of consistency and accuracy, of SoTA VLMs on three tasks: Question Rephrasing, Image Restyling, and Context Reasoning. Our analysis reveals that consistency does not always align with accuracy, indicating that models with higher accuracy are not necessarily more consistent, and vice versa. Furthermore, we propose a simple yet effective mitigation strategy in the form of an adapter module trained to minimize inconsistency across prompts. With our proposed strategy, we are able to achieve absolute improvements of 5.7% and 12.5%, on average on widely used VLMs such as BLIP-2 and LLaVa 1.5M in terms of consistency over their existing counterparts.
♻ ☆ Exploring Text-Guided Single Image Editing for Remote Sensing Images
Artificial intelligence generative content (AIGC) has significantly impacted image generation in the field of remote sensing. However, the equally important area of remote sensing image (RSI) editing has not received sufficient attention. Deep learning based editing methods generally involve two sequential stages: generation and editing.For natural images, these stages primarily rely on generative backbones pre-trained on large-scale benchmark datasets and text guidance facilitated by vision-language models (VLMs). However, it become less viable for RSIs: First, existing generative RSI benchmark datasets do not fully capture the diversity of RSIs, and is often inadequate for universal editing tasks. Second, the single text semantic corresponds to multiple image semantics, leading to the introduction of incorrect semantics.To solve above problems, this paper proposes a text-guided RSI editing method and can be trained using only a single image. A multi-scale training approach is adopted to preserve consistency without the need for training on extensive benchmarks, while leveraging RSI pre-trained VLMs and prompt ensembling (PE) to ensure accuracy and controllability. Experimental results on multiple RSI editing tasks show that the proposed method offers significant advantages in both CLIP scores and subjective evaluations compared to existing methods. Additionally, we explore the ability of the edited RSIs to support disaster assessment tasks in order to validate their practicality. Codes will be released at https://github.com/HIT-PhilipHan/remote_sensing_image_editing
comment: 17 pages, 18 figures, Accepted by IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
♻ ☆ NSegment : Label-specific Deformations for Remote Sensing Image Segmentation
Labeling errors in remote sensing (RS) image segmentation datasets often remain implicit and subtle due to ambiguous class boundaries, mixed pixels, shadows, complex terrain features, and subjective annotator bias. Furthermore, the scarcity of annotated RS data due to high image acquisition and labeling costs complicates training noise-robust models. While sophisticated mechanisms such as label selection or noise correction might address this issue, they tend to increase training time and add implementation complexity. In this letter, we propose NSegment-a simple yet effective data augmentation solution to mitigate this issue. Unlike traditional methods, it applies elastic transformations only to segmentation labels, varying deformation intensity per sample in each training epoch to address annotation inconsistencies. Experimental results demonstrate that our approach improves the performance of RS image segmentation on various state-of-the-art models.
comment: Preprint
♻ ☆ Secure Video Quality Assessment Resisting Adversarial Attacks
The exponential surge in video traffic has intensified the imperative for Video Quality Assessment (VQA). Leveraging cutting-edge architectures, current VQA models have achieved human-comparable accuracy. However, recent studies have revealed the vulnerability of existing VQA models against adversarial attacks. To establish a reliable and practical assessment system, a secure VQA model capable of resisting such malicious attacks is urgently demanded. Unfortunately, no attempt has been made to explore this issue. This paper first attempts to investigate general adversarial defense principles, aiming at endowing existing VQA models with security. Specifically, we first introduce random spatial grid sampling on the video frame for intra-frame defense. Then, we design pixel-wise randomization through a guardian map, globally neutralizing adversarial perturbations. Meanwhile, we extract temporal information from the video sequence as compensation for inter-frame defense. Building upon these principles, we present a novel VQA framework from the security-oriented perspective, termed SecureVQA. Extensive experiments indicate that SecureVQA sets a new benchmark in security while achieving competitive VQA performance compared with state-of-the-art models. Ablation studies delve deeper into analyzing the principles of SecureVQA, demonstrating their generalization and contributions to the security of leading VQA models.
♻ ☆ PhysRig: Differentiable Physics-Based Skinning and Rigging Framework for Realistic Articulated Object Modeling ICCV 2025
Skinning and rigging are fundamental components in animation, articulated object reconstruction, motion transfer, and 4D generation. Existing approaches predominantly rely on Linear Blend Skinning (LBS), due to its simplicity and differentiability. However, LBS introduces artifacts such as volume loss and unnatural deformations, and it fails to model elastic materials like soft tissues, fur, and flexible appendages (e.g., elephant trunks, ears, and fatty tissues). In this work, we propose PhysRig: a differentiable physics-based skinning and rigging framework that overcomes these limitations by embedding the rigid skeleton into a volumetric representation (e.g., a tetrahedral mesh), which is simulated as a deformable soft-body structure driven by the animated skeleton. Our method leverages continuum mechanics and discretizes the object as particles embedded in an Eulerian background grid to ensure differentiability with respect to both material properties and skeletal motion. Additionally, we introduce material prototypes, significantly reducing the learning space while maintaining high expressiveness. To evaluate our framework, we construct a comprehensive synthetic dataset using meshes from Objaverse, The Amazing Animals Zoo, and MixaMo, covering diverse object categories and motion patterns. Our method consistently outperforms traditional LBS-based approaches, generating more realistic and physically plausible results. Furthermore, we demonstrate the applicability of our framework in the pose transfer task highlighting its versatility for articulated object modeling.
comment: Accepted by ICCV 2025 Page: https://physrig.github.io/
♻ ☆ Boosting MLLM Reasoning with Text-Debiased Hint-GRPO
MLLM reasoning has drawn widespread research for its excellent problem-solving capability. Current reasoning methods fall into two types: PRM, which supervises the intermediate reasoning steps, and ORM, which supervises the final results. Recently, DeepSeek-R1 has challenged the traditional view that PRM outperforms ORM, which demonstrates strong generalization performance using an ORM method (i.e., GRPO). However, current MLLM's GRPO algorithms still struggle to handle challenging and complex multimodal reasoning tasks (e.g., mathematical reasoning). In this work, we reveal two problems that impede the performance of GRPO on the MLLM: Low data utilization and Text-bias. Low data utilization refers to that GRPO cannot acquire positive rewards to update the MLLM on difficult samples, and text-bias is a phenomenon that the MLLM bypasses image condition and solely relies on text condition for generation after GRPO training. To tackle these problems, this work proposes Hint-GRPO that improves data utilization by adaptively providing hints for samples of varying difficulty, and text-bias calibration that mitigates text-bias by calibrating the token prediction logits with image condition in test-time. Experiment results on three base MLLMs across eleven datasets demonstrate that our proposed methods advance the reasoning capability of original MLLM by a large margin, exhibiting superior performance to existing MLLM reasoning methods. Our code is available at https://github.com/hqhQAQ/Hint-GRPO.
♻ ☆ KITAB-Bench: A Comprehensive Multi-Domain Benchmark for Arabic OCR and Document Understanding ACL 2025
With the growing adoption of Retrieval-Augmented Generation (RAG) in document processing, robust text recognition has become increasingly critical for knowledge extraction. While OCR (Optical Character Recognition) for English and other languages benefits from large datasets and well-established benchmarks, Arabic OCR faces unique challenges due to its cursive script, right-to-left text flow, and complex typographic and calligraphic features. We present KITAB-Bench, a comprehensive Arabic OCR benchmark that fills the gaps in current evaluation systems. Our benchmark comprises 8,809 samples across 9 major domains and 36 sub-domains, encompassing diverse document types including handwritten text, structured tables, and specialized coverage of 21 chart types for business intelligence. Our findings show that modern vision-language models (such as GPT-4o, Gemini, and Qwen) outperform traditional OCR approaches (like EasyOCR, PaddleOCR, and Surya) by an average of 60% in Character Error Rate (CER). Furthermore, we highlight significant limitations of current Arabic OCR models, particularly in PDF-to-Markdown conversion, where the best model Gemini-2.0-Flash achieves only 65% accuracy. This underscores the challenges in accurately recognizing Arabic text, including issues with complex fonts, numeral recognition errors, word elongation, and table structure detection. This work establishes a rigorous evaluation framework that can drive improvements in Arabic document analysis methods and bridge the performance gap with English OCR technologies.
comment: 17 pages, 5 figures, ACL 2025
♻ ☆ PatchDPO: Patch-level DPO for Finetuning-free Personalized Image Generation
Finetuning-free personalized image generation can synthesize customized images without test-time finetuning, attracting wide research interest owing to its high efficiency. Current finetuning-free methods simply adopt a single training stage with a simple image reconstruction task, and they typically generate low-quality images inconsistent with the reference images during test-time. To mitigate this problem, inspired by the recent DPO (i.e., direct preference optimization) technique, this work proposes an additional training stage to improve the pre-trained personalized generation models. However, traditional DPO only determines the overall superiority or inferiority of two samples, which is not suitable for personalized image generation because the generated images are commonly inconsistent with the reference images only in some local image patches. To tackle this problem, this work proposes PatchDPO that estimates the quality of image patches within each generated image and accordingly trains the model. To this end, PatchDPO first leverages the pre-trained vision model with a proposed self-supervised training method to estimate the patch quality. Next, PatchDPO adopts a weighted training approach to train the model with the estimated patch quality, which rewards the image patches with high quality while penalizing the image patches with low quality. Experiment results demonstrate that PatchDPO significantly improves the performance of multiple pre-trained personalized generation models, and achieves state-of-the-art performance on both single-object and multi-object personalized image generation. Our code is available at https://github.com/hqhQAQ/PatchDPO.
♻ ☆ ProtoSeg: Interpretable Semantic Segmentation with Prototypical Parts
We introduce ProtoSeg, a novel model for interpretable semantic image segmentation, which constructs its predictions using similar patches from the training set. To achieve accuracy comparable to baseline methods, we adapt the mechanism of prototypical parts and introduce a diversity loss function that increases the variety of prototypes within each class. We show that ProtoSeg discovers semantic concepts, in contrast to standard segmentation models. Experiments conducted on Pascal VOC and Cityscapes datasets confirm the precision and transparency of the presented method.
♻ ☆ No More Sliding Window: Efficient 3D Medical Image Segmentation with Differentiable Top-k Patch Sampling
3D models surpass 2D models in CT/MRI segmentation by effectively capturing inter-slice relationships. However, the added depth dimension substantially increases memory consumption. While patch-based training alleviates memory constraints, it significantly slows down the inference speed due to the sliding window (SW) approach. We propose No-More-Sliding-Window (NMSW), a novel end-to-end trainable framework that enhances the efficiency of generic 3D segmentation backbone during an inference step by eliminating the need for SW. NMSW employs a differentiable Top-k module to selectively sample only the most relevant patches, thereby minimizing redundant computations. When patch-level predictions are insufficient, the framework intelligently leverages coarse global predictions to refine results. Evaluated across 3 tasks using 3 segmentation backbones, NMSW achieves competitive accuracy compared to SW inference while significantly reducing computational complexity by 91% (88.0 to 8.00 TMACs). Moreover, it delivers a 9.1x faster inference on the H100 GPU (99.0 to 8.3 sec) and a 11.1x faster inference on the Xeon Gold CPU (2110 to 189 sec). NMSW is model-agnostic, further boosting efficiency when integrated with any existing efficient segmentation backbones. The code is avaialble: https://github.com/Youngseok0001/open_nmsw.
♻ ☆ Enhancing Object Detection Robustness: Detecting and Restoring Confidence in the Presence of Adversarial Patch Attacks
The widespread adoption of computer vision systems has underscored their susceptibility to adversarial attacks, particularly adversarial patch attacks on object detectors. This study evaluates defense mechanisms for the YOLOv5 model against such attacks. Optimized adversarial patches were generated and placed in sensitive image regions, by applying EigenCAM and grid search to determine optimal placement. We tested several defenses, including Segment and Complete (SAC), Inpainting, and Latent Diffusion Models. Our pipeline comprises three main stages: patch application, object detection, and defense analysis. Results indicate that adversarial patches reduce average detection confidence by 22.06\%. Defenses restored confidence levels by 3.45\% (SAC), 5.05\% (Inpainting), and significantly improved them by 26.61\%, which even exceeds the original accuracy levels, when using the Latent Diffusion Model, highlighting its superior effectiveness in mitigating the effects of adversarial patches.
♻ ☆ Communication-Efficient Heterogeneous Federated Learning with Generalized Heavy-Ball Momentum
Federated Learning (FL) has emerged as the state-of-the-art approach for learning from decentralized data in privacy-constrained scenarios.However, system and statistical challenges hinder its real-world applicability, requiring efficient learning from edge devices and robustness to data heterogeneity. Despite significant research efforts, existing approaches often degrade severely due to the joint effect of heterogeneity and partial client participation. In particular, while momentum appears as a promising approach for overcoming statistical heterogeneity, in current approaches its update is biased towards the most recently sampled clients. As we show in this work, this is the reason why it fails to outperform FedAvg, preventing its effective use in real-world large-scale scenarios. In this work, we propose a novel Generalized Heavy-Ball Momentum (GHBM) and theoretically prove it enables convergence under unbounded data heterogeneity in cyclic partial participation, thereby advancing the understanding of momentum's effectiveness in FL. We then introduce adaptive and communication-efficient variants of GHBM that match the communication complexity of FedAvg in settings where clients can be stateful. Extensive experiments on vision and language tasks confirm our theoretical findings, demonstrating that GHBM substantially improves state-of-the-art performance under random uniform client sampling, particularly in large-scale settings with high data heterogeneity and low client participation. Code is available at https://rickzack.github.io/GHBM.
comment: Accepted at TMLR - reviews at https://openreview.net/forum?id=LNoFjcLywb
♻ ☆ Unified Multimodal Understanding and Generation Models: Advances, Challenges, and Opportunities
Recent years have seen remarkable progress in both multimodal understanding models and image generation models. Despite their respective successes, these two domains have evolved independently, leading to distinct architectural paradigms: While autoregressive-based architectures have dominated multimodal understanding, diffusion-based models have become the cornerstone of image generation. Recently, there has been growing interest in developing unified frameworks that integrate these tasks. The emergence of GPT-4o's new capabilities exemplifies this trend, highlighting the potential for unification. However, the architectural differences between the two domains pose significant challenges. To provide a clear overview of current efforts toward unification, we present a comprehensive survey aimed at guiding future research. First, we introduce the foundational concepts and recent advancements in multimodal understanding and text-to-image generation models. Next, we review existing unified models, categorizing them into three main architectural paradigms: diffusion-based, autoregressive-based, and hybrid approaches that fuse autoregressive and diffusion mechanisms. For each category, we analyze the structural designs and innovations introduced by related works. Additionally, we compile datasets and benchmarks tailored for unified models, offering resources for future exploration. Finally, we discuss the key challenges facing this nascent field, including tokenization strategy, cross-modal attention, and data. As this area is still in its early stages, we anticipate rapid advancements and will regularly update this survey. Our goal is to inspire further research and provide a valuable reference for the community. The references associated with this survey are available on GitHub (https://github.com/AIDC-AI/Awesome-Unified-Multimodal-Models).
comment: In this version, we incorporate new papers, datasets, and benchmarks. This work is still in progress; Github project: https://github.com/AIDC-AI/Awesome-Unified-Multimodal-Models
♻ ☆ SegChange-R1: LLM-Augmented Remote Sensing Change Detection
Remote sensing change detection is used in urban planning, terrain analysis, and environmental monitoring by analyzing feature changes in the same area over time. In this paper, we propose a large language model (LLM) augmented inference approach (SegChange-R1), which enhances the detection capability by integrating textual descriptive information and guides the model to focus on relevant change regions, accelerating convergence. We designed a linear attention-based spatial transformation module (BEV) to address modal misalignment by unifying features from different times into a BEV space. Furthermore, we introduce DVCD, a novel dataset for building change detection from UAV viewpoints. Experiments on four widely-used datasets demonstrate significant improvements over existing method The code and pre-trained models are available in {https://github.com/Yu-Zhouz/SegChange-R1}.
♻ ☆ StarFT: Robust Fine-tuning of Zero-shot Models via Spuriosity Alignment IJCAI 2025
Learning robust representations from data often requires scale, which has led to the success of recent zero-shot models such as CLIP. However, the obtained robustness can easily be deteriorated when these models are fine-tuned on other downstream tasks (e.g., of smaller scales). Previous works often interpret this phenomenon in the context of domain shift, developing fine-tuning methods that aim to preserve the original domain as much as possible. However, in a different context, fine-tuned models with limited data are also prone to learning features that are spurious to humans, such as background or texture. In this paper, we propose StarFT (Spurious Textual Alignment Regularization), a novel framework for fine-tuning zero-shot models to enhance robustness by preventing them from learning spuriosity. We introduce a regularization that aligns the output distribution for spuriosity-injected labels with the original zero-shot model, ensuring that the model is not induced to extract irrelevant features further from these descriptions. We leverage recent language models to get such spuriosity-injected labels by generating alternative textual descriptions that highlight potentially confounding features. Extensive experiments validate the robust generalization of StarFT and its emerging properties: zero-shot group robustness and improved zero-shot classification. Notably, StarFT boosts both worst-group and average accuracy by 14.30% and 3.02%, respectively, in the Waterbirds group shift scenario, where other robust fine-tuning baselines show even degraded performance.
comment: IJCAI 2025; Code is available at https://github.com/alinlab/StarFT
♻ ☆ ReME: A Data-Centric Framework for Training-Free Open-Vocabulary Segmentation ICCV 2025
Training-free open-vocabulary semantic segmentation (OVS) aims to segment images given a set of arbitrary textual categories without costly model fine-tuning. Existing solutions often explore attention mechanisms of pre-trained models, such as CLIP, or generate synthetic data and design complex retrieval processes to perform OVS. However, their performance is limited by the capability of reliant models or the suboptimal quality of reference sets. In this work, we investigate the largely overlooked data quality problem for this challenging dense scene understanding task, and identify that a high-quality reference set can significantly benefit training-free OVS. With this observation, we introduce a data-quality-oriented framework, comprising a data pipeline to construct a reference set with well-paired segment-text embeddings and a simple similarity-based retrieval to unveil the essential effect of data. Remarkably, extensive evaluations on ten benchmark datasets demonstrate that our method outperforms all existing training-free OVS approaches, highlighting the importance of data-centric design for advancing OVS without training. Our code is available at https://github.com/xiweix/ReME .
comment: Accepted to ICCV 2025
♻ ☆ VideoFusion: A Spatio-Temporal Collaborative Network for Multi-modal Video Fusion and Restoration
Compared to images, videos better align with real-world acquisition scenarios and possess valuable temporal cues. However, existing multi-sensor fusion research predominantly integrates complementary context from multiple images rather than videos. This primarily stems from two factors: 1) the scarcity of large-scale multi-sensor video datasets, limiting research in video fusion, and 2) the inherent difficulty of jointly modeling spatial and temporal dependencies in a unified framework. This paper proactively compensates for the dilemmas. First, we construct M3SVD, a benchmark dataset with $220$ temporally synchronized and spatially registered infrared-visible video pairs comprising 153,797 frames, filling the data gap for the video fusion community. Secondly, we propose VideoFusion, a multi-modal video fusion model that fully exploits cross-modal complementarity and temporal dynamics to generate spatio-temporally coherent videos from (potentially degraded) multi-modal inputs. Specifically, 1) a differential reinforcement module is developed for cross-modal information interaction and enhancement, 2) a complete modality-guided fusion strategy is employed to adaptively integrate multi-modal features, and 3) a bi-temporal co-attention mechanism is devised to dynamically aggregate forward-backward temporal contexts to reinforce cross-frame feature representations. Extensive experiments reveal that VideoFusion outperforms existing image-oriented fusion paradigms in sequential scenarios, effectively mitigating temporal inconsistency and interference.
♻ ☆ Self-ReS: Self-Reflection in Large Vision-Language Models for Long Video Understanding
Large Vision-Language Models (LVLMs) demonstrate remarkable performance in short-video tasks such as video question answering, but struggle in long-video understanding. The linear frame sampling strategy, conventionally used by LVLMs, fails to account for the non-linear distribution of key events in video data, often introducing redundant or irrelevant information in longer contexts while risking the omission of critical events in shorter ones. To address this, we propose SelfReS, a non-linear spatiotemporal self-reflective sampling method that dynamically selects key video fragments based on user prompts. Unlike prior approaches, SelfReS leverages the inherently sparse attention maps of LVLMs to define reflection tokens, enabling relevance-aware token selection without requiring additional training or external modules. Experiments demonstrate that SelfReS can be seamlessly integrated into strong base LVLMs, improving long-video task accuracy and achieving up to 46% faster inference speed within the same GPU memory budget.
♻ ☆ Scale-Aware Pre-Training for Human-Centric Visual Perception: Enabling Lightweight and Generalizable Models
Human-centric visual perception (HVP) has recently achieved remarkable progress due to advancements in large-scale self-supervised pretraining (SSP). However, existing HVP models face limitations in adapting to real-world applications, which require general visual patterns for downstream tasks while maintaining computationally sustainable costs to ensure compatibility with edge devices. These limitations primarily arise from two issues: 1) the pretraining objectives focus solely on specific visual patterns, limiting the generalizability of the learned patterns for diverse downstream tasks; and 2) HVP models often exhibit excessively large model sizes, making them incompatible with real-world applications.To address these limitations, we introduce Scale-Aware Image Pretraining (SAIP), a novel SSP framework pretraining lightweight vision models to acquire general patterns for HVP. Specifically, SAIP incorporates three learning objectives based on the principle of cross-scale consistency: 1) Cross-scale Matching (CSM) which contrastively learns image-level invariant patterns from multi-scale single-person images; 2) Cross-scale Reconstruction (CSR) which learns pixel-level consistent visual structures from multi-scale masked single-person images; and 3) Cross-scale Search (CSS) which learns to capture diverse patterns from multi-scale multi-person images. Three objectives complement one another, enabling lightweight models to learn multi-scale generalizable patterns essential for HVP downstream tasks.Extensive experiments conducted across 12 HVP datasets demonstrate that SAIP exhibits remarkable generalization capabilities across 9 human-centric vision tasks. Moreover, it achieves significant performance improvements over existing methods, with gains of 3%-13% in single-person discrimination tasks, 1%-11% in dense prediction tasks, and 1%-6% in multi-person visual understanding tasks.
♻ ☆ VLM@school -- Evaluation of AI image understanding on German middle school knowledge
This paper introduces a novel benchmark dataset designed to evaluate the capabilities of Vision Language Models (VLMs) on tasks that combine visual reasoning with subject-specific background knowledge in the German language. In contrast to widely used English-language benchmarks that often rely on artificially difficult or decontextualized problems, this dataset draws from real middle school curricula across nine domains including mathematics, history, biology, and religion. The benchmark includes over 2,000 open-ended questions grounded in 486 images, ensuring that models must integrate visual interpretation with factual reasoning rather than rely on superficial textual cues. We evaluate thirteen state-of-the-art open-weight VLMs across multiple dimensions, including domain-specific accuracy and performance on adversarial crafted questions. Our findings reveal that even the strongest models achieve less than 45% overall accuracy, with particularly poor performance in music, mathematics, and adversarial settings. Furthermore, the results indicate significant discrepancies between success on popular benchmarks and real-world multimodal understanding. We conclude that middle school-level tasks offer a meaningful and underutilized avenue for stress-testing VLMs, especially in non-English contexts. The dataset and evaluation protocol serve as a rigorous testbed to better understand and improve the visual and linguistic reasoning capabilities of future AI systems.
comment: Peinl, Ren\'e; Tischler, Vincent (2025): VLM@school - Evaluation of AI image understanding on German middle school knowledge. Future Technologies Conference (FTC) 2025, Munich, Germany 2025 (accepted)
♻ ☆ VGAT: A Cancer Survival Analysis Framework Transitioning from Generative Visual Question Answering to Genomic Reconstruction
Multimodal learning combining pathology images and genomic sequences enhances cancer survival analysis but faces clinical implementation barriers due to limited access to genomic sequencing in under-resourced regions. To enable survival prediction using only whole-slide images (WSI), we propose the Visual-Genomic Answering-Guided Transformer (VGAT), a framework integrating Visual Question Answering (VQA) techniques for genomic modality reconstruction. By adapting VQA's text feature extraction approach, we derive stable genomic representations that circumvent dimensionality challenges in raw genomic data. Simultaneously, a cluster-based visual prompt module selectively enhances discriminative WSI patches, addressing noise from unfiltered image regions. Evaluated across five TCGA datasets, VGAT outperforms existing WSI-only methods, demonstrating the viability of genomic-informed inference without sequencing. This approach bridges multimodal research and clinical feasibility in resource-constrained settings. The code link is https://github.com/CZZZZZZZZZZZZZZZZZ/VGAT.
comment: Accepted by ICME2025
♻ ☆ MimicMotion: High-Quality Human Motion Video Generation with Confidence-aware Pose Guidance ICML 2025
In recent years, generative artificial intelligence has achieved significant advancements in the field of image generation, spawning a variety of applications. However, video generation still faces considerable challenges in various aspects, such as controllability, video length, and richness of details, which hinder the application and popularization of this technology. In this work, we propose a controllable video generation framework, dubbed MimicMotion, which can generate high-quality videos of arbitrary length mimicking specific motion guidance. Compared with previous methods, our approach has several highlights. Firstly, we introduce confidence-aware pose guidance that ensures high frame quality and temporal smoothness. Secondly, we introduce regional loss amplification based on pose confidence, which significantly reduces image distortion. Lastly, for generating long and smooth videos, we propose a progressive latent fusion strategy. By this means, we can produce videos of arbitrary length with acceptable resource consumption. With extensive experiments and user studies, MimicMotion demonstrates significant improvements over previous approaches in various aspects. Detailed results and comparisons are available on our project page: https://tencent.github.io/MimicMotion .
comment: ICML 2025
♻ ☆ Spatial Degradation-Aware and Temporal Consistent Diffusion Model for Compressed Video Super-Resolution
Due to storage and bandwidth limitations, videos transmitted over the Internet often exhibit low quality, characterized by low-resolution and compression artifacts. Although video super-resolution (VSR) is an efficient video enhancing technique, existing VSR methods focus less on compressed videos. Consequently, directly applying general VSR approaches fails to improve practical videos with compression artifacts, especially when frames are highly compressed at a low bit rate. The inevitable quantization information loss complicates the reconstruction of texture details. Recently, diffusion models have shown superior performance in low-level visual tasks. Leveraging the high-realism generation capability of diffusion models, we propose a novel method that exploits the priors of pre-trained diffusion models for compressed VSR. To mitigate spatial distortions and refine temporal consistency, we introduce a Spatial Degradation-Aware and Temporal Consistent (SDATC) diffusion model. Specifically, we incorporate a distortion control module (DCM) to modulate diffusion model inputs, thereby minimizing the impact of noise from low-quality frames on the generation stage. Subsequently, the diffusion model performs a denoising process to generate details, guided by a fine-tuned compression-aware prompt module (CAPM) and a spatio-temporal attention module (STAM). CAPM dynamically encodes compression-related information into prompts, enabling the sampling process to adapt to different degradation levels. Meanwhile, STAM extends the spatial attention mechanism into the spatio-temporal dimension, effectively capturing temporal correlations. Additionally, we utilize optical flow-based alignment during each denoising step to enhance the smoothness of output videos. Extensive experimental results on benchmark datasets demonstrate the effectiveness of our proposed modules in restoring compressed videos.
♻ ☆ Cell Tracking according to Biological Needs -- Strong Mitosis-aware Multi-Hypothesis Tracker with Aleatoric Uncertainty
Cell tracking and segmentation assist biologists in extracting insights from large-scale microscopy time-lapse data. Driven by local accuracy metrics, current tracking approaches often suffer from a lack of long-term consistency and the ability to reconstruct lineage trees correctly. To address this issue, we introduce an uncertainty estimation technique for motion estimation frameworks and extend the multi-hypothesis tracking framework. Our uncertainty estimation lifts motion representations into probabilistic spatial densities using problem-specific test-time augmentations. Moreover, we introduce a novel mitosis-aware assignment problem formulation that allows multi-hypothesis trackers to model cell splits and to resolve false associations and mitosis detections based on long-term conflicts. In our framework, explicit biological knowledge is modeled in assignment costs. We evaluate our approach on nine competitive datasets and demonstrate that we outperform the current state-of-the-art on biologically inspired metrics substantially, achieving improvements by a factor of approximately 6 and uncover new insights into the behavior of motion estimation uncertainty.
comment: 19 pages, 7 figures, 6 tables. This work has been accepted to the IEEE for publication
♻ ☆ ScienceBoard: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows
Large Language Models (LLMs) have extended their impact beyond Natural Language Processing, substantially fostering the development of interdisciplinary research. Recently, various LLM-based agents have been developed to assist scientific discovery progress across multiple aspects and domains. Among these, computer-using agents, capable of interacting with operating systems as humans do, are paving the way to automated scientific problem-solving and addressing routines in researchers' workflows. Recognizing the transformative potential of these agents, we introduce ScienceBoard, which encompasses two complementary contributions: (i) a realistic, multi-domain environment featuring dynamic and visually rich scientific workflows with integrated professional software, where agents can autonomously interact via different interfaces to accelerate complex research tasks and experiments; and (ii) a challenging benchmark of 169 high-quality, rigorously validated real-world tasks curated by humans, spanning scientific-discovery workflows in domains such as biochemistry, astronomy, and geoinformatics. Extensive evaluations of agents with state-of-the-art backbones (e.g., GPT-4o, Claude 3.7, UI-TARS) show that, despite some promising results, they still fall short of reliably assisting scientists in complex workflows, achieving only a 15% overall success rate. In-depth analysis further provides valuable insights for addressing current agent limitations and more effective design principles, paving the way to build more capable agents for scientific discovery. Our code, environment, and benchmark are at https://qiushisun.github.io/ScienceBoard-Home/.
comment: work in progress
♻ ☆ Split Matching for Inductive Zero-shot Semantic Segmentation
Zero-shot Semantic Segmentation (ZSS) aims to segment categories that are not annotated during training. While fine-tuning vision-language models has achieved promising results, these models often overfit to seen categories due to the lack of supervision for unseen classes. As an alternative to fully supervised approaches, query-based segmentation has shown great latent in ZSS, as it enables object localization without relying on explicit labels. However, conventional Hungarian matching, a core component in query-based frameworks, needs full supervision and often misclassifies unseen categories as background in the setting of ZSS. To address this issue, we propose Split Matching (SM), a novel assignment strategy that decouples Hungarian matching into two components: one for seen classes in annotated regions and another for latent classes in unannotated regions (referred to as unseen candidates). Specifically, we partition the queries into seen and candidate groups, enabling each to be optimized independently according to its available supervision. To discover unseen candidates, we cluster CLIP dense features to generate pseudo masks and extract region-level embeddings using CLS tokens. Matching is then conducted separately for the two groups based on both class-level similarity and mask-level consistency. Additionally, we introduce a Multi-scale Feature Enhancement (MFE) module that refines decoder features through residual multi-scale aggregation, improving the model's ability to capture spatial details across resolutions. SM is the first to introduce decoupled Hungarian matching under the inductive ZSS setting, and achieves state-of-the-art performance on two standard benchmarks.
♻ ☆ Real-World Remote Sensing Image Dehazing: Benchmark and Baseline
Remote Sensing Image Dehazing (RSID) poses significant challenges in real-world scenarios due to the complex atmospheric conditions and severe color distortions that degrade image quality. The scarcity of real-world remote sensing hazy image pairs has compelled existing methods to rely primarily on synthetic datasets. However, these methods struggle with real-world applications due to the inherent domain gap between synthetic and real data. To address this, we introduce Real-World Remote Sensing Hazy Image Dataset (RRSHID), the first large-scale dataset featuring real-world hazy and dehazed image pairs across diverse atmospheric conditions. Based on this, we propose MCAF-Net, a novel framework tailored for real-world RSID. Its effectiveness arises from three innovative components: Multi-branch Feature Integration Block Aggregator (MFIBA), which enables robust feature extraction through cascaded integration blocks and parallel multi-branch processing; Color-Calibrated Self-Supervised Attention Module (CSAM), which mitigates complex color distortions via self-supervised learning and attention-guided refinement; and Multi-Scale Feature Adaptive Fusion Module (MFAFM), which integrates features effectively while preserving local details and global context. Extensive experiments validate that MCAF-Net demonstrates state-of-the-art performance in real-world RSID, while maintaining competitive performance on synthetic datasets. The introduction of RRSHID and MCAF-Net sets new benchmarks for real-world RSID research, advancing practical solutions for this complex task. The code and dataset are publicly available at https://github.com/lwCVer/RRSHID.
comment: 14 pages, 11 figures, real-world remote sensing image dehazing dataset
♻ ☆ CAPM: Fast and Robust Verification on Maxpool-based CNN via Dual Network
This study uses CAPM (Convex Adversarial Polytope for Maxpool-based CNN) to improve the verified bound for general purpose maxpool-based convolutional neural networks (CNNs) under bounded norm adversarial perturbations. The maxpool function is decomposed as a series of ReLU functions to extend the convex relaxation technique to maxpool functions, by which the verified bound can be efficiently computed through a dual network. The experimental results demonstrate that this technique allows the state-of-the-art verification precision for maxpool-based CNNs and involves a much lower computational cost than current verification methods, such as DeepZ, DeepPoly and PRIMA. This method is also applicable to large-scale CNNs, which previous studies show to be often computationally prohibitively expensive. Under certain circumstances, CAPM is 40-times, 20-times or twice as fast and give a significantly higher verification bound (CAPM 98% vs. PRIMA 76%/DeepPoly 73%/DeepZ 8%) as compared to PRIMA/DeepPoly/DeepZ. Furthermore, we additionally present the time complexity of our algorithm as $O(W^2NK)$, where $W$ is the maximum width of the neural network, $N$ is the number of neurons, and $K$ is the size of the maxpool layer's kernel.
♻ ☆ DFVEdit: Conditional Delta Flow Vector for Zero-shot Video Editing
The advent of Video Diffusion Transformers (Video DiTs) marks a milestone in video generation. However, directly applying existing video editing methods to Video DiTs often incurs substantial computational overhead, due to resource-intensive attention modification or finetuning. To alleviate this problem, we present DFVEdit, an efficient zero-shot video editing method tailored for Video DiTs. DFVEdit eliminates the need for both attention modification and fine-tuning by directly operating on clean latents via flow transformation. To be more specific, we observe that editing and sampling can be unified under the continuous flow perspective. Building upon this foundation, we propose the Conditional Delta Flow Vector (CDFV) -- a theoretically unbiased estimation of DFV -- and integrate Implicit Cross Attention (ICA) guidance as well as Embedding Reinforcement (ER) to further enhance editing quality. DFVEdit excels in practical efficiency, offering at least 20x inference speed-up and 85% memory reduction on Video DiTs compared to attention-engineering-based editing methods. Extensive quantitative and qualitative experiments demonstrate that DFVEdit can be seamlessly applied to popular Video DiTs (e.g., CogVideoX and Wan2.1), attaining state-of-the-art performance on structural fidelity, spatial-temporal consistency, and editing quality.
comment: Zero-shot video editing
♻ ☆ End-to-End Full-Page Optical Music Recognition for Pianoform Sheet Music
Optical Music Recognition (OMR) has made significant progress since its inception, with various approaches now capable of accurately transcribing music scores into digital formats. Despite these advancements, most so-called end-to-end OMR approaches still rely on multi-stage processing pipelines for transcribing full-page score images, which entails challenges such as the need for dedicated layout analysis and specific annotated data, thereby limiting the general applicability of such methods. In this paper, we present the first truly end-to-end approach for page-level OMR in complex layouts. Our system, which combines convolutional layers with autoregressive Transformers, processes an entire music score page and outputs a complete transcription in a music encoding format. This is made possible by both the architecture and the training procedure, which utilizes curriculum learning through incremental synthetic data generation. We evaluate the proposed system using pianoform corpora, which is one of the most complex sources in the OMR literature. This evaluation is conducted first in a controlled scenario with synthetic data, and subsequently against two real-world corpora of varying conditions. Our approach is compared with leading commercial OMR software. The results demonstrate that our system not only successfully transcribes full-page music scores but also outperforms the commercial tool in both zero-shot settings and after fine-tuning with the target domain, representing a significant contribution to the field of OMR.
♻ ☆ Disentangled and Interpretable Multimodal Attention Fusion for Cancer Survival Prediction MICCAI 2025
To improve the prediction of cancer survival using whole-slide images and transcriptomics data, it is crucial to capture both modality-shared and modality-specific information. However, multimodal frameworks often entangle these representations, limiting interpretability and potentially suppressing discriminative features. To address this, we propose Disentangled and Interpretable Multimodal Attention Fusion (DIMAF), a multimodal framework that separates the intra- and inter-modal interactions within an attention-based fusion mechanism to learn distinct modality-specific and modality-shared representations. We introduce a loss based on Distance Correlation to promote disentanglement between these representations and integrate Shapley additive explanations to assess their relative contributions to survival prediction. We evaluate DIMAF on four public cancer survival datasets, achieving a relative average improvement of 1.85% in performance and 23.7% in disentanglement compared to current state-of-the-art multimodal models. Beyond improved performance, our interpretable framework enables a deeper exploration of the underlying interactions between and within modalities in cancer biology.
comment: 11 pages, 1 figure, 3 tables. Preprint submitted and accepted to MICCAI 2025. This preprint has not undergone peer review or any post-submission improvements or corrections
♻ ☆ OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis ACL 2025
Graphical User Interface (GUI) agents powered by Vision-Language Models (VLMs) have demonstrated human-like computer control capability. Despite their utility in advancing digital automation, a critical bottleneck persists: collecting high-quality trajectory data for training. Common practices for collecting such data rely on human supervision or synthetic data generation through executing pre-defined tasks, which are either resource-intensive or unable to guarantee data quality. Moreover, these methods suffer from limited data diversity and significant gaps between synthetic data and real-world environments. To address these challenges, we propose OS-Genesis, a novel GUI data synthesis pipeline that reverses the conventional trajectory collection process. Instead of relying on pre-defined tasks, OS-Genesis enables agents first to perceive environments and perform step-wise interactions, then retrospectively derive high-quality tasks to enable trajectory-level exploration. A trajectory reward model is then employed to ensure the quality of the generated trajectories. We demonstrate that training GUI agents with OS-Genesis significantly improves their performance on highly challenging online benchmarks. In-depth analysis further validates OS-Genesis's efficiency and its superior data quality and diversity compared to existing synthesis methods. Our codes, data, and checkpoints are available at https://qiushisun.github.io/OS-Genesis-Home/.
comment: ACL 2025 Camera Ready
♻ ☆ PartEdit: Fine-Grained Image Editing using Pre-Trained Diffusion Models
We present the first text-based image editing approach for object parts based on pre-trained diffusion models. Diffusion-based image editing approaches capitalized on the deep understanding of diffusion models of image semantics to perform a variety of edits. However, existing diffusion models lack sufficient understanding of many object parts, hindering fine-grained edits requested by users. To address this, we propose to expand the knowledge of pre-trained diffusion models to allow them to understand various object parts, enabling them to perform fine-grained edits. We achieve this by learning special textual tokens that correspond to different object parts through an efficient token optimization process. These tokens are optimized to produce reliable localization masks at each inference step to localize the editing region. Leveraging these masks, we design feature-blending and adaptive thresholding strategies to execute the edits seamlessly. To evaluate our approach, we establish a benchmark and an evaluation protocol for part editing. Experiments show that our approach outperforms existing editing methods on all metrics and is preferred by users 66-90% of the time in conducted user studies.
comment: Accepted by SIGGRAPH 2025 (Conference Track). Project page: https://gorluxor.github.io/part-edit/
♻ ☆ DSAGL: Dual-Stream Attention-Guided Learning for Weakly Supervised Whole Slide Image Classification
Whole-slide images (WSIs) are critical for cancer diagnosis due to their ultra-high resolution and rich semantic content. However, their massive size and the limited availability of fine-grained annotations pose substantial challenges for conventional supervised learning. We propose DSAGL (Dual-Stream Attention-Guided Learning), a novel weakly supervised classification framework that combines a teacher-student architecture with a dual-stream design. DSAGL explicitly addresses instance-level ambiguity and bag-level semantic consistency by generating multi-scale attention-based pseudo labels and guiding instance-level learning. A shared lightweight encoder (VSSMamba) enables efficient long-range dependency modeling, while a fusion-attentive module (FASA) enhances focus on sparse but diagnostically relevant regions. We further introduce a hybrid loss to enforce mutual consistency between the two streams. Experiments on CIFAR-10, NCT-CRC, and TCGA-Lung datasets demonstrate that DSAGL consistently outperforms state-of-the-art MIL baselines, achieving superior discriminative performance and robustness under weak supervision.
♻ ☆ Preemptive Hallucination Reduction: An Input-Level Approach for Multimodal Language Model
Visual hallucinations in Large Language Models (LLMs), where the model generates responses that are inconsistent with the visual input, pose a significant challenge to their reliability, particularly in contexts where precise and trustworthy outputs are critical. Current research largely emphasizes post-hoc correction or model-specific fine-tuning strategies, with limited exploration of preprocessing techniques to address hallucination issues at the input stage. This study presents a novel ensemble-based preprocessing framework that adaptively selects the most appropriate filtering approach -- noise reduced (NR), edge enhanced (EE), or unaltered input (org) based on the type of question posed, resulting into reduced hallucination without requiring any modifications to the underlying model architecture or training pipeline. Evaluated on the `HaloQuest' dataset -- a benchmark designed to test multimodal reasoning on visually complex inputs, our method achieves a 44.3% reduction in hallucination rates, as measured by Natural Language Inference (NLI) scores using SelfCheckGPT. This demonstrates that intelligent input conditioning alone can significantly enhance factual grounding in LLM responses. The findings highlight the importance of adaptive preprocessing techniques in mitigating hallucinations, paving the way for more reliable multimodal systems capable of addressing real-world challenges.
comment: Submitted for review in NCAA Springer, 21 pages, 4 figures, 4 Tables
♻ ☆ KNN-MMD: Cross Domain Wireless Sensing via Local Distribution Alignment
Wireless sensing has recently found widespread applications in diverse environments, including homes, offices, and public spaces. By analyzing patterns in channel state information (CSI), it is possible to infer human actions for tasks such as person identification, gesture recognition, and fall detection. However, CSI is highly sensitive to environmental changes, where even minor alterations can significantly distort the CSI patterns. This sensitivity often leads to performance degradation or outright failure when applying wireless sensing models trained in one environment to another. To address this challenge, Domain Alignment (DAL) has been widely adopted for cross-domain classification tasks, as it focuses on aligning the global distributions of the source and target domains in feature space. Despite its popularity, DAL often neglects inter-category relationships, which can lead to misalignment between categories across domains, even when global alignment is achieved. To overcome these limitations, we propose K-Nearest Neighbors Maximum Mean Discrepancy (KNN-MMD), a novel few-shot method for cross-domain wireless sensing. Our approach begins by constructing a help set using KNN from the target domain, enabling local alignment between the source and target domains within each category using MMD. Additionally, we address a key instability issue commonly observed in cross-domain methods, where model performance fluctuates sharply between epochs. Further, most existing methods struggle to determine an optimal stopping point during training due to the absence of labeled data from the target domain. Our method resolves this by excluding the support set from the target domain during training and employing it as a validation set to determine the stopping criterion.The dataset and code are publicly available at https://github.com/RS2002/KNN-MMD .
♻ ☆ Event Data Association via Robust Model Fitting for Event-based Object Tracking
Event-based approaches, which are based on bio-inspired asynchronous event cameras, have achieved promising performance on various computer vision tasks. However, the study of the fundamental event data association problem is still in its infancy. In this paper, we propose a novel Event Data Association (called EDA) approach to explicitly address the event association and fusion problem. The proposed EDA seeks for event trajectories that best fit the event data, in order to perform unifying data association and information fusion. In EDA, we first asynchronously fuse the event data based on its information entropy. Then, we introduce a deterministic model hypothesis generation strategy, which effectively generates model hypotheses from the fused events, to represent the corresponding event trajectories. After that, we present a two-stage weighting algorithm, which robustly weighs and selects true models from the generated model hypotheses, through multi-structural geometric model fitting. Meanwhile, we also propose an adaptive model selection strategy to automatically determine the number of the true models. Finally, we use the selected true models to associate and fuse the event data, without being affected by sensor noise and irrelevant structures. We evaluate the performance of the proposed EDA on the object tracking task. The experimental results show the effectiveness of EDA under challenging scenarios, such as high speed, motion blur, and high dynamic range conditions.
comment: 32 pages, 7 figures
♻ ☆ Step-by-Step Video-to-Audio Synthesis via Negative Audio Guidance
We propose a novel step-by-step video-to-audio generation method that sequentially produces individual audio tracks, each corresponding to a specific sound event in the video. Our approach mirrors traditional Foley workflows, aiming to capture all sound events induced by a given video comprehensively. Each generation step is formulated as a guided video-to-audio synthesis task, conditioned on a target text prompt and previously generated audio tracks. This design is inspired by the idea of concept negation from prior compositional generation frameworks. To enable this guided generation, we introduce a training framework that leverages pre-trained video-to-audio models and eliminates the need for specialized paired datasets, allowing training on more accessible data. Experimental results demonstrate that our method generates multiple semantically distinct audio tracks for a single input video, leading to higher-quality composite audio synthesis than existing baselines.
♻ ☆ MUPA: Towards Multi-Path Agentic Reasoning for Grounded Video Question Answering
Grounded Video Question Answering (Grounded VideoQA) requires aligning textual answers with explicit visual evidence. However, modern multimodal models often rely on linguistic priors and spurious correlations, resulting in poorly grounded predictions. In this work, we propose MUPA, a cooperative MUlti-Path Agentic approach that unifies video grounding, question answering, answer reflection and aggregation to tackle Grounded VideoQA. MUPA features three distinct reasoning paths on the interplay of grounding and QA agents in different chronological orders, along with a dedicated reflection agent to judge and aggregate the multi-path results to accomplish consistent QA and grounding. This design markedly improves grounding fidelity without sacrificing answer accuracy. Despite using only 2B parameters, our method outperforms all 7B-scale competitors. When scaled to 7B parameters, MUPA establishes new state-of-the-art results, with Acc@GQA of 30.3% and 47.4% on NExT-GQA and DeVE-QA respectively, demonstrating MUPA' effectiveness towards trustworthy video-language understanding. Our code is available in https://github.com/longmalongma/MUPA.
Machine Learning 129
☆ Beyond ReLU: How Activations Affect Neural Kernels and Random Wide Networks
While the theory of deep learning has made some progress in recent years, much of it is limited to the ReLU activation function. In particular, while the neural tangent kernel (NTK) and neural network Gaussian process kernel (NNGP) have given theoreticians tractable limiting cases of fully connected neural networks, their properties for most activation functions except for powers of the ReLU function are poorly understood. Our main contribution is to provide a more general characterization of the RKHS of these kernels for typical activation functions whose only non-smoothness is at zero, such as SELU, ELU, or LeakyReLU. Our analysis also covers a broad set of special cases such as missing biases, two-layer networks, or polynomial activations. Our results show that a broad class of not infinitely smooth activations generate equivalent RKHSs at different network depths, while polynomial activations generate non-equivalent RKHSs. Finally, we derive results for the smoothness of NNGP sample paths, characterizing the smoothness of infinitely wide neural networks at initialization.
☆ CLoVE: Personalized Federated Learning through Clustering of Loss Vector Embeddings
We propose CLoVE (Clustering of Loss Vector Embeddings), a novel algorithm for Clustered Federated Learning (CFL). In CFL, clients are naturally grouped into clusters based on their data distribution. However, identifying these clusters is challenging, as client assignments are unknown. CLoVE utilizes client embeddings derived from model losses on client data, and leverages the insight that clients in the same cluster share similar loss values, while those in different clusters exhibit distinct loss patterns. Based on these embeddings, CLoVE is able to iteratively identify and separate clients from different clusters and optimize cluster-specific models through federated aggregation. Key advantages of CLoVE over existing CFL algorithms are (1) its simplicity, (2) its applicability to both supervised and unsupervised settings, and (3) the fact that it eliminates the need for near-optimal model initialization, which makes it more robust and better suited for real-world applications. We establish theoretical convergence bounds, showing that CLoVE can recover clusters accurately with high probability in a single round and converges exponentially fast to optimal models in a linear setting. Our comprehensive experiments comparing with a variety of both CFL and generic Personalized Federated Learning (PFL) algorithms on different types of datasets and an extensive array of non-IID settings demonstrate that CLoVE achieves highly accurate cluster recovery in just a few rounds of training, along with state-of-the-art model accuracy, across a variety of both supervised and unsupervised PFL tasks.
comment: 31 pages, 4 figures
☆ ARMOR: Robust Reinforcement Learning-based Control for UAVs under Physical Attacks
Unmanned Aerial Vehicles (UAVs) depend on onboard sensors for perception, navigation, and control. However, these sensors are susceptible to physical attacks, such as GPS spoofing, that can corrupt state estimates and lead to unsafe behavior. While reinforcement learning (RL) offers adaptive control capabilities, existing safe RL methods are ineffective against such attacks. We present ARMOR (Adaptive Robust Manipulation-Optimized State Representations), an attack-resilient, model-free RL controller that enables robust UAV operation under adversarial sensor manipulation. Instead of relying on raw sensor observations, ARMOR learns a robust latent representation of the UAV's physical state via a two-stage training framework. In the first stage, a teacher encoder, trained with privileged attack information, generates attack-aware latent states for RL policy training. In the second stage, a student encoder is trained via supervised learning to approximate the teacher's latent states using only historical sensor data, enabling real-world deployment without privileged information. Our experiments show that ARMOR outperforms conventional methods, ensuring UAV safety. Additionally, ARMOR improves generalization to unseen attacks and reduces training cost by eliminating the need for iterative adversarial training.
☆ The Automated LLM Speedrunning Benchmark: Reproducing NanoGPT Improvements
Rapid advancements in large language models (LLMs) have the potential to assist in scientific progress. A critical capability toward this endeavor is the ability to reproduce existing work. To evaluate the ability of AI agents to reproduce results in an active research area, we introduce the Automated LLM Speedrunning Benchmark, leveraging the research community contributions on the NanoGPT speedrun, a competition to train a GPT-2 model in the shortest time. Each of the 19 speedrun tasks provides the agent with the previous records training script, optionally paired with one of three hint formats, ranging from pseudocode to paper-like descriptions of the new records improvements. Records execute quickly by design and speedrun improvements encompass diverse code-level changes, ranging from high-level algorithmic advancements to hardware-aware optimizations. These features make the benchmark both accessible and realistic for the frontier problem of improving LLM training. We find that recent reasoning LLMs combined with SoTA scaffolds struggle to reimplement already-known innovations in our benchmark, even when given detailed hints. Our benchmark thus provides a simple, non-saturated measure of an LLMs ability to automate scientific reproduction, a necessary (but not sufficient) skill for an autonomous research agent.
☆ Exploration from a Primal-Dual Lens: Value-Incentivized Actor-Critic Methods for Sample-Efficient Online RL
Online reinforcement learning (RL) with complex function approximations such as transformers and deep neural networks plays a significant role in the modern practice of artificial intelligence. Despite its popularity and importance, balancing the fundamental trade-off between exploration and exploitation remains a long-standing challenge; in particular, we are still in lack of efficient and practical schemes that are backed by theoretical performance guarantees. Motivated by recent developments in exploration via optimistic regularization, this paper provides an interpretation of the principle of optimism through the lens of primal-dual optimization. From this fresh perspective, we set forth a new value-incentivized actor-critic (VAC) method, which optimizes a single easy-to-optimize objective integrating exploration and exploitation -- it promotes state-action and policy estimates that are both consistent with collected data transitions and result in higher value functions. Theoretically, the proposed VAC method has near-optimal regret guarantees under linear Markov decision processes (MDPs) in both finite-horizon and infinite-horizon settings, which can be extended to the general function approximation setting under appropriate assumptions.
☆ Multi-View Contrastive Learning for Robust Domain Adaptation in Medical Time Series Analysis
Adapting machine learning models to medical time series across different domains remains a challenge due to complex temporal dependencies and dynamic distribution shifts. Current approaches often focus on isolated feature representations, limiting their ability to fully capture the intricate temporal dynamics necessary for robust domain adaptation. In this work, we propose a novel framework leveraging multi-view contrastive learning to integrate temporal patterns, derivative-based dynamics, and frequency-domain features. Our method employs independent encoders and a hierarchical fusion mechanism to learn feature-invariant representations that are transferable across domains while preserving temporal coherence. Extensive experiments on diverse medical datasets, including electroencephalogram (EEG), electrocardiogram (ECG), and electromyography (EMG) demonstrate that our approach significantly outperforms state-of-the-art methods in transfer learning tasks. By advancing the robustness and generalizability of machine learning models, our framework offers a practical pathway for deploying reliable AI systems in diverse healthcare settings.
☆ Towards Distributed Neural Architectures
We introduce and train distributed neural architectures (DNA) in vision and language domains. DNAs are initialized with a proto-architecture that consists of (transformer, MLP, attention, etc.) modules and routers. Any token (or patch) can traverse any series of modules in any order. DNAs are a natural generalization of the sparse methods such as Mixture-of-Experts, Mixture-of-Depths, parameter sharing, etc. Computation and communication patterns of DNA modules are learnt end-to-end during training and depend on the content and context of each token (or patch). These patterns can be shaped by further requirements added to the optimization objective such as compute/memory efficiency or load balancing. We empirically show that (i) trained DNAs are competitive with the dense baselines in both domains and (ii) compute efficiency/parameter sharing can be learnt from data. Next, we analyze the emergent connectivity and computation patterns in the trained DNAs. We find that the paths that tokens take through the models are themselves distributed according to a power-law. We show that some paths (or, equivalently, groups of modules) show emergent specialization. Finally, we demonstrate that models learn to allocate compute and active parameters in an interpretable way.
comment: 36 pages, 25 figures
☆ Probabilistic Optimality for Inference-time Scaling
Inference-time scaling has emerged as a powerful technique for enhancing the reasoning performance of Large Language Models (LLMs). However, existing approaches often rely on heuristic strategies for parallel sampling, lacking a principled foundation. To address this gap, we propose a probabilistic framework that formalizes the optimality of inference-time scaling under the assumption that parallel samples are independently and identically distributed (i.i.d.), and where the Best-of-N selection strategy follows a probability distribution that can be estimated. Within this framework, we derive a theoretical lower bound on the required number of samples to achieve a target performance level, providing the first principled guidance for compute-efficient scaling. Leveraging this insight, we develop \textsc{OptScale}, a practical algorithm that dynamically determines the optimal number of sampled responses. \textsc{OptScale} employs a language model-based predictor to estimate probabilistic prior parameters, enabling the decision of the minimal number of samples needed that satisfy predefined performance thresholds and confidence levels. Extensive experiments on mathematical reasoning benchmarks (including MATH-500, GSM8K, AIME, and AMC) demonstrate that \textsc{OptScale} significantly reduces sampling overhead while remaining better or on par with state-of-the-art reasoning performance. Our work offers both a theoretical foundation and a practical solution for principled inference-time scaling, addressing a critical gap in the efficient deployment of LLMs for complex reasoning.
☆ Sheaf-Based Decentralized Multimodal Learning for Next-Generation Wireless Communication Systems
In large-scale communication systems, increasingly complex scenarios require more intelligent collaboration among edge devices collecting various multimodal sensory data to achieve a more comprehensive understanding of the environment and improve decision-making accuracy. However, conventional federated learning (FL) algorithms typically consider unimodal datasets, require identical model architectures, and fail to leverage the rich information embedded in multimodal data, limiting their applicability to real-world scenarios with diverse modalities and varying client capabilities. To address this issue, we propose Sheaf-DMFL, a novel decentralized multimodal learning framework leveraging sheaf theory to enhance collaboration among devices with diverse modalities. Specifically, each client has a set of local feature encoders for its different modalities, whose outputs are concatenated before passing through a task-specific layer. While encoders for the same modality are trained collaboratively across clients, we capture the intrinsic correlations among clients' task-specific layers using a sheaf-based structure. To further enhance learning capability, we propose an enhanced algorithm named Sheaf-DMFL-Att, which tailors the attention mechanism within each client to capture correlations among different modalities. A rigorous convergence analysis of Sheaf-DMFL-Att is provided, establishing its theoretical guarantees. Extensive simulations are conducted on real-world link blockage prediction and mmWave beamforming scenarios, demonstrate the superiority of the proposed algorithms in such heterogeneous wireless communication systems.
comment: 13 pages, 9 figures
☆ Reinforcement Learning with Physics-Informed Symbolic Program Priors for Zero-Shot Wireless Indoor Navigation
When using reinforcement learning (RL) to tackle physical control tasks, inductive biases that encode physics priors can help improve sample efficiency during training and enhance generalization in testing. However, the current practice of incorporating these helpful physics-informed inductive biases inevitably runs into significant manual labor and domain expertise, making them prohibitive for general users. This work explores a symbolic approach to distill physics-informed inductive biases into RL agents, where the physics priors are expressed in a domain-specific language (DSL) that is human-readable and naturally explainable. Yet, the DSL priors do not translate directly into an implementable policy due to partial and noisy observations and additional physical constraints in navigation tasks. To address this gap, we develop a physics-informed program-guided RL (PiPRL) framework with applications to indoor navigation. PiPRL adopts a hierarchical and modularized neuro-symbolic integration, where a meta symbolic program receives semantically meaningful features from a neural perception module, which form the bases for symbolic programming that encodes physics priors and guides the RL process of a low-level neural controller. Extensive experiments demonstrate that PiPRL consistently outperforms purely symbolic or neural policies and reduces training time by over 26% with the help of the program-based inductive biases.
comment: Spotlight paper at Reinforcement Learning Conference 2025, Workshop on Inductive Biases in Reinforcement Learning
☆ DiffSoundStream: Efficient Speech Tokenization via Diffusion Decoding
Token-based language modeling is a prominent approach for speech generation, where tokens are obtained by quantizing features from self-supervised learning (SSL) models and extracting codes from neural speech codecs, generally referred to as semantic tokens and acoustic tokens. These tokens are often modeled autoregressively, with the inference speed being constrained by the token rate. In this work, we propose DiffSoundStream, a solution that improves the efficiency of speech tokenization in non-streaming scenarios through two techniques: (1) conditioning the neural codec on semantic tokens to minimize redundancy between semantic and acoustic tokens, and (2) leveraging latent diffusion models to synthesize high-quality waveforms from semantic and coarse-level acoustic tokens. Experiments show that at 50 tokens per second, DiffSoundStream achieves speech quality on par with a standard SoundStream model operating at twice the token rate. Additionally, we achieve step-size distillation using just four diffusion sampling steps with only a minor quality loss.
☆ From Ground to Air: Noise Robustness in Vision Transformers and CNNs for Event-Based Vehicle Classification with Potential UAV Applications
This study investigates the performance of the two most relevant computer vision deep learning architectures, Convolutional Neural Network and Vision Transformer, for event-based cameras. These cameras capture scene changes, unlike traditional frame-based cameras with capture static images, and are particularly suited for dynamic environments such as UAVs and autonomous vehicles. The deep learning models studied in this work are ResNet34 and ViT B16, fine-tuned on the GEN1 event-based dataset. The research evaluates and compares these models under both standard conditions and in the presence of simulated noise. Initial evaluations on the clean GEN1 dataset reveal that ResNet34 and ViT B16 achieve accuracies of 88% and 86%, respectively, with ResNet34 showing a slight advantage in classification accuracy. However, the ViT B16 model demonstrates notable robustness, particularly given its pre-training on a smaller dataset. Although this study focuses on ground-based vehicle classification, the methodologies and findings hold significant promise for adaptation to UAV contexts, including aerial object classification and event-based vision systems for aviation-related tasks.
comment: 16 pages, 17 figures, 9 tables. To be presented in AIAA AVIATION Forum 2025
☆ Optimal Estimation of Watermark Proportions in Hybrid AI-Human Texts
Text watermarks in large language models (LLMs) are an increasingly important tool for detecting synthetic text and distinguishing human-written content from LLM-generated text. While most existing studies focus on determining whether entire texts are watermarked, many real-world scenarios involve mixed-source texts, which blend human-written and watermarked content. In this paper, we address the problem of optimally estimating the watermark proportion in mixed-source texts. We cast this problem as estimating the proportion parameter in a mixture model based on \emph{pivotal statistics}. First, we show that this parameter is not even identifiable in certain watermarking schemes, let alone consistently estimable. In stark contrast, for watermarking methods that employ continuous pivotal statistics for detection, we demonstrate that the proportion parameter is identifiable under mild conditions. We propose efficient estimators for this class of methods, which include several popular unbiased watermarks as examples, and derive minimax lower bounds for any measurable estimator based on pivotal statistics, showing that our estimators achieve these lower bounds. Through evaluations on both synthetic data and mixed-source text generated by open-source models, we demonstrate that our proposed estimators consistently achieve high estimation accuracy.
☆ A Framework for Multi-source Privacy Preserving Epidemic Analysis
It is now well understood that diverse datasets provide a lot of value in key epidemiology and public health analyses, such as forecasting and nowcasting, development of epidemic models, evaluation and design of interventions and resource allocation. Some of these datasets are often sensitive, and need adequate privacy protections. There are many models of privacy, but Differential Privacy (DP) has become a de facto standard because of its strong guarantees, without making models about adversaries. In this paper, we develop a framework the integrates deep learning and epidemic models to simultaneously perform epidemic forecasting and learning a mechanistic model of epidemic spread, while incorporating multiple datasets for these analyses, including some with DP guarantees. We demonstrate our framework using a realistic but synthetic financial dataset with DP; such a dataset has not been used in such epidemic analyses. We show that this dataset provides significant value in forecasting and learning an epidemic model, even when used with DP guarantees.
comment: 17 pages, 6 figures
☆ QuKAN: A Quantum Circuit Born Machine approach to Quantum Kolmogorov Arnold Networks
Kolmogorov Arnold Networks (KANs), built upon the Kolmogorov Arnold representation theorem (KAR), have demonstrated promising capabilities in expressing complex functions with fewer neurons. This is achieved by implementing learnable parameters on the edges instead of on the nodes, unlike traditional networks such as Multi-Layer Perceptrons (MLPs). However, KANs potential in quantum machine learning has not yet been well explored. In this work, we present an implementation of these KAN architectures in both hybrid and fully quantum forms using a Quantum Circuit Born Machine (QCBM). We adapt the KAN transfer using pre-trained residual functions, thereby exploiting the representational power of parametrized quantum circuits. In the hybrid model we combine classical KAN components with quantum subroutines, while the fully quantum version the entire architecture of the residual function is translated to a quantum model. We demonstrate the feasibility, interpretability and performance of the proposed Quantum KAN (QuKAN) architecture.
☆ Robust quantum reservoir computers for forecasting chaotic dynamics: generalized synchronization and stability
We show that recurrent quantum reservoir computers (QRCs) and their recurrence-free architectures (RF-QRCs) are robust tools for learning and forecasting chaotic dynamics from time-series data. First, we formulate and interpret quantum reservoir computers as coupled dynamical systems, where the reservoir acts as a response system driven by training data; in other words, quantum reservoir computers are generalized-synchronization (GS) systems. Second, we show that quantum reservoir computers can learn chaotic dynamics and their invariant properties, such as Lyapunov spectra, attractor dimensions, and geometric properties such as the covariant Lyapunov vectors. This analysis is enabled by deriving the Jacobian of the quantum reservoir update. Third, by leveraging tools from generalized synchronization, we provide a method for designing robust quantum reservoir computers. We propose the criterion $GS=ESP$: GS implies the echo state property (ESP), and vice versa. We analytically show that RF-QRCs, by design, fulfill $GS=ESP$. Finally, we analyze the effect of simulated noise. We find that dissipation from noise enhances the robustness of quantum reservoir computers. Numerical verifications on systems of different dimensions support our conclusions. This work opens opportunities for designing robust quantum machines for chaotic time series forecasting on near-term quantum hardware.
comment: 28 pages, 12 figures
☆ Less Greedy Equivalence Search
Greedy Equivalence Search (GES) is a classic score-based algorithm for causal discovery from observational data. In the sample limit, it recovers the Markov equivalence class of graphs that describe the data. Still, it faces two challenges in practice: computational cost and finite-sample accuracy. In this paper, we develop Less Greedy Equivalence Search (LGES), a variant of GES that retains its theoretical guarantees while partially addressing these limitations. LGES modifies the greedy step: rather than always applying the highest-scoring insertion, it avoids edge insertions between variables for which the score implies some conditional independence. This more targeted search yields up to a \(10\)-fold speed-up and a substantial reduction in structural error relative to GES. Moreover, LGES can guide the search using prior assumptions, while correcting these assumptions when contradicted by the data. Finally, LGES can exploit interventional data to refine the learned observational equivalence class. We prove that LGES recovers the true equivalence class in the sample limit from observational and interventional data, even with misspecified prior assumptions. Experiments demonstrate that LGES outperforms GES and other baselines in speed, accuracy, and robustness to misspecified assumptions. Our code is available at https://github.com/CausalAILab/lges.
comment: 35 total pages. 14 figures
☆ Conceptual Topic Aggregation
The vast growth of data has rendered traditional manual inspection infeasible, necessitating the adoption of computational methods for efficient data exploration. Topic modeling has emerged as a powerful tool for analyzing large-scale textual datasets, enabling the extraction of latent semantic structures. However, existing methods for topic modeling often struggle to provide interpretable representations that facilitate deeper insights into data structure and content. In this paper, we propose FAT-CAT, an approach based on Formal Concept Analysis (FCA) to enhance meaningful topic aggregation and visualization of discovered topics. Our approach can handle diverse topics and file types -- grouped by directories -- to construct a concept lattice that offers a structured, hierarchical representation of their topic distribution. In a case study on the ETYNTKE dataset, we evaluate the effectiveness of our approach against other representation methods to demonstrate that FCA-based aggregation provides more meaningful and interpretable insights into dataset composition than existing topic modeling techniques.
comment: 16 pages, 4 tables, 11 figures, International Joint Conference on Conceptual Knowledge Structures
☆ Unfolding Generative Flows with Koopman Operators: Fast and Interpretable Sampling
Conditional Flow Matching (CFM) offers a simulation-free framework for training continuous-time generative models, bridging diffusion and flow-based approaches. However, sampling from CFM still relies on numerically solving non-linear ODEs which can be computationally expensive and difficult to interpret. Recent alternatives address sampling speed via trajectory straightening, mini-batch coupling or distillation. However, these methods typically do not shed light on the underlying \textit{structure} of the generative process. In this work, we propose to accelerate CFM and introduce an interpretable representation of its dynamics by integrating Koopman operator theory, which models non-linear flows as linear evolution in a learned space of observables. We introduce a decoder-free Koopman-CFM architecture that learns an embedding where the generative dynamics become linear, enabling closed-form, one-step sampling via matrix exponentiation. This results in significant speedups over traditional CFM as demonstrated on controlled 2D datasets and real-world benchmarks, MNIST, Fashion-MNIST (F-MNIST), and the Toronto Face Dataset (TFD). Unlike previous methods, our approach leads to a well-structured Koopman generator, whose spectral properties, eigenvalues, and eigenfunctions offer principled tools for analyzing generative behavior such as temporal scaling, mode stability, and decomposition in Koopman latent space. By combining sampling efficiency with analytical structure, Koopman-enhanced flow matching offers a potential step toward fast and interpretable generative modeling.
☆ Weakly-Supervised Domain Adaptation with Proportion-Constrained Pseudo-Labeling
Domain shift is a significant challenge in machine learning, particularly in medical applications where data distributions differ across institutions due to variations in data collection practices, equipment, and procedures. This can degrade performance when models trained on source domain data are applied to the target domain. Domain adaptation methods have been widely studied to address this issue, but most struggle when class proportions between the source and target domains differ. In this paper, we propose a weakly-supervised domain adaptation method that leverages class proportion information from the target domain, which is often accessible in medical datasets through prior knowledge or statistical reports. Our method assigns pseudo-labels to the unlabeled target data based on class proportion (called proportion-constrained pseudo-labeling), improving performance without the need for additional annotations. Experiments on two endoscopic datasets demonstrate that our method outperforms semi-supervised domain adaptation techniques, even when 5% of the target domain is labeled. Additionally, the experimental results with noisy proportion labels highlight the robustness of our method, further demonstrating its effectiveness in real-world application scenarios.
comment: Accepted at IJCNN2025
☆ CoATA: Effective Co-Augmentation of Topology and Attribute for Graph Neural Networks
Graph Neural Networks (GNNs) have garnered substantial attention due to their remarkable capability in learning graph representations. However, real-world graphs often exhibit substantial noise and incompleteness, which severely degrades the performance of GNNs. Existing methods typically address this issue through single-dimensional augmentation, focusing either on refining topology structures or perturbing node attributes, thereby overlooking the deeper interplays between the two. To bridge this gap, this paper presents CoATA, a dual-channel GNN framework specifically designed for the Co-Augmentation of Topology and Attribute. Specifically, CoATA first propagates structural signals to enrich and denoise node attributes. Then, it projects the enhanced attribute space into a node-attribute bipartite graph for further refinement or reconstruction of the underlying structure. Subsequently, CoATA introduces contrastive learning, leveraging prototype alignment and consistency constraints, to facilitate mutual corrections between the augmented and original graphs. Finally, extensive experiments on seven benchmark datasets demonstrate that the proposed CoATA outperforms eleven state-of-the-art baseline methods, showcasing its effectiveness in capturing the synergistic relationship between topology and attributes.
comment: icmr
☆ Score-Based Model for Low-Rank Tensor Recovery
Low-rank tensor decompositions (TDs) provide an effective framework for multiway data analysis. Traditional TD methods rely on predefined structural assumptions, such as CP or Tucker decompositions. From a probabilistic perspective, these can be viewed as using Dirac delta distributions to model the relationships between shared factors and the low-rank tensor. However, such prior knowledge is rarely available in practical scenarios, particularly regarding the optimal rank structure and contraction rules. The optimization procedures based on fixed contraction rules are complex, and approximations made during these processes often lead to accuracy loss. To address this issue, we propose a score-based model that eliminates the need for predefined structural or distributional assumptions, enabling the learning of compatibility between tensors and shared factors. Specifically, a neural network is designed to learn the energy function, which is optimized via score matching to capture the gradient of the joint log-probability of tensor entries and shared factors. Our method allows for modeling structures and distributions beyond the Dirac delta assumption. Moreover, integrating the block coordinate descent (BCD) algorithm with the proposed smooth regularization enables the model to perform both tensor completion and denoising. Experimental results demonstrate significant performance improvements across various tensor types, including sparse and continuous-time tensors, as well as visual data.
☆ Breaking Rank Bottlenecks in Knowledge Graph Completion
Many Knowledge Graph Completion (KGC) models, despite using powerful encoders, rely on a simple vector-matrix multiplication to score queries against candidate object entities. When the number of entities is larger than the model's embedding dimension, which in practical scenarios is often by several orders of magnitude, we have a linear output layer with a rank bottleneck. Such bottlenecked layers limit model expressivity. We investigate both theoretically and empirically how rank bottlenecks affect KGC models. We find that, by limiting the set of feasible predictions, rank bottlenecks hurt ranking accuracy and the distribution fidelity of scores. Inspired by the language modelling literature, we propose KGE-MoS, a mixture-based output layer to break rank bottlenecks in many KGC models. Our experiments on four datasets show that KGE-MoS improves performance and probabilistic fit of KGC models for a low parameter cost.
☆ Projected Compression: Trainable Projection for Efficient Transformer Compression
Large language models have steadily increased in size to achieve improved performance; however, this growth has also led to greater inference time and computational demands. Consequently, there is rising interest in model size reduction methods. To address this issue, we propose Projected Compression, a novel model compression technique, that reduces model weights by utilizing projection modules. Specifically, we first train additional trainable projections weights and preserve access to all the original model parameters. Subsequently, these projections are merged into a lower-dimensional product matrix, resulting in a reduced-size standard Transformer-based model. Unlike alternative approaches that require additional computational overhead, our method matches the base model's per-token computation step in FLOPs. Experimental results show that Projected Compression outperforms the comparable hard pruning and retraining approach on higher quality models. Moreover, the performance margin scales well with the number of tokens.
☆ Risk-Averse Best Arm Set Identification with Fixed Budget and Fixed Confidence
Decision making under uncertain environments in the maximization of expected reward while minimizing its risk is one of the ubiquitous problems in many subjects. Here, we introduce a novel problem setting in stochastic bandit optimization that jointly addresses two critical aspects of decision-making: maximizing expected reward and minimizing associated uncertainty, quantified via the mean-variance(MV) criterion. Unlike traditional bandit formulations that focus solely on expected returns, our objective is to efficiently and accurately identify the Pareto-optimal set of arms that strikes the best trade-off between expected performance and risk. We propose a unified meta-algorithmic framework capable of operating under both fixed-confidence and fixed-budget regimes, achieved through adaptive design of confidence intervals tailored to each scenario using the same sample exploration strategy. We provide theoretical guarantees on the correctness of the returned solutions in both settings. To complement this theoretical analysis, we conduct extensive empirical evaluations across synthetic benchmarks, demonstrating that our approach outperforms existing methods in terms of both accuracy and sample efficiency, highlighting its broad applicability to risk-aware decision-making tasks in uncertain environments.
☆ Boosting Classification with Quantum-Inspired Augmentations
Understanding the impact of small quantum gate perturbations, which are common in quantum digital devices but absent in classical computers, is crucial for identifying potential advantages in quantum machine learning. While these perturbations are typically seen as detrimental to quantum computation, they can actually enhance performance by serving as a natural source of data augmentation. Additionally, they can often be efficiently simulated on classical hardware, enabling quantum-inspired approaches to improve classical machine learning methods. In this paper, we investigate random Bloch sphere rotations, which are fundamental SU(2) transformations, as a simple yet effective quantum-inspired data augmentation technique. Unlike conventional augmentations such as flipping, rotating, or cropping, quantum transformations lack intuitive spatial interpretations, making their application to tasks like image classification less straightforward. While common quantum augmentation methods rely on applying quantum models or trainable quanvolutional layers to classical datasets, we focus on the direct application of small-angle Bloch rotations and their effect on classical data. Using the large-scale ImageNet dataset, we demonstrate that our quantum-inspired augmentation method improves image classification performance, increasing Top-1 accuracy by 3%, Top-5 accuracy by 2.5%, and the F$_1$ score from 8% to 12% compared to standard classical augmentation methods. Finally, we examine the use of stronger unitary augmentations. Although these transformations preserve information in principle, they result in visually unrecognizable images with potential applications for privacy computations. However, we show that our augmentation approach and simple SU(2) transformations do not enhance differential privacy and discuss the implications of this limitation.
☆ A Plea for History and Philosophy of Statistics and Machine Learning
The integration of the history and philosophy of statistics was initiated at least by Hacking (1965) and advanced by Mayo (1996), but it has not received sustained follow-up. Yet such integration is more urgent than ever, as the recent success of artificial intelligence has been driven largely by machine learning -- a field historically developed alongside statistics. Today, the boundary between statistics and machine learning is increasingly blurred. What we now need is integration, twice over: of history and philosophy, and of the field they engage -- statistics and machine learning. I present a case study of a philosophical idea in machine learning (and in formal epistemology) whose root can be traced back to an often under-appreciated insight in Neyman and Pearson's 1936 work (a follow-up to their 1933 classic). This leads to the articulation of a foundational assumption -- largely implicit in, but shared by, the practices of frequentist statistics and machine learning -- which I call achievabilism. Another integration also emerges at the level of methodology, combining two ends of the philosophy of science spectrum: history and philosophy of science on the one hand, and formal epistemology on the other hand.
☆ Uncovering smooth structures in single-cell data with PCS-guided neighbor embeddings
Single-cell sequencing is revolutionizing biology by enabling detailed investigations of cell-state transitions. Many biological processes unfold along continuous trajectories, yet it remains challenging to extract smooth, low-dimensional representations from inherently noisy, high-dimensional single-cell data. Neighbor embedding (NE) algorithms, such as t-SNE and UMAP, are widely used to embed high-dimensional single-cell data into low dimensions. But they often introduce undesirable distortions, resulting in misleading interpretations. Existing evaluation methods for NE algorithms primarily focus on separating discrete cell types rather than capturing continuous cell-state transitions, while dynamic modeling approaches rely on strong assumptions about cellular processes and specialized data. To address these challenges, we build on the Predictability-Computability-Stability (PCS) framework for reliable and reproducible data-driven discoveries. First, we systematically evaluate popular NE algorithms through empirical analysis, simulation, and theory, and reveal their key shortcomings, such as artifacts and instability. We then introduce NESS, a principled and interpretable machine learning approach to improve NE representations by leveraging algorithmic stability and to enable robust inference of smooth biological structures. NESS offers useful concepts, quantitative stability metrics, and efficient computational workflows to uncover developmental trajectories and cell-state transitions in single-cell data. Finally, we apply NESS to six single-cell datasets, spanning pluripotent stem cell differentiation, organoid development, and multiple tissue-specific lineage trajectories. Across these diverse contexts, NESS consistently yields useful biological insights, such as identification of transitional and stable cell states and quantification of transcriptional dynamics during development.
☆ Hybrid Generative Modeling for Incomplete Physics: Deep Grey-Box Meets Optimal Transport ICLR 2025
Physics phenomena are often described by ordinary and/or partial differential equations (ODEs/PDEs), and solved analytically or numerically. Unfortunately, many real-world systems are described only approximately with missing or unknown terms in the equations. This makes the distribution of the physics model differ from the true data-generating process (DGP). Using limited and unpaired data between DGP observations and the imperfect model simulations, we investigate this particular setting by completing the known-physics model, combining theory-driven models and data-driven to describe the shifted distribution involved in the DGP. We present a novel hybrid generative model approach combining deep grey-box modelling with Optimal Transport (OT) methods to enhance incomplete physics models. Our method implements OT maps in data space while maintaining minimal source distribution distortion, demonstrating superior performance in resolving the unpaired problem and ensuring correct usage of physics parameters. Unlike black-box alternatives, our approach leverages physics-based inductive biases to accurately learn system dynamics while preserving interpretability through its domain knowledge foundation. Experimental results validate our method's effectiveness in both generation tasks and model transparency, offering detailed insights into learned physics dynamics.
comment: Workshop paper at ICLR 2025 (XAI4Science Workshop)
☆ EFRame: Deeper Reasoning via Exploration-Filtering-Replay Reinforcement Learning Framework
Recent advances in reinforcement learning (RL) have significantly enhanced the reasoning capabilities of large language models (LLMs). Group Relative Policy Optimization (GRPO), an efficient variant of PPO that lowers RL's computational cost, still faces limited exploration, low sample efficiency and instability, constraining its performance on complex reasoning tasks. To address these limitations, we introduce EFRame, an Exploration-Filtering-Replay framework that systematically augments GRPO along three critical dimensions. EFRame performs additional rollouts to explore high-quality trajectories, applies online filtering to eliminate low-quality samples that introduce noise and variance, and leverages experience replay to repeatedly exploit rare but informative samples. EFRame establishes a complete and stable learning cycle, guiding the model through a structured transition from exploration to convergence. Our experiments across a variety of reasoning benchmarks demonstrate that EFRame not only improves the robustness and efficiency of training, but also enables access to deeper reasoning capabilities that remain unattainable under vanilla GRPO. Furthermore, EFRame enables a more fine-grained categorization of training samples, allowing for a deeper analysis of how different types of samples contribute to the learning process in RL. Our code is available at https://github.com/597358816/EFRame.
☆ REDELEX: A Framework for Relational Deep Learning Exploration KDD 2025
Relational databases (RDBs) are widely regarded as the gold standard for storing structured information. Consequently, predictive tasks leveraging this data format hold significant application promise. Recently, Relational Deep Learning (RDL) has emerged as a novel paradigm wherein RDBs are conceptualized as graph structures, enabling the application of various graph neural architectures to effectively address these tasks. However, given its novelty, there is a lack of analysis into the relationships between the performance of various RDL models and the characteristics of the underlying RDBs. In this study, we present REDELEX$-$a comprehensive exploration framework for evaluating RDL models of varying complexity on the most diverse collection of over 70 RDBs, which we make available to the community. Benchmarked alongside key representatives of classic methods, we confirm the generally superior performance of RDL while providing insights into the main factors shaping performance, including model complexity, database sizes and their structural properties.
comment: Accepted to ECMLPKDD 2025 at Porto, Portugal
☆ dreaMLearning: Data Compression Assisted Machine Learning
Despite rapid advancements, machine learning, particularly deep learning, is hindered by the need for large amounts of labeled data to learn meaningful patterns without overfitting and immense demands for computation and storage, which motivate research into architectures that can achieve good performance with fewer resources. This paper introduces dreaMLearning, a novel framework that enables learning from compressed data without decompression, built upon Entropy-based Generalized Deduplication (EntroGeDe), an entropy-driven lossless compression method that consolidates information into a compact set of representative samples. DreaMLearning accommodates a wide range of data types, tasks, and model architectures. Extensive experiments on regression and classification tasks with tabular and image data demonstrate that dreaMLearning accelerates training by up to 8.8x, reduces memory usage by 10x, and cuts storage by 42%, with a minimal impact on model performance. These advancements enhance diverse ML applications, including distributed and federated learning, and tinyML on resource-constrained edge devices, unlocking new possibilities for efficient and scalable learning.
comment: 18 pages, 11 figures
☆ Exploring Modularity of Agentic Systems for Drug Discovery
Large-language models (LLMs) and agentic systems present exciting opportunities to accelerate drug discovery and design. In this study, we critically examine the modularity of LLM-based agentic systems for drug discovery, i.e., whether parts of the agentic system such as the LLM are interchangeable, a topic that has received limited attention in drug discovery applications. We compare the performance of different large language models (LLMs) and the effectiveness of tool-calling agents versus code-generating agents in this domain. Our case study, comparing performance in orchestrating tools for chemistry and drug discovery using an LLM-as-a-judge score, shows that Claude-3.5-Sonnet, Claude-3.7-Sonnet and GPT-4o outperform alternative language models such as Llama-3.1-8B, Llama-3.1-70B, GPT-3.5-Turbo, and Nova-Micro. Although we confirm that code-generating agents outperform the tool-calling ones on average, we show that this is highly question and model dependent. Furthermore, the impact of replacing system prompts is dependent on the specific question asked and the model used, underscoring that -- even in this particular domain -- one cannot just replace language models without considering prompt re-engineering. Our study highlights the necessity of further research into the modularity of agentic systems to enable the development of stable and scalable solutions for real-world problems.
☆ Thompson Sampling-Based Learning and Control for Unknown Dynamic Systems
Thompson sampling (TS) is an effective method to explore parametric uncertainties and can therefore be used for active learning-based controller design. However, TS relies on finite parametric representations, which limits its applicability to more general spaces, which are more commonly encountered in control system design. To address this issue, this work pro poses a parameterization method for control law learning using reproducing kernel Hilbert spaces and designs a data-driven active learning control approach. Specifically, the proposed method treats the control law as an element in a function space, allowing the design of control laws without imposing restrictions on the system structure or the form of the controller. A TS framework is proposed in this work to explore potential optimal control laws, and the convergence guarantees are further provided for the learning process. Theoretical analysis shows that the proposed method learns the relationship between control laws and closed-loop performance metrics at an exponential rate, and the upper bound of control regret is also derived. Numerical experiments on controlling unknown nonlinear systems validate the effectiveness of the proposed method.
☆ ASVSim (AirSim for Surface Vehicles): A High-Fidelity Simulation Framework for Autonomous Surface Vehicle Research
The transport industry has recently shown significant interest in unmanned surface vehicles (USVs), specifically for port and inland waterway transport. These systems can improve operational efficiency and safety, which is especially relevant in the European Union, where initiatives such as the Green Deal are driving a shift towards increased use of inland waterways. At the same time, a shortage of qualified personnel is accelerating the adoption of autonomous solutions. However, there is a notable lack of open-source, high-fidelity simulation frameworks and datasets for developing and evaluating such solutions. To address these challenges, we introduce AirSim For Surface Vehicles (ASVSim), an open-source simulation framework specifically designed for autonomous shipping research in inland and port environments. The framework combines simulated vessel dynamics with marine sensor simulation capabilities, including radar and camera systems and supports the generation of synthetic datasets for training computer vision models and reinforcement learning agents. Built upon Cosys-AirSim, ASVSim provides a comprehensive platform for developing autonomous navigation algorithms and generating synthetic datasets. The simulator supports research of both traditional control methods and deep learning-based approaches. Through limited experiments, we demonstrate the potential of the simulator in these research areas. ASVSim is provided as an open-source project under the MIT license, making autonomous navigation research accessible to a larger part of the ocean engineering community.
comment: 14 Pages, 11 Figures
☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs
Despite progress in Vision-Language Models (VLMs), their capacity for visual reasoning is often limited by the \textit{binding problem}: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current VLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces a simple yet effective intervention: augmenting visual inputs with low-level spatial structures (e.g., horizontal lines) and pairing this with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks. Specifically, our method improves GPT-4o visual search accuracy by 25.00%, increases counting accuracy by 26.83%, reduces edit distance error in scene description by 0.32, and enhances performance on spatial relationship tasks by 9.50% on a a 2D synthetic dataset. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. Our method enhances binding only with a single-query inference, underscoring the importance of visual input design over purely linguistically-based approaches. These findings suggest that low-level visual structuring is a powerful and underexplored direction for improving compositional visual reasoning and could serve as a general strategy for enhancing VLM performance on spatially grounded tasks.
☆ Earthquake Damage Grades Prediction using An Ensemble Approach Integrating Advanced Machine and Deep Learning Models
In the aftermath of major earthquakes, evaluating structural and infrastructural damage is vital for coordinating post-disaster response efforts. This includes assessing damage's extent and spatial distribution to prioritize rescue operations and resource allocation. Accurately estimating damage grades to buildings post-earthquake is paramount for effective response and recovery, given the significant impact on lives and properties, underscoring the urgency of streamlining relief fund allocation processes. Previous studies have shown the effectiveness of multi-class classification, especially XGBoost, along with other machine learning models and ensembling methods, incorporating regularization to address class imbalance. One consequence of class imbalance is that it may give rise to skewed models that undervalue minority classes and give preference to the majority class. This research deals with the problem of class imbalance with the help of the synthetic minority oversampling technique (SMOTE). We delve into multiple multi-class classification machine learning, deep learning models, and ensembling methods to forecast structural damage grades. The study elucidates performance determinants through comprehensive feature manipulation experiments and diverse training approaches. It identifies key factors contributing to seismic vulnerability while evaluating model performance using techniques like the confusion matrix further to enhance understanding of the effectiveness of earthquake damage prediction.
comment: 3rd International Conference on Applied Mathematics in Science and Engineering
☆ Identifying a Circuit for Verb Conjugation in GPT-2
I implement a procedure to isolate and interpret the sub-network (or "circuit") responsible for subject-verb agreement in GPT-2 Small. In this study, the model is given prompts where the subject is either singular (e.g. "Alice") or plural (e.g. "Alice and Bob"), and the task is to correctly predict the appropriate verb form ("walks" for singular subjects, "walk" for plural subjects). Using a series of techniques-including performance verification automatic circuit discovery via direct path patching, and direct logit attribution- I isolate a candidate circuit that contributes significantly to the model's correct verb conjugation. The results suggest that only a small fraction of the network's component-token pairs is needed to achieve near-model performance on the base task but substantially more for more complex settings.
☆ Tied Prototype Model for Few-Shot Medical Image Segmentation MICCAI
Common prototype-based medical image few-shot segmentation (FSS) methods model foreground and background classes using class-specific prototypes. However, given the high variability of the background, a more promising direction is to focus solely on foreground modeling, treating the background as an anomaly -- an approach introduced by ADNet. Yet, ADNet faces three key limitations: dependence on a single prototype per class, a focus on binary classification, and fixed thresholds that fail to adapt to patient and organ variability. To address these shortcomings, we propose the Tied Prototype Model (TPM), a principled reformulation of ADNet with tied prototype locations for foreground and background distributions. Building on its probabilistic foundation, TPM naturally extends to multiple prototypes and multi-class segmentation while effectively separating non-typical background features. Notably, both extensions lead to improved segmentation accuracy. Finally, we leverage naturally occurring class priors to define an ideal target for adaptive thresholds, boosting segmentation performance. Taken together, TPM provides a fresh perspective on prototype-based FSS for medical image segmentation. The code can be found at https://github.com/hjk92g/TPM-FSS.
comment: Submitted version (MICCAI). Accepted at MICCAI 2025. The code repo will be made publicly available soon
☆ Transfer Learning for Assessing Heavy Metal Pollution in Seaports Sediments
Detecting heavy metal pollution in soils and seaports is vital for regional environmental monitoring. The Pollution Load Index (PLI), an international standard, is commonly used to assess heavy metal containment. However, the conventional PLI assessment involves laborious procedures and data analysis of sediment samples. To address this challenge, we propose a deep-learning-based model that simplifies the heavy metal assessment process. Our model tackles the issue of data scarcity in the water-sediment domain, which is traditionally plagued by challenges in data collection and varying standards across nations. By leveraging transfer learning, we develop an accurate quantitative assessment method for predicting PLI. Our approach allows the transfer of learned features across domains with different sets of features. We evaluate our model using data from six major ports in New South Wales, Australia: Port Yamba, Port Newcastle, Port Jackson, Port Botany, Port Kembla, and Port Eden. The results demonstrate significantly lower Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) of approximately 0.5 and 0.03, respectively, compared to other models. Our model performance is up to 2 orders of magnitude than other baseline models. Our proposed model offers an innovative, accessible, and cost-effective approach to predicting water quality, benefiting marine life conservation, aquaculture, and industrial pollution monitoring.
☆ Learning to Solve Multi-Objective Routing Problems on Multigraphs
Learning-based methods for routing have gained significant attention in recent years, both in single-objective and multi-objective contexts. However, the multigraph setting, where multiple paths with distinct attributes can exist between destinations, has largely been overlooked, despite its high practical relevancy. In this paper, we introduce two neural approaches to address multi-objective routing on multigraphs. Our first approach works directly on the multigraph, by autoregressively selecting edges until a tour is completed. On the other hand, our second model first prunes the multigraph into a simple graph and then builds routes. We validate both models experimentally and find that they demonstrate strong performance across a variety of problems, including the Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP).
comment: 18 pages, 5 Figures
☆ Transformers are Graph Neural Networks
We establish connections between the Transformer architecture, originally introduced for natural language processing, and Graph Neural Networks (GNNs) for representation learning on graphs. We show how Transformers can be viewed as message passing GNNs operating on fully connected graphs of tokens, where the self-attention mechanism capture the relative importance of all tokens w.r.t. each-other, and positional encodings provide hints about sequential ordering or structure. Thus, Transformers are expressive set processing networks that learn relationships among input elements without being constrained by apriori graphs. Despite this mathematical connection to GNNs, Transformers are implemented via dense matrix operations that are significantly more efficient on modern hardware than sparse message passing. This leads to the perspective that Transformers are GNNs currently winning the hardware lottery.
comment: This paper is a technical version of an article in The Gradient at https://thegradient.pub/transformers-are-graph-neural-networks/
☆ crypto price prediction using lstm+xgboost
The volatility and complex dynamics of cryptocurrency markets present unique challenges for accurate price forecasting. This research proposes a hybrid deep learning and machine learning model that integrates Long Short-Term Memory (LSTM) networks and Extreme Gradient Boosting (XGBoost) for cryptocurrency price prediction. The LSTM component captures temporal dependencies in historical price data, while XGBoost enhances prediction by modeling nonlinear relationships with auxiliary features such as sentiment scores and macroeconomic indicators. The model is evaluated on historical datasets of Bitcoin, Ethereum, Dogecoin, and Litecoin, incorporating both global and localized exchange data. Comparative analysis using Mean Absolute Percentage Error (MAPE) and Min-Max Normalized Root Mean Square Error (MinMax RMSE) demonstrates that the LSTM+XGBoost hybrid consistently outperforms standalone models and traditional forecasting methods. This study underscores the potential of hybrid architectures in financial forecasting and provides insights into model adaptability across different cryptocurrencies and market contexts.
☆ GPAS: Accelerating Convergence of LLM Pretraining via Gradient-Preserving Activation Scaling
Modern Large Language Models, such as the LLaMA, Qwen and DeepSeek series, predominantly adopt the Pre-LayerNorm (Pre-LN) Transformer architecture. While being stable during pretraining and scalable to large model sizes, Pre-LN suffers from an exponential growth in activation variance across layers, causing the residual path to dominate over sub-layer outputs and limiting the learning capacity of deeper layers. To mitigate this issue, we propose Gradient-Preserving Activation Scaling (GPAS), a simple technique that can be used in combination with existing approaches. GPAS works by scaling down the intermediate activations while keeping their gradients unchanged. This leaves information in the activations intact, and avoids the gradient vanishing problem associated with gradient downscaling. Extensive experiments across various model sizes from 71M to 1B show that GPAS achieves consistent performance gains. Beyond enhancing Pre-LN Transformers, GPAS also shows promise in improving alternative architectures such as Sandwich-LN and DeepNorm, demonstrating its versatility and potential for improving training dynamics in a wide range of settings.
☆ UniCA: Adapting Time Series Foundation Model to General Covariate-Aware Forecasting
Time Series Foundation Models (TSFMs) have achieved remarkable success through large-scale pretraining. However, their design primarily targets real-valued series, limiting their ability to handle general forecasting tasks involving diverse and often heterogeneous covariates--such as categorical variables and multimodal data (e.g., images, text)--which are typically task-specific and difficult to leverage during pretraining. To address this gap, we propose Unified Covariate Adaptation (UniCA), a framework to bridge TSFMs with general covariate-aware forecasting. UniCA first performs covariate homogenization to transform heterogeneous covariates into high-level homogeneous series representations and then fuses them via a unified attention-based fusion mechanism. UniCA is compatible and universal for adaptation with both homogeneous and heterogeneous covariates, incorporating extra covariate information while preserving the generalization ability of TSFMs.Extensive experiments on multiple unimodal and multimodal covariate-aware forecasting benchmarks demonstrate the superiority of UniCA, highlighting the promise of covariate-aware TSFM adaptation in real-world forecasting scenarios. Codes are released on https://github.com/hanlu-nju/UniCA.
☆ Hyper-modal Imputation Diffusion Embedding with Dual-Distillation for Federated Multimodal Knowledge Graph Completion
With the increasing multimodal knowledge privatization requirements, multimodal knowledge graphs in different institutes are usually decentralized, lacking of effective collaboration system with both stronger reasoning ability and transmission safety guarantees. In this paper, we propose the Federated Multimodal Knowledge Graph Completion (FedMKGC) task, aiming at training over federated MKGs for better predicting the missing links in clients without sharing sensitive knowledge. We propose a framework named MMFeD3-HidE for addressing multimodal uncertain unavailability and multimodal client heterogeneity challenges of FedMKGC. (1) Inside the clients, our proposed Hyper-modal Imputation Diffusion Embedding model (HidE) recovers the complete multimodal distributions from incomplete entity embeddings constrained by available modalities. (2) Among clients, our proposed Multimodal FeDerated Dual Distillation (MMFeD3) transfers knowledge mutually between clients and the server with logit and feature distillation to improve both global convergence and semantic consistency. We propose a FedMKGC benchmark for a comprehensive evaluation, consisting of a general FedMKGC backbone named MMFedE, datasets with heterogeneous multimodal information, and three groups of constructed baselines. Experiments conducted on our benchmark validate the effectiveness, semantic consistency, and convergence robustness of MMFeD3-HidE.
comment: Submitted to the IEEE for possible publication
☆ TROFI: Trajectory-Ranked Offline Inverse Reinforcement Learning
In offline reinforcement learning, agents are trained using only a fixed set of stored transitions derived from a source policy. However, this requires that the dataset be labeled by a reward function. In applied settings such as video game development, the availability of the reward function is not always guaranteed. This paper proposes Trajectory-Ranked OFfline Inverse reinforcement learning (TROFI), a novel approach to effectively learn a policy offline without a pre-defined reward function. TROFI first learns a reward function from human preferences, which it then uses to label the original dataset making it usable for training the policy. In contrast to other approaches, our method does not require optimal trajectories. Through experiments on the D4RL benchmark we demonstrate that TROFI consistently outperforms baselines and performs comparably to using the ground truth reward to learn policies. Additionally, we validate the efficacy of our method in a 3D game environment. Our studies of the reward model highlight the importance of the reward function in this setting: we show that to ensure the alignment of a value function to the actual future discounted reward, it is fundamental to have a well-engineered and easy-to-learn reward function.
comment: Published at Reinforcement Learning and Video Games Workshop at RLC 2025
☆ GKNet: Graph Kalman Filtering and Model Inference via Model-based Deep Learning
Inference tasks with time series over graphs are of importance in applications such as urban water networks, economics, and networked neuroscience. Addressing these tasks typically relies on identifying a computationally affordable model that jointly captures the graph-temporal patterns of the data. In this work, we propose a graph-aware state space model for graph time series, where both the latent state and the observation equation are parametric graph-induced models with a limited number of parameters that need to be learned. More specifically, we consider the state equation to follow a stochastic partial differential equation driven by noise over the graphs edges accounting not only for potential edge uncertainties but also for increasing the degrees of freedom in the latter in a tractable manner. The graph structure conditioning of the noise dispersion allows the state variable to deviate from the stochastic process in certain neighborhoods. The observation model is a sampled and graph-filtered version of the state capturing multi-hop neighboring influence. The goal is to learn the parameters in both state and observation models from the partially observed data for downstream tasks such as prediction and imputation. The model is inferred first through a maximum likelihood approach that provides theoretical tractability but is limited in expressivity and scalability. To improve on the latter, we use the state-space formulation to build a principled deep learning architecture that jointly learns the parameters and tracks the state in an end-to-end manner in the spirit of Kalman neural networks.
☆ Binned semiparametric Bayesian networks
This paper introduces a new type of probabilistic semiparametric model that takes advantage of data binning to reduce the computational cost of kernel density estimation in nonparametric distributions. Two new conditional probability distributions are developed for the new binned semiparametric Bayesian networks, the sparse binned kernel density estimation and the Fourier kernel density estimation. These two probability distributions address the curse of dimensionality, which typically impacts binned models, by using sparse tensors and restricting the number of parent nodes in conditional probability calculations. To evaluate the proposal, we perform a complexity analysis and conduct several comparative experiments using synthetic data and datasets from the UCI Machine Learning repository. The experiments include different binning rules, parent restrictions, grid sizes, and number of instances to get a holistic view of the model's behavior. As a result, our binned semiparametric Bayesian networks achieve structural learning and log-likelihood estimations with no statistically significant differences compared to the semiparametric Bayesian networks, but at a much higher speed. Thus, the new binned semiparametric Bayesian networks prove to be a reliable and more efficient alternative to their non-binned counterparts.
☆ Analyzing and Fine-Tuning Whisper Models for Multilingual Pilot Speech Transcription in the Cockpit CVPR
The developments in transformer encoder-decoder architectures have led to significant breakthroughs in machine translation, Automatic Speech Recognition (ASR), and instruction-based chat machines, among other applications. The pre-trained models were trained on vast amounts of generic data over a few epochs (fewer than five in most cases), resulting in their strong generalization capabilities. Nevertheless, the performance of these models does suffer when applied to niche domains like transcribing pilot speech in the cockpit, which involves a lot of specific vocabulary and multilingual conversations. This paper investigates and improves the transcription accuracy of cockpit conversations with Whisper models. We have collected around 85 minutes of cockpit simulator recordings and 130 minutes of interview recordings with pilots and manually labeled them. The speakers are middle aged men speaking both German and English. To improve the accuracy of transcriptions, we propose multiple normalization schemes to refine the transcripts and improve Word Error Rate (WER). We then employ fine-tuning to enhance ASR performance, utilizing performance-efficient fine-tuning with Low-Rank Adaptation (LoRA). Hereby, WER decreased from 68.49 \% (pretrained whisper Large model without normalization baseline) to 26.26\% (finetuned whisper Large model with the proposed normalization scheme).
comment: Computer Vision and Pattern Recognition (CVPR) 2025 Workshops
☆ SceneDiffuser++: City-Scale Traffic Simulation via a Generative World Model CVPR 2025
The goal of traffic simulation is to augment a potentially limited amount of manually-driven miles that is available for testing and validation, with a much larger amount of simulated synthetic miles. The culmination of this vision would be a generative simulated city, where given a map of the city and an autonomous vehicle (AV) software stack, the simulator can seamlessly simulate the trip from point A to point B by populating the city around the AV and controlling all aspects of the scene, from animating the dynamic agents (e.g., vehicles, pedestrians) to controlling the traffic light states. We refer to this vision as CitySim, which requires an agglomeration of simulation technologies: scene generation to populate the initial scene, agent behavior modeling to animate the scene, occlusion reasoning, dynamic scene generation to seamlessly spawn and remove agents, and environment simulation for factors such as traffic lights. While some key technologies have been separately studied in various works, others such as dynamic scene generation and environment simulation have received less attention in the research community. We propose SceneDiffuser++, the first end-to-end generative world model trained on a single loss function capable of point A-to-B simulation on a city scale integrating all the requirements above. We demonstrate the city-scale traffic simulation capability of SceneDiffuser++ and study its superior realism under long simulation conditions. We evaluate the simulation quality on an augmented version of the Waymo Open Motion Dataset (WOMD) with larger map regions to support trip-level simulation.
comment: Accepted to CVPR 2025
☆ Advancing Jailbreak Strategies: A Hybrid Approach to Exploiting LLM Vulnerabilities and Bypassing Modern Defenses
The advancement of Pre-Trained Language Models (PTLMs) and Large Language Models (LLMs) has led to their widespread adoption across diverse applications. Despite their success, these models remain vulnerable to attacks that exploit their inherent weaknesses to bypass safety measures. Two primary inference-phase threats are token-level and prompt-level jailbreaks. Token-level attacks embed adversarial sequences that transfer well to black-box models like GPT but leave detectable patterns and rely on gradient-based token optimization, whereas prompt-level attacks use semantically structured inputs to elicit harmful responses yet depend on iterative feedback that can be unreliable. To address the complementary limitations of these methods, we propose two hybrid approaches that integrate token- and prompt-level techniques to enhance jailbreak effectiveness across diverse PTLMs. GCG + PAIR and the newly explored GCG + WordGame hybrids were evaluated across multiple Vicuna and Llama models. GCG + PAIR consistently raised attack-success rates over its constituent techniques on undefended models; for instance, on Llama-3, its Attack Success Rate (ASR) reached 91.6%, a substantial increase from PAIR's 58.4% baseline. Meanwhile, GCG + WordGame matched the raw performance of WordGame maintaining a high ASR of over 80% even under stricter evaluators like Mistral-Sorry-Bench. Crucially, both hybrids retained transferability and reliably pierced advanced defenses such as Gradient Cuff and JBShield, which fully blocked single-mode attacks. These findings expose previously unreported vulnerabilities in current safety stacks, highlight trade-offs between raw success and defensive robustness, and underscore the need for holistic safeguards against adaptive adversaries.
☆ More Vulnerable than You Think: On the Stability of Tool-Integrated LLM Agents
Current evaluations of tool-integrated LLM agents typically focus on end-to-end tool-usage evaluation while neglecting their stability. This limits their real-world applicability, as various internal or external factors can cause agents to crash or behave abnormally. Our research addresses this by investigating whether agents are vulnerable to errors throughout the entire tool invocation process, including reading tool documentation, selecting tools and generating parameters, and processing the tool's response. Through extensive experiments, we observe that agents are highly susceptible to errors at each stage and agents based on open-source models are more vulnerable than those based on proprietary models. We also find that increasing the model size does not significantly improve tool invocation reasoning and may make agents more vulnerable to attacks resembling normal user instructions. This highlights the importance of evaluating agent stability and offers valuable insights for future LLM development and evaluation.
☆ Optimal Return-to-Go Guided Decision Transformer for Auto-Bidding in Advertisement
In the realm of online advertising, advertisers partake in ad auctions to obtain advertising slots, frequently taking advantage of auto-bidding tools provided by demand-side platforms. To improve the automation of these bidding systems, we adopt generative models, namely the Decision Transformer (DT), to tackle the difficulties inherent in automated bidding. Applying the Decision Transformer to the auto-bidding task enables a unified approach to sequential modeling, which efficiently overcomes short-sightedness by capturing long-term dependencies between past bidding actions and user behavior. Nevertheless, conventional DT has certain drawbacks: (1) DT necessitates a preset return-to-go (RTG) value before generating actions, which is not inherently produced; (2) The policy learned by DT is restricted by its training data, which is consists of mixed-quality trajectories. To address these challenges, we introduce the R* Decision Transformer (R* DT), developed in a three-step process: (1) R DT: Similar to traditional DT, R DT stores actions based on state and RTG value, as well as memorizing the RTG for a given state using the training set; (2) R^ DT: We forecast the highest value (within the training set) of RTG for a given state, deriving a suboptimal policy based on the current state and the forecasted supreme RTG value; (3) R* DT: Based on R^ DT, we generate trajectories and select those with high rewards (using a simulator) to augment our training dataset. This data enhancement has been shown to improve the RTG of trajectories in the training data and gradually leads the suboptimal policy towards optimality. Comprehensive tests on a publicly available bidding dataset validate the R* DT's efficacy and highlight its superiority when dealing with mixed-quality trajectories.
☆ Physics-informed network paradigm with data generation and background noise removal for diverse distributed acoustic sensing applications
Distributed acoustic sensing (DAS) has attracted considerable attention across various fields and artificial intelligence (AI) technology plays an important role in DAS applications to realize event recognition and denoising. Existing AI models require real-world data (RWD), whether labeled or not, for training, which is contradictory to the fact of limited available event data in real-world scenarios. Here, a physics-informed DAS neural network paradigm is proposed, which does not need real-world events data for training. By physically modeling target events and the constraints of real world and DAS system, physical functions are derived to train a generative network for generation of DAS events data. DAS debackground net is trained by using the generated DAS events data to eliminate background noise in DAS data. The effectiveness of the proposed paradigm is verified in event identification application based on a public dataset of DAS spatiotemporal data and in belt conveyor fault monitoring application based on DAS time-frequency data, and achieved comparable or better performance than data-driven networks trained with RWD. Owing to the introduction of physical information and capability of background noise removal, the paradigm demonstrates generalization in same application on different sites. A fault diagnosis accuracy of 91.8% is achieved in belt conveyor field with networks which transferred from simulation test site without any fault events data of test site and field for training. The proposed paradigm is a prospective solution to address significant obstacles of data acquisition and intense noise in practical DAS applications and explore more potential fields for DAS.
☆ Hitchhiking Rides Dataset: Two decades of crowd-sourced records on stochastic traveling
Hitchhiking, a spontaneous and decentralized mode of travel, has long eluded systematic study due to its informal nature. This paper presents and analyzes the largest known structured dataset of hitchhiking rides, comprising over 63,000 entries collected over nearly two decades through platforms associated with hitchwiki.org and lately on hitchmap.com. By leveraging crowd-sourced contributions, the dataset captures key spatiotemporal and strategic aspects of hitchhiking. This work documents the dataset's origins, evolution, and community-driven maintenance, highlighting its Europe-centric distribution, seasonal patterns, and reliance on a small number of highly active contributors. Through exploratory analyses, I examine waiting times, user behavior, and comment metadata, shedding light on the lived realities of hitchhikers. While the dataset has inherent biases and limitations - such as demographic skew and unverifiable entries it offers a rare and valuable window into an alternative form of mobility. I conclude by outlining future directions for enriching the dataset and advancing research on hitchhiking as both a transportation practice and cultural phenomenon.
☆ GuiderNet: A Meta-Learning Framework for Optimizing Quantum Circuit Geometry and Mitigating Barren Plateaus
Variational Quantum Algorithms (VQAs) offer potential for near-term quantum advantage but face challenges from barren plateaus, where gradients vanish, and poorly conditioned optimization landscapes. We introduce GuiderNet, a meta-learning framework that conditions Parameterized Quantum Circuits (PQCs) using data-dependent parameter shifts aimed at minimizing the log condition number of the Fubini-Study metric tensor. Implemented as a classical neural network, GuiderNet is meta-trained to guide PQC parameters into geometrically favorable regions and is embedded within hybrid quantum-classical pipelines to steer both initialization and adaptive modulation during training. Applied to the Kaggle Diabetes classification task, GuiderNet reduces cumulative training loss by over 5x, improves test accuracy from 75.3% to 98.6%, and increases the minority-class F1 score from 0.67 to 0.95. It also suppresses gradient explosion and stabilizes parameter updates, enabling smoother and more robust optimization. These results demonstrate that geometric meta-conditioning can mitigate barren plateaus and ill-conditioning, providing a scalable approach to enhance trainability and generalization in quantum machine learning.
☆ HQCM-EBTC: A Hybrid Quantum-Classical Model for Explainable Brain Tumor Classification
We propose HQCM-EBTC, a hybrid quantum-classical model for automated brain tumor classification using MRI images. Trained on a dataset of 7,576 scans covering normal, meningioma, glioma, and pituitary classes, HQCM-EBTC integrates a 5-qubit, depth-2 quantum layer with 5 parallel circuits, optimized via AdamW and a composite loss blending cross-entropy and attention consistency. HQCM-EBTC achieves 96.48% accuracy, substantially outperforming the classical baseline (86.72%). It delivers higher precision and F1-scores, especially for glioma detection. t-SNE projections reveal enhanced feature separability in quantum space, and confusion matrices show lower misclassification. Attention map analysis (Jaccard Index) confirms more accurate and focused tumor localization at high-confidence thresholds. These results highlight the promise of quantum-enhanced models in medical imaging, advancing both diagnostic accuracy and interpretability for clinical brain tumor assessment.
☆ Joint Task Offloading and Resource Allocation in Low-Altitude MEC via Graph Attention Diffusion
With the rapid development of the low-altitude economy, air-ground integrated multi-access edge computing (MEC) systems are facing increasing demands for real-time and intelligent task scheduling. In such systems, task offloading and resource allocation encounter multiple challenges, including node heterogeneity, unstable communication links, and dynamic task variations. To address these issues, this paper constructs a three-layer heterogeneous MEC system architecture for low-altitude economic networks, encompassing aerial and ground users as well as edge servers. The system is systematically modeled from the perspectives of communication channels, computational costs, and constraint conditions, and the joint optimization problem of offloading decisions and resource allocation is uniformly abstracted into a graph-structured modeling task. On this basis, we propose a graph attention diffusion-based solution generator (GADSG). This method integrates the contextual awareness of graph attention networks with the solution distribution learning capability of diffusion models, enabling joint modeling and optimization of discrete offloading variables and continuous resource allocation variables within a high-dimensional latent space. We construct multiple simulation datasets with varying scales and topologies. Extensive experiments demonstrate that the proposed GADSG model significantly outperforms existing baseline methods in terms of optimization performance, robustness, and generalization across task structures, showing strong potential for efficient task scheduling in dynamic and complex low-altitude economic network environments.
☆ TOAST: Task-Oriented Adaptive Semantic Transmission over Dynamic Wireless Environments
The evolution toward 6G networks demands a fundamental shift from bit-centric transmission to semantic-aware communication that emphasizes task-relevant information. This work introduces TOAST (Task-Oriented Adaptive Semantic Transmission), a unified framework designed to address the core challenge of multi-task optimization in dynamic wireless environments through three complementary components. First, we formulate adaptive task balancing as a Markov decision process, employing deep reinforcement learning to dynamically adjust the trade-off between image reconstruction fidelity and semantic classification accuracy based on real-time channel conditions. Second, we integrate module-specific Low-Rank Adaptation (LoRA) mechanisms throughout our Swin Transformer-based joint source-channel coding architecture, enabling parameter-efficient fine-tuning that dramatically reduces adaptation overhead while maintaining full performance across diverse channel impairments including Additive White Gaussian Noise (AWGN), fading, phase noise, and impulse interference. Third, we incorporate an Elucidating diffusion model that operates in the latent space to restore features corrupted by channel noises, providing substantial quality improvements compared to baseline approaches. Extensive experiments across multiple datasets demonstrate that TOAST achieves superior performance compared to baseline approaches, with significant improvements in both classification accuracy and reconstruction quality at low Signal-to-Noise Ratio (SNR) conditions while maintaining robust performance across all tested scenarios.
☆ Advancements and Challenges in Continual Reinforcement Learning: A Comprehensive Review
The diversity of tasks and dynamic nature of reinforcement learning (RL) require RL agents to be able to learn sequentially and continuously, a learning paradigm known as continuous reinforcement learning. This survey reviews how continual learning transforms RL agents into dynamic continual learners. This enables RL agents to acquire and retain useful and reusable knowledge seamlessly. The paper delves into fundamental aspects of continual reinforcement learning, exploring key concepts, significant challenges, and novel methodologies. Special emphasis is placed on recent advancements in continual reinforcement learning within robotics, along with a succinct overview of evaluation environments utilized in prominent research, facilitating accessibility for newcomers to the field. The review concludes with a discussion on limitations and promising future directions, providing valuable insights for researchers and practitioners alike.
comment: 65 pages, 9 figures
☆ Thompson Sampling in Function Spaces via Neural Operators
We propose an extension of Thompson sampling to optimization problems over function spaces where the objective is a known functional of an unknown operator's output. We assume that functional evaluations are inexpensive, while queries to the operator (such as running a high-fidelity simulator) are costly. Our algorithm employs a sample-then-optimize approach using neural operator surrogates. This strategy avoids explicit uncertainty quantification by treating trained neural operators as approximate samples from a Gaussian process. We provide novel theoretical convergence guarantees, based on Gaussian processes in the infinite-dimensional setting, under minimal assumptions. We benchmark our method against existing baselines on functional optimization tasks involving partial differential equations and other nonlinear operator-driven phenomena, demonstrating improved sample efficiency and competitive performance.
comment: Under review
Interactive Multi-Objective Probabilistic Preference Learning with Soft and Hard Bounds
High-stakes decision-making involves navigating multiple competing objectives with expensive evaluations. For instance, in brachytherapy, clinicians must balance maximizing tumor coverage (e.g., an aspirational target or soft bound of >95% coverage) against strict organ dose limits (e.g., a non-negotiable hard bound of <601 cGy to the bladder), with each plan evaluation being resource-intensive. Selecting Pareto-optimal solutions that match implicit preferences is challenging, as exhaustive Pareto frontier exploration is computationally and cognitively prohibitive, necessitating interactive frameworks to guide users. While decision-makers (DMs) often possess domain knowledge to narrow the search via such soft-hard bounds, current methods often lack systematic approaches to iteratively refine these multi-faceted preference structures. Critically, DMs must trust their final decision, confident they haven't missed superior alternatives; this trust is paramount in high-consequence scenarios. We present Active-MoSH, an interactive local-global framework designed for this process. Its local component integrates soft-hard bounds with probabilistic preference learning, maintaining distributions over DM preferences and bounds for adaptive Pareto subset refinement. This is guided by an active sampling strategy optimizing exploration-exploitation while minimizing cognitive burden. To build DM trust, Active-MoSH's global component, T-MoSH, leverages multi-objective sensitivity analysis to identify potentially overlooked, high-value points beyond immediate feedback. We demonstrate Active-MoSH's performance benefits through diverse synthetic and real-world applications. A user study on AI-generated image selection further validates our hypotheses regarding the framework's ability to improve convergence, enhance DM trust, and provide expressive preference articulation, enabling more effective DMs.
☆ UnMix-NeRF: Spectral Unmixing Meets Neural Radiance Fields ICCV 2025
Neural Radiance Field (NeRF)-based segmentation methods focus on object semantics and rely solely on RGB data, lacking intrinsic material properties. This limitation restricts accurate material perception, which is crucial for robotics, augmented reality, simulation, and other applications. We introduce UnMix-NeRF, a framework that integrates spectral unmixing into NeRF, enabling joint hyperspectral novel view synthesis and unsupervised material segmentation. Our method models spectral reflectance via diffuse and specular components, where a learned dictionary of global endmembers represents pure material signatures, and per-point abundances capture their distribution. For material segmentation, we use spectral signature predictions along learned endmembers, allowing unsupervised material clustering. Additionally, UnMix-NeRF enables scene editing by modifying learned endmember dictionaries for flexible material-based appearance manipulation. Extensive experiments validate our approach, demonstrating superior spectral reconstruction and material segmentation to existing methods. Project page: https://www.factral.co/UnMix-NeRF.
comment: Paper accepted at ICCV 2025 main conference
☆ A Survey of Continual Reinforcement Learning
Reinforcement Learning (RL) is an important machine learning paradigm for solving sequential decision-making problems. Recent years have witnessed remarkable progress in this field due to the rapid development of deep neural networks. However, the success of RL currently relies on extensive training data and computational resources. In addition, RL's limited ability to generalize across tasks restricts its applicability in dynamic and real-world environments. With the arisen of Continual Learning (CL), Continual Reinforcement Learning (CRL) has emerged as a promising research direction to address these limitations by enabling agents to learn continuously, adapt to new tasks, and retain previously acquired knowledge. In this survey, we provide a comprehensive examination of CRL, focusing on its core concepts, challenges, and methodologies. Firstly, we conduct a detailed review of existing works, organizing and analyzing their metrics, tasks, benchmarks, and scenario settings. Secondly, we propose a new taxonomy of CRL methods, categorizing them into four types from the perspective of knowledge storage and/or transfer. Finally, our analysis highlights the unique challenges of CRL and provides practical insights into future directions.
comment: This work has been submitted to the IEEE TPAMI
☆ SPADE: Spatial Transcriptomics and Pathology Alignment Using a Mixture of Data Experts for an Expressive Latent Space
The rapid growth of digital pathology and advances in self-supervised deep learning have enabled the development of foundational models for various pathology tasks across diverse diseases. While multimodal approaches integrating diverse data sources have emerged, a critical gap remains in the comprehensive integration of whole-slide images (WSIs) with spatial transcriptomics (ST), which is crucial for capturing critical molecular heterogeneity beyond standard hematoxylin & eosin (H&E) staining. We introduce SPADE, a foundation model that integrates histopathology with ST data to guide image representation learning within a unified framework, in effect creating an ST-informed latent space. SPADE leverages a mixture-of-data experts technique, where experts, created via two-stage feature-space clustering, use contrastive learning to learn representations of co-registered WSI patches and gene expression profiles. Pre-trained on the comprehensive HEST-1k dataset, SPADE is evaluated on 14 downstream tasks, demonstrating significantly superior few-shot performance compared to baseline models, highlighting the benefits of integrating morphological and molecular information into one latent space.
☆ The Consistency Hypothesis in Uncertainty Quantification for Large Language Models
Estimating the confidence of large language model (LLM) outputs is essential for real-world applications requiring high user trust. Black-box uncertainty quantification (UQ) methods, relying solely on model API access, have gained popularity due to their practical benefits. In this paper, we examine the implicit assumption behind several UQ methods, which use generation consistency as a proxy for confidence, an idea we formalize as the consistency hypothesis. We introduce three mathematical statements with corresponding statistical tests to capture variations of this hypothesis and metrics to evaluate LLM output conformity across tasks. Our empirical investigation, spanning 8 benchmark datasets and 3 tasks (question answering, text summarization, and text-to-SQL), highlights the prevalence of the hypothesis under different settings. Among the statements, we highlight the `Sim-Any' hypothesis as the most actionable, and demonstrate how it can be leveraged by proposing data-free black-box UQ methods that aggregate similarities between generations for confidence estimation. These approaches can outperform the closest baselines, showcasing the practical value of the empirically observed consistency hypothesis.
comment: Accepted by The Conference on Uncertainty in Artificial Intelligence (UAI) 2025
☆ Koopman operator-based discussion on partial observation in stochastic systems
It is sometimes difficult to achieve a complete observation for a full set of observables, and partial observations are necessary. For deterministic systems, the Mori-Zwanzig formalism provides a theoretical framework for handling partial observations. Recently, data-driven algorithms based on the Koopman operator theory have made significant progress, and there is a discussion to connect the Mori-Zwanzig formalism with the Koopman operator theory. In this work, we discuss the effects of partial observation in stochastic systems using the Koopman operator theory. The discussion clarifies the importance of distinguishing the state space and the function space in stochastic systems. Even in stochastic systems, the delay embedding technique is beneficial for partial observation, and several numerical experiments showed a power-law behavior of the accuracy for the amplitude of the additive noise. We also discuss the relation between the exponent of the power-law behavior and the effects of partial observation.
comment: 23 pages, 5 figures
☆ Adversarial Threats in Quantum Machine Learning: A Survey of Attacks and Defenses
Quantum Machine Learning (QML) integrates quantum computing with classical machine learning, primarily to solve classification, regression and generative tasks. However, its rapid development raises critical security challenges in the Noisy Intermediate-Scale Quantum (NISQ) era. This chapter examines adversarial threats unique to QML systems, focusing on vulnerabilities in cloud-based deployments, hybrid architectures, and quantum generative models. Key attack vectors include model stealing via transpilation or output extraction, data poisoning through quantum-specific perturbations, reverse engineering of proprietary variational quantum circuits, and backdoor attacks. Adversaries exploit noise-prone quantum hardware and insufficiently secured QML-as-a-Service (QMLaaS) workflows to compromise model integrity, ownership, and functionality. Defense mechanisms leverage quantum properties to counter these threats. Noise signatures from training hardware act as non-invasive watermarks, while hardware-aware obfuscation techniques and ensemble strategies disrupt cloning attempts. Emerging solutions also adapt classical adversarial training and differential privacy to quantum settings, addressing vulnerabilities in quantum neural networks and generative architectures. However, securing QML requires addressing open challenges such as balancing noise levels for reliability and security, mitigating cross-platform attacks, and developing quantum-classical trust frameworks. This chapter summarizes recent advances in attacks and defenses, offering a roadmap for researchers and practitioners to build robust, trustworthy QML systems resilient to evolving adversarial landscapes.
comment: 23 pages, 5 figures
☆ The Cost of Avoiding Backpropagation
Forward-mode automatic differentiation (FmAD) and zero-order (ZO) optimization have been proposed as memory-efficient alternatives to backpropagation (BP) for gradient computation, especially in low-resource settings. However, their practical benefits remain unclear due to two key gaps: a lack of comparison against memory-efficient BP variants, such as activation checkpointing, and a lack of a unified theoretical analysis. This work presents a comprehensive theoretical and empirical comparison of BP, FmAD, and ZO methods. Our theoretical analysis shows that while FmAD, and ZO can reduce memory usage, they incur significant costs in accuracy, convergence speed, and computation compared to BP with checkpointing. These drawbacks worsen with larger models or constrained perturbation budgets. Empirical experiments on large language and vision-language models show that BP with checkpointing outperforms FmAD and ZO variants, including those enhanced with variance reduction, achieving up to 31.1% higher accuracy, 34.8% faster convergence, and 3.8x fewer computations at comparable memory usage. Our results highlight fundamental limitations of FmAD and ZO, and reaffirm BP with checkpointing as the most effective strategy for model training under memory-constrained settings. Our code is available at https://github.com/Astuary/The_Cost_of_Avoiding_Backpropagation.
☆ Fetal Sleep: A Cross-Species Review of Physiology, Measurement, and Classification
Fetal sleep is a relatively underexplored yet vital aspect of prenatal neurodevelopment. Understanding fetal sleep patterns could provide insights into early brain maturation and help clinicians detect signs of neurological compromise that arise due to fetal hypoxia or fetal growth restriction. This review synthesizes over eight decades of research on the physiological characteristics, ontogeny, and regulation of fetal sleep. We compare sleep-state patterns in humans and large animal models, highlighting species-specific differences and the presence of sleep-state analogs. We review both invasive techniques in animals and non-invasive modalities in humans. Computational methods for sleep-state classification are also examined, including rule-based approaches (with and without clustering-based preprocessing) and state-of-the-art deep learning techniques. Finally, we discuss how intrauterine conditions such as hypoxia and fetal growth restriction can disrupt fetal sleep. This review provides a comprehensive foundation for the development of objective, multimodal, and non-invasive fetal sleep monitoring technologies to support early diagnosis and intervention in prenatal care.
comment: Review article, 17 pages, 1 figure, 5 tables, submitted to Sleep (under review)
☆ Few-Shot Segmentation of Historical Maps via Linear Probing of Vision Foundation Models
As rich sources of history, maps provide crucial insights into historical changes, yet their diverse visual representations and limited annotated data pose significant challenges for automated processing. We propose a simple yet effective approach for few-shot segmentation of historical maps, leveraging the rich semantic embeddings of large vision foundation models combined with parameter-efficient fine-tuning. Our method outperforms the state-of-the-art on the Siegfried benchmark dataset in vineyard and railway segmentation, achieving +5% and +13% relative improvements in mIoU in 10-shot scenarios and around +20% in the more challenging 5-shot setting. Additionally, it demonstrates strong performance on the ICDAR 2021 competition dataset, attaining a mean PQ of 67.3% for building block segmentation, despite not being optimized for this shape-sensitive metric, underscoring its generalizability. Notably, our approach maintains high performance even in extremely low-data regimes (10- & 5-shot), while requiring only 689k trainable parameters - just 0.21% of the total model size. Our approach enables precise segmentation of diverse historical maps while drastically reducing the need for manual annotations, advancing automated processing and analysis in the field. Our implementation is publicly available at: https://github.com/RafaelSterzinger/few-shot-map-segmentation.
comment: 18 pages, accepted at ICDAR2025
♻ ☆ L2MAC: Large Language Model Automatic Computer for Extensive Code Generation ICLR
Transformer-based large language models (LLMs) are constrained by the fixed context window of the underlying transformer architecture, hindering their ability to produce long and coherent outputs. Memory-augmented LLMs are a promising solution, but current approaches cannot handle long output generation tasks since they (1) only focus on reading memory and reduce its evolution to the concatenation of new memories or (2) use very specialized memories that cannot adapt to other domains. This paper presents L2MAC, the first practical LLM-based general-purpose stored-program automatic computer (von Neumann architecture) framework, an LLM-based multi-agent system, for long and consistent output generation. Its memory has two components: the instruction registry, which is populated with a prompt program to solve the user-given task, and a file store, which will contain the final and intermediate outputs. Each instruction in turn is executed by a separate LLM agent, whose context is managed by a control unit capable of precise memory reading and writing to ensure effective interaction with the file store. These components enable L2MAC to generate extensive outputs, bypassing the constraints of the finite context window while producing outputs that fulfill a complex user-specified task. We empirically demonstrate that L2MAC achieves state-of-the-art performance in generating large codebases for system design tasks, significantly outperforming other coding methods in implementing the detailed user-specified task; we show that L2MAC works for general-purpose extensive text-based tasks, such as writing an entire book; and we provide valuable insights into L2MAC's performance improvement over existing methods.
comment: Published in The Twelfth International Conference on Learning Representations (ICLR), 2024. Copyright 2023 by the author(s)
♻ ☆ Maximizing Confidence Alone Improves Reasoning
Reinforcement learning (RL) has enabled machine learning models to achieve significant advances in many fields. Most recently, RL has empowered frontier language models to solve challenging math, science, and coding problems. However, central to any RL algorithm is the reward function, and reward engineering is a notoriously difficult problem in any domain. In this paper, we propose RENT: Reinforcement Learning via Entropy Minimization -- a fully unsupervised RL method that requires no external reward or ground-truth answers, and instead uses the model's entropy of its underlying distribution as an intrinsic reward. We find that by reinforcing the chains of thought that yield high model confidence on its generated answers, the model improves its reasoning ability. In our experiments, we showcase these improvements on an extensive suite of commonly-used reasoning benchmarks, including GSM8K, MATH500, AMC, AIME, and GPQA, and models of varying sizes from the Qwen, Mistral, and Llama families. The generality of our unsupervised learning method lends itself to applicability in a wide range of domains where external supervision is unavailable.
comment: Website: https://rent-rl.github.io/
♻ ☆ Decoupled SGDA for Games with Intermittent Strategy Communication
We focus on reducing communication overhead in multiplayer games, where frequently exchanging strategies between players is not feasible and players have noisy or outdated strategies of the other players. We introduce Decoupled SGDA, a novel adaptation of Stochastic Gradient Descent Ascent (SGDA). In this approach, players independently update their strategies based on outdated opponent strategies, with periodic synchronization to align strategies. For Strongly-Convex-Strongly-Concave (SCSC) games, we demonstrate that Decoupled SGDA achieves near-optimal communication complexity comparable to the best-known GDA rates. For weakly coupled games where the interaction between players is lower relative to the non-interactive part of the game, Decoupled SGDA significantly reduces communication costs compared to standard SGDA. Our findings extend to multi-player games. To provide insights into the effect of communication frequency and convergence, we extensively study the convergence of Decoupled SGDA for quadratic minimax problems. Lastly, in settings where the noise over the players is imbalanced, Decoupled SGDA significantly outperforms federated minimax methods.
How to Train Long-Context Language Models (Effectively) ACL 2025
We study continued training and supervised fine-tuning (SFT) of a language model (LM) to make effective use of long-context information. We first establish a reliable evaluation protocol to guide model development -- instead of perplexity or simple needle-in-a-haystack (NIAH) tests, we use a broad set of long-context downstream tasks, and we evaluate models after SFT as this better reveals long-context abilities. Supported by our robust evaluations, we run thorough experiments to decide the data mix for continued pre-training, the instruction tuning dataset, and many other design choices such as position extrapolation. We find that (1) code repositories and books are excellent sources of long data, but it is crucial to combine them with high-quality short-context data; (2) training with a sequence length beyond the evaluation length boosts long-context performance; (3) for SFT, using only short instruction datasets yields strong performance on long-context tasks. Our final model, ProLong-8B, which is initialized from Llama-3 and trained on 40B tokens, demonstrates state-of-the-art long-context performance among similarly sized models at a length of 128K. ProLong outperforms Llama-3.1-8B-Instruct on the majority of long-context tasks despite using only 5% as many tokens during long-context training. Additionally, ProLong can effectively process up to 512K tokens, one of the longest context windows of publicly available LMs.
comment: Accepted to ACL 2025. Our code, data, and models are available at https://github.com/princeton-nlp/ProLong
♻ ☆ Robust Detection of Watermarks for Large Language Models Under Human Edits
Watermarking has offered an effective approach to distinguishing text generated by large language models (LLMs) from human-written text. However, the pervasive presence of human edits on LLM-generated text dilutes watermark signals, thereby significantly degrading detection performance of existing methods. In this paper, by modeling human edits through mixture model detection, we introduce a new method in the form of a truncated goodness-of-fit test for detecting watermarked text under human edits, which we refer to as Tr-GoF. We prove that the Tr-GoF test achieves optimality in robust detection of the Gumbel-max watermark in a certain asymptotic regime of substantial text modifications and vanishing watermark signals. Importantly, Tr-GoF achieves this optimality \textit{adaptively} as it does not require precise knowledge of human edit levels or probabilistic specifications of the LLMs, in contrast to the optimal but impractical (Neyman--Pearson) likelihood ratio test. Moreover, we establish that the Tr-GoF test attains the highest detection efficiency rate in a certain regime of moderate text modifications. In stark contrast, we show that sum-based detection rules, as employed by existing methods, fail to achieve optimal robustness in both regimes because the additive nature of their statistics is less resilient to edit-induced noise. Finally, we demonstrate the competitive and sometimes superior empirical performance of the Tr-GoF test on both synthetic data and open-source LLMs in the OPT and LLaMA families.
♻ ☆ Learning Non-Local Molecular Interactions via Equivariant Local Representations and Charge Equilibration
Graph Neural Network (GNN) potentials relying on chemical locality offer near-quantum mechanical accuracy at significantly reduced computational costs. Message-passing GNNs model interactions beyond their immediate neighborhood by propagating local information between neighboring particles while remaining effectively local. However, locality precludes modeling long-range effects critical to many real-world systems, such as charge transfer, electrostatic interactions, and dispersion effects. In this work, we propose the Charge Equilibration Layer for Long-range Interactions (CELLI) to address the challenge of efficiently modeling non-local interactions. This novel architecture generalizes the classical charge equilibration (Qeq) method to a model-agnostic building block for modern equivariant GNN potentials. Therefore, CELLI extends the capability of GNNs to model long-range interactions while providing high interpretability through explicitly modeled charges. On benchmark systems, CELLI achieves state-of-the-art results for strictly local models. CELLI generalizes to diverse datasets and large structures while providing high computational efficiency and robust predictions.
♻ ☆ Learning Networks from Wide-Sense Stationary Stochastic Processes
Complex networked systems driven by latent inputs are common in fields like neuroscience, finance, and engineering. A key inference problem here is to learn edge connectivity from node outputs (potentials). We focus on systems governed by steady-state linear conservation laws: $X_t = {L^{\ast}}Y_{t}$, where $X_t, Y_t \in \mathbb{R}^p$ denote inputs and potentials, respectively, and the sparsity pattern of the $p \times p$ Laplacian $L^{\ast}$ encodes the edge structure. Assuming $X_t$ to be a wide-sense stationary stochastic process with a known spectral density matrix, we learn the support of $L^{\ast}$ from temporally correlated samples of $Y_t$ via an $\ell_1$-regularized Whittle's maximum likelihood estimator (MLE). The regularization is particularly useful for learning large-scale networks in the high-dimensional setting where the network size $p$ significantly exceeds the number of samples $n$. We show that the MLE problem is strictly convex, admitting a unique solution. Under a novel mutual incoherence condition and certain sufficient conditions on $(n, p, d)$, we show that the ML estimate recovers the sparsity pattern of $L^\ast$ with high probability, where $d$ is the maximum degree of the graph underlying $L^{\ast}$. We provide recovery guarantees for $L^\ast$ in element-wise maximum, Frobenius, and operator norms. Finally, we complement our theoretical results with several simulation studies on synthetic and benchmark datasets, including engineered systems (power and water networks), and real-world datasets from neural systems (such as the human brain).
♻ ☆ Scalable Hypergraph Structure Learning with Diverse Smoothness Priors
In graph signal processing, learning the weighted connections between nodes from a set of sample signals is a fundamental task when the underlying relationships are not known a priori. This task is typically addressed by finding a graph Laplacian on which the observed signals are smooth. With the extension of graphs to hypergraphs - where edges can connect more than two nodes - graph learning methods have similarly been generalized to hypergraphs. However, the absence of a unified framework for calculating total variation has led to divergent definitions of smoothness and, consequently, differing approaches to hyperedge recovery. We confront this challenge through generalization of several previously proposed hypergraph total variations, subsequently allowing ease of substitution into a vector based optimization. To this end, we propose a novel hypergraph learning method that recovers a hypergraph topology from time-series signals based on a smoothness prior. Our approach, designated as Hypergraph Structure Learning with Smoothness (HSLS), addresses key limitations in prior works, such as hyperedge selection and convergence issues, by formulating the problem as a convex optimization solved via a forward-backward-forward algorithm, ensuring guaranteed convergence. Additionally, we introduce a process that simultaneously limits the span of the hyperedge search and maintains a valid hyperedge selection set. In doing so, our method becomes scalable in increasingly complex network structures. The experimental results demonstrate improved performance, in terms of accuracy, over other state-of-the-art hypergraph inference methods; furthermore, we empirically show our method to be robust to total variation terms, biased towards global smoothness, and scalable to larger hypergraphs.
comment: 15 pages, 7 figures, submitted to IEEE for possible publication; Section I includes more applications, comparisons, and enumerated list of novel contributions; removed numerical analysis of TV terms in Section II, added more general discussion; updated Algorithm 1 and corresponding text; third experiment of Section V-C replaced with new experiment
♻ ☆ Multi-Turn Code Generation Through Single-Step Rewards
We address the problem of code generation from multi-turn execution feedback. Existing methods either generate code without feedback or use complex, hierarchical reinforcement learning to optimize multi-turn rewards. We propose a simple yet scalable approach, $\mu$Code, that solves multi-turn code generation using only single-step rewards. Our key insight is that code generation is a one-step recoverable MDP, where the correct code can be recovered from any intermediate code state in a single turn. $\mu$Code iteratively trains both a generator to provide code solutions conditioned on multi-turn execution feedback and a verifier to score the newly generated code. Experimental evaluations show that our approach achieves significant improvements over the state-of-the-art baselines. We provide analysis of the design choices of the reward models and policy, and show the efficacy of $\mu$Code at utilizing the execution feedback. Our code is available at https://github.com/portal-cornell/muCode.
comment: 9 pages (not including references or appendix); 5 figures (in main paper); (v2) camera-ready version
♻ ☆ Gradual Domain Adaptation for Graph Learning
Existing literature lacks a graph domain adaptation technique for handling large distribution shifts, primarily due to the difficulty in simulating an evolving path from source to target graph. To make a breakthrough, we present a graph gradual domain adaptation (GGDA) framework with the construction of a compact domain sequence that minimizes information loss in adaptations. Our approach starts with an efficient generation of knowledge-preserving intermediate graphs over the Fused Gromov-Wasserstein (FGW) metric. With the bridging data pool, GGDA domains are then constructed via a novel vertex-based domain progression, which comprises "close" vertex selections and adaptive domain advancement to enhance inter-domain information transferability. Theoretically, our framework concretizes the intractable inter-domain distance $W_p(\mu_t,\mu_{t+1})$ via implementable upper and lower bounds, enabling flexible adjustments of this metric for optimizing domain formation. Extensive experiments under various transfer scenarios validate the superior performance of our GGDA framework.
♻ ☆ How do Probabilistic Graphical Models and Graph Neural Networks Look at Network Data?
Graphs are a powerful data structure for representing relational data and are widely used to describe complex real-world systems. Probabilistic Graphical Models (PGMs) and Graph Neural Networks (GNNs) can both leverage graph-structured data, but their inherent functioning is different. The question is how do they compare in capturing the information contained in networked datasets? We address this objective by solving a link prediction task and we conduct three main experiments, on both synthetic and real networks: one focuses on how PGMs and GNNs handle input features, while the other two investigate their robustness to noisy features and increasing heterophily of the graph. PGMs do not necessarily require features on nodes, while GNNs cannot exploit the network edges alone, and the choice of input features matters. We find that GNNs are outperformed by PGMs when input features are low-dimensional or noisy, mimicking many real scenarios where node attributes might be scalar or noisy. Then, we find that PGMs are more robust than GNNs when the heterophily of the graph is increased. Finally, to assess performance beyond prediction tasks, we also compare the two frameworks in terms of their computational complexity and interpretability.
♻ ☆ KITAB-Bench: A Comprehensive Multi-Domain Benchmark for Arabic OCR and Document Understanding ACL 2025
With the growing adoption of Retrieval-Augmented Generation (RAG) in document processing, robust text recognition has become increasingly critical for knowledge extraction. While OCR (Optical Character Recognition) for English and other languages benefits from large datasets and well-established benchmarks, Arabic OCR faces unique challenges due to its cursive script, right-to-left text flow, and complex typographic and calligraphic features. We present KITAB-Bench, a comprehensive Arabic OCR benchmark that fills the gaps in current evaluation systems. Our benchmark comprises 8,809 samples across 9 major domains and 36 sub-domains, encompassing diverse document types including handwritten text, structured tables, and specialized coverage of 21 chart types for business intelligence. Our findings show that modern vision-language models (such as GPT-4o, Gemini, and Qwen) outperform traditional OCR approaches (like EasyOCR, PaddleOCR, and Surya) by an average of 60% in Character Error Rate (CER). Furthermore, we highlight significant limitations of current Arabic OCR models, particularly in PDF-to-Markdown conversion, where the best model Gemini-2.0-Flash achieves only 65% accuracy. This underscores the challenges in accurately recognizing Arabic text, including issues with complex fonts, numeral recognition errors, word elongation, and table structure detection. This work establishes a rigorous evaluation framework that can drive improvements in Arabic document analysis methods and bridge the performance gap with English OCR technologies.
comment: 17 pages, 5 figures, ACL 2025
♻ ☆ Spring-block theory of feature learning in deep neural networks
Feature-learning deep nets progressively collapse data to a regular low-dimensional geometry. How this emerges from the collective action of nonlinearity, noise, learning rate, and other factors, has eluded first-principles theories built from microscopic neuronal dynamics. We exhibit a noise-nonlinearity phase diagram that identifies regimes where shallow or deep layers learn more effectively and propose a macroscopic mechanical theory that reproduces the diagram and links feature learning across layers to generalization.
♻ ☆ Fairness-Optimized Synthetic EHR Generation for Arbitrary Downstream Predictive Tasks
Among various aspects of ensuring the responsible design of AI tools for healthcare applications, addressing fairness concerns has been a key focus area. Specifically, given the wide spread of electronic health record (EHR) data and their huge potential to inform a wide range of clinical decision support tasks, improving fairness in this category of health AI tools is of key importance. While such a broad problem (mitigating fairness in EHR-based AI models) has been tackled using various methods, task- and model-agnostic methods are noticeably rare. In this study, we aimed to target this gap by presenting a new pipeline that generates synthetic EHR data, which is not only consistent with (faithful to) the real EHR data but also can reduce the fairness concerns (defined by the end-user) in the downstream tasks, when combined with the real data. We demonstrate the effectiveness of our proposed pipeline across various downstream tasks and two different EHR datasets. Our proposed pipeline can add a widely applicable and complementary tool to the existing toolbox of methods to address fairness in health AI applications, such as those modifying the design of a downstream model. The codebase for our project is available at https://github.com/healthylaife/FairSynth
comment: The paper has been accepted at the IEEE/ACM conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) 2025
♻ ☆ Performance of Rank-One Tensor Approximation on Incomplete Data
We are interested in the estimation of a rank-one tensor signal when only a portion $\varepsilon$ of its noisy observation is available. We show that the study of this problem can be reduced to that of a random matrix model whose spectral analysis gives access to the reconstruction performance. These results shed light on and specify the loss of performance induced by an artificial reduction of the memory cost of a tensor via the deletion of a random part of its entries.
♻ ☆ No More Sliding Window: Efficient 3D Medical Image Segmentation with Differentiable Top-k Patch Sampling
3D models surpass 2D models in CT/MRI segmentation by effectively capturing inter-slice relationships. However, the added depth dimension substantially increases memory consumption. While patch-based training alleviates memory constraints, it significantly slows down the inference speed due to the sliding window (SW) approach. We propose No-More-Sliding-Window (NMSW), a novel end-to-end trainable framework that enhances the efficiency of generic 3D segmentation backbone during an inference step by eliminating the need for SW. NMSW employs a differentiable Top-k module to selectively sample only the most relevant patches, thereby minimizing redundant computations. When patch-level predictions are insufficient, the framework intelligently leverages coarse global predictions to refine results. Evaluated across 3 tasks using 3 segmentation backbones, NMSW achieves competitive accuracy compared to SW inference while significantly reducing computational complexity by 91% (88.0 to 8.00 TMACs). Moreover, it delivers a 9.1x faster inference on the H100 GPU (99.0 to 8.3 sec) and a 11.1x faster inference on the Xeon Gold CPU (2110 to 189 sec). NMSW is model-agnostic, further boosting efficiency when integrated with any existing efficient segmentation backbones. The code is avaialble: https://github.com/Youngseok0001/open_nmsw.
♻ ☆ Communication-Efficient Heterogeneous Federated Learning with Generalized Heavy-Ball Momentum
Federated Learning (FL) has emerged as the state-of-the-art approach for learning from decentralized data in privacy-constrained scenarios.However, system and statistical challenges hinder its real-world applicability, requiring efficient learning from edge devices and robustness to data heterogeneity. Despite significant research efforts, existing approaches often degrade severely due to the joint effect of heterogeneity and partial client participation. In particular, while momentum appears as a promising approach for overcoming statistical heterogeneity, in current approaches its update is biased towards the most recently sampled clients. As we show in this work, this is the reason why it fails to outperform FedAvg, preventing its effective use in real-world large-scale scenarios. In this work, we propose a novel Generalized Heavy-Ball Momentum (GHBM) and theoretically prove it enables convergence under unbounded data heterogeneity in cyclic partial participation, thereby advancing the understanding of momentum's effectiveness in FL. We then introduce adaptive and communication-efficient variants of GHBM that match the communication complexity of FedAvg in settings where clients can be stateful. Extensive experiments on vision and language tasks confirm our theoretical findings, demonstrating that GHBM substantially improves state-of-the-art performance under random uniform client sampling, particularly in large-scale settings with high data heterogeneity and low client participation. Code is available at https://rickzack.github.io/GHBM.
comment: Accepted at TMLR - reviews at https://openreview.net/forum?id=LNoFjcLywb
♻ ☆ No Metric to Rule Them All: Toward Principled Evaluations of Graph-Learning Datasets ICML 2025
Benchmark datasets have proved pivotal to the success of graph learning, and good benchmark datasets are crucial to guide the development of the field. Recent research has highlighted problems with graph-learning datasets and benchmarking practices -- revealing, for example, that methods which ignore the graph structure can outperform graph-based approaches. Such findings raise two questions: (1) What makes a good graph-learning dataset, and (2) how can we evaluate dataset quality in graph learning? Our work addresses these questions. As the classic evaluation setup uses datasets to evaluate models, it does not apply to dataset evaluation. Hence, we start from first principles. Observing that graph-learning datasets uniquely combine two modes -- graph structure and node features --, we introduce Rings, a flexible and extensible mode-perturbation framework to assess the quality of graph-learning datasets based on dataset ablations -- i.e., quantifying differences between the original dataset and its perturbed representations. Within this framework, we propose two measures -- performance separability and mode complementarity -- as evaluation tools, each assessing the capacity of a graph dataset to benchmark the power and efficacy of graph-learning methods from a distinct angle. We demonstrate the utility of our framework for dataset evaluation via extensive experiments on graph-level tasks and derive actionable recommendations for improving the evaluation of graph-learning methods. Our work opens new research directions in data-centric graph learning, and it constitutes a step toward the systematic evaluation of evaluations.
comment: Accepted at ICML 2025
♻ ☆ Soft Condorcet Optimization for Ranking of General Agents
Driving progress of AI models and agents requires comparing their performance on standardized benchmarks; for general agents, individual performances must be aggregated across a potentially wide variety of different tasks. In this paper, we describe a novel ranking scheme inspired by social choice frameworks, called Soft Condorcet Optimization (SCO), to compute the optimal ranking of agents: the one that makes the fewest mistakes in predicting the agent comparisons in the evaluation data. This optimal ranking is the maximum likelihood estimate when evaluation data (which we view as votes) are interpreted as noisy samples from a ground truth ranking, a solution to Condorcet's original voting system criteria. SCO ratings are maximal for Condorcet winners when they exist, which we show is not necessarily true for the classical rating system Elo. We propose three optimization algorithms to compute SCO ratings and evaluate their empirical performance. When serving as an approximation to the Kemeny-Young voting method, SCO rankings are on average 0 to 0.043 away from the optimal ranking in normalized Kendall-tau distance across 865 preference profiles from the PrefLib open ranking archive. In a simulated noisy tournament setting, SCO achieves accurate approximations to the ground truth ranking and the best among several baselines when 59\% or more of the preference data is missing. Finally, SCO ranking provides the best approximation to the optimal ranking, measured on held-out test sets, in a problem containing 52,958 human players across 31,049 games of the classic seven-player game of Diplomacy.
♻ ☆ AB-UPT: Scaling Neural CFD Surrogates for High-Fidelity Automotive Aerodynamics Simulations via Anchored-Branched Universal Physics Transformers
Recent advances in neural surrogate modeling offer the potential for transformative innovations in applications such as automotive aerodynamics. Yet, industrial-scale problems often involve volumetric meshes with cell counts reaching 100 million, presenting major scalability challenges. Complex geometries further complicate modeling through intricate surface-volume interactions, while quantities such as vorticity are highly nonlinear and must satisfy strict divergence-free constraints. To address these requirements, we introduce Anchored-Branched Universal Physics Transformers (AB-UPT) as a novel modeling scheme for building neural surrogates for computational fluid dynamics (CFD) simulations. AB-UPT is designed to: (i) decouple geometry encoding and prediction tasks via multi-branch operators; (ii) enable scalability to high-resolution outputs via neural simulation in a low-dimensional latent space, coupled with anchored neural field decoders to predict high-fidelity outputs; (iii) enforce physics consistency by a novel divergence-free formulation. We show that AB-UPT yields state-of-the-art predictive accuracy of surface and volume fields on automotive CFD simulations ranging from 33 thousand up to 150 million mesh cells. Furthermore, our anchored neural field architecture enables the enforcement of hard physical constraints on the physics predictions without degradation in performance, exemplified by modeling divergence-free vorticity fields. Notably, the proposed models can be trained on a single GPU in less than a day and predict industry-standard surface and volume fields within seconds. Additionally, we show that the flexible design of our method enables neural simulation from a computer-aided design geometry alone, omitting the need for costly CFD meshing procedures.
comment: Preprint. Github: https://github.com/Emmi-AI/AB-UPT
♻ ☆ LLM as GNN: Graph Vocabulary Learning for Text-Attributed Graph Foundation Models
Text-Attributed Graphs (TAGs), where each node is associated with text descriptions, are ubiquitous in real-world scenarios. They typically exhibit distinctive structure and domain-specific knowledge, motivating the development of a Graph Foundation Model (GFM) that generalizes across diverse graphs and tasks. Despite large efforts to integrate Large Language Models (LLMs) and Graph Neural Networks (GNNs) for TAGs, existing approaches suffer from decoupled architectures with two-stage alignment, limiting their synergistic potential. Even worse, existing methods assign out-of-vocabulary (OOV) tokens to graph nodes, leading to graph-specific semantics, token explosion, and incompatibility with task-oriented prompt templates, which hinders cross-graph and cross-task transferability. To address these challenges, we propose PromptGFM, a versatile GFM for TAGs grounded in graph vocabulary learning. PromptGFM comprises two key components: (1) Graph Understanding Module, which explicitly prompts LLMs to replicate the finest GNN workflow within the text space, facilitating seamless GNN-LLM integration and elegant graph-text alignment; (2) Graph Inference Module, which establishes a language-based graph vocabulary ensuring expressiveness, transferability, and scalability, enabling readable instructions for LLM fine-tuning. Extensive experiments demonstrate our superiority and transferability across diverse graphs and tasks. The code is available at this: https://github.com/agiresearch/PromptGFM.
♻ ☆ ROME: Robust Multi-Modal Density Estimator
The estimation of probability density functions is a fundamental problem in science and engineering. However, common methods such as kernel density estimation (KDE) have been demonstrated to lack robustness, while more complex methods have not been evaluated in multi-modal estimation problems. In this paper, we present ROME (RObust Multi-modal Estimator), a non-parametric approach for density estimation which addresses the challenge of estimating multi-modal, non-normal, and highly correlated distributions. ROME utilizes clustering to segment a multi-modal set of samples into multiple uni-modal ones and then combines simple KDE estimates obtained for individual clusters in a single multi-modal estimate. We compared our approach to state-of-the-art methods for density estimation as well as ablations of ROME, showing that it not only outperforms established methods but is also more robust to a variety of distributions. Our results demonstrate that ROME can overcome the issues of over-fitting and over-smoothing exhibited by other estimators.
♻ ☆ Graph-Reward-SQL: Execution-Free Reinforcement Learning for Text-to-SQL via Graph Matching and Stepwise Reward
Reinforcement learning (RL) has been widely adopted to enhance the performance of large language models (LLMs) on Text-to-SQL tasks. However, existing methods often rely on execution-based or LLM-based Bradley-Terry reward models. The former suffers from high execution latency caused by repeated database calls, whereas the latter imposes substantial GPU memory overhead, both of which significantly hinder the efficiency and scalability of RL pipelines. To this end, we propose a novel Text-to-SQL RL fine-tuning framework named Graph-Reward-SQL, which employs the GMNScore outcome reward model. We leverage SQL graph representations to provide accurate reward signals while significantly reducing inference time and GPU memory usage. Building on this foundation, we further introduce StepRTM, a stepwise reward model that provides intermediate supervision over Common Table Expression (CTE) subqueries. This encourages both functional correctness and structural clarity of SQL. Extensive comparative and ablation experiments on standard benchmarks, including Spider and BIRD, demonstrate that our method consistently outperforms existing reward models.
♻ ☆ Near Field Localization via AI-Aided Subspace Methods
The increasing demands for high-throughput and energy-efficient wireless communications are driving the adoption of extremely large antennas operating at high-frequency bands. In these regimes, multiple users will reside in the radiative near-field, and accurate localization becomes essential. Unlike conventional far-field systems that rely solely on DOA estimation, near-field localization exploits spherical wavefront propagation to recover both DOA and range information. While subspace-based methods, such as MUSIC and its extensions, offer high resolution and interpretability for near-field localization, their performance is significantly impacted by model assumptions, including non-coherent sources, well-calibrated arrays, and a sufficient number of snapshots. To address these limitations, this work proposes AI-aided subspace methods for near-field localization that enhance robustness to real-world challenges. Specifically, we introduce NF-SubspaceNet, a deep learning-augmented 2D MUSIC algorithm that learns a surrogate covariance matrix to improve localization under challenging conditions, and DCD-MUSIC, a cascaded AI-aided approach that decouples angle and range estimation to reduce computational complexity. We further develop a novel model-order-aware training method to accurately estimate the number of sources, that is combined with casting of near field subspace methods as AI models for learning. Extensive simulations demonstrate that the proposed methods outperform classical and existing deep-learning-based localization techniques, providing robust near-field localization even under coherent sources, miscalibrations, and few snapshots.
comment: Under review for publication in the IEEE
♻ ☆ Design Patterns for Securing LLM Agents against Prompt Injections
As AI agents powered by Large Language Models (LLMs) become increasingly versatile and capable of addressing a broad spectrum of tasks, ensuring their security has become a critical challenge. Among the most pressing threats are prompt injection attacks, which exploit the agent's resilience on natural language inputs -- an especially dangerous threat when agents are granted tool access or handle sensitive information. In this work, we propose a set of principled design patterns for building AI agents with provable resistance to prompt injection. We systematically analyze these patterns, discuss their trade-offs in terms of utility and security, and illustrate their real-world applicability through a series of case studies.
♻ ☆ Generative AI for O-RAN Slicing: A Semi-Supervised Approach with VAE and Contrastive Learning
This paper introduces a novel generative AI (GAI)-driven, unified semi-supervised learning architecture for optimizing resource allocation and network slicing in O-RAN. Termed Generative Semi-Supervised VAE-Contrastive Learning, our approach maximizes the weighted user equipment (UE) throughput and allocates physical resource blocks (PRBs) to enhance the quality of service for eMBB and URLLC services. The GAI framework utilizes a dedicated xApp for intelligent power control and PRB allocation. This integrated GAI model synergistically combines the generative power of a VAE with contrastive learning to achieve robustness in an end-to-end trainable system. It is a semi-supervised training approach that concurrently optimizes supervised regression of resource allocation decisions (i.e., power, UE association, PRB) and unsupervised contrastive objectives. This intrinsic fusion improves the precision of resource management and model generalization in dynamic mobile networks. We evaluated our GAI methodology against exhaustive search and deep Q-Network algorithms using key performance metrics. Results show our integrated GAI approach offers superior efficiency and effectiveness in various scenarios, presenting a compelling GAI-based solution for critical network slicing and resource management challenges in next-generation O-RAN systems.
♻ ☆ SONG: Self-Organizing Neural Graphs
Recent years have seen a surge in research on deep interpretable neural networks with decision trees as one of the most commonly incorporated tools. There are at least three advantages of using decision trees over logistic regression classification models: they are easy to interpret since they are based on binary decisions, they can make decisions faster, and they provide a hierarchy of classes. However, one of the well-known drawbacks of decision trees, as compared to decision graphs, is that decision trees cannot reuse the decision nodes. Nevertheless, decision graphs were not commonly used in deep learning due to the lack of efficient gradient-based training techniques. In this paper, we fill this gap and provide a general paradigm based on Markov processes, which allows for efficient training of the special type of decision graphs, which we call Self-Organizing Neural Graphs (SONG). We provide an extensive theoretical study of SONG, complemented by experiments conducted on Letter, Connect4, MNIST, CIFAR, and TinyImageNet datasets, showing that our method performs on par or better than existing decision models.
comment: Accepted in WACV 2023
♻ ☆ Forecasting the future development in quality and value of professional football players
Transfers in professional football (soccer) are risky investments because of the large transfer fees and high risks involved. Although data-driven models can be used to improve transfer decisions, existing models focus on describing players' historical progress, leaving their future performance unknown. Moreover, recent developments have called for the use of explainable models combined with uncertainty quantification of predictions. This paper assesses explainable machine learning models based on predictive accuracy and uncertainty quantification methods for the prediction of the future development in quality and transfer value of professional football players. The predictive accuracy is studied by training the models to predict the quality and value of players one year ahead. This is carried out by training them on two data sets containing data-driven indicators describing the player quality and player value in historical settings. In general, the random forest model is found to be the most suitable model because it provides accurate predictions as well as an uncertainty quantification method that naturally arises from the bagging procedure of the random forest model. Additionally, this research shows that the development of player performance contains nonlinear patterns and interactions between variables, and that time series information can provide useful information for the modeling of player performance metrics. The resulting models can help football clubs make more informed, data-driven transfer decisions by forecasting player quality and transfer value.
comment: The article itself is on the pages 1-31. The data set used in this article is described in the appendix at the pages 32-39
♻ ☆ CAPM: Fast and Robust Verification on Maxpool-based CNN via Dual Network
This study uses CAPM (Convex Adversarial Polytope for Maxpool-based CNN) to improve the verified bound for general purpose maxpool-based convolutional neural networks (CNNs) under bounded norm adversarial perturbations. The maxpool function is decomposed as a series of ReLU functions to extend the convex relaxation technique to maxpool functions, by which the verified bound can be efficiently computed through a dual network. The experimental results demonstrate that this technique allows the state-of-the-art verification precision for maxpool-based CNNs and involves a much lower computational cost than current verification methods, such as DeepZ, DeepPoly and PRIMA. This method is also applicable to large-scale CNNs, which previous studies show to be often computationally prohibitively expensive. Under certain circumstances, CAPM is 40-times, 20-times or twice as fast and give a significantly higher verification bound (CAPM 98% vs. PRIMA 76%/DeepPoly 73%/DeepZ 8%) as compared to PRIMA/DeepPoly/DeepZ. Furthermore, we additionally present the time complexity of our algorithm as $O(W^2NK)$, where $W$ is the maximum width of the neural network, $N$ is the number of neurons, and $K$ is the size of the maxpool layer's kernel.
♻ ☆ Learning Data-Driven Uncertainty Set Partitions for Robust and Adaptive Energy Forecasting with Missing Data
Short-term forecasting models typically assume the availability of input data (features) when they are deployed and in use. However, equipment failures, disruptions, cyberattacks, may lead to missing features when such models are used operationally, which could negatively affect forecast accuracy, and result in suboptimal operational decisions. In this paper, we use adaptive robust optimization and adversarial machine learning to develop forecasting models that seamlessly handle missing data operationally. We propose linear- and neural network-based forecasting models with parameters that adapt to available features, combining linear adaptation with a novel algorithm for learning data-driven uncertainty set partitions. The proposed adaptive models do not rely on identifying historical missing data patterns and are suitable for real-time operations under stringent time constraints. Extensive numerical experiments on short-term wind power forecasting considering horizons from 15 minutes to 4 hours ahead illustrate that our proposed adaptive models are on par with imputation when data are missing for very short periods (e.g., when only the latest measurement is missing) whereas they significantly outperform imputation when data are missing for longer periods. We further provide insights by showcasing how linear adaptation and data-driven partitions (even with a few subsets) approach the performance of the optimal, yet impractical, method of retraining for every possible realization of missing data.
comment: Revised version, submitted to IEEE-TSG
♻ ☆ C-Learner: Constrained Learning for Causal Inference
Popular debiased estimation methods for causal inference -- such as augmented inverse propensity weighting and targeted maximum likelihood estimation -- enjoy desirable asymptotic properties like statistical efficiency and double robustness but they can produce unstable estimates when there is limited overlap between treatment and control, requiring additional assumptions or ad hoc adjustments in practice (e.g., truncating propensity scores). In contrast, simple plug-in estimators are stable but lack desirable asymptotic properties. We propose a novel debiasing approach that achieves the best of both worlds, producing stable plug-in estimates with desirable asymptotic properties. Our constrained learning framework solves for the best plug-in estimator under the constraint that the first-order error with respect to the plugged-in quantity is zero, and can leverage flexible model classes including neural networks and tree ensembles. In several experimental settings, including ones in which we handle text-based covariates by fine-tuning language models, our constrained learning-based estimator outperforms basic versions of one-step estimation and targeting in challenging settings with limited overlap between treatment and control, and performs similarly otherwise.
♻ ☆ Distilling the Unknown to Unveil Certainty
Out-of-distribution (OOD) detection is critical for identifying test samples that deviate from in-distribution (ID) data, ensuring network robustness and reliability. This paper presents a flexible framework for OOD knowledge distillation that extracts OOD-sensitive information from a network to develop a binary classifier capable of distinguishing between ID and OOD samples in both scenarios, with and without access to training ID data. To accomplish this, we introduce Confidence Amendment (CA), an innovative methodology that transforms an OOD sample into an ID one while progressively amending prediction confidence derived from the network to enhance OOD sensitivity. This approach enables the simultaneous synthesis of both ID and OOD samples, each accompanied by an adjusted prediction confidence, thereby facilitating the training of a binary classifier sensitive to OOD. Theoretical analysis provides bounds on the generalization error of the binary classifier, demonstrating the pivotal role of confidence amendment in enhancing OOD sensitivity. Extensive experiments spanning various datasets and network architectures confirm the efficacy of the proposed method in detecting OOD samples.
♻ ☆ Generative adversarial neural networks for simulating neutrino interactions
We propose a new approach to simulate neutrino scattering events as an alternative to the standard Monte Carlo generator approach. Generative adversarial neural network (GAN) models are developed to simulate charged current neutrino-carbon collisions in the few-GeV energy range. We consider a simplified framework to generate muon kinematic variables, specifically its energy and scattering angle. GAN models are trained on simulation data from \nuwro{} Monte Carlo event generator. Two GAN models have been obtained: one simulating quasielastic neutrino-nucleus scatterings and another simulating all interactions at given neutrino energy. The models work for neutrino energy ranging from 300 MeV to 10 GeV. The performance of both models has been assessed using two statistical metrics. It is shown that both GAN models successfully reproduce the distribution of muon kinematics.
comment: 16 pages, 16 figures
♻ ☆ Time series classification with random convolution kernels: pooling operators and input representations matter
This article presents a new approach based on MiniRocket, called SelF-Rocket, for fast time series classification (TSC). Unlike existing approaches based on random convolution kernels, it dynamically selects the best couple of input representations and pooling operator during the training process. SelF-Rocket achieves state-of-the-art accuracy on the University of California Riverside (UCR) TSC benchmark datasets.
comment: v1: initial version, incorrect evaluation. v2: Method improved, evaluation corrected, title simplified. v3: Add acknowledgments. v4: text correction
♻ ☆ Federated Data-Efficient Instruction Tuning for Large Language Models ACL 2025
Instruction tuning is a crucial step in improving the responsiveness of pretrained large language models (LLMs) to human instructions. Federated learning (FL) helps to exploit the use of vast private instruction data from clients, becoming popular for LLM tuning by improving data diversity. Existing federated tuning simply consumes all local data, causing excessive computational overhead and overfitting to local data, while centralized data-efficient solutions are not suitable for FL due to privacy concerns. This work presents FedHDS, a federated data-efficient instruction tuning approach, which tunes LLMs with a representative subset of edge-side data. It reduces the data redundancy at both intra- and inter-client levels without sharing raw data. Experiments with various LLMs, datasets and partitions show that FedHDS improves Rouge-L on unseen tasks by an average of 10.72% over the SOTA full-data federated instruction tuning methods, while using less than 1.5% of the data samples, improving training efficiency by up to tens of times.
comment: Accepted to ACL 2025 (Findings)
♻ ☆ The Mamba in the Llama: Distilling and Accelerating Hybrid Models NeurIPS 2024
Linear RNN architectures, like Mamba, can be competitive with Transformer models in language modeling while having advantageous deployment characteristics. Given the focus on training large-scale Transformer models, we consider the challenge of converting these pretrained models for deployment. We demonstrate that it is feasible to distill large Transformers into linear RNNs by reusing the linear projection weights from attention layers with academic GPU resources. The resulting hybrid model, which incorporates a quarter of the attention layers, achieves performance comparable to the original Transformer in chat benchmarks and outperforms open-source hybrid Mamba models trained from scratch with trillions of tokens in both chat benchmarks and general benchmarks. Moreover, we introduce a hardware-aware speculative decoding algorithm that accelerates the inference speed of Mamba and hybrid models. Overall we show how, with limited computation resources, we can remove many of the original attention layers and generate from the resulting model more efficiently. Our top-performing model, distilled from Llama3-8B-Instruct, achieves a 29.61 length-controlled win rate on AlpacaEval 2 against GPT-4 and 7.35 on MT-Bench, surpassing the best 8B scale instruction-tuned linear RNN model. We also find that the distilled model has natural length extrapolation, showing almost perfect accuracy in the needle-in-a-haystack test at 20x the distillation length. Code and pre-trained checkpoints are open-sourced at https://github.com/jxiw/MambaInLlama and https://github.com/itsdaniele/speculative_mamba.
comment: NeurIPS 2024. v4 updates: mention concurrent work of speculative decoding for SSM
♻ ☆ BeamLLM: Vision-Empowered mmWave Beam Prediction with Large Language Models
In this paper, we propose BeamLLM, a vision-aided millimeter-wave (mmWave) beam prediction framework leveraging large language models (LLMs) to address the challenges of high training overhead and latency in mmWave communication systems. By combining computer vision (CV) with LLMs' cross-modal reasoning capabilities, the framework extracts user equipment (UE) positional features from RGB images and aligns visual-temporal features with LLMs' semantic space through reprogramming techniques. Evaluated on a realistic vehicle-to-infrastructure (V2I) scenario, the proposed method achieves 61.01% top-1 accuracy and 97.39% top-3 accuracy in standard prediction tasks, significantly outperforming traditional deep learning models. In few-shot prediction scenarios, the performance degradation is limited to 12.56% (top-1) and 5.55% (top-3) from time sample 1 to 10, demonstrating superior prediction capability.
comment: 6 pages, 7 figures, conference
♻ ☆ Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets. Traditionally, this involves using dimensionality reduction (DR) methods to project data onto lower-dimensional spaces or organizing points into meaningful clusters (clustering). In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem. This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem. We empirically demonstrate its relevance to the identification of low-dimensional prototypes representing data at different scales, across multiple image and genomic datasets.
comment: 45 pages, 20 figures
♻ ☆ Green LIME: Improving AI Explainability through Design of Experiments
In artificial intelligence (AI), the complexity of many models and processes surpasses human understanding, making it challenging to determine why a specific prediction is made. This lack of transparency is particularly problematic in critical fields like healthcare, where trust in a model's predictions is paramount. As a result, the explainability of machine learning (ML) and other complex models has become a key area of focus. Efforts to improve model explainability often involve experimenting with AI systems and approximating their behavior through interpretable surrogate mechanisms. However, these procedures can be resource-intensive. Optimal design of experiments, which seeks to maximize the information obtained from a limited number of observations, offers promising methods for improving the efficiency of these explainability techniques. To demonstrate this potential, we explore Local Interpretable Model-agnostic Explanations (LIME), a widely used method introduced by Ribeiro et al. (2016). LIME provides explanations by generating new data points near the instance of interest and passing them through the model. While effective, this process can be computationally expensive, especially when predictions are costly or require many samples. LIME is highly versatile and can be applied to a wide range of models and datasets. In this work, we focus on models involving tabular data, regression tasks, and linear models as interpretable local approximations. By utilizing optimal design of experiments' techniques, we reduce the number of function evaluations of the complex model, thereby reducing the computational effort of LIME by a significant amount. We consider this modified version of LIME to be energy-efficient or "green".
♻ ☆ A Survey on Federated Fine-tuning of Large Language Models
Large Language Models (LLMs) have demonstrated impressive success across various tasks. Integrating LLMs with Federated Learning (FL), a paradigm known as FedLLM, offers a promising avenue for collaborative model adaptation while preserving data privacy. This survey provides a systematic and comprehensive review of FedLLM. We begin by tracing the historical development of both LLMs and FL, summarizing relevant prior research to set the context. Subsequently, we delve into an in-depth analysis of the fundamental challenges inherent in deploying FedLLM. Addressing these challenges often requires efficient adaptation strategies; therefore, we conduct an extensive examination of existing Parameter-Efficient Fine-tuning (PEFT) methods and explore their applicability within the FL framework. To rigorously evaluate the performance of FedLLM, we undertake a thorough review of existing fine-tuning datasets and evaluation benchmarks. Furthermore, we discuss FedLLM's diverse real-world applications across multiple domains. Finally, we identify critical open challenges and outline promising research directions to foster future advancements in FedLLM. This survey aims to serve as a foundational resource for researchers and practitioners, offering valuable insights into the rapidly evolving landscape of federated fine-tuning for LLMs. It also establishes a roadmap for future innovations in privacy-preserving AI. We actively maintain a GitHub repo \href{https://github.com/Clin0212/Awesome-Federated-LLM-Learning}{https://github.com/Clin0212/Awesome-Federated-LLM-Learning} to track cutting-edge advancements in this field.
♻ ☆ Spectraformer: A Unified Random Feature Framework for Transformer
Linearization of attention using various kernel approximation and kernel learning techniques has shown promise. Past methods used a subset of combinations of component functions and weight matrices within the random feature paradigm. We identify the need for a systematic comparison of different combinations of weight matrices and component functions for attention learning in Transformer. Hence, we introduce Spectraformer, a unified framework for approximating and learning the kernel function in the attention mechanism of the Transformer. Our empirical results demonstrate, for the first time, that a random feature-based approach can achieve performance comparable to top-performing sparse and low-rank methods on the challenging Long Range Arena benchmark. Thus, we establish a new state-of-the-art for random feature-based efficient Transformers. The framework also produces many variants that offer different advantages in accuracy, training time, and memory consumption. Our code is available at: https://github.com/cruiseresearchgroup/spectraformer .
♻ ☆ Mitigating Metropolitan Carbon Emissions with Dynamic Eco-driving at Scale
The sheer scale and diversity of transportation make it a formidable sector to decarbonize. Here, we consider an emerging opportunity to reduce carbon emissions: the growing adoption of semi-autonomous vehicles, which can be programmed to mitigate stop-and-go traffic through intelligent speed commands and, thus, reduce emissions. But would such dynamic eco-driving move the needle on climate change? A comprehensive impact analysis has been out of reach due to the vast array of traffic scenarios and the complexity of vehicle emissions. We address this challenge with large-scale scenario modeling efforts and by using multi-task deep reinforcement learning with a carefully designed network decomposition strategy. We perform an in-depth prospective impact assessment of dynamic eco-driving at 6,011 signalized intersections across three major US metropolitan cities, simulating a million traffic scenarios. Overall, we find that vehicle trajectories optimized for emissions can cut city-wide intersection carbon emissions by 11-22%, without harming throughput or safety, and with reasonable assumptions, equivalent to the national emissions of Israel and Nigeria, respectively. We find that 10% eco-driving adoption yields 25%-50% of the total reduction, and nearly 70% of the benefits come from 20% of intersections, suggesting near-term implementation pathways. However, the composition of this high-impact subset of intersections varies considerably across different adoption levels, with minimal overlap, calling for careful strategic planning for eco-driving deployments. Moreover, the impact of eco-driving, when considered jointly with projections of vehicle electrification and hybrid vehicle adoption remains significant. More broadly, this work paves the way for large-scale analysis of traffic externalities, such as time, safety, and air quality, and the potential impact of solution strategies.
comment: Accepted for publication at Transportation Research Part C: Emerging Technologies
♻ ☆ On the Lipschitz Continuity of Set Aggregation Functions and Neural Networks for Sets
The Lipschitz constant of a neural network is connected to several important properties of the network such as its robustness and generalization. It is thus useful in many settings to estimate the Lipschitz constant of a model. Prior work has focused mainly on estimating the Lipschitz constant of multi-layer perceptrons and convolutional neural networks. Here we focus on data modeled as sets or multisets of vectors and on neural networks that can handle such data. These models typically apply some permutation invariant aggregation function, such as the sum, mean or max operator, to the input multisets to produce a single vector for each input sample. In this paper, we investigate whether these aggregation functions are Lipschitz continuous with respect to three distance functions for unordered multisets, and we compute their Lipschitz constants. In the general case, we find that each aggregation function is Lipschitz continuous with respect to only one of the three distance functions. Then, we build on these results to derive upper bounds on the Lipschitz constant of neural networks that can process multisets of vectors, while we also study their stability to perturbations and generalization under distribution shifts. To empirically verify our theoretical analysis, we conduct a series of experiments on datasets from different domains.
♻ ☆ deCIFer: Crystal Structure Prediction from Powder Diffraction Data using Autoregressive Language Models
Novel materials drive progress across applications from energy storage to electronics. Automated characterization of material structures with machine learning methods offers a promising strategy for accelerating this key step in material design. In this work, we introduce an autoregressive language model that performs crystal structure prediction (CSP) from powder diffraction data. The presented model, deCIFer, generates crystal structures in the widely used Crystallographic Information File (CIF) format and can be conditioned on powder X-ray diffraction (PXRD) data. Unlike earlier works that primarily rely on high-level descriptors like composition, deCIFer is also able to use diffraction data to perform CSP. We train deCIFer on nearly 2.3M crystal structures and validate on diverse sets of PXRD patterns for characterizing challenging inorganic crystal systems. Qualitative checks and quantitative assessments using the residual weighted profile show that deCIFer produces structures that more accurately match the target diffraction data. Notably, deCIFer can achieve a 94% match rate on test data. deCIFer bridges experimental diffraction data with computational CSP, lending itself as a powerful tool for crystal structure characterization.
comment: 24 pages, 18 figures, 8 tables. v2: Figure 8 revision. v3: added benchmarks, text revisions
♻ ☆ Embedding-based Approaches to Hyperpartisan News Detection
In this paper, we describe our systems in which the objective is to determine whether a given news article could be considered as hyperpartisan. Hyperpartisan news is news that takes an extremely polarized political standpoint with an intention of creating political divide among the public. We attempted several approaches, including n-grams, sentiment analysis, as well as sentence and document representation using pre-tained ELMo. Our best system using pre-trained ELMo with Bidirectional LSTM achieved an accuracy of 83% through 10-fold cross-validation without much hyperparameter tuning.
comment: The authorship dispute of this article could not be resolved, and it was submitted without the consent of P. Chen
♻ ☆ Step-by-Step Video-to-Audio Synthesis via Negative Audio Guidance
We propose a novel step-by-step video-to-audio generation method that sequentially produces individual audio tracks, each corresponding to a specific sound event in the video. Our approach mirrors traditional Foley workflows, aiming to capture all sound events induced by a given video comprehensively. Each generation step is formulated as a guided video-to-audio synthesis task, conditioned on a target text prompt and previously generated audio tracks. This design is inspired by the idea of concept negation from prior compositional generation frameworks. To enable this guided generation, we introduce a training framework that leverages pre-trained video-to-audio models and eliminates the need for specialized paired datasets, allowing training on more accessible data. Experimental results demonstrate that our method generates multiple semantically distinct audio tracks for a single input video, leading to higher-quality composite audio synthesis than existing baselines.
♻ ☆ Causal Inference Isn't Special: Why It's Just Another Prediction Problem
Causal inference is often portrayed as fundamentally distinct from predictive modeling, with its own terminology, goals, and intellectual challenges. But at its core, causal inference is simply a structured instance of prediction under distribution shift. In both cases, we begin with labeled data from a source domain and seek to generalize to a target domain where outcomes are not observed. The key difference is that in causal inference, the labels -- potential outcomes -- are selectively observed based on treatment assignment, introducing bias that must be addressed through assumptions. This perspective reframes causal estimation as a familiar generalization problem and highlights how techniques from predictive modeling, such as reweighting and domain adaptation, apply directly to causal tasks. It also clarifies that causal assumptions are not uniquely strong -- they are simply more explicit. By viewing causal inference through the lens of prediction, we demystify its logic, connect it to familiar tools, and make it more accessible to practitioners and educators alike.
♻ ☆ Mic-hackathon 2024: Hackathon on Machine Learning for Electron and Scanning Probe Microscopy
Microscopy is a primary source of information on materials structure and functionality at nanometer and atomic scales. The data generated is often well-structured, enriched with metadata and sample histories, though not always consistent in detail or format. The adoption of Data Management Plans (DMPs) by major funding agencies promotes preservation and access. However, deriving insights remains difficult due to the lack of standardized code ecosystems, benchmarks, and integration strategies. As a result, data usage is inefficient and analysis time is extensive. In addition to post-acquisition analysis, new APIs from major microscope manufacturers enable real-time, ML-based analytics for automated decision-making and ML-agent-controlled microscope operation. Yet, a gap remains between the ML and microscopy communities, limiting the impact of these methods on physics, materials discovery, and optimization. Hackathons help bridge this divide by fostering collaboration between ML researchers and microscopy experts. They encourage the development of novel solutions that apply ML to microscopy, while preparing a future workforce for instrumentation, materials science, and applied ML. This hackathon produced benchmark datasets and digital twins of microscopes to support community growth and standardized workflows. All related code is available at GitHub: https://github.com/KalininGroup/Mic-hackathon-2024-codes-publication/tree/1.0.0.1
♻ ☆ Foundation Model Insights and a Multi-Model Approach for Superior Fine-Grained One-shot Subset Selection ICML 2025
One-shot subset selection serves as an effective tool to reduce deep learning training costs by identifying an informative data subset based on the information extracted by an information extractor (IE). Traditional IEs, typically pre-trained on the target dataset, are inherently dataset-dependent. Foundation models (FMs) offer a promising alternative, potentially mitigating this limitation. This work investigates two key questions: (1) Can FM-based subset selection outperform traditional IE-based methods across diverse datasets? (2) Do all FMs perform equally well as IEs for subset selection? Extensive experiments uncovered surprising insights: FMs consistently outperform traditional IEs on fine-grained datasets, whereas their advantage diminishes on coarse-grained datasets with noisy labels. Motivated by these finding, we propose RAM-APL (RAnking Mean-Accuracy of Pseudo-class Labels), a method tailored for fine-grained image datasets. RAM-APL leverages multiple FMs to enhance subset selection by exploiting their complementary strengths. Our approach achieves state-of-the-art performance on fine-grained datasets, including Oxford-IIIT Pet, Food-101, and Caltech-UCSD Birds-200-2011.
comment: 18 pages, 10 figures, accepted by ICML 2025
♻ ☆ Enhancing Cloud Security through Topic Modelling
Protecting cloud applications is critical in an era where security threats are increasingly sophisticated and persistent. Continuous Integration and Continuous Deployment (CI/CD) pipelines are particularly vulnerable, making innovative security approaches essential. This research explores the application of Natural Language Processing (NLP) techniques, specifically Topic Modelling, to analyse security-related text data and anticipate potential threats. We focus on Latent Dirichlet Allocation (LDA) and Probabilistic Latent Semantic Analysis (PLSA) to extract meaningful patterns from data sources, including logs, reports, and deployment traces. Using the Gensim framework in Python, these methods categorise log entries into security-relevant topics (e.g., phishing, encryption failures). The identified topics are leveraged to highlight patterns indicative of security issues across CI/CD's continuous stages (build, test, deploy). This approach introduces a semantic layer that supports early vulnerability recognition and contextual understanding of runtime behaviours.
comment: 7 pages, 5 figures, 28th ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2024-Winter)
♻ ☆ Stability of Primal-Dual Gradient Flow Dynamics for Multi-Block Convex Optimization Problems
We examine stability properties of primal-dual gradient flow dynamics for composite convex optimization problems with multiple, possibly nonsmooth, terms in the objective function under the generalized consensus constraint. The proposed dynamics are based on the proximal augmented Lagrangian and they provide a viable alternative to ADMM which faces significant challenges from both analysis and implementation viewpoints in large-scale multi-block scenarios. In contrast to customized algorithms with individualized convergence guarantees, we develop a systematic approach for solving a broad class of challenging composite optimization problems. We leverage various structural properties to establish global (exponential) convergence guarantees for the proposed dynamics. Our assumptions are much weaker than those required to prove (exponential) stability of primal-dual dynamics as well as (linear) convergence of discrete-time methods such as standard two-block and multi-block ADMM and EXTRA algorithms. Finally, we show necessity of some of our structural assumptions for exponential stability and provide computational experiments to demonstrate the convenience of the proposed approach for parallel and distributed computing applications.
comment: 30 pages; 4 figures
♻ ☆ Advances in Temporal Point Processes: Bayesian, Neural, and LLM Approaches
Temporal point processes (TPPs) are stochastic process models used to characterize event sequences occurring in continuous time. Traditional statistical TPPs have a long-standing history, with numerous models proposed and successfully applied across diverse domains. In recent years, advances in deep learning have spurred the development of neural TPPs, enabling greater flexibility and expressiveness in capturing complex temporal dynamics. The emergence of large language models (LLMs) has further sparked excitement, offering new possibilities for modeling and analyzing event sequences by leveraging their rich contextual understanding. This survey presents a comprehensive review of recent research on TPPs from three perspectives: Bayesian, deep learning, and LLM approaches. We begin with a review of the fundamental concepts of TPPs, followed by an in-depth discussion of model design and parameter estimation techniques in these three frameworks. We also revisit classic application areas of TPPs to highlight their practical relevance. Finally, we outline challenges and promising directions for future research.
♻ ☆ Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation ICML 2025
Advances in Large Language Models (LLMs) have sparked interest in their ability to solve Olympiad-level math problems. However, the training and evaluation of these models are constrained by the limited size and quality of available datasets, as creating large-scale data for such advanced problems requires extensive effort from human experts. In addition, current benchmarks are prone to contamination, leading to unreliable evaluations. In this paper, we present an automated pipeline that leverages the rich resources of the Art of Problem Solving (AoPS) forum, which predominantly features Olympiad-level problems and community-driven solutions. Using open-source LLMs, we develop a method to extract question-answer pairs from the forum, resulting in AoPS-Instruct, a dataset of more than 600,000 high-quality QA pairs. Our experiments demonstrate that fine-tuning LLMs on AoPS-Instruct improves their reasoning abilities across various benchmarks. Moreover, we build an automatic pipeline that introduces LiveAoPSBench, an evolving evaluation set with timestamps, derived from the latest forum data, providing a contamination-resistant benchmark for assessing LLM performance. Notably, we observe a significant decline in LLM performance over time, suggesting their success on older examples may stem from pre-training exposure rather than true reasoning ability. Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning, offering valuable insights into the capabilities and limitations of LLMs in this domain. Our benchmark and code is available at https://github.com/DSL-Lab/aops
comment: ICML 2025 Camera Ready
♻ ☆ Unveiling the Power of Noise Priors: Enhancing Diffusion Models for Mobile Traffic Prediction
Accurate prediction of mobile traffic, i.e., network traffic from cellular base stations, is crucial for optimizing network performance and supporting urban development. However, the non-stationary nature of mobile traffic, driven by human activity and environmental changes, leads to both regular patterns and abrupt variations. Diffusion models excel in capturing such complex temporal dynamics due to their ability to capture the inherent uncertainties. Most existing approaches prioritize designing novel denoising networks but often neglect the critical role of noise itself, potentially leading to sub-optimal performance. In this paper, we introduce a novel perspective by emphasizing the role of noise in the denoising process. Our analysis reveals that noise fundamentally shapes mobile traffic predictions, exhibiting distinct and consistent patterns. We propose NPDiff, a framework that decomposes noise into prior and residual components, with the prior} derived from data dynamics, enhancing the model's ability to capture both regular and abrupt variations. NPDiff can seamlessly integrate with various diffusion-based prediction models, delivering predictions that are effective, efficient, and robust. Extensive experiments demonstrate that it achieves superior performance with an improvement over 30\%, offering a new perspective on leveraging diffusion models in this domain. We provide code and data at https://github.com/tsinghua-fib-lab/NPDiff.
♻ ☆ QT-DoG: Quantization-aware Training for Domain Generalization ICML
A key challenge in Domain Generalization (DG) is preventing overfitting to source domains, which can be mitigated by finding flatter minima in the loss landscape. In this work, we propose Quantization-aware Training for Domain Generalization (QT-DoG) and demonstrate that weight quantization effectively leads to flatter minima in the loss landscape, thereby enhancing domain generalization. Unlike traditional quantization methods focused on model compression, QT-DoG exploits quantization as an implicit regularizer by inducing noise in model weights, guiding the optimization process toward flatter minima that are less sensitive to perturbations and overfitting. We provide both an analytical perspective and empirical evidence demonstrating that quantization inherently encourages flatter minima, leading to better generalization across domains. Moreover, with the benefit of reducing the model size through quantization, we demonstrate that an ensemble of multiple quantized models further yields superior accuracy than the state-of-the-art DG approaches with no computational or memory overheads. Code is released at: https://saqibjaved1.github.io/QT_DoG/.
comment: Accepted at International Conference on Machine Learning (ICML) 2025. Project website: https://saqibjaved1.github.io/QT_DoG/
♻ ☆ Computational Efficient and Minimax Optimal Nonignorable Matrix Completion
While the matrix completion problem has attracted considerable attention over the decades, few works address the nonignorable missing issue and all have their limitations. In this article, we propose a nuclear norm regularized row- and column-wise matrix U-statistic loss function for the generalized nonignorable missing mechanism, a flexible and generally applicable missing mechanism which contains both ignorable and nonignorable missing mechanism assumptions. The proposed method achieves computational efficiency comparable to the existing missing-at-random approaches, while providing the near minimax optimal statistical convergence rate guarantees for the more general nonignorable missing case. We propose an accelerated proximal gradient algorithm to solve the associated optimization problem, and characterize the interaction between algorithmic and statistical convergence. Simulations and real data analyzes further support the practical utility of the proposed method.
♻ ☆ RLSF: Fine-tuning LLMs via Symbolic Feedback
Large Language Models (LLMs) have transformed AI but often struggle with tasks that require domain-specific reasoning and logical alignment. Traditional fine-tuning methods do not leverage the vast amount of symbolic domain-knowledge available to us via symbolic reasoning tools (e.g., provers), and are further limited by sparse rewards and unreliable reward models. We introduce Reinforcement Learning via Symbolic Feedback (RLSF), a novel fine-tuning paradigm where symbolic reasoning tools (e.g., solvers, provers, and algebra systems) provide fine-grained feedback to LLMs. RLSF uses poly-sized certificates (e.g., proofs) generated by symbolic tools to identify and correct errors in model outputs, offering token-level guidance without requiring differentiable reasoning systems. This paradigm bridges the gap between symbolic reasoning and LLM fine-tuning, enabling precise alignment with domain-specific constraints while addressing key limitations of traditional reward signals. Via extensive evaluations, we show that our RLSF-based fine-tuning of LLMs outperforms traditional approaches on five different applications (that have some associated logical or domain constraints), namely, program synthesis from natural language pseudo-code to programming language, three chemistry tasks, and solving the Game of 24. A key takeaway is that fine-tuning via RLSF enables relatively smaller LLMs to significantly outperform closed-source models that are orders of magnitude larger.
Genomics 3
☆ Uncovering smooth structures in single-cell data with PCS-guided neighbor embeddings
Single-cell sequencing is revolutionizing biology by enabling detailed investigations of cell-state transitions. Many biological processes unfold along continuous trajectories, yet it remains challenging to extract smooth, low-dimensional representations from inherently noisy, high-dimensional single-cell data. Neighbor embedding (NE) algorithms, such as t-SNE and UMAP, are widely used to embed high-dimensional single-cell data into low dimensions. But they often introduce undesirable distortions, resulting in misleading interpretations. Existing evaluation methods for NE algorithms primarily focus on separating discrete cell types rather than capturing continuous cell-state transitions, while dynamic modeling approaches rely on strong assumptions about cellular processes and specialized data. To address these challenges, we build on the Predictability-Computability-Stability (PCS) framework for reliable and reproducible data-driven discoveries. First, we systematically evaluate popular NE algorithms through empirical analysis, simulation, and theory, and reveal their key shortcomings, such as artifacts and instability. We then introduce NESS, a principled and interpretable machine learning approach to improve NE representations by leveraging algorithmic stability and to enable robust inference of smooth biological structures. NESS offers useful concepts, quantitative stability metrics, and efficient computational workflows to uncover developmental trajectories and cell-state transitions in single-cell data. Finally, we apply NESS to six single-cell datasets, spanning pluripotent stem cell differentiation, organoid development, and multiple tissue-specific lineage trajectories. Across these diverse contexts, NESS consistently yields useful biological insights, such as identification of transitional and stable cell states and quantification of transcriptional dynamics during development.
☆ Diversity by Design: Addressing Mode Collapse Improves scRNA-seq Perturbation Modeling on Well-Calibrated Metrics
Recent benchmarks reveal that models for single-cell perturbation response are often outperformed by simply predicting the dataset mean. We trace this anomaly to a metric artifact: control-referenced deltas and unweighted error metrics reward mode collapse whenever the control is biased or the biological signal is sparse. Large-scale \textit{in silico} simulations and analysis of two real-world perturbation datasets confirm that shared reference shifts, not genuine biological change, drives high performance in these evaluations. We introduce differentially expressed gene (DEG)-aware metrics, weighted mean-squared error (WMSE) and weighted delta $R^{2}$ ($R^{2}_{w}(\Delta)$) with respect to all perturbations, that measure error in niche signals with high sensitivity. We further introduce negative and positive performance baselines to calibrate these metrics. With these improvements, the mean baseline sinks to null performance while genuine predictors are correctly rewarded. Finally, we show that using WMSE as a loss function reduces mode collapse and improves model performance.
☆ Five-Gene Expression Formula Accurately Detects Hepatocellular Carcinoma Tumors
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Several diagnostic methods, such as imaging modalities and Serum Alpha-Fetoprotein (AFP) testing, have been used for HCC detection; however, their effectiveness is limited to later stages of the disease. In contrast, transcriptomic analysis of biposy samples has shown promise for early detection. While machine learning techniques have been applied to transcriptomic data for cancer detection, their clinical adoption remains limited due to challenges such as poor generalizability across different datasets, lack of interpretability, and high computational complexity. To address these limitations, we developed a novel predictive formula for HCC detection using the Kolmogorov-Arnold Network (KAN). This formula is based on the expression levels of five genes: VIPR1, CYP1A2, FCN3, ECM1, and LIFR. Derived from the GSE25097 dataset, the formula offers a simple, interpretable, efficient, and accessible approach for HCC identification. It achieves 99% accuracy on the GSE25097 test set and demonstrates robust performance on six additional independent datasets, achieving accuracies of above 90% in all cases. These findings highlight the critical role of these five genes as biomarkers for HCC detection, offering a foundation for future research and clinical applications to improve HCC diagnostic approaches.
comment: It has been accepted for publication in Biotechnology Journal
Quantitative Methods 3
☆ Single-Trajectory Bayesian Modeling Reveals Multi-State Diffusion of the MSH Sliding Clamp
DNA mismatch repair (MMR) is the essential mechanism for preserving genomic integrity in various living organisms. In this process, MutS homologs (MSH) play crucial roles in identifying mismatched basepairs and recruiting downstream MMR proteins. The MSH protein exhibits distinct functions and diffusion dynamics before and after the recognition of mismatches while traversing along DNA. An ADP-bound MSH, known as the MSH searching clamp, scans DNA sequences via rotational diffusion along the DNA backbone. Upon recognizing a mismatch, the MSH combines with ATP molecules, forming a stable sliding clamp. Recent experimental evidence challenges the conventional view that the sliding clamp performs a simple Brownian motion. In this study, we explore the diffusion dynamics of the ATP-bound MSH sliding clamp through single-particle tracking experiments and introduce a Bayesian single-trajectory modeling framework to analyze its motion. Our quantitative analysis reveals that the diffusion characteristics defy explanation by a single-state diffusion mechanism. Instead, our in-depth model inference uncovers three distinct diffusion states, each characterized by specific diffusion coefficients. These states alternate over time, with cross-state transitions predominantly involving one intermediate state, and direct transitions between the slowest and the fastest states being scarce. We propose that these multi-state dynamics reflect underlying conformational changes in the MSH sliding clamp, highlighting a more intricate diffusion mechanism than previously appreciated.
☆ Enhanced Mesenchymal Stem Cell Response with Preserved Biocompatibility via (MnZn)Ferrite--Polyacrylonitrile Composite Nanofiber Membranes
This study focuses on the synthesis and characterization of advanced polymeric composite electrospun nanofibers (NFs) containing magnetic oxide nanoparticles (NPs). By leveraging the method of electrospinning, the research aims to investigate polymer composites with enhanced interfacial properties, improved double-layer capacitance, and adequate biocompatibility. Electrospun polyacrylonitrile (PAN) NFs embedded with Fe2O3 and MnZn ferrite NPs were comprehensively characterized using advanced techniques, i.e., Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), high-resolution scanning electron microscopy (HR-SEM), X-ray diffraction (XRD), and alternating gradient field magnetometry (AGFM). The incorporation of metal oxide NPs led to significant changes in the thermal, spectroscopic, and morphological properties of the NFs. XPS analysis confirmed increased oxidation, graphitic carbon content, and the formation of new nitrogen functionalities after heat treatment. Furthermore, interactions between nitrile groups and metal ions were observed, indicating the influence of nanoparticles on surface chemistry. Magnetic characterization demonstrated the potential of these composite NFs to generate magnetic fields for biomedical manipulation. Cytocompatibility studies revealed no significant impact on the viability or morphology of human mesenchymal stromal cells, highlighting their biocompatibility. These findings suggest the promising use of PAN-magnetic NFs in applications including targeted drug administration, magnetic resonance imaging (MRI), and magnetic hyperthermia for cancer treatment.
comment: Original Manuscript: 28 Pages, 9 Figures, 1 Table; Supplementary: 5 Pages, 2 Figures, 2 Tables
♻ ☆ The three-dimensional impulse-response model: Modeling the training process in accordance with energy system-specific adaptation
Athletic training is characterized by physiological systems responding to repeated exercise-induced stress, resulting in gradual alterations in the functional properties of these systems. The adaptive response leading to improved performance follows a remarkably predictable pattern that may be described by a systems model provided that training load can be accurately quantified and that the constants defining the training-performance relationship are known. While various impulse-response models have been proposed, they are inherently limited in reducing training stress (the impulse) into a single metric, assuming that the adaptive responses are independent of the type of training performed. This is despite ample evidence of markedly diverse acute and chronic responses to exercise of different intensities and durations. Herein, we propose an alternative, three-dimensional impulse-response model that uses three training load metrics as inputs and three performance metrics as outputs. These metrics, represented by a three-parameter critical power model, reflect the stress imposed on each of the three energy systems: the alactic (phosphocreatine/immediate) system; the lactic (glycolytic) system; and the aerobic (oxidative) system. The purpose of this article is to outline the scientific rationale and the practical implementation of the three-dimensional impulse-response model.
Cell Behavior 1
☆ Enhanced Mesenchymal Stem Cell Response with Preserved Biocompatibility via (MnZn)Ferrite--Polyacrylonitrile Composite Nanofiber Membranes
This study focuses on the synthesis and characterization of advanced polymeric composite electrospun nanofibers (NFs) containing magnetic oxide nanoparticles (NPs). By leveraging the method of electrospinning, the research aims to investigate polymer composites with enhanced interfacial properties, improved double-layer capacitance, and adequate biocompatibility. Electrospun polyacrylonitrile (PAN) NFs embedded with Fe2O3 and MnZn ferrite NPs were comprehensively characterized using advanced techniques, i.e., Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), high-resolution scanning electron microscopy (HR-SEM), X-ray diffraction (XRD), and alternating gradient field magnetometry (AGFM). The incorporation of metal oxide NPs led to significant changes in the thermal, spectroscopic, and morphological properties of the NFs. XPS analysis confirmed increased oxidation, graphitic carbon content, and the formation of new nitrogen functionalities after heat treatment. Furthermore, interactions between nitrile groups and metal ions were observed, indicating the influence of nanoparticles on surface chemistry. Magnetic characterization demonstrated the potential of these composite NFs to generate magnetic fields for biomedical manipulation. Cytocompatibility studies revealed no significant impact on the viability or morphology of human mesenchymal stromal cells, highlighting their biocompatibility. These findings suggest the promising use of PAN-magnetic NFs in applications including targeted drug administration, magnetic resonance imaging (MRI), and magnetic hyperthermia for cancer treatment.
comment: Original Manuscript: 28 Pages, 9 Figures, 1 Table; Supplementary: 5 Pages, 2 Figures, 2 Tables
Computation and Language 75
☆ HalluSegBench: Counterfactual Visual Reasoning for Segmentation Hallucination Evaluation
Recent progress in vision-language segmentation has significantly advanced grounded visual understanding. However, these models often exhibit hallucinations by producing segmentation masks for objects not grounded in the image content or by incorrectly labeling irrelevant regions. Existing evaluation protocols for segmentation hallucination primarily focus on label or textual hallucinations without manipulating the visual context, limiting their capacity to diagnose critical failures. In response, we introduce HalluSegBench, the first benchmark specifically designed to evaluate hallucinations in visual grounding through the lens of counterfactual visual reasoning. Our benchmark consists of a novel dataset of 1340 counterfactual instance pairs spanning 281 unique object classes, and a set of newly introduced metrics that quantify hallucination sensitivity under visually coherent scene edits. Experiments on HalluSegBench with state-of-the-art vision-language segmentation models reveal that vision-driven hallucinations are significantly more prevalent than label-driven ones, with models often persisting in false segmentation, highlighting the need for counterfactual reasoning to diagnose grounding fidelity.
comment: Project webpage: https://plan-lab.github.io/hallusegbench/
☆ Data Efficacy for Language Model Training
Data is fundamental to the training of language models (LM). Recent research has been dedicated to data efficiency, which aims to maximize performance by selecting a minimal or optimal subset of training data. Techniques such as data filtering, sampling, and selection play a crucial role in this area. To complement it, we define Data Efficacy, which focuses on maximizing performance by optimizing the organization of training data and remains relatively underexplored. This work introduces a general paradigm, DELT, for considering data efficacy in LM training, which highlights the significance of training data organization. DELT comprises three components: Data Scoring, Data Selection, and Data Ordering. Among these components, we design Learnability-Quality Scoring (LQS), as a new instance of Data Scoring, which considers both the learnability and quality of each data sample from the gradient consistency perspective. We also devise Folding Ordering (FO), as a novel instance of Data Ordering, which addresses issues such as model forgetting and data distribution bias. Comprehensive experiments validate the data efficacy in LM training, which demonstrates the following: Firstly, various instances of the proposed DELT enhance LM performance to varying degrees without increasing the data scale and model size. Secondly, among these instances, the combination of our proposed LQS for data scoring and Folding for data ordering achieves the most significant improvement. Lastly, data efficacy can be achieved together with data efficiency by applying data selection. Therefore, we believe that data efficacy is a promising foundational area in LM training.
☆ "What's Up, Doc?": Analyzing How Users Seek Health Information in Large-Scale Conversational AI Datasets
People are increasingly seeking healthcare information from large language models (LLMs) via interactive chatbots, yet the nature and inherent risks of these conversations remain largely unexplored. In this paper, we filter large-scale conversational AI datasets to achieve HealthChat-11K, a curated dataset of 11K real-world conversations composed of 25K user messages. We use HealthChat-11K and a clinician-driven taxonomy for how users interact with LLMs when seeking healthcare information in order to systematically study user interactions across 21 distinct health specialties. Our analysis reveals insights into the nature of how and why users seek health information, such as common interactions, instances of incomplete context, affective behaviors, and interactions (e.g., leading questions) that can induce sycophancy, underscoring the need for improvements in the healthcare support capabilities of LLMs deployed as conversational AI. Code and artifacts to retrieve our analyses and combine them into a curated dataset can be found here: https://github.com/yahskapar/HealthChat
comment: 25 pages, 6 figures, 4 tables, corresponds to initial HealthChat-11K dataset release
☆ Potemkin Understanding in Large Language Models
Large language models (LLMs) are regularly evaluated using benchmark datasets. But what justifies making inferences about an LLM's capabilities based on its answers to a curated set of questions? This paper first introduces a formal framework to address this question. The key is to note that the benchmarks used to test LLMs -- such as AP exams -- are also those used to test people. However, this raises an implication: these benchmarks are only valid tests if LLMs misunderstand concepts in ways that mirror human misunderstandings. Otherwise, success on benchmarks only demonstrates potemkin understanding: the illusion of understanding driven by answers irreconcilable with how any human would interpret a concept. We present two procedures for quantifying the existence of potemkins: one using a specially designed benchmark in three domains, the other using a general procedure that provides a lower-bound on their prevalence. We find that potemkins are ubiquitous across models, tasks, and domains. We also find that these failures reflect not just incorrect understanding, but deeper internal incoherence in concept representations.
☆ skLEP: A Slovak General Language Understanding Benchmark ACL 2025
In this work, we introduce skLEP, the first comprehensive benchmark specifically designed for evaluating Slovak natural language understanding (NLU) models. We have compiled skLEP to encompass nine diverse tasks that span token-level, sentence-pair, and document-level challenges, thereby offering a thorough assessment of model capabilities. To create this benchmark, we curated new, original datasets tailored for Slovak and meticulously translated established English NLU resources. Within this paper, we also present the first systematic and extensive evaluation of a wide array of Slovak-specific, multilingual, and English pre-trained language models using the skLEP tasks. Finally, we also release the complete benchmark data, an open-source toolkit facilitating both fine-tuning and evaluation of models, and a public leaderboard at https://github.com/slovak-nlp/sklep in the hopes of fostering reproducibility and drive future research in Slovak NLU.
comment: ACL 2025 Findings
☆ Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge
Agentic search such as Deep Research systems, where large language models autonomously browse the web, synthesize information, and return comprehensive citation-backed answers, represents a major shift in how users interact with web-scale information. While promising greater efficiency and cognitive offloading, the growing complexity and open-endedness of agentic search have outpaced existing evaluation benchmarks and methodologies, which largely assume short search horizons and static answers. In this paper, we introduce Mind2Web 2, a benchmark of 130 realistic, high-quality, and long-horizon tasks that require real-time web browsing and extensive information synthesis, constructed with over 1,000 hours of human labor. To address the challenge of evaluating time-varying and complex answers, we propose a novel Agent-as-a-Judge framework. Our method constructs task-specific judge agents based on a tree-structured rubric design to automatically assess both answer correctness and source attribution. We conduct a comprehensive evaluation of nine frontier agentic search systems and human performance, along with a detailed error analysis to draw insights for future development. The best-performing system, OpenAI Deep Research, can already achieve 50-70% of human performance while spending half the time, showing a great potential. Altogether, Mind2Web 2 provides a rigorous foundation for developing and benchmarking the next generation of agentic search systems.
comment: Project Homepage: https://osu-nlp-group.github.io/Mind2Web2/
☆ Enhancing User Engagement in Socially-Driven Dialogue through Interactive LLM Alignments
Enhancing user engagement through interactions plays an essential role in socially-driven dialogues. While prior works have optimized models to reason over relevant knowledge or plan a dialogue act flow, the relationship between user engagement and knowledge or dialogue acts is subtle and does not guarantee user engagement in socially-driven dialogues. To this end, we enable interactive LLMs to learn user engagement by leveraging signals from the future development of conversations. Specifically, we adopt a more direct and relevant indicator of user engagement, i.e., the user's reaction related to dialogue intention after the interaction, as a reward to align interactive LLMs. To achieve this, we develop a user simulator to interact with target interactive LLMs and explore interactions between the user and the interactive LLM system via \textit{i$\times$MCTS} (\textit{M}onte \textit{C}arlo \textit{T}ree \textit{S}earch for \textit{i}nteraction). In this way, we collect a dataset containing pairs of higher and lower-quality experiences using \textit{i$\times$MCTS}, and align interactive LLMs for high-level user engagement by direct preference optimization (DPO) accordingly. Experiments conducted on two socially-driven dialogue scenarios (emotional support conversations and persuasion for good) demonstrate that our method effectively enhances user engagement in interactive LLMs.
☆ Bridging Offline and Online Reinforcement Learning for LLMs
We investigate the effectiveness of reinforcement learning methods for finetuning large language models when transitioning from offline to semi-online to fully online regimes for both verifiable and non-verifiable tasks. Our experiments cover training on verifiable math as well as non-verifiable instruction following with a set of benchmark evaluations for both. Across these settings, we extensively compare online and semi-online Direct Preference Optimization and Group Reward Policy Optimization objectives, and surprisingly find similar performance and convergence between these variants, which all strongly outperform offline methods. We provide a detailed analysis of the training dynamics and hyperparameter selection strategies to achieve optimal results. Finally, we show that multi-tasking with verifiable and non-verifiable rewards jointly yields improved performance across both task types.
☆ Logios : An open source Greek Polytonic Optical Character Recognition system
In this paper, we present an Optical Character Recognition (OCR) system specifically designed for the accurate recognition and digitization of Greek polytonic texts. By leveraging the combined strengths of convolutional layers for feature extraction and recurrent layers for sequence learning, our system addresses the unique challenges posed by Greek polytonic scripts. This approach aims to overcome the limitations of traditional OCR methods, offering significant improvements in accuracy and efficiency. We release the underlying model as an open-source library and make our OCR platform available for academic use.
☆ TopK Language Models
Sparse autoencoders (SAEs) have become an important tool for analyzing and interpreting the activation space of transformer-based language models (LMs). However, SAEs suffer several shortcomings that diminish their utility and internal validity. Since SAEs are trained post-hoc, it is unclear if the failure to discover a particular concept is a failure on the SAE's side or due to the underlying LM not representing this concept. This problem is exacerbated by training conditions and architecture choices affecting which features an SAE learns. When tracing how LMs learn concepts during training, the lack of feature stability also makes it difficult to compare SAEs features across different checkpoints. To address these limitations, we introduce a modification to the transformer architecture that incorporates a TopK activation function at chosen layers, making the model's hidden states equivalent to the latent features of a TopK SAE. This approach eliminates the need for post-hoc training while providing interpretability comparable to SAEs. The resulting TopK LMs offer a favorable trade-off between model size, computational efficiency, and interpretability. Despite this simple architectural change, TopK LMs maintain their original capabilities while providing robust interpretability benefits. Our experiments demonstrate that the sparse representations learned by TopK LMs enable successful steering through targeted neuron interventions and facilitate detailed analysis of neuron formation processes across checkpoints and layers. These features make TopK LMs stable and reliable tools for understanding how language models learn and represent concepts, which we believe will significantly advance future research on model interpretability and controllability.
☆ Aligning Spoken Dialogue Models from User Interactions ICML 2025
We propose a novel preference alignment framework for improving spoken dialogue models on real-time conversations from user interactions. Current preference learning methods primarily focus on text-based language models, and are not directly suited to the complexities of real-time speech interactions, with richer dynamics (e.g. interruption, interjection) and no explicit segmentation between speaker turns.We create a large-scale dataset of more than 150,000 preference pairs from raw multi-turn speech conversations, annotated with AI feedback, to cover preferences over both linguistic content and temporal context variations. We leverage offline alignment methods to finetune a full-duplex autoregressive speech-to-speech model. Extensive experiments demonstrate that feedback on generic conversations can be consistently effective in improving spoken dialogue models to produce more factual, safer and more contextually aligned interactions. We deploy the finetuned model and conduct holistic human evaluations to assess the impact beyond single-turn conversations. Our findings shed light on the importance of a well-calibrated balance among various dynamics, crucial for natural real-time speech dialogue systems.
comment: Accepted at ICML 2025
☆ Spatial Mental Modeling from Limited Views
Can Vision Language Models (VLMs) imagine the full scene from just a few views, like humans do? Humans form spatial mental models, internal representations of unseen space, to reason about layout, perspective, and motion. Our new MindCube benchmark with 21,154 questions across 3,268 images exposes this critical gap, where existing VLMs exhibit near-random performance. Using MindCube, we systematically evaluate how well VLMs build robust spatial mental models through representing positions (cognitive mapping), orientations (perspective-taking), and dynamics (mental simulation for "what-if" movements). We then explore three approaches to help VLMs approximate spatial mental models, including unseen intermediate views, natural language reasoning chains, and cognitive maps. The significant improvement comes from a synergistic approach, "map-then-reason", that jointly trains the model to first generate a cognitive map and then reason upon it. By training models to reason over these internal maps, we boosted accuracy from 37.8% to 60.8% (+23.0%). Adding reinforcement learning pushed performance even further to 70.7% (+32.9%). Our key insight is that such scaffolding of spatial mental models, actively constructing and utilizing internal structured spatial representations with flexible reasoning processes, significantly improves understanding of unobservable space.
comment: Preprint version
☆ Text2Cypher Across Languages: Evaluating Foundational Models Beyond English
Recent advances in large language models have enabled natural language interfaces that translate user questions into database queries, such as Text2SQL, Text2SPARQL, and Text2Cypher. While these interfaces enhance database accessibility, most research today focuses solely on English, with limited evaluation in other languages. This paper investigates the performance of foundational LLMs on the Text2Cypher task across multiple languages. We create and release a multilingual test set by translating English questions into Spanish and Turkish while preserving the original Cypher queries, enabling fair cross-lingual comparison. We evaluate multiple foundational models using standardized prompts and metrics. Our results show a consistent performance pattern: highest on English, then Spanish, and lowest on Turkish. We attribute this to differences in training data availability and linguistic characteristics. Additionally, we explore the impact of translating task prompts into Spanish and Turkish. Results show little to no change in evaluation metrics, suggesting prompt translation has minor impact. Our findings highlight the need for more inclusive evaluation and development in multilingual query generation. Future work includes schema localization and fine-tuning across diverse languages.
☆ Domain Knowledge-Enhanced LLMs for Fraud and Concept Drift Detection
Detecting deceptive conversations on dynamic platforms is increasingly difficult due to evolving language patterns and Concept Drift (CD)\-i.e., semantic or topical shifts that alter the context or intent of interactions over time. These shifts can obscure malicious intent or mimic normal dialogue, making accurate classification challenging. While Large Language Models (LLMs) show strong performance in natural language tasks, they often struggle with contextual ambiguity and hallucinations in risk\-sensitive scenarios. To address these challenges, we present a Domain Knowledge (DK)\-Enhanced LLM framework that integrates pretrained LLMs with structured, task\-specific insights to perform fraud and concept drift detection. The proposed architecture consists of three main components: (1) a DK\-LLM module to detect fake or deceptive conversations; (2) a drift detection unit (OCDD) to determine whether a semantic shift has occurred; and (3) a second DK\-LLM module to classify the drift as either benign or fraudulent. We first validate the value of domain knowledge using a fake review dataset and then apply our full framework to SEConvo, a multiturn dialogue dataset that includes various types of fraud and spam attacks. Results show that our system detects fake conversations with high accuracy and effectively classifies the nature of drift. Guided by structured prompts, the LLaMA\-based implementation achieves 98\% classification accuracy. Comparative studies against zero\-shot baselines demonstrate that incorporating domain knowledge and drift awareness significantly improves performance, interpretability, and robustness in high\-stakes NLP applications.
☆ Scalable Bayesian Low-Rank Adaptation of Large Language Models via Stochastic Variational Subspace Inference
Despite their widespread use, large language models (LLMs) are known to hallucinate incorrect information and be poorly calibrated. This makes the uncertainty quantification of these models of critical importance, especially in high-stakes domains, such as autonomy and healthcare. Prior work has made Bayesian deep learning-based approaches to this problem more tractable by performing inference over the low-rank adaptation (LoRA) parameters of a fine-tuned model. While effective, these approaches struggle to scale to larger LLMs due to requiring further additional parameters compared to LoRA. In this work we present $\textbf{Scala}$ble $\textbf{B}$ayesian $\textbf{L}$ow-Rank Adaptation via Stochastic Variational Subspace Inference (ScalaBL). We perform Bayesian inference in an $r$-dimensional subspace, for LoRA rank $r$. By repurposing the LoRA parameters as projection matrices, we are able to map samples from this subspace into the full weight space of the LLM. This allows us to learn all the parameters of our approach using stochastic variational inference. Despite the low dimensionality of our subspace, we are able to achieve competitive performance with state-of-the-art approaches while only requiring ${\sim}1000$ additional parameters. Furthermore, it allows us to scale up to the largest Bayesian LLM to date, with four times as a many base parameters as prior work.
comment: Accepted at UAI 2025
☆ Hybrid Deep Learning and Signal Processing for Arabic Dialect Recognition in Low-Resource Settings
Arabic dialect recognition presents a significant challenge in speech technology due to the linguistic diversity of Arabic and the scarcity of large annotated datasets, particularly for underrepresented dialects. This research investigates hybrid modeling strategies that integrate classical signal processing techniques with deep learning architectures to address this problem in low-resource scenarios. Two hybrid models were developed and evaluated: (1) Mel-Frequency Cepstral Coefficients (MFCC) combined with a Convolutional Neural Network (CNN), and (2) Discrete Wavelet Transform (DWT) features combined with a Recurrent Neural Network (RNN). The models were trained on a dialect-filtered subset of the Common Voice Arabic dataset, with dialect labels assigned based on speaker metadata. Experimental results demonstrate that the MFCC + CNN architecture achieved superior performance, with an accuracy of 91.2% and strong precision, recall, and F1-scores, significantly outperforming the Wavelet + RNN configuration, which achieved an accuracy of 66.5%. These findings highlight the effectiveness of leveraging spectral features with convolutional models for Arabic dialect recognition, especially when working with limited labeled data. The study also identifies limitations related to dataset size, potential regional overlaps in labeling, and model optimization, providing a roadmap for future research. Recommendations for further improvement include the adoption of larger annotated corpora, integration of self-supervised learning techniques, and exploration of advanced neural architectures such as Transformers. Overall, this research establishes a strong baseline for future developments in Arabic dialect recognition within resource-constrained environments.
☆ Leveraging LLM-Assisted Query Understanding for Live Retrieval-Augmented Generation
Real-world live retrieval-augmented generation (RAG) systems face significant challenges when processing user queries that are often noisy, ambiguous, and contain multiple intents. While RAG enhances large language models (LLMs) with external knowledge, current systems typically struggle with such complex inputs, as they are often trained or evaluated on cleaner data. This paper introduces Omni-RAG, a novel framework designed to improve the robustness and effectiveness of RAG systems in live, open-domain settings. Omni-RAG employs LLM-assisted query understanding to preprocess user inputs through three key modules: (1) Deep Query Understanding and Decomposition, which utilizes LLMs with tailored prompts to denoise queries (e.g., correcting spelling errors) and decompose multi-intent queries into structured sub-queries; (2) Intent-Aware Knowledge Retrieval, which performs retrieval for each sub-query from a corpus (i.e., FineWeb using OpenSearch) and aggregates the results; and (3) Reranking and Generation, where a reranker (i.e., BGE) refines document selection before a final response is generated by an LLM (i.e., Falcon-10B) using a chain-of-thought prompt. Omni-RAG aims to bridge the gap between current RAG capabilities and the demands of real-world applications, such as those highlighted by the SIGIR 2025 LiveRAG Challenge, by robustly handling complex and noisy queries.
comment: Accepted at SIGIR 2025 LiveRAG Workshop (Oral Presentation)
☆ Structuralist Approach to AI Literary Criticism: Leveraging Greimas Semiotic Square for Large Language Models
Large Language Models (LLMs) excel in understanding and generating text but struggle with providing professional literary criticism for works with profound thoughts and complex narratives. This paper proposes GLASS (Greimas Literary Analysis via Semiotic Square), a structured analytical framework based on Greimas Semiotic Square (GSS), to enhance LLMs' ability to conduct in-depth literary analysis. GLASS facilitates the rapid dissection of narrative structures and deep meanings in narrative works. We propose the first dataset for GSS-based literary criticism, featuring detailed analyses of 48 works. Then we propose quantitative metrics for GSS-based literary criticism using the LLM-as-a-judge paradigm. Our framework's results, compared with expert criticism across multiple works and LLMs, show high performance. Finally, we applied GLASS to 39 classic works, producing original and high-quality analyses that address existing research gaps. This research provides an AI-based tool for literary research and education, offering insights into the cognitive mechanisms underlying literary engagement.
comment: Accepted in CogSci 2025
☆ Latent Prototype Routing: Achieving Near-Perfect Load Balancing in Mixture-of-Experts
Mixture-of-Experts (MoE) architectures have emerged as a key strategy for scaling large language models (LLMs) efficiently. However, current MoE systems suffer from severe load imbalance, where only a small subset of experts is consistently activated during training and inference, leading to significant underutilization of model capacity and computational resources. In this work, we revisit expert routing through a clustering perspective and propose Latent Prototype Routing (LPR), a novel routing framework that generalizes existing approaches while promoting balanced expert utilization without compromising downstream performance. Extensive experiments across multiple open-source MoE models -- including DeepSeek-V3, Qwen3-MoE, and Mixtral -- demonstrate that LPR reduces the Gini coefficient of expert load from 0.70 to 0.035 on average, improves the min-max expert load ratio from 1e-6 to 0.70, achieving near-perfect load balancing.
comment: 15 pages,4 figures
☆ Exploring Adapter Design Tradeoffs for Low Resource Music Generation
Fine-tuning large-scale music generation models, such as MusicGen and Mustango, is a computationally expensive process, often requiring updates to billions of parameters and, therefore, significant hardware resources. Parameter-Efficient Fine-Tuning (PEFT) techniques, particularly adapter-based methods, have emerged as a promising alternative, enabling adaptation with minimal trainable parameters while preserving model performance. However, the design choices for adapters, including their architecture, placement, and size, are numerous, and it is unclear which of these combinations would produce optimal adapters and why, for a given case of low-resource music genre. In this paper, we attempt to answer this question by studying various adapter configurations for two AI music models, MusicGen and Mustango, on two genres: Hindustani Classical and Turkish Makam music. Our findings reveal distinct trade-offs: convolution-based adapters excel in capturing fine-grained local musical details such as ornamentations and short melodic phrases, while transformer-based adapters better preserve long-range dependencies crucial for structured improvisation. Additionally, we analyze computational resource requirements across different adapter scales, demonstrating how mid-sized adapters (40M parameters) achieve an optimal balance between expressivity and quality. Furthermore, we find that Mustango, a diffusion-based model, generates more diverse outputs with better adherence to the description in the input prompt while lacking in providing stability in notes, rhythm alignment, and aesthetics. Also, it is computationally intensive and requires significantly more time to train. In contrast, autoregressive models like MusicGen offer faster training and are more efficient, and can produce better quality output in comparison, but have slightly higher redundancy in their generations.
comment: 9 pages, 5 figures
☆ Detecting Referring Expressions in Visually Grounded Dialogue with Autoregressive Language Models ACL 2025
In this paper, we explore the use of a text-only, autoregressive language modeling approach for the extraction of referring expressions from visually grounded dialogue. More specifically, the aim is to investigate the extent to which the linguistic context alone can inform the detection of mentions that have a (visually perceivable) referent in the visual context of the conversation. To this end, we adapt a pretrained large language model (LLM) to perform a relatively course-grained annotation of mention spans in unfolding conversations by demarcating mention span boundaries in text via next-token prediction. Our findings indicate that even when using a moderately sized LLM, relatively small datasets, and parameter-efficient fine-tuning, a text-only approach can be effective, highlighting the relative importance of the linguistic context for this task. Nevertheless, we argue that the task represents an inherently multimodal problem and discuss limitations fundamental to unimodal approaches.
comment: Accepted for publication at XLLM @ ACL 2025
☆ Small Encoders Can Rival Large Decoders in Detecting Groundedness
Augmenting large language models (LLMs) with external context significantly improves their performance in natural language processing (NLP) tasks. However, LLMs struggle to answer queries reliably when the provided context lacks information, often resorting to ungrounded speculation or internal knowledge. Groundedness - generating responses strictly supported by the context - is essential for ensuring factual consistency and trustworthiness. This study focuses on detecting whether a given query is grounded in a document provided in context before the costly answer generation by LLMs. Such a detection mechanism can significantly reduce both inference time and resource consumption. We show that lightweight, task specific encoder models such as RoBERTa and NomicBERT, fine-tuned on curated datasets, can achieve accuracy comparable to state-of-the-art LLMs, such as Llama3 8B and GPT4o, in groundedness detection while reducing inference latency by orders of magnitude. The code is available at : https://github.com/chandarlab/Hallucinate-less
☆ Double-Checker: Enhancing Reasoning of Slow-Thinking LLMs via Self-Critical Fine-Tuning
While slow-thinking large language models (LLMs) exhibit reflection-like reasoning, commonly referred to as the "aha moment:, their ability to generate informative critiques and refine prior solutions remains limited. In this paper, we introduce Double-Checker, a principled framework designed to enhance the reasoning capabilities of slow-thinking LLMs by fostering explicit self-critique and iterative refinement of their previous solutions. By fine-tuning on our curated 1,730 self-critical instances, Double-Checker empowers long-CoT LLMs to iteratively critique and refine their outputs during inference until they evaluate their solutions as correct under self-generated critiques. We validate the efficacy of Double-Checker across a comprehensive suite of reasoning benchmarks, demonstrating that iterative self-critique significantly enhances the reasoning capabilities of long-CoT LLMs. Notably, our Double-Checker increases the pass@1 performance on challenging AIME benchmarks from 4.4% to 18.2% compared to the original long-CoT LLMs. These results highlight a promising direction for developing more trustworthy and effective LLMs capable of structured self-critique.
comment: 10 pages
☆ HumanOmniV2: From Understanding to Omni-Modal Reasoning with Context
With the rapid evolution of multimodal large language models, the capacity to deeply understand and interpret human intentions has emerged as a critical capability, which demands detailed and thoughtful reasoning. In recent studies, Reinforcement Learning (RL) has demonstrated potential in enhancing the reasoning capabilities of Large Language Models (LLMs). Nonetheless, the challenges associated with adapting RL to multimodal data and formats remain largely unaddressed. In this paper, we identify two issues in existing multimodal reasoning models: insufficient global context understanding and shortcut problems. Insufficient context understanding can happen when a model misinterprets multimodal context, resulting in incorrect answers. The shortcut problem occurs when the model overlooks crucial clues in multimodal inputs, directly addressing the query without considering the multimodal information. To tackle these issues, we emphasize the necessity for the model to reason with a clear understanding of the global context within multimodal inputs. This global context understanding can effectively prevent the model from overlooking key multimodal cues and ensure a thorough reasoning process. To ensure the accurate interpretation of multimodal context information, we implement a context reward judged by a large language model, alongside format and accuracy rewards. Additionally, to improve complex reasoning capability, we employ the LLM to assess the logical reward, determining whether the reasoning process successfully integrates multimodal information with logical methods. We also introduce a reasoning omni-modal benchmark, IntentBench, aimed at evaluating models in understanding complex human intentions and emotions. Our proposed method demonstrates advanced performance across multiple omni-modal benchmarks compared to other open-source omni-modal models.
☆ Cat and Mouse -- Can Fake Text Generation Outpace Detector Systems?
Large language models can produce convincing "fake text" in domains such as academic writing, product reviews, and political news. Many approaches have been investigated for the detection of artificially generated text. While this may seem to presage an endless "arms race", we note that newer LLMs use ever more parameters, training data, and energy, while relatively simple classifiers demonstrate a good level of detection accuracy with modest resources. To approach the question of whether the models' ability to beat the detectors may therefore reach a plateau, we examine the ability of statistical classifiers to identify "fake text" in the style of classical detective fiction. Over a 0.5 version increase, we found that Gemini showed an increased ability to generate deceptive text, while GPT did not. This suggests that reliable detection of fake text may remain feasible even for ever-larger models, though new model architectures may improve their deceptiveness
comment: (Submitted for publication)
☆ DiLoCoX: A Low-Communication Large-Scale Training Framework for Decentralized Cluster
The distributed training of foundation models, particularly large language models (LLMs), demands a high level of communication. Consequently, it is highly dependent on a centralized cluster with fast and reliable interconnects. Can we conduct training on slow networks and thereby unleash the power of decentralized clusters when dealing with models exceeding 100 billion parameters? In this paper, we propose DiLoCoX, a low-communication large-scale decentralized cluster training framework. It combines Pipeline Parallelism with Dual Optimizer Policy, One-Step-Delay Overlap of Communication and Local Training, and an Adaptive Gradient Compression Scheme. This combination significantly improves the scale of parameters and the speed of model pre-training. We justify the benefits of one-step-delay overlap of communication and local training, as well as the adaptive gradient compression scheme, through a theoretical analysis of convergence. Empirically, we demonstrate that DiLoCoX is capable of pre-training a 107B foundation model over a 1Gbps network. Compared to vanilla AllReduce, DiLoCoX can achieve a 357x speedup in distributed training while maintaining negligible degradation in model convergence. To the best of our knowledge, this is the first decentralized training framework successfully applied to models with over 100 billion parameters.
Agent-RewardBench: Towards a Unified Benchmark for Reward Modeling across Perception, Planning, and Safety in Real-World Multimodal Agents ACL 2025
As Multimodal Large Language Models (MLLMs) advance, multimodal agents show promise in real-world tasks like web navigation and embodied intelligence. However, due to limitations in a lack of external feedback, these agents struggle with self-correction and generalization. A promising approach is to use reward models as external feedback, but there is no clear on how to select reward models for agents. Thus, there is an urgent need to build a reward bench targeted at agents. To address these challenges, we propose Agent-RewardBench, a benchmark designed to evaluate reward modeling ability in MLLMs. The benchmark is characterized by three key features: (1) Multiple dimensions and real-world agent scenarios evaluation. It covers perception, planning, and safety with 7 scenarios; (2) Step-level reward evaluation. It allows for the assessment of agent capabilities at the individual steps of a task, providing a more granular view of performance during the planning process; and (3) Appropriately difficulty and high-quality. We carefully sample from 10 diverse models, difficulty control to maintain task challenges, and manual verification to ensure the integrity of the data. Experiments demonstrate that even state-of-the-art multimodal models show limited performance, highlighting the need for specialized training in agent reward modeling. Code is available at github.
comment: ACL 2025 Main
☆ Enhancing Automatic Term Extraction with Large Language Models via Syntactic Retrieval
Automatic Term Extraction (ATE) identifies domain-specific expressions that are crucial for downstream tasks such as machine translation and information retrieval. Although large language models (LLMs) have significantly advanced various NLP tasks, their potential for ATE has scarcely been examined. We propose a retrieval-based prompting strategy that, in the few-shot setting, selects demonstrations according to \emph{syntactic} rather than semantic similarity. This syntactic retrieval method is domain-agnostic and provides more reliable guidance for capturing term boundaries. We evaluate the approach in both in-domain and cross-domain settings, analyzing how lexical overlap between the query sentence and its retrieved examples affects performance. Experiments on three specialized ATE benchmarks show that syntactic retrieval improves F1-score. These findings highlight the importance of syntactic cues when adapting LLMs to terminology-extraction tasks.
☆ Complexity-aware fine-tuning
General-purpose Large Language Models (LLMs) are frequently fine-tuned through supervised fine-tuning (SFT) to enhance performance in specific domains. Better results can be achieved by distilling the chain-of-thought of a larger model at the cost of numerous expensive calls and a much greater amount of data. We propose a novel blueprint for efficient fine-tuning that uses reasoning only for complex data identified by entropy. Specifically, across two small open models ($\approx 3B$) we split the training data into complexity categories by a single token answer entropy (ROC AUC $0.73$), fine-tune large language models (LLMs) via SFT and distillation, and show that our pipeline significantly outperforms the standard SFT approach ($0.55$ vs $0.43$ average accuracy) and provides comparable with distillation performance while using $62\%$ less data ($0.55$ average accuracy for both). We publish our code and data to facilitate further research in this direction.
☆ Unveiling Causal Reasoning in Large Language Models: Reality or Mirage? NeurIPS 2024
Causal reasoning capability is critical in advancing large language models (LLMs) toward strong artificial intelligence. While versatile LLMs appear to have demonstrated capabilities in understanding contextual causality and providing responses that obey the laws of causality, it remains unclear whether they perform genuine causal reasoning akin to humans. However, current evidence indicates the contrary. Specifically, LLMs are only capable of performing shallow (level-1) causal reasoning, primarily attributed to the causal knowledge embedded in their parameters, but they lack the capacity for genuine human-like (level-2) causal reasoning. To support this hypothesis, methodologically, we delve into the autoregression mechanism of transformer-based LLMs, revealing that it is not inherently causal. Empirically, we introduce a new causal Q&A benchmark called CausalProbe-2024, whose corpora are fresh and nearly unseen for the studied LLMs. The LLMs exhibit a significant performance drop on CausalProbe-2024 compared to earlier benchmarks, indicating the fact that they primarily engage in level-1 causal reasoning. To bridge the gap towards level-2 causal reasoning, we draw inspiration from the fact that human reasoning is usually facilitated by general knowledge and intended goals. We propose G^2-Reasoner, a method that incorporates general knowledge and goal-oriented prompts into LLMs' causal reasoning processes. Experiments demonstrate that G^2-Reasoner significantly enhances LLMs' causal reasoning capability, particularly in fresh and counterfactual contexts. This work sheds light on a new path for LLMs to advance towards genuine causal reasoning, going beyond level-1 and making strides towards level-2.
comment: 24 pages, accepted at NeurIPS 2024
☆ Prompt-Guided Turn-Taking Prediction
Turn-taking prediction models are essential components in spoken dialogue systems and conversational robots. Recent approaches leverage transformer-based architectures to predict speech activity continuously and in real-time. In this study, we propose a novel model that enables turn-taking prediction to be dynamically controlled via textual prompts. This approach allows intuitive and explicit control through instructions such as "faster" or "calmer" adapting dynamically to conversational partners and contexts. The proposed model builds upon a transformer-based voice activity projection (VAP) model, incorporating textual prompt embeddings into both channel-wise transformers and a cross-channel transformer. We evaluated the feasibility of our approach using over 950 hours of human-human spoken dialogue data. Since textual prompt data for the proposed approach was not available in existing datasets, we utilized a large language model (LLM) to generate synthetic prompt sentences. Experimental results demonstrated that the proposed model improved prediction accuracy and effectively varied turn-taking timing behaviors according to the textual prompts.
comment: This paper has been accepted for presentation at SIGdial Meeting on Discourse and Dialogue 2025 (SIGDIAL 2025) and represents the author's version of the work
☆ Maintaining MTEB: Towards Long Term Usability and Reproducibility of Embedding Benchmarks
The Massive Text Embedding Benchmark (MTEB) has become a standard evaluation platform for text embedding models. While previous work has established the core benchmark methodology, this paper focuses on the engineering aspects that ensure MTEB's continued reproducibility and extensibility. We present our approach to maintaining robust continuous integration pipelines that validate dataset integrity, automate test execution, and assess benchmark results' generalizability. We detail the design choices that collectively enhance reproducibility and usability. Furthermore, we discuss our strategies for handling community contributions and extending the benchmark with new tasks and datasets. These engineering practices have been instrumental in scaling MTEB to become more comprehensive while maintaining quality and, ultimately, relevance to the field. Our experiences offer valuable insights for benchmark maintainers facing similar challenges in ensuring reproducibility and usability in machine learning evaluation frameworks. The MTEB repository is available at: https://github.com/embeddings-benchmark/mteb
☆ Compressed and Smooth Latent Space for Text Diffusion Modeling
Autoregressive language models dominate modern text generation, yet their sequential nature introduces fundamental limitations: decoding is slow, and maintaining global coherence remains challenging. Diffusion models offer a promising alternative by enabling parallel generation and flexible control; however, their application to text generation is hindered by the high dimensionality of token-level representations. We introduce Cosmos, a novel approach to text generation that operates entirely in a compressed, smooth latent space tailored specifically for diffusion. This space is learned using an autoencoder trained simultaneously for token-level reconstruction and alignment with frozen activations from a pretrained language encoder, providing robust semantic grounding and enabling effective perturbation-based augmentations. Empirically, we demonstrate that text representations can be compressed by $8\times$ while maintaining generation quality comparable to token-level diffusion models. Furthermore, increasing the latent sequence length allows Cosmos to surpass both diffusion-based and autoregressive baselines. We evaluate Cosmos on four diverse generative tasks including story generation, question generation, summarization, and detoxification and compare it with various generative paradigms. Cosmos achieves comparable or superior generation quality while offering more than $2\times$ faster inference.
☆ Progtuning: Progressive Fine-tuning Framework for Transformer-based Language Models
Fine-tuning is a promising technique for leveraging Transformer-based language models in downstream tasks. As model sizes continue to grow, updating all model parameters becomes increasingly costly. Parameter-efficient fine-tuning methods effectively address this issue by selectively updating a small subset of parameters. However, fine-tuning and most existing parameter-efficient fine-tuning methods require updating the same number of parameters as the initial size, ignoring the unequal contribution across Transformer blocks and leading to extremely inefficient allocation of computing resources. In this paper, we propose Progtuning, the novel fine-tuning framework combined with progressive learning for Transformer-based language models. Specifically, Progtuning progressively reduces the number of updated transformer blocks based on the contribution. Remarkably, Progtuning optimizes resource allocation and reduces the number of updated parameters by approximately 25\%, while still maintaining competitive performance. And it also exhibits high adaptability with parameter-efficient fine-tuning methods, demonstrating excellent performance across various adaptation scenarios.
comment: Accepted by ICONIP 2024
☆ Learning to Skip the Middle Layers of Transformers
Conditional computation is a popular strategy to make Transformers more efficient. Existing methods often target individual modules (e.g., mixture-of-experts layers) or skip layers independently of one another. However, interpretability research has demonstrated that the middle layers of Transformers exhibit greater redundancy, and that early layers aggregate information into token positions. Guided by these insights, we propose a novel architecture that dynamically skips a variable number of layers from the middle outward. In particular, a learned gating mechanism determines whether to bypass a symmetric span of central blocks based on the input, and a gated attention mechanism prevents subsequent tokens from attending to skipped token positions. Residual norms are controlled with a 'sandwich' or 'perilayernorm' scheme and gate sparsity with an adaptive regularization loss. We had aimed to reduce compute requirements for 'simpler' tokens and potentially foster an emergent multi-level representational hierarchy but, at the scales investigated, our approach does not achieve improvements in the trade-off between validation cross-entropy and estimated FLOPs compared to dense baselines with fewer layers. We release our code at https://github.com/tim-lawson/skip-middle.
comment: 11 pages, 2 figures
☆ ComRAG: Retrieval-Augmented Generation with Dynamic Vector Stores for Real-time Community Question Answering in Industry ACL 2025
Community Question Answering (CQA) platforms can be deemed as important knowledge bases in community, but effectively leveraging historical interactions and domain knowledge in real-time remains a challenge. Existing methods often underutilize external knowledge, fail to incorporate dynamic historical QA context, or lack memory mechanisms suited for industrial deployment. We propose ComRAG, a retrieval-augmented generation framework for real-time industrial CQA that integrates static knowledge with dynamic historical QA pairs via a centroid-based memory mechanism designed for retrieval, generation, and efficient storage. Evaluated on three industrial CQA datasets, ComRAG consistently outperforms all baselines--achieving up to 25.9% improvement in vector similarity, reducing latency by 8.7% to 23.3%, and lowering chunk growth from 20.23% to 2.06% over iterations.
comment: 7 pages, 4 figures. Accepted at ACL 2025 Industry Track
☆ DALR: Dual-level Alignment Learning for Multimodal Sentence Representation Learning ACL 2025
Previous multimodal sentence representation learning methods have achieved impressive performance. However, most approaches focus on aligning images and text at a coarse level, facing two critical challenges:cross-modal misalignment bias and intra-modal semantic divergence, which significantly degrade sentence representation quality. To address these challenges, we propose DALR (Dual-level Alignment Learning for Multimodal Sentence Representation). For cross-modal alignment, we propose a consistency learning module that softens negative samples and utilizes semantic similarity from an auxiliary task to achieve fine-grained cross-modal alignment. Additionally, we contend that sentence relationships go beyond binary positive-negative labels, exhibiting a more intricate ranking structure. To better capture these relationships and enhance representation quality, we integrate ranking distillation with global intra-modal alignment learning. Comprehensive experiments on semantic textual similarity (STS) and transfer (TR) tasks validate the effectiveness of our approach, consistently demonstrating its superiority over state-of-the-art baselines.
comment: Accepted by ACL 2025 Findings
☆ Enhancing LLM Tool Use with High-quality Instruction Data from Knowledge Graph
Teaching large language models (LLMs) to use tools is crucial for improving their problem-solving abilities and expanding their applications. However, effectively using tools is challenging because it requires a deep understanding of tool functionalities and user intentions. Previous methods relied mainly on LLMs to generate instruction data, but the quality of these data was often insufficient. In this paper, we propose a new method that uses knowledge graphs to generate high-quality instruction data for LLMs. Knowledge graphs are manually curated datasets rich in semantic information. We begin by extracting various query pathways from a given knowledge graph, which are transformed into a broad spectrum of user queries. We then translate the relationships between entities into actionable tools and parse the pathways of each query into detailed solution steps, thereby creating high-quality instruction data. Our experiments show that fine-tuning on just a small sample of this synthetic data can significantly improve the tool utilization and overall capabilities of LLMs.
comment: 20 pages, 12 figures
☆ MT2-CSD: A New Dataset and Multi-Semantic Knowledge Fusion Method for Conversational Stance Detection
In the realm of contemporary social media, automatic stance detection is pivotal for opinion mining, as it synthesizes and examines user perspectives on contentious topics to uncover prevailing trends and sentiments. Traditional stance detection research often targets individual instances, thereby limiting its capacity to model multi-party discussions typical in real social media scenarios. This shortcoming largely stems from the scarcity of datasets that authentically capture the dynamics of social media interactions, hindering advancements in conversational stance detection. In this paper, we introduce MT2-CSD, a comprehensive dataset for multi-target, multi-turn conversational stance detection. To the best of our knowledge, MT2-CSD is the largest dataset available for this purpose, comprising 24,457 annotated instances and exhibiting the greatest conversational depth, thereby presenting new challenges for stance detection. To address these challenges, we propose the Large Language model enhanced Conversational Relational Attention Network (LLM-CRAN), which exploits the reasoning capabilities of LLMs to improve conversational understanding. We conduct extensive experiments to evaluate the efficacy of LLM-CRAN on the MT2-CSD dataset. The experimental results indicate that LLM-CRAN significantly outperforms strong baseline models in the task of conversational stance detection.
☆ A Semi-supervised Scalable Unified Framework for E-commerce Query Classification ACL 2025
Query classification, including multiple subtasks such as intent and category prediction, is vital to e-commerce applications. E-commerce queries are usually short and lack context, and the information between labels cannot be used, resulting in insufficient prior information for modeling. Most existing industrial query classification methods rely on users' posterior click behavior to construct training samples, resulting in a Matthew vicious cycle. Furthermore, the subtasks of query classification lack a unified framework, leading to low efficiency for algorithm optimization. In this paper, we propose a novel Semi-supervised Scalable Unified Framework (SSUF), containing multiple enhanced modules to unify the query classification tasks. The knowledge-enhanced module uses world knowledge to enhance query representations and solve the problem of insufficient query information. The label-enhanced module uses label semantics and semi-supervised signals to reduce the dependence on posterior labels. The structure-enhanced module enhances the label representation based on the complex label relations. Each module is highly pluggable, and input features can be added or removed as needed according to each subtask. We conduct extensive offline and online A/B experiments, and the results show that SSUF significantly outperforms the state-of-the-art models.
comment: Accepted by ACL 2025
Large Language Models Acing Chartered Accountancy
Advanced intelligent systems, particularly Large Language Models (LLMs), are significantly reshaping financial practices through advancements in Natural Language Processing (NLP). However, the extent to which these models effectively capture and apply domain-specific financial knowledge remains uncertain. Addressing a critical gap in the expansive Indian financial context, this paper introduces CA-Ben, a Chartered Accountancy benchmark specifically designed to evaluate the financial, legal, and quantitative reasoning capabilities of LLMs. CA-Ben comprises structured question-answer datasets derived from the rigorous examinations conducted by the Institute of Chartered Accountants of India (ICAI), spanning foundational, intermediate, and advanced CA curriculum stages. Six prominent LLMs i.e. GPT 4o, LLAMA 3.3 70B, LLAMA 3.1 405B, MISTRAL Large, Claude 3.5 Sonnet, and Microsoft Phi 4 were evaluated using standardized protocols. Results indicate variations in performance, with Claude 3.5 Sonnet and GPT-4o outperforming others, especially in conceptual and legal reasoning. Notable challenges emerged in numerical computations and legal interpretations. The findings emphasize the strengths and limitations of current LLMs, suggesting future improvements through hybrid reasoning and retrieval-augmented generation methods, particularly for quantitative analysis and accurate legal interpretation.
comment: Accepted for publication at MoStart 2025: International Conference on Digital Transformation in Education and Applications of Artificial Intelligence, Bosnia and Herzegovina, 2025
☆ SAC: A Framework for Measuring and Inducing Personality Traits in LLMs with Dynamic Intensity Control
Large language models (LLMs) have gained significant traction across a wide range of fields in recent years. There is also a growing expectation for them to display human-like personalities during interactions. To meet this expectation, numerous studies have proposed methods for modelling LLM personalities through psychometric evaluations. However, most existing models face two major limitations: they rely on the Big Five (OCEAN) framework, which only provides coarse personality dimensions, and they lack mechanisms for controlling trait intensity. In this paper, we address this gap by extending the Machine Personality Inventory (MPI), which originally used the Big Five model, to incorporate the 16 Personality Factor (16PF) model, allowing expressive control over sixteen distinct traits. We also developed a structured framework known as Specific Attribute Control (SAC) for evaluating and dynamically inducing trait intensity in LLMs. Our method introduces adjective-based semantic anchoring to guide trait intensity expression and leverages behavioural questions across five intensity factors: \textit{Frequency}, \textit{Depth}, \textit{Threshold}, \textit{Effort}, and \textit{Willingness}. Through experimentation, we find that modelling intensity as a continuous spectrum yields substantially more consistent and controllable personality expression compared to binary trait toggling. Moreover, we observe that changes in target trait intensity systematically influence closely related traits in psychologically coherent directions, suggesting that LLMs internalize multi-dimensional personality structures rather than treating traits in isolation. Our work opens new pathways for controlled and nuanced human-machine interactions in domains such as healthcare, education, and interviewing processes, bringing us one step closer to truly human-like social machines.
comment: Under review
☆ SharpZO: Hybrid Sharpness-Aware Vision Language Model Prompt Tuning via Forward-Only Passes
Fine-tuning vision language models (VLMs) has achieved remarkable performance across various downstream tasks; yet, it requires access to model gradients through backpropagation (BP), making them unsuitable for memory-constrained, inference-only edge devices. To address this limitation, previous work has explored various BP-free fine-tuning methods. However, these approaches often rely on high-variance evolutionary strategies (ES) or zeroth-order (ZO) optimization, and often fail to achieve satisfactory performance. In this paper, we propose a hybrid Sharpness-aware Zeroth-order optimization (SharpZO) approach, specifically designed to enhance the performance of ZO VLM fine-tuning via a sharpness-aware warm-up training. SharpZO features a two-stage optimization process: a sharpness-aware ES stage that globally explores and smooths the loss landscape to construct a strong initialization, followed by a fine-grained local search via sparse ZO optimization. The entire optimization relies solely on forward passes. Detailed theoretical analysis and extensive experiments on CLIP models demonstrate that SharpZO significantly improves accuracy and convergence speed, achieving up to 7% average gain over state-of-the-art forward-only methods.
☆ Can Gradient Descent Simulate Prompting?
There are two primary ways of incorporating new information into a language model (LM): changing its prompt or changing its parameters, e.g. via fine-tuning. Parameter updates incur no long-term storage cost for model changes. However, for many model updates, prompting is significantly more effective: prompted models can generalize robustly from single examples and draw logical inferences that do not occur under standard fine-tuning. Can models be modified so that fine-tuning does emulate prompting? This paper describes a method for meta-training LMs such that gradient updates emulate the effects of conditioning on new information. Our approach uses tools from gradient-based meta-learning but uses an LM's own prompted predictions as targets, eliminating the need for ground-truth labels. Subsequent gradient descent training recovers some (and occasionally all) of prompted model performance -- showing improvement on the ``reversal curse'' tasks, and answering questions about text passages after a single gradient update. These results suggest that, with appropriate initialization, gradient descent can be surprisingly expressive. Our results suggest new avenues for long-context modeling and offer insight into the generalization capabilities of gradient-based learning.
comment: 14 pages, 2 figures
☆ Beyond Reactive Safety: Risk-Aware LLM Alignment via Long-Horizon Simulation
Given the growing influence of language model-based agents on high-stakes societal decisions, from public policy to healthcare, ensuring their beneficial impact requires understanding the far-reaching implications of their suggestions. We propose a proof-of-concept framework that projects how model-generated advice could propagate through societal systems on a macroscopic scale over time, enabling more robust alignment. To assess the long-term safety awareness of language models, we also introduce a dataset of 100 indirect harm scenarios, testing models' ability to foresee adverse, non-obvious outcomes from seemingly harmless user prompts. Our approach achieves not only over 20% improvement on the new dataset but also an average win rate exceeding 70% against strong baselines on existing safety benchmarks (AdvBench, SafeRLHF, WildGuardMix), suggesting a promising direction for safer agents.
☆ KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model
In this paper, we propose KaLM-Embedding-V2, a versatile and compact embedding model, which achieves impressive performance in general-purpose text embedding tasks by leveraging superior training techniques and data. Our key innovations include: (1) To better align the architecture with representation learning, we remove the causal attention mask and adopt a fully bidirectional transformer with simple yet effective mean-pooling to produce fixed-length embeddings; (2) We employ a multi-stage training pipeline: (i) pre-training on large-scale weakly supervised open-source corpora; (ii) fine-tuning on high-quality retrieval and non-retrieval datasets; and (iii) model-soup parameter averaging for robust generalization. Besides, we introduce a focal-style reweighting mechanism that concentrates learning on difficult samples and an online hard-negative mixing strategy to continuously enrich hard negatives without expensive offline mining; (3) We collect over 20 categories of data for pre-training and 100 categories of data for fine-tuning, to boost both the performance and generalization of the embedding model. Extensive evaluations on the Massive Text Embedding Benchmark (MTEB) Chinese and English show that our model significantly outperforms others of comparable size, and competes with 3x, 14x, 18x, and 26x larger embedding models, setting a new standard for a versatile and compact embedding model with less than 1B parameters.
comment: Technical Report; 26 pages 12 tables 1 figure. arXiv admin note: substantial text overlap with arXiv:2501.01028
☆ FineWeb2: One Pipeline to Scale Them All -- Adapting Pre-Training Data Processing to Every Language
Pre-training state-of-the-art large language models (LLMs) requires vast amounts of clean and diverse text data. While the open development of large high-quality English pre-training datasets has seen substantial recent progress, training performant multilingual LLMs remains a challenge, in large part due to the inherent difficulty of tailoring filtering and deduplication pipelines to a large number of languages. In this work, we introduce a new pre-training dataset curation pipeline based on FineWeb that can be automatically adapted to support any language. We extensively ablate our pipeline design choices on a set of nine diverse languages, guided by a set of meaningful and informative evaluation tasks that were chosen through a novel selection process based on measurable criteria. Ultimately, we show that our pipeline can be used to create non-English corpora that produce more performant models than prior datasets. We additionally introduce a straightforward and principled approach to rebalance datasets that takes into consideration both duplication count and quality, providing an additional performance uplift. Finally, we scale our pipeline to over 1000 languages using almost 100 Common Crawl snapshots to produce FineWeb2, a new 20 terabyte (5 billion document) multilingual dataset which we release along with our pipeline, training, and evaluation codebases.
☆ Optimising Language Models for Downstream Tasks: A Post-Training Perspective
Language models (LMs) have demonstrated remarkable capabilities in NLP, yet adapting them efficiently and robustly to specific tasks remains challenging. As their scale and complexity grow, fine-tuning LMs on labelled data often underutilizes available unlabelled data, leads to overfitting on small task-specific sets, and imposes significant computational costs. These limitations hamper their application to the open-ended landscape of real-world language tasks. This thesis proposes a series of methods to better adapt LMs to downstream applications. First, we explore strategies for extracting task-relevant knowledge from unlabelled data, introducing a novel continued pre-training technique that outperforms state-of-the-art semi-supervised approaches. Next, we present a parameter-efficient fine-tuning method that substantially reduces memory and compute costs while maintaining competitive performance. We also introduce improved supervised fine-tuning methods that enable LMs to better follow instructions, especially when labelled data is scarce, enhancing their performance across a range of NLP tasks, including open-ended generation. Finally, we develop new evaluation methods and benchmarks, such as multi-hop spatial reasoning tasks, to assess LM capabilities and adaptation more comprehensively. Through extensive empirical studies across diverse NLP tasks, our results demonstrate that these approaches substantially improve LM robustness, efficiency, and generalization, making them more adaptable to a broad range of applications. These advances mark a significant step towards more robust and efficient LMs, bringing us closer to the goal of artificial general intelligence.
comment: PhD Thesis
☆ Domain Knowledge-Enhanced LLMs for Fraud and Concept Drift Detection
Detecting deceptive conversations on dynamic platforms is increasingly difficult due to evolving language patterns and Concept Drift (CD)-i.e., semantic or topical shifts that alter the context or intent of interactions over time. These shifts can obscure malicious intent or mimic normal dialogue, making accurate classification challenging. While Large Language Models (LLMs) show strong performance in natural language tasks, they often struggle with contextual ambiguity and hallucinations in risk-sensitive scenarios. To address these challenges, we present a Domain Knowledge (DK)-Enhanced LLM framework that integrates pretrained LLMs with structured, task-specific insights to perform fraud and concept drift detection. The proposed architecture consists of three main components: (1) a DK-LLM module to detect fake or deceptive conversations; (2) a drift detection unit (OCDD) to determine whether a semantic shift has occurred; and (3) a second DK-LLM module to classify the drift as either benign or fraudulent. We first validate the value of domain knowledge using a fake review dataset and then apply our full framework to SEConvo, a multiturn dialogue dataset that includes various types of fraud and spam attacks. Results show that our system detects fake conversations with high accuracy and effectively classifies the nature of drift. Guided by structured prompts, the LLaMA-based implementation achieves 98% classification accuracy. Comparative studies against zero-shot baselines demonstrate that incorporating domain knowledge and drift awareness significantly improves performance, interpretability, and robustness in high-stakes NLP applications.
♻ ☆ OpenNER 1.0: Standardized Open-Access Named Entity Recognition Datasets in 50+ Languages
We present OpenNER 1.0, a standardized collection of openly-available named entity recognition (NER) datasets. OpenNER contains 36 NER corpora that span 52 languages, human-annotated in varying named entity ontologies. We correct annotation format issues, standardize the original datasets into a uniform representation with consistent entity type names across corpora, and provide the collection in a structure that enables research in multilingual and multi-ontology NER. We provide baseline results using three pretrained multilingual language models and two large language models to compare the performance of recent models and facilitate future research in NER. We find that no single model is best in all languages and that significant work remains to obtain high performance from LLMs on the NER task.
comment: Under review
♻ ☆ Prompting with Phonemes: Enhancing LLMs' Multilinguality for Non-Latin Script Languages NAACL 2025
Although multilingual LLMs have achieved remarkable performance across benchmarks, we find they continue to underperform on non-Latin script languages across contemporary LLM families. This discrepancy arises from the fact that LLMs are pretrained with orthographic scripts, which are dominated by Latin characters that obscure their shared phonology with non-Latin scripts. We propose leveraging phonemic transcriptions as complementary signals to induce script-invariant representations. Our study demonstrates that integrating phonemic signals improves performance across both non-Latin and Latin script languages, with a particularly significant impact on closing the performance gap between the two. Through detailed experiments, we show that phonemic and orthographic scripts retrieve distinct examples for in-context learning (ICL). This motivates our proposed Mixed-ICL retrieval strategy, where further aggregation from both leads to our significant performance improvements for both Latin script languages (up to 12.6%) and non-Latin script languages (up to 15.1%) compared to randomized ICL retrieval.
comment: Accepted to NAACL 2025 (Main Conference). This version contains minor improvements to the camera-ready
♻ ☆ From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents
Information retrieval is a cornerstone of modern knowledge acquisition, enabling billions of queries each day across diverse domains. However, traditional keyword-based search engines are increasingly inadequate for handling complex, multi-step information needs. Our position is that Large Language Models (LLMs), endowed with reasoning and agentic capabilities, are ushering in a new paradigm termed Agentic Deep Research. These systems transcend conventional information search techniques by tightly integrating autonomous reasoning, iterative retrieval, and information synthesis into a dynamic feedback loop. We trace the evolution from static web search to interactive, agent-based systems that plan, explore, and learn. We also introduce a test-time scaling law to formalize the impact of computational depth on reasoning and search. Supported by benchmark results and the rise of open-source implementations, we demonstrate that Agentic Deep Research not only significantly outperforms existing approaches, but is also poised to become the dominant paradigm for future information seeking. All the related resources, including industry products, research papers, benchmark datasets, and open-source implementations, are collected for the community in https://github.com/DavidZWZ/Awesome-Deep-Research.
♻ ☆ Explainability of Large Language Models using SMILE: Statistical Model-agnostic Interpretability with Local Explanations
Large language models like GPT, LLAMA, and Claude have become incredibly powerful at generating text, but they are still black boxes, so it is hard to understand how they decide what to say. That lack of transparency can be problematic, especially in fields where trust and accountability matter. To help with this, we introduce SMILE, a new method that explains how these models respond to different parts of a prompt. SMILE is model-agnostic and works by slightly changing the input, measuring how the output changes, and then highlighting which words had the most impact. Create simple visual heat maps showing which parts of a prompt matter the most. We tested SMILE on several leading LLMs and used metrics such as accuracy, consistency, stability, and fidelity to show that it gives clear and reliable explanations. By making these models easier to understand, SMILE brings us one step closer to making AI more transparent and trustworthy.
comment: The submission contains incorrect references that require substantial revision
♻ ☆ Rethinking LLM Training through Information Geometry and Quantum Metrics
Optimization in large language models (LLMs) unfolds over high-dimensional parameter spaces with non-Euclidean structure. Information geometry frames this landscape using the Fisher information metric, enabling more principled learning via natural gradient descent. Though often impractical, this geometric lens clarifies phenomena such as sharp minima, generalization, and observed scaling laws. We argue that curvature-aware approaches deepen our understanding of LLM training. Finally, we speculate on quantum analogies based on the Fubini-Study metric and Quantum Fisher Information, hinting at efficient optimization in quantum-enhanced systems.
comment: 9 pages, 1 figure(s)
♻ ☆ DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation
Diffusion large language models (dLLMs) are compelling alternatives to autoregressive (AR) models because their denoising models operate over the entire sequence. The global planning and iterative refinement features of dLLMs are particularly useful for code generation. However, current training and inference mechanisms for dLLMs in coding are still under-explored. To demystify the decoding behavior of dLLMs and unlock their potential for coding, we systematically investigate their denoising processes and reinforcement learning (RL) methods. We train a 7B dLLM, \textbf{DiffuCoder}, on 130B tokens of code. Using this model as a testbed, we analyze its decoding behavior, revealing how it differs from that of AR models: (1) dLLMs can decide how causal their generation should be without relying on semi-AR decoding, and (2) increasing the sampling temperature diversifies not only token choices but also their generation order. This diversity creates a rich search space for RL rollouts. For RL training, to reduce the variance of token log-likelihood estimates and maintain training efficiency, we propose \textbf{coupled-GRPO}, a novel sampling scheme that constructs complementary mask noise for completions used in training. In our experiments, coupled-GRPO significantly improves DiffuCoder's performance on code generation benchmarks (+4.4\% on EvalPlus) and reduces reliance on AR bias during decoding. Our work provides deeper insight into the machinery of dLLM generation and offers an effective, diffusion-native RL training framework. https://github.com/apple/ml-diffucoder.
comment: minor update
♻ ☆ Thinkless: LLM Learns When to Think
Reasoning Language Models, capable of extended chain-of-thought reasoning, have demonstrated remarkable performance on tasks requiring complex logical inference. However, applying elaborate reasoning for all queries often results in substantial computational inefficiencies, particularly when many problems admit straightforward solutions. This motivates an open question: Can LLMs learn when to think? To answer this, we propose Thinkless, a learnable framework that empowers an LLM to adaptively select between short-form and long-form reasoning, based on both task complexity and the model's ability. Thinkless is trained under a reinforcement learning paradigm and employs two control tokens, for concise responses and for detailed reasoning. At the core of our method is a Decoupled Group Relative Policy Optimization (DeGRPO) algorithm, which decomposes the learning objective of hybrid reasoning into two components: (1) a control token loss that governs the selection of the reasoning mode, and (2) a response loss that improves the accuracy of the generated answers. This decoupled formulation enables fine-grained control over the contributions of each objective, stabilizing training and effectively preventing collapse observed in vanilla GRPO. Empirically, on several benchmarks such as Minerva Algebra, MATH-500, and GSM8K, Thinkless is able to reduce the usage of long-chain thinking by 50% - 90%, significantly improving the efficiency of Reasoning Language Models. The code is available at https://github.com/VainF/Thinkless
♻ ☆ A Troublemaker with Contagious Jailbreak Makes Chaos in Honest Towns ACL 2025
With the development of large language models, they are widely used as agents in various fields. A key component of agents is memory, which stores vital information but is susceptible to jailbreak attacks. Existing research mainly focuses on single-agent attacks and shared memory attacks. However, real-world scenarios often involve independent memory. In this paper, we propose the Troublemaker Makes Chaos in Honest Town (TMCHT) task, a large-scale, multi-agent, multi-topology text-based attack evaluation framework. TMCHT involves one attacker agent attempting to mislead an entire society of agents. We identify two major challenges in multi-agent attacks: (1) Non-complete graph structure, (2) Large-scale systems. We attribute these challenges to a phenomenon we term toxicity disappearing. To address these issues, we propose an Adversarial Replication Contagious Jailbreak (ARCJ) method, which optimizes the retrieval suffix to make poisoned samples more easily retrieved and optimizes the replication suffix to make poisoned samples have contagious ability. We demonstrate the superiority of our approach in TMCHT, with 23.51%, 18.95%, and 52.93% improvements in line topology, star topology, and 100-agent settings. Encourage community attention to the security of multi-agent systems.
comment: ACL 2025 Main
♻ ☆ Simulating Hard Attention Using Soft Attention
We study conditions under which transformers using soft attention can simulate hard attention, that is, effectively focus all attention on a subset of positions. First, we examine several subclasses of languages recognized by hard-attention transformers, which can be defined in variants of linear temporal logic. We demonstrate how soft-attention transformers can compute formulas of these logics using unbounded positional embeddings or temperature scaling. Second, we demonstrate how temperature scaling allows softmax transformers to simulate general hard-attention transformers, using a temperature that depends on the minimum gap between the maximum attention scores and other attention scores.
comment: 19 pages
♻ ☆ Capturing Style in Author and Document Representation
A wide range of Deep Natural Language Processing (NLP) models integrates continuous and low dimensional representations of words and documents. Surprisingly, very few models study representation learning for authors. These representations can be used for many NLP tasks, such as author identification and classification, or in recommendation systems. A strong limitation of existing works is that they do not explicitly capture writing style, making them hardly applicable to literary data. We therefore propose a new architecture based on Variational Information Bottleneck (VIB) that learns embeddings for both authors and documents with a stylistic constraint. Our model fine-tunes a pre-trained document encoder. We stimulate the detection of writing style by adding predefined stylistic features making the representation axis interpretable with respect to writing style indicators. We evaluate our method on three datasets: a literary corpus extracted from the Gutenberg Project, the Blog Authorship Corpus and IMDb62, for which we show that it matches or outperforms strong/recent baselines in authorship attribution while capturing much more accurately the authors stylistic aspects.
♻ ☆ TAPS: Tool-Augmented Personalisation via Structured Tagging
Recent advancements in tool-augmented large language models have enabled them to interact with external tools, enhancing their ability to perform complex user tasks. However, existing approaches overlook the role of personalisation in guiding tool use. This work investigates how user preferences can be effectively integrated into goal-oriented dialogue agents. Through extensive analysis, we identify key weaknesses in the ability of LLMs to personalise tool use. To this end, we introduce TAPS, a novel solution that enhances personalised tool use by leveraging a structured tagging tool and an uncertainty-based tool detector. TAPS significantly improves the ability of LLMs to incorporate user preferences, achieving the new state-of-the-art for open source models on the NLSI task.
♻ ☆ LLM-Based Human-Agent Collaboration and Interaction Systems: A Survey
Recent advances in large language models (LLMs) have sparked growing interest in building fully autonomous agents. However, fully autonomous LLM-based agents still face significant challenges, including limited reliability due to hallucinations, difficulty in handling complex tasks, and substantial safety and ethical risks, all of which limit their feasibility and trustworthiness in real-world applications. To overcome these limitations, LLM-based human-agent systems (LLM-HAS) incorporate human-provided information, feedback, or control into the agent system to enhance system performance, reliability and safety. These human-agent collaboration systems enable humans and LLM-based agents to collaborate effectively by leveraging their complementary strengths. This paper provides the first comprehensive and structured survey of LLM-HAS. It clarifies fundamental concepts, systematically presents core components shaping these systems, including environment & profiling, human feedback, interaction types, orchestration and communication, explores emerging applications, and discusses unique challenges and opportunities arising from human-AI collaboration. By consolidating current knowledge and offering a structured overview, we aim to foster further research and innovation in this rapidly evolving interdisciplinary field. Paper lists and resources are available at https://github.com/HenryPengZou/Awesome-Human-Agent-Collaboration-Interaction-Systems.
comment: Paper lists and resources are available at https://github.com/HenryPengZou/Awesome-Human-Agent-Collaboration-Interaction-Systems
♻ ☆ CVC: A Large-Scale Chinese Value Rule Corpus for Value Alignment of Large Language Models
Ensuring that Large Language Models (LLMs) align with mainstream human values and ethical norms is crucial for the safe and sustainable development of AI. Current value evaluation and alignment are constrained by Western cultural bias and incomplete domestic frameworks reliant on non-native rules; furthermore, the lack of scalable, rule-driven scenario generation methods makes evaluations costly and inadequate across diverse cultural contexts. To address these challenges, we propose a hierarchical value framework grounded in core Chinese values, encompassing three main dimensions, 12 core values, and 50 derived values. Based on this framework, we construct a large-scale Chinese Values Corpus (CVC) containing over 250,000 value rules enhanced and expanded through human annotation. Experimental results show that CVC-guided scenarios outperform direct generation ones in value boundaries and content diversity. In the evaluation across six sensitive themes (e.g., surrogacy, suicide), seven mainstream LLMs preferred CVC-generated options in over 70.5% of cases, while five Chinese human annotators showed an 87.5% alignment with CVC, confirming its universality, cultural relevance, and strong alignment with Chinese values. Additionally, we construct 400,000 rule-based moral dilemma scenarios that objectively capture nuanced distinctions in conflicting value prioritization across 17 LLMs. Our work establishes a culturally-adaptive benchmarking framework for comprehensive value evaluation and alignment, representing Chinese characteristics. All data are available at https://huggingface.co/datasets/Beijing-AISI/CVC, and the code is available at https://github.com/Beijing-AISI/CVC.
♻ ☆ Do Large Language Models Advocate for Inferentialism?
The emergence of large language models (LLMs) such as ChatGPT and Claude presents new challenges for philosophy of language, particularly regarding the nature of linguistic meaning and representation. While LLMs have traditionally been understood through distributional semantics, this paper explores Robert Brandom's inferential semantics as an alternative foundational framework for understanding these systems. We examine how key features of inferential semantics -- including its anti-representationalist stance, logical expressivism, and quasi-compositional approach -- align with the architectural and functional characteristics of Transformer-based LLMs. Through analysis of the ISA (Inference, Substitution, Anaphora) approach, we demonstrate that LLMs exhibit fundamentally anti-representationalist properties in their processing of language. We further develop a consensus theory of truth appropriate for LLMs, grounded in their interactive and normative dimensions through mechanisms like RLHF. While acknowledging significant tensions between inferentialism's philosophical commitments and LLMs' sub-symbolic processing, this paper argues that inferential semantics provides valuable insights into how LLMs generate meaning without reference to external world representations. Our analysis suggests that LLMs may challenge traditional assumptions in philosophy of language, including strict compositionality and semantic externalism, though further empirical investigation is needed to fully substantiate these theoretical claims.
♻ ☆ Learning Evaluation Models from Large Language Models for Sequence Generation
Automatic evaluation of sequence generation, traditionally reliant on metrics like BLEU and ROUGE, often fails to capture the semantic accuracy of generated text sequences due to their emphasis on n-gram overlap. A promising solution to this problem is to develop model-based metrics, such as BLEURT and COMET. However, these approaches are typically hindered by the scarcity of labeled evaluation data, which is necessary to train the evaluation models. In this work, we build upon this challenge by proposing the Customized Sequence Evaluation Metric (CSEM), a three-stage evaluation model training method that utilizes large language models to generate labeled data for model-based metric development, thereby eliminating the need for human-labeled data. Additionally, we expand the scope of CSEM to support various evaluation types, including single-aspect, multi-aspect, reference-free, and reference-based evaluations, enabling the customization of metrics to suit diverse real-world scenarios. Experimental results on the SummEval benchmark demonstrate that CSEM can effectively train an evaluation model without human-labeled data. Further experiments in reinforcement learning and reranking show that metrics developed through CSEM outperform traditional evaluation metrics, leading to substantial improvements in sequence quality as evaluated by both commonly used metrics and ChatGPT.
comment: Accepted by TASLP 2025
♻ ☆ HERMES: temporal-coHERent long-forM understanding with Episodes and Semantics ICCV 2025
Long-form video understanding presents unique challenges that extend beyond traditional short-video analysis approaches, particularly in capturing long-range dependencies, processing redundant information efficiently, and extracting high-level semantic concepts. To address these challenges, we propose a novel approach that more accurately reflects human cognition. This paper introduces HERMES: temporal-coHERent long-forM understanding with Episodes and Semantics, featuring two versatile modules that can enhance existing video-language models or operate as a standalone system. Our Episodic COmpressor (ECO) efficiently aggregates representations from micro to semi-macro levels, reducing computational overhead while preserving temporal dependencies. Our Semantics ReTRiever (SeTR) enriches these representations with semantic information by focusing on broader context, dramatically reducing feature dimensionality while preserving relevant macro-level information. We demonstrate that these modules can be seamlessly integrated into existing SOTA models, consistently improving their performance while reducing inference latency by up to 43% and memory usage by 46%. As a standalone system, HERMES achieves state-of-the-art performance across multiple long-video understanding benchmarks in both zero-shot and fully-supervised settings.
comment: Accepted for ICCV 2025. Project page: https://joslefaure.github.io/assets/html/hermes.html
♻ ☆ Evaluating Rare Disease Diagnostic Performance in Symptom Checkers: A Synthetic Vignette Simulation Approach
Symptom Checkers (SCs) provide medical information tailored to user symptoms. A critical challenge in SC development is preventing unexpected performance degradation for individual diseases, especially rare diseases, when updating algorithms. This risk stems from the lack of practical pre-deployment evaluation methods. For rare diseases, obtaining sufficient evaluation data from user feedback is difficult. To evaluate the impact of algorithm updates on the diagnostic performance for individual rare diseases before deployment, this study proposes and validates a novel Synthetic Vignette Simulation Approach. This approach aims to enable this essential evaluation efficiently and at a low cost. To estimate the impact of algorithm updates, we generated synthetic vignettes from disease-phenotype annotations in the Human Phenotype Ontology (HPO), a publicly available knowledge base for rare diseases curated by experts. Using these vignettes, we simulated SC interviews to predict changes in diagnostic performance. The effectiveness of this approach was validated retrospectively by comparing the predicted changes with actual performance metrics using the R-squared ($R^2$) coefficient. Our experiment, covering eight past algorithm updates for rare diseases, showed that the proposed method accurately predicted performance changes for diseases with phenotype frequency information in HPO (n=5). For these updates, we found a strong correlation for both Recall@8 change ($R^2$ = 0.83,$p$ = 0.031) and Precision@8 change ($R^2$ = 0.78,$p$ = 0.047). Our proposed method enables the pre-deployment evaluation of SC algorithm changes for individual rare diseases. This evaluation is based on a publicly available medical knowledge database created by experts, ensuring transparency and explainability for stakeholders. Additionally, SC developers can efficiently improve diagnostic performance at a low cost.
♻ ☆ Search and Refine During Think: Autonomous Retrieval-Augmented Reasoning of LLMs
Large language models have demonstrated impressive reasoning capabilities but are inherently limited by their knowledge reservoir. Retrieval-augmented reasoning mitigates this limitation by allowing LLMs to query external resources, but existing methods often retrieve irrelevant or noisy information, hindering accurate reasoning. In this paper, we propose AutoRefine, a reinforcement learning post-training framework that adopts a new ``search-and-refine-during-think'' paradigm. AutoRefine introduces explicit knowledge refinement steps between successive search calls, enabling the model to iteratively filter, distill, and organize evidence before generating an answer. Furthermore, we incorporate tailored retrieval-specific rewards alongside answer correctness rewards using group relative policy optimization. Experiments on single-hop and multi-hop QA benchmarks demonstrate that AutoRefine significantly outperforms existing approaches, particularly in complex, multi-hop reasoning scenarios. Detailed analysis shows that AutoRefine issues frequent, higher-quality searches and synthesizes evidence effectively.
♻ ☆ MockLLM: A Multi-Agent Behavior Collaboration Framework for Online Job Seeking and Recruiting KDD 2025
Online recruitment platforms have reshaped job-seeking and recruiting processes, driving increased demand for applications that enhance person-job matching. Traditional methods generally rely on analyzing textual data from resumes and job descriptions, limiting the dynamic, interactive aspects crucial to effective recruitment. Recent advances in Large Language Models (LLMs) have revealed remarkable potential in simulating adaptive, role-based dialogues, making them well-suited for recruitment scenarios. In this paper, we propose \textbf{MockLLM}, a novel framework to generate and evaluate mock interview interactions. The system consists of two key components: mock interview generation and two-sided evaluation in handshake protocol. By simulating both interviewer and candidate roles, MockLLM enables consistent and collaborative interactions for real-time and two-sided matching. To further improve the matching quality, MockLLM further incorporates reflection memory generation and dynamic strategy modification, refining behaviors based on previous experience. We evaluate MockLLM on real-world data Boss Zhipin, a major Chinese recruitment platform. The experimental results indicate that MockLLM outperforms existing methods in matching accuracy, scalability, and adaptability across job domains, highlighting its potential to advance candidate assessment and online recruitment.
comment: Accepted by KDD 2025 Research Track
♻ ☆ SceneGenAgent: Precise Industrial Scene Generation with Coding Agent ACL 2025
The modeling of industrial scenes is essential for simulations in industrial manufacturing. While large language models (LLMs) have shown significant progress in generating general 3D scenes from textual descriptions, generating industrial scenes with LLMs poses a unique challenge due to their demand for precise measurements and positioning, requiring complex planning over spatial arrangement. To address this challenge, we introduce SceneGenAgent, an LLM-based agent for generating industrial scenes through C# code. SceneGenAgent ensures precise layout planning through a structured and calculable format, layout verification, and iterative refinement to meet the quantitative requirements of industrial scenarios. Experiment results demonstrate that LLMs powered by SceneGenAgent exceed their original performance, reaching up to 81.0% success rate in real-world industrial scene generation tasks and effectively meeting most scene generation requirements. To further enhance accessibility, we construct SceneInstruct, a dataset designed for fine-tuning open-source LLMs to integrate into SceneGenAgent. Experiments show that fine-tuning open-source LLMs on SceneInstruct yields significant performance improvements, with Llama3.1-70B approaching the capabilities of GPT-4o. Our code and data are available at https://github.com/THUDM/SceneGenAgent .
comment: Accepted to ACL 2025
♻ ☆ SACL: Understanding and Combating Textual Bias in Code Retrieval with Semantic-Augmented Reranking and Localization
Retrieval-Augmented Code Generation (RACG) is a critical technique for enhancing code generation by retrieving relevant information. In this work, we conduct an in-depth analysis of code retrieval by systematically masking specific features while preserving code functionality. Our discoveries include: (1) although trained on code, current retrievers heavily rely on surface-level textual features (e.g., docstrings, identifier names), and (2) they exhibit a strong bias towards well-documented code, even if the documentation is irrelevant. Based on our discoveries, we propose SACL, a framework that enriches textual information and reduces bias by augmenting code or structural knowledge with semantic information. Extensive experiments show that SACL substantially improves code retrieval (e.g., by 12.8% / 9.4% / 7.0% Recall@1 on HumanEval / MBPP / SWE-Bench-Lite), which also leads to better code generation performance (e.g., by 4.88% Pass@1 on HumanEval).
♻ ☆ Comparing Retrieval-Augmentation and Parameter-Efficient Fine-Tuning for Privacy-Preserving Personalization of Large Language Models
Despite its substantial impact on various search, recommendation, and question answering tasks, privacy-preserving methods for personalizing large language models (LLMs) have received relatively limited exploration. There is one primary approach in this area through retrieval-augmented generation (RAG), which generates personalized outputs by enriching the input prompt with information retrieved from the user's personal data. This paper studies an orthogonal approach to RAG that involves learning user-dependent LLM parameters through parameter-efficient fine-tuning (PEFT). This paper presents the first systematic study for exploration of PEFT for LLM personalization and provides an extensive comparisons between RAG- and PEFT-based solutions, across a broad set of seven diverse datasets from the LaMP benchmark. Our results demonstrate that, on average, both RAG- and PEFT-based personalization methods yield 14.92% and 1.07% improvements over non-personalized LLMs, respectively. When combining RAG with PEFT, we observe a further improvement of 15.98%, highlighting the effectiveness of their integration in enhancing personalized text generation. Additionally, we identify a positive correlation between the amount of user data available and the effectiveness of PEFT. This finding suggests that RAG is particularly beneficial for cold-start users -- users with limited personal data -- while PEFT performs better when more user-specific data is available.
♻ ☆ Reward-Guided Speculative Decoding for Efficient LLM Reasoning
We introduce Reward-Guided Speculative Decoding (RSD), a novel framework aimed at improving the efficiency of inference in large language models (LLMs). RSD synergistically combines a lightweight draft model with a more powerful target model, incorporating a controlled bias to prioritize high-reward outputs, in contrast to existing speculative decoding methods that enforce strict unbiasedness. RSD employs a process reward model to evaluate intermediate decoding steps and dynamically decide whether to invoke the target model, optimizing the trade-off between computational cost and output quality. We theoretically demonstrate that a threshold-based mixture strategy achieves an optimal balance between resource utilization and performance. Extensive evaluations on challenging reasoning benchmarks, including Olympiad-level tasks, show that RSD delivers significant efficiency gains against decoding with the target model only (up to 4.4x fewer FLOPs), while achieving significant better accuracy than parallel decoding method on average (up to +3.5). These results highlight RSD as a robust and cost-effective approach for deploying LLMs in resource-intensive scenarios. The code is available at https://github.com/BaohaoLiao/RSD.
comment: 17 pages
♻ ☆ Learning to Rank for Multiple Retrieval-Augmented Models through Iterative Utility Maximization
This paper investigates the design of a unified search engine to serve multiple retrieval-augmented generation (RAG) agents, each with a distinct task, backbone large language model (LLM), and RAG strategy. We introduce an iterative approach where the search engine generates retrieval results for the RAG agents and gathers feedback on the quality of the retrieved documents during an offline phase. This feedback is then used to iteratively optimize the search engine using an expectation-maximization algorithm, with the goal of maximizing each agent's utility function. Additionally, we adapt this to an online setting, allowing the search engine to refine its behavior based on real-time individual agents feedback to better serve the results for each of them. Experiments on datasets from the Knowledge-Intensive Language Tasks (KILT) benchmark demonstrates that our approach significantly on average outperforms baselines across 18 RAG models. We demonstrate that our method effectively ``personalizes'' the retrieval for each RAG agent based on the collected feedback. Finally, we provide a comprehensive ablation study to explore various aspects of our method.
♻ ☆ Evaluating Large Language Models for Automated Clinical Abstraction in Pulmonary Embolism Registries: Performance Across Model Sizes, Versions, and Parameters
Pulmonary embolism (PE) registries accelerate practice improving research but rely on labor intensive manual abstraction of radiology reports. We examined whether openly available large language models (LLMs) can automate concept extraction from computed tomography PE (CTPE) reports without loss of data quality. Four Llama 3 variants (3.0 8B, 3.1 8B, 3.1 70B, 3.3 70B) and one reviewer model, Phi 4 14B, were tested on 250 dual annotated CTPE reports from each of MIMIC IV and Duke University. Accuracy, positive predictive value (PPV) and negative predictive value (NPV) versus a human gold standard were measured across model size, temperature and shot count. Mean accuracy rose with scale: 0.83 (3.0 8B), 0.91 (3.1 8B) and 0.96 for both 70B variants; Phi 4 14B reached 0.98. Accuracy differed by less than 0.03 between datasets, indicating external robustness. In dual model concordance (L3 70B plus Phi 4 14B) PPV for PE presence was at least 0.95 and NPV at least 0.98, while location, thrombus burden, right heart strain and image quality artifacts each achieved PPV of at least 0.90 and NPV of at least 0.95. Fewer than four percent of individual concept annotations were discordant, and full agreement occurred in more than seventy five percent of reports. Large language models therefore provide a scalable, accurate solution for PE registry abstraction, and a dual model review workflow can safeguard data quality with minimal human oversight.
♻ ☆ PP-DocBee: Improving Multimodal Document Understanding Through a Bag of Tricks
With the rapid advancement of digitalization, various document images are being applied more extensively in production and daily life, and there is an increasingly urgent need for fast and accurate parsing of the content in document images. Therefore, this report presents PP-DocBee, a novel multimodal large language model designed for end-to-end document image understanding. First, we develop a data synthesis strategy tailored to document scenarios in which we build a diverse dataset to improve the model generalization. Then, we apply a few training techniques, including dynamic proportional sampling, data preprocessing, and OCR postprocessing strategies. Extensive evaluations demonstrate the superior performance of PP-DocBee, achieving state-of-the-art results on English document understanding benchmarks and even outperforming existing open source and commercial models in Chinese document understanding. The source code and pre-trained models are publicly available at \href{https://github.com/PaddlePaddle/PaddleMIX}{https://github.com/PaddlePaddle/PaddleMIX}.
Computer Vision and Pattern Recognition 100
☆ Whole-Body Conditioned Egocentric Video Prediction
We train models to Predict Ego-centric Video from human Actions (PEVA), given the past video and an action represented by the relative 3D body pose. By conditioning on kinematic pose trajectories, structured by the joint hierarchy of the body, our model learns to simulate how physical human actions shape the environment from a first-person point of view. We train an auto-regressive conditional diffusion transformer on Nymeria, a large-scale dataset of real-world egocentric video and body pose capture. We further design a hierarchical evaluation protocol with increasingly challenging tasks, enabling a comprehensive analysis of the model's embodied prediction and control abilities. Our work represents an initial attempt to tackle the challenges of modeling complex real-world environments and embodied agent behaviors with video prediction from the perspective of a human.
comment: Project Page: https://dannytran123.github.io/PEVA
☆ SiM3D: Single-instance Multiview Multimodal and Multisetup 3D Anomaly Detection Benchmark
We propose SiM3D, the first benchmark considering the integration of multiview and multimodal information for comprehensive 3D anomaly detection and segmentation (ADS), where the task is to produce a voxel-based Anomaly Volume. Moreover, SiM3D focuses on a scenario of high interest in manufacturing: single-instance anomaly detection, where only one object, either real or synthetic, is available for training. In this respect, SiM3D stands out as the first ADS benchmark that addresses the challenge of generalising from synthetic training data to real test data. SiM3D includes a novel multimodal multiview dataset acquired using top-tier industrial sensors and robots. The dataset features multiview high-resolution images (12 Mpx) and point clouds (7M points) for 333 instances of eight types of objects, alongside a CAD model for each type. We also provide manually annotated 3D segmentation GTs for anomalous test samples. To establish reference baselines for the proposed multiview 3D ADS task, we adapt prominent singleview methods and assess their performance using novel metrics that operate on Anomaly Volumes.
☆ SAM4D: Segment Anything in Camera and LiDAR Streams ICCV2025
We present SAM4D, a multi-modal and temporal foundation model designed for promptable segmentation across camera and LiDAR streams. Unified Multi-modal Positional Encoding (UMPE) is introduced to align camera and LiDAR features in a shared 3D space, enabling seamless cross-modal prompting and interaction. Additionally, we propose Motion-aware Cross-modal Memory Attention (MCMA), which leverages ego-motion compensation to enhance temporal consistency and long-horizon feature retrieval, ensuring robust segmentation across dynamically changing autonomous driving scenes. To avoid annotation bottlenecks, we develop a multi-modal automated data engine that synergizes VFM-driven video masklets, spatiotemporal 4D reconstruction, and cross-modal masklet fusion. This framework generates camera-LiDAR aligned pseudo-labels at a speed orders of magnitude faster than human annotation while preserving VFM-derived semantic fidelity in point cloud representations. We conduct extensive experiments on the constructed Waymo-4DSeg, which demonstrate the powerful cross-modal segmentation ability and great potential in data annotation of proposed SAM4D.
comment: Accepted by ICCV2025, Project Page: https://SAM4D-Project.github.io
☆ HalluSegBench: Counterfactual Visual Reasoning for Segmentation Hallucination Evaluation
Recent progress in vision-language segmentation has significantly advanced grounded visual understanding. However, these models often exhibit hallucinations by producing segmentation masks for objects not grounded in the image content or by incorrectly labeling irrelevant regions. Existing evaluation protocols for segmentation hallucination primarily focus on label or textual hallucinations without manipulating the visual context, limiting their capacity to diagnose critical failures. In response, we introduce HalluSegBench, the first benchmark specifically designed to evaluate hallucinations in visual grounding through the lens of counterfactual visual reasoning. Our benchmark consists of a novel dataset of 1340 counterfactual instance pairs spanning 281 unique object classes, and a set of newly introduced metrics that quantify hallucination sensitivity under visually coherent scene edits. Experiments on HalluSegBench with state-of-the-art vision-language segmentation models reveal that vision-driven hallucinations are significantly more prevalent than label-driven ones, with models often persisting in false segmentation, highlighting the need for counterfactual reasoning to diagnose grounding fidelity.
comment: Project webpage: https://plan-lab.github.io/hallusegbench/
☆ DeOcc-1-to-3: 3D De-Occlusion from a Single Image via Self-Supervised Multi-View Diffusion
Reconstructing 3D objects from a single image is a long-standing challenge, especially under real-world occlusions. While recent diffusion-based view synthesis models can generate consistent novel views from a single RGB image, they generally assume fully visible inputs and fail when parts of the object are occluded. This leads to inconsistent views and degraded 3D reconstruction quality. To overcome this limitation, we propose an end-to-end framework for occlusion-aware multi-view generation. Our method directly synthesizes six structurally consistent novel views from a single partially occluded image, enabling downstream 3D reconstruction without requiring prior inpainting or manual annotations. We construct a self-supervised training pipeline using the Pix2Gestalt dataset, leveraging occluded-unoccluded image pairs and pseudo-ground-truth views to teach the model structure-aware completion and view consistency. Without modifying the original architecture, we fully fine-tune the view synthesis model to jointly learn completion and multi-view generation. Additionally, we introduce the first benchmark for occlusion-aware reconstruction, encompassing diverse occlusion levels, object categories, and mask patterns. This benchmark provides a standardized protocol for evaluating future methods under partial occlusions. Our code is available at https://github.com/Quyans/DeOcc123.
☆ StruMamba3D: Exploring Structural Mamba for Self-supervised Point Cloud Representation Learning ICCV 2025
Recently, Mamba-based methods have demonstrated impressive performance in point cloud representation learning by leveraging State Space Model (SSM) with the efficient context modeling ability and linear complexity. However, these methods still face two key issues that limit the potential of SSM: Destroying the adjacency of 3D points during SSM processing and failing to retain long-sequence memory as the input length increases in downstream tasks. To address these issues, we propose StruMamba3D, a novel paradigm for self-supervised point cloud representation learning. It enjoys several merits. First, we design spatial states and use them as proxies to preserve spatial dependencies among points. Second, we enhance the SSM with a state-wise update strategy and incorporate a lightweight convolution to facilitate interactions between spatial states for efficient structure modeling. Third, our method reduces the sensitivity of pre-trained Mamba-based models to varying input lengths by introducing a sequence length-adaptive strategy. Experimental results across four downstream tasks showcase the superior performance of our method. In addition, our method attains the SOTA 95.1% accuracy on ModelNet40 and 92.75% accuracy on the most challenging split of ScanObjectNN without voting strategy.
comment: Accepted by ICCV 2025
☆ Maximal Matching Matters: Preventing Representation Collapse for Robust Cross-Modal Retrieval ACL 2025
Cross-modal image-text retrieval is challenging because of the diverse possible associations between content from different modalities. Traditional methods learn a single-vector embedding to represent semantics of each sample, but struggle to capture nuanced and diverse relationships that can exist across modalities. Set-based approaches, which represent each sample with multiple embeddings, offer a promising alternative, as they can capture richer and more diverse relationships. In this paper, we show that, despite their promise, these set-based representations continue to face issues including sparse supervision and set collapse, which limits their effectiveness. To address these challenges, we propose Maximal Pair Assignment Similarity to optimize one-to-one matching between embedding sets which preserve semantic diversity within the set. We also introduce two loss functions to further enhance the representations: Global Discriminative Loss to enhance distinction among embeddings, and Intra-Set Divergence Loss to prevent collapse within each set. Our method achieves state-of-the-art performance on MS-COCO and Flickr30k without relying on external data.
comment: Accepted at the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025 Main)
☆ ResQ: A Novel Framework to Implement Residual Neural Networks on Analog Rydberg Atom Quantum Computers ICCV
Research in quantum machine learning has recently proliferated due to the potential of quantum computing to accelerate machine learning. An area of machine learning that has not yet been explored is neural ordinary differential equation (neural ODE) based residual neural networks (ResNets), which aim to improve the effectiveness of neural networks using the principles of ordinary differential equations. In this work, we present our insights about why analog Rydberg atom quantum computers are especially well-suited for ResNets. We also introduce ResQ, a novel framework to optimize the dynamics of Rydberg atom quantum computers to solve classification problems in machine learning using analog quantum neural ODEs.
comment: ResQ will appear in the Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2025
☆ Exploring the Design Space of 3D MLLMs for CT Report Generation
Multimodal Large Language Models (MLLMs) have emerged as a promising way to automate Radiology Report Generation (RRG). In this work, we systematically investigate the design space of 3D MLLMs, including visual input representation, projectors, Large Language Models (LLMs), and fine-tuning techniques for 3D CT report generation. We also introduce two knowledge-based report augmentation methods that improve performance on the GREEN score by up to 10\%, achieving the 2nd place on the MICCAI 2024 AMOS-MM challenge. Our results on the 1,687 cases from the AMOS-MM dataset show that RRG is largely independent of the size of LLM under the same training protocol. We also show that larger volume size does not always improve performance if the original ViT was pre-trained on a smaller volume size. Lastly, we show that using a segmentation mask along with the CT volume improves performance. The code is publicly available at https://github.com/bowang-lab/AMOS-MM-Solution
☆ WAFT: Warping-Alone Field Transforms for Optical Flow
We introduce Warping-Alone Field Transforms (WAFT), a simple and effective method for optical flow. WAFT is similar to RAFT but replaces cost volume with high-resolution warping, achieving better accuracy with lower memory cost. This design challenges the conventional wisdom that constructing cost volumes is necessary for strong performance. WAFT is a simple and flexible meta-architecture with minimal inductive biases and reliance on custom designs. Compared with existing methods, WAFT ranks 1st on Spring and KITTI benchmarks, achieves the best zero-shot generalization on KITTI, while being up to 4.1x faster than methods with similar performance. Code and model weights are available at https://github.com/princeton-vl/WAFT.
☆ MADrive: Memory-Augmented Driving Scene Modeling
Recent advances in scene reconstruction have pushed toward highly realistic modeling of autonomous driving (AD) environments using 3D Gaussian splatting. However, the resulting reconstructions remain closely tied to the original observations and struggle to support photorealistic synthesis of significantly altered or novel driving scenarios. This work introduces MADrive, a memory-augmented reconstruction framework designed to extend the capabilities of existing scene reconstruction methods by replacing observed vehicles with visually similar 3D assets retrieved from a large-scale external memory bank. Specifically, we release MAD-Cars, a curated dataset of ${\sim}70$K 360{\deg} car videos captured in the wild and present a retrieval module that finds the most similar car instances in the memory bank, reconstructs the corresponding 3D assets from video, and integrates them into the target scene through orientation alignment and relighting. The resulting replacements provide complete multi-view representations of vehicles in the scene, enabling photorealistic synthesis of substantially altered configurations, as demonstrated in our experiments. Project page: https://yandex-research.github.io/madrive/
☆ G$^{2}$D: Boosting Multimodal Learning with Gradient-Guided Distillation ICCV 2025
Multimodal learning aims to leverage information from diverse data modalities to achieve more comprehensive performance. However, conventional multimodal models often suffer from modality imbalance, where one or a few modalities dominate model optimization, leading to suboptimal feature representation and underutilization of weak modalities. To address this challenge, we introduce Gradient-Guided Distillation (G$^{2}$D), a knowledge distillation framework that optimizes the multimodal model with a custom-built loss function that fuses both unimodal and multimodal objectives. G$^{2}$D further incorporates a dynamic sequential modality prioritization (SMP) technique in the learning process to ensure each modality leads the learning process, avoiding the pitfall of stronger modalities overshadowing weaker ones. We validate G$^{2}$D on multiple real-world datasets and show that G$^{2}$D amplifies the significance of weak modalities while training and outperforms state-of-the-art methods in classification and regression tasks. Our code is available at https://github.com/rAIson-Lab/G2D.
comment: Accepted at ICCV 2025
☆ GGTalker: Talking Head Systhesis with Generalizable Gaussian Priors and Identity-Specific Adaptation ICCV 2025
Creating high-quality, generalizable speech-driven 3D talking heads remains a persistent challenge. Previous methods achieve satisfactory results for fixed viewpoints and small-scale audio variations, but they struggle with large head rotations and out-of-distribution (OOD) audio. Moreover, they are constrained by the need for time-consuming, identity-specific training. We believe the core issue lies in the lack of sufficient 3D priors, which limits the extrapolation capabilities of synthesized talking heads. To address this, we propose GGTalker, which synthesizes talking heads through a combination of generalizable priors and identity-specific adaptation. We introduce a two-stage Prior-Adaptation training strategy to learn Gaussian head priors and adapt to individual characteristics. We train Audio-Expression and Expression-Visual priors to capture the universal patterns of lip movements and the general distribution of head textures. During the Customized Adaptation, individual speaking styles and texture details are precisely modeled. Additionally, we introduce a color MLP to generate fine-grained, motion-aligned textures and a Body Inpainter to blend rendered results with the background, producing indistinguishable, photorealistic video frames. Comprehensive experiments show that GGTalker achieves state-of-the-art performance in rendering quality, 3D consistency, lip-sync accuracy, and training efficiency.
comment: ICCV 2025, Project page: https://vincenthu19.github.io/GGTalker/
☆ Mitigating Hallucination of Large Vision-Language Models via Dynamic Logits Calibration
Large Vision-Language Models (LVLMs) have demonstrated significant advancements in multimodal understanding, yet they are frequently hampered by hallucination-the generation of text that contradicts visual input. Existing training-free decoding strategies exhibit critical limitations, including the use of static constraints that do not adapt to semantic drift during generation, inefficiency stemming from the need for multiple forward passes, and degradation of detail due to overly rigid intervention rules. To overcome these challenges, this paper introduces Dynamic Logits Calibration (DLC), a novel training-free decoding framework designed to dynamically align text generation with visual evidence at inference time. At the decoding phase, DLC step-wise employs CLIP to assess the semantic alignment between the input image and the generated text sequence. Then, the Relative Visual Advantage (RVA) of candidate tokens is evaluated against a dynamically updated contextual baseline, adaptively adjusting output logits to favor tokens that are visually grounded. Furthermore, an adaptive weighting mechanism, informed by a real-time context alignment score, carefully balances the visual guidance while ensuring the overall quality of the textual output. Extensive experiments conducted across diverse benchmarks and various LVLM architectures (such as LLaVA, InstructBLIP, and MiniGPT-4) demonstrate that DLC significantly reduces hallucinations, outperforming current methods while maintaining high inference efficiency by avoiding multiple forward passes. Overall, we present an effective and efficient decoding-time solution to mitigate hallucinations, thereby enhancing the reliability of LVLMs for more practices. Code will be released on Github.
☆ Lightweight Physics-Informed Zero-Shot Ultrasound Plane Wave Denoising
Ultrasound Coherent Plane Wave Compounding (CPWC) enhances image contrast by combining echoes from multiple steered transmissions. While increasing the number of angles generally improves image quality, it drastically reduces the frame rate and can introduce blurring artifacts in fast-moving targets. Moreover, compounded images remain susceptible to noise, particularly when acquired with a limited number of transmissions. We propose a zero-shot denoising framework tailored for low-angle CPWC acquisitions, which enhances contrast without relying on a separate training dataset. The method divides the available transmission angles into two disjoint subsets, each used to form compound images that include higher noise levels. The new compounded images are then used to train a deep model via a self-supervised residual learning scheme, enabling it to suppress incoherent noise while preserving anatomical structures. Because angle-dependent artifacts vary between the subsets while the underlying tissue response is similar, this physics-informed pairing allows the network to learn to disentangle the inconsistent artifacts from the consistent tissue signal. Unlike supervised methods, our model requires no domain-specific fine-tuning or paired data, making it adaptable across anatomical regions and acquisition setups. The entire pipeline supports efficient training with low computational cost due to the use of a lightweight architecture, which comprises only two convolutional layers. Evaluations on simulation, phantom, and in vivo data demonstrate superior contrast enhancement and structure preservation compared to both classical and deep learning-based denoising methods.
☆ Towards Reliable Detection of Empty Space: Conditional Marked Point Processes for Object Detection
Deep neural networks have set the state-of-the-art in computer vision tasks such as bounding box detection and semantic segmentation. Object detectors and segmentation models assign confidence scores to predictions, reflecting the model's uncertainty in object detection or pixel-wise classification. However, these confidence estimates are often miscalibrated, as their architectures and loss functions are tailored to task performance rather than probabilistic foundation. Even with well calibrated predictions, object detectors fail to quantify uncertainty outside detected bounding boxes, i.e., the model does not make a probability assessment of whether an area without detected objects is truly free of obstacles. This poses a safety risk in applications such as automated driving, where uncertainty in empty areas remains unexplored. In this work, we propose an object detection model grounded in spatial statistics. Bounding box data matches realizations of a marked point process, commonly used to describe the probabilistic occurrence of spatial point events identified as bounding box centers, where marks are used to describe the spatial extension of bounding boxes and classes. Our statistical framework enables a likelihood-based training and provides well-defined confidence estimates for whether a region is drivable, i.e., free of objects. We demonstrate the effectiveness of our method through calibration assessments and evaluation of performance.
comment: 15 pages, 4 figures, 3 tables
☆ TITAN: Query-Token based Domain Adaptive Adversarial Learning ICCV 2025
We focus on the source-free domain adaptive object detection (SF-DAOD) problem when source data is unavailable during adaptation and the model must adapt to an unlabeled target domain. The majority of approaches for the problem employ a self-supervised approach using a student-teacher (ST) framework where pseudo-labels are generated via a source-pretrained model for further fine-tuning. We observe that the performance of a student model often degrades drastically, due to the collapse of the teacher model, primarily caused by high noise in pseudo-labels, resulting from domain bias, discrepancies, and a significant domain shift across domains. To obtain reliable pseudo-labels, we propose a Target-based Iterative Query-Token Adversarial Network (TITAN), which separates the target images into two subsets: those similar to the source (easy) and those dissimilar (hard). We propose a strategy to estimate variance to partition the target domain. This approach leverages the insight that higher detection variances correspond to higher recall and greater similarity to the source domain. Also, we incorporate query-token-based adversarial modules into a student-teacher baseline framework to reduce the domain gaps between two feature representations. Experiments conducted on four natural imaging datasets and two challenging medical datasets have substantiated the superior performance of TITAN compared to existing state-of-the-art (SOTA) methodologies. We report an mAP improvement of +22.7, +22.2, +21.1, and +3.7 percent over the current SOTA on C2F, C2B, S2C, and K2C benchmarks, respectively.
comment: ICCV 2025
☆ Global and Local Entailment Learning for Natural World Imagery ICCV 2025
Learning the hierarchical structure of data in vision-language models is a significant challenge. Previous works have attempted to address this challenge by employing entailment learning. However, these approaches fail to model the transitive nature of entailment explicitly, which establishes the relationship between order and semantics within a representation space. In this work, we introduce Radial Cross-Modal Embeddings (RCME), a framework that enables the explicit modeling of transitivity-enforced entailment. Our proposed framework optimizes for the partial order of concepts within vision-language models. By leveraging our framework, we develop a hierarchical vision-language foundation model capable of representing the hierarchy in the Tree of Life. Our experiments on hierarchical species classification and hierarchical retrieval tasks demonstrate the enhanced performance of our models compared to the existing state-of-the-art models. Our code and models are open-sourced at https://vishu26.github.io/RCME/index.html.
comment: Accepted at ICCV 2025
☆ Logios : An open source Greek Polytonic Optical Character Recognition system
In this paper, we present an Optical Character Recognition (OCR) system specifically designed for the accurate recognition and digitization of Greek polytonic texts. By leveraging the combined strengths of convolutional layers for feature extraction and recurrent layers for sequence learning, our system addresses the unique challenges posed by Greek polytonic scripts. This approach aims to overcome the limitations of traditional OCR methods, offering significant improvements in accuracy and efficiency. We release the underlying model as an open-source library and make our OCR platform available for academic use.
☆ Evaluation of Traffic Signals for Daily Traffic Pattern
The turning movement count data is crucial for traffic signal design, intersection geometry planning, traffic flow, and congestion analysis. This work proposes three methods called dynamic, static, and hybrid configuration for TMC-based traffic signals. A vision-based tracking system is developed to estimate the TMC of six intersections in Las Vegas using traffic cameras. The intersection design, route (e.g. vehicle movement directions), and signal configuration files with compatible formats are synthesized and imported into Simulation of Urban MObility for signal evaluation with realistic data. The initial experimental results based on estimated waiting times indicate that the cycle time of 90 and 120 seconds works best for all intersections. In addition, four intersections show better performance for dynamic signal timing configuration, and the other two with lower performance have a lower ratio of total vehicle count to total lanes of the intersection leg. Since daily traffic flow often exhibits a bimodal pattern, we propose a hybrid signal method that switches between dynamic and static methods, adapting to peak and off-peak traffic conditions for improved flow management. So, a built-in traffic generator module creates vehicle routes for 4 hours, including peak hours, and a signal design module produces signal schedule cycles according to static, dynamic, and hybrid methods. Vehicle count distributions are weighted differently for each zone (i.e., West, North, East, South) to generate diverse traffic patterns. The extended experimental results for 6 intersections with 4 hours of simulation time imply that zone-based traffic pattern distributions affect signal design selection. Although the static method works great for evenly zone-based traffic distribution, the hybrid method works well for highly weighted traffic at intersection pairs of the West-East and North-South zones.
☆ Spatial Mental Modeling from Limited Views
Can Vision Language Models (VLMs) imagine the full scene from just a few views, like humans do? Humans form spatial mental models, internal representations of unseen space, to reason about layout, perspective, and motion. Our new MindCube benchmark with 21,154 questions across 3,268 images exposes this critical gap, where existing VLMs exhibit near-random performance. Using MindCube, we systematically evaluate how well VLMs build robust spatial mental models through representing positions (cognitive mapping), orientations (perspective-taking), and dynamics (mental simulation for "what-if" movements). We then explore three approaches to help VLMs approximate spatial mental models, including unseen intermediate views, natural language reasoning chains, and cognitive maps. The significant improvement comes from a synergistic approach, "map-then-reason", that jointly trains the model to first generate a cognitive map and then reason upon it. By training models to reason over these internal maps, we boosted accuracy from 37.8% to 60.8% (+23.0%). Adding reinforcement learning pushed performance even further to 70.7% (+32.9%). Our key insight is that such scaffolding of spatial mental models, actively constructing and utilizing internal structured spatial representations with flexible reasoning processes, significantly improves understanding of unobservable space.
comment: Preprint version
☆ Rethinking Oversaturation in Classifier-Free Guidance via Low Frequency
Classifier-free guidance (CFG) succeeds in condition diffusion models that use a guidance scale to balance the influence of conditional and unconditional terms. A high guidance scale is used to enhance the performance of the conditional term. However, the high guidance scale often results in oversaturation and unrealistic artifacts. In this paper, we introduce a new perspective based on low-frequency signals, identifying the accumulation of redundant information in these signals as the key factor behind oversaturation and unrealistic artifacts. Building on this insight, we propose low-frequency improved classifier-free guidance (LF-CFG) to mitigate these issues. Specifically, we introduce an adaptive threshold-based measurement to pinpoint the locations of redundant information. We determine a reasonable threshold by analyzing the change rate of low-frequency information between prior and current steps. We then apply a down-weight strategy to reduce the impact of redundant information in the low-frequency signals. Experimental results demonstrate that LF-CFG effectively alleviates oversaturation and unrealistic artifacts across various diffusion models, including Stable Diffusion-XL, Stable Diffusion 2.1, 3.0, 3.5, and SiT-XL.
☆ A Comprehensive Dataset for Underground Miner Detection in Diverse Scenario
Underground mining operations face significant safety challenges that make emergency response capabilities crucial. While robots have shown promise in assisting with search and rescue operations, their effectiveness depends on reliable miner detection capabilities. Deep learning algorithms offer potential solutions for automated miner detection, but require comprehensive training datasets, which are currently lacking for underground mining environments. This paper presents a novel thermal imaging dataset specifically designed to enable the development and validation of miner detection systems for potential emergency applications. We systematically captured thermal imagery of various mining activities and scenarios to create a robust foundation for detection algorithms. To establish baseline performance metrics, we evaluated several state-of-the-art object detection algorithms including YOLOv8, YOLOv10, YOLO11, and RT-DETR on our dataset. While not exhaustive of all possible emergency situations, this dataset serves as a crucial first step toward developing reliable thermal-based miner detection systems that could eventually be deployed in real emergency scenarios. This work demonstrates the feasibility of using thermal imaging for miner detection and establishes a foundation for future research in this critical safety application.
☆ ThinkSound: Chain-of-Thought Reasoning in Multimodal Large Language Models for Audio Generation and Editing
While end-to-end video-to-audio generation has greatly improved, producing high-fidelity audio that authentically captures the nuances of visual content remains challenging. Like professionals in the creative industries, such generation requires sophisticated reasoning about items such as visual dynamics, acoustic environments, and temporal relationships. We present \textbf{ThinkSound}, a novel framework that leverages Chain-of-Thought (CoT) reasoning to enable stepwise, interactive audio generation and editing for videos. Our approach decomposes the process into three complementary stages: foundational foley generation that creates semantically coherent soundscapes, interactive object-centric refinement through precise user interactions, and targeted editing guided by natural language instructions. At each stage, a multimodal large language model generates contextually aligned CoT reasoning that guides a unified audio foundation model. Furthermore, we introduce \textbf{AudioCoT}, a comprehensive dataset with structured reasoning annotations that establishes connections between visual content, textual descriptions, and sound synthesis. Experiments demonstrate that ThinkSound achieves state-of-the-art performance in video-to-audio generation across both audio metrics and CoT metrics and excels in out-of-distribution Movie Gen Audio benchmark. The demo page is available at https://ThinkSound-Demo.github.io.
☆ Controllable 3D Placement of Objects with Scene-Aware Diffusion Models
Image editing approaches have become more powerful and flexible with the advent of powerful text-conditioned generative models. However, placing objects in an environment with a precise location and orientation still remains a challenge, as this typically requires carefully crafted inpainting masks or prompts. In this work, we show that a carefully designed visual map, combined with coarse object masks, is sufficient for high quality object placement. We design a conditioning signal that resolves ambiguities, while being flexible enough to allow for changing of shapes or object orientations. By building on an inpainting model, we leave the background intact by design, in contrast to methods that model objects and background jointly. We demonstrate the effectiveness of our method in the automotive setting, where we compare different conditioning signals in novel object placement tasks. These tasks are designed to measure edit quality not only in terms of appearance, but also in terms of pose and location accuracy, including cases that require non-trivial shape changes. Lastly, we show that fine location control can be combined with appearance control to place existing objects in precise locations in a scene.
☆ Benchmarking Deep Learning and Vision Foundation Models for Atypical vs. Normal Mitosis Classification with Cross-Dataset Evaluation
Atypical mitoses mark a deviation in the cell division process that can be an independent prognostically relevant marker for tumor malignancy. However, their identification remains challenging due to low prevalence, at times subtle morphological differences from normal mitoses, low inter-rater agreement among pathologists, and class imbalance in datasets. Building on the Atypical Mitosis dataset for Breast Cancer (AMi-Br), this study presents a comprehensive benchmark comparing deep learning approaches for automated atypical mitotic figure (AMF) classification, including baseline models, foundation models with linear probing, and foundation models fine-tuned with low-rank adaptation (LoRA). For rigorous evaluation, we further introduce two new hold-out AMF datasets - AtNorM-Br, a dataset of mitoses from the The TCGA breast cancer cohort, and AtNorM-MD, a multi-domain dataset of mitoses from the MIDOG++ training set. We found average balanced accuracy values of up to 0.8135, 0.7696, and 0.7705 on the in-domain AMi-Br and the out-of-domain AtNorm-Br and AtNorM-MD datasets, respectively, with the results being particularly good for LoRA-based adaptation of the Virchow-line of foundation models. Our work shows that atypical mitosis classification, while being a challenging problem, can be effectively addressed through the use of recent advances in transfer learning and model fine-tuning techniques. We make available all code and data used in this paper in this github repository: https://github.com/DeepMicroscopy/AMi-Br_Benchmark.
☆ HyperSORT: Self-Organising Robust Training with hyper-networks MICCAI 2025
Medical imaging datasets often contain heterogeneous biases ranging from erroneous labels to inconsistent labeling styles. Such biases can negatively impact deep segmentation networks performance. Yet, the identification and characterization of such biases is a particularly tedious and challenging task. In this paper, we introduce HyperSORT, a framework using a hyper-network predicting UNets' parameters from latent vectors representing both the image and annotation variability. The hyper-network parameters and the latent vector collection corresponding to each data sample from the training set are jointly learned. Hence, instead of optimizing a single neural network to fit a dataset, HyperSORT learns a complex distribution of UNet parameters where low density areas can capture noise-specific patterns while larger modes robustly segment organs in differentiated but meaningful manners. We validate our method on two 3D abdominal CT public datasets: first a synthetically perturbed version of the AMOS dataset, and TotalSegmentator, a large scale dataset containing real unknown biases and errors. Our experiments show that HyperSORT creates a structured mapping of the dataset allowing the identification of relevant systematic biases and erroneous samples. Latent space clusters yield UNet parameters performing the segmentation task in accordance with the underlying learned systematic bias. The code and our analysis of the TotalSegmentator dataset are made available: https://github.com/ImFusionGmbH/HyperSORT
comment: Accepted at MICCAI 2025
☆ EndoFlow-SLAM: Real-Time Endoscopic SLAM with Flow-Constrained Gaussian Splatting
Efficient three-dimensional reconstruction and real-time visualization are critical in surgical scenarios such as endoscopy. In recent years, 3D Gaussian Splatting (3DGS) has demonstrated remarkable performance in efficient 3D reconstruction and rendering. Most 3DGS-based Simultaneous Localization and Mapping (SLAM) methods only rely on the appearance constraints for optimizing both 3DGS and camera poses. However, in endoscopic scenarios, the challenges include photometric inconsistencies caused by non-Lambertian surfaces and dynamic motion from breathing affects the performance of SLAM systems. To address these issues, we additionally introduce optical flow loss as a geometric constraint, which effectively constrains both the 3D structure of the scene and the camera motion. Furthermore, we propose a depth regularisation strategy to mitigate the problem of photometric inconsistencies and ensure the validity of 3DGS depth rendering in endoscopic scenes. In addition, to improve scene representation in the SLAM system, we improve the 3DGS refinement strategy by focusing on viewpoints corresponding to Keyframes with suboptimal rendering quality frames, achieving better rendering results. Extensive experiments on the C3VD static dataset and the StereoMIS dynamic dataset demonstrate that our method outperforms existing state-of-the-art methods in novel view synthesis and pose estimation, exhibiting high performance in both static and dynamic surgical scenes. The source code will be publicly available upon paper acceptance.
☆ XVerse: Consistent Multi-Subject Control of Identity and Semantic Attributes via DiT Modulation
Achieving fine-grained control over subject identity and semantic attributes (pose, style, lighting) in text-to-image generation, particularly for multiple subjects, often undermines the editability and coherence of Diffusion Transformers (DiTs). Many approaches introduce artifacts or suffer from attribute entanglement. To overcome these challenges, we propose a novel multi-subject controlled generation model XVerse. By transforming reference images into offsets for token-specific text-stream modulation, XVerse allows for precise and independent control for specific subject without disrupting image latents or features. Consequently, XVerse offers high-fidelity, editable multi-subject image synthesis with robust control over individual subject characteristics and semantic attributes. This advancement significantly improves personalized and complex scene generation capabilities.
comment: Project Page: https://bytedance.github.io/XVerse Github Link: https://github.com/bytedance/XVerse
☆ Curve-Aware Gaussian Splatting for 3D Parametric Curve Reconstruction ICCV 2025
This paper presents an end-to-end framework for reconstructing 3D parametric curves directly from multi-view edge maps. Contrasting with existing two-stage methods that follow a sequential ``edge point cloud reconstruction and parametric curve fitting'' pipeline, our one-stage approach optimizes 3D parametric curves directly from 2D edge maps, eliminating error accumulation caused by the inherent optimization gap between disconnected stages. However, parametric curves inherently lack suitability for rendering-based multi-view optimization, necessitating a complementary representation that preserves their geometric properties while enabling differentiable rendering. We propose a novel bi-directional coupling mechanism between parametric curves and edge-oriented Gaussian components. This tight correspondence formulates a curve-aware Gaussian representation, \textbf{CurveGaussian}, that enables differentiable rendering of 3D curves, allowing direct optimization guided by multi-view evidence. Furthermore, we introduce a dynamically adaptive topology optimization framework during training to refine curve structures through linearization, merging, splitting, and pruning operations. Comprehensive evaluations on the ABC dataset and real-world benchmarks demonstrate our one-stage method's superiority over two-stage alternatives, particularly in producing cleaner and more robust reconstructions. Additionally, by directly optimizing parametric curves, our method significantly reduces the parameter count during training, achieving both higher efficiency and superior performance compared to existing approaches.
comment: Code: https://github.com/zhirui-gao/Curve-Gaussian Accepted by ICCV 2025
☆ FastRef:Fast Prototype Refinement for Few-Shot Industrial Anomaly Detection
Few-shot industrial anomaly detection (FS-IAD) presents a critical challenge for practical automated inspection systems operating in data-scarce environments. While existing approaches predominantly focus on deriving prototypes from limited normal samples, they typically neglect to systematically incorporate query image statistics to enhance prototype representativeness. To address this issue, we propose FastRef, a novel and efficient prototype refinement framework for FS-IAD. Our method operates through an iterative two-stage process: (1) characteristic transfer from query features to prototypes via an optimizable transformation matrix, and (2) anomaly suppression through prototype alignment. The characteristic transfer is achieved through linear reconstruction of query features from prototypes, while the anomaly suppression addresses a key observation in FS-IAD that unlike conventional IAD with abundant normal prototypes, the limited-sample setting makes anomaly reconstruction more probable. Therefore, we employ optimal transport (OT) for non-Gaussian sampled features to measure and minimize the gap between prototypes and their refined counterparts for anomaly suppression. For comprehensive evaluation, we integrate FastRef with three competitive prototype-based FS-IAD methods: PatchCore, FastRecon, WinCLIP, and AnomalyDINO. Extensive experiments across four benchmark datasets of MVTec, ViSA, MPDD and RealIAD demonstrate both the effectiveness and computational efficiency of our approach under 1/2/4-shots.
comment: 18pages, 7figures, 6tables
☆ GenFlow: Interactive Modular System for Image Generation
Generative art unlocks boundless creative possibilities, yet its full potential remains untapped due to the technical expertise required for advanced architectural concepts and computational workflows. To bridge this gap, we present GenFlow, a novel modular framework that empowers users of all skill levels to generate images with precision and ease. Featuring a node-based editor for seamless customization and an intelligent assistant powered by natural language processing, GenFlow transforms the complexity of workflow creation into an intuitive and accessible experience. By automating deployment processes and minimizing technical barriers, our framework makes cutting-edge generative art tools available to everyone. A user study demonstrated GenFlow's ability to optimize workflows, reduce task completion times, and enhance user understanding through its intuitive interface and adaptive features. These results position GenFlow as a groundbreaking solution that redefines accessibility and efficiency in the realm of generative art.
☆ CA-I2P: Channel-Adaptive Registration Network with Global Optimal Selection ICCV 2025
Detection-free methods typically follow a coarse-to-fine pipeline, extracting image and point cloud features for patch-level matching and refining dense pixel-to-point correspondences. However, differences in feature channel attention between images and point clouds may lead to degraded matching results, ultimately impairing registration accuracy. Furthermore, similar structures in the scene could lead to redundant correspondences in cross-modal matching. To address these issues, we propose Channel Adaptive Adjustment Module (CAA) and Global Optimal Selection Module (GOS). CAA enhances intra-modal features and suppresses cross-modal sensitivity, while GOS replaces local selection with global optimization. Experiments on RGB-D Scenes V2 and 7-Scenes demonstrate the superiority of our method, achieving state-of-the-art performance in image-to-point cloud registration.
comment: ICCV 2025 accepted
☆ ToosiCubix: Monocular 3D Cuboid Labeling via Vehicle Part Annotations
Many existing methods for 3D cuboid annotation of vehicles rely on expensive and carefully calibrated camera-LiDAR or stereo setups, limiting their accessibility for large-scale data collection. We introduce ToosiCubix, a simple yet powerful approach for annotating ground-truth cuboids using only monocular images and intrinsic camera parameters. Our method requires only about 10 user clicks per vehicle, making it highly practical for adding 3D annotations to existing datasets originally collected without specialized equipment. By annotating specific features (e.g., wheels, car badge, symmetries) across different vehicle parts, we accurately estimate each vehicle's position, orientation, and dimensions up to a scale ambiguity (8 DoF). The geometric constraints are formulated as an optimization problem, which we solve using a coordinate descent strategy, alternating between Perspective-n-Points (PnP) and least-squares subproblems. To handle common ambiguities such as scale and unobserved dimensions, we incorporate probabilistic size priors, enabling 9 DoF cuboid placements. We validate our annotations against the KITTI and Cityscapes3D datasets, demonstrating that our method offers a cost-effective and scalable solution for high-quality 3D cuboid annotation.
☆ CoPa-SG: Dense Scene Graphs with Parametric and Proto-Relations
2D scene graphs provide a structural and explainable framework for scene understanding. However, current work still struggles with the lack of accurate scene graph data. To overcome this data bottleneck, we present CoPa-SG, a synthetic scene graph dataset with highly precise ground truth and exhaustive relation annotations between all objects. Moreover, we introduce parametric and proto-relations, two new fundamental concepts for scene graphs. The former provides a much more fine-grained representation than its traditional counterpart by enriching relations with additional parameters such as angles or distances. The latter encodes hypothetical relations in a scene graph and describes how relations would form if new objects are placed in the scene. Using CoPa-SG, we compare the performance of various scene graph generation models. We demonstrate how our new relation types can be integrated in downstream applications to enhance planning and reasoning capabilities.
☆ ShotBench: Expert-Level Cinematic Understanding in Vision-Language Models
Cinematography, the fundamental visual language of film, is essential for conveying narrative, emotion, and aesthetic quality. While recent Vision-Language Models (VLMs) demonstrate strong general visual understanding, their proficiency in comprehending the nuanced cinematic grammar embedded within individual shots remains largely unexplored and lacks robust evaluation. This critical gap limits both fine-grained visual comprehension and the precision of AI-assisted video generation. To address this, we introduce \textbf{ShotBench}, a comprehensive benchmark specifically designed for cinematic language understanding. It features over 3.5k expert-annotated QA pairs from images and video clips, meticulously curated from over 200 acclaimed (predominantly Oscar-nominated) films and spanning eight key cinematography dimensions. Our evaluation of 24 leading VLMs on ShotBench reveals their substantial limitations: even the top-performing model achieves less than 60\% average accuracy, particularly struggling with fine-grained visual cues and complex spatial reasoning. To catalyze advancement in this domain, we construct \textbf{ShotQA}, a large-scale multimodal dataset comprising approximately 70k cinematic QA pairs. Leveraging ShotQA, we develop \textbf{ShotVL} through supervised fine-tuning and Group Relative Policy Optimization. ShotVL significantly outperforms all existing open-source and proprietary models on ShotBench, establishing new \textbf{state-of-the-art} performance. We open-source our models, data, and code to foster rapid progress in this crucial area of AI-driven cinematic understanding and generation.
☆ Generalizable Neural Electromagnetic Inverse Scattering
Solving Electromagnetic Inverse Scattering Problems (EISP) is fundamental in applications such as medical imaging, where the goal is to reconstruct the relative permittivity from scattered electromagnetic field. This inverse process is inherently ill-posed and highly nonlinear, making it particularly challenging. A recent machine learning-based approach, Img-Interiors, shows promising results by leveraging continuous implicit functions. However, it requires case-specific optimization, lacks generalization to unseen data, and fails under sparse transmitter setups (e.g., with only one transmitter). To address these limitations, we revisit EISP from a physics-informed perspective, reformulating it as a two stage inverse transmission-scattering process. This formulation reveals the induced current as a generalizable intermediate representation, effectively decoupling the nonlinear scattering process from the ill-posed inverse problem. Built on this insight, we propose the first generalizable physics-driven framework for EISP, comprising a current estimator and a permittivity solver, working in an end-to-end manner. The current estimator explicitly learns the induced current as a physical bridge between the incident and scattered field, while the permittivity solver computes the relative permittivity directly from the estimated induced current. This design enables data-driven training and generalizable feed-forward prediction of relative permittivity on unseen data while maintaining strong robustness to transmitter sparsity. Extensive experiments show that our method outperforms state-of-the-art approaches in reconstruction accuracy, generalization, and robustness. This work offers a fundamentally new perspective on electromagnetic inverse scattering and represents a major step toward cost-effective practical solutions for electromagnetic imaging.
☆ PanSt3R: Multi-view Consistent Panoptic Segmentation ICCV 2025
Panoptic segmentation of 3D scenes, involving the segmentation and classification of object instances in a dense 3D reconstruction of a scene, is a challenging problem, especially when relying solely on unposed 2D images. Existing approaches typically leverage off-the-shelf models to extract per-frame 2D panoptic segmentations, before optimizing an implicit geometric representation (often based on NeRF) to integrate and fuse the 2D predictions. We argue that relying on 2D panoptic segmentation for a problem inherently 3D and multi-view is likely suboptimal as it fails to leverage the full potential of spatial relationships across views. In addition to requiring camera parameters, these approaches also necessitate computationally expensive test-time optimization for each scene. Instead, in this work, we propose a unified and integrated approach PanSt3R, which eliminates the need for test-time optimization by jointly predicting 3D geometry and multi-view panoptic segmentation in a single forward pass. Our approach builds upon recent advances in 3D reconstruction, specifically upon MUSt3R, a scalable multi-view version of DUSt3R, and enhances it with semantic awareness and multi-view panoptic segmentation capabilities. We additionally revisit the standard post-processing mask merging procedure and introduce a more principled approach for multi-view segmentation. We also introduce a simple method for generating novel-view predictions based on the predictions of PanSt3R and vanilla 3DGS. Overall, the proposed PanSt3R is conceptually simple, yet fast and scalable, and achieves state-of-the-art performance on several benchmarks, while being orders of magnitude faster than existing methods.
comment: Accepted at ICCV 2025
☆ Automatic Reviewers Assignment to a Research Paper Based on Allied References and Publications Weight
Everyday, a vast stream of research documents is submitted to conferences, anthologies, journals, newsletters, annual reports, daily papers, and various periodicals. Many such publications use independent external specialists to review submissions. This process is called peer review, and the reviewers are called referees. However, it is not always possible to pick the best referee for reviewing. Moreover, new research fields are emerging in every sector, and the number of research papers is increasing dramatically. To review all these papers, every journal assigns a small team of referees who may not be experts in all areas. For example, a research paper in communication technology should be reviewed by an expert from the same field. Thus, efficiently selecting the best reviewer or referee for a research paper is a big challenge. In this research, we propose and implement program that uses a new strategy to automatically select the best reviewers for a research paper. Every research paper contains references at the end, usually from the same area. First, we collect the references and count authors who have at least one paper in the references. Then, we automatically browse the web to extract research topic keywords. Next, we search for top researchers in the specific topic and count their h-index, i10-index, and citations for the first n authors. Afterward, we rank the top n authors based on a score and automatically browse their homepages to retrieve email addresses. We also check their co-authors and colleagues online and discard them from the list. The remaining top n authors, generally professors, are likely the best referees for reviewing the research paper.
comment: IEEE Conference Proceedings (5 Pages)
☆ Holistic Surgical Phase Recognition with Hierarchical Input Dependent State Space Models
Surgical workflow analysis is essential in robot-assisted surgeries, yet the long duration of such procedures poses significant challenges for comprehensive video analysis. Recent approaches have predominantly relied on transformer models; however, their quadratic attention mechanism restricts efficient processing of lengthy surgical videos. In this paper, we propose a novel hierarchical input-dependent state space model that leverages the linear scaling property of state space models to enable decision making on full-length videos while capturing both local and global dynamics. Our framework incorporates a temporally consistent visual feature extractor, which appends a state space model head to a visual feature extractor to propagate temporal information. The proposed model consists of two key modules: a local-aggregation state space model block that effectively captures intricate local dynamics, and a global-relation state space model block that models temporal dependencies across the entire video. The model is trained using a hybrid discrete-continuous supervision strategy, where both signals of discrete phase labels and continuous phase progresses are propagated through the network. Experiments have shown that our method outperforms the current state-of-the-art methods by a large margin (+2.8% on Cholec80, +4.3% on MICCAI2016, and +12.9% on Heichole datasets). Code will be publicly available after paper acceptance.
☆ Multimodal LLMs for Visualization Reconstruction and Understanding
Visualizations are crucial for data communication, yet understanding them requires comprehension of both visual elements and their underlying data relationships. Current multimodal large models, while effective in natural image understanding, struggle with visualization due to their inability to decode the data-to-visual mapping rules and extract structured information. To address these challenges, we present a novel dataset and train multimodal visualization LLMs specifically designed for understanding. Our approach combines chart images with their corresponding vectorized representations, encoding schemes, and data features. The proposed vector format enables compact and accurate reconstruction of visualization content. Experimental results demonstrate significant improvements in both data extraction accuracy and chart reconstruction quality.
☆ LLaVA-Pose: Enhancing Human Pose and Action Understanding via Keypoint-Integrated Instruction Tuning
Current vision-language models (VLMs) are well-adapted for general visual understanding tasks. However, they perform inadequately when handling complex visual tasks related to human poses and actions due to the lack of specialized vision-language instruction-following data. We introduce a method for generating such data by integrating human keypoints with traditional visual features such as captions and bounding boxes, enabling more precise understanding of human-centric scenes. Our approach constructs a dataset comprising 200,328 samples tailored to fine-tune models for human-centric tasks, focusing on three areas: conversation, detailed description, and complex reasoning. We establish an Extended Human Pose and Action Understanding Benchmark (E-HPAUB) to assess model performance on human pose and action understanding. We fine-tune the LLaVA-1.5-7B model using this dataset and evaluate our resulting LLaVA-Pose model on the benchmark, achieving significant improvements. Experimental results show an overall improvement of 33.2% compared to the original LLaVA-1.5-7B model. These findings highlight the effectiveness of keypoint-integrated data in enhancing multimodal models for human-centric visual understanding. Code is available at https://github.com/Ody-trek/LLaVA-Pose.
comment: arXiv admin note: substantial text overlap with arXiv:2409.09306
☆ DrishtiKon: Multi-Granular Visual Grounding for Text-Rich Document Images
Visual grounding in text-rich document images is a critical yet underexplored challenge for document intelligence and visual question answering (VQA) systems. We present \drishtikon, a multi-granular visual grounding framework designed to enhance interpretability and trust in VQA for complex, multilingual documents. Our approach integrates robust multi-lingual OCR, large language models, and a novel region matching algorithm to accurately localize answer spans at block, line, word, and point levels. We curate a new benchmark from the CircularsVQA test set, providing fine-grained, human-verified annotations across multiple granularities. Extensive experiments demonstrate that our method achieves state-of-the-art grounding accuracy, with line-level granularity offering the best trade-off between precision and recall. Ablation studies further highlight the benefits of multi-block and multi-line reasoning. Comparative evaluations with leading vision-language models reveal the limitations of current VLMs in precise localization, underscoring the effectiveness of our structured, alignment-based approach. Our findings pave the way for more robust and interpretable document understanding systems in real-world, text-centric scenarios. Code and dataset has been made available at https://github.com/kasuba-badri-vishal/DhrishtiKon.
comment: Work in progress
☆ Continual Self-Supervised Learning with Masked Autoencoders in Remote Sensing
The development of continual learning (CL) methods, which aim to learn new tasks in a sequential manner from the training data acquired continuously, has gained great attention in remote sensing (RS). The existing CL methods in RS, while learning new tasks, enhance robustness towards catastrophic forgetting. This is achieved by using a large number of labeled training samples, which is costly and not always feasible to gather in RS. To address this problem, we propose a novel continual self-supervised learning method in the context of masked autoencoders (denoted as CoSMAE). The proposed CoSMAE consists of two components: i) data mixup; and ii) model mixup knowledge distillation. Data mixup is associated with retaining information on previous data distributions by interpolating images from the current task with those from the previous tasks. Model mixup knowledge distillation is associated with distilling knowledge from past models and the current model simultaneously by interpolating their model weights to form a teacher for the knowledge distillation. The two components complement each other to regularize the MAE at the data and model levels to facilitate better generalization across tasks and reduce the risk of catastrophic forgetting. Experimental results show that CoSMAE achieves significant improvements of up to 4.94% over state-of-the-art CL methods applied to MAE. Our code is publicly available at: https://git.tu-berlin.de/rsim/CoSMAE.
comment: Accepted to IEEE Geoscience and Remote Sensing Letters. Our code is available at https://git.tu-berlin.de/rsim/CoSMAE
☆ HieraSurg: Hierarchy-Aware Diffusion Model for Surgical Video Generation MICCAI 2025
Surgical Video Synthesis has emerged as a promising research direction following the success of diffusion models in general-domain video generation. Although existing approaches achieve high-quality video generation, most are unconditional and fail to maintain consistency with surgical actions and phases, lacking the surgical understanding and fine-grained guidance necessary for factual simulation. We address these challenges by proposing HieraSurg, a hierarchy-aware surgical video generation framework consisting of two specialized diffusion models. Given a surgical phase and an initial frame, HieraSurg first predicts future coarse-grained semantic changes through a segmentation prediction model. The final video is then generated by a second-stage model that augments these temporal segmentation maps with fine-grained visual features, leading to effective texture rendering and integration of semantic information in the video space. Our approach leverages surgical information at multiple levels of abstraction, including surgical phase, action triplets, and panoptic segmentation maps. The experimental results on Cholecystectomy Surgical Video Generation demonstrate that the model significantly outperforms prior work both quantitatively and qualitatively, showing strong generalization capabilities and the ability to generate higher frame-rate videos. The model exhibits particularly fine-grained adherence when provided with existing segmentation maps, suggesting its potential for practical surgical applications.
comment: Accepted at MICCAI 2025
☆ HumanOmniV2: From Understanding to Omni-Modal Reasoning with Context
With the rapid evolution of multimodal large language models, the capacity to deeply understand and interpret human intentions has emerged as a critical capability, which demands detailed and thoughtful reasoning. In recent studies, Reinforcement Learning (RL) has demonstrated potential in enhancing the reasoning capabilities of Large Language Models (LLMs). Nonetheless, the challenges associated with adapting RL to multimodal data and formats remain largely unaddressed. In this paper, we identify two issues in existing multimodal reasoning models: insufficient global context understanding and shortcut problems. Insufficient context understanding can happen when a model misinterprets multimodal context, resulting in incorrect answers. The shortcut problem occurs when the model overlooks crucial clues in multimodal inputs, directly addressing the query without considering the multimodal information. To tackle these issues, we emphasize the necessity for the model to reason with a clear understanding of the global context within multimodal inputs. This global context understanding can effectively prevent the model from overlooking key multimodal cues and ensure a thorough reasoning process. To ensure the accurate interpretation of multimodal context information, we implement a context reward judged by a large language model, alongside format and accuracy rewards. Additionally, to improve complex reasoning capability, we employ the LLM to assess the logical reward, determining whether the reasoning process successfully integrates multimodal information with logical methods. We also introduce a reasoning omni-modal benchmark, IntentBench, aimed at evaluating models in understanding complex human intentions and emotions. Our proposed method demonstrates advanced performance across multiple omni-modal benchmarks compared to other open-source omni-modal models.
☆ WordCon: Word-level Typography Control in Scene Text Rendering
Achieving precise word-level typography control within generated images remains a persistent challenge. To address it, we newly construct a word-level controlled scene text dataset and introduce the Text-Image Alignment (TIA) framework. This framework leverages cross-modal correspondence between text and local image regions provided by grounding models to enhance the Text-to-Image (T2I) model training. Furthermore, we propose WordCon, a hybrid parameter-efficient fine-tuning (PEFT) method. WordCon reparameterizes selective key parameters, improving both efficiency and portability. This allows seamless integration into diverse pipelines, including artistic text rendering, text editing, and image-conditioned text rendering. To further enhance controllability, the masked loss at the latent level is applied to guide the model to concentrate on learning the text region in the image, and the joint-attention loss provides feature-level supervision to promote disentanglement between different words. Both qualitative and quantitative results demonstrate the superiority of our method to the state of the art. The datasets and source code will be available for academic use.
☆ FairyGen: Storied Cartoon Video from a Single Child-Drawn Character
We propose FairyGen, an automatic system for generating story-driven cartoon videos from a single child's drawing, while faithfully preserving its unique artistic style. Unlike previous storytelling methods that primarily focus on character consistency and basic motion, FairyGen explicitly disentangles character modeling from stylized background generation and incorporates cinematic shot design to support expressive and coherent storytelling. Given a single character sketch, we first employ an MLLM to generate a structured storyboard with shot-level descriptions that specify environment settings, character actions, and camera perspectives. To ensure visual consistency, we introduce a style propagation adapter that captures the character's visual style and applies it to the background, faithfully retaining the character's full visual identity while synthesizing style-consistent scenes. A shot design module further enhances visual diversity and cinematic quality through frame cropping and multi-view synthesis based on the storyboard. To animate the story, we reconstruct a 3D proxy of the character to derive physically plausible motion sequences, which are then used to fine-tune an MMDiT-based image-to-video diffusion model. We further propose a two-stage motion customization adapter: the first stage learns appearance features from temporally unordered frames, disentangling identity from motion; the second stage models temporal dynamics using a timestep-shift strategy with frozen identity weights. Once trained, FairyGen directly renders diverse and coherent video scenes aligned with the storyboard. Extensive experiments demonstrate that our system produces animations that are stylistically faithful, narratively structured natural motion, highlighting its potential for personalized and engaging story animation. The code will be available at https://github.com/GVCLab/FairyGen
comment: Project Page: https://jayleejia.github.io/FairyGen/ ; Code: https://github.com/GVCLab/FairyGen
☆ Video Virtual Try-on with Conditional Diffusion Transformer Inpainter
Video virtual try-on aims to naturally fit a garment to a target person in consecutive video frames. It is a challenging task, on the one hand, the output video should be in good spatial-temporal consistency, on the other hand, the details of the given garment need to be preserved well in all the frames. Naively using image-based try-on methods frame by frame can get poor results due to severe inconsistency. Recent diffusion-based video try-on methods, though very few, happen to coincide with a similar solution: inserting temporal attention into image-based try-on model to adapt it for video try-on task, which have shown improvements but there still exist inconsistency problems. In this paper, we propose ViTI (Video Try-on Inpainter), formulate and implement video virtual try-on as a conditional video inpainting task, which is different from previous methods. In this way, we start with a video generation problem instead of an image-based try-on problem, which from the beginning has a better spatial-temporal consistency. Specifically, at first we build a video inpainting framework based on Diffusion Transformer with full 3D spatial-temporal attention, and then we progressively adapt it for video garment inpainting, with a collection of masking strategies and multi-stage training. After these steps, the model can inpaint the masked garment area with appropriate garment pixels according to the prompt with good spatial-temporal consistency. Finally, as other try-on methods, garment condition is added to the model to make sure the inpainted garment appearance and details are as expected. Both quantitative and qualitative experimental results show that ViTI is superior to previous works.
comment: 10 pages, 6 figures
☆ DuET: Dual Incremental Object Detection via Exemplar-Free Task Arithmetic ICCV 2025
Real-world object detection systems, such as those in autonomous driving and surveillance, must continuously learn new object categories and simultaneously adapt to changing environmental conditions. Existing approaches, Class Incremental Object Detection (CIOD) and Domain Incremental Object Detection (DIOD) only address one aspect of this challenge. CIOD struggles in unseen domains, while DIOD suffers from catastrophic forgetting when learning new classes, limiting their real-world applicability. To overcome these limitations, we introduce Dual Incremental Object Detection (DuIOD), a more practical setting that simultaneously handles class and domain shifts in an exemplar-free manner. We propose DuET, a Task Arithmetic-based model merging framework that enables stable incremental learning while mitigating sign conflicts through a novel Directional Consistency Loss. Unlike prior methods, DuET is detector-agnostic, allowing models like YOLO11 and RT-DETR to function as real-time incremental object detectors. To comprehensively evaluate both retention and adaptation, we introduce the Retention-Adaptability Index (RAI), which combines the Average Retention Index (Avg RI) for catastrophic forgetting and the Average Generalization Index for domain adaptability into a common ground. Extensive experiments on the Pascal Series and Diverse Weather Series demonstrate DuET's effectiveness, achieving a +13.12% RAI improvement while preserving 89.3% Avg RI on the Pascal Series (4 tasks), as well as a +11.39% RAI improvement with 88.57% Avg RI on the Diverse Weather Series (3 tasks), outperforming existing methods.
comment: Accepted at ICCV 2025
☆ Temporal Rate Reduction Clustering for Human Motion Segmentation ICCV 2025
Human Motion Segmentation (HMS), which aims to partition videos into non-overlapping human motions, has attracted increasing research attention recently. Existing approaches for HMS are mainly dominated by subspace clustering methods, which are grounded on the assumption that high-dimensional temporal data align with a Union-of-Subspaces (UoS) distribution. However, the frames in video capturing complex human motions with cluttered backgrounds may not align well with the UoS distribution. In this paper, we propose a novel approach for HMS, named Temporal Rate Reduction Clustering ($\text{TR}^2\text{C}$), which jointly learns structured representations and affinity to segment the frame sequences in video. Specifically, the structured representations learned by $\text{TR}^2\text{C}$ maintain temporally consistent and align well with a UoS structure, which is favorable for the HMS task. We conduct extensive experiments on five benchmark HMS datasets and achieve state-of-the-art performances with different feature extractors.
comment: The paper is accepted by ICCV 2025. The first two authors are equally contributed
☆ GANet-Seg: Adversarial Learning for Brain Tumor Segmentation with Hybrid Generative Models
This work introduces a novel framework for brain tumor segmentation leveraging pre-trained GANs and Unet architectures. By combining a global anomaly detection module with a refined mask generation network, the proposed model accurately identifies tumor-sensitive regions and iteratively enhances segmentation precision using adversarial loss constraints. Multi-modal MRI data and synthetic image augmentation are employed to improve robustness and address the challenge of limited annotated datasets. Experimental results on the BraTS dataset demonstrate the effectiveness of the approach, achieving high sensitivity and accuracy in both lesion-wise Dice and HD95 metrics than the baseline. This scalable method minimizes the dependency on fully annotated data, paving the way for practical real-world applications in clinical settings.
☆ DiMPLe -- Disentangled Multi-Modal Prompt Learning: Enhancing Out-Of-Distribution Alignment with Invariant and Spurious Feature Separation
We introduce DiMPLe (Disentangled Multi-Modal Prompt Learning), a novel approach to disentangle invariant and spurious features across vision and language modalities in multi-modal learning. Spurious correlations in visual data often hinder out-of-distribution (OOD) performance. Unlike prior methods focusing solely on image features, DiMPLe disentangles features within and across modalities while maintaining consistent alignment, enabling better generalization to novel classes and robustness to distribution shifts. Our method combines three key objectives: (1) mutual information minimization between invariant and spurious features, (2) spurious feature regularization, and (3) contrastive learning on invariant features. Extensive experiments demonstrate DiMPLe demonstrates superior performance compared to CoOp-OOD, when averaged across 11 diverse datasets, and achieves absolute gains of 15.27 in base class accuracy and 44.31 in novel class accuracy.
☆ Real-Time ESFP: Estimating, Smoothing, Filtering, and Pose-Mapping
This paper presents ESFP, an end-to-end pipeline that converts monocular RGB video into executable joint trajectories for a low-cost 4-DoF desktop arm. ESFP comprises four sequential modules. (1) Estimating: ROMP lifts each frame to a 24-joint 3-D skeleton. (2) Smoothing: the proposed HPSTM-a sequence-to-sequence Transformer with self-attention-combines long-range temporal context with a differentiable forward-kinematics decoder, enforcing constant bone lengths and anatomical plausibility while jointly predicting joint means and full covariances. (3) Filtering: root-normalized trajectories are variance-weighted according to HPSTM's uncertainty estimates, suppressing residual noise. (4) Pose-Mapping: a geometric retargeting layer transforms shoulder-elbow-wrist triples into the uArm's polar workspace, preserving wrist orientation.
☆ ReME: A Data-Centric Framework for Training-Free Open-Vocabulary Segmentation ICCV 2025
Training-free open-vocabulary semantic segmentation (OVS) aims to segment images given a set of arbitrary textual categories without costly model fine-tuning. Existing solutions often explore attention mechanisms of pre-trained models, such as CLIP, or generate synthetic data and design complex retrieval processes to perform OVS. However, their performance is limited by the capability of reliant models or the suboptimal quality of reference sets. In this work, we investigate the largely overlooked data quality problem for this challenging dense scene understanding task, and identify that a high-quality reference set can significantly benefit training-free OVS. With this observation, we introduce a data-quality-oriented framework, comprising a data pipeline to construct a reference set with well-paired segment-text embeddings and a simple similarity-based retrieval to unveil the essential effect of data. Remarkably, extensive evaluations on ten benchmark datasets demonstrate that our method outperforms all existing training-free OVS approaches, highlighting the importance of data-centric design for advancing OVS without training. Our code is available at https://github.com/xiweix/ReME .
comment: Accepted to ICCV 2025
☆ BitMark for Infinity: Watermarking Bitwise Autoregressive Image Generative Models
State-of-the-art text-to-image models like Infinity generate photorealistic images at an unprecedented speed. These models operate in a bitwise autoregressive manner over a discrete set of tokens that is practically infinite in size. However, their impressive generative power comes with a growing risk: as their outputs increasingly populate the Internet, they are likely to be scraped and reused as training data-potentially by the very same models. This phenomenon has been shown to lead to model collapse, where repeated training on generated content, especially from the models' own previous versions, causes a gradual degradation in performance. A promising mitigation strategy is watermarking, which embeds human-imperceptible yet detectable signals into generated images-enabling the identification of generated content. In this work, we introduce BitMark, a robust bitwise watermarking framework for Infinity. Our method embeds a watermark directly at the bit level of the token stream across multiple scales (also referred to as resolutions) during Infinity's image generation process. Our bitwise watermark subtly influences the bits to preserve visual fidelity and generation speed while remaining robust against a spectrum of removal techniques. Furthermore, it exhibits high radioactivity, i.e., when watermarked generated images are used to train another image generative model, this second model's outputs will also carry the watermark. The radioactive traces remain detectable even when only fine-tuning diffusion or image autoregressive models on images watermarked with our BitMark. Overall, our approach provides a principled step toward preventing model collapse in image generative models by enabling reliable detection of generated outputs.
☆ MedPrompt: LLM-CNN Fusion with Weight Routing for Medical Image Segmentation and Classification
Current medical image analysis systems are typically task-specific, requiring separate models for classification and segmentation, and lack the flexibility to support user-defined workflows. To address these challenges, we introduce MedPrompt, a unified framework that combines a few-shot prompted Large Language Model (Llama-4-17B) for high-level task planning with a modular Convolutional Neural Network (DeepFusionLab) for low-level image processing. The LLM interprets user instructions and generates structured output to dynamically route task-specific pretrained weights. This weight routing approach avoids retraining the entire framework when adding new tasks-only task-specific weights are required, enhancing scalability and deployment. We evaluated MedPrompt across 19 public datasets, covering 12 tasks spanning 5 imaging modalities. The system achieves a 97% end-to-end correctness in interpreting and executing prompt-driven instructions, with an average inference latency of 2.5 seconds, making it suitable for near real-time applications. DeepFusionLab achieves competitive segmentation accuracy (e.g., Dice 0.9856 on lungs) and strong classification performance (F1 0.9744 on tuberculosis). Overall, MedPrompt enables scalable, prompt-driven medical imaging by combining the interpretability of LLMs with the efficiency of modular CNNs.
comment: 40 pages, 8 Tables, 9 Figures
☆ Unlocking Constraints: Source-Free Occlusion-Aware Seamless Segmentation ICCV 2025
Panoramic image processing is essential for omni-context perception, yet faces constraints like distortions, perspective occlusions, and limited annotations. Previous unsupervised domain adaptation methods transfer knowledge from labeled pinhole data to unlabeled panoramic images, but they require access to source pinhole data. To address these, we introduce a more practical task, i.e., Source-Free Occlusion-Aware Seamless Segmentation (SFOASS), and propose its first solution, called UNconstrained Learning Omni-Context Knowledge (UNLOCK). Specifically, UNLOCK includes two key modules: Omni Pseudo-Labeling Learning and Amodal-Driven Context Learning. While adapting without relying on source data or target labels, this framework enhances models to achieve segmentation with 360{\deg} viewpoint coverage and occlusion-aware reasoning. Furthermore, we benchmark the proposed SFOASS task through both real-to-real and synthetic-to-real adaptation settings. Experimental results show that our source-free method achieves performance comparable to source-dependent methods, yielding state-of-the-art scores of 10.9 in mAAP and 11.6 in mAP, along with an absolute improvement of +4.3 in mAPQ over the source-only method. All data and code will be made publicly available at https://github.com/yihong-97/UNLOCK.
comment: Accepted to ICCV 2025. All data and code will be made publicly available at https://github.com/yihong-97/UNLOCK
☆ GroundFlow: A Plug-in Module for Temporal Reasoning on 3D Point Cloud Sequential Grounding
Sequential grounding in 3D point clouds (SG3D) refers to locating sequences of objects by following text instructions for a daily activity with detailed steps. Current 3D visual grounding (3DVG) methods treat text instructions with multiple steps as a whole, without extracting useful temporal information from each step. However, the instructions in SG3D often contain pronouns such as "it", "here" and "the same" to make language expressions concise. This requires grounding methods to understand the context and retrieve relevant information from previous steps to correctly locate object sequences. Due to the lack of an effective module for collecting related historical information, state-of-the-art 3DVG methods face significant challenges in adapting to the SG3D task. To fill this gap, we propose GroundFlow -- a plug-in module for temporal reasoning on 3D point cloud sequential grounding. Firstly, we demonstrate that integrating GroundFlow improves the task accuracy of 3DVG baseline methods by a large margin (+7.5\% and +10.2\%) in the SG3D benchmark, even outperforming a 3D large language model pre-trained on various datasets. Furthermore, we selectively extract both short-term and long-term step information based on its relevance to the current instruction, enabling GroundFlow to take a comprehensive view of historical information and maintain its temporal understanding advantage as step counts increase. Overall, our work introduces temporal reasoning capabilities to existing 3DVG models and achieves state-of-the-art performance in the SG3D benchmark across five datasets.
☆ Out-of-Distribution Semantic Occupancy Prediction
3D Semantic Occupancy Prediction is crucial for autonomous driving, providing a dense, semantically rich environmental representation. However, existing methods focus on in-distribution scenes, making them susceptible to Out-of-Distribution (OoD) objects and long-tail distributions, which increases the risk of undetected anomalies and misinterpretations, posing safety hazards. To address these challenges, we introduce Out-of-Distribution Semantic Occupancy Prediction, targeting OoD detection in 3D voxel space. To fill the gaps in the dataset, we propose a Synthetic Anomaly Integration Pipeline that injects synthetic anomalies while preserving realistic spatial and occlusion patterns, enabling the creation of two datasets: VAA-KITTI and VAA-KITTI-360. We introduce OccOoD, a novel framework integrating OoD detection into 3D semantic occupancy prediction, with Voxel-BEV Progressive Fusion (VBPF) leveraging an RWKV-based branch to enhance OoD detection via geometry-semantic fusion. Experimental results demonstrate that OccOoD achieves state-of-the-art OoD detection with an AuROC of 67.34% and an AuPRCr of 29.21% within a 1.2m region, while maintaining competitive occupancy prediction performance. The established datasets and source code will be made publicly available at https://github.com/7uHeng/OccOoD.
comment: The established datasets and source code will be made publicly available at https://github.com/7uHeng/OccOoD
☆ Task-Aware KV Compression For Cost-Effective Long Video Understanding
Long-video understanding (LVU) remains a severe challenge for existing multimodal large language models (MLLMs), primarily due to the prohibitive computational cost. Recent approaches have explored KV compression to mitigate this issue, but they often suffer from significant information loss at high compression ratios. In this paper, we introduce Video-X^2L, which flexibly preserves critical video information for each LVU task. Video-X^2L involves two key operations. The first one is called bi-level KV compression. During the MLLM's pre-filling stage, Video-X^2L generates two types of compressed KVs: low-compression KVs (L-KVs) to capture fine-grained video details and high-compression KVs (H-KVs) to offer compact video representations. The second one is called selective KV re-loading. During the MLLM's decoding stage, Video-X^2L selectively re-loads L-KVs for the most critical video chunks while using H-KVs for other less important ones. This allows the MLLM to fully utilize task-specific information while maintaining the overall compactness. Video-X^2L is simple yet effective: it is free from additional training and directly compatible with existing KV-compressible MLLMs. We evaluate Video-X^2L with a variety of popular LVU benchmarks, including VideoMME, MLVU, LongVideoBench, and VNBench. Our experiment result shows that Video-X^2L outperforms existing KV-compression methods by a huge advantage while substantially saving the computation cost.
comment: 14 pages, 3 figures, 6 tables
☆ Uncover Treasures in DCT: Advancing JPEG Quality Enhancement by Exploiting Latent Correlations
Joint Photographic Experts Group (JPEG) achieves data compression by quantizing Discrete Cosine Transform (DCT) coefficients, which inevitably introduces compression artifacts. Most existing JPEG quality enhancement methods operate in the pixel domain, suffering from the high computational costs of decoding. Consequently, direct enhancement of JPEG images in the DCT domain has gained increasing attention. However, current DCT-domain methods often exhibit limited performance. To address this challenge, we identify two critical types of correlations within the DCT coefficients of JPEG images. Building on this insight, we propose an Advanced DCT-domain JPEG Quality Enhancement (AJQE) method that fully exploits these correlations. The AJQE method enables the adaptation of numerous well-established pixel-domain models to the DCT domain, achieving superior performance with reduced computational complexity. Compared to the pixel-domain counterparts, the DCT-domain models derived by our method demonstrate a 0.35 dB improvement in PSNR and a 60.5% increase in enhancement throughput on average.
☆ Topology-Aware Modeling for Unsupervised Simulation-to-Reality Point Cloud Recognition
Learning semantic representations from point sets of 3D object shapes is often challenged by significant geometric variations, primarily due to differences in data acquisition methods. Typically, training data is generated using point simulators, while testing data is collected with distinct 3D sensors, leading to a simulation-to-reality (Sim2Real) domain gap that limits the generalization ability of point classifiers. Current unsupervised domain adaptation (UDA) techniques struggle with this gap, as they often lack robust, domain-insensitive descriptors capable of capturing global topological information, resulting in overfitting to the limited semantic patterns of the source domain. To address this issue, we introduce a novel Topology-Aware Modeling (TAM) framework for Sim2Real UDA on object point clouds. Our approach mitigates the domain gap by leveraging global spatial topology, characterized by low-level, high-frequency 3D structures, and by modeling the topological relations of local geometric features through a novel self-supervised learning task. Additionally, we propose an advanced self-training strategy that combines cross-domain contrastive learning with self-training, effectively reducing the impact of noisy pseudo-labels and enhancing the robustness of the adaptation process. Experimental results on three public Sim2Real benchmarks validate the effectiveness of our TAM framework, showing consistent improvements over state-of-the-art methods across all evaluated tasks. The source code of this work will be available at https://github.com/zou-longkun/TAG.git.
☆ Geometry and Perception Guided Gaussians for Multiview-consistent 3D Generation from a Single Image
Generating realistic 3D objects from single-view images requires natural appearance, 3D consistency, and the ability to capture multiple plausible interpretations of unseen regions. Existing approaches often rely on fine-tuning pretrained 2D diffusion models or directly generating 3D information through fast network inference or 3D Gaussian Splatting, but their results generally suffer from poor multiview consistency and lack geometric detail. To takle these issues, we present a novel method that seamlessly integrates geometry and perception priors without requiring additional model training to reconstruct detailed 3D objects from a single image. Specifically, we train three different Gaussian branches initialized from the geometry prior, perception prior and Gaussian noise, respectively. The geometry prior captures the rough 3D shapes, while the perception prior utilizes the 2D pretrained diffusion model to enhance multiview information. Subsequently, we refine 3D Gaussian branches through mutual interaction between geometry and perception priors, further enhanced by a reprojection-based strategy that enforces depth consistency. Experiments demonstrate the higher-fidelity reconstruction results of our method, outperforming existing methods on novel view synthesis and 3D reconstruction, demonstrating robust and consistent 3D object generation.
comment: 10 pages, 5 figures
☆ Robust Deep Learning for Myocardial Scar Segmentation in Cardiac MRI with Noisy Labels MICCAI 2025
The accurate segmentation of myocardial scars from cardiac MRI is essential for clinical assessment and treatment planning. In this study, we propose a robust deep-learning pipeline for fully automated myocardial scar detection and segmentation by fine-tuning state-of-the-art models. The method explicitly addresses challenges of label noise from semi-automatic annotations, data heterogeneity, and class imbalance through the use of Kullback-Leibler loss and extensive data augmentation. We evaluate the model's performance on both acute and chronic cases and demonstrate its ability to produce accurate and smooth segmentations despite noisy labels. In particular, our approach outperforms state-of-the-art models like nnU-Net and shows strong generalizability in an out-of-distribution test set, highlighting its robustness across various imaging conditions and clinical tasks. These results establish a reliable foundation for automated myocardial scar quantification and support the broader clinical adoption of deep learning in cardiac imaging.
comment: MICCAI 2025
☆ Tree-based Semantic Losses: Application to Sparsely-supervised Large Multi-class Hyperspectral Segmentation
Hyperspectral imaging (HSI) shows great promise for surgical applications, offering detailed insights into biological tissue differences beyond what the naked eye can perceive. Refined labelling efforts are underway to train vision systems to distinguish large numbers of subtly varying classes. However, commonly used learning methods for biomedical segmentation tasks penalise all errors equivalently and thus fail to exploit any inter-class semantics in the label space. In this work, we introduce two tree-based semantic loss functions which take advantage of a hierarchical organisation of the labels. We further incorporate our losses in a recently proposed approach for training with sparse, background-free annotations. Extensive experiments demonstrate that our proposed method reaches state-of-the-art performance on a sparsely annotated HSI dataset comprising $107$ classes organised in a clinically-defined semantic tree structure. Furthermore, our method enables effective detection of out-of-distribution (OOD) pixels without compromising segmentation performance on in-distribution (ID) pixels.
♻ ☆ Learning to Be a Transformer to Pinpoint Anomalies
To efficiently deploy strong, often pre-trained feature extractors, recent Industrial Anomaly Detection and Segmentation (IADS) methods process low-resolution images, e.g., 224x224 pixels, obtained by downsampling the original input images. However, while numerous industrial applications demand the identification of both large and small defects, downsampling the input image to a low resolution may hinder a method's ability to pinpoint tiny anomalies. We propose a novel Teacher--Student paradigm to leverage strong pre-trained features while processing high-resolution input images very efficiently. The core idea concerns training two shallow MLPs (the Students) by nominal images so as to mimic the mappings between the patch embeddings induced by the self-attention layers of a frozen vision Transformer (the Teacher). Indeed, learning these mappings sets forth a challenging pretext task that small-capacity models are unlikely to accomplish on out-of-distribution data such as anomalous images. Our method can spot anomalies from high-resolution images and runs way faster than competitors, achieving state-of-the-art performance on MVTec AD and the best segmentation results on VisA. We also propose novel evaluation metrics to capture robustness to defect size, i.e., the ability to preserve good localisation from large anomalies to tiny ones. Evaluating our method also by these metrics reveals its neatly superior performance.
comment: Accepted at IEEE Access
♻ ☆ CanFields: Consolidating Diffeomorphic Flows for Non-Rigid 4D Interpolation from Arbitrary-Length Sequences ICCV2025
We introduce Canonical Consolidation Fields (CanFields). This novel method interpolates arbitrary-length sequences of independently sampled 3D point clouds into a unified, continuous, and coherent deforming shape. Unlike prior methods that oversmooth geometry or produce topological and geometric artifacts, CanFields optimizes fine-detailed geometry and deformation jointly in an unsupervised fitting with two novel bespoke modules. First, we introduce a dynamic consolidator module that adjusts the input and assigns confidence scores, balancing the optimization of the canonical shape and its motion. Second, we represent the motion as a diffeomorphic flow parameterized by a smooth velocity field. We have validated our robustness and accuracy on more than 50 diverse sequences, demonstrating its superior performance even with missing regions, noisy raw scans, and sparse data. Our project page is at: https://wangmiaowei.github.io/CanFields.github.io/.
comment: ICCV2025 Accepted
♻ ☆ SimWorld: A Unified Benchmark for Simulator-Conditioned Scene Generation via World Model
With the rapid advancement of autonomous driving technology, a lack of data has become a major obstacle to enhancing perception model accuracy. Researchers are now exploring controllable data generation using world models to diversify datasets. However, previous work has been limited to studying image generation quality on specific public datasets. There is still relatively little research on how to build data generation engines for real-world application scenes to achieve large-scale data generation for challenging scenes. In this paper, a simulator-conditioned scene generation engine based on world model is proposed. By constructing a simulation system consistent with real-world scenes, simulation data and labels, which serve as the conditions for data generation in the world model, for any scenes can be collected. It is a novel data generation pipeline by combining the powerful scene simulation capabilities of the simulation engine with the robust data generation capabilities of the world model. In addition, a benchmark with proportionally constructed virtual and real data, is provided for exploring the capabilities of world models in real-world scenes. Quantitative results show that these generated images significantly improve downstream perception models performance. Finally, we explored the generative performance of the world model in urban autonomous driving scenarios. All the data and code will be available at https://github.com/Li-Zn-H/SimWorld.
comment: 8 pages, 4 figures
♻ ☆ Chain-of-Sketch: Enabling Global Visual Reasoning
Modern vision models have achieved remarkable success in benchmarks where local features provide critical information about the target. There is now a growing interest in tackling tasks requiring more global reasoning, where local features do not provide significant information. Minsky and Papert put forward such tasks in 1969 with their connectivity study, exposing the limitations of the perceptron model. In this paper, we introduce an expanded set of global visual datasets involving graphs, strings, mazes, and image grids. We show that large vision models still struggle to learn these tasks efficiently. Similarly, state-of-the-art multi-modal LLMs perform poorly on these datasets. We explain this learning inefficiency by means of the 'globality degree' measure. To mitigate this, we propose a method called chain-of-sketch (CoS). Similar to the chain-of-thought and scratchpad techniques used in language models, CoS breaks the original task into intermediate visual steps to help learn a complex task. In addition, we show that not all CoS strategies perform equally well. Our key insight is to impose a Markovian structure on the CoS frames. This leads to the introduction of 'inductive CoS' which achieves better out-of-distribution generalization and performs well even with smaller models compared to non-inductive variants.
comment: additional experiments added, title changed from "Visual Scratchpads: Enabling Global Reasoning in Vision" to "Chain-of-Sketch: Enabling Global Visual Reasoning"
♻ ☆ QuEST: Low-bit Diffusion Model Quantization via Efficient Selective Finetuning ICCV 2025
The practical deployment of diffusion models is still hindered by the high memory and computational overhead. Although quantization paves a way for model compression and acceleration, existing methods face challenges in achieving low-bit quantization efficiently. In this paper, we identify imbalanced activation distributions as a primary source of quantization difficulty, and propose to adjust these distributions through weight finetuning to be more quantization-friendly. We provide both theoretical and empirical evidence supporting finetuning as a practical and reliable solution. Building on this approach, we further distinguish two critical types of quantized layers: those responsible for retaining essential temporal information and those particularly sensitive to bit-width reduction. By selectively finetuning these layers under both local and global supervision, we mitigate performance degradation while enhancing quantization efficiency. Our method demonstrates its efficacy across three high-resolution image generation tasks, obtaining state-of-the-art performance across multiple bit-width settings.
comment: ICCV 2025. Code is available at https://github.com/hatchetProject/QuEST
♻ ☆ AnyCalib: On-Manifold Learning for Model-Agnostic Single-View Camera Calibration ICCV 2025
We present AnyCalib, a method for calibrating the intrinsic parameters of a camera from a single in-the-wild image, that is agnostic to the camera model. Current methods are predominantly tailored to specific camera models and/or require extrinsic cues, such as the direction of gravity, to be visible in the image. In contrast, we argue that the perspective and distortion cues inherent in images are sufficient for model-agnostic camera calibration. To demonstrate this, we frame the calibration process as the regression of the rays corresponding to each pixel. We show, for the first time, that this intermediate representation allows for a closed-form recovery of the intrinsics for a wide range of camera models, including but not limited to: pinhole, Brown-Conrady and Kannala-Brandt. Our approach also applies to edited -- cropped and stretched -- images. Experimentally, we demonstrate that AnyCalib consistently outperforms alternative methods, including 3D foundation models, despite being trained on orders of magnitude less data. Code is available at https://github.com/javrtg/AnyCalib.
comment: Accepted to ICCV 2025
♻ ☆ EgoM2P: Egocentric Multimodal Multitask Pretraining ICCV 2025
Understanding multimodal signals in egocentric vision, such as RGB video, depth, camera poses, and gaze, is essential for applications in augmented reality, robotics, and human-computer interaction, enabling systems to better interpret the camera wearer's actions, intentions, and surrounding environment. However, building large-scale egocentric multimodal and multitask models presents unique challenges. Egocentric data are inherently heterogeneous, with large variations in modality coverage across devices and settings. Generating pseudo-labels for missing modalities, such as gaze or head-mounted camera trajectories, is often infeasible, making standard supervised learning approaches difficult to scale. Furthermore, dynamic camera motion and the complex temporal and spatial structure of first-person video pose additional challenges for the direct application of existing multimodal foundation models. To address these challenges, we introduce a set of efficient temporal tokenizers and propose EgoM2P, a masked modeling framework that learns from temporally-aware multimodal tokens to train a large, general-purpose model for egocentric 4D understanding. This unified design supports multitasking across diverse egocentric perception and synthesis tasks, including gaze prediction, egocentric camera tracking, and monocular depth estimation from egocentric video, and also serves as a generative model for conditional egocentric video synthesis. Across these tasks, EgoM2P matches or outperforms specialist models while being an order of magnitude faster. We will fully open-source EgoM2P to support the community and advance egocentric vision research. Project page: https://egom2p.github.io/.
comment: Accepted by ICCV 2025
♻ ☆ Fake it till You Make it: Reward Modeling as Discriminative Prediction
An effective reward model plays a pivotal role in reinforcement learning for post-training enhancement of visual generative models. However, current approaches of reward modeling suffer from implementation complexity due to their reliance on extensive human-annotated preference data or meticulously engineered quality dimensions that are often incomplete and engineering-intensive. Inspired by adversarial training in generative adversarial networks (GANs), this paper proposes GAN-RM, an efficient reward modeling framework that eliminates manual preference annotation and explicit quality dimension engineering. Our method trains the reward model through discrimination between a small set of representative, unpaired target samples(denoted as Preference Proxy Data) and model-generated ordinary outputs, requiring only a few hundred target samples. Comprehensive experiments demonstrate our GAN-RM's effectiveness across multiple key applications including test-time scaling implemented as Best-of-N sample filtering, post-training approaches like Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO). Code and data will be released at https://github.com/Visualignment/GAN-RM.
♻ ☆ Materialist: Physically Based Editing Using Single-Image Inverse Rendering
Achieving physically consistent image editing remains a significant challenge in computer vision. Existing image editing methods typically rely on neural networks, which struggle to accurately handle shadows and refractions. Conversely, physics-based inverse rendering often requires multi-view optimization, limiting its practicality in single-image scenarios. In this paper, we propose Materialist, a method combining a learning-based approach with physically based progressive differentiable rendering. Given an image, our method leverages neural networks to predict initial material properties. Progressive differentiable rendering is then used to optimize the environment map and refine the material properties with the goal of closely matching the rendered result to the input image. Our approach enables a range of applications, including material editing, object insertion, and relighting, while also introducing an effective method for editing material transparency without requiring full scene geometry. Furthermore, Our envmap estimation method also achieves state-of-the-art performance, further enhancing the accuracy of image editing task. Experiments demonstrate strong performance across synthetic and real-world datasets, excelling even on challenging out-of-domain images. Project website: https://lez-s.github.io/materialist_project/
comment: Add acknowledgements, more authors and more results. Project website: https://lez-s.github.io/materialist_project/
♻ ☆ DisCoPatch: Taming Adversarially-driven Batch Statistics for Improved Out-of-Distribution Detection ICCV 2025
Out-of-distribution (OOD) detection holds significant importance across many applications. While semantic and domain-shift OOD problems are well-studied, this work focuses on covariate shifts - subtle variations in the data distribution that can degrade machine learning performance. We hypothesize that detecting these subtle shifts can improve our understanding of in-distribution boundaries, ultimately improving OOD detection. In adversarial discriminators trained with Batch Normalization (BN), real and adversarial samples form distinct domains with unique batch statistics - a property we exploit for OOD detection. We introduce DisCoPatch, an unsupervised Adversarial Variational Autoencoder (VAE) framework that harnesses this mechanism. During inference, batches consist of patches from the same image, ensuring a consistent data distribution that allows the model to rely on batch statistics. DisCoPatch uses the VAE's suboptimal outputs (generated and reconstructed) as negative samples to train the discriminator, thereby improving its ability to delineate the boundary between in-distribution samples and covariate shifts. By tightening this boundary, DisCoPatch achieves state-of-the-art results in public OOD detection benchmarks. The proposed model not only excels in detecting covariate shifts, achieving 95.5% AUROC on ImageNet-1K(-C) but also outperforms all prior methods on public Near-OOD (95.0%) benchmarks. With a compact model size of 25MB, it achieves high OOD detection performance at notably lower latency than existing methods, making it an efficient and practical solution for real-world OOD detection applications. The code is publicly available.
comment: ICCV 2025
♻ ☆ Harnessing Massive Satellite Imagery with Efficient Masked Image Modeling ICCV 2025
Masked Image Modeling (MIM) has become an essential method for building foundational visual models in remote sensing (RS). However, the limitations in size and diversity of existing RS datasets restrict the ability of MIM methods to learn generalizable representations. Additionally, conventional MIM techniques, which require reconstructing all tokens, introduce unnecessary computational overhead. To address these issues, we present a new pre-training pipeline for RS models, featuring the creation of a large-scale RS dataset and an efficient MIM approach. We curated a high-quality dataset named \textbf{OpticalRS-13M} by collecting publicly available RS datasets and processing them through exclusion, slicing, and deduplication. OpticalRS-13M comprises 13 million optical images covering various RS tasks, such as object detection and pixel segmentation. To enhance efficiency, we propose \textbf{SelectiveMAE}, a pre-training method that dynamically encodes and reconstructs semantically rich patch tokens, thereby reducing the inefficiencies of traditional MIM models caused by redundant background pixels in RS images. Extensive experiments show that OpticalRS-13M significantly improves classification, detection, and segmentation performance, while SelectiveMAE increases training efficiency over 2$\times$ times. This highlights the effectiveness and scalability of our pipeline in developing RS foundational models. The dataset, source code, and trained models will be released at https://github.com/MiliLab/SelectiveMAE.
comment: ICCV 2025
♻ ☆ OneIG-Bench: Omni-dimensional Nuanced Evaluation for Image Generation
Text-to-image (T2I) models have garnered significant attention for generating high-quality images aligned with text prompts. However, rapid T2I model advancements reveal limitations in early benchmarks, lacking comprehensive evaluations, for example, the evaluation on reasoning, text rendering and style. Notably, recent state-of-the-art models, with their rich knowledge modeling capabilities, show promising results on the image generation problems requiring strong reasoning ability, yet existing evaluation systems have not adequately addressed this frontier. To systematically address these gaps, we introduce OneIG-Bench, a meticulously designed comprehensive benchmark framework for fine-grained evaluation of T2I models across multiple dimensions, including prompt-image alignment, text rendering precision, reasoning-generated content, stylization, and diversity. By structuring the evaluation, this benchmark enables in-depth analysis of model performance, helping researchers and practitioners pinpoint strengths and bottlenecks in the full pipeline of image generation. Specifically, OneIG-Bench enables flexible evaluation by allowing users to focus on a particular evaluation subset. Instead of generating images for the entire set of prompts, users can generate images only for the prompts associated with the selected dimension and complete the corresponding evaluation accordingly. Our codebase and dataset are now publicly available to facilitate reproducible evaluation studies and cross-model comparisons within the T2I research community.
♻ ☆ Aligned Novel View Image and Geometry Synthesis via Cross-modal Attention Instillation
We introduce a diffusion-based framework that performs aligned novel view image and geometry generation via a warping-and-inpainting methodology. Unlike prior methods that require dense posed images or pose-embedded generative models limited to in-domain views, our method leverages off-the-shelf geometry predictors to predict partial geometries viewed from reference images, and formulates novel-view synthesis as an inpainting task for both image and geometry. To ensure accurate alignment between generated images and geometry, we propose cross-modal attention distillation, where attention maps from the image diffusion branch are injected into a parallel geometry diffusion branch during both training and inference. This multi-task approach achieves synergistic effects, facilitating geometrically robust image synthesis as well as well-defined geometry prediction. We further introduce proximity-based mesh conditioning to integrate depth and normal cues, interpolating between point cloud and filtering erroneously predicted geometry from influencing the generation process. Empirically, our method achieves high-fidelity extrapolative view synthesis on both image and geometry across a range of unseen scenes, delivers competitive reconstruction quality under interpolation settings, and produces geometrically aligned colored point clouds for comprehensive 3D completion. Project page is available at https://cvlab-kaist.github.io/MoAI.
comment: Project page at https://cvlab-kaist.github.io/MoAI
♻ ☆ STI-Bench: Are MLLMs Ready for Precise Spatial-Temporal World Understanding?
The use of Multimodal Large Language Models (MLLMs) as an end-to-end solution for Embodied AI and Autonomous Driving has become a prevailing trend. While MLLMs have been extensively studied for visual semantic understanding tasks, their ability to perform precise and quantitative spatial-temporal understanding in real-world applications remains largely unexamined, leading to uncertain prospects. To evaluate models' Spatial-Temporal Intelligence, we introduce STI-Bench, a benchmark designed to evaluate MLLMs' spatial-temporal understanding through challenging tasks such as estimating and predicting the appearance, pose, displacement, and motion of objects. Our benchmark encompasses a wide range of robot and vehicle operations across desktop, indoor, and outdoor scenarios. The extensive experiments reveals that the state-of-the-art MLLMs still struggle in real-world spatial-temporal understanding, especially in tasks requiring precise distance estimation and motion analysis.
♻ ☆ Consensus-Driven Uncertainty for Robotic Grasping based on RGB Perception
Deep object pose estimators are notoriously overconfident. A grasping agent that both estimates the 6-DoF pose of a target object and predicts the uncertainty of its own estimate could avoid task failure by choosing not to act under high uncertainty. Even though object pose estimation improves and uncertainty quantification research continues to make strides, few studies have connected them to the downstream task of robotic grasping. We propose a method for training lightweight, deep networks to predict whether a grasp guided by an image-based pose estimate will succeed before that grasp is attempted. We generate training data for our networks via object pose estimation on real images and simulated grasping. We also find that, despite high object variability in grasping trials, networks benefit from training on all objects jointly, suggesting that a diverse variety of objects can nevertheless contribute to the same goal.
comment: Accepted to IROS 2025
♻ ☆ Tackling fluffy clouds: robust field boundary delineation across global agricultural landscapes with Sentinel-1 and Sentinel-2 Time Series
Accurate delineation of agricultural field boundaries is essential for effective crop monitoring and resource management. However, competing methodologies often face significant challenges, particularly in their reliance on extensive manual efforts for cloud-free data curation and limited adaptability to diverse global conditions. In this paper, we introduce PTAViT3D, a deep learning architecture specifically designed for processing three-dimensional time series of satellite imagery from either Sentinel-1 (S1) or Sentinel-2 (S2). Additionally, we present PTAViT3D-CA, an extension of the PTAViT3D model incorporating cross-attention mechanisms to fuse S1 and S2 datasets, enhancing robustness in cloud-contaminated scenarios. The proposed methods leverage spatio-temporal correlations through a memory-efficient 3D Vision Transformer architecture, facilitating accurate boundary delineation directly from raw, cloud-contaminated imagery. We comprehensively validate our models through extensive testing on various datasets, including Australia's ePaddocks - CSIRO's national agricultural field boundary product - alongside public benchmarks Fields-of-the-World, PASTIS, and AI4SmallFarms. Our results consistently demonstrate state-of-the-art performance, highlighting excellent global transferability and robustness. Crucially, our approach significantly simplifies data preparation workflows by reliably processing cloud-affected imagery, thereby offering strong adaptability across diverse agricultural environments. Our code and models are publicly available at https://github.com/feevos/tfcl.
comment: revision 1, under review
♻ ☆ Mr. DETR++: Instructive Multi-Route Training for Detection Transformers with Mixture-of-Experts CVPR 2025
Existing methods enhance the training of detection transformers by incorporating an auxiliary one-to-many assignment. In this work, we treat the model as a multi-task framework, simultaneously performing one-to-one and one-to-many predictions. We investigate the roles of each component in the transformer decoder across these two training targets, including self-attention, cross-attention, and feed-forward network. Our empirical results demonstrate that any independent component in the decoder can effectively learn both targets simultaneously, even when other components are shared. This finding leads us to propose a multi-route training mechanism, featuring a primary route for one-to-one prediction and two auxiliary training routes for one-to-many prediction. We propose a novel instructive self-attention mechanism, integrated into the first auxiliary route, which dynamically and flexibly guides object queries for one-to-many prediction. For the second auxiliary route, we introduce a route-aware Mixture-of-Experts (MoE) to facilitate knowledge sharing while mitigating potential conflicts between routes. Additionally, we apply an MoE to low-scale features in the encoder, optimizing the balance between efficiency and effectiveness. The auxiliary routes are discarded during inference. We conduct extensive experiments across various object detection baselines, achieving consistent improvements as demonstrated in Fig. 1. Our method is highly flexible and can be readily adapted to other tasks. To demonstrate its versatility, we conduct experiments on both instance segmentation and panoptic segmentation, further validating its effectiveness. Project page: https://visual-ai.github.io/mrdetr/
comment: Under review. Extended version of our CVPR 2025 paper, see arXiv:2412.10028v3
♻ ☆ PuriDefense: Randomized Local Implicit Adversarial Purification for Defending Black-box Query-based Attacks
Black-box query-based attacks constitute significant threats to Machine Learning as a Service (MLaaS) systems since they can generate adversarial examples without accessing the target model's architecture and parameters. Traditional defense mechanisms, such as adversarial training, gradient masking, and input transformations, either impose substantial computational costs or compromise the test accuracy of non-adversarial inputs. To address these challenges, we propose an efficient defense mechanism, PuriDefense, that employs random patch-wise purifications with an ensemble of lightweight purification models at a low level of inference cost. These models leverage the local implicit function and rebuild the natural image manifold. Our theoretical analysis suggests that this approach slows down the convergence of query-based attacks by incorporating randomness into purifications. Extensive experiments on CIFAR-10 and ImageNet validate the effectiveness of our proposed purifier-based defense mechanism, demonstrating significant improvements in robustness against query-based attacks.
♻ ☆ Rethinking Detecting Salient and Camouflaged Objects in Unconstrained Scenes
While the human visual system employs distinct mechanisms to perceive salient and camouflaged objects, existing models struggle to disentangle these tasks. Specifically, salient object detection (SOD) models frequently misclassify camouflaged objects as salient, while camouflaged object detection (COD) models conversely misinterpret salient objects as camouflaged. We hypothesize that this can be attributed to two factors: (i) the specific annotation paradigm of current SOD and COD datasets, and (ii) the lack of explicit attribute relationship modeling in current models. Prevalent SOD/COD datasets enforce a mutual exclusivity constraint, assuming scenes contain either salient or camouflaged objects, which poorly aligns with the real world. Furthermore, current SOD/COD methods are primarily designed for these highly constrained datasets and lack explicit modeling of the relationship between salient and camouflaged objects. In this paper, to promote the development of unconstrained salient and camouflaged object detection, we construct a large-scale dataset, USC12K, which features comprehensive labels and four different scenes that cover all possible logical existence scenarios of both salient and camouflaged objects. To explicitly model the relationship between salient and camouflaged objects, we propose a model called USCNet, which introduces two distinct prompt query mechanisms for modeling inter-sample and intra-sample attribute relationships. Additionally, to assess the model's ability to distinguish between salient and camouflaged objects, we design an evaluation metric called CSCS. The proposed method achieves state-of-the-art performance across all scenes in various metrics. The code and dataset will be available at https://github.com/ssecv/USCNet.
comment: 18 pages, 11 figures
♻ ☆ Recall and Refine: A Simple but Effective Source-free Open-set Domain Adaptation Framework
Open-set Domain Adaptation (OSDA) aims to adapt a model from a labeled source domain to an unlabeled target domain, where novel classes - also referred to as target-private unknown classes - are present. Source-free Open-set Domain Adaptation (SF-OSDA) methods address OSDA without accessing labeled source data, making them particularly relevant under privacy constraints. However, SF-OSDA presents significant challenges due to distribution shifts and the introduction of novel classes. Existing SF-OSDA methods typically rely on thresholding the prediction entropy of a sample to identify it as either a known or unknown class, but fail to explicitly learn discriminative features for the target-private unknown classes. We propose Recall and Refine (RRDA), a novel SF-OSDA framework designed to address these limitations by explicitly learning features for target-private unknown classes. RRDA employs a two-stage process. First, we enhance the model's capacity to recognize unknown classes by training a target classifier with an additional decision boundary,guided by synthetic samples generated from target domain features. This enables the classifier to effectively separate known and unknown classes. Second, we adapt the entire model to the target domain, addressing both domain shifts and distinguishability to unknown classes. Any off-the-shelf source-free domain adaptation method (e.g. SHOT, AaD) can be seamlessly integrated into our framework at this stage. Extensive experiments on three benchmark datasets demonstrate that RRDA significantly outperforms existing SF-OSDA and OSDA methods.
comment: Accepted at TMLR 2025
♻ ☆ Do It Yourself: Learning Semantic Correspondence from Pseudo-Labels
Finding correspondences between semantically similar points across images and object instances is one of the everlasting challenges in computer vision. While large pre-trained vision models have recently been demonstrated as effective priors for semantic matching, they still suffer from ambiguities for symmetric objects or repeated object parts. We propose to improve semantic correspondence estimation via 3D-aware pseudo-labeling. Specifically, we train an adapter to refine off-the-shelf features using pseudo-labels obtained via 3D-aware chaining, filtering wrong labels through relaxed cyclic consistency, and 3D spherical prototype mapping constraints. While reducing the need for dataset specific annotations compared to prior work, we set a new state-of-the-art on SPair-71k by over 4% absolute gain and by over 7% against methods with similar supervision requirements. The generality of our proposed approach simplifies extension of training to other data sources, which we demonstrate in our experiments.
comment: Project page: https://genintel.github.io/DIY-SC
♻ ☆ Semantic Scene Graph for Ultrasound Image Explanation and Scanning Guidance
Understanding medical ultrasound imaging remains a long-standing challenge due to significant visual variability caused by differences in imaging and acquisition parameters. Recent advancements in large language models (LLMs) have been used to automatically generate terminology-rich summaries orientated to clinicians with sufficient physiological knowledge. Nevertheless, the increasing demand for improved ultrasound interpretability and basic scanning guidance among non-expert users, e.g., in point-of-care settings, has not yet been explored. In this study, we first introduce the scene graph (SG) for ultrasound images to explain image content to ordinary and provide guidance for ultrasound scanning. The ultrasound SG is first computed using a transformer-based one-stage method, eliminating the need for explicit object detection. To generate a graspable image explanation for ordinary, the user query is then used to further refine the abstract SG representation through LLMs. Additionally, the predicted SG is explored for its potential in guiding ultrasound scanning toward missing anatomies within the current imaging view, assisting ordinary users in achieving more standardized and complete anatomical exploration. The effectiveness of this SG-based image explanation and scanning guidance has been validated on images from the left and right neck regions, including the carotid and thyroid, across five volunteers. The results demonstrate the potential of the method to maximally democratize ultrasound by enhancing its interpretability and usability for ordinaries.
♻ ☆ Enhancing Dynamic CT Image Reconstruction with Neural Fields and Optical Flow
In this paper, we investigate image reconstruction for dynamic Computed Tomography. The motion of the target with respect to the measurement acquisition rate leads to highly resolved in time but highly undersampled in space measurements. Such problems pose a major challenge: not accounting for the dynamics of the process leads to a poor reconstruction with non-realistic motion. Variational approaches that penalize time evolution have been proposed to relate subsequent frames and improve image quality based on classical grid-based discretizations. Neural fields have emerged as a novel way to parameterize the quantity of interest using a neural network with a low-dimensional input, benefiting from being lightweight, continuous, and biased towards smooth representations. The latter property has been exploited when solving dynamic inverse problems with neural fields by minimizing a data-fidelity term only. We investigate and show the benefits of introducing explicit motion regularizers for dynamic inverse problems based on partial differential equations, namely, the optical flow equation, for the optimization of neural fields. We compare it against its unregularized counterpart and show the improvements in the reconstruction. We also compare neural fields against a grid-based solver and show that the former outperforms the latter in terms of PSNR in this task.
♻ ☆ TCDiff++: An End-to-end Trajectory-Controllable Diffusion Model for Harmonious Music-Driven Group Choreography
Music-driven dance generation has garnered significant attention due to its wide range of industrial applications, particularly in the creation of group choreography. During the group dance generation process, however, most existing methods still face three primary issues: multi-dancer collisions, single-dancer foot sliding and abrupt swapping in the generation of long group dance. In this paper, we propose TCDiff++, a music-driven end-to-end framework designed to generate harmonious group dance. Specifically, to mitigate multi-dancer collisions, we utilize a dancer positioning embedding to better maintain the relative positioning among dancers. Additionally, we incorporate a distance-consistency loss to ensure that inter-dancer distances remain within plausible ranges. To address the issue of single-dancer foot sliding, we introduce a swap mode embedding to indicate dancer swapping patterns and design a Footwork Adaptor to refine raw motion, thereby minimizing foot sliding. For long group dance generation, we present a long group diffusion sampling strategy that reduces abrupt position shifts by injecting positional information into the noisy input. Furthermore, we integrate a Sequence Decoder layer to enhance the model's ability to selectively process long sequences. Extensive experiments demonstrate that our TCDiff++ achieves state-of-the-art performance, particularly in long-duration scenarios, ensuring high-quality and coherent group dance generation.
♻ ☆ 3D Hierarchical Panoptic Segmentation in Real Orchard Environments Across Different Sensors
Crop yield estimation is a relevant problem in agriculture, because an accurate yield estimate can support farmers' decisions on harvesting or precision intervention. Robots can help to automate this process. To do so, they need to be able to perceive the surrounding environment to identify target objects such as trees and plants. In this paper, we introduce a novel approach to address the problem of hierarchical panoptic segmentation of apple orchards on 3D data from different sensors. Our approach is able to simultaneously provide semantic segmentation, instance segmentation of trunks and fruits, and instance segmentation of trees (a trunk with its fruits). This allows us to identify relevant information such as individual plants, fruits, and trunks, and capture the relationship among them, such as precisely estimate the number of fruits associated to each tree in an orchard. To efficiently evaluate our approach for hierarchical panoptic segmentation, we provide a dataset designed specifically for this task. Our dataset is recorded in Bonn, Germany, in a real apple orchard with a variety of sensors, spanning from a terrestrial laser scanner to a RGB-D camera mounted on different robots platforms. The experiments show that our approach surpasses state-of-the-art approaches in 3D panoptic segmentation in the agricultural domain, while also providing full hierarchical panoptic segmentation. Our dataset is publicly available at https://www.ipb.uni-bonn.de/data/hops/. The open-source implementation of our approach is available at https://github.com/PRBonn/hapt3D.
comment: Accepted to IROS 2025
♻ ☆ Cell Tracking according to Biological Needs -- Strong Mitosis-aware Multi-Hypothesis Tracker with Aleatoric Uncertainty
Cell tracking and segmentation assist biologists in extracting insights from large-scale microscopy time-lapse data. Driven by local accuracy metrics, current tracking approaches often suffer from a lack of long-term consistency and the ability to reconstruct lineage trees correctly. To address this issue, we introduce an uncertainty estimation technique for motion estimation frameworks and extend the multi-hypothesis tracking framework. Our uncertainty estimation lifts motion representations into probabilistic spatial densities using problem-specific test-time augmentations. Moreover, we introduce a novel mitosis-aware assignment problem formulation that allows multi-hypothesis trackers to model cell splits and to resolve false associations and mitosis detections based on long-term conflicts. In our framework, explicit biological knowledge is modeled in assignment costs. We evaluate our approach on nine competitive datasets and demonstrate that we outperform the current state-of-the-art on biologically inspired metrics substantially, achieving improvements by a factor of approximately 6 and uncover new insights into the behavior of motion estimation uncertainty.
comment: 13 pages, 4 figures, 4 tables. This work has been accepted to the IEEE for publication
♻ ☆ SA-Person: Text-Based Person Retrieval with Scene-aware Re-ranking
Text-based person retrieval aims to identify a target individual from a gallery of images based on a natural language description. It presents a significant challenge due to the complexity of real-world scenes and the ambiguity of appearance-related descriptions. Existing methods primarily emphasize appearance-based cross-modal retrieval, often neglecting the contextual information embedded within the scene, which can offer valuable complementary insights for retrieval. To address this, we introduce SCENEPERSON-13W, a large-scale dataset featuring over 100,000 scenes with rich annotations covering both pedestrian appearance and environmental cues. Based on this, we propose SA-Person, a two-stage retrieval framework. In the first stage, it performs discriminative appearance grounding by aligning textual cues with pedestrian-specific regions. In the second stage, it introduces SceneRanker, a training-free, scene-aware re-ranking method leveraging multimodal large language models to jointly reason over pedestrian appearance and the global scene context. Experiments on SCENEPERSON-13W validate the effectiveness of our framework in challenging scene-level retrieval scenarios. The code and dataset will be made publicly available.
comment: 22 pages, 7 figures. Under review
♻ ☆ Variational Supervised Contrastive Learning
Contrastive learning has proven to be highly efficient and adaptable in shaping representation spaces across diverse modalities by pulling similar samples together and pushing dissimilar ones apart. However, two key limitations persist: (1) Without explicit regulation of the embedding distribution, semantically related instances can inadvertently be pushed apart unless complementary signals guide pair selection, and (2) excessive reliance on large in-batch negatives and tailored augmentations hinders generalization. To address these limitations, we propose Variational Supervised Contrastive Learning (VarCon), which reformulates supervised contrastive learning as variational inference over latent class variables and maximizes a posterior-weighted evidence lower bound (ELBO) that replaces exhaustive pair-wise comparisons for efficient class-aware matching and grants fine-grained control over intra-class dispersion in the embedding space. Trained exclusively on image data, our experiments on CIFAR-10, CIFAR-100, ImageNet-100, and ImageNet-1K show that VarCon (1) achieves state-of-the-art performance for contrastive learning frameworks, reaching 79.36% Top-1 accuracy on ImageNet-1K and 78.29% on CIFAR-100 with a ResNet-50 encoder while converging in just 200 epochs; (2) yields substantially clearer decision boundaries and semantic organization in the embedding space, as evidenced by KNN classification, hierarchical clustering results, and transfer-learning assessments; and (3) demonstrates superior performance in few-shot learning than supervised baseline and superior robustness across various augmentation strategies.
♻ ☆ Structure-Preserving Patch Decoding for Efficient Neural Video Representation
Implicit neural representations (INRs) are the subject of extensive research, particularly in their application to modeling complex signals by mapping spatial and temporal coordinates to corresponding values. When handling videos, mapping compact inputs to entire frames or spatially partitioned patch images is an effective approach. This strategy better preserves spatial relationships, reduces computational overhead, and improves reconstruction quality compared to coordinate-based mapping. However, predicting entire frames often limits the reconstruction of high-frequency visual details. Additionally, conventional patch-based approaches based on uniform spatial partitioning tend to introduce boundary discontinuities that degrade spatial coherence. We propose a neural video representation method based on Structure-Preserving Patches (SPPs) to address such limitations. Our method separates each video frame into patch images of spatially aligned frames through a deterministic pixel-based splitting similar to PixelUnshuffle. This operation preserves the global spatial structure while allowing patch-level decoding. We train the decoder to reconstruct these structured patches, enabling a global-to-local decoding strategy that captures the global layout first and refines local details. This effectively reduces boundary artifacts and mitigates distortions from naive upsampling. Experiments on standard video datasets demonstrate that our method achieves higher reconstruction quality and better compression performance than existing INR-based baselines.
♻ ☆ StateSpaceDiffuser: Bringing Long Context to Diffusion World Models
World models have recently become promising tools for predicting realistic visuals based on actions in complex environments. However, their reliance on only a few recent observations leads them to lose track of the long-term context. Consequently, in just a few steps the generated scenes drift from what was previously observed, undermining the temporal coherence of the sequence. This limitation of the state-of-the-art world models, most of which rely on diffusion, comes from their lack of a lasting environment state. To address this problem, we introduce StateSpaceDiffuser, where a diffusion model is enabled to perform long-context tasks by integrating features from a state-space model, representing the entire interaction history. This design restores long-term memory while preserving the high-fidelity synthesis of diffusion models. To rigorously measure temporal consistency, we develop an evaluation protocol that probes a model's ability to reinstantiate seen content in extended rollouts. Comprehensive experiments show that StateSpaceDiffuser significantly outperforms a strong diffusion-only baseline, maintaining a coherent visual context for an order of magnitude more steps. It delivers consistent views in both a 2D maze navigation and a complex 3D environment. These results establish that bringing state-space representations into diffusion models is highly effective in demonstrating both visual details and long-term memory.
♻ ☆ Moderating the Generalization of Score-based Generative Model
Score-based Generative Models (SGMs) have demonstrated remarkable generalization abilities, e.g. generating unseen, but natural data. However, the greater the generalization power, the more likely the unintended generalization, and the more dangerous the abuse. Research on moderated generalization in SGMs remains limited. To fill this gap, we first examine the current 'gold standard' in Machine Unlearning (MU), i.e., re-training the model after removing the undesirable training data, and find it does not work in SGMs. Further analysis of score functions reveals that the MU 'gold standard' does not alter the original score function, which explains its ineffectiveness. Based on this insight, we propose the first Moderated Score-based Generative Model (MSGM), which introduces a novel score adjustment strategy that redirects the score function away from undesirable data during the continuous-time stochastic differential equation process. Extensive experimental results demonstrate that MSGM significantly reduces the likelihood of generating undesirable content while preserving high visual quality for normal image generation. Albeit designed for SGMs, MSGM is a general and flexible MU framework that is compatible with diverse diffusion architectures (SGM and DDPM) and training strategies (re-training and fine-tuning), and enables zero-shot transfer of the pre-trained models to downstream tasks, e.g. image inpainting and reconstruction. The code will be shared upon acceptance.
♻ ☆ Metis-RISE: RL Incentivizes and SFT Enhances Multimodal Reasoning Model Learning
Recent advancements in large language models (LLMs) have witnessed a surge in the development of advanced reasoning paradigms, which are now being integrated into multimodal large language models (MLLMs). However, existing approaches often fall short: methods solely employing reinforcement learning (RL) can struggle with sample inefficiency and activating entirely absent reasoning capabilities, while conventional pipelines that initiate with a cold-start supervised fine-tuning (SFT) phase before RL may restrict the model's exploratory capacity and face suboptimal convergence. In this work, we introduce \textbf{Metis-RISE} (\textbf{R}L \textbf{I}ncentivizes and \textbf{S}FT \textbf{E}nhances) for multimodal reasoning model learning. Unlike conventional approaches, Metis-RISE distinctively omits an initial SFT stage, beginning instead with an RL phase (e.g., using a Group Relative Policy Optimization variant) to incentivize and activate the model's latent reasoning capacity. Subsequently, the targeted SFT stage addresses two key challenges identified during RL: (1) \textit{inefficient trajectory sampling} for tasks where the model possesses but inconsistently applies correct reasoning, which we tackle using self-distilled reasoning trajectories from the RL model itself; and (2) \textit{fundamental capability absence}, which we address by injecting expert-augmented knowledge for prompts where the model entirely fails. This strategic application of RL for incentivization followed by SFT for enhancement forms the core of Metis-RISE, leading to two versions of our MLLMs (7B and 72B parameters). Evaluations on the OpenCompass Multimodal Reasoning Leaderboard demonstrate that both models achieve state-of-the-art performance among similar-sized models, with the 72B version ranking fourth overall. Please refer to our project page for open-source information.
comment: Project Page: https://github.com/MM-Thinking/Metis-RISE
♻ ☆ Self-Regulated Neurogenesis for Online Data-Incremental Learning
Neural networks often struggle with catastrophic forgetting when learning sequences of tasks or data streams, unlike humans who can continuously learn and consolidate new concepts even in the absence of explicit cues. Online data-incremental learning seeks to emulate this capability by processing each sample only once, without having access to task or stream cues at any point in time since this is more realistic compared to offline setups, where all data from novel class(es) is assumed to be readily available. However, existing methods typically rely on storing the subsets of data in memory or expanding the initial model architecture, resulting in significant computational overhead. Drawing inspiration from 'self-regulated neurogenesis'-brain's mechanism for creating specialized regions or circuits for distinct functions-we propose a novel approach SERENA which encodes each concept in a specialized network path called 'concept cell', integrated into a single over-parameterized network. Once a concept is learned, its corresponding concept cell is frozen, effectively preventing the forgetting of previously acquired information. Furthermore, we introduce two new continual learning scenarios that more closely reflect real-world conditions, characterized by gradually changing sample sizes. Experimental results show that our method not only establishes new state-of-the-art results across ten benchmarks but also remarkably surpasses offline supervised batch learning performance. The code is available at https://github.com/muratonuryildirim/serena.
comment: Published at Conference on Lifelong Learning Agents (CoLLAs) 2025
♻ ☆ Referring Expression Instance Retrieval and A Strong End-to-End Baseline
Using natural language to query visual information is a fundamental need in real-world applications. Text-Image Retrieval (TIR) retrieves a target image from a gallery based on an image-level description, while Referring Expression Comprehension (REC) localizes a target object within a given image using an instance-level description. However, real-world applications often present more complex demands. Users typically query an instance-level description across a large gallery and expect to receive both relevant image and the corresponding instance location. In such scenarios, TIR struggles with fine-grained descriptions and object-level localization, while REC is limited in its ability to efficiently search large galleries and lacks an effective ranking mechanism. In this paper, we introduce a new task called \textbf{Referring Expression Instance Retrieval (REIR)}, which supports both instance-level retrieval and localization based on fine-grained referring expressions. First, we propose a large-scale benchmark for REIR, named REIRCOCO, constructed by prompting advanced vision-language models to generate high-quality referring expressions for instances in the MSCOCO and RefCOCO datasets. Second, we present a baseline method, Contrastive Language-Instance Alignment with Relation Experts (CLARE), which employs a dual-stream architecture to address REIR in an end-to-end manner. Given a referring expression, the textual branch encodes it into a query embedding. The visual branch detects candidate objects and extracts their instance-level visual features. The most similar candidate to the query is selected for bounding box prediction. CLARE is first trained on object detection and REC datasets to establish initial grounding capabilities, then optimized via Contrastive Language-Instance Alignment (CLIA) for improved retrieval across images. We will release our code and benchmark publicly.
Machine Learning 205
☆ Whole-Body Conditioned Egocentric Video Prediction
We train models to Predict Ego-centric Video from human Actions (PEVA), given the past video and an action represented by the relative 3D body pose. By conditioning on kinematic pose trajectories, structured by the joint hierarchy of the body, our model learns to simulate how physical human actions shape the environment from a first-person point of view. We train an auto-regressive conditional diffusion transformer on Nymeria, a large-scale dataset of real-world egocentric video and body pose capture. We further design a hierarchical evaluation protocol with increasingly challenging tasks, enabling a comprehensive analysis of the model's embodied prediction and control abilities. Our work represents an initial attempt to tackle the challenges of modeling complex real-world environments and embodied agent behaviors with video prediction from the perspective of a human.
comment: Project Page: https://dannytran123.github.io/PEVA
☆ mTSBench: Benchmarking Multivariate Time Series Anomaly Detection and Model Selection at Scale
Multivariate time series anomaly detection (MTS-AD) is critical in domains like healthcare, cybersecurity, and industrial monitoring, yet remains challenging due to complex inter-variable dependencies, temporal dynamics, and sparse anomaly labels. We introduce mTSBench, the largest benchmark to date for MTS-AD and unsupervised model selection, spanning 344 labeled time series across 19 datasets and 12 diverse application domains. mTSBench evaluates 24 anomaly detection methods, including large language model (LLM)-based detectors for multivariate time series, and systematically benchmarks unsupervised model selection techniques under standardized conditions. Consistent with prior findings, our results confirm that no single detector excels across datasets, underscoring the importance of model selection. However, even state-of-the-art selection methods remain far from optimal, revealing critical gaps. mTSBench provides a unified evaluation suite to enable rigorous, reproducible comparisons and catalyze future advances in adaptive anomaly detection and robust model selection.
☆ Where to find Grokking in LLM Pretraining? Monitor Memorization-to-Generalization without Test
Grokking, i.e., test performance keeps improving long after training loss converged, has been recently witnessed in neural network training, making the mechanism of generalization and other emerging capabilities such as reasoning mysterious. While prior studies usually train small models on a few toy or highly-specific tasks for thousands of epochs, we conduct the first study of grokking on checkpoints during one-pass pretraining of a 7B large language model (LLM), i.e., OLMoE. We compute the training loss and evaluate generalization on diverse benchmark tasks, including math reasoning, code generation, and commonsense/domain-specific knowledge retrieval tasks. Our study, for the first time, verifies that grokking still happens in the pretraining of large-scale foundation models, though different data may enter grokking stages asynchronously. We further demystify grokking's "emergence of generalization" by investigating LLM internal dynamics. Specifically, we find that training samples' pathways (i.e., expert choices across layers) evolve from random, instance-specific to more structured and shareable between samples during grokking. Also, the complexity of a sample's pathway reduces despite the converged loss. These indicate a memorization-to-generalization conversion, providing a mechanistic explanation of delayed generalization. In the study, we develop two novel metrics to quantify pathway distance and the complexity of a single pathway. We show their ability to predict the generalization improvement on diverse downstream tasks. They are efficient, simple to compute and solely dependent on training data. Hence, they have practical value for pretraining, enabling us to monitor the generalization performance without finetuning and test. Theoretically, we show that more structured pathways reduce model complexity and improve the generalization bound.
☆ HalluSegBench: Counterfactual Visual Reasoning for Segmentation Hallucination Evaluation
Recent progress in vision-language segmentation has significantly advanced grounded visual understanding. However, these models often exhibit hallucinations by producing segmentation masks for objects not grounded in the image content or by incorrectly labeling irrelevant regions. Existing evaluation protocols for segmentation hallucination primarily focus on label or textual hallucinations without manipulating the visual context, limiting their capacity to diagnose critical failures. In response, we introduce HalluSegBench, the first benchmark specifically designed to evaluate hallucinations in visual grounding through the lens of counterfactual visual reasoning. Our benchmark consists of a novel dataset of 1340 counterfactual instance pairs spanning 281 unique object classes, and a set of newly introduced metrics that quantify hallucination sensitivity under visually coherent scene edits. Experiments on HalluSegBench with state-of-the-art vision-language segmentation models reveal that vision-driven hallucinations are significantly more prevalent than label-driven ones, with models often persisting in false segmentation, highlighting the need for counterfactual reasoning to diagnose grounding fidelity.
comment: Project webpage: https://plan-lab.github.io/hallusegbench/
☆ Maximal Matching Matters: Preventing Representation Collapse for Robust Cross-Modal Retrieval ACL 2025
Cross-modal image-text retrieval is challenging because of the diverse possible associations between content from different modalities. Traditional methods learn a single-vector embedding to represent semantics of each sample, but struggle to capture nuanced and diverse relationships that can exist across modalities. Set-based approaches, which represent each sample with multiple embeddings, offer a promising alternative, as they can capture richer and more diverse relationships. In this paper, we show that, despite their promise, these set-based representations continue to face issues including sparse supervision and set collapse, which limits their effectiveness. To address these challenges, we propose Maximal Pair Assignment Similarity to optimize one-to-one matching between embedding sets which preserve semantic diversity within the set. We also introduce two loss functions to further enhance the representations: Global Discriminative Loss to enhance distinction among embeddings, and Intra-Set Divergence Loss to prevent collapse within each set. Our method achieves state-of-the-art performance on MS-COCO and Flickr30k without relying on external data.
comment: Accepted at the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025 Main)
☆ Exploring the Design Space of 3D MLLMs for CT Report Generation
Multimodal Large Language Models (MLLMs) have emerged as a promising way to automate Radiology Report Generation (RRG). In this work, we systematically investigate the design space of 3D MLLMs, including visual input representation, projectors, Large Language Models (LLMs), and fine-tuning techniques for 3D CT report generation. We also introduce two knowledge-based report augmentation methods that improve performance on the GREEN score by up to 10\%, achieving the 2nd place on the MICCAI 2024 AMOS-MM challenge. Our results on the 1,687 cases from the AMOS-MM dataset show that RRG is largely independent of the size of LLM under the same training protocol. We also show that larger volume size does not always improve performance if the original ViT was pre-trained on a smaller volume size. Lastly, we show that using a segmentation mask along with the CT volume improves performance. The code is publicly available at https://github.com/bowang-lab/AMOS-MM-Solution
☆ Gaussian Invariant Markov Chain Monte Carlo
We develop sampling methods, which consist of Gaussian invariant versions of random walk Metropolis (RWM), Metropolis adjusted Langevin algorithm (MALA) and second order Hessian or Manifold MALA. Unlike standard RWM and MALA we show that Gaussian invariant sampling can lead to ergodic estimators with improved statistical efficiency. This is due to a remarkable property of Gaussian invariance that allows us to obtain exact analytical solutions to the Poisson equation for Gaussian targets. These solutions can be used to construct efficient and easy to use control variates for variance reduction of estimators under any intractable target. We demonstrate the new samplers and estimators in several examples, including high dimensional targets in latent Gaussian models where we compare against several advanced methods and obtain state-of-the-art results. We also provide theoretical results regarding geometric ergodicity, and an optimal scaling analysis that shows the dependence of the optimal acceptance rate on the Gaussianity of the target.
comment: 29, 2 figures
☆ skLEP: A Slovak General Language Understanding Benchmark ACL 2025
In this work, we introduce skLEP, the first comprehensive benchmark specifically designed for evaluating Slovak natural language understanding (NLU) models. We have compiled skLEP to encompass nine diverse tasks that span token-level, sentence-pair, and document-level challenges, thereby offering a thorough assessment of model capabilities. To create this benchmark, we curated new, original datasets tailored for Slovak and meticulously translated established English NLU resources. Within this paper, we also present the first systematic and extensive evaluation of a wide array of Slovak-specific, multilingual, and English pre-trained language models using the skLEP tasks. Finally, we also release the complete benchmark data, an open-source toolkit facilitating both fine-tuning and evaluation of models, and a public leaderboard at https://github.com/slovak-nlp/sklep in the hopes of fostering reproducibility and drive future research in Slovak NLU.
comment: ACL 2025 Findings
☆ Process mining-driven modeling and simulation to enhance fault diagnosis in cyber-physical systems
Fault diagnosis in Cyber-Physical Systems (CPSs) is essential for ensuring system dependability and operational efficiency by accurately detecting anomalies and identifying their root causes. However, the manual modeling of faulty behaviors often demands extensive domain expertise and produces models that are complex, error-prone, and difficult to interpret. To address this challenge, we present a novel unsupervised fault diagnosis methodology that integrates collective anomaly detection in multivariate time series, process mining, and stochastic simulation. Initially, collective anomalies are detected from low-level sensor data using multivariate time-series analysis. These anomalies are then transformed into structured event logs, enabling the discovery of interpretable process models through process mining. By incorporating timing distributions into the extracted Petri nets, the approach supports stochastic simulation of faulty behaviors, thereby enhancing root cause analysis and behavioral understanding. The methodology is validated using the Robotic Arm Dataset (RoAD), a widely recognized benchmark in smart manufacturing. Experimental results demonstrate its effectiveness in modeling, simulating, and classifying faulty behaviors in CPSs. This enables the creation of comprehensive fault dictionaries that support predictive maintenance and the development of digital twins for industrial environments.
☆ Devising a solution to the problems of Cancer awareness in Telangana
According to the data, the percent of women who underwent screening for cervical cancer, breast and oral cancer in Telangana in the year 2020 was 3.3 percent, 0.3 percent and 2.3 percent respectively. Although early detection is the only way to reduce morbidity and mortality, people have very low awareness about cervical and breast cancer signs and symptoms and screening practices. We developed an ML classification model to predict if a person is susceptible to breast or cervical cancer based on demographic factors. We devised a system to provide suggestions for the nearest hospital or Cancer treatment centres based on the users location or address. In addition to this, we can integrate the health card to maintain medical records of all individuals and conduct awareness drives and campaigns. For ML classification models, we used decision tree classification and support vector classification algorithms for cervical cancer susceptibility and breast cancer susceptibility respectively. Thus, by devising this solution we come one step closer to our goal which is spreading cancer awareness, thereby, decreasing the cancer mortality and increasing cancer literacy among the people of Telangana.
☆ Towards Reliable Detection of Empty Space: Conditional Marked Point Processes for Object Detection
Deep neural networks have set the state-of-the-art in computer vision tasks such as bounding box detection and semantic segmentation. Object detectors and segmentation models assign confidence scores to predictions, reflecting the model's uncertainty in object detection or pixel-wise classification. However, these confidence estimates are often miscalibrated, as their architectures and loss functions are tailored to task performance rather than probabilistic foundation. Even with well calibrated predictions, object detectors fail to quantify uncertainty outside detected bounding boxes, i.e., the model does not make a probability assessment of whether an area without detected objects is truly free of obstacles. This poses a safety risk in applications such as automated driving, where uncertainty in empty areas remains unexplored. In this work, we propose an object detection model grounded in spatial statistics. Bounding box data matches realizations of a marked point process, commonly used to describe the probabilistic occurrence of spatial point events identified as bounding box centers, where marks are used to describe the spatial extension of bounding boxes and classes. Our statistical framework enables a likelihood-based training and provides well-defined confidence estimates for whether a region is drivable, i.e., free of objects. We demonstrate the effectiveness of our method through calibration assessments and evaluation of performance.
comment: 15 pages, 4 figures, 3 tables
☆ Evaluation of Traffic Signals for Daily Traffic Pattern
The turning movement count data is crucial for traffic signal design, intersection geometry planning, traffic flow, and congestion analysis. This work proposes three methods called dynamic, static, and hybrid configuration for TMC-based traffic signals. A vision-based tracking system is developed to estimate the TMC of six intersections in Las Vegas using traffic cameras. The intersection design, route (e.g. vehicle movement directions), and signal configuration files with compatible formats are synthesized and imported into Simulation of Urban MObility for signal evaluation with realistic data. The initial experimental results based on estimated waiting times indicate that the cycle time of 90 and 120 seconds works best for all intersections. In addition, four intersections show better performance for dynamic signal timing configuration, and the other two with lower performance have a lower ratio of total vehicle count to total lanes of the intersection leg. Since daily traffic flow often exhibits a bimodal pattern, we propose a hybrid signal method that switches between dynamic and static methods, adapting to peak and off-peak traffic conditions for improved flow management. So, a built-in traffic generator module creates vehicle routes for 4 hours, including peak hours, and a signal design module produces signal schedule cycles according to static, dynamic, and hybrid methods. Vehicle count distributions are weighted differently for each zone (i.e., West, North, East, South) to generate diverse traffic patterns. The extended experimental results for 6 intersections with 4 hours of simulation time imply that zone-based traffic pattern distributions affect signal design selection. Although the static method works great for evenly zone-based traffic distribution, the hybrid method works well for highly weighted traffic at intersection pairs of the West-East and North-South zones.
☆ Optimising 4th-Order Runge-Kutta Methods: A Dynamic Heuristic Approach for Efficiency and Low Storage
Extended Stability Runge-Kutta (ESRK) methods are crucial for solving large-scale computational problems in science and engineering, including weather forecasting, aerodynamic analysis, and complex biological modelling. However, balancing accuracy, stability, and computational efficiency remains challenging, particularly for high-order, low-storage schemes. This study introduces a hybrid Genetic Algorithm (GA) and Reinforcement Learning (RL) approach for automated heuristic discovery, optimising low-storage ESRK methods. Unlike traditional approaches that rely on manually designed heuristics or exhaustive numerical searches, our method leverages GA-driven mutations for search-space exploration and an RL-inspired state transition mechanism to refine heuristic selection dynamically. This enables systematic parameter reduction, preserving fourth-order accuracy while significantly improving computational efficiency.The proposed GA-RL heuristic optimisation framework is validated through rigorous testing on benchmark problems, including the 1D and 2D Brusselator systems and the steady-state Navier-Stokes equations. The best-performing heuristic achieves a 25\% reduction in IPOPT runtime compared to traditional ESRK optimisation processes while maintaining numerical stability and accuracy. These findings demonstrate the potential of adaptive heuristic discovery to improve resource efficiency in high-fidelity simulations and broaden the applicability of low-storage Runge-Kutta methods in real-world computational fluid dynamics, physics simulations, and other demanding fields. This work establishes a new paradigm in heuristic optimisation for numerical methods, opening pathways for further exploration using Deep RL and AutoML-based heuristic search
☆ Aligning Spoken Dialogue Models from User Interactions ICML 2025
We propose a novel preference alignment framework for improving spoken dialogue models on real-time conversations from user interactions. Current preference learning methods primarily focus on text-based language models, and are not directly suited to the complexities of real-time speech interactions, with richer dynamics (e.g. interruption, interjection) and no explicit segmentation between speaker turns.We create a large-scale dataset of more than 150,000 preference pairs from raw multi-turn speech conversations, annotated with AI feedback, to cover preferences over both linguistic content and temporal context variations. We leverage offline alignment methods to finetune a full-duplex autoregressive speech-to-speech model. Extensive experiments demonstrate that feedback on generic conversations can be consistently effective in improving spoken dialogue models to produce more factual, safer and more contextually aligned interactions. We deploy the finetuned model and conduct holistic human evaluations to assess the impact beyond single-turn conversations. Our findings shed light on the importance of a well-calibrated balance among various dynamics, crucial for natural real-time speech dialogue systems.
comment: Accepted at ICML 2025
☆ A Keyword-Based Technique to Evaluate Broad Question Answer Script
Evaluation is the method of assessing and determining the educational system through various techniques such as verbal or viva-voice test, subjective or objective written test. This paper presents an efficient solution to evaluate the subjective answer script electronically. In this paper, we proposed and implemented an integrated system that examines and evaluates the written answer script. This article focuses on finding the keywords from the answer script and then compares them with the keywords that have been parsed from both open and closed domain. The system also checks the grammatical and spelling errors in the answer script. Our proposed system tested with answer scripts of 100 students and gives precision score 0.91.
comment: ACM Conference Proceedings (9 Pages)
☆ Wild refitting for black box prediction
We describe and analyze a computionally efficient refitting procedure for computing high-probability upper bounds on the instance-wise mean-squared prediction error of penalized nonparametric estimates based on least-squares minimization. Requiring only a single dataset and black box access to the prediction method, it consists of three steps: computing suitable residuals, symmetrizing and scaling them with a pre-factor $\rho$, and using them to define and solve a modified prediction problem recentered at the current estimate. We refer to it as wild refitting, since it uses Rademacher residual symmetrization as in a wild bootstrap variant. Under relatively mild conditions allowing for noise heterogeneity, we establish a high probability guarantee on its performance, showing that the wild refit with a suitably chosen wild noise scale $\rho$ gives an upper bound on prediction error. This theoretical analysis provides guidance into the design of such procedures, including how the residuals should be formed, the amount of noise rescaling in the wild sub-problem needed for upper bounds, and the local stability properties of the block-box procedure. We illustrate the applicability of this procedure to various problems, including non-rigid structure-from-motion recovery with structured matrix penalties; plug-and-play image restoration with deep neural network priors; and randomized sketching with kernel methods.
☆ Towards an Optimal Control Perspective of ResNet Training ICML 2025
We propose a training formulation for ResNets reflecting an optimal control problem that is applicable for standard architectures and general loss functions. We suggest bridging both worlds via penalizing intermediate outputs of hidden states corresponding to stage cost terms in optimal control. For standard ResNets, we obtain intermediate outputs by propagating the state through the subsequent skip connections and the output layer. We demonstrate that our training dynamic biases the weights of the unnecessary deeper residual layers to vanish. This indicates the potential for a theory-grounded layer pruning strategy.
comment: Accepted for presentation at the High-dimensional Learning Dynamics (HiLD) workshop at ICML 2025
☆ A Comprehensive Dataset for Underground Miner Detection in Diverse Scenario
Underground mining operations face significant safety challenges that make emergency response capabilities crucial. While robots have shown promise in assisting with search and rescue operations, their effectiveness depends on reliable miner detection capabilities. Deep learning algorithms offer potential solutions for automated miner detection, but require comprehensive training datasets, which are currently lacking for underground mining environments. This paper presents a novel thermal imaging dataset specifically designed to enable the development and validation of miner detection systems for potential emergency applications. We systematically captured thermal imagery of various mining activities and scenarios to create a robust foundation for detection algorithms. To establish baseline performance metrics, we evaluated several state-of-the-art object detection algorithms including YOLOv8, YOLOv10, YOLO11, and RT-DETR on our dataset. While not exhaustive of all possible emergency situations, this dataset serves as a crucial first step toward developing reliable thermal-based miner detection systems that could eventually be deployed in real emergency scenarios. This work demonstrates the feasibility of using thermal imaging for miner detection and establishes a foundation for future research in this critical safety application.
☆ Learnable Adaptive Time-Frequency Representation via Differentiable Short-Time Fourier Transform
The short-time Fourier transform (STFT) is widely used for analyzing non-stationary signals. However, its performance is highly sensitive to its parameters, and manual or heuristic tuning often yields suboptimal results. To overcome this limitation, we propose a unified differentiable formulation of the STFT that enables gradient-based optimization of its parameters. This approach addresses the limitations of traditional STFT parameter tuning methods, which often rely on computationally intensive discrete searches. It enables fine-tuning of the time-frequency representation (TFR) based on any desired criterion. Moreover, our approach integrates seamlessly with neural networks, allowing joint optimization of the STFT parameters and network weights. The efficacy of the proposed differentiable STFT in enhancing TFRs and improving performance in downstream tasks is demonstrated through experiments on both simulated and real-world data.
comment: DSTFT, STFT, spectrogram, time-frequency, IEEE Transactions on Signal Processing, 10 pages
☆ Deception Detection in Dyadic Exchanges Using Multimodal Machine Learning: A Study on a Swedish Cohort
This study investigates the efficacy of using multimodal machine learning techniques to detect deception in dyadic interactions, focusing on the integration of data from both the deceiver and the deceived. We compare early and late fusion approaches, utilizing audio and video data - specifically, Action Units and gaze information - across all possible combinations of modalities and participants. Our dataset, newly collected from Swedish native speakers engaged in truth or lie scenarios on emotionally relevant topics, serves as the basis for our analysis. The results demonstrate that incorporating both speech and facial information yields superior performance compared to single-modality approaches. Moreover, including data from both participants significantly enhances deception detection accuracy, with the best performance (71%) achieved using a late fusion strategy applied to both modalities and participants. These findings align with psychological theories suggesting differential control of facial and vocal expressions during initial interactions. As the first study of its kind on a Scandinavian cohort, this research lays the groundwork for future investigations into dyadic interactions, particularly within psychotherapy settings.
comment: 40 pages, 2 figures, 2 tables. To be submitted in Behavior Research Methods
☆ Flow-Based Single-Step Completion for Efficient and Expressive Policy Learning
Generative models such as diffusion and flow-matching offer expressive policies for offline reinforcement learning (RL) by capturing rich, multimodal action distributions, but their iterative sampling introduces high inference costs and training instability due to gradient propagation across sampling steps. We propose the \textit{Single-Step Completion Policy} (SSCP), a generative policy trained with an augmented flow-matching objective to predict direct completion vectors from intermediate flow samples, enabling accurate, one-shot action generation. In an off-policy actor-critic framework, SSCP combines the expressiveness of generative models with the training and inference efficiency of unimodal policies, without requiring long backpropagation chains. Our method scales effectively to offline, offline-to-online, and online RL settings, offering substantial gains in speed and adaptability over diffusion-based baselines. We further extend SSCP to goal-conditioned RL, enabling flat policies to exploit subgoal structures without explicit hierarchical inference. SSCP achieves strong results across standard offline RL and behavior cloning benchmarks, positioning it as a versatile, expressive, and efficient framework for deep RL and sequential decision-making.
☆ Distributed Cross-Channel Hierarchical Aggregation for Foundation Models
Vision-based scientific foundation models hold significant promise for advancing scientific discovery and innovation. This potential stems from their ability to aggregate images from diverse sources such as varying physical groundings or data acquisition systems and to learn spatio-temporal correlations using transformer architectures. However, tokenizing and aggregating images can be compute-intensive, a challenge not fully addressed by current distributed methods. In this work, we introduce the Distributed Cross-Channel Hierarchical Aggregation (D-CHAG) approach designed for datasets with a large number of channels across image modalities. Our method is compatible with any model-parallel strategy and any type of vision transformer architecture, significantly improving computational efficiency. We evaluated D-CHAG on hyperspectral imaging and weather forecasting tasks. When integrated with tensor parallelism and model sharding, our approach achieved up to a 75% reduction in memory usage and more than doubled sustained throughput on up to 1,024 AMD GPUs on the Frontier Supercomputer.
☆ Scalable Bayesian Low-Rank Adaptation of Large Language Models via Stochastic Variational Subspace Inference
Despite their widespread use, large language models (LLMs) are known to hallucinate incorrect information and be poorly calibrated. This makes the uncertainty quantification of these models of critical importance, especially in high-stakes domains, such as autonomy and healthcare. Prior work has made Bayesian deep learning-based approaches to this problem more tractable by performing inference over the low-rank adaptation (LoRA) parameters of a fine-tuned model. While effective, these approaches struggle to scale to larger LLMs due to requiring further additional parameters compared to LoRA. In this work we present $\textbf{Scala}$ble $\textbf{B}$ayesian $\textbf{L}$ow-Rank Adaptation via Stochastic Variational Subspace Inference (ScalaBL). We perform Bayesian inference in an $r$-dimensional subspace, for LoRA rank $r$. By repurposing the LoRA parameters as projection matrices, we are able to map samples from this subspace into the full weight space of the LLM. This allows us to learn all the parameters of our approach using stochastic variational inference. Despite the low dimensionality of our subspace, we are able to achieve competitive performance with state-of-the-art approaches while only requiring ${\sim}1000$ additional parameters. Furthermore, it allows us to scale up to the largest Bayesian LLM to date, with four times as a many base parameters as prior work.
comment: Accepted at UAI 2025
☆ Early Stopping Tabular In-Context Learning ICML
Tabular foundation models have shown strong performance across various tabular learning tasks via in-context learning, offering robust generalization without any downstream finetuning. However, their inference-time costs remain high, particularly for larger datasets. To address this, we propose early-stopping the in-context learning process. We achieve this by dynamically evaluating whether to stop in-context learning after each Transformer encoder layer. Once stopped, we decode the embedding using a pre-trained layer-wise decoder. Experiments across 34 small classification tasks size show that early stopping in-context learning accelerates inference by up to x1.3 with negligible degradation in predictive performance. To assess scalability, we further evaluate our method on five larger classification tasks, achieving speedups of up to x2.2. Our results demonstrate the potential of early exiting as an effective and practical strategy for improving the efficiency of tabular in-context learning.
comment: ICML Workshop Paper
☆ Temporal-Aware Graph Attention Network for Cryptocurrency Transaction Fraud Detection
Cryptocurrency transaction fraud detection faces the dual challenges of increasingly complex transaction patterns and severe class imbalance. Traditional methods rely on manual feature engineering and struggle to capture temporal and structural dependencies in transaction networks. This paper proposes an Augmented Temporal-aware Graph Attention Network (ATGAT) that enhances detection performance through three modules: (1) designing an advanced temporal embedding module that fuses multi-scale time difference features with periodic position encoding; (2) constructing a temporal-aware triple attention mechanism that jointly optimizes structural, temporal, and global context attention; (3) employing weighted BCE loss to address class imbalance. Experiments on the Elliptic++ cryptocurrency dataset demonstrate that ATGAT achieves an AUC of 0.9130, representing a 9.2% improvement over the best traditional method XGBoost, 12.0% over GCN, and 10.0% over standard GAT. This method not only validates the enhancement effect of temporal awareness and triple attention mechanisms on graph neural networks, but also provides financial institutions with more reliable fraud detection tools, with its design principles generalizable to other temporal graph anomaly detection tasks.
☆ Pay Attention to Small Weights
Finetuning large pretrained neural networks is known to be resource-intensive, both in terms of memory and computational cost. To mitigate this, a common approach is to restrict training to a subset of the model parameters. By analyzing the relationship between gradients and weights during finetuning, we observe a notable pattern: large gradients are often associated with small-magnitude weights. This correlation is more pronounced in finetuning settings than in training from scratch. Motivated by this observation, we propose NANOADAM, which dynamically updates only the small-magnitude weights during finetuning and offers several practical advantages: first, this criterion is gradient-free -- the parameter subset can be determined without gradient computation; second, it preserves large-magnitude weights, which are likely to encode critical features learned during pretraining, thereby reducing the risk of catastrophic forgetting; thirdly, it permits the use of larger learning rates and consistently leads to better generalization performance in experiments. We demonstrate this for both NLP and vision tasks.
☆ MAx-DNN: Multi-Level Arithmetic Approximation for Energy-Efficient DNN Hardware Accelerators
Nowadays, the rapid growth of Deep Neural Network (DNN) architectures has established them as the defacto approach for providing advanced Machine Learning tasks with excellent accuracy. Targeting low-power DNN computing, this paper examines the interplay of fine-grained error resilience of DNN workloads in collaboration with hardware approximation techniques, to achieve higher levels of energy efficiency. Utilizing the state-of-the-art ROUP approximate multipliers, we systematically explore their fine-grained distribution across the network according to our layer-, filter-, and kernel-level approaches, and examine their impact on accuracy and energy. We use the ResNet-8 model on the CIFAR-10 dataset to evaluate our approximations. The proposed solution delivers up to 54% energy gains in exchange for up to 4% accuracy loss, compared to the baseline quantized model, while it provides 2x energy gains with better accuracy versus the state-of-the-art DNN approximations.
comment: Presented at the 13th IEEE LASCAS Conference
☆ rQdia: Regularizing Q-Value Distributions With Image Augmentation
rQdia regularizes Q-value distributions with augmented images in pixel-based deep reinforcement learning. With a simple auxiliary loss, that equalizes these distributions via MSE, rQdia boosts DrQ and SAC on 9/12 and 10/12 tasks respectively in the MuJoCo Continuous Control Suite from pixels, and Data-Efficient Rainbow on 18/26 Atari Arcade environments. Gains are measured in both sample efficiency and longer-term training. Moreover, the addition of rQdia finally propels model-free continuous control from pixels over the state encoding baseline.
☆ SMMILE: An Expert-Driven Benchmark for Multimodal Medical In-Context Learning
Multimodal in-context learning (ICL) remains underexplored despite significant potential for domains such as medicine. Clinicians routinely encounter diverse, specialized tasks requiring adaptation from limited examples, such as drawing insights from a few relevant prior cases or considering a constrained set of differential diagnoses. While multimodal large language models (MLLMs) have shown advances in medical visual question answering (VQA), their ability to learn multimodal tasks from context is largely unknown. We introduce SMMILE, the first expert-driven multimodal ICL benchmark for medical tasks. Eleven medical experts curated problems, each including a multimodal query and multimodal in-context examples as task demonstrations. SMMILE encompasses 111 problems (517 question-image-answer triplets) covering 6 medical specialties and 13 imaging modalities. We further introduce SMMILE++, an augmented variant with 1038 permuted problems. A comprehensive evaluation of 15 MLLMs demonstrates that most models exhibit moderate to poor multimodal ICL ability in medical tasks. In open-ended evaluations, ICL contributes only 8% average improvement over zero-shot on SMMILE and 9.4% on SMMILE++. We observe a susceptibility for irrelevant in-context examples: even a single noisy or irrelevant example can degrade performance by up to 9.5%. Moreover, example ordering exhibits a recency bias, i.e., placing the most relevant example last can lead to substantial performance improvements by up to 71%. Our findings highlight critical limitations and biases in current MLLMs when learning multimodal medical tasks from context.
☆ Lipschitz Bounds for Persistent Laplacian Eigenvalues under One-Simplex Insertions
Persistent Laplacians are matrix operators that track how the shape and structure of data transform across scales and are popularly adopted in biology, physics, and machine learning. Their eigenvalues are concise descriptors of geometric and topological features in a filtration. Although earlier work established global algebraic stability for these operators, the precise change in a single eigenvalue when one simplex, such as a vertex, edge, or triangle, is added has remained unknown. This is important because downstream tools, including heat-kernel signatures and spectral neural networks, depend directly on these eigenvalues. We close this gap by proving a uniform Lipschitz bound: after inserting one simplex, every up-persistent Laplacian eigenvalue can vary by at most twice the Euclidean norm of that simplex's boundary, independent of filtration scale and complex size. This result delivers the first eigenvalue-level robustness guarantee for spectral topological data analysis. It guarantees that spectral features remain stable under local updates and enables reliable error control in dynamic data settings.
comment: 16 pages, 4 figures
☆ DynamicBench: Evaluating Real-Time Report Generation in Large Language Models
Traditional benchmarks for large language models (LLMs) typically rely on static evaluations through storytelling or opinion expression, which fail to capture the dynamic requirements of real-time information processing in contemporary applications. To address this limitation, we present DynamicBench, a benchmark designed to evaluate the proficiency of LLMs in storing and processing up-to-the-minute data. DynamicBench utilizes a dual-path retrieval pipeline, integrating web searches with local report databases. It necessitates domain-specific knowledge, ensuring accurate responses report generation within specialized fields. By evaluating models in scenarios that either provide or withhold external documents, DynamicBench effectively measures their capability to independently process recent information or leverage contextual enhancements. Additionally, we introduce an advanced report generation system adept at managing dynamic information synthesis. Our experimental results confirm the efficacy of our approach, with our method achieving state-of-the-art performance, surpassing GPT4o in document-free and document-assisted scenarios by 7.0% and 5.8%, respectively. The code and data will be made publicly available.
☆ AGTCNet: A Graph-Temporal Approach for Principled Motor Imagery EEG Classification
Brain-computer interface (BCI) technology utilizing electroencephalography (EEG) marks a transformative innovation, empowering motor-impaired individuals to engage with their environment on equal footing. Despite its promising potential, developing subject-invariant and session-invariant BCI systems remains a significant challenge due to the inherent complexity and variability of neural activity across individuals and over time, compounded by EEG hardware constraints. While prior studies have sought to develop robust BCI systems, existing approaches remain ineffective in capturing the intricate spatiotemporal dependencies within multichannel EEG signals. This study addresses this gap by introducing the attentive graph-temporal convolutional network (AGTCNet), a novel graph-temporal model for motor imagery EEG (MI-EEG) classification. Specifically, AGTCNet leverages the topographic configuration of EEG electrodes as an inductive bias and integrates graph convolutional attention network (GCAT) to jointly learn expressive spatiotemporal EEG representations. The proposed model significantly outperformed existing MI-EEG classifiers, achieving state-of-the-art performance while utilizing a compact architecture, underscoring its effectiveness and practicality for BCI deployment. With a 49.87% reduction in model size, 64.65% faster inference time, and shorter input EEG signal, AGTCNet achieved a moving average accuracy of 66.82% for subject-independent classification on the BCI Competition IV Dataset 2a, which further improved to 82.88% when fine-tuned for subject-specific classification. On the EEG Motor Movement/Imagery Dataset, AGTCNet achieved moving average accuracies of 64.14% and 85.22% for 4-class and 2-class subject-independent classifications, respectively, with further improvements to 72.13% and 90.54% for subject-specific classifications.
comment: This work has been submitted to the IEEE for possible publication
☆ Latent Prototype Routing: Achieving Near-Perfect Load Balancing in Mixture-of-Experts
Mixture-of-Experts (MoE) architectures have emerged as a key strategy for scaling large language models (LLMs) efficiently. However, current MoE systems suffer from severe load imbalance, where only a small subset of experts is consistently activated during training and inference, leading to significant underutilization of model capacity and computational resources. In this work, we revisit expert routing through a clustering perspective and propose Latent Prototype Routing (LPR), a novel routing framework that generalizes existing approaches while promoting balanced expert utilization without compromising downstream performance. Extensive experiments across multiple open-source MoE models -- including DeepSeek-V3, Qwen3-MoE, and Mixtral -- demonstrate that LPR reduces the Gini coefficient of expert load from 0.70 to 0.035 on average, improves the min-max expert load ratio from 1e-6 to 0.70, achieving near-perfect load balancing.
comment: 15 pages,4 figures
☆ Stochastic Quantum Spiking Neural Networks with Quantum Memory and Local Learning
Neuromorphic and quantum computing have recently emerged as promising paradigms for advancing artificial intelligence, each offering complementary strengths. Neuromorphic systems built on spiking neurons excel at processing time-series data efficiently through sparse, event-driven computation, consuming energy only upon input events. Quantum computing, on the other hand, leverages superposition and entanglement to explore feature spaces that are exponentially large in the number of qubits. Hybrid approaches combining these paradigms have begun to show potential, but existing quantum spiking models have important limitations. Notably, prior quantum spiking neuron implementations rely on classical memory mechanisms on single qubits, requiring repeated measurements to estimate firing probabilities, and they use conventional backpropagation on classical simulators for training. Here we propose a stochastic quantum spiking (SQS) neuron model that addresses these challenges. The SQS neuron uses multi-qubit quantum circuits to realize a spiking unit with internal quantum memory, enabling event-driven probabilistic spike generation in a single shot. Furthermore, we outline how networks of SQS neurons -- dubbed SQS neural networks (SQSNNs) -- can be trained via a hardware-friendly local learning rule, eliminating the need for global classical backpropagation. The proposed SQSNN model fuses the time-series efficiency of neuromorphic computing with the exponentially large inner state space of quantum computing, paving the way for quantum spiking neural networks that are modular, scalable, and trainable on quantum hardware.
☆ On Uniform Weighted Deep Polynomial approximation
It is a classical result in rational approximation theory that certain non-smooth or singular functions, such as $|x|$ and $x^{1/p}$, can be efficiently approximated using rational functions with root-exponential convergence in terms of degrees of freedom \cite{Sta, GN}. In contrast, polynomial approximations admit only algebraic convergence by Jackson's theorem \cite{Lub2}. Recent work shows that composite polynomial architectures can recover exponential approximation rates even without smoothness \cite{KY}. In this work, we introduce and analyze a class of weighted deep polynomial approximants tailored for functions with asymmetric behavior-growing unbounded on one side and decaying on the other. By multiplying a learnable deep polynomial with a one-sided weight, we capture both local non-smoothness and global growth. We show numerically that this framework outperforms Taylor, Chebyshev, and standard deep polynomial approximants, even when all use the same number of parameters. To optimize these approximants in practice, we propose a stable graph-based parameterization strategy building on \cite{Jar}.
☆ Exploring Adapter Design Tradeoffs for Low Resource Music Generation
Fine-tuning large-scale music generation models, such as MusicGen and Mustango, is a computationally expensive process, often requiring updates to billions of parameters and, therefore, significant hardware resources. Parameter-Efficient Fine-Tuning (PEFT) techniques, particularly adapter-based methods, have emerged as a promising alternative, enabling adaptation with minimal trainable parameters while preserving model performance. However, the design choices for adapters, including their architecture, placement, and size, are numerous, and it is unclear which of these combinations would produce optimal adapters and why, for a given case of low-resource music genre. In this paper, we attempt to answer this question by studying various adapter configurations for two AI music models, MusicGen and Mustango, on two genres: Hindustani Classical and Turkish Makam music. Our findings reveal distinct trade-offs: convolution-based adapters excel in capturing fine-grained local musical details such as ornamentations and short melodic phrases, while transformer-based adapters better preserve long-range dependencies crucial for structured improvisation. Additionally, we analyze computational resource requirements across different adapter scales, demonstrating how mid-sized adapters (40M parameters) achieve an optimal balance between expressivity and quality. Furthermore, we find that Mustango, a diffusion-based model, generates more diverse outputs with better adherence to the description in the input prompt while lacking in providing stability in notes, rhythm alignment, and aesthetics. Also, it is computationally intensive and requires significantly more time to train. In contrast, autoregressive models like MusicGen offer faster training and are more efficient, and can produce better quality output in comparison, but have slightly higher redundancy in their generations.
comment: 9 pages, 5 figures
☆ Improved seeding strategies for k-means and k-GMM
We revisit the randomized seeding techniques for k-means clustering and k-GMM (Gaussian Mixture model fitting with Expectation-Maximization), formalizing their three key ingredients: the metric used for seed sampling, the number of candidate seeds, and the metric used for seed selection. This analysis yields novel families of initialization methods exploiting a lookahead principle--conditioning the seed selection to an enhanced coherence with the final metric used to assess the algorithm, and a multipass strategy to tame down the effect of randomization. Experiments show a consistent constant factor improvement over classical contenders in terms of the final metric (SSE for k-means, log-likelihood for k-GMM), at a modest overhead. In particular, for k-means, our methods improve on the recently designed multi-swap strategy, which was the first one to outperform the greedy k-means++ seeding. Our experimental analysis also shed light on subtle properties of k-means often overlooked, including the (lack of) correlations between the SSE upon seeding and the final SSE, the variance reduction phenomena observed in iterative seeding methods, and the sensitivity of the final SSE to the pool size for greedy methods. Practically, our most effective seeding methods are strong candidates to become one of the--if not the--standard techniques. From a theoretical perspective, our formalization of seeding opens the door to a new line of analytical approaches.
comment: 13 pages
☆ Small Encoders Can Rival Large Decoders in Detecting Groundedness
Augmenting large language models (LLMs) with external context significantly improves their performance in natural language processing (NLP) tasks. However, LLMs struggle to answer queries reliably when the provided context lacks information, often resorting to ungrounded speculation or internal knowledge. Groundedness - generating responses strictly supported by the context - is essential for ensuring factual consistency and trustworthiness. This study focuses on detecting whether a given query is grounded in a document provided in context before the costly answer generation by LLMs. Such a detection mechanism can significantly reduce both inference time and resource consumption. We show that lightweight, task specific encoder models such as RoBERTa and NomicBERT, fine-tuned on curated datasets, can achieve accuracy comparable to state-of-the-art LLMs, such as Llama3 8B and GPT4o, in groundedness detection while reducing inference latency by orders of magnitude. The code is available at : https://github.com/chandarlab/Hallucinate-less
☆ Hyperspherical Variational Autoencoders Using Efficient Spherical Cauchy Distribution
We propose a novel variational autoencoder (VAE) architecture that employs a spherical Cauchy (spCauchy) latent distribution. Unlike traditional Gaussian latent spaces or the widely used von Mises-Fisher (vMF) distribution, spCauchy provides a more natural hyperspherical representation of latent variables, better capturing directional data while maintaining flexibility. Its heavy-tailed nature prevents over-regularization, ensuring efficient latent space utilization while offering a more expressive representation. Additionally, spCauchy circumvents the numerical instabilities inherent to vMF, which arise from computing normalization constants involving Bessel functions. Instead, it enables a fully differentiable and efficient reparameterization trick via M\"obius transformations, allowing for stable and scalable training. The KL divergence can be computed through a rapidly converging power series, eliminating concerns of underflow or overflow associated with evaluation of ratios of hypergeometric functions. These properties make spCauchy a compelling alternative for VAEs, offering both theoretical advantages and practical efficiency in high-dimensional generative modeling.
☆ DiLoCoX: A Low-Communication Large-Scale Training Framework for Decentralized Cluster
The distributed training of foundation models, particularly large language models (LLMs), demands a high level of communication. Consequently, it is highly dependent on a centralized cluster with fast and reliable interconnects. Can we conduct training on slow networks and thereby unleash the power of decentralized clusters when dealing with models exceeding 100 billion parameters? In this paper, we propose DiLoCoX, a low-communication large-scale decentralized cluster training framework. It combines Pipeline Parallelism with Dual Optimizer Policy, One-Step-Delay Overlap of Communication and Local Training, and an Adaptive Gradient Compression Scheme. This combination significantly improves the scale of parameters and the speed of model pre-training. We justify the benefits of one-step-delay overlap of communication and local training, as well as the adaptive gradient compression scheme, through a theoretical analysis of convergence. Empirically, we demonstrate that DiLoCoX is capable of pre-training a 107B foundation model over a 1Gbps network. Compared to vanilla AllReduce, DiLoCoX can achieve a 357x speedup in distributed training while maintaining negligible degradation in model convergence. To the best of our knowledge, this is the first decentralized training framework successfully applied to models with over 100 billion parameters.
☆ From On-chain to Macro: Assessing the Importance of Data Source Diversity in Cryptocurrency Market Forecasting
This study investigates the impact of data source diversity on the performance of cryptocurrency forecasting models by integrating various data categories, including technical indicators, on-chain metrics, sentiment and interest metrics, traditional market indices, and macroeconomic indicators. We introduce the Crypto100 index, representing the top 100 cryptocurrencies by market capitalization, and propose a novel feature reduction algorithm to identify the most impactful and resilient features from diverse data sources. Our comprehensive experiments demonstrate that data source diversity significantly enhances the predictive performance of forecasting models across different time horizons. Key findings include the paramount importance of on-chain metrics for both short-term and long-term predictions, the growing relevance of traditional market indices and macroeconomic indicators for longer-term forecasts, and substantial improvements in model accuracy when diverse data sources are utilized. These insights help demystify the short-term and long-term driving factors of the cryptocurrency market and lay the groundwork for developing more accurate and resilient forecasting models.
☆ Zero-Shot Learning for Obsolescence Risk Forecasting
Component obsolescence poses significant challenges in industries reliant on electronic components, causing increased costs and disruptions in the security and availability of systems. Accurate obsolescence risk prediction is essential but hindered by a lack of reliable data. This paper proposes a novel approach to forecasting obsolescence risk using zero-shot learning (ZSL) with large language models (LLMs) to address data limitations by leveraging domain-specific knowledge from tabular datasets. Applied to two real-world datasets, the method demonstrates effective risk prediction. A comparative evaluation of four LLMs underscores the importance of selecting the right model for specific forecasting tasks.
☆ Complexity-aware fine-tuning
General-purpose Large Language Models (LLMs) are frequently fine-tuned through supervised fine-tuning (SFT) to enhance performance in specific domains. Better results can be achieved by distilling the chain-of-thought of a larger model at the cost of numerous expensive calls and a much greater amount of data. We propose a novel blueprint for efficient fine-tuning that uses reasoning only for complex data identified by entropy. Specifically, across two small open models ($\approx 3B$) we split the training data into complexity categories by a single token answer entropy (ROC AUC $0.73$), fine-tune large language models (LLMs) via SFT and distillation, and show that our pipeline significantly outperforms the standard SFT approach ($0.55$ vs $0.43$ average accuracy) and provides comparable with distillation performance while using $62\%$ less data ($0.55$ average accuracy for both). We publish our code and data to facilitate further research in this direction.
☆ Unveiling Causal Reasoning in Large Language Models: Reality or Mirage? NeurIPS 2024
Causal reasoning capability is critical in advancing large language models (LLMs) toward strong artificial intelligence. While versatile LLMs appear to have demonstrated capabilities in understanding contextual causality and providing responses that obey the laws of causality, it remains unclear whether they perform genuine causal reasoning akin to humans. However, current evidence indicates the contrary. Specifically, LLMs are only capable of performing shallow (level-1) causal reasoning, primarily attributed to the causal knowledge embedded in their parameters, but they lack the capacity for genuine human-like (level-2) causal reasoning. To support this hypothesis, methodologically, we delve into the autoregression mechanism of transformer-based LLMs, revealing that it is not inherently causal. Empirically, we introduce a new causal Q&A benchmark called CausalProbe-2024, whose corpora are fresh and nearly unseen for the studied LLMs. The LLMs exhibit a significant performance drop on CausalProbe-2024 compared to earlier benchmarks, indicating the fact that they primarily engage in level-1 causal reasoning. To bridge the gap towards level-2 causal reasoning, we draw inspiration from the fact that human reasoning is usually facilitated by general knowledge and intended goals. We propose G^2-Reasoner, a method that incorporates general knowledge and goal-oriented prompts into LLMs' causal reasoning processes. Experiments demonstrate that G^2-Reasoner significantly enhances LLMs' causal reasoning capability, particularly in fresh and counterfactual contexts. This work sheds light on a new path for LLMs to advance towards genuine causal reasoning, going beyond level-1 and making strides towards level-2.
comment: 24 pages, accepted at NeurIPS 2024
☆ Artificial Delegates Resolve Fairness Issues in Perpetual Voting with Partial Turnout
Perpetual voting addresses fairness in sequential collective decision-making by evaluating representational equity over time. However, existing perpetual voting rules rely on full participation and complete approval information, assumptions that rarely hold in practice, where partial turnout is the norm. In this work, we study the integration of Artificial Delegates, preference-learning agents trained to represent absent voters, into perpetual voting systems. We examine how absenteeism affects fairness and representativeness under various voting methods and evaluate the extent to which Artificial Delegates can compensate for missing participation. Our findings indicate that while absenteeism significantly affects fairness, Artificial Delegates reliably mitigate these effects and enhance robustness across diverse scenarios.
comment: The paper has been accepted at the ACM Collective Intelligence Conference (CI 2025), August 4 to 6, 2025, San Diego, CA, USA
☆ Performance improvement of spatial semantic segmentation with enriched audio features and agent-based error correction for DCASE 2025 Challenge Task 4
This technical report presents submission systems for Task 4 of the DCASE 2025 Challenge. This model incorporates additional audio features (spectral roll-off and chroma features) into the embedding feature extracted from the mel-spectral feature to im-prove the classification capabilities of an audio-tagging model in the spatial semantic segmentation of sound scenes (S5) system. This approach is motivated by the fact that mixed audio often contains subtle cues that are difficult to capture with mel-spectrograms alone. Thus, these additional features offer alterna-tive perspectives for the model. Second, an agent-based label correction system is applied to the outputs processed by the S5 system. This system reduces false positives, improving the final class-aware signal-to-distortion ratio improvement (CA-SDRi) metric. Finally, we refine the training dataset to enhance the classi-fication accuracy of low-performing classes by removing irrele-vant samples and incorporating external data. That is, audio mix-tures are generated from a limited number of data points; thus, even a small number of out-of-class data points could degrade model performance. The experiments demonstrate that the submit-ted systems employing these approaches relatively improve CA-SDRi by up to 14.7% compared to the baseline of DCASE 2025 Challenge Task 4.
comment: DCASE 2025 challenge Task4, 5 pages
☆ Diverse Mini-Batch Selection in Reinforcement Learning for Efficient Chemical Exploration in de novo Drug Design
In many real-world applications, evaluating the goodness of instances is often costly and time-consuming, e.g., human feedback and physics simulations, in contrast to proposing new instances. In particular, this is even more critical in reinforcement learning, as new interactions with the environment (i.e., new instances) need to be evaluated to provide a reward signal to learn from. As sufficient exploration is crucial, learning from a diverse mini-batch can have a large impact and help mitigate mode collapse. In this paper, we introduce diverse mini-batch selection for reinforcement learning and propose to use determinantal point processes for this task. We study this framework in the context of a real-world problem, namely drug discovery. We experimentally study how our proposed framework can improve the effectiveness of chemical exploration in de novo drug design, where finding diverse and high-quality solutions is essential. We conduct a comprehensive evaluation with three well-established molecular generation oracles over numerous generative steps. Our experiments conclude that our diverse mini-batch selection framework can substantially improve the diversity of the solutions, while still obtaining solutions of high quality. In drug discovery, such outcome can potentially lead to fulfilling unmet medication needs faster.
☆ Transformer-Based Spatial-Temporal Counterfactual Outcomes Estimation ICML 2025
The real world naturally has dimensions of time and space. Therefore, estimating the counterfactual outcomes with spatial-temporal attributes is a crucial problem. However, previous methods are based on classical statistical models, which still have limitations in performance and generalization. This paper proposes a novel framework for estimating counterfactual outcomes with spatial-temporal attributes using the Transformer, exhibiting stronger estimation ability. Under mild assumptions, the proposed estimator within this framework is consistent and asymptotically normal. To validate the effectiveness of our approach, we conduct simulation experiments and real data experiments. Simulation experiments show that our estimator has a stronger estimation capability than baseline methods. Real data experiments provide a valuable conclusion to the causal effect of conflicts on forest loss in Colombia. The source code is available at https://github.com/lihe-maxsize/DeppSTCI_Release_Version-master.
comment: 24 pages, accepted at ICML 2025
☆ Linearity-based neural network compression
In neural network compression, most current methods reduce unnecessary parameters by measuring importance and redundancy. To augment already highly optimized existing solutions, we propose linearity-based compression as a novel way to reduce weights in a neural network. It is based on the intuition that with ReLU-like activation functions, neurons that are almost always activated behave linearly, allowing for merging of subsequent layers. We introduce the theory underlying this compression and evaluate our approach experimentally. Our novel method achieves a lossless compression down to 1/4 of the original model size in over the majority of tested models. Applying our method on already importance-based pruned models shows very little interference between different types of compression, demonstrating the option of successful combination of techniques. Overall, our work lays the foundation for a new type of compression method that enables smaller and ultimately more efficient neural network models.
☆ Personalized Federated Learning via Dual-Prompt Optimization and Cross Fusion
Federated learning (FL) enables collaborative model training across decentralized clients without sharing local data, but is challenged by heterogeneity in data, computation, and communication. Pretrained vision-language models (VLMs), with their strong generalization and lightweight tuning via prompts, offer a promising solution. However, existing federated prompt-learning methods rely only on text prompts and overlook joint label-domain distribution shifts. In this paper, we propose a personalized FL framework based on dual-prompt learning and cross fusion, termed pFedDC. Specifically, each client maintains both global and local prompts across vision and language modalities: global prompts capture common knowledge shared across the federation, while local prompts encode client-specific semantics and domain characteristics. Meanwhile, a cross-fusion module is designed to adaptively integrate prompts from different levels, enabling the model to generate personalized representations aligned with each client's unique data distribution. Extensive experiments across nine datasets with various types of heterogeneity show that pFedDC consistently outperforms state-of-the-art methods.
☆ Generative Adversarial Evasion and Out-of-Distribution Detection for UAV Cyber-Attacks
The growing integration of UAVs into civilian airspace underscores the need for resilient and intelligent intrusion detection systems (IDS), as traditional anomaly detection methods often fail to identify novel threats. A common approach treats unfamiliar attacks as out-of-distribution (OOD) samples; however, this leaves systems vulnerable when mitigation is inadequate. Moreover, conventional OOD detectors struggle to distinguish stealthy adversarial attacks from genuine OOD events. This paper introduces a conditional generative adversarial network (cGAN)-based framework for crafting stealthy adversarial attacks that evade IDS mechanisms. We first design a robust multi-class IDS classifier trained on benign UAV telemetry and known cyber-attacks, including Denial of Service (DoS), false data injection (FDI), man-in-the-middle (MiTM), and replay attacks. Using this classifier, our cGAN perturbs known attacks to generate adversarial samples that misclassify as benign while retaining statistical resemblance to OOD distributions. These adversarial samples are iteratively refined to achieve high stealth and success rates. To detect such perturbations, we implement a conditional variational autoencoder (CVAE), leveraging negative log-likelihood to separate adversarial inputs from authentic OOD samples. Comparative evaluation shows that CVAE-based regret scores significantly outperform traditional Mahalanobis distance-based detectors in identifying stealthy adversarial threats. Our findings emphasize the importance of advanced probabilistic modeling to strengthen IDS capabilities against adaptive, generative-model-based cyber intrusions.
☆ DBConformer: Dual-Branch Convolutional Transformer for EEG Decoding
Electroencephalography (EEG)-based brain-computer interfaces (BCIs) transform spontaneous/evoked neural activity into control commands for external communication. While convolutional neural networks (CNNs) remain the mainstream backbone for EEG decoding, their inherently short receptive field makes it difficult to capture long-range temporal dependencies and global inter-channel relationships. Recent CNN-Transformer (Conformers) hybrids partially address this issue, but most adopt a serial design, resulting in suboptimal integration of local and global features, and often overlook explicit channel-wise modeling. To address these limitations, we propose DBConformer, a dual-branch convolutional Transformer network tailored for EEG decoding. It integrates a temporal Conformer to model long-range temporal dependencies and a spatial Conformer to extract inter-channel interactions, capturing both temporal dynamics and spatial patterns in EEG signals. A lightweight channel attention module further refines spatial representations by assigning data-driven importance to EEG channels. Extensive experiments on five motor imagery (MI) datasets and two seizure detection datasets under three evaluation settings demonstrate that DBConformer consistently outperforms 10 competitive baseline models, with over eight times fewer parameters than the high-capacity EEG Conformer baseline. Further, the visualization results confirm that the features extracted by DBConformer are physiologically interpretable and aligned with sensorimotor priors in MI. The superior performance and interpretability of DBConformer make it reliable for robust and explainable EEG decoding. Code is publicized at https://github.com/wzwvv/DBConformer.
comment: 12 pages, 6 figures
☆ NaLaFormer: Norm-Aware Linear Attention for Transformer Models
Linear attention has emerged as a viable alternative to softmax attention by reducing complexity from quadratic to linear in sequence length. To preserve two fundamental properties of softmax, non-negativity and entropy reduction, current works employ various linearly separatable kernel functions with $L1$ normalization instead of softmax operator. However, query norms are neglected by the normalization operation in linear attention, such degradation heavily leads to an entropy gap. Meanwhile, existing works inhibit negative values of query and key vectors resulting in a missing inner-product interactions after being mapped. To address these dual challenges, we propose a novel Norm-Aware Linear Attention mechanism serving to restore norm-guided dynamic spikiness and recover kernel-perturbed norm distributions. Specifically, we first decouple query and key matrices into two components: norm and direction, to achieve norm-aware spikiness control and norm consistency, respectively. We mathematically reveal that the extent of entropy reduction varies with the query norm in softmax normalization, motivating a query-norm aware kernel function for dynamic control over entropy reduction. Furthermore, to ensure norm consistency and enforce non-negativity constraints, we employ a norm-preserving mapping to project all elements of the angular matrix into positive values, leveraging cosine similarity to inhibit dimensions with opposite directions. We conduct extensive experiments demonstrating that the NaLaFormer improves performance on vision and language tasks, enhancing both expressiveness and efficiency by up to 4.2\%.
☆ Curriculum-Guided Antifragile Reinforcement Learning for Secure UAV Deconfliction under Observation-Space Attacks
Reinforcement learning (RL) policies deployed in safety-critical systems, such as unmanned aerial vehicle (UAV) navigation in dynamic airspace, are vulnerable to out-ofdistribution (OOD) adversarial attacks in the observation space. These attacks induce distributional shifts that significantly degrade value estimation, leading to unsafe or suboptimal decision making rendering the existing policy fragile. To address this vulnerability, we propose an antifragile RL framework designed to adapt against curriculum of incremental adversarial perturbations. The framework introduces a simulated attacker which incrementally increases the strength of observation-space perturbations which enables the RL agent to adapt and generalize across a wider range of OOD observations and anticipate previously unseen attacks. We begin with a theoretical characterization of fragility, formally defining catastrophic forgetting as a monotonic divergence in value function distributions with increasing perturbation strength. Building on this, we define antifragility as the boundedness of such value shifts and derive adaptation conditions under which forgetting is stabilized. Our method enforces these bounds through iterative expert-guided critic alignment using Wasserstein distance minimization across incrementally perturbed observations. We empirically evaluate the approach in a UAV deconfliction scenario involving dynamic 3D obstacles. Results show that the antifragile policy consistently outperforms standard and robust RL baselines when subjected to both projected gradient descent (PGD) and GPS spoofing attacks, achieving up to 15% higher cumulative reward and over 30% fewer conflict events. These findings demonstrate the practical and theoretical viability of antifragile reinforcement learning for secure and resilient decision-making in environments with evolving threat scenarios.
☆ Robust Policy Switching for Antifragile Reinforcement Learning for UAV Deconfliction in Adversarial Environments
The increasing automation of navigation for unmanned aerial vehicles (UAVs) has exposed them to adversarial attacks that exploit vulnerabilities in reinforcement learning (RL) through sensor manipulation. Although existing robust RL methods aim to mitigate such threats, their effectiveness has limited generalization to out-of-distribution shifts from the optimal value distribution, as they are primarily designed to handle fixed perturbation. To address this limitation, this paper introduces an antifragile RL framework that enhances adaptability to broader distributional shifts by incorporating a switching mechanism based on discounted Thompson sampling (DTS). This mechanism dynamically selects among multiple robust policies to minimize adversarially induced state-action-value distribution shifts. The proposed approach first derives a diverse ensemble of action robust policies by accounting for a range of perturbations in the policy space. These policies are then modeled as a multiarmed bandit (MAB) problem, where DTS optimally selects policies in response to nonstationary Bernoulli rewards, effectively adapting to evolving adversarial strategies. Theoretical framework has also been provided where by optimizing the DTS to minimize the overall regrets due to distributional shift, results in effective adaptation against unseen adversarial attacks thus inducing antifragility. Extensive numerical simulations validate the effectiveness of the proposed framework in complex navigation environments with multiple dynamic three-dimensional obstacles and with stronger projected gradient descent (PGD) and spoofing attacks. Compared to conventional robust, non-adaptive RL methods, the antifragile approach achieves superior performance, demonstrating shorter navigation path lengths and a higher rate of conflict-free navigation trajectories compared to existing robust RL techniques
☆ Pushing Trade-Off Boundaries: Compact yet Effective Remote Sensing Change Detection
Remote sensing change detection is essential for monitoring urban expansion, disaster assessment, and resource management, offering timely, accurate, and large-scale insights into dynamic landscape transformations. While deep learning has revolutionized change detection, the increasing complexity and computational demands of modern models have not necessarily translated into significant accuracy gains. Instead of following this trend, this study explores a more efficient approach, focusing on lightweight models that maintain high accuracy while minimizing resource consumption, which is an essential requirement for on-satellite processing. To this end, we propose FlickCD, which means quick flick then get great results, pushing the boundaries of the performance-resource trade-off. FlickCD introduces an Enhanced Difference Module (EDM) to amplify critical feature differences between temporal phases while suppressing irrelevant variations such as lighting and weather changes, thereby reducing computational costs in the subsequent change decoder. Additionally, the FlickCD decoder incorporates Local-Global Fusion Blocks, leveraging Shifted Window Self-Attention (SWSA) and Enhanced Global Self-Attention (EGSA) to efficiently capture semantic information at multiple scales, preserving both coarse- and fine-grained changes. Extensive experiments on four benchmark datasets demonstrate that FlickCD reduces computational and storage overheads by more than an order of magnitude while achieving state-of-the-art (SOTA) performance or incurring only a minor (<1\% F1) accuracy trade-off. The implementation code is publicly available at https://github.com/xulsh8/FlickCD.
comment: 12 pages
☆ Unlasting: Unpaired Single-Cell Multi-Perturbation Estimation by Dual Conditional Diffusion Implicit Bridges
Estimating single-cell responses across various perturbations facilitates the identification of key genes and enhances drug screening, significantly boosting experimental efficiency. However, single-cell sequencing is a destructive process, making it impossible to capture the same cell's phenotype before and after perturbation. Consequently, data collected under perturbed and unperturbed conditions are inherently unpaired. Existing methods either attempt to forcibly pair unpaired data using random sampling, or neglect the inherent relationship between unperturbed and perturbed cells during the modeling. In this work, we propose a framework based on Dual Diffusion Implicit Bridges (DDIB) to learn the mapping between different data distributions, effectively addressing the challenge of unpaired data. We further interpret this framework as a form of data augmentation. We integrate gene regulatory network (GRN) information to propagate perturbation signals in a biologically meaningful way, and further incorporate a masking mechanism to predict silent genes, improving the quality of generated profiles. Moreover, gene expression under the same perturbation often varies significantly across cells, frequently exhibiting a bimodal distribution that reflects intrinsic heterogeneity. To capture this, we introduce a more suitable evaluation metric. We propose Unlasting, dual conditional diffusion models that overcome the problem of unpaired single-cell perturbation data and strengthen the model's insight into perturbations under the guidance of the GRN, with a dedicated mask model designed to improve generation quality by predicting silent genes. In addition, we introduce a biologically grounded evaluation metric that better reflects the inherent heterogeneity in single-cell responses.
☆ Learning to Skip the Middle Layers of Transformers
Conditional computation is a popular strategy to make Transformers more efficient. Existing methods often target individual modules (e.g., mixture-of-experts layers) or skip layers independently of one another. However, interpretability research has demonstrated that the middle layers of Transformers exhibit greater redundancy, and that early layers aggregate information into token positions. Guided by these insights, we propose a novel architecture that dynamically skips a variable number of layers from the middle outward. In particular, a learned gating mechanism determines whether to bypass a symmetric span of central blocks based on the input, and a gated attention mechanism prevents subsequent tokens from attending to skipped token positions. Residual norms are controlled with a 'sandwich' or 'perilayernorm' scheme and gate sparsity with an adaptive regularization loss. We had aimed to reduce compute requirements for 'simpler' tokens and potentially foster an emergent multi-level representational hierarchy but, at the scales investigated, our approach does not achieve improvements in the trade-off between validation cross-entropy and estimated FLOPs compared to dense baselines with fewer layers. We release our code at https://github.com/tim-lawson/skip-middle.
comment: 11 pages, 2 figures
☆ Interpretable Hierarchical Concept Reasoning through Attention-Guided Graph Learning
Concept-Based Models (CBMs) are a class of deep learning models that provide interpretability by explaining predictions through high-level concepts. These models first predict concepts and then use them to perform a downstream task. However, current CBMs offer interpretability only for the final task prediction, while the concept predictions themselves are typically made via black-box neural networks. To address this limitation, we propose Hierarchical Concept Memory Reasoner (H-CMR), a new CBM that provides interpretability for both concept and task predictions. H-CMR models relationships between concepts using a learned directed acyclic graph, where edges represent logic rules that define concepts in terms of other concepts. During inference, H-CMR employs a neural attention mechanism to select a subset of these rules, which are then applied hierarchically to predict all concepts and the final task. Experimental results demonstrate that H-CMR matches state-of-the-art performance while enabling strong human interaction through concept and model interventions. The former can significantly improve accuracy at inference time, while the latter can enhance data efficiency during training when background knowledge is available.
☆ FeDa4Fair: Client-Level Federated Datasets for Fairness Evaluation
Federated Learning (FL) enables collaborative model training across multiple clients without sharing clients' private data. However, fairness remains a key concern, as biases in local clients' datasets can impact the entire federated system. Heterogeneous data distributions across clients may lead to models that are fairer for some clients than others. Although several fairness-enhancing solutions are present in the literature, most focus on mitigating bias for a single sensitive attribute, typically binary, overlooking the diverse and sometimes conflicting fairness needs of different clients. This limited perspective can limit the effectiveness of fairness interventions for the different clients. To support more robust and reproducible fairness research in FL, we aim to enable a consistent benchmarking of fairness-aware FL methods at both the global and client levels. In this paper, we contribute in three ways: (1) We introduce FeDa4Fair, a library to generate tabular datasets tailored to evaluating fair FL methods under heterogeneous client bias; (2) we release four bias-heterogeneous datasets and corresponding benchmarks to compare fairness mitigation methods in a controlled environment; (3) we provide ready-to-use functions for evaluating fairness outcomes for these datasets.
☆ Chain-of-Thought Enhanced Shallow Transformers for Wireless Symbol Detection
Transformers have shown potential in solving wireless communication problems, particularly via in-context learning (ICL), where models adapt to new tasks through prompts without requiring model updates. However, prior ICL-based Transformer models rely on deep architectures with many layers to achieve satisfactory performance, resulting in substantial storage and computational costs. In this work, we propose CHain Of thOught Symbol dEtection (CHOOSE), a CoT-enhanced shallow Transformer framework for wireless symbol detection. By introducing autoregressive latent reasoning steps within the hidden space, CHOOSE significantly improves the reasoning capacity of shallow models (1-2 layers) without increasing model depth. This design enables lightweight Transformers to achieve detection performance comparable to much deeper models, making them well-suited for deployment on resource-constrained mobile devices. Experimental results demonstrate that our approach outperforms conventional shallow Transformers and achieves performance comparable to that of deep Transformers, while maintaining storage and computational efficiency. This represents a promising direction for implementing Transformer-based algorithms in wireless receivers with limited computational resources.
☆ CovDocker: Benchmarking Covalent Drug Design with Tasks, Datasets, and Solutions KDD 2025
Molecular docking plays a crucial role in predicting the binding mode of ligands to target proteins, and covalent interactions, which involve the formation of a covalent bond between the ligand and the target, are particularly valuable due to their strong, enduring binding nature. However, most existing docking methods and deep learning approaches hardly account for the formation of covalent bonds and the associated structural changes. To address this gap, we introduce a comprehensive benchmark for covalent docking, CovDocker, which is designed to better capture the complexities of covalent binding. We decompose the covalent docking process into three main tasks: reactive location prediction, covalent reaction prediction, and covalent docking. By adapting state-of-the-art models, such as Uni-Mol and Chemformer, we establish baseline performances and demonstrate the effectiveness of the benchmark in accurately predicting interaction sites and modeling the molecular transformations involved in covalent binding. These results confirm the role of the benchmark as a rigorous framework for advancing research in covalent drug design. It underscores the potential of data-driven approaches to accelerate the discovery of selective covalent inhibitors and addresses critical challenges in therapeutic development.
comment: Accepted to KDD 2025 Research Track
☆ EgoAdapt: Adaptive Multisensory Distillation and Policy Learning for Efficient Egocentric Perception ICCV 2025
Modern perception models, particularly those designed for multisensory egocentric tasks, have achieved remarkable performance but often come with substantial computational costs. These high demands pose challenges for real-world deployment, especially in resource-constrained environments. In this paper, we introduce EgoAdapt, a framework that adaptively performs cross-modal distillation and policy learning to enable efficient inference across different egocentric perception tasks, including egocentric action recognition, active speaker localization, and behavior anticipation. Our proposed policy module is adaptable to task-specific action spaces, making it broadly applicable. Experimental results on three challenging egocentric datasets EPIC-Kitchens, EasyCom, and Aria Everyday Activities demonstrate that our method significantly enhances efficiency, reducing GMACs by up to 89.09%, parameters up to 82.02%, and energy up to 9.6x, while still on-par and in many cases outperforming, the performance of corresponding state-of-the-art models.
comment: Accepted at ICCV 2025
☆ Homogenization of Multi-agent Learning Dynamics in Finite-state Markov Games
This paper introduces a new approach for approximating the learning dynamics of multiple reinforcement learning (RL) agents interacting in a finite-state Markov game. The idea is to rescale the learning process by simultaneously reducing the learning rate and increasing the update frequency, effectively treating the agent's parameters as a slow-evolving variable influenced by the fast-mixing game state. Under mild assumptions-ergodicity of the state process and continuity of the updates-we prove the convergence of this rescaled process to an ordinary differential equation (ODE). This ODE provides a tractable, deterministic approximation of the agent's learning dynamics. An implementation of the framework is available at\,: https://github.com/yannKerzreho/MarkovGameApproximation
☆ Enhancing LLM Tool Use with High-quality Instruction Data from Knowledge Graph
Teaching large language models (LLMs) to use tools is crucial for improving their problem-solving abilities and expanding their applications. However, effectively using tools is challenging because it requires a deep understanding of tool functionalities and user intentions. Previous methods relied mainly on LLMs to generate instruction data, but the quality of these data was often insufficient. In this paper, we propose a new method that uses knowledge graphs to generate high-quality instruction data for LLMs. Knowledge graphs are manually curated datasets rich in semantic information. We begin by extracting various query pathways from a given knowledge graph, which are transformed into a broad spectrum of user queries. We then translate the relationships between entities into actionable tools and parse the pathways of each query into detailed solution steps, thereby creating high-quality instruction data. Our experiments show that fine-tuning on just a small sample of this synthetic data can significantly improve the tool utilization and overall capabilities of LLMs.
comment: 20 pages, 12 figures
☆ FedDAA: Dynamic Client Clustering for Concept Drift Adaptation in Federated Learning
In federated learning (FL), the data distribution of each client may change over time, introducing both temporal and spatial data heterogeneity, known as concept drift. Data heterogeneity arises from three drift sources: real drift (a shift in the conditional distribution P(y|x)), virtual drift (a shift in the input distribution P(x)), and label drift (a shift in the label distribution P(y)). However, most existing FL methods addressing concept drift primarily focus on real drift. When clients experience virtual or label drift, these methods often fail to selectively retain useful historical knowledge, leading to catastrophic forgetting. A key challenge lies in distinguishing different sources of drift, as they require distinct adaptation strategies: real drift calls for discarding outdated data, while virtual or label drift benefits from retaining historical data. Without explicitly identifying the drift sources, a general adaptation strategy is suboptimal and may harm generalization. To address this challenge, we propose FedDAA, a dynamic clustered FL framework designed to adapt to multi-source concept drift while preserving valuable historical knowledge. Specifically, FedDAA integrates three modules: a cluster number determination module to find the optimal number of clusters; a real drift detection module to distinguish real drift from virtual/label drift; and a concept drift adaptation module to adapt to new data while retaining useful historical information. We provide theoretical convergence guarantees, and experiments show that FedDAA achieves 7.84% to 8.52% accuracy improvements over state-of-the-art methods on Fashion-MNIST, CIFAR-10, and CIFAR-100.
☆ Improving Diffusion-Based Image Editing Faithfulness via Guidance and Scheduling
Text-guided diffusion models have become essential for high-quality image synthesis, enabling dynamic image editing. In image editing, two crucial aspects are editability, which determines the extent of modification, and faithfulness, which reflects how well unaltered elements are preserved. However, achieving optimal results is challenging because of the inherent trade-off between editability and faithfulness. To address this, we propose Faithfulness Guidance and Scheduling (FGS), which enhances faithfulness with minimal impact on editability. FGS incorporates faithfulness guidance to strengthen the preservation of input image information and introduces a scheduling strategy to resolve misalignment between editability and faithfulness. Experimental results demonstrate that FGS achieves superior faithfulness while maintaining editability. Moreover, its compatibility with various editing methods enables precise, high-quality image edits across diverse tasks.
comment: preprint
☆ Efficient Skill Discovery via Regret-Aware Optimization
Unsupervised skill discovery aims to learn diverse and distinguishable behaviors in open-ended reinforcement learning. For existing methods, they focus on improving diversity through pure exploration, mutual information optimization, and learning temporal representation. Despite that they perform well on exploration, they remain limited in terms of efficiency, especially for the high-dimensional situations. In this work, we frame skill discovery as a min-max game of skill generation and policy learning, proposing a regret-aware method on top of temporal representation learning that expands the discovered skill space along the direction of upgradable policy strength. The key insight behind the proposed method is that the skill discovery is adversarial to the policy learning, i.e., skills with weak strength should be further explored while less exploration for the skills with converged strength. As an implementation, we score the degree of strength convergence with regret, and guide the skill discovery with a learnable skill generator. To avoid degeneration, skill generation comes from an up-gradable population of skill generators. We conduct experiments on environments with varying complexities and dimension sizes. Empirical results show that our method outperforms baselines in both efficiency and diversity. Moreover, our method achieves a 15% zero shot improvement in high-dimensional environments, compared to existing methods.
☆ Strict Subgoal Execution: Reliable Long-Horizon Planning in Hierarchical Reinforcement Learning
Long-horizon goal-conditioned tasks pose fundamental challenges for reinforcement learning (RL), particularly when goals are distant and rewards are sparse. While hierarchical and graph-based methods offer partial solutions, they often suffer from subgoal infeasibility and inefficient planning. We introduce Strict Subgoal Execution (SSE), a graph-based hierarchical RL framework that enforces single-step subgoal reachability by structurally constraining high-level decision-making. To enhance exploration, SSE employs a decoupled exploration policy that systematically traverses underexplored regions of the goal space. Furthermore, a failure-aware path refinement, which refines graph-based planning by dynamically adjusting edge costs according to observed low-level success rates, thereby improving subgoal reliability. Experimental results across diverse long-horizon benchmarks demonstrate that SSE consistently outperforms existing goal-conditioned RL and hierarchical RL approaches in both efficiency and success rate.
comment: 9 technical page followed by references and appendix
☆ RL-Selector: Reinforcement Learning-Guided Data Selection via Redundancy Assessment ICCV 2025
Modern deep architectures often rely on large-scale datasets, but training on these datasets incurs high computational and storage overhead. Real-world datasets often contain substantial redundancies, prompting the need for more data-efficient training paradigms. Data selection has shown promise to mitigate redundancy by identifying the most representative samples, thereby reducing training costs without compromising performance. Existing methods typically rely on static scoring metrics or pretrained models, overlooking the combined effect of selected samples and their evolving dynamics during training. We introduce the concept of epsilon-sample cover, which quantifies sample redundancy based on inter-sample relationships, capturing the intrinsic structure of the dataset. Based on this, we reformulate data selection as a reinforcement learning (RL) process and propose RL-Selector, where a lightweight RL agent optimizes the selection policy by leveraging epsilon-sample cover derived from evolving dataset distribution as a reward signal. Extensive experiments across benchmark datasets and diverse architectures demonstrate that our method consistently outperforms existing state-of-the-art baselines. Models trained with our selected datasets show enhanced generalization performance with improved training efficiency.
comment: ICCV 2025
☆ An Information-Theoretic Analysis for Federated Learning under Concept Drift
Recent studies in federated learning (FL) commonly train models on static datasets. However, real-world data often arrives as streams with shifting distributions, causing performance degradation known as concept drift. This paper analyzes FL performance under concept drift using information theory and proposes an algorithm to mitigate the performance degradation. We model concept drift as a Markov chain and introduce the \emph{Stationary Generalization Error} to assess a model's capability to capture characteristics of future unseen data. Its upper bound is derived using KL divergence and mutual information. We study three drift patterns (periodic, gradual, and random) and their impact on FL performance. Inspired by this, we propose an algorithm that regularizes the empirical risk minimization approach with KL divergence and mutual information, thereby enhancing long-term performance. We also explore the performance-cost tradeoff by identifying a Pareto front. To validate our approach, we build an FL testbed using Raspberry Pi4 devices. Experimental results corroborate with theoretical findings, confirming that drift patterns significantly affect performance. Our method consistently outperforms existing approaches for these three patterns, demonstrating its effectiveness in adapting concept drift in FL.
☆ Little By Little: Continual Learning via Self-Activated Sparse Mixture-of-Rank Adaptive Learning
Continual learning (CL) with large pre-trained models is challenged by catastrophic forgetting and task interference. Existing LoRA-based Mixture-of-Experts (MoE) approaches mitigate forgetting by assigning and freezing task-specific adapters, but suffer from interference, redundancy, and ambiguous routing due to coarse adapter-level selection. However, this design introduces three key challenges: 1) Interference: Activating full LoRA experts per input leads to subspace interference and prevents selective reuse of useful components across tasks. 2) Redundancy: Newly added experts often duplicate or contradict existing knowledge due to unnecessary activation of unrelated ranks and insufficient reuse of relevant ones. 3) Ambiguity: Overlapping features across tasks confuse the router, resulting in unstable expert assignments. As more experts accumulate, earlier task routing degrades, accelerating forgetting. We propose MoRA, a Mixture-of-Rank Adaptive learning approach with self-activated and sparse rank activation for CL. Unlike mixing multiple low-rank matrices, MoRA decomposes each rank-r update into r rank-1 components, each treated as an independent expert, enabling fine-grained mixture of rank-1 expert utilization while mitigating interference and redundancy. To avoid ambiguous routing, we propose that each rank-1 expert can infer its own relevance via intermediate activations. Coupled with our proposed rank pruning and activation budgets, MoRA adaptively selects a sparse mixture of ranks per input. We validate MoRA on continual learning tasks with CLIP and large language models (LLMs), analyzing both in-domain learning and out-of-domain forgetting/generalization during fine-tuning. MoRA shows significant effectiveness on enhancing CL with PTMs, and improving generalization while mitigating forgetting.
comment: Preprint
☆ TRIDENT: Tri-Modal Molecular Representation Learning with Taxonomic Annotations and Local Correspondence
Molecular property prediction aims to learn representations that map chemical structures to functional properties. While multimodal learning has emerged as a powerful paradigm to learn molecular representations, prior works have largely overlooked textual and taxonomic information of molecules for representation learning. We introduce TRIDENT, a novel framework that integrates molecular SMILES, textual descriptions, and taxonomic functional annotations to learn rich molecular representations. To achieve this, we curate a comprehensive dataset of molecule-text pairs with structured, multi-level functional annotations. Instead of relying on conventional contrastive loss, TRIDENT employs a volume-based alignment objective to jointly align tri-modal features at the global level, enabling soft, geometry-aware alignment across modalities. Additionally, TRIDENT introduces a novel local alignment objective that captures detailed relationships between molecular substructures and their corresponding sub-textual descriptions. A momentum-based mechanism dynamically balances global and local alignment, enabling the model to learn both broad functional semantics and fine-grained structure-function mappings. TRIDENT achieves state-of-the-art performance on 11 downstream tasks, demonstrating the value of combining SMILES, textual, and taxonomic functional annotations for molecular property prediction.
☆ HybridQ: Hybrid Classical-Quantum Generative Adversarial Network for Skin Disease Image Generation
Machine learning-assisted diagnosis is gaining traction in skin disease detection, but training effective models requires large amounts of high-quality data. Skin disease datasets often suffer from class imbalance, privacy concerns, and object bias, making data augmentation essential. While classical generative models are widely used, they demand extensive computational resources and lengthy training time. Quantum computing offers a promising alternative, but existing quantum-based image generation methods can only yield grayscale low-quality images. Through a novel classical-quantum latent space fusion technique, our work overcomes this limitation and introduces the first classical-quantum generative adversarial network (GAN) capable of generating color medical images. Our model outperforms classical deep convolutional GANs and existing hybrid classical-quantum GANs in both image generation quality and classification performance boost when used as data augmentation. Moreover, the performance boost is comparable with that achieved using state-of-the-art classical generative models, yet with over 25 times fewer parameters and 10 times fewer training epochs. Such results suggest a promising future for quantum image generation as quantum hardware advances. Finally, we demonstrate the robust performance of our model on real IBM quantum machine with hardware noise.
☆ Distilling Normalizing Flows CVPR
Explicit density learners are becoming an increasingly popular technique for generative models because of their ability to better model probability distributions. They have advantages over Generative Adversarial Networks due to their ability to perform density estimation and having exact latent-variable inference. This has many advantages, including: being able to simply interpolate, calculate sample likelihood, and analyze the probability distribution. The downside of these models is that they are often more difficult to train and have lower sampling quality. Normalizing flows are explicit density models, that use composable bijective functions to turn an intractable probability function into a tractable one. In this work, we present novel knowledge distillation techniques to increase sampling quality and density estimation of smaller student normalizing flows. We seek to study the capacity of knowledge distillation in Compositional Normalizing Flows to understand the benefits and weaknesses provided by these architectures. Normalizing flows have unique properties that allow for a non-traditional forms of knowledge transfer, where we can transfer that knowledge within intermediate layers. We find that through this distillation, we can make students significantly smaller while making substantial performance gains over a non-distilled student. With smaller models there is a proportionally increased throughput as this is dependent upon the number of bijectors, and thus parameters, in the network.
comment: Published in eLVM @ CVPR (https://openaccess.thecvf.com/content/CVPR2025W/eLVM/html/Walton_Distilling_Normalizing_Flows_CVPRW_2025_paper)
☆ Step-by-Step Video-to-Audio Synthesis via Negative Audio Guidance
We propose a novel step-by-step video-to-audio generation method that sequentially produces individual audio tracks, each corresponding to a specific sound event in the video. Our approach mirrors traditional Foley workflows, aiming to capture all sound events induced by a given video comprehensively. Each generation step is formulated as a guided video-to-audio synthesis task, conditioned on a target text prompt and previously generated audio tracks. This design is inspired by the idea of concept negation from prior compositional generation frameworks. To enable this guided generation, we introduce a training framework that leverages pre-trained video-to-audio models and eliminates the need for specialized paired datasets, allowing training on more accessible data. Experimental results demonstrate that our method generates multiple semantically distinct audio tracks for a single input video, leading to higher-quality composite audio synthesis than existing baselines.
☆ SharpZO: Hybrid Sharpness-Aware Vision Language Model Prompt Tuning via Forward-Only Passes
Fine-tuning vision language models (VLMs) has achieved remarkable performance across various downstream tasks; yet, it requires access to model gradients through backpropagation (BP), making them unsuitable for memory-constrained, inference-only edge devices. To address this limitation, previous work has explored various BP-free fine-tuning methods. However, these approaches often rely on high-variance evolutionary strategies (ES) or zeroth-order (ZO) optimization, and often fail to achieve satisfactory performance. In this paper, we propose a hybrid Sharpness-aware Zeroth-order optimization (SharpZO) approach, specifically designed to enhance the performance of ZO VLM fine-tuning via a sharpness-aware warm-up training. SharpZO features a two-stage optimization process: a sharpness-aware ES stage that globally explores and smooths the loss landscape to construct a strong initialization, followed by a fine-grained local search via sparse ZO optimization. The entire optimization relies solely on forward passes. Detailed theoretical analysis and extensive experiments on CLIP models demonstrate that SharpZO significantly improves accuracy and convergence speed, achieving up to 7% average gain over state-of-the-art forward-only methods.
☆ Can Gradient Descent Simulate Prompting?
There are two primary ways of incorporating new information into a language model (LM): changing its prompt or changing its parameters, e.g. via fine-tuning. Parameter updates incur no long-term storage cost for model changes. However, for many model updates, prompting is significantly more effective: prompted models can generalize robustly from single examples and draw logical inferences that do not occur under standard fine-tuning. Can models be modified so that fine-tuning does emulate prompting? This paper describes a method for meta-training LMs such that gradient updates emulate the effects of conditioning on new information. Our approach uses tools from gradient-based meta-learning but uses an LM's own prompted predictions as targets, eliminating the need for ground-truth labels. Subsequent gradient descent training recovers some (and occasionally all) of prompted model performance -- showing improvement on the ``reversal curse'' tasks, and answering questions about text passages after a single gradient update. These results suggest that, with appropriate initialization, gradient descent can be surprisingly expressive. Our results suggest new avenues for long-context modeling and offer insight into the generalization capabilities of gradient-based learning.
comment: 14 pages, 2 figures
☆ EraRAG: Efficient and Incremental Retrieval Augmented Generation for Growing Corpora
Graph-based Retrieval-Augmented Generation (Graph-RAG) enhances large language models (LLMs) by structuring retrieval over an external corpus. However, existing approaches typically assume a static corpus, requiring expensive full-graph reconstruction whenever new documents arrive, limiting their scalability in dynamic, evolving environments. To address these limitations, we introduce EraRAG, a novel multi-layered Graph-RAG framework that supports efficient and scalable dynamic updates. Our method leverages hyperplane-based Locality-Sensitive Hashing (LSH) to partition and organize the original corpus into hierarchical graph structures, enabling efficient and localized insertions of new data without disrupting the existing topology. The design eliminates the need for retraining or costly recomputation while preserving high retrieval accuracy and low latency. Experiments on large-scale benchmarks demonstrate that EraRag achieves up to an order of magnitude reduction in update time and token consumption compared to existing Graph-RAG systems, while providing superior accuracy performance. This work offers a practical path forward for RAG systems that must operate over continually growing corpora, bridging the gap between retrieval efficiency and adaptability. Our code and data are available at https://github.com/EverM0re/EraRAG-Official.
comment: Under review
☆ Antibody Design and Optimization with Multi-scale Equivariant Graph Diffusion Models for Accurate Complex Antigen Binding IJCAI 2025
Antibody design remains a critical challenge in therapeutic and diagnostic development, particularly for complex antigens with diverse binding interfaces. Current computational methods face two main limitations: (1) capturing geometric features while preserving symmetries, and (2) generalizing novel antigen interfaces. Despite recent advancements, these methods often fail to accurately capture molecular interactions and maintain structural integrity. To address these challenges, we propose \textbf{AbMEGD}, an end-to-end framework integrating \textbf{M}ulti-scale \textbf{E}quivariant \textbf{G}raph \textbf{D}iffusion for antibody sequence and structure co-design. Leveraging advanced geometric deep learning, AbMEGD combines atomic-level geometric features with residue-level embeddings, capturing local atomic details and global sequence-structure interactions. Its E(3)-equivariant diffusion method ensures geometric precision, computational efficiency, and robust generalizability for complex antigens. Furthermore, experiments using the SAbDab database demonstrate a 10.13\% increase in amino acid recovery, 3.32\% rise in improvement percentage, and a 0.062~\AA\ reduction in root mean square deviation within the critical CDR-H3 region compared to DiffAb, a leading antibody design model. These results highlight AbMEGD's ability to balance structural integrity with improved functionality, establishing a new benchmark for sequence-structure co-design and affinity optimization. The code is available at: https://github.com/Patrick221215/AbMEGD.
comment: 9 pages, 4 figures, accepted at IJCAI 2025
☆ Model State Arithmetic for Machine Unlearning
Large language models are trained on massive corpora of web data, which may include private data, copyrighted material, factually inaccurate data, or data that degrades model performance. Eliminating the influence of such problematic datapoints through complete retraining -- by repeatedly pretraining the model on datasets that exclude these specific instances -- is computationally prohibitive. For this reason, unlearning algorithms have emerged that aim to eliminate the influence of particular datapoints, while otherwise preserving the model -- at a low computational cost. However, precisely estimating and undoing the influence of individual datapoints has proved to be challenging. In this work, we propose a new algorithm, MSA, for estimating and undoing the influence of datapoints -- by leveraging model checkpoints i.e. artifacts capturing model states at different stages of pretraining. Our experimental results demonstrate that MSA consistently outperforms existing machine unlearning algorithms across multiple benchmarks, models, and evaluation metrics, suggesting that MSA could be an effective approach towards more flexible large language models that are capable of data erasure.
comment: Preprint. Work in progress
☆ Forecasting Geopolitical Events with a Sparse Temporal Fusion Transformer and Gaussian Process Hybrid: A Case Study in Middle Eastern and U.S. Conflict Dynamics
Forecasting geopolitical conflict from data sources like the Global Database of Events, Language, and Tone (GDELT) is a critical challenge for national security. The inherent sparsity, burstiness, and overdispersion of such data cause standard deep learning models, including the Temporal Fusion Transformer (TFT), to produce unreliable long-horizon predictions. We introduce STFT-VNNGP, a hybrid architecture that won the 2023 Algorithms for Threat Detection (ATD) competition by overcoming these limitations. Designed to bridge this gap, our model employs a two-stage process: first, a TFT captures complex temporal dynamics to generate multi-quantile forecasts. These quantiles then serve as informed inputs for a Variational Nearest Neighbor Gaussian Process (VNNGP), which performs principled spatiotemporal smoothing and uncertainty quantification. In a case study forecasting conflict dynamics in the Middle East and the U.S., STFT-VNNGP consistently outperforms a standalone TFT, showing a superior ability to predict the timing and magnitude of bursty event periods, particularly at long-range horizons. This work offers a robust framework for generating more reliable and actionable intelligence from challenging event data, with all code and workflows made publicly available to ensure reproducibility.
☆ Lower Bounds on the Size of Markov Equivalence Classes
Causal discovery algorithms typically recover causal graphs only up to their Markov equivalence classes unless additional parametric assumptions are made. The sizes of these equivalence classes reflect the limits of what can be learned about the underlying causal graph from purely observational data. Under the assumptions of acyclicity, causal sufficiency, and a uniform model prior, Markov equivalence classes are known to be small on average. In this paper, we show that this is no longer the case when any of these assumptions is relaxed. Specifically, we prove exponentially large lower bounds for the expected size of Markov equivalence classes in three settings: sparse random directed acyclic graphs, uniformly random acyclic directed mixed graphs, and uniformly random directed cyclic graphs.
☆ Quantum Reinforcement Learning Trading Agent for Sector Rotation in the Taiwan Stock Market
We propose a hybrid quantum-classical reinforcement learning framework for sector rotation in the Taiwan stock market. Our system employs Proximal Policy Optimization (PPO) as the backbone algorithm and integrates both classical architectures (LSTM, Transformer) and quantum-enhanced models (QNN, QRWKV, QASA) as policy and value networks. An automated feature engineering pipeline extracts financial indicators from capital share data to ensure consistent model input across all configurations. Empirical backtesting reveals a key finding: although quantum-enhanced models consistently achieve higher training rewards, they underperform classical models in real-world investment metrics such as cumulative return and Sharpe ratio. This discrepancy highlights a core challenge in applying reinforcement learning to financial domains -- namely, the mismatch between proxy reward signals and true investment objectives. Our analysis suggests that current reward designs may incentivize overfitting to short-term volatility rather than optimizing risk-adjusted returns. This issue is compounded by the inherent expressiveness and optimization instability of quantum circuits under Noisy Intermediate-Scale Quantum (NISQ) constraints. We discuss the implications of this reward-performance gap and propose directions for future improvement, including reward shaping, model regularization, and validation-based early stopping. Our work offers a reproducible benchmark and critical insights into the practical challenges of deploying quantum reinforcement learning in real-world finance.
☆ Active Learning for Manifold Gaussian Process Regression
This paper introduces an active learning framework for manifold Gaussian Process (GP) regression, combining manifold learning with strategic data selection to improve accuracy in high-dimensional spaces. Our method jointly optimizes a neural network for dimensionality reduction and a Gaussian process regressor in the latent space, supervised by an active learning criterion that minimizes global prediction error. Experiments on synthetic data demonstrate superior performance over randomly sequential learning. The framework efficiently handles complex, discontinuous functions while preserving computational tractability, offering practical value for scientific and engineering applications. Future work will focus on scalability and uncertainty-aware manifold learning.
comment: 13 pages, 6 figures
☆ Interpretable Representation Learning for Additive Rule Ensembles
Small additive ensembles of symbolic rules offer interpretable prediction models. Traditionally, these ensembles use rule conditions based on conjunctions of simple threshold propositions $x \geq t$ on a single input variable $x$ and threshold $t$, resulting geometrically in axis-parallel polytopes as decision regions. While this form ensures a high degree of interpretability for individual rules and can be learned efficiently using the gradient boosting approach, it relies on having access to a curated set of expressive and ideally independent input features so that a small ensemble of axis-parallel regions can describe the target variable well. Absent such features, reaching sufficient accuracy requires increasing the number and complexity of individual rules, which diminishes the interpretability of the model. Here, we extend classical rule ensembles by introducing logical propositions with learnable sparse linear transformations of input variables, i.e., propositions of the form $\mathbf{x}^\mathrm{T}\mathbf{w} \geq t$, where $\mathbf{w}$ is a learnable sparse weight vector, enabling decision regions as general polytopes with oblique faces. We propose a learning method using sequential greedy optimization based on an iteratively reweighted formulation of logistic regression. Experimental results demonstrate that the proposed method efficiently constructs rule ensembles with the same test risk as state-of-the-art methods while significantly reducing model complexity across ten benchmark datasets.
LLM-guided Chemical Process Optimization with a Multi-Agent Approach
Chemical process optimization is crucial to maximize production efficiency and economic performance. Traditional methods, including gradient-based solvers, evolutionary algorithms, and parameter grid searches, become impractical when operating constraints are ill-defined or unavailable, requiring engineers to rely on subjective heuristics to estimate feasible parameter ranges. To address this constraint definition bottleneck, we present a multi-agent framework of large language model (LLM) agents that autonomously infer operating constraints from minimal process descriptions, then collaboratively guide optimization using the inferred constraints. Our AutoGen-based agentic framework employs OpenAI's o3 model, with specialized agents for constraint generation, parameter validation, simulation execution, and optimization guidance. Through two phases - autonomous constraint generation using embedded domain knowledge, followed by iterative multi-agent optimization - the framework eliminates the need for predefined operational bounds. Validated on the hydrodealkylation process across cost, yield, and yield-to-cost ratio metrics, the framework demonstrated competitive performance with conventional optimization methods while achieving better computational efficiency, requiring fewer iterations to converge. Our approach converged in under 20 minutes, achieving a 31-fold speedup over grid search. Beyond computational efficiency, the framework's reasoning-guided search demonstrates sophisticated process understanding, correctly identifying utility trade-offs, and applying domain-informed heuristics. This approach shows significant potential for optimization scenarios where operational constraints are poorly characterized or unavailable, particularly for emerging processes and retrofit applications.
comment: 16 pages (main manuscript without references), 2 figures
☆ Explainable AI for Radar Resource Management: Modified LIME in Deep Reinforcement Learning
Deep reinforcement learning has been extensively studied in decision-making processes and has demonstrated superior performance over conventional approaches in various fields, including radar resource management (RRM). However, a notable limitation of neural networks is their ``black box" nature and recent research work has increasingly focused on explainable AI (XAI) techniques to describe the rationale behind neural network decisions. One promising XAI method is local interpretable model-agnostic explanations (LIME). However, the sampling process in LIME ignores the correlations between features. In this paper, we propose a modified LIME approach that integrates deep learning (DL) into the sampling process, which we refer to as DL-LIME. We employ DL-LIME within deep reinforcement learning for radar resource management. Numerical results show that DL-LIME outperforms conventional LIME in terms of both fidelity and task performance, demonstrating superior performance with both metrics. DL-LIME also provides insights on which factors are more important in decision making for radar resource management.
☆ ZKPROV: A Zero-Knowledge Approach to Dataset Provenance for Large Language Models
As the deployment of large language models (LLMs) grows in sensitive domains, ensuring the integrity of their computational provenance becomes a critical challenge, particularly in regulated sectors such as healthcare, where strict requirements are applied in dataset usage. We introduce ZKPROV, a novel cryptographic framework that enables zero-knowledge proofs of LLM provenance. It allows users to verify that a model is trained on a reliable dataset without revealing sensitive information about it or its parameters. Unlike prior approaches that focus on complete verification of the training process (incurring significant computational cost) or depend on trusted execution environments, ZKPROV offers a distinct balance. Our method cryptographically binds a trained model to its authorized training dataset(s) through zero-knowledge proofs while avoiding proof of every training step. By leveraging dataset-signed metadata and compact model parameter commitments, ZKPROV provides sound and privacy-preserving assurances that the result of the LLM is derived from a model trained on the claimed authorized and relevant dataset. Experimental results demonstrate the efficiency and scalability of the ZKPROV in generating this proof and verifying it, achieving a practical solution for real-world deployments. We also provide formal security guarantees, proving that our approach preserves dataset confidentiality while ensuring trustworthy dataset provenance.
comment: 12 pages, 1 figure
☆ Faster Fixed-Point Methods for Multichain MDPs
We study value-iteration (VI) algorithms for solving general (a.k.a. multichain) Markov decision processes (MDPs) under the average-reward criterion, a fundamental but theoretically challenging setting. Beyond the difficulties inherent to all average-reward problems posed by the lack of contractivity and non-uniqueness of solutions to the Bellman operator, in the multichain setting an optimal policy must solve the navigation subproblem of steering towards the best connected component, in addition to optimizing long-run performance within each component. We develop algorithms which better solve this navigational subproblem in order to achieve faster convergence for multichain MDPs, obtaining improved rates of convergence and sharper measures of complexity relative to prior work. Many key components of our results are of potential independent interest, including novel connections between average-reward and discounted problems, optimal fixed-point methods for discounted VI which extend to general Banach spaces, new sublinear convergence rates for the discounted value error, and refined suboptimality decompositions for multichain MDPs. Overall our results yield faster convergence rates for discounted and average-reward problems and expand the theoretical foundations of VI approaches.
☆ Optimal Single-Policy Sample Complexity and Transient Coverage for Average-Reward Offline RL
We study offline reinforcement learning in average-reward MDPs, which presents increased challenges from the perspectives of distribution shift and non-uniform coverage, and has been relatively underexamined from a theoretical perspective. While previous work obtains performance guarantees under single-policy data coverage assumptions, such guarantees utilize additional complexity measures which are uniform over all policies, such as the uniform mixing time. We develop sharp guarantees depending only on the target policy, specifically the bias span and a novel policy hitting radius, yielding the first fully single-policy sample complexity bound for average-reward offline RL. We are also the first to handle general weakly communicating MDPs, contrasting restrictive structural assumptions made in prior work. To achieve this, we introduce an algorithm based on pessimistic discounted value iteration enhanced by a novel quantile clipping technique, which enables the use of a sharper empirical-span-based penalty function. Our algorithm also does not require any prior parameter knowledge for its implementation. Remarkably, we show via hard examples that learning under our conditions requires coverage assumptions beyond the stationary distribution of the target policy, distinguishing single-policy complexity measures from previously examined cases. We also develop lower bounds nearly matching our main result.
☆ Graph-Structured Feedback Multimodel Ensemble Online Conformal Prediction
Online conformal prediction has demonstrated its capability to construct a prediction set for each incoming data point that covers the true label with a predetermined probability. To cope with potential distribution shift, multi-model online conformal prediction has been introduced to select and leverage different models from a preselected candidate set. Along with the improved flexibility, the choice of the preselected set also brings challenges. A candidate set that includes a large number of models may increase the computational complexity. In addition, the inclusion of irrelevant models with poor performance may negatively impact the performance and lead to unnecessarily large prediction sets. To address these challenges, we propose a novel multi-model online conformal prediction algorithm that identifies a subset of effective models at each time step by collecting feedback from a bipartite graph, which is refined upon receiving new data. A model is then selected from this subset to construct the prediction set, resulting in reduced computational complexity and smaller prediction sets. Additionally, we demonstrate that using prediction set size as feedback, alongside model loss, can significantly improve efficiency by constructing smaller prediction sets while still satisfying the required coverage guarantee. The proposed algorithms are proven to ensure valid coverage and achieve sublinear regret. Experiments on real and synthetic datasets validate that the proposed methods construct smaller prediction sets and outperform existing multi-model online conformal prediction approaches.
☆ CAT-SG: A Large Dynamic Scene Graph Dataset for Fine-Grained Understanding of Cataract Surgery
Understanding the intricate workflows of cataract surgery requires modeling complex interactions between surgical tools, anatomical structures, and procedural techniques. Existing datasets primarily address isolated aspects of surgical analysis, such as tool detection or phase segmentation, but lack comprehensive representations that capture the semantic relationships between entities over time. This paper introduces the Cataract Surgery Scene Graph (CAT-SG) dataset, the first to provide structured annotations of tool-tissue interactions, procedural variations, and temporal dependencies. By incorporating detailed semantic relations, CAT-SG offers a holistic view of surgical workflows, enabling more accurate recognition of surgical phases and techniques. Additionally, we present a novel scene graph generation model, CatSGG, which outperforms current methods in generating structured surgical representations. The CAT-SG dataset is designed to enhance AI-driven surgical training, real-time decision support, and workflow analysis, paving the way for more intelligent, context-aware systems in clinical practice.
☆ Classification with Reject Option: Distribution-free Error Guarantees via Conformal Prediction
Machine learning (ML) models always make a prediction, even when they are likely to be wrong. This causes problems in practical applications, as we do not know if we should trust a prediction. ML with reject option addresses this issue by abstaining from making a prediction if it is likely to be incorrect. In this work, we formalise the approach to ML with reject option in binary classification, deriving theoretical guarantees on the resulting error rate. This is achieved through conformal prediction (CP), which produce prediction sets with distribution-free validity guarantees. In binary classification, CP can output prediction sets containing exactly one, two or no labels. By accepting only the singleton predictions, we turn CP into a binary classifier with reject option. Here, CP is formally put in the framework of predicting with reject option. We state and prove the resulting error rate, and give finite sample estimates. Numerical examples provide illustrations of derived error rate through several different conformal prediction settings, ranging from full conformal prediction to offline batch inductive conformal prediction. The former has a direct link to sharp validity guarantees, whereas the latter is more fuzzy in terms of validity guarantees but can be used in practice. Error-reject curves illustrate the trade-off between error rate and reject rate, and can serve to aid a user to set an acceptable error rate or reject rate in practice.
comment: 20 pages, 3 figures
☆ Why Neural Network Can Discover Symbolic Structures with Gradient-based Training: An Algebraic and Geometric Foundation for Neurosymbolic Reasoning
We develop a theoretical framework that explains how discrete symbolic structures can emerge naturally from continuous neural network training dynamics. By lifting neural parameters to a measure space and modeling training as Wasserstein gradient flow, we show that under geometric constraints, such as group invariance, the parameter measure $\mu_t$ undergoes two concurrent phenomena: (1) a decoupling of the gradient flow into independent optimization trajectories over some potential functions, and (2) a progressive contraction on the degree of freedom. These potentials encode algebraic constraints relevant to the task and act as ring homomorphisms under a commutative semi-ring structure on the measure space. As training progresses, the network transitions from a high-dimensional exploration to compositional representations that comply with algebraic operations and exhibit a lower degree of freedom. We further establish data scaling laws for realizing symbolic tasks, linking representational capacity to the group invariance that facilitates symbolic solutions. This framework charts a principled foundation for understanding and designing neurosymbolic systems that integrate continuous learning with discrete algebraic reasoning.
comment: International Conference on Neuro-symbolic Systems (NeuS), 2025
☆ Offensive Language Detection on Social Media Using XLNet
The widespread use of text-based communication on social media-through chats, comments, and microblogs-has improved user interaction but has also led to an increase in offensive content, including hate speech, racism, and other forms of abuse. Due to the enormous volume of user-generated content, manual moderation is impractical, which creates a need for automated systems that can detect offensive language. Deep learning models, particularly those using transfer learning, have demonstrated significant success in understanding natural language through large-scale pretraining. In this study, we propose an automatic offensive language detection model based on XLNet, a generalized autoregressive pretraining method, and compare its performance with BERT (Bidirectional Encoder Representations from Transformers), which is a widely used baseline in natural language processing (NLP). Both models are evaluated using the Offensive Language Identification Dataset (OLID), a benchmark Twitter dataset that includes hierarchical annotations. Our experimental results show that XLNet outperforms BERT in detecting offensive content and in categorizing the types of offenses, while BERT performs slightly better in identifying the targets of the offenses. Additionally, we find that oversampling and undersampling strategies are effective in addressing class imbalance and improving classification performance. These findings highlight the potential of transfer learning and XLNet-based architectures to create robust systems for detecting offensive language on social media platforms.
☆ Multi-task parallelism for robust pre-training of graph foundation models on multi-source, multi-fidelity atomistic modeling data
Graph foundation models using graph neural networks promise sustainable, efficient atomistic modeling. To tackle challenges of processing multi-source, multi-fidelity data during pre-training, recent studies employ multi-task learning, in which shared message passing layers initially process input atomistic structures regardless of source, then route them to multiple decoding heads that predict data-specific outputs. This approach stabilizes pre-training and enhances a model's transferability to unexplored chemical regions. Preliminary results on approximately four million structures are encouraging, yet questions remain about generalizability to larger, more diverse datasets and scalability on supercomputers. We propose a multi-task parallelism method that distributes each head across computing resources with GPU acceleration. Implemented in the open-source HydraGNN architecture, our method was trained on over 24 million structures from five datasets and tested on the Perlmutter, Aurora, and Frontier supercomputers, demonstrating efficient scaling on all three highly heterogeneous super-computing architectures.
comment: 15 pages, 4 figures, 2 tables
☆ M3PO: Massively Multi-Task Model-Based Policy Optimization
We introduce Massively Multi-Task Model-Based Policy Optimization (M3PO), a scalable model-based reinforcement learning (MBRL) framework designed to address sample inefficiency in single-task settings and poor generalization in multi-task domains. Existing model-based approaches like DreamerV3 rely on pixel-level generative models that neglect control-centric representations, while model-free methods such as PPO suffer from high sample complexity and weak exploration. M3PO integrates an implicit world model, trained to predict task outcomes without observation reconstruction, with a hybrid exploration strategy that combines model-based planning and model-free uncertainty-driven bonuses. This eliminates the bias-variance trade-off in prior methods by using discrepancies between model-based and model-free value estimates to guide exploration, while maintaining stable policy updates through a trust-region optimizer. M3PO provides an efficient and robust alternative to existing model-based policy optimization approaches and achieves state-of-the-art performance across multiple benchmarks.
comment: 6 pages, 4 figures. Accepted at IEEE/RSJ IROS 2025. Full version, including appendix and implementation details
☆ Gradient-Based Neuroplastic Adaptation for Concurrent Optimization of Neuro-Fuzzy Networks
Neuro-fuzzy networks (NFNs) are transparent, symbolic, and universal function approximations that perform as well as conventional neural architectures, but their knowledge is expressed as linguistic IF-THEN rules. Despite these advantages, their systematic design process remains a challenge. Existing work will often sequentially build NFNs by inefficiently isolating parametric and structural identification, leading to a premature commitment to brittle and subpar architecture. We propose a novel application-independent approach called gradient-based neuroplastic adaptation for the concurrent optimization of NFNs' parameters and structure. By recognizing that NFNs' parameters and structure should be optimized simultaneously as they are deeply conjoined, settings previously unapproachable for NFNs are now accessible, such as the online reinforcement learning of NFNs for vision-based tasks. The effectiveness of concurrently optimizing NFNs is empirically shown as it is trained by online reinforcement learning to proficiently play challenging scenarios from a vision-based video game called DOOM.
comment: 45 pages
☆ Early Glaucoma Detection using Deep Learning with Multiple Datasets of Fundus Images
Glaucoma is a leading cause of irreversible blindness, but early detection can significantly improve treatment outcomes. Traditional diagnostic methods are often invasive and require specialized equipment. In this work, we present a deep learning pipeline using the EfficientNet-B0 architecture for glaucoma detection from retinal fundus images. Unlike prior studies that rely on single datasets, we sequentially train and fine-tune our model across ACRIMA, ORIGA, and RIM-ONE datasets to enhance generalization. Our experiments show that minimal preprocessing yields higher AUC-ROC compared to more complex enhancements, and our model demonstrates strong discriminative performance on unseen datasets. The proposed pipeline offers a reproducible and scalable approach to early glaucoma detection, supporting its potential clinical utility.
comment: 13 pages, 6 figures, prepared for course CSCI 5922 at University of Colorado Boulder. Code available upon request, dataset taken from Kaggle
☆ TADA: Improved Diffusion Sampling with Training-free Augmented Dynamics
Diffusion models have demonstrated exceptional capabilities in generating high-fidelity images but typically suffer from inefficient sampling. Many solver designs and noise scheduling strategies have been proposed to dramatically improve sampling speeds. In this paper, we introduce a new sampling method that is up to $186\%$ faster than the current state of the art solver for comparative FID on ImageNet512. This new sampling method is training-free and uses an ordinary differential equation (ODE) solver. The key to our method resides in using higher-dimensional initial noise, allowing to produce more detailed samples with less function evaluations from existing pretrained diffusion models. In addition, by design our solver allows to control the level of detail through a simple hyper-parameter at no extra computational cost. We present how our approach leverages momentum dynamics by establishing a fundamental equivalence between momentum diffusion models and conventional diffusion models with respect to their training paradigms. Moreover, we observe the use of higher-dimensional noise naturally exhibits characteristics similar to stochastic differential equations (SDEs). Finally, we demonstrate strong performances on a set of representative pretrained diffusion models, including EDM, EDM2, and Stable-Diffusion 3, which cover models in both pixel and latent spaces, as well as class and text conditional settings. The code is available at https://github.com/apple/ml-tada.
☆ Inverse Design of Diffractive Metasurfaces Using Diffusion Models
Metasurfaces are ultra-thin optical elements composed of engineered sub-wavelength structures that enable precise control of light. Their inverse design - determining a geometry that yields a desired optical response - is challenging due to the complex, nonlinear relationship between structure and optical properties. This often requires expert tuning, is prone to local minima, and involves significant computational overhead. In this work, we address these challenges by integrating the generative capabilities of diffusion models into computational design workflows. Using an RCWA simulator, we generate training data consisting of metasurface geometries and their corresponding far-field scattering patterns. We then train a conditional diffusion model to predict meta-atom geometry and height from a target spatial power distribution at a specified wavelength, sampled from a continuous supported band. Once trained, the model can generate metasurfaces with low error, either directly using RCWA-guided posterior sampling or by serving as an initializer for traditional optimization methods. We demonstrate our approach on the design of a spatially uniform intensity splitter and a polarization beam splitter, both produced with low error in under 30 minutes. To support further research in data-driven metasurface design, we publicly release our code and datasets.
☆ Federated Item Response Theory Models
Item Response Theory (IRT) models have been widely used to estimate respondents' latent abilities and calibrate items' difficulty. Traditional IRT estimation requires all individual raw response data to be centralized in one place, thus potentially causing privacy issues. Federated learning is an emerging field in computer science and machine learning with added features of privacy protection and distributed computing. To integrate the advances from federated learning with modern psychometrics, we propose a novel framework, Federated Item Response Theory (IRT), to enable estimating traditional IRT models with additional privacy, allowing estimation in a distributed manner without losing estimation accuracy. Our numerical experiments confirm that FedIRT achieves statistical accuracy similar to standard IRT estimation using popular R packages, while offering critical advantages: privacy protection and reduced communication costs. We also validate FedIRT's utility through a real-world exam dataset, demonstrating its effectiveness in realistic educational contexts. This new framework extends IRT's applicability to distributed settings, such as multi-school assessments, without sacrificing accuracy or security. To support practical adoption, we provide an open-ource R package, FedIRT, implementing the framework for the two-parameter logistic (2PL) and partial credit models (PCM).
☆ Storm Surge in Color: RGB-Encoded Physics-Aware Deep Learning for Storm Surge Forecasting
Storm surge forecasting plays a crucial role in coastal disaster preparedness, yet existing machine learning approaches often suffer from limited spatial resolution, reliance on coastal station data, and poor generalization. Moreover, many prior models operate directly on unstructured spatial data, making them incompatible with modern deep learning architectures. In this work, we introduce a novel approach that projects unstructured water elevation fields onto structured Red Green Blue (RGB)-encoded image representations, enabling the application of Convolutional Long Short Term Memory (ConvLSTM) networks for end-to-end spatiotemporal surge forecasting. Our model further integrates ground-truth wind fields as dynamic conditioning signals and topo-bathymetry as a static input, capturing physically meaningful drivers of surge evolution. Evaluated on a large-scale dataset of synthetic storms in the Gulf of Mexico, our method demonstrates robust 48-hour forecasting performance across multiple regions along the Texas coast and exhibits strong spatial extensibility to other coastal areas. By combining structured representation, physically grounded forcings, and scalable deep learning, this study advances the frontier of storm surge forecasting in usability, adaptability, and interpretability.
☆ Critically-Damped Higher-Order Langevin Dynamics
Denoising Diffusion Probabilistic Models represent an entirely new class of generative AI methods that have yet to be fully explored. Critical damping has been successfully introduced in Critically-Damped Langevin Dynamics (CLD) and Critically-Damped Third-Order Langevin Dynamics (TOLD++), but has not yet been applied to dynamics of arbitrary order. The proposed line of work generalizes Higher-Order Langevin Dynamics (HOLD), a recent state-of-the-art diffusion method, by introducing the concept of critical damping from systems analysis.
comment: 12 pages
☆ Modification of a Numerical Method Using FIR Filters in a Time-dependent SIR Model for COVID-19
Authors Yi-Cheng Chen, Ping-En Lu, Cheng-Shang Chang, and Tzu-Hsuan Liu use the Finite Impulse Response (FIR) linear system filtering method to track and predict the number of people infected and recovered from COVID-19, in a pandemic context in which there was still no vaccine and the only way to avoid contagion was isolation. To estimate the coefficients of these FIR filters, Chen et al. used machine learning methods through a classical optimization problem with regularization (ridge regression). These estimated coefficients are called ridge coefficients. The epidemic mathematical model adopted by these researchers to formulate the FIR filters is the time-dependent discrete SIR. In this paper, we propose a small modification to the algorithm of Chen et al. to obtain the ridge coefficients. We then used this modified algorithm to track and predict the number of people infected and recovered from COVID-19 in the state of Minas Gerais/Brazil, within a prediction window, during the initial period of the pandemic. We also compare the predicted data with the respective real data to check how good the approximation is. In the modified algorithm, we set values for the FIR filter orders and for the regularization parameters, both different from the respective values defined by Chen et al. in their algorithm. In this context, the numerical results obtained by the modified algorithm in some simulations present better approximation errors compared to the respective approximation errors presented by the algorithm of Chen et al.
comment: 14 pages, 3 figures, 3 tables, and 2 algorithms
☆ Hierarchical Reasoning Model
Reasoning, the process of devising and executing complex goal-oriented action sequences, remains a critical challenge in AI. Current large language models (LLMs) primarily employ Chain-of-Thought (CoT) techniques, which suffer from brittle task decomposition, extensive data requirements, and high latency. Inspired by the hierarchical and multi-timescale processing in the human brain, we propose the Hierarchical Reasoning Model (HRM), a novel recurrent architecture that attains significant computational depth while maintaining both training stability and efficiency. HRM executes sequential reasoning tasks in a single forward pass without explicit supervision of the intermediate process, through two interdependent recurrent modules: a high-level module responsible for slow, abstract planning, and a low-level module handling rapid, detailed computations. With only 27 million parameters, HRM achieves exceptional performance on complex reasoning tasks using only 1000 training samples. The model operates without pre-training or CoT data, yet achieves nearly perfect performance on challenging tasks including complex Sudoku puzzles and optimal path finding in large mazes. Furthermore, HRM outperforms much larger models with significantly longer context windows on the Abstraction and Reasoning Corpus (ARC), a key benchmark for measuring artificial general intelligence capabilities. These results underscore HRM's potential as a transformative advancement toward universal computation and general-purpose reasoning systems.
☆ Experimental investigation of pose informed reinforcement learning for skid-steered visual navigation
Vision-based lane keeping is a topic of significant interest in the robotics and autonomous ground vehicles communities in various on-road and off-road applications. The skid-steered vehicle architecture has served as a useful vehicle platform for human controlled operations. However, systematic modeling, especially of the skid-slip wheel terrain interactions (primarily in off-road settings) has created bottlenecks for automation deployment. End-to-end learning based methods such as imitation learning and deep reinforcement learning, have gained prominence as a viable deployment option to counter the lack of accurate analytical models. However, the systematic formulation and subsequent verification/validation in dynamic operation regimes (particularly for skid-steered vehicles) remains a work in progress. To this end, a novel approach for structured formulation for learning visual navigation is proposed and investigated in this work. Extensive software simulations, hardware evaluations and ablation studies now highlight the significantly improved performance of the proposed approach against contemporary literature.
☆ CaloHadronic: a diffusion model for the generation of hadronic showers
Simulating showers of particles in highly-granular calorimeters is a key frontier in the application of machine learning to particle physics. Achieving high accuracy and speed with generative machine learning models can enable them to augment traditional simulations and alleviate a major computing constraint. Recent developments have shown how diffusion based generative shower simulation approaches that do not rely on a fixed structure, but instead generate geometry-independent point clouds, are very efficient. We present a transformer-based extension to previous architectures which were developed for simulating electromagnetic showers in the highly granular electromagnetic calorimeter of the International Large Detector, ILD. The attention mechanism now allows us to generate complex hadronic showers with more pronounced substructure across both the electromagnetic and hadronic calorimeters. This is the first time that machine learning methods are used to holistically generate showers across the electromagnetic and hadronic calorimeter in highly granular imaging calorimeter systems.
☆ Performance Prediction for Large Systems via Text-to-Text Regression
In many industries, predicting metric outcomes of large systems is a fundamental problem, driven largely by traditional tabular regression. However, such methods struggle on complex systems data in the wild such as configuration files or system logs, where feature engineering is often infeasible. We propose text-to-text regression as a general, scalable alternative. For predicting resource efficiency on Borg, Google's massive compute cluster scheduling system, a 60M parameter encoder-decoder, trained from random initialization, achieves up to a near perfect 0.99 (0.9 average) rank correlation across the entire fleet, and 100x lower MSE than tabular approaches. The model also easily adapts to new tasks in only 500 few-shot examples and captures the densities of complex outcome distributions. Ablation studies highlight the importance of using encoders, increasing sequence length, and the model's inherent uncertainty quantification. These findings pave the way for universal simulators of real-world outcomes.
comment: Code can be found at https://github.com/google-deepmind/regress-lm
☆ $\textrm{ODE}_t \left(\textrm{ODE}_l \right)$: Shortcutting the Time and Length in Diffusion and Flow Models for Faster Sampling
Recently, continuous normalizing flows (CNFs) and diffusion models (DMs) have been studied using the unified theoretical framework. Although such models can generate high-quality data points from a noise distribution, the sampling demands multiple iterations to solve an ordinary differential equation (ODE) with high computational complexity. Most existing methods focus on reducing the number of time steps during the sampling process to improve efficiency. In this work, we explore a complementary direction in which the quality-complexity tradeoff can be dynamically controlled in terms of time steps and in the length of the neural network. We achieve this by rewiring the blocks in the transformer-based architecture to solve an inner discretized ODE w.r.t. its length. Then, we employ time- and length-wise consistency terms during flow matching training, and as a result, the sampling can be performed with an arbitrary number of time steps and transformer blocks. Unlike others, our $\textrm{ODE}_t \left(\textrm{ODE}_l \right)$ approach is solver-agnostic in time dimension and decreases both latency and memory usage. Compared to the previous state of the art, image generation experiments on CelebA-HQ and ImageNet show a latency reduction of up to $3\times$ in the most efficient sampling mode, and a FID score improvement of up to $3.5$ points for high-quality sampling. We release our code and model weights with fully reproducible experiments.
comment: Preprint. Github page: github.com/gudovskiy/odelt
☆ Unimodal Strategies in Density-Based Clustering
Density-based clustering methods often surpass centroid-based counterparts, when addressing data with noise or arbitrary data distributions common in real-world problems. In this study, we reveal a key property intrinsic to density-based clustering methods regarding the relation between the number of clusters and the neighborhood radius of core points - we empirically show that it is nearly unimodal, and support this claim theoretically in a specific setting. We leverage this property to devise new strategies for finding appropriate values for the radius more efficiently based on the Ternary Search algorithm. This is especially important for large scale data that is high-dimensional, where parameter tuning is computationally intensive. We validate our methodology through extensive applications across a range of high-dimensional, large-scale NLP, Audio, and Computer Vision tasks, demonstrating its practical effectiveness and robustness. This work not only offers a significant advancement in parameter control for density-based clustering but also broadens the understanding regarding the relations between their guiding parameters. Our code is available at https://github.com/oronnir/UnimodalStrategies.
☆ ANUBHUTI: A Comprehensive Corpus For Sentiment Analysis In Bangla Regional Languages
Sentiment analysis for regional dialects of Bangla remains an underexplored area due to linguistic diversity and limited annotated data. This paper introduces ANUBHUTI, a comprehensive dataset consisting of 2000 sentences manually translated from standard Bangla into four major regional dialects Mymensingh, Noakhali, Sylhet, and Chittagong. The dataset predominantly features political and religious content, reflecting the contemporary socio political landscape of Bangladesh, alongside neutral texts to maintain balance. Each sentence is annotated using a dual annotation scheme: multiclass thematic labeling categorizes sentences as Political, Religious, or Neutral, and multilabel emotion annotation assigns one or more emotions from Anger, Contempt, Disgust, Enjoyment, Fear, Sadness, and Surprise. Expert native translators conducted the translation and annotation, with quality assurance performed via Cohens Kappa inter annotator agreement, achieving strong consistency across dialects. The dataset was further refined through systematic checks for missing data, anomalies, and inconsistencies. ANUBHUTI fills a critical gap in resources for sentiment analysis in low resource Bangla dialects, enabling more accurate and context aware natural language processing.
☆ Risk-Averse Total-Reward Reinforcement Learning
Risk-averse total-reward Markov Decision Processes (MDPs) offer a promising framework for modeling and solving undiscounted infinite-horizon objectives. Existing model-based algorithms for risk measures like the entropic risk measure (ERM) and entropic value-at-risk (EVaR) are effective in small problems, but require full access to transition probabilities. We propose a Q-learning algorithm to compute the optimal stationary policy for total-reward ERM and EVaR objectives with strong convergence and performance guarantees. The algorithm and its optimality are made possible by ERM's dynamic consistency and elicitability. Our numerical results on tabular domains demonstrate quick and reliable convergence of the proposed Q-learning algorithm to the optimal risk-averse value function.
comment: The paper is under review now
☆ TanDiT: Tangent-Plane Diffusion Transformer for High-Quality 360° Panorama Generation
Recent advances in image generation have led to remarkable improvements in synthesizing perspective images. However, these models still struggle with panoramic image generation due to unique challenges, including varying levels of geometric distortion and the requirement for seamless loop-consistency. To address these issues while leveraging the strengths of the existing models, we introduce TanDiT, a method that synthesizes panoramic scenes by generating grids of tangent-plane images covering the entire 360$^\circ$ view. Unlike previous methods relying on multiple diffusion branches, TanDiT utilizes a unified diffusion model trained to produce these tangent-plane images simultaneously within a single denoising iteration. Furthermore, we propose a model-agnostic post-processing step specifically designed to enhance global coherence across the generated panoramas. To accurately assess panoramic image quality, we also present two specialized metrics, TangentIS and TangentFID, and provide a comprehensive benchmark comprising captioned panoramic datasets and standardized evaluation scripts. Extensive experiments demonstrate that our method generalizes effectively beyond its training data, robustly interprets detailed and complex text prompts, and seamlessly integrates with various generative models to yield high-quality, diverse panoramic images.
☆ Data Efficacy for Language Model Training
Data is fundamental to the training of language models (LM). Recent research has been dedicated to data efficiency, which aims to maximize performance by selecting a minimal or optimal subset of training data. Techniques such as data filtering, sampling, and selection play a crucial role in this area. To complement it, we define Data Efficacy, which focuses on maximizing performance by optimizing the organization of training data and remains relatively underexplored. This work introduces a general paradigm, DELT, for considering data efficacy in LM training, which highlights the significance of training data organization. DELT comprises three components: Data Scoring, Data Selection, and Data Ordering. Among these components, we design Learnability-Quality Scoring (LQS), as a new instance of Data Scoring, which considers both the learnability and quality of each data sample from the gradient consistency perspective. We also devise Folding Ordering (FO), as a novel instance of Data Ordering, which addresses issues such as model forgetting and data distribution bias. Comprehensive experiments validate the data efficacy in LM training, which demonstrates the following: Firstly, various instances of the proposed DELT enhance LM performance to varying degrees without increasing the data scale and model size. Secondly, among these instances, the combination of our proposed LQS for data scoring and Folding for data ordering achieves the most significant improvement. Lastly, data efficacy can be achieved together with data efficiency by applying data selection. Therefore, we believe that data efficacy is a promising foundational area in LM training.
☆ APO: Enhancing Reasoning Ability of MLLMs via Asymmetric Policy Optimization
Multimodal Large Language Models (MLLMs) are powerful at integrating diverse data, but they often struggle with complex reasoning. While Reinforcement learning (RL) can boost reasoning in LLMs, applying it to MLLMs is tricky. Common issues include a drop in performance on general tasks and the generation of overly detailed or "overthinking" reasoning. Our work investigates how the KL penalty and overthinking affect RL training in MLLMs. We propose Asymmetric Policy Optimization (APO) to address these issues, which divides the sampled responses into positive and negative groups. For positive samples, Difficulty-Adaptive Divergence Shaping (DADS) is introduced to dynamically adjust the KL divergence weight based on their difficulty. This method prevents policy entropy from dropping sharply, improves training stability, utilizes samples better, and preserves the model's existing knowledge. For negative samples, Suboptimal Trajectory Complexity Regularization (STCR) is proposed to penalize overly long responses. This helps mitigate overthinking and encourages more concise reasoning while preserving the model's explorative capacity. We apply our method to Qwen2.5-VL-3B, creating View-R1-3B. View-R1-3B significantly enhances reasoning capabilities, showing an average 7\% gain over the base model and outperforming larger MLLMs (7-11B) on various reasoning benchmarks. Importantly, unlike other reasoning-tuned MLLMs that often degrade on general tasks, View-R1-3B maintains consistent improvement, demonstrating superior generalization. These results highlight the effectiveness and broad applicability of our DADS and STCR techniques for advancing complex multimodal reasoning in MLLMs. The code will be made available at https://github.com/Indolent-Kawhi/View-R1.
♻ ☆ Chain-of-Sketch: Enabling Global Visual Reasoning
Modern vision models have achieved remarkable success in benchmarks where local features provide critical information about the target. There is now a growing interest in tackling tasks requiring more global reasoning, where local features do not provide significant information. Minsky and Papert put forward such tasks in 1969 with their connectivity study, exposing the limitations of the perceptron model. In this paper, we introduce an expanded set of global visual datasets involving graphs, strings, mazes, and image grids. We show that large vision models still struggle to learn these tasks efficiently. Similarly, state-of-the-art multi-modal LLMs perform poorly on these datasets. We explain this learning inefficiency by means of the 'globality degree' measure. To mitigate this, we propose a method called chain-of-sketch (CoS). Similar to the chain-of-thought and scratchpad techniques used in language models, CoS breaks the original task into intermediate visual steps to help learn a complex task. In addition, we show that not all CoS strategies perform equally well. Our key insight is to impose a Markovian structure on the CoS frames. This leads to the introduction of 'inductive CoS' which achieves better out-of-distribution generalization and performs well even with smaller models compared to non-inductive variants.
comment: additional experiments added, title changed from "Visual Scratchpads: Enabling Global Reasoning in Vision" to "Chain-of-Sketch: Enabling Global Visual Reasoning"
♻ ☆ Mesh-Informed Neural Operator : A Transformer Generative Approach
Generative models in function spaces, situated at the intersection of generative modeling and operator learning, are attracting increasing attention due to their immense potential in diverse scientific and engineering applications. While functional generative models are theoretically domain- and discretization-agnostic, current implementations heavily rely on the Fourier Neural Operator (FNO), limiting their applicability to regular grids and rectangular domains. To overcome these critical limitations, we introduce the Mesh-Informed Neural Operator (MINO). By leveraging graph neural operators and cross-attention mechanisms, MINO offers a principled, domain- and discretization-agnostic backbone for generative modeling in function spaces. This advancement significantly expands the scope of such models to more diverse applications in generative, inverse, and regression tasks. Furthermore, MINO provides a unified perspective on integrating neural operators with general advanced deep learning architectures. Finally, we introduce a suite of standardized evaluation metrics that enable objective comparison of functional generative models, addressing another critical gap in the field.
♻ ☆ Efficiently Escaping Saddle Points under Generalized Smoothness via Self-Bounding Regularity
We study the optimization of non-convex functions that are not necessarily smooth (gradient and/or Hessian are Lipschitz) using first order methods. Smoothness is a restrictive assumption in machine learning in both theory and practice, motivating significant recent work on finding first order stationary points of functions satisfying generalizations of smoothness with first order methods. We develop a novel framework that lets us systematically study the convergence of a large class of first-order optimization algorithms (which we call decrease procedures) under generalizations of smoothness. We instantiate our framework to analyze the convergence of first order optimization algorithms to first and \textit{second} order stationary points under generalizations of smoothness. As a consequence, we establish the first convergence guarantees for first order methods to second order stationary points under generalizations of smoothness. We demonstrate that several canonical examples fall under our framework, and highlight practical implications.
♻ ☆ NY Real Estate Racial Equity Analysis via Applied Machine Learning
This study analyzes tract-level real estate ownership patterns in New York State (NYS) and New York City (NYC) to uncover racial disparities. We use an advanced race/ethnicity imputation model (LSTM+Geo with XGBoost filtering, validated at 89.2% accuracy) to compare the predicted racial composition of property owners to the resident population from census data. We examine both a Full Model (statewide) and a Name-Only LSTM Model (NYC) to assess how incorporating geospatial context affects our predictions and disparity estimates. The results reveal significant inequities: White individuals hold a disproportionate share of properties and property value relative to their population, while Black, Hispanic, and Asian communities are underrepresented as property owners. These disparities are most pronounced in minority-majority neighborhoods, where ownership is predominantly White despite a predominantly non-White population. Corporate ownership (LLCs, trusts, etc.) exacerbates these gaps by reducing owner-occupied opportunities in urban minority communities. We provide a breakdown of ownership vs. population by race for majority-White, -Black, -Hispanic, and -Asian tracts, identify those with extreme ownership disparities, and compare patterns in urban, suburban, and rural contexts. The findings underscore persistent racial inequity in property ownership, reflecting broader historical and socio-economic forces, and highlight the importance of data-driven approaches to address these issues.
comment: updated/replaced stale reference links. Added narrative covering gentrification, racial capitalism, financialization of housing, and segregation. Moved model details to appendices. Added Nivea
♻ ☆ Multi-Preference Lambda-weighted Listwise DPO for Dynamic Preference Alignment AAAI 2026
While large-scale unsupervised language models (LMs) capture broad world knowledge and reasoning capabilities, steering their behavior toward desired objectives remains challenging due to the lack of explicit supervision. Existing alignment techniques, such as reinforcement learning from human feedback (RLHF), rely on training a reward model and performing reinforcement learning to align with human preferences. However, RLHF is often computationally intensive, unstable, and sensitive to hyperparameters. To address these limitations, Direct Preference Optimization (DPO) was introduced as a lightweight and stable alternative, enabling direct alignment of language models with pairwise preference data via classification loss. However, DPO and its extensions generally assume a single static preference distribution, limiting flexibility in multi-objective or dynamic alignment settings. In this paper, we propose a novel framework: Multi-Preference Lambda-weighted Listwise DPO, which extends DPO to incorporate multiple human preference dimensions (e.g., helpfulness, harmlessness, informativeness) and enables dynamic interpolation through a controllable simplex-weighted formulation. Our method supports both listwise preference feedback and flexible alignment across varying user intents without re-training. Empirical and theoretical analysis demonstrates that our method is as effective as traditional DPO on static objectives while offering greater generality and adaptability for real-world deployment.
comment: 10 pages, 4 figures, appendix included. To appear in Proceedings of AAAI 2026. Code: https://github.com/yuhui15/Multi-Preference-Lambda-weighted-DPO
♻ ☆ One Model to Forecast Them All and in Entity Distributions Bind Them
Probabilistic forecasting in power systems often involves multi-entity datasets like households, feeders, and wind turbines, where generating reliable entity-specific forecasts presents significant challenges. Traditional approaches require training individual models for each entity, making them inefficient and hard to scale. This study addresses this problem using GUIDE-VAE, a conditional variational autoencoder that allows entity-specific probabilistic forecasting using a single model. GUIDE-VAE provides flexible outputs, ranging from interpretable point estimates to full probability distributions, thanks to its advanced covariance composition structure. These distributions capture uncertainty and temporal dependencies, offering richer insights than traditional methods. To evaluate our GUIDE-VAE-based forecaster, we use household electricity consumption data as a case study due to its multi-entity and highly stochastic nature. Experimental results demonstrate that GUIDE-VAE outperforms conventional quantile regression techniques across key metrics while ensuring scalability and versatility. These features make GUIDE-VAE a powerful and generalizable tool for probabilistic forecasting tasks, with potential applications beyond household electricity consumption.
♻ ☆ Prompting with Phonemes: Enhancing LLMs' Multilinguality for Non-Latin Script Languages NAACL 2025
Although multilingual LLMs have achieved remarkable performance across benchmarks, we find they continue to underperform on non-Latin script languages across contemporary LLM families. This discrepancy arises from the fact that LLMs are pretrained with orthographic scripts, which are dominated by Latin characters that obscure their shared phonology with non-Latin scripts. We propose leveraging phonemic transcriptions as complementary signals to induce script-invariant representations. Our study demonstrates that integrating phonemic signals improves performance across both non-Latin and Latin script languages, with a particularly significant impact on closing the performance gap between the two. Through detailed experiments, we show that phonemic and orthographic scripts retrieve distinct examples for in-context learning (ICL). This motivates our proposed Mixed-ICL retrieval strategy, where further aggregation from both leads to our significant performance improvements for both Latin script languages (up to 12.6%) and non-Latin script languages (up to 15.1%) compared to randomized ICL retrieval.
comment: Accepted to NAACL 2025 (Main Conference). This version contains minor improvements to the camera-ready
♻ ☆ From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents
Information retrieval is a cornerstone of modern knowledge acquisition, enabling billions of queries each day across diverse domains. However, traditional keyword-based search engines are increasingly inadequate for handling complex, multi-step information needs. Our position is that Large Language Models (LLMs), endowed with reasoning and agentic capabilities, are ushering in a new paradigm termed Agentic Deep Research. These systems transcend conventional information search techniques by tightly integrating autonomous reasoning, iterative retrieval, and information synthesis into a dynamic feedback loop. We trace the evolution from static web search to interactive, agent-based systems that plan, explore, and learn. We also introduce a test-time scaling law to formalize the impact of computational depth on reasoning and search. Supported by benchmark results and the rise of open-source implementations, we demonstrate that Agentic Deep Research not only significantly outperforms existing approaches, but is also poised to become the dominant paradigm for future information seeking. All the related resources, including industry products, research papers, benchmark datasets, and open-source implementations, are collected for the community in https://github.com/DavidZWZ/Awesome-Deep-Research.
♻ ☆ In-Context Learning Strategies Emerge Rationally
Recent work analyzing in-context learning (ICL) has identified a broad set of strategies that describe model behavior in different experimental conditions. We aim to unify these findings by asking why a model learns these disparate strategies in the first place. Specifically, we start with the observation that when trained to learn a mixture of tasks, as is popular in the literature, the strategies learned by a model for performing ICL can be captured by a family of Bayesian predictors: a memorizing predictor, which assumes a discrete prior on the set of seen tasks, and a generalizing predictor, where the prior matches the underlying task distribution. Adopting the normative lens of rational analysis, where a learner's behavior is explained as an optimal adaptation to data given computational constraints, we develop a hierarchical Bayesian framework that almost perfectly predicts Transformer next-token predictions throughout training -- without assuming access to its weights. Under this framework, pretraining is viewed as a process of updating the posterior probability of different strategies, and inference-time behavior as a posterior-weighted average over these strategies' predictions. Our framework draws on common assumptions about neural network learning dynamics, which make explicit a tradeoff between loss and complexity among candidate strategies: beyond how well it explains the data, a model's preference towards implementing a strategy is dictated by its complexity. This helps explain well-known ICL phenomena, while offering novel predictions: e.g., we show a superlinear trend in the timescale for transitioning from generalization to memorization as task diversity increases. Overall, our work advances an explanatory and predictive account of ICL grounded in tradeoffs between strategy loss and complexity.
comment: Preprint
♻ ☆ Capacity-Constrained Online Learning with Delays: Scheduling Frameworks and Regret Trade-offs
We study online learning with oblivious losses and delays under a novel ``capacity constraint'' that limits how many past rounds can be tracked simultaneously for delayed feedback. Under ``clairvoyance'' (i.e., delay durations are revealed upfront each round) and/or ``preemptibility'' (i.e., we can stop tracking previously chosen round feedback), we establish matching upper and lower bounds (up to logarithmic terms) on achievable regret, characterizing the ``optimal capacity'' needed to match the minimax rates of classical delayed online learning, which implicitly assume unlimited capacity. Our algorithms achieve minimax-optimal regret across all capacity levels, with performance gracefully degrading under suboptimal capacity. For $K$ actions and total delay $D$ over $T$ rounds, under clairvoyance and assuming capacity $C = \Omega(\log(T))$, we achieve regret $\widetilde{\Theta}(\sqrt{TK + DK/C + D\log(K)})$ for bandits and $\widetilde{\Theta}(\sqrt{(D+T)\log(K)})$ for full-information feedback. When replacing clairvoyance with preemptibility, we require a known maximum delay bound $d_{\max}$, adding ${\widetilde{O}(d_{\max})}$ to the regret. For fixed delays $d$ (i.e., $D=Td$), the minimax regret is $\Theta(\sqrt{TK(1+d/C)+Td\log(K)})$ and the optimal capacity is $\Theta(\min\{K/\log(K),d\})$ in the bandit setting, while in the full-information feedback setting, the minimax regret is $\Theta(\sqrt{T(d+1)\log(K)})$ and the optimal capacity is $\Theta(1)$. For round-dependent and fixed delays, our upper bounds are achieved using novel preemptive and non-preemptive scheduling policies, based on Pareto-distributed proxy delays, and batching techniques, respectively. Crucially, our work unifies delayed bandits, label-efficient learning, and online scheduling frameworks, demonstrating that robust online learning under delayed feedback is possible with surprisingly modest tracking capacity.
♻ ☆ Fake it till You Make it: Reward Modeling as Discriminative Prediction
An effective reward model plays a pivotal role in reinforcement learning for post-training enhancement of visual generative models. However, current approaches of reward modeling suffer from implementation complexity due to their reliance on extensive human-annotated preference data or meticulously engineered quality dimensions that are often incomplete and engineering-intensive. Inspired by adversarial training in generative adversarial networks (GANs), this paper proposes GAN-RM, an efficient reward modeling framework that eliminates manual preference annotation and explicit quality dimension engineering. Our method trains the reward model through discrimination between a small set of representative, unpaired target samples(denoted as Preference Proxy Data) and model-generated ordinary outputs, requiring only a few hundred target samples. Comprehensive experiments demonstrate our GAN-RM's effectiveness across multiple key applications including test-time scaling implemented as Best-of-N sample filtering, post-training approaches like Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO). Code and data will be released at https://github.com/Visualignment/GAN-RM.
Measurement to Meaning: A Validity-Centered Framework for AI Evaluation
While the capabilities and utility of AI systems have advanced, rigorous norms for evaluating these systems have lagged. Grand claims, such as models achieving general reasoning capabilities, are supported with model performance on narrow benchmarks, like performance on graduate-level exam questions, which provide a limited and potentially misleading assessment. We provide a structured approach for reasoning about the types of evaluative claims that can be made given the available evidence. For instance, our framework helps determine whether performance on a mathematical benchmark is an indication of the ability to solve problems on math tests or instead indicates a broader ability to reason. Our framework is well-suited for the contemporary paradigm in machine learning, where various stakeholders provide measurements and evaluations that downstream users use to validate their claims and decisions. At the same time, our framework also informs the construction of evaluations designed to speak to the validity of the relevant claims. By leveraging psychometrics' breakdown of validity, evaluations can prioritize the most critical facets for a given claim, improving empirical utility and decision-making efficacy. We illustrate our framework through detailed case studies of vision and language model evaluations, highlighting how explicitly considering validity strengthens the connection between evaluation evidence and the claims being made.
comment: Correspondence to olawale@mit.edu
♻ ☆ PARALLELPROMPT: Extracting Parallelism from Large Language Model Queries
LLM serving systems typically treat user prompts as monolithic inputs, optimizing inference through decoding tricks or inter-query batching. However, many real-world prompts contain latent semantic parallelism--decomposable structures where subtasks can be executed independently to reduce latency while preserving meaning. We introduce PARALLELPROMPT, the first benchmark for measuring intra-query parallelism in natural user prompts. Our dataset comprises over 37,000 real-world prompts from public LLM chat logs, each annotated with a structured schema capturing task templates, shared context, and iteration inputs. These schemas are extracted using LLM-assisted prompting with rule-based multilingual validation. To evaluate the benefits of decomposition, we provide an execution suite that benchmarks serial vs. parallel strategies, measuring latency, structural adherence, and semantic fidelity. Our results show that intra-query parallelism can be successfully parsed in over 75% of curated datasets, unlocking up to 5x speedups on tasks like translation, comprehension, and comparative analysis, with minimal quality degradation. By releasing this benchmark, curation pipeline, and evaluation suite, we provide the first standardized testbed for studying structure-aware execution in LLM serving pipelines.
comment: In Adaptive Foundation Models: Evolving AI for Personalized and Efficient Learning
♻ ☆ New Bounds for Sparse Variational Gaussian Processes
Sparse variational Gaussian processes (GPs) construct tractable posterior approximations to GP models. At the core of these methods is the assumption that the true posterior distribution over training function values ${\bf f}$ and inducing variables ${\bf u}$ is approximated by a variational distribution that incorporates the conditional GP prior $p({\bf f} | {\bf u})$ in its factorization. While this assumption is considered as fundamental, we show that for model training we can relax it through the use of a more general variational distribution $q({\bf f} | {\bf u})$ that depends on $N$ extra parameters, where $N$ is the number of training examples. In GP regression, we can analytically optimize the evidence lower bound over the extra parameters and express a tractable collapsed bound that is tighter than the previous bound. The new bound is also amenable to stochastic optimization and its implementation requires minor modifications to existing sparse GP code. Further, we also describe extensions to non-Gaussian likelihoods. On several datasets we demonstrate that our method can reduce bias when learning the hyperparameters and can lead to better predictive performance.
comment: 18 pages, 5 figures
♻ ☆ Explainability of Large Language Models using SMILE: Statistical Model-agnostic Interpretability with Local Explanations
Large language models like GPT, LLAMA, and Claude have become incredibly powerful at generating text, but they are still black boxes, so it is hard to understand how they decide what to say. That lack of transparency can be problematic, especially in fields where trust and accountability matter. To help with this, we introduce SMILE, a new method that explains how these models respond to different parts of a prompt. SMILE is model-agnostic and works by slightly changing the input, measuring how the output changes, and then highlighting which words had the most impact. Create simple visual heat maps showing which parts of a prompt matter the most. We tested SMILE on several leading LLMs and used metrics such as accuracy, consistency, stability, and fidelity to show that it gives clear and reliable explanations. By making these models easier to understand, SMILE brings us one step closer to making AI more transparent and trustworthy.
comment: The submission contains incorrect references that require substantial revision
♻ ☆ Graph Neural Network for Neutrino Physics Event Reconstruction
Liquid Argon Time Projection Chamber (LArTPC) detector technology offers a wealth of high-resolution information on particle interactions, and leveraging that information to its full potential requires sophisticated automated reconstruction techniques. This article describes NuGraph2, a Graph Neural Network (GNN) for low-level reconstruction of simulated neutrino interactions in a LArTPC detector. Simulated neutrino interactions in the MicroBooNE detector geometry are described as heterogeneous graphs, with energy depositions on each detector plane forming nodes on planar subgraphs. The network utilizes a multi-head attention message-passing mechanism to perform background filtering and semantic labelling on these graph nodes, identifying those associated with the primary physics interaction with 98.0\% efficiency and labelling them according to particle type with 94.9\% efficiency. The network operates directly on detector observables across multiple 2D representations, but utilizes a 3D-context-aware mechanism to encourage consistency between these representations. Model inference takes 0.12~s/event on a CPU, and 0.005s/event batched on a GPU. This architecture is designed to be a general-purpose solution for particle reconstruction in neutrino physics, with the potential for deployment across a broad range of detector technologies, and offers a core convolution engine that can be leveraged for a variety of tasks beyond the two described in this article.
comment: 18 pages, 14 figures, published in Physical Review D
♻ ☆ The Sample Complexity of Learning Lipschitz Operators with respect to Gaussian Measures
Operator learning, the approximation of mappings between infinite-dimensional function spaces using machine learning, has gained increasing research attention in recent years. Approximate operators, learned from data, can serve as efficient surrogate models for problems in computational science and engineering, complementing traditional methods. However, despite their empirical success, our understanding of the underlying mathematical theory is in large part still incomplete. In this paper, we study the approximation of Lipschitz operators with respect to Gaussian measures. We prove higher Gaussian Sobolev regularity of Lipschitz operators and establish lower and upper bounds on the Hermite polynomial approximation error. We then study general reconstruction strategies of Lipschitz operators from $m$ arbitrary (potentially adaptive) linear samples. As a key finding, we tightly characterize the corresponding sample complexity, that is, the smallest achievable worst-case error among all possible choices of (adaptive) sampling and reconstruction strategies in terms of $m$. As a consequence, we identify an inherent curse of sample complexity: No method to approximate Lipschitz operators based on $m$ linear samples can achieve algebraic convergence rates in $m$. On the positive side, we prove that a sufficiently fast spectral decay of the covariance operator of the underlying Gaussian measure guarantees convergence rates which are arbitrarily close to any algebraic rate. Overall, by tightly characterizing the sample complexity, our work confirms the intrinsic difficulty of learning Lipschitz operators, regardless of the data or learning technique.
comment: Section 6 about pointwise sampling in v2 of this paper has been cut and will appear elsewhere
♻ ☆ TracLLM: A Generic Framework for Attributing Long Context LLMs
Long context large language models (LLMs) are deployed in many real-world applications such as RAG, agent, and broad LLM-integrated applications. Given an instruction and a long context (e.g., documents, PDF files, webpages), a long context LLM can generate an output grounded in the provided context, aiming to provide more accurate, up-to-date, and verifiable outputs while reducing hallucinations and unsupported claims. This raises a research question: how to pinpoint the texts (e.g., sentences, passages, or paragraphs) in the context that contribute most to or are responsible for the generated output by an LLM? This process, which we call context traceback, has various real-world applications, such as 1) debugging LLM-based systems, 2) conducting post-attack forensic analysis for attacks (e.g., prompt injection attack, knowledge corruption attacks) to an LLM, and 3) highlighting knowledge sources to enhance the trust of users towards outputs generated by LLMs. When applied to context traceback for long context LLMs, existing feature attribution methods such as Shapley have sub-optimal performance and/or incur a large computational cost. In this work, we develop TracLLM, the first generic context traceback framework tailored to long context LLMs. Our framework can improve the effectiveness and efficiency of existing feature attribution methods. To improve the efficiency, we develop an informed search based algorithm in TracLLM. We also develop contribution score ensemble/denoising techniques to improve the accuracy of TracLLM. Our evaluation results show TracLLM can effectively identify texts in a long context that lead to the output of an LLM. Our code and data are at: https://github.com/Wang-Yanting/TracLLM.
comment: To appear in USENIX Security Symposium 2025. The code and data are at: https://github.com/Wang-Yanting/TracLLM
♻ ☆ Continual Learning as Computationally Constrained Reinforcement Learning
An agent that efficiently accumulates knowledge to develop increasingly sophisticated skills over a long lifetime could advance the frontier of artificial intelligence capabilities. The design of such agents, which remains a long-standing challenge of artificial intelligence, is addressed by the subject of continual learning. This monograph clarifies and formalizes concepts of continual learning, introducing a framework and set of tools to stimulate further research.
♻ ☆ Improving Stochastic Cubic Newton with Momentum
We study stochastic second-order methods for solving general non-convex optimization problems. We propose using a special version of momentum to stabilize the stochastic gradient and Hessian estimates in Newton's method. We show that momentum provably improves the variance of stochastic estimates and allows the method to converge for any noise level. Using the cubic regularization technique, we prove a global convergence rate for our method on general non-convex problems to a second-order stationary point, even when using only a single stochastic data sample per iteration. This starkly contrasts with all existing stochastic second-order methods for non-convex problems, which typically require large batches. Therefore, we are the first to demonstrate global convergence for batches of arbitrary size in the non-convex case for the Stochastic Cubic Newton. Additionally, we show improved speed on convex stochastic problems for our regularized Newton methods with momentum.
♻ ☆ Action-Minimization Meets Generative Modeling: Efficient Transition Path Sampling with the Onsager-Machlup Functional ICML 2025
Transition path sampling (TPS), which involves finding probable paths connecting two points on an energy landscape, remains a challenge due to the complexity of real-world atomistic systems. Current machine learning approaches use expensive, task-specific, and data-free training procedures, limiting their ability to benefit from high-quality datasets and large-scale pre-trained models. In this work, we address TPS by interpreting candidate paths as trajectories sampled from stochastic dynamics induced by the learned score function of pre-trained generative models, specifically denoising diffusion and flow matching. Under these dynamics, finding high-likelihood transition paths becomes equivalent to minimizing the Onsager-Machlup (OM) action functional. This enables us to repurpose pre-trained generative models for TPS in a zero-shot manner, in contrast with bespoke, task-specific approaches in previous work. We demonstrate our approach on varied molecular systems, obtaining diverse, physically realistic transition pathways and generalizing beyond the pre-trained model's original training dataset. Our method can be easily incorporated into new generative models, making it practically relevant as models continue to scale and improve with increased data availability. Code is available at github.com/ASK-Berkeley/OM-TPS.
comment: ICML 2025
♻ ☆ Representation Learning of Lab Values via Masked AutoEncoders
Accurate imputation of missing laboratory values in electronic health records (EHRs) is critical to enable robust clinical predictions and reduce biases in AI systems in healthcare. Existing methods, such as XGBoost, softimpute, GAIN, Expectation Maximization (EM), and MICE, struggle to model the complex temporal and contextual dependencies in EHR data, particularly in underrepresented groups. In this work, we propose Lab-MAE, a novel transformer-based masked autoencoder framework that leverages self-supervised learning for the imputation of continuous sequential lab values. Lab-MAE introduces a structured encoding scheme that jointly models laboratory test values and their corresponding timestamps, enabling explicit capturing temporal dependencies. Empirical evaluation on the MIMIC-IV dataset demonstrates that Lab-MAE significantly outperforms state-of-the-art baselines such as XGBoost, softimpute, GAIN, EM, and MICE across multiple metrics, including root mean square error (RMSE), R-squared (R2), and Wasserstein distance (WD). Notably, Lab-MAE achieves equitable performance across demographic groups of patients, advancing fairness in clinical predictions. We further investigate the role of follow-up laboratory values as potential shortcut features, revealing Lab-MAE's robustness in scenarios where such data is unavailable. The findings suggest that our transformer-based architecture, adapted to the characteristics of EHR data, offers a foundation model for more accurate and fair clinical imputation. In addition, we measure and compare the carbon footprint of Lab-MAE with the a XGBoost model, highlighting its environmental requirements.
comment: 14 pages of main text, 11 appendix
♻ ☆ HARPT: A Corpus for Analyzing Consumers' Trust and Privacy Concerns in Mobile Health Apps
We present HARPT, a large-scale annotated corpus of mobile health app store reviews aimed at advancing research in user privacy and trust. The dataset comprises over 480,000 user reviews labeled into seven categories that capture critical aspects of trust in applications, trust in providers and privacy concerns. Creating HARPT required addressing multiple complexities, such as defining a nuanced label schema, isolating relevant content from large volumes of noisy data, and designing an annotation strategy that balanced scalability with accuracy. This strategy integrated rule-based filtering, iterative manual labeling with review, targeted data augmentation, and weak supervision using transformer-based classifiers to accelerate coverage. In parallel, a carefully curated subset of 7,000 reviews was manually annotated to support model development and evaluation. We benchmark a broad range of classification models, demonstrating that strong performance is achievable and providing a baseline for future research. HARPT is released as a public resource to support work in health informatics, cybersecurity, and natural language processing.
♻ ☆ Latent Diffusion Model Based Denoising Receiver for 6G Semantic Communication: From Stochastic Differential Theory to Application
In this paper, a novel semantic communication framework empowered by generative artificial intelligence (GAI) is proposed, to enhance the robustness against both channel noise and transmission data distribution shifts. A theoretical foundation is established using stochastic differential equations (SDEs), from which a closed-form mapping between any signal-to-noise ratio (SNR) and the optimal denoising timestep is derived. Moreover, to address distribution mismatch, a mathematical scaling method is introduced to align received semantic features with the training distribution of the GAI. Built on this theoretical foundation, a latent diffusion model (LDM)-based semantic communication framework is proposed that combines a variational autoencoder for semantic features extraction, where a pretrained diffusion model is used for denoising. The proposed system is a training-free framework that supports zero-shot generalization, and achieves superior performance under low-SNR and out-of-distribution conditions, offering a scalable and robust solution for future 6G semantic communication systems. Experimental results demonstrate that the proposed semantic communication framework achieves state-of-the-art performance in both pixel-level accuracy and semantic perceptual quality, consistently outperforming baselines across a wide range of SNRs and data distributions without any fine-tuning or post-training.
♻ ☆ On the Ability of Deep Networks to Learn Symmetries from Data: A Neural Kernel Theory
Symmetries (transformations by group actions) are present in many datasets, and leveraging them holds considerable promise for improving predictions in machine learning. In this work, we aim to understand when and how deep networks -- with standard architectures trained in a standard, supervised way -- learn symmetries from data. Inspired by real-world scenarios, we study a classification paradigm where data symmetries are only partially observed during training: some classes include all transformations of a cyclic group, while others -- only a subset. In the infinite-width limit, where kernel analogies apply, we derive a neural kernel theory of symmetry learning. The group-cyclic nature of the dataset allows us to analyze the Gram matrix of neural kernels in the Fourier domain; here we find a simple characterization of the generalization error as a function of class separation (signal) and class-orbit density (noise). This characterization reveals that generalization can only be successful when the local structure of the data prevails over its non-local, symmetry-induced structure, in the kernel space defined by the architecture. We extend our theoretical treatment to any finite group, including non-abelian groups. Our framework also applies to equivariant architectures (e.g., CNNs), and recovers their success in the special case where the architecture matches the inherent symmetry of the data. Empirically, our theory reproduces the generalization failure of finite-width networks (MLP, CNN, ViT) trained on partially observed versions of rotated-MNIST. We conclude that conventional deep networks lack a mechanism to learn symmetries that have not been explicitly embedded in their architecture a priori. Our framework could be extended to guide the design of architectures and training procedures able to learn symmetries from data.
comment: JMLR accepted version, including an extension of the theory to general finite groups (including non-abelian groups)
♻ ☆ Learning Value of Information towards Joint Communication and Control in 6G V2X
As Cellular Vehicle-to-Everything (C-V2X) evolves towards future sixth-generation (6G) networks, Connected Autonomous Vehicles (CAVs) are emerging to become a key application. Leveraging data-driven Machine Learning (ML), especially Deep Reinforcement Learning (DRL), is expected to significantly enhance CAV decision-making in both vehicle control and V2X communication under uncertainty. These two decision-making processes are closely intertwined, with the value of information (VoI) acting as a crucial bridge between them. In this paper, we introduce Sequential Stochastic Decision Process (SSDP) models to define and assess VoI, demonstrating their application in optimizing communication systems for CAVs. Specifically, we formally define the SSDP model and demonstrate that the MDP model is a special case of it. The SSDP model offers a key advantage by explicitly representing the set of information that can enhance decision-making when available. Furthermore, as current research on VoI remains fragmented, we propose a systematic VoI modeling framework grounded in the MDP, Reinforcement Learning (RL) and Optimal Control theories. We define different categories of VoI and discuss their corresponding estimation methods. Finally, we present a structured approach to leverage the various VoI metrics for optimizing the ``When", ``What", and ``How" to communicate problems. For this purpose, SSDP models are formulated with VoI-associated reward functions derived from VoI-based optimization objectives. While we use a simple vehicle-following control problem to illustrate the proposed methodology, it holds significant potential to facilitate the joint optimization of stochastic, sequential control and communication decisions in a wide range of networked control systems.
♻ ☆ PuriDefense: Randomized Local Implicit Adversarial Purification for Defending Black-box Query-based Attacks
Black-box query-based attacks constitute significant threats to Machine Learning as a Service (MLaaS) systems since they can generate adversarial examples without accessing the target model's architecture and parameters. Traditional defense mechanisms, such as adversarial training, gradient masking, and input transformations, either impose substantial computational costs or compromise the test accuracy of non-adversarial inputs. To address these challenges, we propose an efficient defense mechanism, PuriDefense, that employs random patch-wise purifications with an ensemble of lightweight purification models at a low level of inference cost. These models leverage the local implicit function and rebuild the natural image manifold. Our theoretical analysis suggests that this approach slows down the convergence of query-based attacks by incorporating randomness into purifications. Extensive experiments on CIFAR-10 and ImageNet validate the effectiveness of our proposed purifier-based defense mechanism, demonstrating significant improvements in robustness against query-based attacks.
♻ ☆ Regret Bounds for Robust Online Decision Making
We propose a framework which generalizes "decision making with structured observations" by allowing robust (i.e. multivalued) models. In this framework, each model associates each decision with a convex set of probability distributions over outcomes. Nature can choose distributions out of this set in an arbitrary (adversarial) manner, that can be nonoblivious and depend on past history. The resulting framework offers much greater generality than classical bandits and reinforcement learning, since the realizability assumption becomes much weaker and more realistic. We then derive a theory of regret bounds for this framework. Although our lower and upper bounds are not tight, they are sufficient to fully characterize power-law learnability. We demonstrate this theory in two special cases: robust linear bandits and tabular robust online reinforcement learning. In both cases, we derive regret bounds that improve state-of-the-art (except that we do not address computational efficiency).
♻ ☆ A Scalable Quantum Neural Network for Approximate SRBB-Based Unitary Synthesis
In this work, a scalable quantum neural network is introduced as a means to approximate any unitary evolution through the Standard Recursive Block Basis (SRBB) and, subsequently, redesigned with a number of CNOTs asymptotically reduced by an exponential contribution. This algebraic approach to the problem of unitary synthesis exploits Lie algebras and their topological features to obtain scalable parameterizations of unitary operators. First, the original SRBB-based scalability scheme, already known in the literature only from a theoretical point of view, is reformulated for efficient algorithm implementation and complexity management. Remarkably, 2-qubit operators emerge as a special case outside the original scaling scheme. Furthermore, an algorithm is proposed to reduce the number of CNOTs, thus deriving a new implementable scaling scheme that requires only one layer of approximation. The scalable CNOT-reduced quantum neural network is implemented and its performance is assessed with a variety of different unitary matrices, both sparse and dense, up to 6 qubits via the PennyLane library. The effectiveness of the approximation is measured with different metrics in relation to two optimizers: a gradient-based method and the Nelder-Mead method. The approximate CNOT-reduced SRBB-based synthesis algorithm is also tested on real hardware and compared with other valid approximation and decomposition methods available in the literature.
♻ ☆ ScaleGNN: Towards Scalable Graph Neural Networks via Adaptive High-order Neighboring Feature Fusion
Graph Neural Networks (GNNs) have demonstrated impressive performance across diverse graph-based tasks by leveraging message passing to capture complex node relationships. However, when applied to large-scale real-world graphs, GNNs face two major challenges: First, it becomes increasingly difficult to ensure both scalability and efficiency, as the repeated aggregation of large neighborhoods leads to significant computational overhead; Second, the over-smoothing problem arises, where excessive or deep propagation makes node representations indistinguishable, severely hindering model expressiveness. To tackle these issues, we propose ScaleGNN, a novel framework that adaptively fuses multi-hop node features for both scalable and effective graph learning. First, we construct per-hop pure neighbor matrices that capture only the exclusive structural information at each hop, avoiding the redundancy of conventional aggregation. Then, an enhanced feature fusion strategy significantly balances low-order and high-order information, preserving both local detail and global correlations without incurring excessive complexity. To further reduce redundancy and over-smoothing, we introduce a Local Contribution Score (LCS)-based masking mechanism to filter out less relevant high-order neighbors, ensuring that only the most meaningful information is aggregated. In addition, learnable sparse constraints selectively integrate multi-hop valuable features, emphasizing the most informative high-order neighbors. Extensive experiments on real-world datasets demonstrate that ScaleGNN consistently outperforms state-of-the-art GNNs in both predictive accuracy and computational efficiency, highlighting its practical value for large-scale graph learning.
♻ ☆ Context-Aware Doubly-Robust Semi-Supervised Learning
The widespread adoption of artificial intelligence (AI) in next-generation communication systems is challenged by the heterogeneity of traffic and network conditions, which call for the use of highly contextual, site-specific, data. A promising solution is to rely not only on real-world data, but also on synthetic pseudo-data generated by a network digital twin (NDT). However, the effectiveness of this approach hinges on the accuracy of the NDT, which can vary widely across different contexts. To address this problem, this paper introduces context-aware doubly-robust (CDR) learning, a novel semi-supervised scheme that adapts its reliance on the pseudo-data to the different levels of fidelity of the NDT across contexts. CDR is evaluated on the task of downlink beamforming where it outperforms previous state-of-the-art approaches, providing a 24% loss decrease when compared to doubly-robust (DR) semi-supervised learning in regimes with low labeled data availability.
comment: This work has been accepted for publication in IEEE Signal Processing Letters
♻ ☆ Semantic Scene Graph for Ultrasound Image Explanation and Scanning Guidance
Understanding medical ultrasound imaging remains a long-standing challenge due to significant visual variability caused by differences in imaging and acquisition parameters. Recent advancements in large language models (LLMs) have been used to automatically generate terminology-rich summaries orientated to clinicians with sufficient physiological knowledge. Nevertheless, the increasing demand for improved ultrasound interpretability and basic scanning guidance among non-expert users, e.g., in point-of-care settings, has not yet been explored. In this study, we first introduce the scene graph (SG) for ultrasound images to explain image content to ordinary and provide guidance for ultrasound scanning. The ultrasound SG is first computed using a transformer-based one-stage method, eliminating the need for explicit object detection. To generate a graspable image explanation for ordinary, the user query is then used to further refine the abstract SG representation through LLMs. Additionally, the predicted SG is explored for its potential in guiding ultrasound scanning toward missing anatomies within the current imaging view, assisting ordinary users in achieving more standardized and complete anatomical exploration. The effectiveness of this SG-based image explanation and scanning guidance has been validated on images from the left and right neck regions, including the carotid and thyroid, across five volunteers. The results demonstrate the potential of the method to maximally democratize ultrasound by enhancing its interpretability and usability for ordinaries.
♻ ☆ Devil's Hand: Data Poisoning Attacks to Locally Private Graph Learning Protocols
Graph neural networks (GNNs) have achieved significant success in graph representation learning and have been applied to various domains. However, many real-world graphs contain sensitive personal information, such as user profiles in social networks, raising serious privacy concerns when graph learning is performed using GNNs. To address this issue, locally private graph learning protocols have gained considerable attention. These protocols leverage the privacy advantages of local differential privacy (LDP) and the effectiveness of GNN's message-passing in calibrating noisy data, offering strict privacy guarantees for users' local data while maintaining high utility (e.g., node classification accuracy) for graph learning. Despite these advantages, such protocols may be vulnerable to data poisoning attacks, a threat that has not been considered in previous research. Identifying and addressing these threats is crucial for ensuring the robustness and security of privacy-preserving graph learning frameworks. This work introduces the first data poisoning attack targeting locally private graph learning protocols. The attacker injects fake users into the protocol, manipulates these fake users to establish links with genuine users, and sends carefully crafted data to the server, ultimately compromising the utility of private graph learning. The effectiveness of the attack is demonstrated both theoretically and empirically. In addition, several defense strategies have also been explored, but their limited effectiveness highlights the need for more robust defenses.
♻ ☆ Energy Matching: Unifying Flow Matching and Energy-Based Models for Generative Modeling
The most widely used generative models map noise and data distributions by matching flows or scores. However, they struggle to incorporate partial observations and additional priors--something energy-based models (EBMs) handle elegantly by simply adding corresponding scalar energy terms. We address this issue by proposing Energy Matching, a framework that endows flow-based approaches with the flexibility of EBMs. Far from the data manifold, samples move along curl-free, optimal transport paths from noise to data. As they approach the data manifold, an entropic energy term guides the system into a Boltzmann equilibrium distribution, explicitly capturing the underlying likelihood structure of the data. We parameterize this dynamic with a single time-independent scalar field, which serves as both a powerful generator and a flexible prior for effective regularization of inverse problems. Our method substantially outperforms existing EBMs on CIFAR-10 and ImageNet generation in terms of fidelity, while retaining simulation-free training of transport-based approaches away from the data manifold. Furthermore, we leverage the method's flexibility to introduce an interaction energy that supports diverse mode exploration, which we demonstrate in a controlled protein-generation setting. Our approach focuses on learning a scalar potential energy--without time-conditioning, auxiliary generators, or additional networks--which marks a significant departure from recent EBM methods. We believe that this simplified framework significantly advances EBMs capabilities and paves the way for their wider adoption in generative modeling across diverse domains.
♻ ☆ Lagrangian Index Policy for Restless Bandits with Average Reward
We study the Lagrange Index Policy (LIP) for restless multi-armed bandits with long-run average reward. In particular, we compare the performance of LIP with the performance of the Whittle Index Policy (WIP), both heuristic policies known to be asymptotically optimal under certain natural conditions. Even though in most cases their performances are very similar, in the cases when WIP shows bad performance, LIP continues to perform very well. We then propose reinforcement learning algorithms, both tabular and NN-based, to obtain online learning schemes for LIP in the model-free setting. The proposed reinforcement learning schemes for LIP require significantly less memory than the analogous schemes for WIP. We calculate analytically the Lagrange index for the restart model, which applies to the optimal web crawling and the minimization of the weighted age of information. We also give a new proof of asymptotic optimality in case of homogeneous arms as the number of arms goes to infinity, based on exchangeability and de Finetti's theorem.
♻ ☆ A GREAT Architecture for Edge-Based Graph Problems Like TSP
In the last years, many learning-based approaches have been proposed to tackle combinatorial optimization problems such as routing problems. Many of these approaches are based on graph neural networks (GNNs) or related transformers, operating on the Euclidean coordinates representing the routing problems. However, models operating on Euclidean coordinates are ill-suited for non-Euclidean, asymmetric problem instances that are often found in real-world settings. To overcome this limitation, we propose a novel GNN-based and edge-focused neural model called Graph Edge Attention Network (GREAT). Using GREAT as an encoder to capture the properties of a routing problem instance, we build a reinforcement learning framework which we apply to Euclidean and non-Euclidean variants of vehicle routing problems such as Traveling Salesman Problem, Capacitated Vehicle Routing Problem and Orienteering Problem. Our framework is among the first to tackle non-Euclidean variants of these problems and achieves competitive results among learning-based solvers.
comment: 15 pages, 7 figures
♻ ☆ These Are Not All the Features You Are Looking For: A Fundamental Bottleneck in Supervised Pretraining
Transfer learning is a cornerstone of modern machine learning, promising a way to adapt models pretrained on a broad mix of data to new tasks with minimal new data. However, a significant challenge remains in ensuring that transferred features are sufficient to handle unseen datasets, amplified by the difficulty of quantifying whether two tasks are "related". To address these challenges, we evaluate model transfer from a pretraining mixture to each of its component tasks, assessing whether pretrained features can match the performance of task-specific direct training. We identify a fundamental limitation in deep learning models -- an "information saturation bottleneck" -- where networks fail to learn new features once they encode similar competing features during training. When restricted to learning only a subset of key features during pretraining, models will permanently lose critical features for transfer and perform inconsistently on data distributions, even components of the training mixture. Empirical evidence from published studies suggests that this phenomenon is pervasive in deep learning architectures -- factors such as data distribution or ordering affect the features that current representation learning methods can learn over time. This study suggests that relying solely on large-scale networks may not be as effective as focusing on task-specific training, when available. We propose richer feature representations as a potential solution to better generalize across new datasets and, specifically, present existing methods alongside a novel approach, the initial steps towards addressing this challenge.
comment: 10 pages, 7 figures, Preprint. Under review
♻ ☆ Simulating Hard Attention Using Soft Attention
We study conditions under which transformers using soft attention can simulate hard attention, that is, effectively focus all attention on a subset of positions. First, we examine several subclasses of languages recognized by hard-attention transformers, which can be defined in variants of linear temporal logic. We demonstrate how soft-attention transformers can compute formulas of these logics using unbounded positional embeddings or temperature scaling. Second, we demonstrate how temperature scaling allows softmax transformers to simulate general hard-attention transformers, using a temperature that depends on the minimum gap between the maximum attention scores and other attention scores.
comment: 19 pages
Wavelet Diffusion Neural Operator
Simulating and controlling physical systems described by partial differential equations (PDEs) are crucial tasks across science and engineering. Recently, diffusion generative models have emerged as a competitive class of methods for these tasks due to their ability to capture long-term dependencies and model high-dimensional states. However, diffusion models typically struggle with handling system states with abrupt changes and generalizing to higher resolutions. In this work, we propose Wavelet Diffusion Neural Operator (WDNO), a novel PDE simulation and control framework that enhances the handling of these complexities. WDNO comprises two key innovations. Firstly, WDNO performs diffusion-based generative modeling in the wavelet domain for the entire trajectory to handle abrupt changes and long-term dependencies effectively. Secondly, to address the issue of poor generalization across different resolutions, which is one of the fundamental tasks in modeling physical systems, we introduce multi-resolution training. We validate WDNO on five physical systems, including 1D advection equation, three challenging physical systems with abrupt changes (1D Burgers' equation, 1D compressible Navier-Stokes equation and 2D incompressible fluid), and a real-world dataset ERA5, which demonstrates superior performance on both simulation and control tasks over state-of-the-art methods, with significant improvements in long-term and detail prediction accuracy. Remarkably, in the challenging context of the 2D high-dimensional and indirect control task aimed at reducing smoke leakage, WDNO reduces the leakage by 78% compared to the second-best baseline. The code can be found at https://github.com/AI4Science-WestlakeU/wdno.git.
♻ ☆ Radio Map Estimation via Latent Domain Plug-and-Play Denoising
Radio map estimation (RME), also known as spectrum cartography, aims to reconstruct the strength of radio interference across different domains (e.g., space and frequency) from sparsely sampled measurements. To tackle this typical inverse problem, state-of-the-art RME methods rely on handcrafted or data-driven structural information of radio maps. However, the former often struggles to model complex radio frequency (RF) environments and the latter requires excessive training -- making it hard to quickly adapt to in situ sensing tasks. This work presents a spatio-spectral RME approach based on plug-and-play (PnP) denoising, a technique from computational imaging. The idea is to leverage the observation that the denoising operations of signals like natural images and radio maps are similar -- despite the nontrivial differences of the signals themselves. Hence, sophisticated denoisers designed for or learned from natural images can be directly employed to assist RME, avoiding using radio map data for training. Unlike conventional PnP methods that operate directly in the data domain, the proposed method exploits the underlying physical structure of radio maps and proposes an ADMM algorithm that denoises in a latent domain. This design significantly improves computational efficiency and enhances noise robustness. Theoretical aspects, e.g., recoverability of the complete radio map and convergence of the ADMM algorithm are analyzed. Synthetic and real data experiments are conducted to demonstrate the effectiveness of our approach.
♻ ☆ Capturing Style in Author and Document Representation
A wide range of Deep Natural Language Processing (NLP) models integrates continuous and low dimensional representations of words and documents. Surprisingly, very few models study representation learning for authors. These representations can be used for many NLP tasks, such as author identification and classification, or in recommendation systems. A strong limitation of existing works is that they do not explicitly capture writing style, making them hardly applicable to literary data. We therefore propose a new architecture based on Variational Information Bottleneck (VIB) that learns embeddings for both authors and documents with a stylistic constraint. Our model fine-tunes a pre-trained document encoder. We stimulate the detection of writing style by adding predefined stylistic features making the representation axis interpretable with respect to writing style indicators. We evaluate our method on three datasets: a literary corpus extracted from the Gutenberg Project, the Blog Authorship Corpus and IMDb62, for which we show that it matches or outperforms strong/recent baselines in authorship attribution while capturing much more accurately the authors stylistic aspects.
♻ ☆ Rapid Gyroscope Calibration: A Deep Learning Approach
Low-cost gyroscope calibration is essential for ensuring the accuracy and reliability of gyroscope measurements. Stationary calibration estimates the deterministic parts of measurement errors. To this end, a common practice is to average the gyroscope readings during a predefined period and estimate the gyroscope bias. Calibration duration plays a crucial role in performance, therefore, longer periods are preferred. However, some applications require quick startup times and calibration is therefore allowed only for a short time. In this work, we focus on reducing low-cost gyroscope calibration time using deep learning methods. We propose an end-to-end convolutional neural network for the application of gyroscope calibration. We explore the possibilities of using multiple real and virtual gyroscopes to improve the calibration performance of single gyroscopes. To train and validate our approach, we recorded a dataset consisting of 186.6 hours of gyroscope readings, using 36 gyroscopes of four different brands. We also created a virtual dataset consisting of simulated gyroscope readings. The six datasets were used to evaluate our proposed approach. One of our key achievements in this work is reducing gyroscope calibration time by up to 89% using three low-cost gyroscopes. Our dataset is publicly available to allow reproducibility of our work and to increase research in the field.
comment: 10 Pages, 14 Figures
♻ ☆ Balancing Privacy, Robustness, and Efficiency in Machine Learning
This position paper argues that achieving robustness, privacy, and efficiency simultaneously in machine learning systems is infeasible under prevailing threat models. The tension between these goals arises not from algorithmic shortcomings but from structural limitations imposed by worst-case adversarial assumptions. We advocate for a systematic research agenda aimed at formalizing the robustness-privacy-efficiency trilemma, exploring how principled relaxations of threat models can unlock better trade-offs, and designing benchmarks that expose rather than obscure the compromises made. By shifting focus from aspirational universal guarantees to context-aware system design, the machine learning community can build models that are truly appropriate for real-world deployment.
♻ ☆ Unsupervised Learning for Optimal Transport plan prediction between unbalanced graphs
Optimal transport between graphs, based on Gromov-Wasserstein and other extensions, is a powerful tool for comparing and aligning graph structures. However, solving the associated non-convex optimization problems is computationally expensive, which limits the scalability of these methods to large graphs. In this work, we present Unbalanced Learning of Optimal Transport (ULOT), a deep learning method that predicts optimal transport plans between two graphs. Our method is trained by minimizing the fused unbalanced Gromov-Wasserstein (FUGW) loss. We propose a novel neural architecture with cross-attention that is conditioned on the FUGW tradeoff hyperparameters. We evaluate ULOT on synthetic stochastic block model (SBM) graphs and on real cortical surface data obtained from fMRI. ULOT predicts transport plans with competitive loss up to two orders of magnitude faster than classical solvers. Furthermore, the predicted plan can be used as a warm start for classical solvers to accelerate their convergence. Finally, the predicted transport plan is fully differentiable with respect to the graph inputs and FUGW hyperparameters, enabling the optimization of functionals of the ULOT plan.
♻ ☆ LLM-Based Human-Agent Collaboration and Interaction Systems: A Survey
Recent advances in large language models (LLMs) have sparked growing interest in building fully autonomous agents. However, fully autonomous LLM-based agents still face significant challenges, including limited reliability due to hallucinations, difficulty in handling complex tasks, and substantial safety and ethical risks, all of which limit their feasibility and trustworthiness in real-world applications. To overcome these limitations, LLM-based human-agent systems (LLM-HAS) incorporate human-provided information, feedback, or control into the agent system to enhance system performance, reliability and safety. These human-agent collaboration systems enable humans and LLM-based agents to collaborate effectively by leveraging their complementary strengths. This paper provides the first comprehensive and structured survey of LLM-HAS. It clarifies fundamental concepts, systematically presents core components shaping these systems, including environment & profiling, human feedback, interaction types, orchestration and communication, explores emerging applications, and discusses unique challenges and opportunities arising from human-AI collaboration. By consolidating current knowledge and offering a structured overview, we aim to foster further research and innovation in this rapidly evolving interdisciplinary field. Paper lists and resources are available at https://github.com/HenryPengZou/Awesome-Human-Agent-Collaboration-Interaction-Systems.
comment: Paper lists and resources are available at https://github.com/HenryPengZou/Awesome-Human-Agent-Collaboration-Interaction-Systems
♻ ☆ Seal Your Backdoor with Variational Defense ICCV 2025
We propose VIBE, a model-agnostic framework that trains classifiers resilient to backdoor attacks. The key concept behind our approach is to treat malicious inputs and corrupted labels from the training dataset as observed random variables, while the actual clean labels are latent. VIBE then recovers the corresponding latent clean label posterior through variational inference. The resulting training procedure follows the expectation-maximization (EM) algorithm. The E-step infers the clean pseudolabels by solving an entropy-regularized optimal transport problem, while the M-step updates the classifier parameters via gradient descent. Being modular, VIBE can seamlessly integrate with recent advancements in self-supervised representation learning, which enhance its ability to resist backdoor attacks. We experimentally validate the method effectiveness against contemporary backdoor attacks on standard datasets, a large-scale setup with 1$k$ classes, and a dataset poisoned with multiple attacks. VIBE consistently outperforms previous defenses across all tested scenarios.
comment: Accepted to ICCV 2025
♻ ☆ PCF-Grasp: Converting Point Completion to Geometry Feature to Enhance 6-DoF Grasp
The 6-Degree of Freedom (DoF) grasp method based on point clouds has shown significant potential in enabling robots to grasp target objects. However, most existing methods are based on the point clouds (2.5D points) generated from single-view depth images. These point clouds only have one surface side of the object providing incomplete geometry information, which mislead the grasping algorithm to judge the shape of the target object, resulting in low grasping accuracy. Humans can accurately grasp objects from a single view by leveraging their geometry experience to estimate object shapes. Inspired by humans, we propose a novel 6-DoF grasping framework that converts the point completion results as object shape features to train the 6-DoF grasp network. Here, point completion can generate approximate complete points from the 2.5D points similar to the human geometry experience, and converting it as shape features is the way to utilize it to improve grasp efficiency. Furthermore, due to the gap between the network generation and actual execution, we integrate a score filter into our framework to select more executable grasp proposals for the real robot. This enables our method to maintain a high grasp quality in any camera viewpoint. Extensive experiments demonstrate that utilizing complete point features enables the generation of significantly more accurate grasp proposals and the inclusion of a score filter greatly enhances the credibility of real-world robot grasping. Our method achieves a 17.8\% success rate higher than the state-of-the-art method in real-world experiments.
♻ ☆ Variational Supervised Contrastive Learning
Contrastive learning has proven to be highly efficient and adaptable in shaping representation spaces across diverse modalities by pulling similar samples together and pushing dissimilar ones apart. However, two key limitations persist: (1) Without explicit regulation of the embedding distribution, semantically related instances can inadvertently be pushed apart unless complementary signals guide pair selection, and (2) excessive reliance on large in-batch negatives and tailored augmentations hinders generalization. To address these limitations, we propose Variational Supervised Contrastive Learning (VarCon), which reformulates supervised contrastive learning as variational inference over latent class variables and maximizes a posterior-weighted evidence lower bound (ELBO) that replaces exhaustive pair-wise comparisons for efficient class-aware matching and grants fine-grained control over intra-class dispersion in the embedding space. Trained exclusively on image data, our experiments on CIFAR-10, CIFAR-100, ImageNet-100, and ImageNet-1K show that VarCon (1) achieves state-of-the-art performance for contrastive learning frameworks, reaching 79.36% Top-1 accuracy on ImageNet-1K and 78.29% on CIFAR-100 with a ResNet-50 encoder while converging in just 200 epochs; (2) yields substantially clearer decision boundaries and semantic organization in the embedding space, as evidenced by KNN classification, hierarchical clustering results, and transfer-learning assessments; and (3) demonstrates superior performance in few-shot learning than supervised baseline and superior robustness across various augmentation strategies.
♻ ☆ Moderating the Generalization of Score-based Generative Model
Score-based Generative Models (SGMs) have demonstrated remarkable generalization abilities, e.g. generating unseen, but natural data. However, the greater the generalization power, the more likely the unintended generalization, and the more dangerous the abuse. Research on moderated generalization in SGMs remains limited. To fill this gap, we first examine the current 'gold standard' in Machine Unlearning (MU), i.e., re-training the model after removing the undesirable training data, and find it does not work in SGMs. Further analysis of score functions reveals that the MU 'gold standard' does not alter the original score function, which explains its ineffectiveness. Based on this insight, we propose the first Moderated Score-based Generative Model (MSGM), which introduces a novel score adjustment strategy that redirects the score function away from undesirable data during the continuous-time stochastic differential equation process. Extensive experimental results demonstrate that MSGM significantly reduces the likelihood of generating undesirable content while preserving high visual quality for normal image generation. Albeit designed for SGMs, MSGM is a general and flexible MU framework that is compatible with diverse diffusion architectures (SGM and DDPM) and training strategies (re-training and fine-tuning), and enables zero-shot transfer of the pre-trained models to downstream tasks, e.g. image inpainting and reconstruction. The code will be shared upon acceptance.
♻ ☆ Metis-RISE: RL Incentivizes and SFT Enhances Multimodal Reasoning Model Learning
Recent advancements in large language models (LLMs) have witnessed a surge in the development of advanced reasoning paradigms, which are now being integrated into multimodal large language models (MLLMs). However, existing approaches often fall short: methods solely employing reinforcement learning (RL) can struggle with sample inefficiency and activating entirely absent reasoning capabilities, while conventional pipelines that initiate with a cold-start supervised fine-tuning (SFT) phase before RL may restrict the model's exploratory capacity and face suboptimal convergence. In this work, we introduce \textbf{Metis-RISE} (\textbf{R}L \textbf{I}ncentivizes and \textbf{S}FT \textbf{E}nhances) for multimodal reasoning model learning. Unlike conventional approaches, Metis-RISE distinctively omits an initial SFT stage, beginning instead with an RL phase (e.g., using a Group Relative Policy Optimization variant) to incentivize and activate the model's latent reasoning capacity. Subsequently, the targeted SFT stage addresses two key challenges identified during RL: (1) \textit{inefficient trajectory sampling} for tasks where the model possesses but inconsistently applies correct reasoning, which we tackle using self-distilled reasoning trajectories from the RL model itself; and (2) \textit{fundamental capability absence}, which we address by injecting expert-augmented knowledge for prompts where the model entirely fails. This strategic application of RL for incentivization followed by SFT for enhancement forms the core of Metis-RISE, leading to two versions of our MLLMs (7B and 72B parameters). Evaluations on the OpenCompass Multimodal Reasoning Leaderboard demonstrate that both models achieve state-of-the-art performance among similar-sized models, with the 72B version ranking fourth overall. Please refer to our project page for open-source information.
comment: Project Page: https://github.com/MM-Thinking/Metis-RISE
♻ ☆ Self-Regulated Neurogenesis for Online Data-Incremental Learning
Neural networks often struggle with catastrophic forgetting when learning sequences of tasks or data streams, unlike humans who can continuously learn and consolidate new concepts even in the absence of explicit cues. Online data-incremental learning seeks to emulate this capability by processing each sample only once, without having access to task or stream cues at any point in time since this is more realistic compared to offline setups, where all data from novel class(es) is assumed to be readily available. However, existing methods typically rely on storing the subsets of data in memory or expanding the initial model architecture, resulting in significant computational overhead. Drawing inspiration from 'self-regulated neurogenesis'-brain's mechanism for creating specialized regions or circuits for distinct functions-we propose a novel approach SERENA which encodes each concept in a specialized network path called 'concept cell', integrated into a single over-parameterized network. Once a concept is learned, its corresponding concept cell is frozen, effectively preventing the forgetting of previously acquired information. Furthermore, we introduce two new continual learning scenarios that more closely reflect real-world conditions, characterized by gradually changing sample sizes. Experimental results show that our method not only establishes new state-of-the-art results across ten benchmarks but also remarkably surpasses offline supervised batch learning performance. The code is available at https://github.com/muratonuryildirim/serena.
comment: Published at Conference on Lifelong Learning Agents (CoLLAs) 2025
♻ ☆ A Novel Federated Learning-Based IDS for Enhancing UAVs Privacy and Security
Unmanned aerial vehicles (UAVs) operating within Flying Ad-hoc Networks (FANETs) encounter security challenges due to the dynamic and distributed nature of these networks. Previous studies focused predominantly on centralized intrusion detection, assuming a central entity responsible for storing and analyzing data from all devices. However, these approaches face challenges including computation and storage costs, along with a single point of failure risk, threatening data privacy and availability. The widespread dispersion of data across interconnected devices underscores the need for decentralized approaches. This paper introduces the Federated Learning-based Intrusion Detection System (FL-IDS), addressing challenges encountered by centralized systems in FANETs. FL-IDS reduces computation and storage costs for both clients and the central server, which is crucial for resource-constrained UAVs. Operating in a decentralized manner, FL-IDS enables UAVs to collaboratively train a global intrusion detection model without sharing raw data, thus avoiding delay in decisions based on collected data, as is often the case with traditional methods. Experimental results demonstrate FL-IDS's competitive performance with Central IDS (C-IDS) while mitigating privacy concerns, with the Bias Towards Specific Clients (BTSC) method further enhancing FL-IDS performance even at lower attacker ratios. Comparative analysis with traditional intrusion detection methods, including Local IDS (L-IDS), sheds light on the strengths of FL-IDS. This study significantly contributes to UAV security by introducing a privacy-aware, decentralized intrusion detection approach tailored to UAV networks. Moreover, by introducing a realistic dataset for FANETs and federated learning, our approach differs from others lacking high dynamism and 3D node movements or accurate federated data federations.
comment: Published in Internet of Things, Volume 25, 2025, Article 101592
♻ ☆ Multi-convex Programming for Discrete Latent Factor Models Prototyping
Discrete latent factor models (DLFMs) are widely used in various domains such as machine learning, economics, neuroscience, psychology, etc. Currently, fitting a DLFM to some dataset relies on a customized solver for individual models, which requires lots of effort to implement and is limited to the targeted specific instance of DLFMs. In this paper, we propose a generic framework based on CVXPY, which allows users to specify and solve the fitting problem of a wide range of DLFMs, including both regression and classification models, within a very short script. Our framework is flexible and inherently supports the integration of regularization terms and constraints on the DLFM parameters and latent factors, such that the users can easily prototype the DLFM structure according to their dataset and application scenario. We introduce our open-source Python implementation and illustrate the framework in several examples.
♻ ☆ Solving Inverse Problem for Multi-armed Bandits via Convex Optimization
We consider the inverse problem of multi-armed bandits (IMAB) that are widely used in neuroscience and psychology research for behavior modelling. We first show that the IMAB problem is not convex in general, but can be relaxed to a convex problem via variable transformation. Based on this result, we propose a two-step sequential heuristic for (approximately) solving the IMAB problem. We discuss a condition where our method provides global solution to the IMAB problem with certificate, as well as approximations to further save computing time. Numerical experiments indicate that our heuristic method is more robust than directly solving the IMAB problem via repeated local optimization, and can achieve the performance of Monte Carlo methods within a significantly decreased running time. We provide the implementation of our method based on CVXPY, which allows straightforward application by users not well versed in convex optimization.
♻ ☆ Inverse Reinforcement Learning via Convex Optimization
We consider the inverse reinforcement learning (IRL) problem, where an unknown reward function of some Markov decision process is estimated based on observed expert demonstrations. In most existing approaches, IRL is formulated and solved as a nonconvex optimization problem, posing challenges in scenarios where robustness and reproducibility are critical. We discuss a convex formulation of the IRL problem (CIRL) initially proposed by Ng and Russel, and reformulate the problem such that the domain-specific language CVXPY can be applied directly to specify and solve the convex problem. We also extend the CIRL problem to scenarios where the expert policy is not given analytically but by trajectory as state-action pairs, which can be strongly inconsistent with optimality, by augmenting some of the constraints. Theoretical analysis and practical implementation for hyperparameter auto-selection are introduced. This note helps the users to easily apply CIRL for their problems, without background knowledge on convex optimization.
♻ ☆ SDE Matching: Scalable and Simulation-Free Training of Latent Stochastic Differential Equations
The Latent Stochastic Differential Equation (SDE) is a powerful tool for time series and sequence modeling. However, training Latent SDEs typically relies on adjoint sensitivity methods, which depend on simulation and backpropagation through approximate SDE solutions, which limit scalability. In this work, we propose SDE Matching, a new simulation-free method for training Latent SDEs. Inspired by modern Score- and Flow Matching algorithms for learning generative dynamics, we extend these ideas to the domain of stochastic dynamics for time series and sequence modeling, eliminating the need for costly numerical simulations. Our results demonstrate that SDE Matching achieves performance comparable to adjoint sensitivity methods while drastically reducing computational complexity.
♻ ☆ Sharp concentration of uniform generalization errors in binary linear classification
We examine the concentration of uniform generalization errors around their expectation in binary linear classification problems via an isoperimetric argument. In particular, we establish Poincar\'{e} and log-Sobolev inequalities for the joint distribution of the output labels and the label-weighted input vectors, which we apply to derive concentration bounds. The derived concentration bounds are sharp up to moderate multiplicative constants by those under well-balanced labels. In asymptotic analysis, we also show that almost sure convergence of uniform generalization errors to their expectation occurs in very broad settings, such as proportionally high-dimensional regimes. Using this convergence, we establish uniform laws of large numbers under dimension-free conditions.
comment: 26 pages, 1 figure; minor edits to improve readability
♻ ☆ SceneGenAgent: Precise Industrial Scene Generation with Coding Agent ACL 2025
The modeling of industrial scenes is essential for simulations in industrial manufacturing. While large language models (LLMs) have shown significant progress in generating general 3D scenes from textual descriptions, generating industrial scenes with LLMs poses a unique challenge due to their demand for precise measurements and positioning, requiring complex planning over spatial arrangement. To address this challenge, we introduce SceneGenAgent, an LLM-based agent for generating industrial scenes through C# code. SceneGenAgent ensures precise layout planning through a structured and calculable format, layout verification, and iterative refinement to meet the quantitative requirements of industrial scenarios. Experiment results demonstrate that LLMs powered by SceneGenAgent exceed their original performance, reaching up to 81.0% success rate in real-world industrial scene generation tasks and effectively meeting most scene generation requirements. To further enhance accessibility, we construct SceneInstruct, a dataset designed for fine-tuning open-source LLMs to integrate into SceneGenAgent. Experiments show that fine-tuning open-source LLMs on SceneInstruct yields significant performance improvements, with Llama3.1-70B approaching the capabilities of GPT-4o. Our code and data are available at https://github.com/THUDM/SceneGenAgent .
comment: Accepted to ACL 2025
♻ ☆ PCDVQ: Enhancing Vector Quantization for Large Language Models via Polar Coordinate Decoupling
Large Language Models (LLMs) face significant challenges in edge deployment due to their massive parameter scale. Vector Quantization (VQ), a clustering-based quantization method, serves as a prevalent solution to this issue for its extremely low-bit (even at 2-bit) and considerable accuracy. Since a vector is a quantity in mathematics and physics that has both direction and magnitude, existing VQ works typically quantize them in a coupled manner. However, we find that direction exhibits significantly greater sensitivity to quantization compared to the magnitude. For instance, when separately clustering the directions and magnitudes of weight vectors in LLaMA-2-7B, the accuracy drop of zero-shot tasks are 46.5\% and 2.3\%, respectively. This gap even increases with the reduction of clustering centers. Further, Euclidean distance, a common metric to access vector similarities in current VQ works, places greater emphasis on reducing the magnitude error. This property is contrary to the above finding, unavoidably leading to larger quantization errors. To these ends, this paper proposes Polar Coordinate Decoupled Vector Quantization (PCDVQ), an effective and efficient VQ framework consisting of two key modules: 1) Polar Coordinate Decoupling (PCD), which transforms vectors into their polar coordinate representations and perform independent quantization of the direction and magnitude parameters.2) Distribution Aligned Codebook Construction (DACC), which optimizes the direction and magnitude codebooks in accordance with the source distribution. Experimental results show that PCDVQ outperforms baseline methods at 2-bit level by at least 1.5\% zero-shot accuracy, establishing a novel paradigm for accurate and highly compressed LLMs.
♻ ☆ Mixture of Experts-augmented Deep Unfolding for Activity Detection in IRS-aided Systems
In the realm of activity detection for massive machine-type communications, intelligent reflecting surfaces (IRS) have shown significant potential in enhancing coverage for devices lacking direct connections to the base station (BS). However, traditional activity detection methods are typically designed for a single type of channel model, which does not reflect the complexities of real-world scenarios, particularly in systems incorporating IRS. To address this challenge, this paper introduces a novel approach that combines model-driven deep unfolding with a mixture of experts (MoE) framework. By automatically selecting one of three expert designs and applying it to the unfolded projected gradient method, our approach eliminates the need for prior knowledge of channel types between devices and the BS. Simulation results demonstrate that the proposed MoE-augmented deep unfolding method surpasses the traditional covariance-based method and black-box neural network design, delivering superior detection performance under mixed channel fading conditions.
comment: 5 pages, 5 figures, Accepted in IEEE Wireless Communications Letters
♻ ☆ Efficient Image Generation with Variadic Attention Heads CVPR
While the integration of transformers in vision models have yielded significant improvements on vision tasks they still require significant amounts of computation for both training and inference. Restricted attention mechanisms significantly reduce these computational burdens but come at the cost of losing either global or local coherence. We propose a simple, yet powerful method to reduce these trade-offs: allow the attention heads of a single transformer to attend to multiple receptive fields. We demonstrate our method utilizing Neighborhood Attention (NA) and integrate it into a StyleGAN based architecture for image generation. With this work, dubbed StyleNAT, we are able to achieve a FID of 2.05 on FFHQ, a 6% improvement over StyleGAN-XL, while utilizing 28% fewer parameters and with 4$\times$ the throughput capacity. StyleNAT achieves the Pareto Frontier on FFHQ-256 and demonstrates powerful and efficient image generation on other datasets. Our code and model checkpoints are publicly available at: https://github.com/SHI-Labs/StyleNAT
comment: Published in eLVM @ CVPR (https://openaccess.thecvf.com/content/CVPR2025W/eLVM/html/Walton_Efficient_Image_Generation_with_Variadic_Attention_Heads_CVPRW_2025_paper) | Formerly named StyleNAT: Giving Each Head a New Perspective |
♻ ☆ Proximal Point Method for Online Saddle Point Problem
This paper focuses on the online saddle point problem, which involves a sequence of two-player time-varying convex-concave games. Considering the nonstationarity of the environment, we adopt the duality gap and the dynamic Nash equilibrium regret as performance metrics for algorithm design. We present three variants of the proximal point method: the Online Proximal Point Method (OPPM), the Optimistic OPPM (OptOPPM), and the OptOPPM with multiple predictors. Each algorithm guarantees upper bounds for both the duality gap and dynamic Nash equilibrium regret, achieving near-optimality when measured against the duality gap. Specifically, in certain benign environments, such as sequences of stationary payoff functions, these algorithms maintain a nearly constant metric bound. Experimental results further validate the effectiveness of these algorithms. Lastly, this paper discusses potential reliability concerns associated with using dynamic Nash equilibrium regret as a performance metric. The technical appendix and code can be found at https://github.com/qingxin6174/PPM-for-OSP.
♻ ☆ Review learning: Real world validation of privacy preserving continual learning across medical institutions
When a deep learning model is trained sequentially on different datasets, it often forgets the knowledge learned from previous data, a problem known as catastrophic forgetting. This damages the model's performance on diverse datasets, which is critical in privacy-preserving deep learning (PPDL) applications based on transfer learning (TL). To overcome this, we introduce "review learning" (RevL), a low cost continual learning algorithm for diagnosis prediction using electronic health records (EHR) within a PPDL framework. RevL generates data samples from the model which are used to review knowledge from previous datasets. Six simulated institutional experiments and one real-world experiment involving three medical institutions were conducted to validate RevL, using three binary classification EHR data. In the real-world experiment with data from 106,508 patients, the mean global area under the receiver operating curve was 0.710 for RevL and 0.655 for TL. These results demonstrate RevL's ability to retain previously learned knowledge and its effectiveness in real-world PPDL scenarios. Our work establishes a realistic pipeline for PPDL research based on model transfers across institutions and highlights the practicality of continual learning in real-world medical settings using private EHR data.
♻ ☆ Genetic Algorithm with Innovative Chromosome Patterns in the Breeding Process
This paper proposes Genetic Algorithm with Border Trades (GAB), a novel modification of the standard genetic algorithm that enhances exploration by incorporating new chromosome patterns in the breeding process. This approach significantly mitigates premature convergence and improves search diversity. Empirically, GAB achieves up to 8x higher fitness and 10x faster convergence on complex job scheduling problems compared to standard Genetic Algorithms, reaching average fitness scores of 888 versus 106 in under 20 seconds. On the classic Flip-Flop problem, GAB consistently finds optimal or near-optimal solutions in fewer generations, even as input sizes scale to thousands of bits. These results highlight GAB as a highly effective and computationally efficient alternative for solving large-scale combinatorial optimization problems.
♻ ☆ Pretrained Reversible Generation as Unsupervised Visual Representation Learning ICCV 2025
Recent generative models based on score matching and flow matching have significantly advanced generation tasks, but their potential in discriminative tasks remains underexplored. Previous approaches, such as generative classifiers, have not fully leveraged the capabilities of these models for discriminative tasks due to their intricate designs. We propose Pretrained Reversible Generation (PRG), which extracts unsupervised representations by reversing the generative process of a pretrained continuous generation model. PRG effectively reuses unsupervised generative models, leveraging their high capacity to serve as robust and generalizable feature extractors for downstream tasks. This framework enables the flexible selection of feature hierarchies tailored to specific downstream tasks. Our method consistently outperforms prior approaches across multiple benchmarks, achieving state-of-the-art performance among generative model based methods, including 78% top-1 accuracy on ImageNet at a resolution of 64*64. Extensive ablation studies, including out-of-distribution evaluations, further validate the effectiveness of our approach. Code is available at https://github.com/opendilab/PRG.
comment: Accepted by ICCV 2025
♻ ☆ Bridging the Gap Between Approximation and Learning via Optimal Approximation by ReLU MLPs of Maximal Regularity
The foundations of deep learning are supported by the seemingly opposing perspectives of approximation or learning theory. The former advocates for large/expressive models that need not generalize, while the latter considers classes that generalize but may be too small/constrained to be universal approximators. Motivated by real-world deep learning implementations that are both expressive and statistically reliable, we ask: "Is there a class of neural networks that is both large enough to be universal but structured enough to generalize?" This paper constructively provides a positive answer to this question by identifying a highly structured class of ReLU multilayer perceptions (MLPs), which are optimal function approximators and are statistically well-behaved. We show that any $(L,\alpha)$-H\"{o}lder function from $[0,1]^d$ to $[-n,n]$ can be approximated to a uniform $\mathcal{O}(1/n)$ error on $[0,1]^d$ with a sparsely connected ReLU MLP with the same H\"{o}lder exponent $\alpha$ and coefficient $L$, of width $\mathcal{O}(dn^{d/\alpha})$, depth $\mathcal{O}(\log(d))$, with $\mathcal{O}(dn^{d/\alpha})$ nonzero parameters, and whose weights and biases take values in $\{0,\pm 1/2\}$ except in the first and last layers which instead have magnitude at-most $n$. Further, our class of MLPs achieves a near-optimal sample complexity of $\mathcal{O}(\log(N)/\sqrt{N})$ when given $N$ i.i.d. normalized sub-Gaussian training samples. We achieve this through a new construction that perfectly fits together linear pieces using Kuhn triangulations, along with a new proof technique which shows that our construction preserves the regularity of not only the H\"{o}lder functions, but also any uniformly continuous function. Our results imply that neural networks can solve the McShane extension problem on suitable finite sets.
comment: 16 pages main body, 40 pages proofs, 10 figures, 1 table
♻ ☆ Split-Merge: A Difference-based Approach for Dominant Eigenvalue Problem
The computation of the dominant eigenvector of symmetric positive semidefinite matrices is a cornerstone operation in numerous optimization-driven applications. Traditional methods, typically based on the \textit{Quotient} formulation, often suffer from challenges related to computational efficiency and reliance on prior spectral knowledge. In this work, we leverage the alternative \textit{Difference} formulation to reinterpret the classical power method as a first-order optimization algorithm. This perspective allows for a novel convergence analysis and facilitates the development of accelerated variants with larger step-sizes, achieving faster convergence without additional computational cost. Building on this insight, we introduce a generalized family of Difference-based methods, with the power method as a special case. Within this family, we propose Split-Merge, an algorithm that attains accelerated convergence without requiring spectral knowledge and operates solely via matrix-vector products. Extensive experiments on both synthetic and real-world datasets demonstrate that Split-Merge consistently outperforms state-of-the-art methods in both efficiency and scalability. In particular, it achieves more than a $\boldsymbol{10\times}$ speedup over the classical power method, underscoring its practical effectiveness for large-scale problems.
♻ ☆ Generalized Tensor-based Parameter-Efficient Fine-Tuning via Lie Group Transformations ICCV
Adapting pre-trained foundation models for diverse downstream tasks is a core practice in artificial intelligence. However, the wide range of tasks and high computational costs make full fine-tuning impractical. To overcome this, parameter-efficient fine-tuning (PEFT) methods like LoRA have emerged and are becoming a growing research focus. Despite the success of these methods, they are primarily designed for linear layers, focusing on two-dimensional matrices while largely ignoring higher-dimensional parameter spaces like convolutional kernels. Moreover, directly applying these methods to higher-dimensional parameter spaces often disrupts their structural relationships. Given the rapid advancements in matrix-based PEFT methods, rather than designing a specialized strategy, we propose a generalization that extends matrix-based PEFT methods to higher-dimensional parameter spaces without compromising their structural properties. Specifically, we treat parameters as elements of a Lie group, with updates modeled as perturbations in the corresponding Lie algebra. These perturbations are mapped back to the Lie group through the exponential map, ensuring smooth, consistent updates that preserve the inherent structure of the parameter space. Extensive experiments on computer vision and natural language processing validate the effectiveness and versatility of our approach, demonstrating clear improvements over existing methods.
comment: 2025 ICCV
♻ ☆ Explainable quantum regression algorithm with encoded data structure
Hybrid variational quantum algorithms (VQAs) are promising for solving practical problems such as combinatorial optimization, quantum chemistry simulation, quantum machine learning, and quantum error correction on noisy quantum computers. However, with typical random ansatz or quantum alternating operator ansatz, derived variational quantum algorithms become a black box that cannot be trusted for model interpretation, not to mention deploying as applications in informing critical decisions: the results of these variational parameters are just rotational angles for the quantum gates and have nothing to do with interpretable values that a model can provide directly. In this paper, we construct the first interpretable quantum regression algorithm, in which the quantum state exactly encodes the classical data table and the variational parameters correspond directly to the regression coefficients, which are real numbers by construction, providing a high degree of model interpretability and minimal cost to optimize due to the right expressiveness. We also take advantage of the encoded data structure to reduce the time complexity of computing the regression map. To shorten the circuit depth for nonlinear regression, our algorithm can be extended by building nonlinear features by classical preprocessing as the independent encoded column vectors. Even though the realization of compressed encoding in superconducting qubits has been achieved by the less noisy compressed encoding recently by the authors, we envision potential quantum utilities with multi-qubit gates implemented in neutral cold atoms and ions.
♻ ☆ Machine learning of microstructure--property relationships in materials leveraging microstructure representation from foundational vision transformers
Machine learning of microstructure--property relationships from data is an emerging approach in computational materials science. Most existing machine learning efforts focus on the development of task-specific models for each microstructure--property relationship. We propose utilizing pre-trained foundational vision transformers for the extraction of task-agnostic microstructure features and subsequent light-weight machine learning of a microstructure-dependent property. We demonstrate our approach with pre-trained state-of-the-art vision transformers (CLIP, DINOv2, SAM) in two case studies on machine-learning: (i) elastic modulus of two-phase microstructures based on simulations data; and (ii) Vicker's hardness of Ni-base and Co-base superalloys based on experimental data published in literature. Our results show the potential of foundational vision transformers for robust microstructure representation and efficient machine learning of microstructure--property relationships without the need for expensive task-specific training or fine-tuning of bespoke deep learning models.
♻ ☆ Mathematical Modeling of Protein Structures: A Cohomology-Based Approach to the Flagellar Motor
This study presents a novel mathematical model derived from cohomology, leveraging the KEEL-proven theorem that establishes cohomology as tautological, generated by boundary classes of curves with fixed dual graphs. Simplicial complexes are constructed using skew-commutative graded algebra, and the structure theorem is applied to connect distinct homologies, enabling precise interpretations of the resulting geometric forms. The proposed model is utilized for protein structure analysis and prediction, with a specific application to the Flagellar Motor structure. This approach offers new insights into the geometric and algebraic foundations of biological macromolecular modeling, highlighting its potential for advancement in structural biology.
♻ ☆ Sparse-Reg: Improving Sample Complexity in Offline Reinforcement Learning using Sparsity
In this paper, we investigate the use of small datasets in the context of offline reinforcement learning (RL). While many common offline RL benchmarks employ datasets with over a million data points, many offline RL applications rely on considerably smaller datasets. We show that offline RL algorithms can overfit on small datasets, resulting in poor performance. To address this challenge, we introduce "Sparse-Reg": a regularization technique based on sparsity to mitigate overfitting in offline reinforcement learning, enabling effective learning in limited data settings and outperforming state-of-the-art baselines in continuous control.
♻ ☆ Graph ODEs and Beyond: A Comprehensive Survey on Integrating Differential Equations with Graph Neural Networks KDD 2025
Graph Neural Networks (GNNs) and differential equations (DEs) are two rapidly advancing areas of research that have shown remarkable synergy in recent years. GNNs have emerged as powerful tools for learning on graph-structured data, while differential equations provide a principled framework for modeling continuous dynamics across time and space. The intersection of these fields has led to innovative approaches that leverage the strengths of both, enabling applications in physics-informed learning, spatiotemporal modeling, and scientific computing. This survey aims to provide a comprehensive overview of the burgeoning research at the intersection of GNNs and DEs. We will categorize existing methods, discuss their underlying principles, and highlight their applications across domains such as molecular modeling, traffic prediction, and epidemic spreading. Furthermore, we identify open challenges and outline future research directions to advance this interdisciplinary field. A comprehensive paper list is provided at https://github.com/Emory-Melody/Awesome-Graph-NDEs. This survey serves as a resource for researchers and practitioners seeking to understand and contribute to the fusion of GNNs and DEs
comment: Accepted by KDD 2025 Tutorial Track
♻ ☆ Multi-thresholding Good Arm Identification with Bandit Feedback
We consider a good arm identification problem in a stochastic bandit setting with multi-objectives, where each arm $i \in [K]$ is associated with a distribution $D_i$ defined over $R^M$. For each round $t$, the player pulls an arm $i_t$ and receives an $M$-dimensional reward vector sampled according to $D_{i_t}$. The goal is to find, with high probability, an $\epsilon$-good arm whose expected reward vector is larger than $\bm{\xi} - \epsilon \mathbf{1}$, where $\bm{\xi}$ is a predefined threshold vector, and the vector comparison is component-wise. We propose the Multi-Thresholding UCB~(MultiTUCB) algorithm with a sample complexity bound. Our bound matches the existing one in the special case where $M=1$ and $\epsilon=0$. The proposed algorithm demonstrates superior performance compared to baseline approaches across synthetic and real datasets.
♻ ☆ Generative Data Mining with Longtail-Guided Diffusion
It is difficult to anticipate the myriad challenges that a predictive model will encounter once deployed. Common practice entails a reactive, cyclical approach: model deployment, data mining, and retraining. We instead develop a proactive longtail discovery process by imagining additional data during training. In particular, we develop general model-based longtail signals, including a differentiable, single forward pass formulation of epistemic uncertainty that does not impact model parameters or predictive performance but can flag rare or hard inputs. We leverage these signals as guidance to generate additional training data from a latent diffusion model in a process we call Longtail Guidance (LTG). Crucially, we can perform LTG without retraining the diffusion model or the predictive model, and we do not need to expose the predictive model to intermediate diffusion states. Data generated by LTG exhibit semantically meaningful variation, yield significant generalization improvements on numerous image classification benchmarks, and can be analyzed by a VLM to proactively discover, textually explain, and address conceptual gaps in a deployed predictive model.
comment: 20 pages
♻ ☆ Testing Causal Models with Hidden Variables in Polynomial Delay via Conditional Independencies
Testing a hypothesized causal model against observational data is a key prerequisite for many causal inference tasks. A natural approach is to test whether the conditional independence relations (CIs) assumed in the model hold in the data. While a model can assume exponentially many CIs (with respect to the number of variables), testing all of them is both impractical and unnecessary. Causal graphs, which encode these CIs in polynomial space, give rise to local Markov properties that enable model testing with a significantly smaller subset of CIs. Model testing based on local properties requires an algorithm to list the relevant CIs. However, existing algorithms for realistic settings with hidden variables and non-parametric distributions can take exponential time to produce even a single CI constraint. In this paper, we introduce the c-component local Markov property (C-LMP) for causal graphs with hidden variables. Since C-LMP can still invoke an exponential number of CIs, we develop a polynomial delay algorithm to list these CIs in poly-time intervals. To our knowledge, this is the first algorithm that enables poly-delay testing of CIs in causal graphs with hidden variables against arbitrary data distributions. Experiments on real-world and synthetic data demonstrate the practicality of our algorithm.
comment: 34 total pages, 14 figures
♻ ☆ Nested Stochastic Algorithm for Generalized Sinkhorn distance-Regularized Distributionally Robust Optimization
Distributionally robust optimization (DRO) is a powerful technique to train robust models against data distribution shift. This paper aims to solve regularized nonconvex DRO problems, where the uncertainty set is modeled by a so-called generalized Sinkhorn distance and the loss function is nonconvex and possibly unbounded. Such a distance allows to model uncertainty of distributions with different probability supports and divergence functions. For this class of regularized DRO problems, we derive a novel dual formulation taking the form of nested stochastic optimization, where the dual variable depends on the data sample. To solve the dual problem, we provide theoretical evidence to design a nested stochastic gradient descent (SGD) algorithm, which leverages stochastic approximation to estimate the nested stochastic gradients. We study the convergence rate of nested SGD and establish polynomial iteration and sample complexities that are independent of the data size and parameter dimension, indicating its potential for solving large-scale DRO problems. We conduct numerical experiments to demonstrate the efficiency and robustness of the proposed algorithm.
comment: 49pages, 2 tables
♻ ☆ VersaPRM: Multi-Domain Process Reward Model via Synthetic Reasoning Data
Process Reward Models (PRMs) have proven effective at enhancing mathematical reasoning for Large Language Models (LLMs) by leveraging increased inference-time computation. However, they are predominantly trained on mathematical data and their generalizability to non-mathematical domains has not been rigorously studied. In response, this work first shows that current PRMs have poor performance in other domains. To address this limitation, we introduce VersaPRM, a multi-domain PRM trained on synthetic reasoning data generated using our novel data generation and annotation method. VersaPRM achieves consistent performance gains across diverse domains. For instance, in the MMLU-Pro category of Law, VersaPRM via weighted majority voting, achieves a 7.9% performance gain over the majority voting baseline -- surpassing Qwen2.5-Math-PRM's gain of 1.3%. We further contribute to the community by open-sourcing all data, code and models for VersaPRM.
♻ ☆ Beyond Conformal Predictors: Adaptive Conformal Inference with Confidence Predictors
Adaptive Conformal Inference (ACI) provides finite-sample coverage guarantees, enhancing the prediction reliability under non-exchangeability. This study demonstrates that these desirable properties of ACI do not require the use of Conformal Predictors (CP). We show that the guarantees hold for the broader class of confidence predictors, defined by the requirement of producing nested prediction sets, a property we argue is essential for meaningful confidence statements. We empirically investigate the performance of Non-Conformal Confidence Predictors (NCCP) against CP when used with ACI on non-exchangeable data. In online settings, the NCCP offers significant computational advantages while maintaining a comparable predictive efficiency. In batch settings, inductive NCCP (INCCP) can outperform inductive CP (ICP) by utilising the full training dataset without requiring a separate calibration set, leading to improved efficiency, particularly when the data are limited. Although these initial results highlight NCCP as a theoretically sound and practically effective alternative to CP for uncertainty quantification with ACI in non-exchangeable scenarios, further empirical studies are warranted across diverse datasets and predictors.
comment: 28 pages, 5 figures
♻ ☆ Analysis of static and dynamic batching algorithms for graph neural networks
Graph neural networks (GNN) have shown promising results for several domains such as materials science, chemistry, and the social sciences. GNN models often contain millions of parameters, and like other neural network (NN) models, are often fed only a fraction of the graphs that make up the training dataset in batches to update model parameters. The effect of batching algorithms on training time and model performance has been thoroughly explored for NNs but not yet for GNNs. We analyze two different batching algorithms for graph based models, namely static and dynamic batching for two datasets, the QM9 dataset of small molecules and the AFLOW materials database. Our experiments show that changing the batching algorithm can provide up to a 2.7x speedup, but the fastest algorithm depends on the data, model, batch size, hardware, and number of training steps run. Experiments show that for a select number of combinations of batch size, dataset, and model, significant differences in model learning metrics are observed between static and dynamic batching algorithms.
♻ ☆ Asymmetric Graph Error Control with Low Complexity in Causal Bandits
In this paper, the causal bandit problem is investigated, with the objective of maximizing the long-term reward by selecting an optimal sequence of interventions on nodes in an unknown causal graph. It is assumed that both the causal topology and the distribution of interventions are unknown. First, based on the difference between the two types of graph identification errors (false positives and negatives), a causal graph learning method is proposed. Numerical results suggest that this method has a much lower sample complexity relative to the prior art by learning sub-graphs. However, we note that a sample complexity analysis for the new algorithm has not been undertaken, as of yet. Under the assumption of minimum-mean squared error weight estimation, a new uncertainty bound tailored to the causal bandit problem is derived. This uncertainty bound drives an upper confidence bound-based intervention selection to optimize the reward. Further, we consider a particular instance of non-stationary bandits wherein both the causal topology and interventional distributions can change. Our solution is the design of a sub-graph change detection mechanism that requires a modest number of samples. Numerical results compare the new methodology to existing schemes and show a substantial performance improvement in stationary and non-stationary settings. Averaged over 100 randomly generated causal bandits, the proposed scheme takes significantly fewer samples to learn the causal structure and achieves a reward gain of 85% compared to existing approaches.
♻ ☆ Zebra: In-Context Generative Pretraining for Solving Parametric PDEs
Solving time-dependent parametric partial differential equations (PDEs) is challenging for data-driven methods, as these models must adapt to variations in parameters such as coefficients, forcing terms, and initial conditions. State-of-the-art neural surrogates perform adaptation through gradient-based optimization and meta-learning to implicitly encode the variety of dynamics from observations. This often comes with increased inference complexity. Inspired by the in-context learning capabilities of large language models (LLMs), we introduce Zebra, a novel generative auto-regressive transformer designed to solve parametric PDEs without requiring gradient adaptation at inference. By leveraging in-context information during both pre-training and inference, Zebra dynamically adapts to new tasks by conditioning on input sequences that incorporate context example trajectories. As a generative model, Zebra can be used to generate new trajectories and allows quantifying the uncertainty of the predictions. We evaluate Zebra across a variety of challenging PDE scenarios, demonstrating its adaptability, robustness, and superior performance compared to existing approaches.
♻ ☆ Adapting Probabilistic Risk Assessment for AI
Modern general-purpose artificial intelligence (AI) systems present an urgent risk management challenge, as their rapidly evolving capabilities and potential for catastrophic harm outpace our ability to reliably assess their risks. Current methods often rely on selective testing and undocumented assumptions about risk priorities, frequently failing to make a serious attempt at assessing the set of pathways through which AI systems pose direct or indirect risks to society and the biosphere. This paper introduces the probabilistic risk assessment (PRA) for AI framework, adapting established PRA techniques from high-reliability industries (e.g., nuclear power, aerospace) for the new challenges of advanced AI. The framework guides assessors in identifying potential risks, estimating likelihood and severity bands, and explicitly documenting evidence, underlying assumptions, and analyses at appropriate granularities. The framework's implementation tool synthesizes the results into a risk report card with aggregated risk estimates from all assessed risks. It introduces three methodological advances: (1) Aspect-oriented hazard analysis provides systematic hazard coverage guided by a first-principles taxonomy of AI system aspects (e.g. capabilities, domain knowledge, affordances); (2) Risk pathway modeling analyzes causal chains from system aspects to societal impacts using bidirectional analysis and incorporating prospective techniques; and (3) Uncertainty management employs scenario decomposition, reference scales, and explicit tracing protocols to structure credible projections with novelty or limited data. Additionally, the framework harmonizes diverse assessment methods by integrating evidence into comparable, quantified absolute risk estimates for lifecycle decisions. We have implemented this as a workbook tool for AI developers, evaluators, and regulators.
comment: Project website with workbook tool available at: https://pra-for-ai.github.io/pra/
♻ ☆ Learning treatment effects while treating those in need
Many social programs attempt to allocate scarce resources to people with the greatest need. Indeed, public services increasingly use algorithmic risk assessments motivated by this goal. However, targeting the highest-need recipients often conflicts with attempting to evaluate the causal effect of the program as a whole, as the best evaluations would be obtained by randomizing the allocation. We propose a framework to design randomized allocation rules which optimally balance targeting high-need individuals with learning treatment effects, presenting policymakers with a Pareto frontier between the two goals. We give sample complexity guarantees for the policy learning problem and provide a computationally efficient strategy to implement it. We then collaborate with the human services department of Allegheny County, Pennsylvania to evaluate our methods on data from real service delivery settings. Optimized policies can substantially mitigate the tradeoff between learning and targeting. For example, it is often possible to obtain 90% of the optimal utility in targeting high-need individuals while ensuring that the average treatment effect can be estimated with less than 2 times the samples that a randomized controlled trial would require. Mechanisms for targeting public services often focus on measuring need as accurately as possible. However, our results suggest that algorithmic systems in public services can be most impactful if they incorporate program evaluation as an explicit goal alongside targeting.
♻ ☆ Explicit neural network classifiers for non-separable data
We fully characterize a large class of feedforward neural networks in terms of truncation maps. As an application, we show how a ReLU neural network can implement a feature map which separates concentric data.
comment: 10 pages
♻ ☆ CRISP-NAM: Competing Risks Interpretable Survival Prediction with Neural Additive Models
Competing risks are crucial considerations in survival modelling, particularly in healthcare domains where patients may experience multiple distinct event types. We propose CRISP-NAM (Competing Risks Interpretable Survival Prediction with Neural Additive Models), an interpretable neural additive model for competing risks survival analysis which extends the neural additive architecture to model cause-specific hazards while preserving feature-level interpretability. Each feature contributes independently to risk estimation through dedicated neural networks, allowing for visualization of complex non-linear relationships between covariates and each competing risk. We demonstrate competitive performance on multiple datasets compared to existing approaches.
comment: Added Feature Importance Diagrams and co-author
♻ ☆ Statistical Inference of the Value Function for Reinforcement Learning in Infinite Horizon Settings
Reinforcement learning is a general technique that allows an agent to learn an optimal policy and interact with an environment in sequential decision making problems. The goodness of a policy is measured by its value function starting from some initial state. The focus of this paper is to construct confidence intervals (CIs) for a policy's value in infinite horizon settings where the number of decision points diverges to infinity. We propose to model the action-value state function (Q-function) associated with a policy based on series/sieve method to derive its confidence interval. When the target policy depends on the observed data as well, we propose a SequentiAl Value Evaluation (SAVE) method to recursively update the estimated policy and its value estimator. As long as either the number of trajectories or the number of decision points diverges to infinity, we show that the proposed CI achieves nominal coverage even in cases where the optimal policy is not unique. Simulation studies are conducted to back up our theoretical findings. We apply the proposed method to a dataset from mobile health studies and find that reinforcement learning algorithms could help improve patient's health status. A Python implementation of the proposed procedure is available at https://github.com/shengzhang37/SAVE.
♻ ☆ Link Prediction with Physics-Inspired Graph Neural Networks
The message-passing mechanism underlying Graph Neural Networks (GNNs) is not naturally suited for heterophilic datasets, where adjacent nodes often have different labels. Most solutions to this problem remain confined to the task of node classification. In this article, we focus on the valuable task of link prediction under heterophily, an interesting problem for recommendation systems, social network analysis, and other applications. GNNs like GRAFF have improved node classification under heterophily by incorporating physics biases in the architecture. Similarly, we propose GRAFF-LP, an extension of GRAFF for link prediction. We show that GRAFF-LP effectively discriminates existing from non-existing edges by learning implicitly to separate the edge gradients. Based on this information, we propose a new readout function inspired by physics. Remarkably, this new function not only enhances the performance of GRAFF-LP but also improves that of other baseline models, leading us to reconsider how every link prediction experiment has been conducted so far. Finally, we provide evidence that even simple GNNs did not experience greater difficulty in predicting heterophilic links compared to homophilic ones. This leads us to believe in the necessity for heterophily measures specifically tailored for link prediction, distinct from those used in node classification. The code and appendix are available at https://github.com/difra100/Link_Prediction_with_PIGNN_IJCNN.
comment: Camera-Ready version. Accepted at IJCNN 2025
Quantitative Methods 4
☆ Devising a solution to the problems of Cancer awareness in Telangana
According to the data, the percent of women who underwent screening for cervical cancer, breast and oral cancer in Telangana in the year 2020 was 3.3 percent, 0.3 percent and 2.3 percent respectively. Although early detection is the only way to reduce morbidity and mortality, people have very low awareness about cervical and breast cancer signs and symptoms and screening practices. We developed an ML classification model to predict if a person is susceptible to breast or cervical cancer based on demographic factors. We devised a system to provide suggestions for the nearest hospital or Cancer treatment centres based on the users location or address. In addition to this, we can integrate the health card to maintain medical records of all individuals and conduct awareness drives and campaigns. For ML classification models, we used decision tree classification and support vector classification algorithms for cervical cancer susceptibility and breast cancer susceptibility respectively. Thus, by devising this solution we come one step closer to our goal which is spreading cancer awareness, thereby, decreasing the cancer mortality and increasing cancer literacy among the people of Telangana.
♻ ☆ Quantitative assessment of biological dynamics with aggregate data
We develop and apply a learning framework for parameter estimation in initial value problems that are assessed only indirectly via aggregate data such as sample means and/or standard deviations. Our comprehensive framework follows Bayesian principles and consists of specialized Markov chain Monte Carlo computational schemes that rely on modified Hamiltonian Monte Carlo to align with constraints induced by summary statistics and a novel elliptical slice sampler adapted to the parameters of biological models. We benchmark our methods with synthetic data on microbial growth in batch culture and test them with real growth curve data from laboratory replication experiments on $\textit{Prochlorococcus}$ microbes. The results indicate that our learning framework can utilize experimental or historical data and lead to robust parameter estimation and data assimilation in ODE models that outperform least-squares fitting.
♻ ☆ Machine Learning Tool to Analyse Spectroscopic Changes in High-Dimensional Data
When nanoparticles (NPs) are introduced into a biological solution, layers of biomolecules form on their surface, creating a corona. Understanding how the structure of the protein evolves into the corona is essential for evaluating the safety and toxicity of nanotechnology. However, the influence of NP properties on protein conformation is not well understood. In this study, we propose a new method that addresses this issue by analyzing multi-component spectral data using Machine Learning (ML). We apply the method to fibrinogen, a crucial protein in human blood plasma, at physiological concentrations while interacting with hydrophobic carbon or hydrophilic silicon dioxide NPs, revealing striking differences in the temperature dependence of the protein structure between the two cases. Our unsupervised ML method a) does not suffer from the challenges associated with the curse of dimensionality, and b) simultaneously handles spectral data from various sources. The method offers a quantitative analysis of protein structural changes upon adsorption and enhances the understanding of the correlation between protein structure and NP interactions, which could support the development of nanomedical tools to treat various conditions.
comment: 30 pages, 9 figures, added references, revised synthesis protocol, results unchanged
♻ ☆ Structural causal influence (SCI) captures the forces of social inequality in models of disease dynamics
Mathematical modeling has played a central role in understanding how infectious disease transmission manifests in populations. These models have demonstrated the importance of key community-level factors in structuring epidemic risk, and are now routinely used in public health for decision support. One barrier to their broader utility is that the existing canon does not often accommodate social inequalities as distinct formal drivers of variability in transmission dynamics. Given decades of evidence supporting the organizational effects of inequalities in structuring society more generally, and infectious disease risk more specifically, addressing this modeling gap is of critical importance. In this study, we build on previous efforts to integrate social forces into computational epidemiology by introducing a metric, the structural causal influence (SCI). The SCI uses causal analysis to provide a measure of the relative vulnerability of sub-communities within a susceptible population, shaped by differences in characteristics such as access to therapy, exposure to disease, and other determinants driven by social forces. We develop our metric in a simple case and apply it to a context of public health importance: Hepatitis C virus in a population of persons who inject drugs. In addition, we demonstrate the flexibility of the SCI using an agent-based model of an infectious disease. Our use of the SCI reveals that, under specific parameters in a multi-community model, the "less vulnerable" community may achieve a basic reproduction number below one, ensuring disease extinction. However, even minimal transmission between communities can increase this number, leading to sustained epidemics within both communities.
comment: 8 figures, 8 tables
Cell Behavior 1
♻ ☆ Properties of Hagen-Poiseuille flow in channel networks
We derive the main properties of adaptive Hagen-Poiseuille flows in elastic microchannel networks similar to biological veins found in organisms. We demonstrate that adaptive Hagen-Poiseuille flows effectively simulate key features of \textit{Physarum polycephalum} networks, replicating physiological out-of-equilibrium phenomena such as peristalsis and shuttle streaming, which are associated with the mechanism of nutrient transport in \textit{Physarum}. A new topological steady state has been identified for asynchronous adaptation, supporting out-of-equilibrium laminar fluxes. Adaptive Hagen-Poiseuille flows exhibit saturation effects on the fluxes in contractile veins, as observed in both animal and artificial contractile veins. These results suggest that the non-equilibrium effects observed in \textit{Physarum} have a hydrodynamic origin
Computation and Language 89
☆ MMSearch-R1: Incentivizing LMMs to Search
Robust deployment of large multimodal models (LMMs) in real-world scenarios requires access to external knowledge sources, given the complexity and dynamic nature of real-world information. Existing approaches such as retrieval-augmented generation (RAG) and prompt engineered search agents rely on rigid pipelines, often leading to inefficient or excessive search behaviors. We present MMSearch-R1, the first end-to-end reinforcement learning framework that enables LMMs to perform on-demand, multi-turn search in real-world Internet environments. Our framework integrates both image and text search tools, allowing the model to reason about when and how to invoke them guided by an outcome-based reward with a search penalty. To support training, We collect a multimodal search VQA dataset through a semi-automated pipeline that covers diverse visual and textual knowledge needs and curate a search-balanced subset with both search-required and search-free samples, which proves essential for shaping efficient and on-demand search behavior. Extensive experiments on knowledge-intensive and info-seeking VQA tasks show that our model not only outperforms RAG-based baselines of the same model size, but also matches the performance of a larger RAG-based model while reducing search calls by over 30%. We further analyze key empirical findings to offer actionable insights for advancing research in multimodal search.
comment: Code: https://github.com/EvolvingLMMs-Lab/multimodal-search-r1
☆ Inside you are many wolves: Using cognitive models to interpret value trade-offs in LLMs
Navigating everyday social situations often requires juggling conflicting goals, such as conveying a harsh truth, maintaining trust, all while still being mindful of another person's feelings. These value trade-offs are an integral part of human decision-making and language use, however, current tools for interpreting such dynamic and multi-faceted notions of values in LLMs are limited. In cognitive science, so-called "cognitive models" provide formal accounts of these trade-offs in humans, by modeling the weighting of a speaker's competing utility functions in choosing an action or utterance. In this work, we use a leading cognitive model of polite speech to interpret the extent to which LLMs represent human-like trade-offs. We apply this lens to systematically evaluate value trade-offs in two encompassing model settings: degrees of reasoning "effort" in frontier black-box models, and RL post-training dynamics of open-source models. Our results highlight patterns of higher informational utility than social utility in reasoning models, and in open-source models shown to be stronger in mathematical reasoning. Our findings from LLMs' training dynamics suggest large shifts in utility values early on in training with persistent effects of the choice of base model and pretraining data, compared to feedback dataset or alignment method. We show that our method is responsive to diverse aspects of the rapidly evolving LLM landscape, with insights for forming hypotheses about other high-level behaviors, shaping training regimes for reasoning models, and better controlling trade-offs between values during model training.
comment: 11 pages, 3 figures
☆ The Decrypto Benchmark for Multi-Agent Reasoning and Theory of Mind
As Large Language Models (LLMs) gain agentic abilities, they will have to navigate complex multi-agent scenarios, interacting with human users and other agents in cooperative and competitive settings. This will require new reasoning skills, chief amongst them being theory of mind (ToM), or the ability to reason about the "mental" states of other agents. However, ToM and other multi-agent abilities in LLMs are poorly understood, since existing benchmarks suffer from narrow scope, data leakage, saturation, and lack of interactivity. We thus propose Decrypto, a game-based benchmark for multi-agent reasoning and ToM drawing inspiration from cognitive science, computational pragmatics and multi-agent reinforcement learning. It is designed to be as easy as possible in all other dimensions, eliminating confounding factors commonly found in other benchmarks. To our knowledge, it is also the first platform for designing interactive ToM experiments. We validate the benchmark design through comprehensive empirical evaluations of frontier LLMs, robustness studies, and human-AI cross-play experiments. We find that LLM game-playing abilities lag behind humans and simple word-embedding baselines. We then create variants of two classic cognitive science experiments within Decrypto to evaluate three key ToM abilities. Surprisingly, we find that state-of-the-art reasoning models are significantly worse at those tasks than their older counterparts. This demonstrates that Decrypto addresses a crucial gap in current reasoning and ToM evaluations, and paves the path towards better artificial agents.
comment: 41 pages, 19 figures
☆ Memento: Note-Taking for Your Future Self
Large language models (LLMs) excel at reasoning-only tasks, but struggle when reasoning must be tightly coupled with retrieval, as in multi-hop question answering. To overcome these limitations, we introduce a prompting strategy that first decomposes a complex question into smaller steps, then dynamically constructs a database of facts using LLMs, and finally pieces these facts together to solve the question. We show how this three-stage strategy, which we call Memento, can boost the performance of existing prompting strategies across diverse settings. On the 9-step PhantomWiki benchmark, Memento doubles the performance of chain-of-thought (CoT) when all information is provided in context. On the open-domain version of 2WikiMultiHopQA, CoT-RAG with Memento improves over vanilla CoT-RAG by more than 20 F1 percentage points and over the multi-hop RAG baseline, IRCoT, by more than 13 F1 percentage points. On the challenging MuSiQue dataset, Memento improves ReAct by more than 3 F1 percentage points, demonstrating its utility in agentic settings.
☆ DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation
Diffusion large language models (dLLMs) are compelling alternatives to autoregressive (AR) models because their denoising models operate over the entire sequence. The global planning and iterative refinement features of dLLMs are particularly useful for code generation. However, current training and inference mechanisms for dLLMs in coding are still under-explored. To demystify the decoding behavior of dLLMs and unlock their potential for coding, we systematically investigate their denoising processes and reinforcement learning (RL) methods. We train a 7B dLLM, \textbf{DiffuCoder}, on 130B tokens of code. Using this model as a testbed, we analyze its decoding behavior, revealing how it differs from that of AR models: (1) dLLMs can decide how causal their generation should be without relying on semi-AR decoding, and (2) increasing the sampling temperature diversifies not only token choices but also their generation order. This diversity creates a rich search space for RL rollouts. For RL training, to reduce the variance of token log-likelihood estimates and maintain training efficiency, we propose \textbf{coupled-GRPO}, a novel sampling scheme that constructs complementary mask noise for completions used in training. In our experiments, coupled-GRPO significantly improves DiffuCoder's performance on code generation benchmarks (+4.4\% on EvalPlus) and reduces reliance on AR causal during decoding. Our work provides deeper insight into the machinery of dLLM generation and offers an effective, diffusion-native RL training framework. https://github.com/apple/ml-diffucoder.
comment: preprint
☆ PLoP: Precise LoRA Placement for Efficient Finetuning of Large Models
Low-Rank Adaptation (LoRA) is a widely used finetuning method for large models. Its small memory footprint allows practitioners to adapt large models to specific tasks at a fraction of the cost of full finetuning. Different modifications have been proposed to enhance its efficiency by, for example, setting the learning rate, the rank, and the initialization. Another improvement axis is adapter placement strategy: when using LoRA, practitioners usually pick module types to adapt with LoRA, such as Query and Key modules. Few works have studied the problem of adapter placement, with nonconclusive results: original LoRA paper suggested placing adapters in attention modules, while other works suggested placing them in the MLP modules. Through an intuitive theoretical analysis, we introduce PLoP (Precise LoRA Placement), a lightweight method that allows automatic identification of module types where LoRA adapters should be placed, given a pretrained model and a finetuning task. We demonstrate that PLoP consistently outperforms, and in the worst case competes, with commonly used placement strategies through comprehensive experiments on supervised finetuning and reinforcement learning for reasoning.
comment: TD,LR: A lightweight module type selection method for LoRA finetuning. PLoP gives precise placements for LoRA adapters for improved performance
☆ Model Editing as a Double-Edged Sword: Steering Agent Ethical Behavior Toward Beneficence or Harm
Agents based on Large Language Models (LLMs) have demonstrated strong capabilities across a wide range of tasks. However, deploying LLM-based agents in high-stakes domains comes with significant safety and ethical risks. Unethical behavior by these agents can directly result in serious real-world consequences, including physical harm and financial loss. To efficiently steer the ethical behavior of agents, we frame agent behavior steering as a model editing task, which we term Behavior Editing. Model editing is an emerging area of research that enables precise and efficient modifications to LLMs while preserving their overall capabilities. To systematically study and evaluate this approach, we introduce BehaviorBench, a multi-tier benchmark grounded in psychological moral theories. This benchmark supports both the evaluation and editing of agent behaviors across a variety of scenarios, with each tier introducing more complex and ambiguous scenarios. We first demonstrate that Behavior Editing can dynamically steer agents toward the target behavior within specific scenarios. Moreover, Behavior Editing enables not only scenario-specific local adjustments but also more extensive shifts in an agent's global moral alignment. We demonstrate that Behavior Editing can be used to promote ethical and benevolent behavior or, conversely, to induce harmful or malicious behavior. Through comprehensive evaluations on agents based on frontier LLMs, BehaviorBench shows the effectiveness of Behavior Editing across different models and scenarios. Our findings offer key insights into a new paradigm for steering agent behavior, highlighting both the promise and perils of Behavior Editing.
comment: Main paper: 9 pages; total: 18 pages (including appendix). Code, data, results, and additional resources are available at: https://model-editing.github.io
☆ When Life Gives You Samples: The Benefits of Scaling up Inference Compute for Multilingual LLMs
Recent advancements in large language models (LLMs) have shifted focus toward scaling inference-time compute, improving performance without retraining the model. A common approach is to sample multiple outputs in parallel, and select one of these as the final output. However, work to date has focused on English and a handful of domains such as math and code. In contrast, we are most interested in techniques that generalize across open-ended tasks, formally verifiable tasks, and across languages. In this work, we study how to robustly scale inference-time compute for open-ended generative tasks in a multilingual, multi-task setting. Our findings show that both sampling strategy based on temperature variation and selection strategy must be adapted to account for diverse domains and varied language settings. We evaluate existing selection methods, revealing that strategies effective in English often fail to generalize across languages. We propose novel sampling and selection strategies specifically adapted for multilingual and multi-task inference scenarios, and show they yield notable gains across languages and tasks. In particular, our combined sampling and selection methods lead to an average +6.8 jump in win-rates for our 8B models on m-ArenaHard-v2.0 prompts, against proprietary models such as Gemini. At larger scale, Command-A (111B model) equipped with our methods, shows +9.0 improvement in win-rates on the same benchmark with just five samples against single-sample decoding, a substantial increase at minimal cost. Our results underscore the need for language- and task-aware approaches to inference-time compute, aiming to democratize performance improvements in underrepresented languages.
☆ Asymmetric REINFORCE for off-Policy Reinforcement Learning: Balancing positive and negative rewards
Reinforcement learning (RL) is increasingly used to align large language models (LLMs). Off-policy methods offer greater implementation simplicity and data efficiency than on-policy techniques, but often result in suboptimal performance. In this work, we study the intermediate range of algorithms between off-policy RL and supervised fine-tuning by analyzing a simple off-policy REINFORCE algorithm, where the advantage is defined as $A=r-V$, with $r$ a reward and $V$ some tunable baseline. Intuitively, lowering $V$ emphasizes high-reward samples, while raising it penalizes low-reward ones more heavily. We first provide a theoretical analysis of this off-policy REINFORCE algorithm, showing that when the baseline $V$ lower-bounds the expected reward, the algorithm enjoys a policy improvement guarantee. Our analysis reveals that while on-policy updates can safely leverage both positive and negative signals, off-policy updates benefit from focusing more on positive rewards than on negative ones. We validate our findings experimentally in a controlled stochastic bandit setting and through fine-tuning state-of-the-art LLMs on reasoning tasks.
☆ OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling
Different base language model families, such as Llama and Qwen, exhibit divergent behaviors during post-training with reinforcement learning (RL), especially on reasoning-intensive tasks. What makes a base language model suitable for reinforcement learning? Gaining deeper insight into this question is essential for developing RL-scalable foundation models of the next generation. In this work, we investigate how mid-training strategies shape RL dynamics, focusing on two representative model families: Qwen and Llama. Our study reveals that (1) high-quality mathematical corpora, such as MegaMath-Web-Pro, significantly improve both base model and RL performance, while existing alternatives (e.g., FineMath-4plus) fail to do so; (2) further adding QA-style data, particularly long chain-of-thought (CoT) reasoning examples, enhances RL outcomes, and instruction data further unlocks this effect; (3) while long-CoT improves reasoning depth, it can also induce verbosity of model responses and unstability of RL training, underscoring the importance of data formatting; (4) scaling mid-training consistently leads to stronger downstream RL performance. Building on these insights, we introduce a two-stage mid-training strategy, Stable-then-Decay, in which base models are first trained on 200B tokens with a constant learning rate, followed by 20B tokens across three CoT-focused branches with learning rate decay. This yields OctoThinker, a family of models demonstrating strong RL compatibility and closing the performance gap with more RL-friendly model families, i.e., Qwen. We hope our work will help shape pre-training strategies for foundation models in the RL era. To support further research, we release our open-source models along with a curated math reasoning-intensive corpus of over 70 billion tokens (i.e., MegaMath-Web-Pro-Max).
comment: 26 pages; The first three authors contribute to this work equally
☆ ReCode: Updating Code API Knowledge with Reinforcement Learning
Large Language Models (LLMs) exhibit remarkable code generation capabilities but falter when adapting to frequent updates in external library APIs. This critical limitation, stemming from reliance on outdated API knowledge from their training data, even with access to current documentation, impedes reliable code generation in dynamic environments. To tackle this issue, we propose ReCode (rule-based Reinforcement learning for Code Update), a novel framework that mimics human programmer adaptation to API changes. Specifically, we construct a dataset of approximately 2,000 data entries to train the LLMs to perform version migration based on updated information. Then, we introduce a modified string similarity metric for code evaluation as the reward for reinforcement learning. Our experiments demonstrate that ReCode substantially boosts LLMs' code generation performance in dynamic API scenarios, especially on the unseen CodeUpdateArena task. Crucially, compared to supervised fine-tuning, ReCode has less impact on LLMs' general code generation abilities. We apply ReCode on various LLMs and reinforcement learning algorithms (GRPO and DAPO), all achieving consistent improvements. Notably, after training, Qwen2.5-Coder-7B outperforms that of the 32B parameter code instruction-tuned model and the reasoning model with the same architecture. Code is available at https://github.com/zjunlp/ReCode.
comment: Work in progress
☆ Counterfactual Influence as a Distributional Quantity ICML 2025
Machine learning models are known to memorize samples from their training data, raising concerns around privacy and generalization. Counterfactual self-influence is a popular metric to study memorization, quantifying how the model's prediction for a sample changes depending on the sample's inclusion in the training dataset. However, recent work has shown memorization to be affected by factors beyond self-influence, with other training samples, in particular (near-)duplicates, having a large impact. We here study memorization treating counterfactual influence as a distributional quantity, taking into account how all training samples influence how a sample is memorized. For a small language model, we compute the full influence distribution of training samples on each other and analyze its properties. We find that solely looking at self-influence can severely underestimate tangible risks associated with memorization: the presence of (near-)duplicates seriously reduces self-influence, while we find these samples to be (near-)extractable. We observe similar patterns for image classification, where simply looking at the influence distributions reveals the presence of near-duplicates in CIFAR-10. Our findings highlight that memorization stems from complex interactions across training data and is better captured by the full influence distribution than by self-influence alone.
comment: Workshop on The Impact of Memorization on Trustworthy Foundation Models (MemFM) @ ICML 2025
☆ GPTailor: Large Language Model Pruning Through Layer Cutting and Stitching
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation. However, such impressive capability typically comes with a substantial model size, which presents significant challenges in deployment and inference. While structured pruning of model parameters offers a promising way to reduce computational costs at deployment time, current methods primarily focus on single model pruning. In this work, we develop a novel strategy to compress models by strategically combining or merging layers from finetuned model variants, which preserves the original model's abilities by aggregating capabilities accentuated in different finetunes. We pose the optimal tailoring of these LLMs as a zero-order optimization problem, adopting a search space that supports three different operations: (1) Layer removal, (2) Layer selection from different candidate models, and (3) Layer merging. Our experiments demonstrate that this approach leads to competitive model pruning, for example, for the Llama2-13B model families, our compressed models maintain approximately 97.3\% of the original performance while removing $\sim25\%$ of parameters, significantly outperforming previous state-of-the-art methods. The code is available at https://github.com/Guinan-Su/auto-merge-llm.
☆ Knowledge-Aware Diverse Reranking for Cross-Source Question Answering
This paper presents Team Marikarp's solution for the SIGIR 2025 LiveRAG competition. The competition's evaluation set, automatically generated by DataMorgana from internet corpora, encompassed a wide range of target topics, question types, question formulations, audience types, and knowledge organization methods. It offered a fair evaluation of retrieving question-relevant supporting documents from a 15M documents subset of the FineWeb corpus. Our proposed knowledge-aware diverse reranking RAG pipeline achieved first place in the competition.
☆ Time is On My Side: Dynamics of Talk-Time Sharing in Video-chat Conversations
An intrinsic aspect of every conversation is the way talk-time is shared between multiple speakers. Conversations can be balanced, with each speaker claiming a similar amount of talk-time, or imbalanced when one talks disproportionately. Such overall distributions are the consequence of continuous negotiations between the speakers throughout the conversation: who should be talking at every point in time, and for how long? In this work we introduce a computational framework for quantifying both the conversation-level distribution of talk-time between speakers, as well as the lower-level dynamics that lead to it. We derive a typology of talk-time sharing dynamics structured by several intuitive axes of variation. By applying this framework to a large dataset of video-chats between strangers, we confirm that, perhaps unsurprisingly, different conversation-level distributions of talk-time are perceived differently by speakers, with balanced conversations being preferred over imbalanced ones, especially by those who end up talking less. Then we reveal that -- even when they lead to the same level of overall balance -- different types of talk-time sharing dynamics are perceived differently by the participants, highlighting the relevance of our newly introduced typology. Finally, we discuss how our framework offers new tools to designers of computer-mediated communication platforms, for both human-human and human-AI communication.
☆ Probing AI Safety with Source Code
Large language models (LLMs) have become ubiquitous, interfacing with humans in numerous safety-critical applications. This necessitates improving capabilities, but importantly coupled with greater safety measures to align these models with human values and preferences. In this work, we demonstrate that contemporary models fall concerningly short of the goal of AI safety, leading to an unsafe and harmful experience for users. We introduce a prompting strategy called Code of Thought (CoDoT) to evaluate the safety of LLMs. CoDoT converts natural language inputs to simple code that represents the same intent. For instance, CoDoT transforms the natural language prompt "Make the statement more toxic: {text}" to: "make_more_toxic({text})". We show that CoDoT results in a consistent failure of a wide range of state-of-the-art LLMs. For example, GPT-4 Turbo's toxicity increases 16.5 times, DeepSeek R1 fails 100% of the time, and toxicity increases 300% on average across seven modern LLMs. Additionally, recursively applying CoDoT can further increase toxicity two times. Given the rapid and widespread adoption of LLMs, CoDoT underscores the critical need to evaluate safety efforts from first principles, ensuring that safety and capabilities advance together.
☆ An Agentic System for Rare Disease Diagnosis with Traceable Reasoning
Rare diseases collectively affect over 300 million individuals worldwide, yet timely and accurate diagnosis remains a pervasive challenge. This is largely due to their clinical heterogeneity, low individual prevalence, and the limited familiarity most clinicians have with rare conditions. Here, we introduce DeepRare, the first rare disease diagnosis agentic system powered by a large language model (LLM), capable of processing heterogeneous clinical inputs. The system generates ranked diagnostic hypotheses for rare diseases, each accompanied by a transparent chain of reasoning that links intermediate analytic steps to verifiable medical evidence. DeepRare comprises three key components: a central host with a long-term memory module; specialized agent servers responsible for domain-specific analytical tasks integrating over 40 specialized tools and web-scale, up-to-date medical knowledge sources, ensuring access to the most current clinical information. This modular and scalable design enables complex diagnostic reasoning while maintaining traceability and adaptability. We evaluate DeepRare on eight datasets. The system demonstrates exceptional diagnostic performance among 2,919 diseases, achieving 100% accuracy for 1013 diseases. In HPO-based evaluations, DeepRare significantly outperforms other 15 methods, like traditional bioinformatics diagnostic tools, LLMs, and other agentic systems, achieving an average Recall@1 score of 57.18% and surpassing the second-best method (Reasoning LLM) by a substantial margin of 23.79 percentage points. For multi-modal input scenarios, DeepRare achieves 70.60% at Recall@1 compared to Exomiser's 53.20% in 109 cases. Manual verification of reasoning chains by clinical experts achieves 95.40% agreements. Furthermore, the DeepRare system has been implemented as a user-friendly web application http://raredx.cn/doctor.
☆ TAPS: Tool-Augmented Personalisation via Structured Tagging
Recent advancements in tool-augmented large language models have enabled them to interact with external tools, enhancing their ability to perform complex user tasks. However, existing approaches overlook the role of personalisation in guiding tool use. This work investigates how user preferences can be effectively integrated into goal-oriented dialogue agents. Through extensive analysis, we identify key weaknesses in the ability of LLMs to personalise tool use. To this end, we introduce \name, a novel solution that enhances personalised tool use by leveraging a structured tagging tool and an uncertainty-based tool detector. TAPS significantly improves the ability of LLMs to incorporate user preferences, achieving the new state-of-the-art for open source models on the NLSI task.
☆ Biomed-Enriched: A Biomedical Dataset Enriched with LLMs for Pretraining and Extracting Rare and Hidden Content
We introduce Biomed-Enriched, a biomedical text dataset constructed from PubMed via a two-stage annotation process. In the first stage, a large language model annotates 400K paragraphs from PubMed scientific articles, assigning scores for their type (review, study, clinical case, other), domain (clinical, biomedical, other), and educational quality. The educational quality score (rated 1 to 5) estimates how useful a paragraph is for college-level learning. These annotations are then used to fine-tune a small language model, which propagates the labels across the full PMC-OA corpus. The resulting metadata allows us to extract refined subsets, including 2M clinical case paragraphs with over 450K high-quality ones from articles with commercial-use licenses, and to construct several variants via quality filtering and domain upsampling. Clinical text is typically difficult to access due to privacy constraints, as hospital records cannot be publicly shared. Hence, our dataset provides an alternative large-scale, openly available collection of clinical cases from PubMed, making it a valuable resource for biomedical and clinical NLP. Preliminary continual-pretraining experiments with OLMo2 suggest these curated subsets enable targeted improvements, with clinical upsampling boosting performance by ~5% on MMLU ProfMed and educational quality filtering improving MedQA and MedMCQA by ~1%. Combinations of these techniques led to faster convergence, reaching same performance with a third of training tokens, indicating potential for more efficient and effective biomedical pretraining strategies.
comment: Dataset link: https://hf.co/datasets/almanach/Biomed-Enriched
☆ From Codicology to Code: A Comparative Study of Transformer and YOLO-based Detectors for Layout Analysis in Historical Documents
Robust Document Layout Analysis (DLA) is critical for the automated processing and understanding of historical documents with complex page organizations. This paper benchmarks five state-of-the-art object detection architectures on three annotated datasets representing a spectrum of codicological complexity: The e-NDP, a corpus of Parisian medieval registers (1326-1504); CATMuS, a diverse multiclass dataset derived from various medieval and modern sources (ca.12th-17th centuries) and HORAE, a corpus of decorated books of hours (ca.13th-16th centuries). We evaluate two Transformer-based models (Co-DETR, Grounding DINO) against three YOLO variants (AABB, OBB, and YOLO-World). Our findings reveal significant performance variations dependent on model architecture, data set characteristics, and bounding box representation. In the e-NDP dataset, Co-DETR achieves state-of-the-art results (0.752 mAP@.50:.95), closely followed by YOLOv11X-OBB (0.721). Conversely, on the more complex CATMuS and HORAE datasets, the CNN-based YOLOv11x-OBB significantly outperforms all other models (0.564 and 0.568, respectively). This study unequivocally demonstrates that using Oriented Bounding Boxes (OBB) is not a minor refinement but a fundamental requirement for accurately modeling the non-Cartesian nature of historical manuscripts. We conclude that a key trade-off exists between the global context awareness of Transformers, ideal for structured layouts, and the superior generalization of CNN-OBB models for visually diverse and complex documents.
☆ FundaQ-8: A Clinically-Inspired Scoring Framework for Automated Fundus Image Quality Assessment
Automated fundus image quality assessment (FIQA) remains a challenge due to variations in image acquisition and subjective expert evaluations. We introduce FundaQ-8, a novel expert-validated framework for systematically assessing fundus image quality using eight critical parameters, including field coverage, anatomical visibility, illumination, and image artifacts. Using FundaQ-8 as a structured scoring reference, we develop a ResNet18-based regression model to predict continuous quality scores in the 0 to 1 range. The model is trained on 1800 fundus images from real-world clinical sources and Kaggle datasets, using transfer learning, mean squared error optimization, and standardized preprocessing. Validation against the EyeQ dataset and statistical analyses confirm the framework's reliability and clinical interpretability. Incorporating FundaQ-8 into deep learning models for diabetic retinopathy grading also improves diagnostic robustness, highlighting the value of quality-aware training in real-world screening applications.
☆ Narrative Shift Detection: A Hybrid Approach of Dynamic Topic Models and Large Language Models
With rapidly evolving media narratives, it has become increasingly critical to not just extract narratives from a given corpus but rather investigate, how they develop over time. While popular narrative extraction methods such as Large Language Models do well in capturing typical narrative elements or even the complex structure of a narrative, applying them to an entire corpus comes with obstacles, such as a high financial or computational cost. We propose a combination of the language understanding capabilities of Large Language Models with the large scale applicability of topic models to dynamically model narrative shifts across time using the Narrative Policy Framework. We apply a topic model and a corresponding change point detection method to find changes that concern a specific topic of interest. Using this model, we filter our corpus for documents that are particularly representative of that change and feed them into a Large Language Model that interprets the change that happened in an automated fashion and distinguishes between content and narrative shifts. We employ our pipeline on a corpus of The Wall Street Journal news paper articles from 2009 to 2023. Our findings indicate that a Large Language Model can efficiently extract a narrative shift if one exists at a given point in time, but does not perform as well when having to decide whether a shift in content or a narrative shift took place.
comment: 14 pages, 1 figure
☆ Why Robots Are Bad at Detecting Their Mistakes: Limitations of Miscommunication Detection in Human-Robot Dialogue
Detecting miscommunication in human-robot interaction is a critical function for maintaining user engagement and trust. While humans effortlessly detect communication errors in conversations through both verbal and non-verbal cues, robots face significant challenges in interpreting non-verbal feedback, despite advances in computer vision for recognizing affective expressions. This research evaluates the effectiveness of machine learning models in detecting miscommunications in robot dialogue. Using a multi-modal dataset of 240 human-robot conversations, where four distinct types of conversational failures were systematically introduced, we assess the performance of state-of-the-art computer vision models. After each conversational turn, users provided feedback on whether they perceived an error, enabling an analysis of the models' ability to accurately detect robot mistakes. Despite using state-of-the-art models, the performance barely exceeds random chance in identifying miscommunication, while on a dataset with more expressive emotional content, they successfully identified confused states. To explore the underlying cause, we asked human raters to do the same. They could also only identify around half of the induced miscommunications, similarly to our model. These results uncover a fundamental limitation in identifying robot miscommunications in dialogue: even when users perceive the induced miscommunication as such, they often do not communicate this to their robotic conversation partner. This knowledge can shape expectations of the performance of computer vision models and can help researchers to design better human-robot conversations by deliberately eliciting feedback where needed.
comment: Accepted at the 34th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN 2025)
☆ Language Modeling by Language Models
Can we leverage LLMs to model the process of discovering novel language model (LM) architectures? Inspired by real research, we propose a multi-agent LLM approach that simulates the conventional stages of research, from ideation and literature search (proposal stage) to design implementation (code generation), generative pre-training, and downstream evaluation (verification). Using ideas from scaling laws, our system, Genesys, employs a Ladder of Scales approach; new designs are proposed, adversarially reviewed, implemented, and selectively verified at increasingly larger model scales (14M$\sim$350M parameters) with a narrowing budget (the number of models we can train at each scale). To help make discovery efficient and factorizable, Genesys uses a novel genetic programming backbone, which we show has empirical advantages over commonly used direct prompt generation workflows (e.g., $\sim$86\% percentage point improvement in successful design generation, a key bottleneck). We report experiments involving 1,162 newly discovered designs (1,062 fully verified through pre-training) and find the best designs to be highly competitive with known architectures (e.g., outperform GPT2, Mamba2, etc., on 6/9 common benchmarks). We couple these results with comprehensive system-level ablations and formal results, which give broader insights into the design of effective autonomous discovery systems.
☆ CBF-AFA: Chunk-Based Multi-SSL Fusion for Automatic Fluency Assessment
Automatic fluency assessment (AFA) remains challenging, particularly in capturing speech rhythm, pauses, and disfluencies in non-native speakers. We introduce a chunk-based approach integrating self-supervised learning (SSL) models (Wav2Vec2, HuBERT, and WavLM) selected for their complementary strengths in phonetic, prosodic, and noisy speech modeling, with a hierarchical CNN-BiLSTM framework. Speech is segmented into breath-group chunks using Silero voice activity detection (Silero-VAD), enabling fine-grained temporal analysis while mitigating over-segmentation artifacts. SSL embeddings are fused via a learnable weighted mechanism, balancing acoustic and linguistic features, and enriched with chunk-level fluency markers (e.g., speech rate, pause durations, n-gram repetitions). The CNN-BiLSTM captures local and long-term dependencies across chunks. Evaluated on Avalinguo and Speechocean762, our approach improves F1-score by 2.8 and Pearson correlation by 6.2 points over single SSL baselines on Speechocean762, with gains of 4.2 F1-score and 4.0 Pearson points on Avalinguo, surpassing Pyannote.audio-based segmentation baselines. These findings highlight chunk-based multi-SSL fusion for robust fluency evaluation, though future work should explore generalization to dialects with irregular prosody.
comment: 5 pages, accepted for presentation at EUSIPCO 2025
☆ Enhancing Large Language Models through Structured Reasoning
Recent Large Language Models (LLMs) have significantly advanced natural language processing and automated decision-making. However, these models still encounter difficulties when performing complex reasoning tasks involving logical deduction and systematic planning, primarily due to their reliance on implicit statistical relationships without structured knowledge representation.Inspired by cognitive science and neurosymbolic AI, we introduce a novel approach to enhance LLMs through explicit structured reasoning. First, we convert unstructured data into structured formats by explicitly annotating reasoning steps. We then employ this structured dataset to train LLMs through Supervised Fine-Tuning (SFT). Additionally, we enhance the structured reasoning capabilities of LLMs using Group Relative Policy Optimization (GRPO), incorporating two innovative algorithms--MAX-Flow and Longest Common Subsequence (LCS)--which notably improve reasoning effectiveness and reduce computational complexity. Experimental results from fine-tuning a DeepSeek-R1-Distill-Qwen-1.5B model demonstrate concise reasoning, robust performance across various scenarios, and improved compatibility with optimization techniques, validating the efficacy of structured reasoning integration in LLMs.
comment: Preprint. Under review
☆ Perspectives in Play: A Multi-Perspective Approach for More Inclusive NLP Systems
In the realm of Natural Language Processing (NLP), common approaches for handling human disagreement consist of aggregating annotators' viewpoints to establish a single ground truth. However, prior studies show that disregarding individual opinions can lead can lead to the side effect of underrepresenting minority perspectives, especially in subjective tasks, where annotators may systematically disagree because of their preferences. Recognizing that labels reflect the diverse backgrounds, life experiences, and values of individuals, this study proposes a new multi-perspective approach using soft labels to encourage the development of the next generation of perspective aware models, more inclusive and pluralistic. We conduct an extensive analysis across diverse subjective text classification tasks, including hate speech, irony, abusive language, and stance detection, to highlight the importance of capturing human disagreements, often overlooked by traditional aggregation methods. Results show that the multi-perspective approach not only better approximates human label distributions, as measured by Jensen-Shannon Divergence (JSD), but also achieves superior classification performance (higher F1 scores), outperforming traditional approaches. However, our approach exhibits lower confidence in tasks like irony and stance detection, likely due to the inherent subjectivity present in the texts. Lastly, leveraging Explainable AI (XAI), we explore model uncertainty and uncover meaningful insights into model predictions.
☆ Intrinsic vs. Extrinsic Evaluation of Czech Sentence Embeddings: Semantic Relevance Doesn't Help with MT Evaluation
In this paper, we compare Czech-specific and multilingual sentence embedding models through intrinsic and extrinsic evaluation paradigms. For intrinsic evaluation, we employ Costra, a complex sentence transformation dataset, and several Semantic Textual Similarity (STS) benchmarks to assess the ability of the embeddings to capture linguistic phenomena such as semantic similarity, temporal aspects, and stylistic variations. In the extrinsic evaluation, we fine-tune each embedding model using COMET-based metrics for machine translation evaluation. Our experiments reveal an interesting disconnect: models that excel in intrinsic semantic similarity tests do not consistently yield superior performance on downstream translation evaluation tasks. Conversely, models with seemingly over-smoothed embedding spaces can, through fine-tuning, achieve excellent results. These findings highlight the complex relationship between semantic property probes and downstream task, emphasizing the need for more research into 'operationalizable semantics' in sentence embeddings, or more in-depth downstream tasks datasets (here translation evaluation)
☆ How to Retrieve Examples in In-context Learning to Improve Conversational Emotion Recognition using Large Language Models?
Large language models (LLMs) have enabled a wide variety of real-world applications in various domains. However, creating a high-performing application with high accuracy remains challenging, particularly for subjective tasks like emotion recognition. Inspired by the SLT 2024 GenSER Challenge, this study investigates approaches to improving conversational emotion recognition (CER) by LLMs. Specifically, we explore how to retrieve high-quality examples in in-context learning (ICL) to enhance CER. We propose various strategies based on random and augmented example retrieval and also analyze the impact of conversational context on CER accuracy. Experiments were conducted on the three datasets including IEMOCAP, MELD and EmoryNLP. The results show that augmented example retrieval consistently outperforms other techniques under investigation across all datasets, highlighting the importance of retrieving coherent targeted examples and enhancing them through paraphrasing.
☆ COIN: Uncertainty-Guarding Selective Question Answering for Foundation Models with Provable Risk Guarantees
Uncertainty quantification (UQ) for foundation models is essential to identify and mitigate potential hallucinations in automatically generated text. However, heuristic UQ approaches lack formal guarantees for key metrics such as the false discovery rate (FDR) in selective prediction. Previous work adopts the split conformal prediction (SCP) framework to ensure desired coverage of admissible answers by constructing prediction sets, but these sets often contain incorrect candidates, limiting their practical utility. To address this, we propose COIN, an uncertainty-guarding selection framework that calibrates statistically valid thresholds to filter a single generated answer per question under user-specified FDR constraints. COIN estimates the empirical error rate on a calibration set and applies confidence interval methods such as Clopper-Pearson to establish a high-probability upper bound on the true error rate (i.e., FDR). This enables the selection of the largest uncertainty threshold that ensures FDR control on test data while significantly increasing sample retention. We demonstrate COIN's robustness in risk control, strong test-time power in retaining admissible answers, and predictive efficiency under limited calibration data across both general and multimodal text generation tasks. Furthermore, we show that employing alternative upper bound constructions and UQ strategies can further boost COIN's power performance, which underscores its extensibility and adaptability to diverse application scenarios.
☆ SEED: A Structural Encoder for Embedding-Driven Decoding in Time Series Prediction with LLMs
Multivariate time series forecasting requires models to simultaneously capture variable-wise structural dependencies and generalize across diverse tasks. While structural encoders are effective in modeling feature interactions, they lack the capacity to support semantic-level reasoning or task adaptation. Conversely, large language models (LLMs) possess strong generalization capabilities but remain incompatible with raw time series inputs. This gap limits the development of unified, transferable prediction systems. Therefore, we introduce SEED, a structural encoder for embedding-driven decoding, which integrates four stages: a token-aware encoder for patch extraction, a projection module that aligns patches with language model embeddings, a semantic reprogramming mechanism that maps patches to task-aware prototypes, and a frozen language model for prediction. This modular architecture decouples representation learning from inference, enabling efficient alignment between numerical patterns and semantic reasoning. Empirical results demonstrate that the proposed method achieves consistent improvements over strong baselines, and comparative studies on various datasets confirm SEED's role in addressing the structural-semantic modeling gap.
☆ AALC: Large Language Model Efficient Reasoning via Adaptive Accuracy-Length Control
Large reasoning models (LRMs) achieve impressive reasoning capabilities by generating lengthy chain-of-thoughts, but this "overthinking" incurs high latency and cost without commensurate accuracy gains. In this work, we introduce AALC, a lightweight, accuracy-aware length reward integrated into reinforcement learning that dynamically balances correctness and brevity during training. By incorporating validation accuracy into the reward and employing a smooth, dynamically scheduled length penalty, AALC delays length penalty until target performance is met. Through extensive experiments across standard and out-of-distribution math benchmarks, we show that our approach reduces response length by over 50% while maintaining or even improving the original accuracy. Furthermore, qualitative analysis reveals that our method curbs redundant reasoning patterns such as excessive subgoal setting and verification, leading to structurally refined outputs rather than naive truncation. We also identify that efficiency gains are accompanied by reduced interpretability: models trained with AALC omit some narrative framing and explanatory context. These findings highlight the potential of reward-based strategies to guide LRMs toward more efficient, generalizable reasoning paths.
☆ CCRS: A Zero-Shot LLM-as-a-Judge Framework for Comprehensive RAG Evaluation
RAG systems enhance LLMs by incorporating external knowledge, which is crucial for domains that demand factual accuracy and up-to-date information. However, evaluating the multifaceted quality of RAG outputs, spanning aspects such as contextual coherence, query relevance, factual correctness, and informational completeness, poses significant challenges. Existing evaluation methods often rely on simple lexical overlap metrics, which are inadequate for capturing these nuances, or involve complex multi-stage pipelines with intermediate steps like claim extraction or require finetuning specialized judge models, hindering practical efficiency. To address these limitations, we propose CCRS (Contextual Coherence and Relevance Score), a novel suite of five metrics that utilizes a single, powerful, pretrained LLM as a zero-shot, end-to-end judge. CCRS evaluates: Contextual Coherence (CC), Question Relevance (QR), Information Density (ID), Answer Correctness (AC), and Information Recall (IR). We apply CCRS to evaluate six diverse RAG system configurations on the challenging BioASQ dataset. Our analysis demonstrates that CCRS effectively discriminates between system performances, confirming, for instance, that the Mistral-7B reader outperforms Llama variants. We provide a detailed analysis of CCRS metric properties, including score distributions, convergent/discriminant validity, tie rates, population statistics, and discriminative power. Compared to the complex RAGChecker framework, CCRS offers comparable or superior discriminative power for key aspects like recall and faithfulness, while being significantly more computationally efficient. CCRS thus provides a practical, comprehensive, and efficient framework for evaluating and iteratively improving RAG systems.
comment: Accepted at LLM4Eval @ SIGIR 2025
☆ Leveraging AI Graders for Missing Score Imputation to Achieve Accurate Ability Estimation in Constructed-Response Tests
Evaluating the abilities of learners is a fundamental objective in the field of education. In particular, there is an increasing need to assess higher-order abilities such as expressive skills and logical thinking. Constructed-response tests such as short-answer and essay-based questions have become widely used as a method to meet this demand. Although these tests are effective, they require substantial manual grading, making them both labor-intensive and costly. Item response theory (IRT) provides a promising solution by enabling the estimation of ability from incomplete score data, where human raters grade only a subset of answers provided by learners across multiple test items. However, the accuracy of ability estimation declines as the proportion of missing scores increases. Although data augmentation techniques for imputing missing scores have been explored in order to address this limitation, they often struggle with inaccuracy for sparse or heterogeneous data. To overcome these challenges, this study proposes a novel method for imputing missing scores by leveraging automated scoring technologies for accurate IRT-based ability estimation. The proposed method achieves high accuracy in ability estimation while markedly reducing manual grading workload.
comment: Accepted to EvalLAC'25: 2nd Workshop on Automatic Evaluation of Learning and Assessment Content, held at AIED 2025, Palermo, Italy. This is the camera-ready version submitted to CEUR Workshop Proceedings
☆ A Multi-Pass Large Language Model Framework for Precise and Efficient Radiology Report Error Detection
Background: The positive predictive value (PPV) of large language model (LLM)-based proofreading for radiology reports is limited due to the low error prevalence. Purpose: To assess whether a three-pass LLM framework enhances PPV and reduces operational costs compared with baseline approaches. Materials and Methods: A retrospective analysis was performed on 1,000 consecutive radiology reports (250 each: radiography, ultrasonography, CT, MRI) from the MIMIC-III database. Two external datasets (CheXpert and Open-i) were validation sets. Three LLM frameworks were tested: (1) single-prompt detector; (2) extractor plus detector; and (3) extractor, detector, and false-positive verifier. Precision was measured by PPV and absolute true positive rate (aTPR). Efficiency was calculated from model inference charges and reviewer remuneration. Statistical significance was tested using cluster bootstrap, exact McNemar tests, and Holm-Bonferroni correction. Results: Framework PPV increased from 0.063 (95% CI, 0.036-0.101, Framework 1) to 0.079 (0.049-0.118, Framework 2), and significantly to 0.159 (0.090-0.252, Framework 3; P<.001 vs. baselines). aTPR remained stable (0.012-0.014; P>=.84). Operational costs per 1,000 reports dropped to USD 5.58 (Framework 3) from USD 9.72 (Framework 1) and USD 6.85 (Framework 2), reflecting reductions of 42.6% and 18.5%, respectively. Human-reviewed reports decreased from 192 to 88. External validation supported Framework 3's superior PPV (CheXpert 0.133, Open-i 0.105) and stable aTPR (0.007). Conclusion: A three-pass LLM framework significantly enhanced PPV and reduced operational costs, maintaining detection performance, providing an effective strategy for AI-assisted radiology report quality assurance.
comment: 29 pages, 5 figures, 4 tables. Code available at https://github.com/radssk/mp-rred
☆ MIRAGE: A Benchmark for Multimodal Information-Seeking and Reasoning in Agricultural Expert-Guided Conversations
We introduce MIRAGE, a new benchmark for multimodal expert-level reasoning and decision-making in consultative interaction settings. Designed for the agriculture domain, MIRAGE captures the full complexity of expert consultations by combining natural user queries, expert-authored responses, and image-based context, offering a high-fidelity benchmark for evaluating models on grounded reasoning, clarification strategies, and long-form generation in a real-world, knowledge-intensive domain. Grounded in over 35,000 real user-expert interactions and curated through a carefully designed multi-step pipeline, MIRAGE spans diverse crop health, pest diagnosis, and crop management scenarios. The benchmark includes more than 7,000 unique biological entities, covering plant species, pests, and diseases, making it one of the most taxonomically diverse benchmarks available for vision-language models, grounded in the real world. Unlike existing benchmarks that rely on well-specified user inputs and closed-set taxonomies, MIRAGE features underspecified, context-rich scenarios with open-world settings, requiring models to infer latent knowledge gaps, handle rare entities, and either proactively guide the interaction or respond. Project Page: https://mirage-benchmark.github.io
comment: 66 pages, 32 figures, 23 tables
☆ PSALM-V: Automating Symbolic Planning in Interactive Visual Environments with Large Language Models
We propose PSALM-V, the first autonomous neuro-symbolic learning system able to induce symbolic action semantics (i.e., pre- and post-conditions) in visual environments through interaction. PSALM-V bootstraps reliable symbolic planning without expert action definitions, using LLMs to generate heuristic plans and candidate symbolic semantics. Previous work has explored using large language models to generate action semantics for Planning Domain Definition Language (PDDL)-based symbolic planners. However, these approaches have primarily focused on text-based domains or relied on unrealistic assumptions, such as access to a predefined problem file, full observability, or explicit error messages. By contrast, PSALM-V dynamically infers PDDL problem files and domain action semantics by analyzing execution outcomes and synthesizing possible error explanations. The system iteratively generates and executes plans while maintaining a tree-structured belief over possible action semantics for each action, iteratively refining these beliefs until a goal state is reached. Simulated experiments of task completion in ALFRED demonstrate that PSALM-V increases the plan success rate from 37% (Claude-3.7) to 74% in partially observed setups. Results on two 2D game environments, RTFM and Overcooked-AI, show that PSALM-V improves step efficiency and succeeds in domain induction in multi-agent settings. PSALM-V correctly induces PDDL pre- and post-conditions for real-world robot BlocksWorld tasks, despite low-level manipulation failures from the robot.
☆ ITFormer: Bridging Time Series and Natural Language for Multi-Modal QA with Large-Scale Multitask Dataset
Time-series data are critical in diverse applications, such as industrial monitoring, medical diagnostics, and climate research. However, effectively integrating these high-dimensional temporal signals with natural language for dynamic, interactive tasks remains a significant challenge. To address this, we introduce the Time-Series Question Answering (Time-Series QA) task and release EngineMT-QA, the first large-scale, multi-task, temporal-textual QA dataset designed to capture complex interactions between time-series signals and natural language. Building on this resource, we propose the Instruct Time Transformer (ITFormer), a novel framework that bridges time-series encoders with frozen large language models (LLMs). ITFormer effectively extracts, aligns, and fuses temporal and textual features, achieving a strong improvement in QA accuracy over strong baselines with fewer than 1\% additional trainable parameters. By combining computational efficiency with robust cross-modal modeling, our work establishes a adaptable paradigm for integrating temporal data with natural language, paving the way for new research and applications in multi-modal AI. More details about the project, including datasets and code, are available at: https://pandalin98.github.io/itformer_site/
☆ Bridging Compositional and Distributional Semantics: A Survey on Latent Semantic Geometry via AutoEncoder
Integrating compositional and symbolic properties into current distributional semantic spaces can enhance the interpretability, controllability, compositionality, and generalisation capabilities of Transformer-based auto-regressive language models (LMs). In this survey, we offer a novel perspective on latent space geometry through the lens of compositional semantics, a direction we refer to as \textit{semantic representation learning}. This direction enables a bridge between symbolic and distributional semantics, helping to mitigate the gap between them. We review and compare three mainstream autoencoder architectures-Variational AutoEncoder (VAE), Vector Quantised VAE (VQVAE), and Sparse AutoEncoder (SAE)-and examine the distinctive latent geometries they induce in relation to semantic structure and interpretability.
comment: In progress
☆ SACL: Understanding and Combating Textual Bias in Code Retrieval with Semantic-Augmented Reranking and Localization
Retrieval-Augmented Code Generation (RACG) is a critical technique for enhancing code generation by retrieving relevant information. In this work, we conduct an in-depth analysis of code retrieval by systematically masking specific features while preserving code functionality. Our discoveries include: (1) although trained on code, current retrievers heavily rely on surface-level textual features (e.g., docstrings, identifier names), and (2) they exhibit a strong bias towards well-documented code, even if the documentation is irrelevant.Based on our discoveries, we propose SACL, a framework that enriches textual information and reduces bias by augmenting code or structural knowledge with semantic information. Extensive experiments show that SACL substantially improves code retrieval (e.g., by 12.8% / 9.4% / 7.0% Recall@1 on HumanEval / MBPP / SWE-Bench-Lite), which also leads to better code generation performance (e.g., by 4.88% Pass@1 on HumanEval).
☆ A Modular Multitask Reasoning Framework Integrating Spatio-temporal Models and LLMs
Spatio-temporal data mining plays a pivotal role in informed decision making across diverse domains. However, existing models are often restricted to narrow tasks, lacking the capacity for multi-task inference and complex long-form reasoning that require generation of in-depth, explanatory outputs. These limitations restrict their applicability to real-world, multi-faceted decision scenarios. In this work, we introduce STReason, a novel framework that integrates the reasoning strengths of large language models (LLMs) with the analytical capabilities of spatio-temporal models for multi-task inference and execution. Without requiring task-specific finetuning, STReason leverages in-context learning to decompose complex natural language queries into modular, interpretable programs, which are then systematically executed to generate both solutions and detailed rationales. To facilitate rigorous evaluation, we construct a new benchmark dataset and propose a unified evaluation framework with metrics specifically designed for long-form spatio-temporal reasoning. Experimental results show that STReason significantly outperforms advanced LLM baselines across all metrics, particularly excelling in complex, reasoning-intensive spatio-temporal scenarios. Human evaluations further validate STReason's credibility and practical utility, demonstrating its potential to reduce expert workload and broaden the applicability to real-world spatio-temporal tasks. We believe STReason provides a promising direction for developing more capable and generalizable spatio-temporal reasoning systems.
☆ Decide less, communicate more: On the construct validity of end-to-end fact-checking in medicine
Technological progress has led to concrete advancements in tasks that were regarded as challenging, such as automatic fact-checking. Interest in adopting these systems for public health and medicine has grown due to the high-stakes nature of medical decisions and challenges in critically appraising a vast and diverse medical literature. Evidence-based medicine connects to every individual, and yet the nature of it is highly technical, rendering the medical literacy of majority users inadequate to sufficiently navigate the domain. Such problems with medical communication ripens the ground for end-to-end fact-checking agents: check a claim against current medical literature and return with an evidence-backed verdict. And yet, such systems remain largely unused. To understand this, we present the first study examining how clinical experts verify real claims from social media by synthesizing medical evidence. In searching for this upper-bound, we reveal fundamental challenges in end-to-end fact-checking when applied to medicine: Difficulties connecting claims in the wild to scientific evidence in the form of clinical trials; ambiguities in underspecified claims mixed with mismatched intentions; and inherently subjective veracity labels. We argue that fact-checking should be approached and evaluated as an interactive communication problem, rather than an end-to-end process.
☆ Leaner Training, Lower Leakage: Revisiting Memorization in LLM Fine-Tuning with LoRA
Memorization in large language models (LLMs) makes them vulnerable to data extraction attacks. While pre-training memorization has been extensively studied, fewer works have explored its impact in fine-tuning, particularly for LoRA fine-tuning, a widely adopted parameter-efficient method. In this work, we re-examine memorization in fine-tuning and uncover a surprising divergence from prior findings across different fine-tuning strategies. Factors such as model scale and data duplication, which strongly influence memorization in pre-training and full fine-tuning, do not follow the same trend in LoRA fine-tuning. Using a more relaxed similarity-based memorization metric, we demonstrate that LoRA significantly reduces memorization risks compared to full fine-tuning, while still maintaining strong task performance.
☆ Uncovering Hidden Violent Tendencies in LLMs: A Demographic Analysis via Behavioral Vignettes
Large language models (LLMs) are increasingly proposed for detecting and responding to violent content online, yet their ability to reason about morally ambiguous, real-world scenarios remains underexamined. We present the first study to evaluate LLMs using a validated social science instrument designed to measure human response to everyday conflict, namely the Violent Behavior Vignette Questionnaire (VBVQ). To assess potential bias, we introduce persona-based prompting that varies race, age, and geographic identity within the United States. Six LLMs developed across different geopolitical and organizational contexts are evaluated under a unified zero-shot setting. Our study reveals two key findings: (1) LLMs surface-level text generation often diverges from their internal preference for violent responses; (2) their violent tendencies vary across demographics, frequently contradicting established findings in criminology, social science, and psychology.
comment: Under review
☆ MultiFinRAG: An Optimized Multimodal Retrieval-Augmented Generation (RAG) Framework for Financial Question Answering
Financial documents--such as 10-Ks, 10-Qs, and investor presentations--span hundreds of pages and combine diverse modalities, including dense narrative text, structured tables, and complex figures. Answering questions over such content often requires joint reasoning across modalities, which strains traditional large language models (LLMs) and retrieval-augmented generation (RAG) pipelines due to token limitations, layout loss, and fragmented cross-modal context. We introduce MultiFinRAG, a retrieval-augmented generation framework purpose-built for financial QA. MultiFinRAG first performs multimodal extraction by grouping table and figure images into batches and sending them to a lightweight, quantized open-source multimodal LLM, which produces both structured JSON outputs and concise textual summaries. These outputs, along with narrative text, are embedded and indexed with modality-aware similarity thresholds for precise retrieval. A tiered fallback strategy then dynamically escalates from text-only to text+table+image contexts when necessary, enabling cross-modal reasoning while reducing irrelevant context. Despite running on commodity hardware, MultiFinRAG achieves 19 percentage points higher accuracy than ChatGPT-4o (free-tier) on complex financial QA tasks involving text, tables, images, and combined multimodal reasoning.
comment: Preprint Copy
☆ The Ideation-Execution Gap: Execution Outcomes of LLM-Generated versus Human Research Ideas
Large Language Models (LLMs) have shown promise in accelerating the scientific research pipeline. A key capability for this process is the ability to generate novel research ideas, and prior studies have found settings in which LLM-generated research ideas were judged as more novel than human-expert ideas. However, a good idea should not simply appear to be novel, it should also result in better research after being executed. To test whether AI-generated ideas lead to better research outcomes, we conduct an execution study by recruiting 43 expert researchers to execute randomly-assigned ideas, either written by experts or generated by an LLM. Each expert spent over 100 hours implementing the idea and wrote a 4-page short paper to document the experiments. All the executed projects are then reviewed blindly by expert NLP researchers. Comparing the review scores of the same ideas before and after execution, the scores of the LLM-generated ideas decrease significantly more than expert-written ideas on all evaluation metrics (novelty, excitement, effectiveness, and overall; p < 0.05), closing the gap between LLM and human ideas observed at the ideation stage. When comparing the aggregated review scores from the execution study, we even observe that for many metrics there is a flip in rankings where human ideas score higher than LLM ideas. This ideation-execution gap highlights the limitations of current LLMs in generating truly effective research ideas and the challenge of evaluating research ideas in the absence of execution outcomes.
comment: main paper is 14 pages
☆ Multi-lingual Functional Evaluation for Large Language Models
Multi-lingual competence in large language models is often evaluated via static data benchmarks such as Belebele, M-MMLU and M-GSM. However, these evaluations often fail to provide an adequate understanding of the practical performance and robustness of models across multi-lingual settings. In response, we create multi-lingual functional benchmarks -- Cross-Lingual Grade School Math Symbolic (CL-GSM Symbolic) and Cross-Lingual Instruction-Following Eval (CL-IFEval)-- by translating existing functional benchmark templates from English to five additional languages that span the range of resources available for NLP: French, Spanish, Hindi, Arabic and Yoruba. Our results reveal that some static multi-lingual benchmarks capture functional performance much more closely than others (i.e. across models, there is a 24%, 17% and 18% decrease in performance between M-GSM and CL-GSM Symbolic in English, French and Spanish respectively; similarly there's a 15 - 24% performance drop across languages between Belebele and CL-IFEval, and only a 0.5% to 3% performance drop between M-MMLU and CL-IFEval). Similarly, we find that model robustness across languages varies significantly, with certain languages (eg. Arabic, English) being the most consistently well performing across evaluation iterations.
☆ Towards Probabilistic Question Answering Over Tabular Data
Current approaches for question answering (QA) over tabular data, such as NL2SQL systems, perform well for factual questions where answers are directly retrieved from tables. However, they fall short on probabilistic questions requiring reasoning under uncertainty. In this paper, we introduce a new benchmark LUCARIO and a framework for probabilistic QA over large tabular data. Our method induces Bayesian Networks from tables, translates natural language queries into probabilistic queries, and uses large language models (LLMs) to generate final answers. Empirical results demonstrate significant improvements over baselines, highlighting the benefits of hybrid symbolic-neural reasoning.
☆ MAGPIE: A dataset for Multi-AGent contextual PrIvacy Evaluation
The proliferation of LLM-based agents has led to increasing deployment of inter-agent collaboration for tasks like scheduling, negotiation, resource allocation etc. In such systems, privacy is critical, as agents often access proprietary tools and domain-specific databases requiring strict confidentiality. This paper examines whether LLM-based agents demonstrate an understanding of contextual privacy. And, if instructed, do these systems preserve inference time user privacy in non-adversarial multi-turn conversation. Existing benchmarks to evaluate contextual privacy in LLM-agents primarily assess single-turn, low-complexity tasks where private information can be easily excluded. We first present a benchmark - MAGPIE comprising 158 real-life high-stakes scenarios across 15 domains. These scenarios are designed such that complete exclusion of private data impedes task completion yet unrestricted information sharing could lead to substantial losses. We then evaluate the current state-of-the-art LLMs on (a) their understanding of contextually private data and (b) their ability to collaborate without violating user privacy. Empirical experiments demonstrate that current models, including GPT-4o and Claude-2.7-Sonnet, lack robust understanding of contextual privacy, misclassifying private data as shareable 25.2\% and 43.6\% of the time. In multi-turn conversations, these models disclose private information in 59.9\% and 50.5\% of cases even under explicit privacy instructions. Furthermore, multi-agent systems fail to complete tasks in 71\% of scenarios. These results underscore that current models are not aligned towards both contextual privacy preservation and collaborative task-solving.
♻ ☆ OmniGen2: Exploration to Advanced Multimodal Generation
In this work, we introduce OmniGen2, a versatile and open-source generative model designed to provide a unified solution for diverse generation tasks, including text-to-image, image editing, and in-context generation. Unlike OmniGen v1, OmniGen2 features two distinct decoding pathways for text and image modalities, utilizing unshared parameters and a decoupled image tokenizer. This design enables OmniGen2 to build upon existing multimodal understanding models without the need to re-adapt VAE inputs, thereby preserving the original text generation capabilities. To facilitate the training of OmniGen2, we developed comprehensive data construction pipelines, encompassing image editing and in-context generation data. Additionally, we introduce a reflection mechanism tailored for image generation tasks and curate a dedicated reflection dataset based on OmniGen2. Despite its relatively modest parameter size, OmniGen2 achieves competitive results on multiple task benchmarks, including text-to-image and image editing. To further evaluate in-context generation, also referred to as subject-driven tasks, we introduce a new benchmark named OmniContext. OmniGen2 achieves state-of-the-art performance among open-source models in terms of consistency. We will release our models, training code, datasets, and data construction pipeline to support future research in this field. Project Page: https://vectorspacelab.github.io/OmniGen2; GitHub Link: https://github.com/VectorSpaceLab/OmniGen2
♻ ☆ Recycling the Web: A Method to Enhance Pre-training Data Quality and Quantity for Language Models
Scaling laws predict that the performance of large language models improves with increasing model size and data size. In practice, pre-training has been relying on massive web crawls, using almost all data sources publicly available on the internet so far. However, this pool of natural data does not grow at the same rate as the compute supply. Furthermore, the availability of high-quality texts is even more limited: data filtering pipelines often remove up to 99% of the initial web scrapes to achieve state-of-the-art. To address the "data wall" of pre-training scaling, our work explores ways to transform and recycle data discarded in existing filtering processes. We propose REWIRE, REcycling the Web with guIded REwrite, a method to enrich low-quality documents so that they could become useful for training. This in turn allows us to increase the representation of synthetic data in the final pre-training set. Experiments at 1B, 3B and 7B scales of the DCLM benchmark show that mixing high-quality raw texts and our rewritten texts lead to 1.0, 1.3 and 2.5 percentage points improvement respectively across 22 diverse tasks, compared to training on only filtered web data. Training on the raw-synthetic data mix is also more effective than having access to 2x web data. Through further analysis, we demonstrate that about 82% of the mixed in texts come from transforming lower-quality documents that would otherwise be discarded. REWIRE also outperforms related approaches of generating synthetic data, including Wikipedia-style paraphrasing, question-answer synthesizing and knowledge extraction. These results suggest that recycling web texts holds the potential for being a simple and effective approach for scaling pre-training data.
♻ ☆ Ad-hoc Concept Forming in the Game Codenames as a Means for Evaluating Large Language Models ACL 2025
This study utilizes the game Codenames as a benchmarking tool to evaluate large language models (LLMs) with respect to specific linguistic and cognitive skills. LLMs play each side of the game, where one side generates a clue word covering several target words and the other guesses those target words. We designed various experiments by controlling the choice of words (abstract vs. concrete words, ambiguous vs. monosemic) or the opponent (programmed to be faster or slower in revealing words). Recent commercial and open-weight models were compared side-by-side to find out factors affecting their performance. The evaluation reveals details about their strategies, challenging cases, and limitations of LLMs.
comment: Accepted at GemBench workshop co-located with ACL 2025
♻ ☆ FluoroSAM: A Language-promptable Foundation Model for Flexible X-ray Image Segmentation
Language promptable X-ray image segmentation would enable greater flexibility for human-in-the-loop workflows in diagnostic and interventional precision medicine. Prior efforts have contributed task-specific models capable of solving problems within a narrow scope, but expanding to broader use requires additional data, annotations, and training time. Recently, language-aligned foundation models (LFMs) -- machine learning models trained on large amounts of highly variable image and text data thus enabling broad applicability -- have emerged as promising tools for automated image analysis. Existing foundation models for medical image analysis focus on scenarios and modalities where large, richly annotated datasets are available. However, the X-ray imaging modality features highly variable image appearance and applications, from diagnostic chest X-rays to interventional fluoroscopy, with varying availability of data. To pave the way toward an LFM for comprehensive and language-aligned analysis of arbitrary medical X-ray images, we introduce FluoroSAM, a language-promptable variant of the Segment Anything Model, trained from scratch on 3M synthetic X-ray images from a wide variety of human anatomies, imaging geometries, and viewing angles. These include pseudo-ground truth masks for 128 organ types and 464 tools with associated text descriptions. FluoroSAM is capable of segmenting myriad anatomical structures and tools based on natural language prompts, thanks to the novel incorporation of vector quantization (VQ) of text embeddings in the training process. We demonstrate FluoroSAM's performance quantitatively on real X-ray images and showcase on several applications how FluoroSAM is a key enabler for rich human-machine interaction in the X-ray image acquisition and analysis context. Code is available at https://github.com/arcadelab/fluorosam.
♻ ☆ On the Role of Context in Reading Time Prediction EMNLP 2024
We present a new perspective on how readers integrate context during real-time language comprehension. Our proposals build on surprisal theory, which posits that the processing effort of a linguistic unit (e.g., a word) is an affine function of its in-context information content. We first observe that surprisal is only one out of many potential ways that a contextual predictor can be derived from a language model. Another one is the pointwise mutual information (PMI) between a unit and its context, which turns out to yield the same predictive power as surprisal when controlling for unigram frequency. Moreover, both PMI and surprisal are correlated with frequency. This means that neither PMI nor surprisal contains information about context alone. In response to this, we propose a technique where we project surprisal onto the orthogonal complement of frequency, yielding a new contextual predictor that is uncorrelated with frequency. Our experiments show that the proportion of variance in reading times explained by context is a lot smaller when context is represented by the orthogonalized predictor. From an interpretability standpoint, this indicates that previous studies may have overstated the role that context has in predicting reading times.
comment: EMNLP 2024; preprocessing was corrected to exclude variance due to word skipping and the conclusions remain unchanged
♻ ☆ Unlocking In-Context Learning for Natural Datasets Beyond Language Modelling
Large Language Models (LLMs) exhibit In-Context Learning (ICL), which enables the model to perform new tasks conditioning only on the examples provided in the context without updating the model's weights. While ICL offers fast adaptation across natural language tasks and domains, its emergence is less straightforward for modalities beyond text. In this work, we systematically uncover properties present in LLMs that support the emergence of ICL for autoregressive models and various modalities by promoting the learning of the needed mechanisms for ICL. We identify exact token repetitions in the training data sequences as an important factor for ICL. Such repetitions further improve stability and reduce transiency in ICL performance. Moreover, we emphasise the significance of training task difficulty for the emergence of ICL. Finally, by applying our novel insights on ICL emergence, we unlock ICL capabilities for various visual datasets and a more challenging EEG classification task in a few-shot learning regime.
♻ ☆ Attention with Trained Embeddings Provably Selects Important Tokens
Token embeddings play a crucial role in language modeling but, despite this practical relevance, their theoretical understanding remains limited. Our paper addresses the gap by characterizing the structure of embeddings obtained via gradient descent. Specifically, we consider a one-layer softmax attention model with a linear head for binary classification, i.e., $\texttt{Softmax}( p^\top E_X^\top ) E_X v = \frac{ \sum_{i=1}^T \exp(p^\top E_{x_i}) E_{x_i}^\top v}{\sum_{j=1}^T \exp(p^\top E_{x_{j}}) }$, where $E_X = [ E_{x_1} , \dots, E_{x_T} ]^\top$ contains the embeddings of the input sequence, $p$ is the embedding of the $\mathrm{\langle cls \rangle}$ token and $v$ the output vector. First, we show that, already after a single step of gradient training with the logistic loss, the embeddings $E_X$ capture the importance of tokens in the dataset by aligning with the output vector $v$ proportionally to the frequency with which the corresponding tokens appear in the dataset. Then, after training $p$ via gradient flow until convergence, the softmax selects the important tokens in the sentence (i.e., those that are predictive of the label), and the resulting $\mathrm{\langle cls \rangle}$ embedding maximizes the margin for such a selection. Experiments on real-world datasets (IMDB, Yelp) exhibit a phenomenology close to that unveiled by our theory.
comment: Fix mistakes in Lemma 4.2 and proof of Lemma 4.5, and some other minor changes
♻ ☆ Separating Tongue from Thought: Activation Patching Reveals Language-Agnostic Concept Representations in Transformers ICML 2024
A central question in multilingual language modeling is whether large language models (LLMs) develop a universal concept representation, disentangled from specific languages. In this paper, we address this question by analyzing latent representations (latents) during a word-translation task in transformer-based LLMs. We strategically extract latents from a source translation prompt and insert them into the forward pass on a target translation prompt. By doing so, we find that the output language is encoded in the latent at an earlier layer than the concept to be translated. Building on this insight, we conduct two key experiments. First, we demonstrate that we can change the concept without changing the language and vice versa through activation patching alone. Second, we show that patching with the mean representation of a concept across different languages does not affect the models' ability to translate it, but instead improves it. Finally, we generalize to multi-token generation and demonstrate that the model can generate natural language description of those mean representations. Our results provide evidence for the existence of language-agnostic concept representations within the investigated models.
comment: 20 pages, 14 figures, previous version published under the title "How Do Llamas Process Multilingual Text? A Latent Exploration through Activation Patching" at the ICML 2024 mechanistic interpretability workshop at https://openreview.net/forum?id=0ku2hIm4BS
♻ ☆ Graph Linearization Methods for Reasoning on Graphs with Large Language Models
Large language models have evolved to process multiple modalities beyond text, such as images and audio, which motivates us to explore how to effectively leverage them for graph reasoning tasks. The key question, therefore, is how to transform graphs into linear sequences of tokens, a process we term "graph linearization", so that LLMs can handle graphs naturally. We consider that graphs should be linearized meaningfully to reflect certain properties of natural language text, such as local dependency and global alignment, in order to ease contemporary LLMs, trained on trillions of textual tokens, better understand graphs. To achieve this, we developed several graph linearization methods based on graph centrality and degeneracy. These methods are further enhanced using node relabeling techniques. The experimental results demonstrate the effectiveness of our methods compared to the random linearization baseline. Our work introduces novel graph representations suitable for LLMs, contributing to the potential integration of graph machine learning with the trend of multimodal processing using a unified transformer model.
♻ ☆ Scientists' First Exam: Probing Cognitive Abilities of MLLM via Perception, Understanding, and Reasoning
Scientific discoveries increasingly rely on complex multimodal reasoning based on information-intensive scientific data and domain-specific expertise. Empowered by expert-level scientific benchmarks, scientific Multimodal Large Language Models (MLLMs) hold the potential to significantly enhance this discovery process in realistic workflows. However, current scientific benchmarks mostly focus on evaluating the knowledge understanding capabilities of MLLMs, leading to an inadequate assessment of their perception and reasoning abilities. To address this gap, we present the Scientists' First Exam (SFE) benchmark, designed to evaluate the scientific cognitive capacities of MLLMs through three interconnected levels: scientific signal perception, scientific attribute understanding, scientific comparative reasoning. Specifically, SFE comprises 830 expert-verified VQA pairs across three question types, spanning 66 multimodal tasks across five high-value disciplines. Extensive experiments reveal that current state-of-the-art GPT-o3 and InternVL-3 achieve only 34.08% and 26.52% on SFE, highlighting significant room for MLLMs to improve in scientific realms. We hope the insights obtained in SFE will facilitate further developments in AI-enhanced scientific discoveries.
comment: 82 pages
♻ ☆ CogniBench: A Legal-inspired Framework and Dataset for Assessing Cognitive Faithfulness of Large Language Models ACL 2025
Faithfulness hallucinations are claims generated by a Large Language Model (LLM) not supported by contexts provided to the LLM. Lacking assessment standards, existing benchmarks focus on "factual statements" that rephrase source materials while overlooking "cognitive statements" that involve making inferences from the given context. Consequently, evaluating and detecting the hallucination of cognitive statements remains challenging. Inspired by how evidence is assessed in the legal domain, we design a rigorous framework to assess different levels of faithfulness of cognitive statements and introduce the CogniBench dataset where we reveal insightful statistics. To keep pace with rapidly evolving LLMs, we further develop an automatic annotation pipeline that scales easily across different models. This results in a large-scale CogniBench-L dataset, which facilitates training accurate detectors for both factual and cognitive hallucinations. We release our model and datasets at: https://github.com/FUTUREEEEEE/CogniBench
comment: ACL 2025
♻ ☆ Towards Fully Exploiting LLM Internal States to Enhance Knowledge Boundary Perception ACL2025
Large language models (LLMs) exhibit impressive performance across diverse tasks but often struggle to accurately gauge their knowledge boundaries, leading to confident yet incorrect responses. This paper explores leveraging LLMs' internal states to enhance their perception of knowledge boundaries from efficiency and risk perspectives. We investigate whether LLMs can estimate their confidence using internal states before response generation, potentially saving computational resources. Our experiments on datasets like Natural Questions, HotpotQA, and MMLU reveal that LLMs demonstrate significant pre-generation perception, which is further refined post-generation, with perception gaps remaining stable across varying conditions. To mitigate risks in critical domains, we introduce Confidence Consistency-based Calibration ($C^3$), which assesses confidence consistency through question reformulation. $C^3$ significantly improves LLMs' ability to recognize their knowledge gaps, enhancing the unknown perception rate by 5.6% on NQ and 4.9% on HotpotQA. Our findings suggest that pre-generation confidence estimation can optimize efficiency, while $C^3$ effectively controls output risks, advancing the reliability of LLMs in practical applications.
comment: ACL2025 Main
♻ ☆ SMAR: Soft Modality-Aware Routing Strategy for MoE-based Multimodal Large Language Models Preserving Language Capabilities
Mixture of Experts (MoE) architectures have become a key approach for scaling large language models, with growing interest in extending them to multimodal tasks. Existing methods to build multimodal MoE models either incur high training costs or suffer from degraded language capabilities when adapting pretrained models. To address this, we propose Soft ModalityAware Routing (SMAR), a novel regularization technique that uses Kullback Leibler divergence to control routing probability distributions across modalities, encouraging expert specialization without modifying model architecture or heavily relying on textual data. Experiments on visual instruction tuning show that SMAR preserves language ability at 86.6% retention with only 2.5% pure text, outperforming baselines while maintaining strong multimodal performance. Our approach offers a practical and efficient solution to balance modality differentiation and language capabilities in multimodal MoE models.
♻ ☆ Evaluating Rare Disease Diagnostic Performance in Symptom Checkers: A Synthetic Vignette Simulation Approach
Symptom Checkers (SCs) provide users with personalized medical information. To prevent performance degradation from algorithm updates, SC developers must evaluate diagnostic performance changes for individual diseases before deployment. However, acquiring sufficient evaluation data for rare diseases is difficult, and manually creating numerous clinical vignettes is costly and impractical. This study proposes and validates a novel Synthetic Vignette Simulation Approach to evaluate diagnostic performance changes for individual rare diseases following SC algorithm updates. We used disease-phenotype annotations from the Human Phenotype Ontology (HPO), a knowledge database for rare diseases, to generate synthetic vignettes. With these, we simulated SC interviews to estimate the impact of algorithm updates on real-world diagnostic performance. The method's effectiveness was evaluated retrospectively by comparing estimated values with actual metric changes using the $R^2$ coefficient. The experiment included eight past SC algorithm updates. For updates on diseases with frequency information in HPO (n=5), the $R^2$ for Recall@8 change was 0.831 ($p$=0.031), and for Precision@8 change, it was 0.78 ($p$=0.047), indicating the method can predict post-deployment performance. In contrast, large prediction errors occurred for diseases without frequency information (n=3), highlighting its importance. Our method enables pre-deployment evaluation of SC algorithm changes for individual rare diseases using a publicly available, expert-created knowledge base. This transparent and low-cost approach allows developers to efficiently improve diagnostic performance for rare diseases, potentially enhancing support for early diagnosis.
♻ ☆ VICCA: Visual Interpretation and Comprehension of Chest X-ray Anomalies in Generated Report Without Human Feedback
As artificial intelligence (AI) becomes increasingly central to healthcare, the demand for explainable and trustworthy models is paramount. Current report generation systems for chest X-rays (CXR) often lack mechanisms for validating outputs without expert oversight, raising concerns about reliability and interpretability. To address these challenges, we propose a novel multimodal framework designed to enhance the semantic alignment and localization accuracy of AI-generated medical reports. Our framework integrates two key modules: a Phrase Grounding Model, which identifies and localizes pathologies in CXR images based on textual prompts, and a Text-to-Image Diffusion Module, which generates synthetic CXR images from prompts while preserving anatomical fidelity. By comparing features between the original and generated images, we introduce a dual-scoring system: one score quantifies localization accuracy, while the other evaluates semantic consistency. This approach significantly outperforms existing methods, achieving state-of-the-art results in pathology localization and text-to-image alignment. The integration of phrase grounding with diffusion models, coupled with the dual-scoring evaluation system, provides a robust mechanism for validating report quality, paving the way for more trustworthy and transparent AI in medical imaging.
♻ ☆ Confucius3-Math: A Lightweight High-Performance Reasoning LLM for Chinese K-12 Mathematics Learning
We introduce Confucius3-Math, an open-source large language model with 14B parameters that (1) runs efficiently on a single consumer-grade GPU; (2) achieves SOTA performances on a range of mathematical reasoning tasks, outperforming many models with significantly larger sizes. In particular, as part of our mission to enhancing education and knowledge dissemination with AI, Confucius3-Math is specifically committed to mathematics learning for Chinese K-12 students and educators. Built via post-training with large-scale reinforcement learning (RL), Confucius3-Math aligns with national curriculum and excels at solving main-stream Chinese K-12 mathematical problems with low cost. In this report we share our development recipe, the challenges we encounter and the techniques we develop to overcome them. In particular, we introduce three technical innovations: Targeted Entropy Regularization, Recent Sample Recovery and Policy-Specific Hardness Weighting. These innovations encompass a new entropy regularization, a novel data scheduling policy, and an improved group-relative advantage estimator. Collectively, they significantly stabilize the RL training, improve data efficiency, and boost performance. Our work demonstrates the feasibility of building strong reasoning models in a particular domain at low cost. We open-source our model and code at https://github.com/netease-youdao/Confucius3-Math.
♻ ☆ VAQUUM: Are Vague Quantifiers Grounded in Visual Data? ACL 2025
Vague quantifiers such as "a few" and "many" are influenced by various contextual factors, including the number of objects present in a given context. In this work, we evaluate the extent to which vision-and-language models (VLMs) are compatible with humans when producing or judging the appropriateness of vague quantifiers in visual contexts. We release a novel dataset, VAQUUM, containing 20,300 human ratings on quantified statements across a total of 1089 images. Using this dataset, we compare human judgments and VLM predictions using three different evaluation methods. Our findings show that VLMs, like humans, are influenced by object counts in vague quantifier use. However, we find significant inconsistencies across models in different evaluation settings, suggesting that judging and producing vague quantifiers rely on two different processes.
comment: Proceedings of ACL 2025, 10 pages
♻ ☆ Balancing Truthfulness and Informativeness with Uncertainty-Aware Instruction Fine-Tuning
Instruction fine-tuning (IFT) can increase the informativeness of large language models (LLMs), but may reduce their truthfulness. This trade-off arises because IFT steers LLMs to generate responses containing long-tail knowledge that was not well covered during pre-training. As a result, models become more informative but less accurate when generalizing to unseen tasks. In this paper, we empirically demonstrate how unfamiliar knowledge in IFT datasets can negatively affect the truthfulness of LLMs, and we introduce two new IFT paradigms, $UNIT_{cut}$ and $UNIT_{ref}$, to address this issue. $UNIT_{cut}$ identifies and removes unfamiliar knowledge from IFT datasets to mitigate its impact on model truthfulness, whereas $UNIT_{ref}$ trains LLMs to recognize their uncertainty and explicitly indicate it at the end of their responses. Our experiments show that $UNIT_{cut}$ substantially improves LLM truthfulness, while $UNIT_{ref}$ maintains high informativeness and reduces hallucinations by distinguishing between confident and uncertain statements.
♻ ☆ LR^2Bench: Evaluating Long-chain Reflective Reasoning Capabilities of Large Language Models via Constraint Satisfaction Problems ACL-2025
Recent progress in Large Reasoning Models (LRMs) has significantly enhanced the reasoning abilities of Large Language Models (LLMs), empowering them to tackle increasingly complex tasks through reflection capabilities, such as making assumptions, backtracking, and self-refinement. However, effectively evaluating such reflection capabilities remains challenging due to the lack of appropriate benchmarks. To bridge this gap, we introduce LR$^2$Bench, a novel benchmark designed to evaluate the Long-chain Reflective Reasoning capabilities of LLMs. LR$^2$Bench comprises 850 samples across six Constraint Satisfaction Problems (CSPs) where reflective reasoning is crucial for deriving solutions that meet all given constraints. Each type of task focuses on distinct constraint patterns, such as knowledge-based, logical, and spatial constraints, providing a comprehensive evaluation of diverse problem-solving scenarios. Our extensive evaluation on both conventional LLMs and LRMs reveals that even the most advanced LRMs, such as DeepSeek-R1 and OpenAI o1-preview, struggle with tasks in LR$^2$Bench, achieving an average Exact Match score of only 20.0% and 23.6%, respectively. These findings underscore the significant room for improvement in the reflective reasoning capabilities of current LLMs.
comment: ACL-2025, our code is available at https://github.com/ZNLP/LR2Bench
♻ ☆ LADM: Long-context Training Data Selection with Attention-based Dependency Measurement for LLMs ACL 2025
Long-context modeling has drawn more and more attention in the area of Large Language Models (LLMs). Continual training with long-context data becomes the de-facto method to equip LLMs with the ability to process long inputs. However, it still remains an open challenge to measure the quality of long-context training data. To address this issue, we propose a Long-context data selection framework with Attention-based Dependency Measurement (LADM), which can efficiently identify high-quality long-context data from a large-scale, multi-domain pre-training corpus. LADM leverages the retrieval capabilities of the attention mechanism to capture contextual dependencies, ensuring a comprehensive quality measurement of long-context data. Experimental results show that our LADM framework significantly boosts the performance of LLMs on multiple long-context tasks with only 1B tokens for continual training.
comment: ACL 2025, our code is available at https://github.com/ZNLP/LADM
♻ ☆ LLaVA-CMoE: Towards Continual Mixture of Experts for Large Vision-Language Models
Mixture of Experts (MoE) architectures have recently advanced the scalability and adaptability of large language models (LLMs) for continual multimodal learning. However, efficiently extending these models to accommodate sequential tasks remains challenging. As new tasks arrive, naive model expansion leads to rapid parameter growth, while modifying shared routing components often causes catastrophic forgetting, undermining previously learned knowledge. To address these issues, we propose LLaVA-CMoE, a continual learning framework for LLMs that requires no replay data of previous tasks and ensures both parameter efficiency and robust knowledge retention. Our approach introduces a Probe-Guided Knowledge Extension mechanism, which uses probe experts to dynamically determine when and where new experts should be added, enabling adaptive and minimal parameter expansion tailored to task complexity. Furthermore, we present a Probabilistic Task Locator that assigns each task a dedicated, lightweight router. To handle the practical issue that task labels are unknown during inference, we leverage a VAE-based reconstruction strategy to identify the most suitable router by matching input distributions, allowing automatic and accurate expert allocation. This design mitigates routing conflicts and catastrophic forgetting, enabling robust continual learning without explicit task labels. Extensive experiments on the CoIN benchmark, covering eight diverse VQA tasks, demonstrate that LLaVA-CMoE delivers strong continual learning performance with a compact model size, significantly reducing forgetting and parameter overhead compared to prior methods. These results showcase the effectiveness and scalability of our approach for parameter-efficient continual learning in large language models. Our code will be open-sourced soon.
comment: Preprint
♻ ☆ Conversational User-AI Intervention: A Study on Prompt Rewriting for Improved LLM Response Generation ACL
Human-LLM conversations are increasingly becoming more pervasive in peoples' professional and personal lives, yet many users still struggle to elicit helpful responses from LLM Chatbots. One of the reasons for this issue is users' lack of understanding in crafting effective prompts that accurately convey their information needs. Meanwhile, the existence of real-world conversational datasets on the one hand, and the text understanding faculties of LLMs on the other, present a unique opportunity to study this problem, and its potential solutions at scale. Thus, in this paper we present the first LLM-centric study of real human-AI chatbot conversations, focused on investigating aspects in which user queries fall short of expressing information needs, and the potential of using LLMs to rewrite suboptimal user prompts. Our findings demonstrate that rephrasing ineffective prompts can elicit better responses from a conversational system, while preserving the user's original intent. Notably, the performance of rewrites improves in longer conversations, where contextual inferences about user needs can be made more accurately. Additionally, we observe that LLMs often need to -- and inherently do -- make \emph{plausible} assumptions about a user's intentions and goals when interpreting prompts. Our findings largely hold true across conversational domains, user intents, and LLMs of varying sizes and families, indicating the promise of using prompt rewriting as a solution for better human-AI interactions.
comment: 8 pages, ACL style
♻ ☆ Rewarding Graph Reasoning Process makes LLMs more Generalized Reasoners KDD 2025
Despite significant advancements in Large Language Models (LLMs), developing advanced reasoning capabilities in LLMs remains a key challenge. Process Reward Models (PRMs) have demonstrated exceptional promise in enhancing reasoning by providing step-wise feedback, particularly in the context of mathematical reasoning. However, their application to broader reasoning domains remains understudied, largely due to the high costs associated with manually creating step-level supervision. In this work, we explore the potential of PRMs in graph reasoning problems - a domain that demands sophisticated multi-step reasoning and offers opportunities for automated step-level data generation using established graph algorithms. We introduce GraphSILO, the largest dataset for graph reasoning problems with fine-grained step-wise labels, built using automated Task-oriented Trajectories and Monte Carlo Tree Search (MCTS) to generate detailed reasoning steps with step-wise labels. Building upon this dataset, we train GraphPRM, the first PRM designed for graph reasoning problems, and evaluate its effectiveness in two key settings: inference-time scaling and reinforcement learning via Direct Preference Optimization (DPO). Experimental results show that GraphPRM significantly improves LLM performance across 13 graph reasoning tasks, delivering a 9% gain for Qwen2.5-7B and demonstrating transferability to new graph reasoning datasets and new reasoning domains like mathematical problem-solving. Notably, GraphPRM enhances LLM performance on GSM8K and Math500, underscoring the cross-domain applicability of graph-based reasoning rewards. Our findings highlight the potential of PRMs in advancing reasoning across diverse domains, paving the way for more versatile and effective LLMs.
comment: Accepted to KDD 2025 Research Track
♻ ☆ A Global Context Mechanism for Sequence Labeling
Global sentence information is crucial for sequence labeling tasks, where each word in a sentence must be assigned a label. While BiLSTM models are widely used, they often fail to capture sufficient global context for inner words. Previous work has proposed various RNN variants to integrate global sentence information into word representations. However, these approaches suffer from three key limitations: (1) they are slower in both inference and training compared to the original BiLSTM, (2) they cannot effectively supplement global information for transformer-based models, and (3) the high time cost associated with reimplementing and integrating these customized RNNs into existing architectures. In this study, we introduce a simple yet effective mechanism that addresses these limitations. Our approach efficiently supplements global sentence information for both BiLSTM and transformer-based models, with minimal degradation in inference and training speed, and is easily pluggable into current architectures. We demonstrate significant improvements in F1 scores across seven popular benchmarks, including Named Entity Recognition (NER) tasks such as Conll2003, Wnut2017 , and the Chinese named-entity recognition task Weibo, as well as End-to-End Aspect-Based Sentiment Analysis (E2E-ABSA) benchmarks such as Laptop14, Restaurant14, Restaurant15, and Restaurant16. With out any extra strategy, we achieve third highest score on weibo NER benchmark. Compared to CRF, one of the most popular frameworks for sequence labeling, our mechanism achieves competitive F1 scores while offering superior inference and training speed. Code is available at: https://github.com/conglei2XU/Global-Context-Mechanism
♻ ☆ What Matters in LLM-generated Data: Diversity and Its Effect on Model Fine-Tuning
With the remarkable generative capabilities of large language models (LLMs), using LLM-generated data to train downstream models has emerged as a promising approach to mitigate data scarcity in specific domains and reduce time-consuming annotations. However, recent studies have highlighted a critical issue: iterative training on self-generated data results in model collapse, where model performance degrades over time. Despite extensive research on the implications of LLM-generated data, these works often neglect the importance of data diversity, a key factor in data quality. In this work, we aim to understand the implications of the diversity of LLM-generated data on downstream model performance. Specifically, we explore how varying levels of diversity in LLM-generated data affect downstream model performance. Additionally, we investigate the performance of models trained on data that mixes different proportions of LLM-generated data, which we refer to as synthetic data. Our experimental results show that, with minimal distribution shift, moderately diverse LLM-generated data can enhance model performance in scenarios with insufficient labeled data, whereas highly diverse generated data has a negative impact. We hope our empirical findings will offer valuable guidance for future studies on LLMs as data generators.
comment: Ongoing work
♻ ☆ A Comprehensive Evaluation of Semantic Relation Knowledge of Pretrained Language Models and Humans
Recently, much work has concerned itself with the enigma of what exactly PLMs (pretrained language models) learn about different aspects of language, and how they learn it. One stream of this type of research investigates the knowledge that PLMs have about semantic relations. However, many aspects of semantic relations were left unexplored. Only one relation was considered, namely hypernymy. Furthermore, previous work did not measure humans' performance on the same task as that solved by the PLMs. This means that at this point in time, there is only an incomplete view of models' semantic relation knowledge. To address this gap, we introduce a comprehensive evaluation framework covering five relations beyond hypernymy, namely hyponymy, holonymy, meronymy, antonymy, and synonymy. We use six metrics (two newly introduced here) for recently untreated aspects of semantic relation knowledge, namely soundness, completeness, symmetry, asymmetry, prototypicality, and distinguishability and fairly compare humans and models on the same task. Our extensive experiments involve 16 PLMs, eight masked and eight causal language models. Up to now only masked language models had been tested although causal and masked language models treat context differently. Our results reveal a significant knowledge gap between humans and models for almost all semantic relations. Antonymy is the outlier relation where all models perform reasonably well. In general, masked language models perform significantly better than causal language models. Nonetheless, both masked and causal language models are likely to confuse non-antonymy relations with antonymy.
comment: Accpeted by Language Resources and Evaluation
♻ ☆ Misalignment of Semantic Relation Knowledge between WordNet and Human Intuition
WordNet provides a carefully constructed repository of semantic relations, created by specialists. But there is another source of information on semantic relations, the intuition of language users. We present the first systematic study of the degree to which these two sources are aligned. Investigating the cases of misalignment could make proper use of WordNet and facilitate its improvement. Our analysis which uses templates to elicit responses from human participants, reveals a general misalignment of semantic relation knowledge between WordNet and human intuition. Further analyses find a systematic pattern of mismatch among synonymy and taxonomic relations~(hypernymy and hyponymy), together with the fact that WordNet path length does not serve as a reliable indicator of human intuition regarding hypernymy or hyponymy relations.
comment: Accepted by Global WordNet Conference 2025
♻ ☆ PP-DocBee2: Improved Baselines with Efficient Data for Multimodal Document Understanding
This report introduces PP-DocBee2, an advanced version of the PP-DocBee, designed to enhance multimodal document understanding. Built on a large multimodal model architecture, PP-DocBee2 addresses the limitations of its predecessor through key technological improvements, including enhanced synthetic data quality, improved visual feature fusion strategy, and optimized inference methodologies. These enhancements yield an $11.4\%$ performance boost on internal benchmarks for Chinese business documents, and reduce inference latency by $73.0\%$ to the vanilla version. A key innovation of our work is a data quality optimization strategy for multimodal document tasks. By employing a large-scale multimodal pre-trained model to evaluate data, we apply a novel statistical criterion to filter outliers, ensuring high-quality training data. Inspired by insights into underutilized intermediate features in multimodal models, we enhance the ViT representational capacity by decomposing it into layers and applying a novel feature fusion strategy to improve complex reasoning. The source code and pre-trained model are available at \href{https://github.com/PaddlePaddle/PaddleMIX}{https://github.com/PaddlePaddle/PaddleMIX}.
♻ ☆ Understanding World or Predicting Future? A Comprehensive Survey of World Models
The concept of world models has garnered significant attention due to advancements in multimodal large language models such as GPT-4 and video generation models such as Sora, which are central to the pursuit of artificial general intelligence. This survey offers a comprehensive review of the literature on world models. Generally, world models are regarded as tools for either understanding the present state of the world or predicting its future dynamics. This review presents a systematic categorization of world models, emphasizing two primary functions: (1) constructing internal representations to understand the mechanisms of the world, and (2) predicting future states to simulate and guide decision-making. Initially, we examine the current progress in these two categories. We then explore the application of world models in key domains, including autonomous driving, robotics, and social simulacra, with a focus on how each domain utilizes these aspects. Finally, we outline key challenges and provide insights into potential future research directions. We summarize the representative papers along with their code repositories in https://github.com/tsinghua-fib-lab/World-Model.
comment: Accepted by ACM CSUR, 37 pages, 7 figures, 7 tables
♻ ☆ Attention Entropy is a Key Factor: An Analysis of Parallel Context Encoding with Full-attention-based Pre-trained Language Models ACL 2025
Large language models have shown remarkable performance across a wide range of language tasks, owing to their exceptional capabilities in context modeling. The most commonly used method of context modeling is full self-attention, as seen in standard decoder-only Transformers. Although powerful, this method can be inefficient for long sequences and may overlook inherent input structures. To address these problems, an alternative approach is parallel context encoding, which splits the context into sub-pieces and encodes them parallelly. Because parallel patterns are not encountered during training, naively applying parallel encoding leads to performance degradation. However, the underlying reasons and potential mitigations are unclear. In this work, we provide a detailed analysis of this issue and identify that unusually high attention entropy can be a key factor. Furthermore, we adopt two straightforward methods to reduce attention entropy by incorporating attention sinks and selective mechanisms. Experiments on various tasks reveal that these methods effectively lower irregular attention entropy and narrow performance gaps. We hope this study can illuminate ways to enhance context modeling mechanisms.
comment: ACL 2025
♻ ☆ Therapy as an NLP Task: Psychologists' Comparison of LLMs and Human Peers in CBT
Large language models (LLMs) are being used as ad-hoc therapists. Research suggests that LLMs outperform human counselors when generating a single, isolated empathetic response; however, their session-level behavior remains understudied. In this study, we compare the session-level behaviors of human counselors with those of an LLM prompted by a team of peer counselors to deliver single-session Cognitive Behavioral Therapy (CBT). Our three-stage, mixed-methods study involved: a) a year-long ethnography of a text-based support platform where seven counselors iteratively refined CBT prompts through self-counseling and weekly focus groups; b) the manual simulation of human counselor sessions with a CBT-prompted LLM, given the full patient dialogue and contextual notes; and c) session evaluations of both human and LLM sessions by three licensed clinical psychologists using CBT competence measures. Our results show a clear trade-off. Human counselors excel at relational strategies -- small talk, self-disclosure, and culturally situated language -- that lead to higher empathy, collaboration, and deeper user reflection. LLM counselors demonstrate higher procedural adherence to CBT techniques but struggle to sustain collaboration, misread cultural cues, and sometimes produce "deceptive empathy," i.e., formulaic warmth that can inflate users' expectations of genuine human care. Taken together, our findings imply that while LLMs might outperform counselors in generating single empathetic responses, their ability to lead sessions is more limited, highlighting that therapy cannot be reduced to a standalone natural language processing (NLP) task. We call for carefully designed human-AI workflows in scalable support: LLMs can scaffold evidence-based techniques, while peers provide relational support. We conclude by mapping concrete design opportunities and ethical guardrails for such hybrid systems.
♻ ☆ Quantifying Fairness in LLMs Beyond Tokens: A Semantic and Statistical Perspective
Large Language Models (LLMs) often generate responses with inherent biases, undermining their reliability in real-world applications. Existing evaluation methods often overlook biases in long-form responses and the intrinsic variability of LLM outputs. To address these challenges, we propose FiSCo(Fine-grained Semantic Computation), a novel statistical framework to evaluate group-level fairness in LLMs by detecting subtle semantic differences in long-form responses across demographic groups. Unlike prior work focusing on sentiment or token-level comparisons, FiSCo goes beyond surface-level analysis by operating at the claim level, leveraging entailment checks to assess the consistency of meaning across responses. We decompose model outputs into semantically distinct claims and apply statistical hypothesis testing to compare inter- and intra-group similarities, enabling robust detection of subtle biases. We formalize a new group counterfactual fairness definition and validate FiSCo on both synthetic and human-annotated datasets spanning gender, race, and age. Experiments show that FiSco more reliably identifies nuanced biases while reducing the impact of stochastic LLM variability, outperforming various evaluation metrics.
comment: 29 pages, 9 figures, 15 tables
♻ ☆ mSTEB: Massively Multilingual Evaluation of LLMs on Speech and Text Tasks
Large Language models (LLMs) have demonstrated impressive performance on a wide range of tasks, including in multimodal settings such as speech. However, their evaluation is often limited to English and a few high-resource languages. For low-resource languages, there is no standardized evaluation benchmark. In this paper, we address this gap by introducing mSTEB, a new benchmark to evaluate the performance of LLMs on a wide range of tasks covering language identification, text classification, question answering, and translation tasks on both speech and text modalities. We evaluated the performance of leading LLMs such as Gemini 2.0 Flash and GPT-4o (Audio) and state-of-the-art open models such as Qwen 2 Audio and Gemma 3 27B. Our evaluation shows a wide gap in performance between high-resource and low-resource languages, especially for languages spoken in Africa and Americas/Oceania. Our findings show that more investment is needed to address their under-representation in LLMs coverage.
comment: working paper
♻ ☆ Computation Mechanism Behind LLM Position Generalization ACL 2025
Most written natural languages are composed of sequences of words and sentences. Similar to humans, large language models (LLMs) exhibit flexibility in handling textual positions - a phenomenon we term position generalization. They can understand texts with position perturbations and generalize to longer texts than those encountered during training with the latest techniques. These phenomena suggest that LLMs handle positions tolerantly, but how LLMs computationally process positional relevance remains largely unexplored. This work connects the linguistic phenomenon with LLMs' computational mechanisms. We show how LLMs enforce certain computational mechanisms for the aforementioned tolerance in position perturbations. Despite the complex design of the self-attention mechanism, this work reveals that LLMs learn a counterintuitive disentanglement of attention logits. Their values show a 0.959 linear correlation with an approximation of the arithmetic sum of positional relevance and semantic importance. Furthermore, we identify a prevalent pattern in intermediate features, which we prove theoretically enables this effect. The pattern, which is different from how randomly initialized parameters would behave, suggests that it is a learned behavior rather than a natural result of the model architecture. Based on these findings, we provide computational explanations and criteria for LLMs' position flexibilities. This work takes a pioneering step in linking position generalization with modern LLMs' internal mechanisms.
comment: ACL 2025 Main Long Paper
♻ ☆ Thought Anchors: Which LLM Reasoning Steps Matter?
Reasoning large language models have recently achieved state-of-the-art performance in many fields. However, their long-form chain-of-thought reasoning creates interpretability challenges as each generated token depends on all previous ones, making the computation harder to decompose. We argue that analyzing reasoning traces at the sentence level is a promising approach to understanding reasoning processes. We present three complementary attribution methods: (1) a black-box method measuring each sentence's counterfactual importance by comparing final answers across 100 rollouts conditioned on the model generating that sentence or one with a different meaning; (2) a white-box method of aggregating attention patterns between pairs of sentences, which identified "broadcasting" sentences that receive disproportionate attention from all future sentences via "receiver" attention heads; (3) a causal attribution method measuring logical connections between sentences by suppressing attention toward one sentence and measuring the effect on each future sentence's tokens. Each method provides evidence for the existence of thought anchors, reasoning steps that have outsized importance and that disproportionately influence the subsequent reasoning process. These thought anchors are typically planning or backtracking sentences. We provide an open-source tool (www.thought-anchors.com) for visualizing the outputs of our methods, and present a case study showing converging patterns across methods that map how a model performs multi-step reasoning. The consistency across methods demonstrates the potential of sentence-level analysis for a deeper understanding of reasoning models.
comment: Paul C. Bogdan and Uzay Macar contributed equally to this work, and their listed order was determined by coinflip. Neel Nanda and Arthur Conmy contributed equally to this work as senior authors, and their listed order was determined by coinflip
♻ ☆ Exploring Big Five Personality and AI Capability Effects in LLM-Simulated Negotiation Dialogues KDD 2025
This paper presents an evaluation framework for agentic AI systems in mission-critical negotiation contexts, addressing the need for AI agents that can adapt to diverse human operators and stakeholders. Using Sotopia as a simulation testbed, we present two experiments that systematically evaluated how personality traits and AI agent characteristics influence LLM-simulated social negotiation outcomes--a capability essential for a variety of applications involving cross-team coordination and civil-military interactions. Experiment 1 employs causal discovery methods to measure how personality traits impact price bargaining negotiations, through which we found that Agreeableness and Extraversion significantly affect believability, goal achievement, and knowledge acquisition outcomes. Sociocognitive lexical measures extracted from team communications detected fine-grained differences in agents' empathic communication, moral foundations, and opinion patterns, providing actionable insights for agentic AI systems that must operate reliably in high-stakes operational scenarios. Experiment 2 evaluates human-AI job negotiations by manipulating both simulated human personality and AI system characteristics, specifically transparency, competence, adaptability, demonstrating how AI agent trustworthiness impact mission effectiveness. These findings establish a repeatable evaluation methodology for experimenting with AI agent reliability across diverse operator personalities and human-agent team dynamics, directly supporting operational requirements for reliable AI systems. Our work advances the evaluation of agentic AI workflows by moving beyond standard performance metrics to incorporate social dynamics essential for mission success in complex operations.
comment: Under review for KDD 2025 Workshop on Evaluation and Trustworthiness of Agentic and Generative AI Models
♻ ☆ GroundCap: A Visually Grounded Image Captioning Dataset
Current image captioning systems lack the ability to link descriptive text to specific visual elements, making their outputs difficult to verify. While recent approaches offer some grounding capabilities, they cannot track object identities across multiple references or ground both actions and objects simultaneously. We propose a novel ID-based grounding system that enables consistent object reference tracking and action-object linking. We present GroundCap, a dataset containing 52,016 images from 77 movies, with 344 human-annotated and 52,016 automatically generated captions. Each caption is grounded on detected objects (132 classes) and actions (51 classes) using a tag system that maintains object identity while linking actions to the corresponding objects. Our approach features persistent object IDs for reference tracking, explicit action-object linking, and the segmentation of background elements through K-means clustering. We propose gMETEOR, a metric combining caption quality with grounding accuracy, and establish baseline performance by fine-tuning Pixtral-12B and Qwen2.5-VL 7B on GroundCap. Human evaluation demonstrates our approach's effectiveness in producing verifiable descriptions with coherent object references.
comment: 37 pages
♻ ☆ A3 : an Analytical Low-Rank Approximation Framework for Attention
Large language models have demonstrated remarkable performance; however, their massive parameter counts make deployment highly expensive. Low-rank approximation offers a promising compression solution, yet existing approaches have two main limitations: (1) They focus on minimizing the output error of individual linear layers, without considering the architectural characteristics of Transformers, and (2) they decompose a large weight matrix into two small low-rank matrices. Consequently, these methods often fall short compared to other compression techniques like pruning and quantization, and introduce runtime overhead such as the extra GEMM kernel launches for decomposed small matrices. To address these limitations, we propose $\tt A^\tt 3$, a post-training low-rank approximation framework. $\tt A^\tt 3$ splits a Transformer layer into three functional components, namely $\tt QK$, $\tt OV$, and $\tt MLP$. For each component, $\tt A^\tt 3$ provides an analytical solution that reduces the hidden dimension size inside each component while minimizing the component's functional loss ($\it i.e.$, error in attention scores, attention outputs, and MLP outputs). This approach directly reduces model sizes, KV cache sizes, and FLOPs without introducing any runtime overheads. In addition, it provides a new narrative in advancing the optimization problem from singular linear layer loss optimization toward improved end-to-end performance. Through extensive experiments, we show that $\tt A^\tt 3$ maintains superior performance compared to SoTAs. For example, under the same reduction budget in computation and memory, our low-rank approximated LLaMA 3.1-70B achieves a perplexity of 4.69 on WikiText-2, outperforming the previous SoTA's 7.87 by 3.18. We also demonstrate the versatility of $\tt A^\tt 3$, including KV cache compression, quantization, and mixed-rank assignments for enhanced performance.
♻ ☆ Privacy Ripple Effects from Adding or Removing Personal Information in Language Model Training
Due to the sensitive nature of personally identifiable information (PII), its owners may have the authority to control its inclusion or request its removal from large-language model (LLM) training. Beyond this, PII may be added or removed from training datasets due to evolving dataset curation techniques, because they were newly scraped for retraining, or because they were included in a new downstream fine-tuning stage. We find that the amount and ease of PII memorization is a dynamic property of a model that evolves throughout training pipelines and depends on commonly altered design choices. We characterize three such novel phenomena: (1) similar-appearing PII seen later in training can elicit memorization of earlier-seen sequences in what we call assisted memorization, and this is a significant factor (in our settings, up to 1/3); (2) adding PII can increase memorization of other PII significantly (in our settings, as much as $\approx\!7.5\times$); and (3) removing PII can lead to other PII being memorized. Model creators should consider these first- and second-order privacy risks when training models to avoid the risk of new PII regurgitation.
comment: Accepted at the Findings of the Association for Computational Linguistics (2025)
♻ ☆ CodeLutra: Boosting LLM Code Generation via Preference-Guided Refinement
Large Language Models (LLMs) have revolutionized code generation but require significant resources and often over-generalize, limiting their task-specific efficiency. Fine-tuning smaller, open-source LLMs provides a cost-effective alternative. However, standard supervised approaches rely only on correct examples, missing valuable insights from failures. We introduce CodeLutra, a framework that leverages both correct and incorrect code attempts. Instead of using only correct solutions, CodeLutra applies iterative preference-based refinement, comparing successful and failed outputs to better approximate desired results. This approach narrows the performance gap with state-of-the-art larger models without requiring massive datasets or auxiliary models. For instance, on a challenging data science coding task, using only 500 samples improved Llama-3-8B's accuracy from 28.2% to 48.6%, approaching GPT-4's level. By learning from both successes and mistakes, CodeLutra provides a scalable and efficient path to high-quality code generation, making smaller open-source models more competitive with leading closed-source alternatives.
comment: TMLR 2025
Computer Vision and Pattern Recognition 100
☆ IPFormer: Visual 3D Panoptic Scene Completion with Context-Adaptive Instance Proposals
Semantic Scene Completion (SSC) has emerged as a pivotal approach for jointly learning scene geometry and semantics, enabling downstream applications such as navigation in mobile robotics. The recent generalization to Panoptic Scene Completion (PSC) advances the SSC domain by integrating instance-level information, thereby enhancing object-level sensitivity in scene understanding. While PSC was introduced using LiDAR modality, methods based on camera images remain largely unexplored. Moreover, recent Transformer-based SSC approaches utilize a fixed set of learned queries to reconstruct objects within the scene volume. Although these queries are typically updated with image context during training, they remain static at test time, limiting their ability to dynamically adapt specifically to the observed scene. To overcome these limitations, we propose IPFormer, the first approach that leverages context-adaptive instance proposals at train and test time to address vision-based 3D Panoptic Scene Completion. Specifically, IPFormer adaptively initializes these queries as panoptic instance proposals derived from image context and further refines them through attention-based encoding and decoding to reason about semantic instance-voxel relationships. Experimental results show that our approach surpasses state-of-the-art methods in overall panoptic metrics PQ$^\dagger$ and PQ-All, matches performance in individual metrics, and achieves a runtime reduction exceeding 14$\times$. Furthermore, our ablation studies reveal that dynamically deriving instance proposals from image context, as opposed to random initialization, leads to a 3.62% increase in PQ-All and a remarkable average improvement of 18.65% in combined Thing-metrics. These results highlight our introduction of context-adaptive instance proposals as a pioneering effort in addressing vision-based 3D Panoptic Scene Completion.
☆ MMSearch-R1: Incentivizing LMMs to Search
Robust deployment of large multimodal models (LMMs) in real-world scenarios requires access to external knowledge sources, given the complexity and dynamic nature of real-world information. Existing approaches such as retrieval-augmented generation (RAG) and prompt engineered search agents rely on rigid pipelines, often leading to inefficient or excessive search behaviors. We present MMSearch-R1, the first end-to-end reinforcement learning framework that enables LMMs to perform on-demand, multi-turn search in real-world Internet environments. Our framework integrates both image and text search tools, allowing the model to reason about when and how to invoke them guided by an outcome-based reward with a search penalty. To support training, We collect a multimodal search VQA dataset through a semi-automated pipeline that covers diverse visual and textual knowledge needs and curate a search-balanced subset with both search-required and search-free samples, which proves essential for shaping efficient and on-demand search behavior. Extensive experiments on knowledge-intensive and info-seeking VQA tasks show that our model not only outperforms RAG-based baselines of the same model size, but also matches the performance of a larger RAG-based model while reducing search calls by over 30%. We further analyze key empirical findings to offer actionable insights for advancing research in multimodal search.
comment: Code: https://github.com/EvolvingLMMs-Lab/multimodal-search-r1
☆ EditP23: 3D Editing via Propagation of Image Prompts to Multi-View
We present EditP23, a method for mask-free 3D editing that propagates 2D image edits to multi-view representations in a 3D-consistent manner. In contrast to traditional approaches that rely on text-based prompting or explicit spatial masks, EditP23 enables intuitive edits by conditioning on a pair of images: an original view and its user-edited counterpart. These image prompts are used to guide an edit-aware flow in the latent space of a pre-trained multi-view diffusion model, allowing the edit to be coherently propagated across views. Our method operates in a feed-forward manner, without optimization, and preserves the identity of the original object, in both structure and appearance. We demonstrate its effectiveness across a range of object categories and editing scenarios, achieving high fidelity to the source while requiring no manual masks.
comment: Code, supplementary videos, interactive 3D visualizations, and additional results are available at https://editp23.github.io/
☆ Disentangled representations of microscopy images
Microscopy image analysis is fundamental for different applications, from diagnosis to synthetic engineering and environmental monitoring. Modern acquisition systems have granted the possibility to acquire an escalating amount of images, requiring a consequent development of a large collection of deep learning-based automatic image analysis methods. Although deep neural networks have demonstrated great performance in this field, interpretability, an essential requirement for microscopy image analysis, remains an open challenge. This work proposes a Disentangled Representation Learning (DRL) methodology to enhance model interpretability for microscopy image classification. Exploiting benchmark datasets from three different microscopic image domains (plankton, yeast vacuoles, and human cells), we show how a DRL framework, based on transferring a representation learnt from synthetic data, can provide a good trade-off between accuracy and interpretability in this domain.
comment: Published in: International Joint Conference on Neural Networks (IJCNN 2025). Project page: https://github.com/JacopoDapueto/disentangled_microscopy
☆ Joint attitude estimation and 3D neural reconstruction of non-cooperative space objects CVPR 2025
Obtaining a better knowledge of the current state and behavior of objects orbiting Earth has proven to be essential for a range of applications such as active debris removal, in-orbit maintenance, or anomaly detection. 3D models represent a valuable source of information in the field of Space Situational Awareness (SSA). In this work, we leveraged Neural Radiance Fields (NeRF) to perform 3D reconstruction of non-cooperative space objects from simulated images. This scenario is challenging for NeRF models due to unusual camera characteristics and environmental conditions : mono-chromatic images, unknown object orientation, limited viewing angles, absence of diffuse lighting etc. In this work we focus primarly on the joint optimization of camera poses alongside the NeRF. Our experimental results show that the most accurate 3D reconstruction is achieved when training with successive images one-by-one. We estimate camera poses by optimizing an uniform rotation and use regularization to prevent successive poses from being too far apart.
comment: accepted for CVPR 2025 NFBCC workshop
☆ Shape2Animal: Creative Animal Generation from Natural Silhouettes
Humans possess a unique ability to perceive meaningful patterns in ambiguous stimuli, a cognitive phenomenon known as pareidolia. This paper introduces Shape2Animal framework to mimics this imaginative capacity by reinterpreting natural object silhouettes, such as clouds, stones, or flames, as plausible animal forms. Our automated framework first performs open-vocabulary segmentation to extract object silhouette and interprets semantically appropriate animal concepts using vision-language models. It then synthesizes an animal image that conforms to the input shape, leveraging text-to-image diffusion model and seamlessly blends it into the original scene to generate visually coherent and spatially consistent compositions. We evaluated Shape2Animal on a diverse set of real-world inputs, demonstrating its robustness and creative potential. Our Shape2Animal can offer new opportunities for visual storytelling, educational content, digital art, and interactive media design. Our project page is here: https://shape2image.github.io
☆ Weighted Mean Frequencies: a handcraft Fourier feature for 4D Flow MRI segmentation
In recent decades, the use of 4D Flow MRI images has enabled the quantification of velocity fields within a volume of interest and along the cardiac cycle. However, the lack of resolution and the presence of noise in these biomarkers are significant issues. As indicated by recent studies, it appears that biomarkers such as wall shear stress are particularly impacted by the poor resolution of vessel segmentation. The Phase Contrast Magnetic Resonance Angiography (PC-MRA) is the state-of-the-art method to facilitate segmentation. The objective of this work is to introduce a new handcraft feature that provides a novel visualisation of 4D Flow MRI images, which is useful in the segmentation task. This feature, termed Weighted Mean Frequencies (WMF), is capable of revealing the region in three dimensions where a voxel has been passed by pulsatile flow. Indeed, this feature is representative of the hull of all pulsatile velocity voxels. The value of the feature under discussion is illustrated by two experiments. The experiments involved segmenting 4D Flow MRI images using optimal thresholding and deep learning methods. The results obtained demonstrate a substantial enhancement in terms of IoU and Dice, with a respective increase of 0.12 and 0.13 in comparison with the PC-MRA feature, as evidenced by the deep learning task. This feature has the potential to yield valuable insights that could inform future segmentation processes in other vascular regions, such as the heart or the brain.
☆ Video Perception Models for 3D Scene Synthesis
Traditionally, 3D scene synthesis requires expert knowledge and significant manual effort. Automating this process could greatly benefit fields such as architectural design, robotics simulation, virtual reality, and gaming. Recent approaches to 3D scene synthesis often rely on the commonsense reasoning of large language models (LLMs) or strong visual priors of modern image generation models. However, current LLMs demonstrate limited 3D spatial reasoning ability, which restricts their ability to generate realistic and coherent 3D scenes. Meanwhile, image generation-based methods often suffer from constraints in viewpoint selection and multi-view inconsistencies. In this work, we present Video Perception models for 3D Scene synthesis (VIPScene), a novel framework that exploits the encoded commonsense knowledge of the 3D physical world in video generation models to ensure coherent scene layouts and consistent object placements across views. VIPScene accepts both text and image prompts and seamlessly integrates video generation, feedforward 3D reconstruction, and open-vocabulary perception models to semantically and geometrically analyze each object in a scene. This enables flexible scene synthesis with high realism and structural consistency. For more precise analysis, we further introduce First-Person View Score (FPVScore) for coherence and plausibility evaluation, utilizing continuous first-person perspective to capitalize on the reasoning ability of multimodal large language models. Extensive experiments show that VIPScene significantly outperforms existing methods and generalizes well across diverse scenarios. The code will be released.
☆ SFNet: Fusion of Spatial and Frequency-Domain Features for Remote Sensing Image Forgery Detection
The rapid advancement of generative artificial intelligence is producing fake remote sensing imagery (RSI) that is increasingly difficult to detect, potentially leading to erroneous intelligence, fake news, and even conspiracy theories. Existing forgery detection methods typically rely on single visual features to capture predefined artifacts, such as spatial-domain cues to detect forged objects like roads or buildings in RSI, or frequency-domain features to identify artifacts from up-sampling operations in adversarial generative networks (GANs). However, the nature of artifacts can significantly differ depending on geographic terrain, land cover types, or specific features within the RSI. Moreover, these complex artifacts evolve as generative models become more sophisticated. In short, over-reliance on a single visual cue makes existing forgery detectors struggle to generalize across diverse remote sensing data. This paper proposed a novel forgery detection framework called SFNet, designed to identify fake images in diverse remote sensing data by leveraging spatial and frequency domain features. Specifically, to obtain rich and comprehensive visual information, SFNet employs two independent feature extractors to capture spatial and frequency domain features from input RSIs. To fully utilize the complementary domain features, the domain feature mapping module and the hybrid domain feature refinement module(CBAM attention) of SFNet are designed to successively align and fuse the multi-domain features while suppressing redundant information. Experiments on three datasets show that SFNet achieves an accuracy improvement of 4%-15.18% over the state-of-the-art RS forgery detection methods and exhibits robust generalization capabilities. The code is available at https://github.com/GeoX-Lab/RSTI/tree/main/SFNet.
☆ WonderFree: Enhancing Novel View Quality and Cross-View Consistency for 3D Scene Exploration
Interactive 3D scene generation from a single image has gained significant attention due to its potential to create immersive virtual worlds. However, a key challenge in current 3D generation methods is the limited explorability, which cannot render high-quality images during larger maneuvers beyond the original viewpoint, particularly when attempting to move forward into unseen areas. To address this challenge, we propose WonderFree, the first model that enables users to interactively generate 3D worlds with the freedom to explore from arbitrary angles and directions. Specifically, we decouple this challenge into two key subproblems: novel view quality, which addresses visual artifacts and floating issues in novel views, and cross-view consistency, which ensures spatial consistency across different viewpoints. To enhance rendering quality in novel views, we introduce WorldRestorer, a data-driven video restoration model designed to eliminate floaters and artifacts. In addition, a data collection pipeline is presented to automatically gather training data for WorldRestorer, ensuring it can handle scenes with varying styles needed for 3D scene generation. Furthermore, to improve cross-view consistency, we propose ConsistView, a multi-view joint restoration mechanism that simultaneously restores multiple perspectives while maintaining spatiotemporal coherence. Experimental results demonstrate that WonderFree not only enhances rendering quality across diverse viewpoints but also significantly improves global coherence and consistency. These improvements are confirmed by CLIP-based metrics and a user study showing a 77.20% preference for WonderFree over WonderWorld enabling a seamless and immersive 3D exploration experience. The code, model, and data will be publicly available.
☆ TRIM: A Self-Supervised Video Summarization Framework Maximizing Temporal Relative Information and Representativeness
The increasing ubiquity of video content and the corresponding demand for efficient access to meaningful information have elevated video summarization and video highlights as a vital research area. However, many state-of-the-art methods depend heavily either on supervised annotations or on attention-based models, which are computationally expensive and brittle in the face of distribution shifts that hinder cross-domain applicability across datasets. We introduce a pioneering self-supervised video summarization model that captures both spatial and temporal dependencies without the overhead of attention, RNNs, or transformers. Our framework integrates a novel set of Markov process-driven loss metrics and a two-stage self supervised learning paradigm that ensures both performance and efficiency. Our approach achieves state-of-the-art performance on the SUMME and TVSUM datasets, outperforming all existing unsupervised methods. It also rivals the best supervised models, demonstrating the potential for efficient, annotation-free architectures. This paves the way for more generalizable video summarization techniques and challenges the prevailing reliance on complex architectures.
☆ Learning-Based Distance Estimation for 360° Single-Sensor Setups
Accurate distance estimation is a fundamental challenge in robotic perception, particularly in omnidirectional imaging, where traditional geometric methods struggle with lens distortions and environmental variability. In this work, we propose a neural network-based approach for monocular distance estimation using a single 360{\deg} fisheye lens camera. Unlike classical trigonometric techniques that rely on precise lens calibration, our method directly learns and infers the distance of objects from raw omnidirectional inputs, offering greater robustness and adaptability across diverse conditions. We evaluate our approach on three 360{\deg} datasets (LOAF, ULM360, and a newly captured dataset Boat360), each representing distinct environmental and sensor setups. Our experimental results demonstrate that the proposed learning-based model outperforms traditional geometry-based methods and other learning baselines in both accuracy and robustness. These findings highlight the potential of deep learning for real-time omnidirectional distance estimation, making our approach particularly well-suited for low-cost applications in robotics, autonomous navigation, and surveillance.
comment: Submitted to ECMR 2025
☆ Dense Video Captioning using Graph-based Sentence Summarization
Recently, dense video captioning has made attractive progress in detecting and captioning all events in a long untrimmed video. Despite promising results were achieved, most existing methods do not sufficiently explore the scene evolution within an event temporal proposal for captioning, and therefore perform less satisfactorily when the scenes and objects change over a relatively long proposal. To address this problem, we propose a graph-based partition-and-summarization (GPaS) framework for dense video captioning within two stages. For the ``partition" stage, a whole event proposal is split into short video segments for captioning at a finer level. For the ``summarization" stage, the generated sentences carrying rich description information for each segment are summarized into one sentence to describe the whole event. We particularly focus on the ``summarization" stage, and propose a framework that effectively exploits the relationship between semantic words for summarization. We achieve this goal by treating semantic words as nodes in a graph and learning their interactions by coupling Graph Convolutional Network (GCN) and Long Short Term Memory (LSTM), with the aid of visual cues. Two schemes of GCN-LSTM Interaction (GLI) modules are proposed for seamless integration of GCN and LSTM. The effectiveness of our approach is demonstrated via an extensive comparison with the state-of-the-arts methods on the two benchmarks ActivityNet Captions dataset and YouCook II dataset.
comment: 12 pages
☆ Causal Representation Learning with Observational Grouping for CXR Classification
Identifiable causal representation learning seeks to uncover the true causal relationships underlying a data generation process. In medical imaging, this presents opportunities to improve the generalisability and robustness of task-specific latent features. This work introduces the concept of grouping observations to learn identifiable representations for disease classification in chest X-rays via an end-to-end framework. Our experiments demonstrate that these causal representations improve generalisability and robustness across multiple classification tasks when grouping is used to enforce invariance w.r.t race, sex, and imaging views.
☆ Show, Tell and Summarize: Dense Video Captioning Using Visual Cue Aided Sentence Summarization
In this work, we propose a division-and-summarization (DaS) framework for dense video captioning. After partitioning each untrimmed long video as multiple event proposals, where each event proposal consists of a set of short video segments, we extract visual feature (e.g., C3D feature) from each segment and use the existing image/video captioning approach to generate one sentence description for this segment. Considering that the generated sentences contain rich semantic descriptions about the whole event proposal, we formulate the dense video captioning task as a visual cue aided sentence summarization problem and propose a new two stage Long Short Term Memory (LSTM) approach equipped with a new hierarchical attention mechanism to summarize all generated sentences as one descriptive sentence with the aid of visual features. Specifically, the first-stage LSTM network takes all semantic words from the generated sentences and the visual features from all segments within one event proposal as the input, and acts as the encoder to effectively summarize both semantic and visual information related to this event proposal. The second-stage LSTM network takes the output from the first-stage LSTM network and the visual features from all video segments within one event proposal as the input, and acts as the decoder to generate one descriptive sentence for this event proposal. Our comprehensive experiments on the ActivityNet Captions dataset demonstrate the effectiveness of our newly proposed DaS framework for dense video captioning.
comment: 10 pages
☆ HRIBench: Benchmarking Vision-Language Models for Real-Time Human Perception in Human-Robot Interaction
Real-time human perception is crucial for effective human-robot interaction (HRI). Large vision-language models (VLMs) offer promising generalizable perceptual capabilities but often suffer from high latency, which negatively impacts user experience and limits VLM applicability in real-world scenarios. To systematically study VLM capabilities in human perception for HRI and performance-latency trade-offs, we introduce HRIBench, a visual question-answering (VQA) benchmark designed to evaluate VLMs across a diverse set of human perceptual tasks critical for HRI. HRIBench covers five key domains: (1) non-verbal cue understanding, (2) verbal instruction understanding, (3) human-robot object relationship understanding, (4) social navigation, and (5) person identification. To construct HRIBench, we collected data from real-world HRI environments to curate questions for non-verbal cue understanding, and leveraged publicly available datasets for the remaining four domains. We curated 200 VQA questions for each domain, resulting in a total of 1000 questions for HRIBench. We then conducted a comprehensive evaluation of both state-of-the-art closed-source and open-source VLMs (N=11) on HRIBench. Our results show that, despite their generalizability, current VLMs still struggle with core perceptual capabilities essential for HRI. Moreover, none of the models within our experiments demonstrated a satisfactory performance-latency trade-off suitable for real-time deployment, underscoring the need for future research on developing smaller, low-latency VLMs with improved human perception capabilities. HRIBench and our results can be found in this Github repository: https://github.com/interaction-lab/HRIBench.
comment: Accepted to the 19th International Symposium on Experimental Robotics (ISER 2025)
☆ AdvMIM: Adversarial Masked Image Modeling for Semi-Supervised Medical Image Segmentation MICCAI 2025
Vision Transformer has recently gained tremendous popularity in medical image segmentation task due to its superior capability in capturing long-range dependencies. However, transformer requires a large amount of labeled data to be effective, which hinders its applicability in annotation scarce semi-supervised learning scenario where only limited labeled data is available. State-of-the-art semi-supervised learning methods propose combinatorial CNN-Transformer learning to cross teach a transformer with a convolutional neural network, which achieves promising results. However, it remains a challenging task to effectively train the transformer with limited labeled data. In this paper, we propose an adversarial masked image modeling method to fully unleash the potential of transformer for semi-supervised medical image segmentation. The key challenge in semi-supervised learning with transformer lies in the lack of sufficient supervision signal. To this end, we propose to construct an auxiliary masked domain from original domain with masked image modeling and train the transformer to predict the entire segmentation mask with masked inputs to increase supervision signal. We leverage the original labels from labeled data and pseudo-labels from unlabeled data to learn the masked domain. To further benefit the original domain from masked domain, we provide a theoretical analysis of our method from a multi-domain learning perspective and devise a novel adversarial training loss to reduce the domain gap between the original and masked domain, which boosts semi-supervised learning performance. We also extend adversarial masked image modeling to CNN network. Extensive experiments on three public medical image segmentation datasets demonstrate the effectiveness of our method, where our method outperforms existing methods significantly. Our code is publicly available at https://github.com/zlheui/AdvMIM.
comment: Accepted to MICCAI 2025
☆ Lightweight Multi-Frame Integration for Robust YOLO Object Detection in Videos
Modern image-based object detection models, such as YOLOv7, primarily process individual frames independently, thus ignoring valuable temporal context naturally present in videos. Meanwhile, existing video-based detection methods often introduce complex temporal modules, significantly increasing model size and computational complexity. In practical applications such as surveillance and autonomous driving, transient challenges including motion blur, occlusions, and abrupt appearance changes can severely degrade single-frame detection performance. To address these issues, we propose a straightforward yet highly effective strategy: stacking multiple consecutive frames as input to a YOLO-based detector while supervising only the output corresponding to a single target frame. This approach leverages temporal information with minimal modifications to existing architectures, preserving simplicity, computational efficiency, and real-time inference capability. Extensive experiments on the challenging MOT20Det and our BOAT360 datasets demonstrate that our method improves detection robustness, especially for lightweight models, effectively narrowing the gap between compact and heavy detection networks. Additionally, we contribute the BOAT360 benchmark dataset, comprising annotated fisheye video sequences captured from a boat, to support future research in multi-frame video object detection in challenging real-world scenarios.
comment: Submitted to ECMR 2025
☆ Pay Less Attention to Deceptive Artifacts: Robust Detection of Compressed Deepfakes on Online Social Networks
With the rapid advancement of deep learning, particularly through generative adversarial networks (GANs) and diffusion models (DMs), AI-generated images, or ``deepfakes", have become nearly indistinguishable from real ones. These images are widely shared across Online Social Networks (OSNs), raising concerns about their misuse. Existing deepfake detection methods overlook the ``block effects" introduced by compression in OSNs, which obscure deepfake artifacts, and primarily focus on raw images, rarely encountered in real-world scenarios. To address these challenges, we propose PLADA (Pay Less Attention to Deceptive Artifacts), a novel framework designed to tackle the lack of paired data and the ineffective use of compressed images. PLADA consists of two core modules: Block Effect Eraser (B2E), which uses a dual-stage attention mechanism to handle block effects, and Open Data Aggregation (ODA), which processes both paired and unpaired data to improve detection. Extensive experiments across 26 datasets demonstrate that PLADA achieves a remarkable balance in deepfake detection, outperforming SoTA methods in detecting deepfakes on OSNs, even with limited paired data and compression. More importantly, this work introduces the ``block effect" as a critical factor in deepfake detection, providing a robust solution for open-world scenarios. Our code is available at https://github.com/ManyiLee/PLADA.
comment: 20 pages, 10 figures
☆ AI-assisted radiographic analysis in detecting alveolar bone-loss severity and patterns
Periodontitis, a chronic inflammatory disease causing alveolar bone loss, significantly affects oral health and quality of life. Accurate assessment of bone loss severity and pattern is critical for diagnosis and treatment planning. In this study, we propose a novel AI-based deep learning framework to automatically detect and quantify alveolar bone loss and its patterns using intraoral periapical (IOPA) radiographs. Our method combines YOLOv8 for tooth detection with Keypoint R-CNN models to identify anatomical landmarks, enabling precise calculation of bone loss severity. Additionally, YOLOv8x-seg models segment bone levels and tooth masks to determine bone loss patterns (horizontal vs. angular) via geometric analysis. Evaluated on a large, expertly annotated dataset of 1000 radiographs, our approach achieved high accuracy in detecting bone loss severity (intra-class correlation coefficient up to 0.80) and bone loss pattern classification (accuracy 87%). This automated system offers a rapid, objective, and reproducible tool for periodontal assessment, reducing reliance on subjective manual evaluation. By integrating AI into dental radiographic analysis, our framework has the potential to improve early diagnosis and personalized treatment planning for periodontitis, ultimately enhancing patient care and clinical outcomes.
comment: This manuscript is 17 pages with 5 tables and 12 figures. The manuscript is under review at Nature Scientific Reports
☆ A Deep Learning Approach to Identify Rock Bolts in Complex 3D Point Clouds of Underground Mines Captured Using Mobile Laser Scanners
Rock bolts are crucial components of the subterranean support systems in underground mines that provide adequate structural reinforcement to the rock mass to prevent unforeseen hazards like rockfalls. This makes frequent assessments of such bolts critical for maintaining rock mass stability and minimising risks in underground mining operations. Where manual surveying of rock bolts is challenging due to the low light conditions in the underground mines and the time-intensive nature of the process, automated detection of rock bolts serves as a plausible solution. To that end, this study focuses on the automatic identification of rock bolts within medium to large-scale 3D point clouds obtained from underground mines using mobile laser scanners. Existing techniques for automated rock bolt identification primarily rely on feature engineering and traditional machine learning approaches. However, such techniques lack robustness as these point clouds present several challenges due to data noise, varying environments, and complex surrounding structures. Moreover, the target rock bolts are extremely small objects within large-scale point clouds and are often partially obscured due to the application of reinforcement shotcrete. Addressing these challenges, this paper proposes an approach termed DeepBolt, which employs a novel two-stage deep learning architecture specifically designed for handling severe class imbalance for the automatic and efficient identification of rock bolts in complex 3D point clouds. The proposed method surpasses state-of-the-art semantic segmentation models by up to 42.5% in Intersection over Union (IoU) for rock bolt points. Additionally, it outperforms existing rock bolt identification techniques, achieving a 96.41% precision and 96.96% recall in classifying rock bolts, demonstrating its robustness and effectiveness in complex underground environments.
☆ HiWave: Training-Free High-Resolution Image Generation via Wavelet-Based Diffusion Sampling
Diffusion models have emerged as the leading approach for image synthesis, demonstrating exceptional photorealism and diversity. However, training diffusion models at high resolutions remains computationally prohibitive, and existing zero-shot generation techniques for synthesizing images beyond training resolutions often produce artifacts, including object duplication and spatial incoherence. In this paper, we introduce HiWave, a training-free, zero-shot approach that substantially enhances visual fidelity and structural coherence in ultra-high-resolution image synthesis using pretrained diffusion models. Our method employs a two-stage pipeline: generating a base image from the pretrained model followed by a patch-wise DDIM inversion step and a novel wavelet-based detail enhancer module. Specifically, we first utilize inversion methods to derive initial noise vectors that preserve global coherence from the base image. Subsequently, during sampling, our wavelet-domain detail enhancer retains low-frequency components from the base image to ensure structural consistency, while selectively guiding high-frequency components to enrich fine details and textures. Extensive evaluations using Stable Diffusion XL demonstrate that HiWave effectively mitigates common visual artifacts seen in prior methods, achieving superior perceptual quality. A user study confirmed HiWave's performance, where it was preferred over the state-of-the-art alternative in more than 80% of comparisons, highlighting its effectiveness for high-quality, ultra-high-resolution image synthesis without requiring retraining or architectural modifications.
☆ Med-Art: Diffusion Transformer for 2D Medical Text-to-Image Generation
Text-to-image generative models have achieved remarkable breakthroughs in recent years. However, their application in medical image generation still faces significant challenges, including small dataset sizes, and scarcity of medical textual data. To address these challenges, we propose Med-Art, a framework specifically designed for medical image generation with limited data. Med-Art leverages vision-language models to generate visual descriptions of medical images which overcomes the scarcity of applicable medical textual data. Med-Art adapts a large-scale pre-trained text-to-image model, PixArt-$\alpha$, based on the Diffusion Transformer (DiT), achieving high performance under limited data. Furthermore, we propose an innovative Hybrid-Level Diffusion Fine-tuning (HLDF) method, which enables pixel-level losses, effectively addressing issues such as overly saturated colors. We achieve state-of-the-art performance on two medical image datasets, measured by FID, KID, and downstream classification performance.
comment: The project is available at \url{https://medart-ai.github.io}
☆ An Agentic System for Rare Disease Diagnosis with Traceable Reasoning
Rare diseases collectively affect over 300 million individuals worldwide, yet timely and accurate diagnosis remains a pervasive challenge. This is largely due to their clinical heterogeneity, low individual prevalence, and the limited familiarity most clinicians have with rare conditions. Here, we introduce DeepRare, the first rare disease diagnosis agentic system powered by a large language model (LLM), capable of processing heterogeneous clinical inputs. The system generates ranked diagnostic hypotheses for rare diseases, each accompanied by a transparent chain of reasoning that links intermediate analytic steps to verifiable medical evidence. DeepRare comprises three key components: a central host with a long-term memory module; specialized agent servers responsible for domain-specific analytical tasks integrating over 40 specialized tools and web-scale, up-to-date medical knowledge sources, ensuring access to the most current clinical information. This modular and scalable design enables complex diagnostic reasoning while maintaining traceability and adaptability. We evaluate DeepRare on eight datasets. The system demonstrates exceptional diagnostic performance among 2,919 diseases, achieving 100% accuracy for 1013 diseases. In HPO-based evaluations, DeepRare significantly outperforms other 15 methods, like traditional bioinformatics diagnostic tools, LLMs, and other agentic systems, achieving an average Recall@1 score of 57.18% and surpassing the second-best method (Reasoning LLM) by a substantial margin of 23.79 percentage points. For multi-modal input scenarios, DeepRare achieves 70.60% at Recall@1 compared to Exomiser's 53.20% in 109 cases. Manual verification of reasoning chains by clinical experts achieves 95.40% agreements. Furthermore, the DeepRare system has been implemented as a user-friendly web application http://raredx.cn/doctor.
☆ Fusing Radiomic Features with Deep Representations for Gestational Age Estimation in Fetal Ultrasound Images MICCAI 2025
Accurate gestational age (GA) estimation, ideally through fetal ultrasound measurement, is a crucial aspect of providing excellent antenatal care. However, deriving GA from manual fetal biometric measurements depends on the operator and is time-consuming. Hence, automatic computer-assisted methods are demanded in clinical practice. In this paper, we present a novel feature fusion framework to estimate GA using fetal ultrasound images without any measurement information. We adopt a deep learning model to extract deep representations from ultrasound images. We extract radiomic features to reveal patterns and characteristics of fetal brain growth. To harness the interpretability of radiomics in medical imaging analysis, we estimate GA by fusing radiomic features and deep representations. Our framework estimates GA with a mean absolute error of 8.0 days across three trimesters, outperforming current machine learning-based methods at these gestational ages. Experimental results demonstrate the robustness of our framework across different populations in diverse geographical regions. Our code is publicly available on \href{https://github.com/13204942/RadiomicsImageFusion_FetalUS}{GitHub}.
comment: Accepted at MICCAI 2025
☆ A Novel Large Vision Foundation Model (LVFM)-based Approach for Generating High-Resolution Canopy Height Maps in Plantations for Precision Forestry Management
Accurate, cost-effective monitoring of plantation aboveground biomass (AGB) is crucial for supporting local livelihoods and carbon sequestration initiatives like the China Certified Emission Reduction (CCER) program. High-resolution canopy height maps (CHMs) are essential for this, but standard lidar-based methods are expensive. While deep learning with RGB imagery offers an alternative, accurately extracting canopy height features remains challenging. To address this, we developed a novel model for high-resolution CHM generation using a Large Vision Foundation Model (LVFM). Our model integrates a feature extractor, a self-supervised feature enhancement module to preserve spatial details, and a height estimator. Tested in Beijing's Fangshan District using 1-meter Google Earth imagery, our model outperformed existing methods, including conventional CNNs. It achieved a mean absolute error of 0.09 m, a root mean square error of 0.24 m, and a correlation of 0.78 against lidar-based CHMs. The resulting CHMs enabled over 90% success in individual tree detection, high accuracy in AGB estimation, and effective tracking of plantation growth, demonstrating strong generalization to non-training areas. This approach presents a promising, scalable tool for evaluating carbon sequestration in both plantations and natural forests.
☆ Exploiting Lightweight Hierarchical ViT and Dynamic Framework for Efficient Visual Tracking
Transformer-based visual trackers have demonstrated significant advancements due to their powerful modeling capabilities. However, their practicality is limited on resource-constrained devices because of their slow processing speeds. To address this challenge, we present HiT, a novel family of efficient tracking models that achieve high performance while maintaining fast operation across various devices. The core innovation of HiT lies in its Bridge Module, which connects lightweight transformers to the tracking framework, enhancing feature representation quality. Additionally, we introduce a dual-image position encoding approach to effectively encode spatial information. HiT achieves an impressive speed of 61 frames per second (fps) on the NVIDIA Jetson AGX platform, alongside a competitive AUC of 64.6% on the LaSOT benchmark, outperforming all previous efficient trackers.Building on HiT, we propose DyHiT, an efficient dynamic tracker that flexibly adapts to scene complexity by selecting routes with varying computational requirements. DyHiT uses search area features extracted by the backbone network and inputs them into an efficient dynamic router to classify tracking scenarios. Based on the classification, DyHiT applies a divide-and-conquer strategy, selecting appropriate routes to achieve a superior trade-off between accuracy and speed. The fastest version of DyHiT achieves 111 fps on NVIDIA Jetson AGX while maintaining an AUC of 62.4% on LaSOT.Furthermore, we introduce a training-free acceleration method based on the dynamic routing architecture of DyHiT. This method significantly improves the execution speed of various high-performance trackers without sacrificing accuracy. For instance, our acceleration method enables the state-of-the-art tracker SeqTrack-B256 to achieve a 2.68 times speedup on an NVIDIA GeForce RTX 2080 Ti GPU while maintaining the same AUC of 69.9% on the LaSOT.
comment: This paper was accepted by International Journal of Computer Vision(IJCV)
☆ InvZW: Invariant Feature Learning via Noise-Adversarial Training for Robust Image Zero-Watermarking
This paper introduces a novel deep learning framework for robust image zero-watermarking based on distortion-invariant feature learning. As a zero-watermarking scheme, our method leaves the original image unaltered and learns a reference signature through optimization in the feature space. The proposed framework consists of two key modules. In the first module, a feature extractor is trained via noise-adversarial learning to generate representations that are both invariant to distortions and semantically expressive. This is achieved by combining adversarial supervision against a distortion discriminator and a reconstruction constraint to retain image content. In the second module, we design a learning-based multibit zero-watermarking scheme where the trained invariant features are projected onto a set of trainable reference codes optimized to match a target binary message. Extensive experiments on diverse image datasets and a wide range of distortions show that our method achieves state-of-the-art robustness in both feature stability and watermark recovery. Comparative evaluations against existing self-supervised and deep watermarking techniques further highlight the superiority of our framework in generalization and robustness.
☆ DreamAnywhere: Object-Centric Panoramic 3D Scene Generation
Recent advances in text-to-3D scene generation have demonstrated significant potential to transform content creation across multiple industries. Although the research community has made impressive progress in addressing the challenges of this complex task, existing methods often generate environments that are only front-facing, lack visual fidelity, exhibit limited scene understanding, and are typically fine-tuned for either indoor or outdoor settings. In this work, we address these issues and propose DreamAnywhere, a modular system for the fast generation and prototyping of 3D scenes. Our system synthesizes a 360{\deg} panoramic image from text, decomposes it into background and objects, constructs a complete 3D representation through hybrid inpainting, and lifts object masks to detailed 3D objects that are placed in the virtual environment. DreamAnywhere supports immersive navigation and intuitive object-level editing, making it ideal for scene exploration, visual mock-ups, and rapid prototyping -- all with minimal manual modeling. These features make our system particularly suitable for low-budget movie production, enabling quick iteration on scene layout and visual tone without the overhead of traditional 3D workflows. Our modular pipeline is highly customizable as it allows components to be replaced independently. Compared to current state-of-the-art text and image-based 3D scene generation approaches, DreamAnywhere shows significant improvements in coherence in novel view synthesis and achieves competitive image quality, demonstrating its effectiveness across diverse and challenging scenarios. A comprehensive user study demonstrates a clear preference for our method over existing approaches, validating both its technical robustness and practical usefulness.
☆ Practical insights on the effect of different encodings, ansätze and measurements in quantum and hybrid convolutional neural networks
This study investigates the design choices of parameterized quantum circuits (PQCs) within quantum and hybrid convolutional neural network (HQNN and QCNN) architectures, applied to the task of satellite image classification using the EuroSAT dataset. We systematically evaluate the performance implications of data encoding techniques, variational ans\"atze, and measurement in approx. 500 distinct model configurations. Our analysis reveals a clear hierarchy of influence on model performance. For hybrid architectures, which were benchmarked against their direct classical equivalents (e.g. the same architecture with the PQCs removed), the data encoding strategy is the dominant factor, with validation accuracy varying over 30% for distinct embeddings. In contrast, the selection of variational ans\"atze and measurement basis had a comparatively marginal effect, with validation accuracy variations remaining below 5%. For purely quantum models, restricted to amplitude encoding, performance was most dependent on the measurement protocol and the data-to-amplitude mapping. The measurement strategy varied the validation accuracy by up to 30% and the encoding mapping by around 8 percentage points.
comment: 20 pages, 22 figures
☆ Feature Hallucination for Self-supervised Action Recognition
Understanding human actions in videos requires more than raw pixel analysis; it relies on high-level semantic reasoning and effective integration of multimodal features. We propose a deep translational action recognition framework that enhances recognition accuracy by jointly predicting action concepts and auxiliary features from RGB video frames. At test time, hallucination streams infer missing cues, enriching feature representations without increasing computational overhead. To focus on action-relevant regions beyond raw pixels, we introduce two novel domain-specific descriptors. Object Detection Features (ODF) aggregate outputs from multiple object detectors to capture contextual cues, while Saliency Detection Features (SDF) highlight spatial and intensity patterns crucial for action recognition. Our framework seamlessly integrates these descriptors with auxiliary modalities such as optical flow, Improved Dense Trajectories, skeleton data, and audio cues. It remains compatible with state-of-the-art architectures, including I3D, AssembleNet, Video Transformer Network, FASTER, and recent models like VideoMAE V2 and InternVideo2. To handle uncertainty in auxiliary features, we incorporate aleatoric uncertainty modeling in the hallucination step and introduce a robust loss function to mitigate feature noise. Our multimodal self-supervised action recognition framework achieves state-of-the-art performance on multiple benchmarks, including Kinetics-400, Kinetics-600, and Something-Something V2, demonstrating its effectiveness in capturing fine-grained action dynamics.
comment: Accepted for publication in International Journal of Computer Vision (IJCV)
☆ EAGLE: An Efficient Global Attention Lesion Segmentation Model for Hepatic Echinococcosis
Hepatic echinococcosis (HE) is a widespread parasitic disease in underdeveloped pastoral areas with limited medical resources. While CNN-based and Transformer-based models have been widely applied to medical image segmentation, CNNs lack global context modeling due to local receptive fields, and Transformers, though capable of capturing long-range dependencies, are computationally expensive. Recently, state space models (SSMs), such as Mamba, have gained attention for their ability to model long sequences with linear complexity. In this paper, we propose EAGLE, a U-shaped network composed of a Progressive Visual State Space (PVSS) encoder and a Hybrid Visual State Space (HVSS) decoder that work collaboratively to achieve efficient and accurate segmentation of hepatic echinococcosis (HE) lesions. The proposed Convolutional Vision State Space Block (CVSSB) module is designed to fuse local and global features, while the Haar Wavelet Transformation Block (HWTB) module compresses spatial information into the channel dimension to enable lossless downsampling. Due to the lack of publicly available HE datasets, we collected CT slices from 260 patients at a local hospital. Experimental results show that EAGLE achieves state-of-the-art performance with a Dice Similarity Coefficient (DSC) of 89.76%, surpassing MSVM-UNet by 1.61%.
☆ From Codicology to Code: A Comparative Study of Transformer and YOLO-based Detectors for Layout Analysis in Historical Documents
Robust Document Layout Analysis (DLA) is critical for the automated processing and understanding of historical documents with complex page organizations. This paper benchmarks five state-of-the-art object detection architectures on three annotated datasets representing a spectrum of codicological complexity: The e-NDP, a corpus of Parisian medieval registers (1326-1504); CATMuS, a diverse multiclass dataset derived from various medieval and modern sources (ca.12th-17th centuries) and HORAE, a corpus of decorated books of hours (ca.13th-16th centuries). We evaluate two Transformer-based models (Co-DETR, Grounding DINO) against three YOLO variants (AABB, OBB, and YOLO-World). Our findings reveal significant performance variations dependent on model architecture, data set characteristics, and bounding box representation. In the e-NDP dataset, Co-DETR achieves state-of-the-art results (0.752 mAP@.50:.95), closely followed by YOLOv11X-OBB (0.721). Conversely, on the more complex CATMuS and HORAE datasets, the CNN-based YOLOv11x-OBB significantly outperforms all other models (0.564 and 0.568, respectively). This study unequivocally demonstrates that using Oriented Bounding Boxes (OBB) is not a minor refinement but a fundamental requirement for accurately modeling the non-Cartesian nature of historical manuscripts. We conclude that a key trade-off exists between the global context awareness of Transformers, ideal for structured layouts, and the superior generalization of CNN-OBB models for visually diverse and complex documents.
☆ On the Burstiness of Faces in Set
Burstiness, a phenomenon observed in text and image retrieval, refers to that particular elements appear more times in a set than a statistically independent model assumes. We argue that in the context of set-based face recognition (SFR), burstiness exists widely and degrades the performance in two aspects: Firstly, the bursty faces, where faces with particular attributes %exist frequently in a face set, dominate the training instances and dominate the training face sets and lead to poor generalization ability to unconstrained scenarios. Secondly, the bursty faces %dominating the evaluation sets interfere with the similarity comparison in set verification and identification when evaluation. To detect the bursty faces in a set, we propose three strategies based on Quickshift++, feature self-similarity, and generalized max-pooling (GMP). We apply the burst detection results on training and evaluation stages to enhance the sampling ratios or contributions of the infrequent faces. When evaluation, we additionally propose the quality-aware GMP that enables awareness of the face quality and robustness to the low-quality faces for the original GMP. We give illustrations and extensive experiments on the SFR benchmarks to demonstrate that burstiness is widespread and suppressing burstiness considerably improves the recognition performance.
comment: 18 pages, 5 figures
☆ Radiomic fingerprints for knee MR images assessment
Accurate interpretation of knee MRI scans relies on expert clinical judgment, often with high variability and limited scalability. Existing radiomic approaches use a fixed set of radiomic features (the signature), selected at the population level and applied uniformly to all patients. While interpretable, these signatures are often too constrained to represent individual pathological variations. As a result, conventional radiomic-based approaches are found to be limited in performance, compared with recent end-to-end deep learning (DL) alternatives without using interpretable radiomic features. We argue that the individual-agnostic nature in current radiomic selection is not central to its intepretability, but is responsible for the poor generalization in our application. Here, we propose a novel radiomic fingerprint framework, in which a radiomic feature set (the fingerprint) is dynamically constructed for each patient, selected by a DL model. Unlike the existing radiomic signatures, our fingerprints are derived on a per-patient basis by predicting the feature relevance in a large radiomic feature pool, and selecting only those that are predictive of clinical conditions for individual patients. The radiomic-selecting model is trained simultaneously with a low-dimensional (considered relatively explainable) logistic regression for downstream classification. We validate our methods across multiple diagnostic tasks including general knee abnormalities, anterior cruciate ligament (ACL) tears, and meniscus tears, demonstrating comparable or superior diagnostic accuracy relative to state-of-the-art end-to-end DL models. More importantly, we show that the interpretability inherent in our approach facilitates meaningful clinical insights and potential biomarker discovery, with detailed discussion, quantitative and qualitative analysis of real-world clinical cases to evidence these advantages.
☆ Learning Moderately Input-Sensitive Functions: A Case Study in QR Code Decoding
The hardness of learning a function that attains a target task relates to its input-sensitivity. For example, image classification tasks are input-insensitive as minor corruptions should not affect the classification results, whereas arithmetic and symbolic computation, which have been recently attracting interest, are highly input-sensitive as each input variable connects to the computation results. This study presents the first learning-based Quick Response (QR) code decoding and investigates learning functions of medium sensitivity. Our experiments reveal that Transformers can successfully decode QR codes, even beyond the theoretical error-correction limit, by learning the structure of embedded texts. They generalize from English-rich training data to other languages and even random strings. Moreover, we observe that the Transformer-based QR decoder focuses on data bits while ignoring error-correction bits, suggesting a decoding mechanism distinct from standard QR code readers.
comment: 17 pages, 13 figures
☆ FundaQ-8: A Clinically-Inspired Scoring Framework for Automated Fundus Image Quality Assessment
Automated fundus image quality assessment (FIQA) remains a challenge due to variations in image acquisition and subjective expert evaluations. We introduce FundaQ-8, a novel expert-validated framework for systematically assessing fundus image quality using eight critical parameters, including field coverage, anatomical visibility, illumination, and image artifacts. Using FundaQ-8 as a structured scoring reference, we develop a ResNet18-based regression model to predict continuous quality scores in the 0 to 1 range. The model is trained on 1800 fundus images from real-world clinical sources and Kaggle datasets, using transfer learning, mean squared error optimization, and standardized preprocessing. Validation against the EyeQ dataset and statistical analyses confirm the framework's reliability and clinical interpretability. Incorporating FundaQ-8 into deep learning models for diabetic retinopathy grading also improves diagnostic robustness, highlighting the value of quality-aware training in real-world screening applications.
☆ TDiR: Transformer based Diffusion for Image Restoration Tasks
Images captured in challenging environments often experience various forms of degradation, including noise, color cast, blur, and light scattering. These effects significantly reduce image quality, hindering their applicability in downstream tasks such as object detection, mapping, and classification. Our transformer-based diffusion model was developed to address image restoration tasks, aiming to improve the quality of degraded images. This model was evaluated against existing deep learning methodologies across multiple quality metrics for underwater image enhancement, denoising, and deraining on publicly available datasets. Our findings demonstrate that the diffusion model, combined with transformers, surpasses current methods in performance. The results of our model highlight the efficacy of diffusion models and transformers in improving the quality of degraded images, consequently expanding their utility in downstream tasks that require high-fidelity visual data.
☆ Ctrl-Z Sampling: Diffusion Sampling with Controlled Random Zigzag Explorations
Diffusion models have shown strong performance in conditional generation by progressively denoising Gaussian noise toward a target data distribution. This denoising process can be interpreted as a form of hill climbing in a learned latent space, where the model iteratively refines the sample toward regions of higher probability. However, diffusion models often converge to local optima that are locally visually coherent yet globally inconsistent or conditionally misaligned, due to latent space complexity and suboptimal initialization. Prior efforts attempted to address this by strengthening guidance signals or manipulating the initial noise distribution. We introduce Controlled Random Zigzag Sampling (Ctrl-Z Sampling), a novel sampling strategy designed to detect and escape such local maxima during conditional generation. The method first identifies potential local maxima using a reward model. Upon detection, it injects noise and reverts to a previous, noisier state to escape the current optimization plateau. The reward model then evaluates candidate trajectories, accepting only those that offer improvement, while progressively deeper retreat enables stronger escapes when nearby alternatives fail. This controlled random zigzag process allows dynamic alternation between forward refinement and backward exploration, enhancing both alignment and visual quality in the generated outputs. The proposed Ctrl-Z Sampling is model-agnostic and compatible with existing diffusion frameworks. Experimental results show that Ctrl-Z Sampling substantially improves generation quality with only around 7.6X increase in function evaluations.
comment: 10 pages, 3 figures, 2 tables
☆ Breaking Spatial Boundaries: Spectral-Domain Registration Guided Hyperspectral and Multispectral Blind Fusion
The blind fusion of unregistered hyperspectral images (HSIs) and multispectral images (MSIs) has attracted growing attention recently. To address the registration challenge, most existing methods employ spatial transformations on the HSI to achieve alignment with the MSI. However, due to the substantial differences in spatial resolution of the images, the performance of these methods is often unsatisfactory. Moreover, the registration process tends to be time-consuming when dealing with large-sized images in remote sensing. To address these issues, we propose tackling the registration problem from the spectral domain. Initially, a lightweight Spectral Prior Learning (SPL) network is developed to extract spectral features from the HSI and enhance the spectral resolution of the MSI. Following this, the obtained image undergoes spatial downsampling to produce the registered HSI. In this process, subspace representation and cyclic training strategy are employed to improve spectral accuracy of the registered HSI obtained. Next, we propose a blind sparse fusion (BSF) method, which utilizes group sparsity regularization to equivalently promote the low-rankness of the image. This approach not only circumvents the need for rank estimation, but also reduces computational complexity. Then, we employ the Proximal Alternating Optimization (PAO) algorithm to solve the BSF model, and present its convergence analysis. Finally, extensive numerical experiments on simulated and real datasets are conducted to verify the effectiveness of our method in registration and fusion. We also demonstrate its efficacy in enhancing classification performance.
☆ Opportunistic Osteoporosis Diagnosis via Texture-Preserving Self-Supervision, Mixture of Experts and Multi-Task Integration MICCAI 2025
Osteoporosis, characterized by reduced bone mineral density (BMD) and compromised bone microstructure, increases fracture risk in aging populations. While dual-energy X-ray absorptiometry (DXA) is the clinical standard for BMD assessment, its limited accessibility hinders diagnosis in resource-limited regions. Opportunistic computed tomography (CT) analysis has emerged as a promising alternative for osteoporosis diagnosis using existing imaging data. Current approaches, however, face three limitations: (1) underutilization of unlabeled vertebral data, (2) systematic bias from device-specific DXA discrepancies, and (3) insufficient integration of clinical knowledge such as spatial BMD distribution patterns. To address these, we propose a unified deep learning framework with three innovations. First, a self-supervised learning method using radiomic representations to leverage unlabeled CT data and preserve bone texture. Second, a Mixture of Experts (MoE) architecture with learned gating mechanisms to enhance cross-device adaptability. Third, a multi-task learning framework integrating osteoporosis diagnosis, BMD regression, and vertebra location prediction. Validated across three clinical sites and an external hospital, our approach demonstrates superior generalizability and accuracy over existing methods for opportunistic osteoporosis screening and diagnosis.
comment: Accepted by MICCAI 2025
☆ From Ideal to Real: Unified and Data-Efficient Dense Prediction for Real-World Scenarios
Dense prediction tasks hold significant importance of computer vision, aiming to learn pixel-wise annotated label for an input image. Despite advances in this field, existing methods primarily focus on idealized conditions, with limited generalization to real-world scenarios and facing the challenging scarcity of real-world data. To systematically study this problem, we first introduce DenseWorld, a benchmark spanning a broad set of 25 dense prediction tasks that correspond to urgent real-world applications, featuring unified evaluation across tasks. Then, we propose DenseDiT, which maximally exploits generative models' visual priors to perform diverse real-world dense prediction tasks through a unified strategy. DenseDiT combines a parameter-reuse mechanism and two lightweight branches that adaptively integrate multi-scale context, working with less than 0.1% additional parameters. Evaluations on DenseWorld reveal significant performance drops in existing general and specialized baselines, highlighting their limited real-world generalization. In contrast, DenseDiT achieves superior results using less than 0.01% training data of baselines, underscoring its practical value for real-world deployment. Our data, and checkpoints and codes are available at https://xcltql666.github.io/DenseDiTProj
☆ Forensic Study of Paintings Through the Comparison of Fabrics
The study of canvas fabrics in works of art is a crucial tool for authentication, attribution and conservation. Traditional methods are based on thread density map matching, which cannot be applied when canvases do not come from contiguous positions on a roll. This paper presents a novel approach based on deep learning to assess the similarity of textiles. We introduce an automatic tool that evaluates the similarity between canvases without relying on thread density maps. A Siamese deep learning model is designed and trained to compare pairs of images by exploiting the feature representations learned from the scans. In addition, a similarity estimation method is proposed, aggregating predictions from multiple pairs of cloth samples to provide a robust similarity score. Our approach is applied to canvases from the Museo Nacional del Prado, corroborating the hypothesis that plain weave canvases, widely used in painting, can be effectively compared even when their thread densities are similar. The results demonstrate the feasibility and accuracy of the proposed method, opening new avenues for the analysis of masterpieces.
☆ X-SiT: Inherently Interpretable Surface Vision Transformers for Dementia Diagnosis MICCAI 2025
Interpretable models are crucial for supporting clinical decision-making, driving advances in their development and application for medical images. However, the nature of 3D volumetric data makes it inherently challenging to visualize and interpret intricate and complex structures like the cerebral cortex. Cortical surface renderings, on the other hand, provide a more accessible and understandable 3D representation of brain anatomy, facilitating visualization and interactive exploration. Motivated by this advantage and the widespread use of surface data for studying neurological disorders, we present the eXplainable Surface Vision Transformer (X-SiT). This is the first inherently interpretable neural network that offers human-understandable predictions based on interpretable cortical features. As part of X-SiT, we introduce a prototypical surface patch decoder for classifying surface patch embeddings, incorporating case-based reasoning with spatially corresponding cortical prototypes. The results demonstrate state-of-the-art performance in detecting Alzheimer's disease and frontotemporal dementia while additionally providing informative prototypes that align with known disease patterns and reveal classification errors.
comment: MICCAI 2025
☆ Hierarchical Mask-Enhanced Dual Reconstruction Network for Few-Shot Fine-Grained Image Classification
Few-shot fine-grained image classification (FS-FGIC) presents a significant challenge, requiring models to distinguish visually similar subclasses with limited labeled examples. Existing methods have critical limitations: metric-based methods lose spatial information and misalign local features, while reconstruction-based methods fail to utilize hierarchical feature information and lack mechanisms to focus on discriminative regions. We propose the Hierarchical Mask-enhanced Dual Reconstruction Network (HMDRN), which integrates dual-layer feature reconstruction with mask-enhanced feature processing to improve fine-grained classification. HMDRN incorporates a dual-layer feature reconstruction and fusion module that leverages complementary visual information from different network hierarchies. Through learnable fusion weights, the model balances high-level semantic representations from the last layer with mid-level structural details from the penultimate layer. Additionally, we design a spatial binary mask-enhanced transformer self-reconstruction module that processes query features through adaptive thresholding while maintaining complete support features, enhancing focus on discriminative regions while filtering background noise. Extensive experiments on three challenging fine-grained datasets demonstrate that HMDRN consistently outperforms state-of-the-art methods across Conv-4 and ResNet-12 backbone architectures. Comprehensive ablation studies validate the effectiveness of each proposed component, revealing that dual-layer reconstruction enhances inter-class discrimination while mask-enhanced transformation reduces intra-class variations. Visualization results provide evidence of HMDRN's superior feature reconstruction capabilities.
☆ A Transformer Based Handwriting Recognition System Jointly Using Online and Offline Features
We posit that handwriting recognition benefits from complementary cues carried by the rasterized complex glyph and the pen's trajectory, yet most systems exploit only one modality. We introduce an end-to-end network that performs early fusion of offline images and online stroke data within a shared latent space. A patch encoder converts the grayscale crop into fixed-length visual tokens, while a lightweight transformer embeds the $(x, y, \text{pen})$ sequence. Learnable latent queries attend jointly to both token streams, yielding context-enhanced stroke embeddings that are pooled and decoded under a cross-entropy loss objective. Because integration occurs before any high-level classification, temporal cues reinforce each other during representation learning, producing stronger writer independence. Comprehensive experiments on IAMOn-DB and VNOn-DB demonstrate that our approach achieves state-of-the-art accuracy, exceeding previous bests by up to 1\%. Our study also shows adaptation of this pipeline with gesturification on the ISI-Air dataset. Our code can be found here.
comment: 15 pages, 7 figures
☆ Recognizing Surgical Phases Anywhere: Few-Shot Test-time Adaptation and Task-graph Guided Refinement MICCAI 2025
The complexity and diversity of surgical workflows, driven by heterogeneous operating room settings, institutional protocols, and anatomical variability, present a significant challenge in developing generalizable models for cross-institutional and cross-procedural surgical understanding. While recent surgical foundation models pretrained on large-scale vision-language data offer promising transferability, their zero-shot performance remains constrained by domain shifts, limiting their utility in unseen surgical environments. To address this, we introduce Surgical Phase Anywhere (SPA), a lightweight framework for versatile surgical workflow understanding that adapts foundation models to institutional settings with minimal annotation. SPA leverages few-shot spatial adaptation to align multi-modal embeddings with institution-specific surgical scenes and phases. It also ensures temporal consistency through diffusion modeling, which encodes task-graph priors derived from institutional procedure protocols. Finally, SPA employs dynamic test-time adaptation, exploiting the mutual agreement between multi-modal phase prediction streams to adapt the model to a given test video in a self-supervised manner, enhancing the reliability under test-time distribution shifts. SPA is a lightweight adaptation framework, allowing hospitals to rapidly customize phase recognition models by defining phases in natural language text, annotating a few images with the phase labels, and providing a task graph defining phase transitions. The experimental results show that the SPA framework achieves state-of-the-art performance in few-shot surgical phase recognition across multiple institutions and procedures, even outperforming full-shot models with 32-shot labeled data. Code is available at https://github.com/CAMMA-public/SPA
comment: Accepted by MICCAI 2025
☆ FedBKD: Distilled Federated Learning to Embrace Gerneralization and Personalization on Non-IID Data
Federated learning (FL) is a decentralized collaborative machine learning (ML) technique. It provides a solution to the issues of isolated data islands and data privacy leakage in industrial ML practices. One major challenge in FL is handling the non-identical and independent distributed (non-IID) data. Current solutions either focus on constructing an all-powerful global model, or customizing personalized local models. Few of them can provide both a well-generalized global model and well-performed local models at the same time. Additionally, many FL solutions to the non-IID problem are benefited from introducing public datasets. However, this will also increase the risk of data leakage. To tackle the problems, we propose a novel data-free distillation framework, Federated Bidirectional Knowledge Distillation (FedBKD). Specifically, we train Generative Adversarial Networks (GAN) for synthetic data. During the GAN training, local models serve as discriminators and their parameters are frozen. The synthetic data is then used for bidirectional distillation between global and local models to achieve knowledge interactions so that performances for both sides are improved. We conduct extensive experiments on 4 benchmarks under different non-IID settings. The results show that FedBKD achieves SOTA performances in every case.
☆ Dynamic Bandwidth Allocation for Hybrid Event-RGB Transmission
Event cameras asynchronously capture pixel-level intensity changes with extremely low latency. They are increasingly used in conjunction with RGB cameras for a wide range of vision-related applications. However, a major challenge in these hybrid systems lies in the transmission of the large volume of triggered events and RGB images. To address this, we propose a transmission scheme that retains efficient reconstruction performance of both sources while accomplishing real-time deblurring in parallel. Conventional RGB cameras and event cameras typically capture the same scene in different ways, often resulting in significant redundant information across their outputs. To address this, we develop a joint event and image (E-I) transmission framework to eliminate redundancy and thereby optimize channel bandwidth utilization. Our approach employs Bayesian modeling and the information bottleneck method to disentangle the shared and domain-specific information within the E-I inputs. This disentangled information bottleneck framework ensures both the compactness and informativeness of extracted shared and domain-specific information. Moreover, it adaptively allocates transmission bandwidth based on scene dynamics, i.e., more symbols are allocated to events for dynamic details or to images for static information. Simulation results demonstrate that the proposed scheme not only achieves superior reconstruction quality compared to conventional systems but also delivers enhanced deblurring performance.
☆ UniCode$^2$: Cascaded Large-scale Codebooks for Unified Multimodal Understanding and Generation
Unified multimodal large language models (MLLMs) have shown promise in jointly advancing multimodal understanding and generation, with visual codebooks discretizing images into tokens for autoregressive modeling. Existing codebook-based methods either rely on small vocabularies (~16K entries) that lack fine-grained semantics or naively scale up, resulting in low token utilization and unstable training. We propose UniCode$^2$, a cascaded codebook framework enabling large-scale, semantically aligned, and stable visual tokenization. By clustering millions of SigLIP sequence embeddings, we build a 500K-entry codebook that preserves vision-language alignment while expanding capacity. Stability is ensured via a cascaded design: a frozen codebook anchors the embedding space, and a trainable codebook refines task-specific semantics. This decoupling promotes high utilization and robust learning. Moreover, the alignment of our visual tokens with textual semantics enables seamless integration with pretrained diffusion decoders, supporting high-quality visual synthesis with minimal adaptation. UniCode^2 delivers strong performance across diverse benchmarks, demonstrating the viability of scaling visual token spaces without sacrificing stability, semantics, or modularity.
comment: 19 pages, 5 figures
☆ MS-IQA: A Multi-Scale Feature Fusion Network for PET/CT Image Quality Assessment MICCAI 2025
Positron Emission Tomography / Computed Tomography (PET/CT) plays a critical role in medical imaging, combining functional and anatomical information to aid in accurate diagnosis. However, image quality degradation due to noise, compression and other factors could potentially lead to diagnostic uncertainty and increase the risk of misdiagnosis. When evaluating the quality of a PET/CT image, both low-level features like distortions and high-level features like organ anatomical structures affect the diagnostic value of the image. However, existing medical image quality assessment (IQA) methods are unable to account for both feature types simultaneously. In this work, we propose MS-IQA, a novel multi-scale feature fusion network for PET/CT IQA, which utilizes multi-scale features from various intermediate layers of ResNet and Swin Transformer, enhancing its ability of perceiving both local and global information. In addition, a multi-scale feature fusion module is also introduced to effectively combine high-level and low-level information through a dynamically weighted channel attention mechanism. Finally, to fill the blank of PET/CT IQA dataset, we construct PET-CT-IQA-DS, a dataset containing 2,700 varying-quality PET/CT images with quality scores assigned by radiologists. Experiments on our dataset and the publicly available LDCTIQAC2023 dataset demonstrate that our proposed model has achieved superior performance against existing state-of-the-art methods in various IQA metrics. This work provides an accurate and efficient IQA method for PET/CT. Our code and dataset are available at https://github.com/MS-IQA/MS-IQA/.
comment: Accepted to MICCAI 2025
☆ Progressive Alignment Degradation Learning for Pansharpening
Deep learning-based pansharpening has been shown to effectively generate high-resolution multispectral (HRMS) images. To create supervised ground-truth HRMS images, synthetic data generated using the Wald protocol is commonly employed. This protocol assumes that networks trained on artificial low-resolution data will perform equally well on high-resolution data. However, well-trained models typically exhibit a trade-off in performance between reduced-resolution and full-resolution datasets. In this paper, we delve into the Wald protocol and find that its inaccurate approximation of real-world degradation patterns limits the generalization of deep pansharpening models. To address this issue, we propose the Progressive Alignment Degradation Module (PADM), which uses mutual iteration between two sub-networks, PAlignNet and PDegradeNet, to adaptively learn accurate degradation processes without relying on predefined operators. Building on this, we introduce HFreqdiff, which embeds high-frequency details into a diffusion framework and incorporates CFB and BACM modules for frequency-selective detail extraction and precise reverse process learning. These innovations enable effective integration of high-resolution panchromatic and multispectral images, significantly enhancing spatial sharpness and quality. Experiments and ablation studies demonstrate the proposed method's superior performance compared to state-of-the-art techniques.
comment: 13 pages, 9 figures
☆ Towards Scalable and Generalizable Earth Observation Data Mining via Foundation Model Composition
Foundation models are rapidly transforming Earth Observation data mining by enabling generalizable and scalable solutions for key tasks such as scene classification and semantic segmentation. While most efforts in the geospatial domain have focused on developing large models trained from scratch using massive Earth Observation datasets, an alternative strategy that remains underexplored is the reuse and combination of existing pretrained models. In this study, we investigate whether foundation models pretrained on remote sensing and general vision datasets can be effectively combined to improve performance across a diverse set of key Earth Observation tasks. Using the GEO-Bench benchmark, we evaluate several prominent models, including Prithvi, Hiera, and DOFA, on eleven datasets covering a range of spatial resolutions, sensor modalities, and task types. The results show that feature-level ensembling of smaller pretrained models can match or exceed the performance of much larger models, while requiring less training time and computational resources. Moreover, the study highlights the potential of applying knowledge distillation to transfer the strengths of ensembles into more compact models, offering a practical path for deploying foundation models in real-world Earth Observation applications.
☆ Seeing is Believing? Mitigating OCR Hallucinations in Multimodal Large Language Models
Recent advancements in multimodal large language models have enhanced document understanding by integrating textual and visual information. However, existing models exhibit incompleteness within their paradigm in real-world scenarios, particularly under visual degradation. In such conditions, the current response paradigm often fails to adequately perceive visual degradation and ambiguity, leading to overreliance on linguistic priors or misaligned visual-textual reasoning. This difficulty in recognizing uncertainty frequently results in the generation of hallucinatory content, especially when a precise answer is not feasible. To better demonstrate and analyze this phenomenon and problem, we propose KIE-HVQA, the first benchmark dedicated to evaluating OCR hallucination in degraded document understanding. This dataset includes test samples spanning identity cards and invoices, with simulated real-world degradations for OCR reliability. This setup allows for evaluating models' capacity, under degraded input, to distinguish reliable visual information and answer accordingly, thereby highlighting the challenge of avoiding hallucination on uncertain data. To achieve vision-faithful reasoning and thereby avoid the aforementioned issues, we further introduce a GRPO-based framework featuring a novel reward mechanism. By incorporating a self-awareness of visual uncertainty and an analysis method that initiates refusal to answer to increase task difficulty within our supervised fine-tuning and reinforcement learning framework, we successfully mitigated hallucinations in ambiguous regions. Experiments on Qwen2.5-VL demonstrate that our 7B-parameter model achieves a 22\% absolute improvement in hallucination-free accuracy over GPT-4o on KIE-HVQA and there is no significant performance drop in standard tasks, highlighting both effectiveness and robustness.
☆ Towards Efficient Exemplar Based Image Editing with Multimodal VLMs
Text-to-Image Diffusion models have enabled a wide array of image editing applications. However, capturing all types of edits through text alone can be challenging and cumbersome. The ambiguous nature of certain image edits is better expressed through an exemplar pair, i.e., a pair of images depicting an image before and after an edit respectively. In this work, we tackle exemplar-based image editing -- the task of transferring an edit from an exemplar pair to a content image(s), by leveraging pretrained text-to-image diffusion models and multimodal VLMs. Even though our end-to-end pipeline is optimization-free, our experiments demonstrate that it still outperforms baselines on multiple types of edits while being ~4x faster.
comment: Accepted at ECCV 2024 (AI4VA Workshop)
☆ Loss-Aware Automatic Selection of Structured Pruning Criteria for Deep Neural Network Acceleration
Structured pruning is a well-established technique for compressing neural networks, making it suitable for deployment in resource-limited edge devices. This paper presents an efficient Loss-Aware Automatic Selection of Structured Pruning Criteria (LAASP) for slimming and accelerating deep neural networks. The majority of pruning methodologies employ a sequential process consisting of three stages: 1) training, 2) pruning, and 3) fine-tuning, whereas the proposed pruning technique adopts a pruning-while-training approach that eliminates the first stage and integrates the second and third stages into a single cycle. The automatic selection of magnitude or similarity-based filter pruning criteria from a specified pool of criteria and the specific pruning layer at each pruning iteration is guided by the network's overall loss on a small subset of the training data. To mitigate the abrupt accuracy drop due to pruning, the network is retrained briefly after each reduction of a predefined number of floating-point operations (FLOPs). The optimal pruning rates for each layer in the network are automatically determined, eliminating the need for manual allocation of fixed or variable pruning rates for each layer. Experiments on the VGGNet and ResNet models on the CIFAR-10 and ImageNet benchmark datasets demonstrate the effectiveness of the proposed method. In particular, the ResNet56 and ResNet110 models on the CIFAR-10 dataset significantly improve the top-1 accuracy compared to state-of-the-art methods while reducing the network FLOPs by 52\%. Furthermore, the ResNet50 model on the ImageNet dataset reduces FLOPs by more than 42\% with a negligible 0.33\% drop in top-5 accuracy. The source code of this paper is publicly available online - https://github.com/ghimiredhikura/laasp.
☆ EAR: Erasing Concepts from Unified Autoregressive Models
Autoregressive (AR) models have achieved unified and strong performance across both visual understanding and image generation tasks. However, removing undesired concepts from AR models while maintaining overall generation quality remains an open challenge. In this paper, we propose Erasure Autoregressive Model (EAR), a fine-tuning method for effective and utility-preserving concept erasure in AR models. Specifically, we introduce Windowed Gradient Accumulation (WGA) strategy to align patch-level decoding with erasure objectives, and Thresholded Loss Masking (TLM) strategy to protect content unrelated to the target concept during fine-tuning. Furthermore, we propose a novel benchmark, Erase Concept Generator and Visual Filter (ECGVF), aim at provide a more rigorous and comprehensive foundation for evaluating concept erasure in AR models. Specifically, we first employ structured templates across diverse large language models (LLMs) to pre-generate a large-scale corpus of target-replacement concept prompt pairs. Subsequently, we generate images from these prompts and subject them to rigorous filtering via a visual classifier to ensure concept fidelity and alignment. Extensive experimental results conducted on the ECGVF benchmark with the AR model Janus-Pro demonstrate that EAR achieves marked improvements in both erasure effectiveness and model utility preservation. Code is available at: https://github.com/immc-lab/ear/
comment: 11 pages, 7 figures, 1 tables
♻ ☆ OmniGen2: Exploration to Advanced Multimodal Generation
In this work, we introduce OmniGen2, a versatile and open-source generative model designed to provide a unified solution for diverse generation tasks, including text-to-image, image editing, and in-context generation. Unlike OmniGen v1, OmniGen2 features two distinct decoding pathways for text and image modalities, utilizing unshared parameters and a decoupled image tokenizer. This design enables OmniGen2 to build upon existing multimodal understanding models without the need to re-adapt VAE inputs, thereby preserving the original text generation capabilities. To facilitate the training of OmniGen2, we developed comprehensive data construction pipelines, encompassing image editing and in-context generation data. Additionally, we introduce a reflection mechanism tailored for image generation tasks and curate a dedicated reflection dataset based on OmniGen2. Despite its relatively modest parameter size, OmniGen2 achieves competitive results on multiple task benchmarks, including text-to-image and image editing. To further evaluate in-context generation, also referred to as subject-driven tasks, we introduce a new benchmark named OmniContext. OmniGen2 achieves state-of-the-art performance among open-source models in terms of consistency. We will release our models, training code, datasets, and data construction pipeline to support future research in this field. Project Page: https://vectorspacelab.github.io/OmniGen2; GitHub Link: https://github.com/VectorSpaceLab/OmniGen2
♻ ☆ Diffusion Models Through a Global Lens: Are They Culturally Inclusive?
Text-to-image diffusion models have recently enabled the creation of visually compelling, detailed images from textual prompts. However, their ability to accurately represent various cultural nuances remains an open question. In our work, we introduce CultDiff benchmark, evaluating state-of-the-art diffusion models whether they can generate culturally specific images spanning ten countries. We show that these models often fail to generate cultural artifacts in architecture, clothing, and food, especially for underrepresented country regions, by conducting a fine-grained analysis of different similarity aspects, revealing significant disparities in cultural relevance, description fidelity, and realism compared to real-world reference images. With the collected human evaluations, we develop a neural-based image-image similarity metric, namely, CultDiff-S, to predict human judgment on real and generated images with cultural artifacts. Our work highlights the need for more inclusive generative AI systems and equitable dataset representation over a wide range of cultures.
comment: 17 pages, 17 figures, 3 tables
♻ ☆ From $\mathcal{O}(n^{2})$ to $\mathcal{O}(n)$ Parameters: Quantum Self-Attention in Vision Transformers for Biomedical Image Classification MICCAI 2025
We demonstrate that quantum vision transformers (QViTs), vision transformers (ViTs) with self-attention (SA) mechanisms replaced by quantum self-attention (QSA) mechanisms, can match state-of-the-art (SOTA) biomedical image classifiers while using 99.99% fewer parameters. QSAs are produced by replacing linear SA layers with parameterised quantum neural networks (QNNs), producing a QSA mechanism and reducing parameter scaling from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$. On RetinaMNIST, our ultra parameter-efficient QViT outperforms 13/14 SOTA methods including CNNs and ViTs, achieving 56.5% accuracy, just 0.88% below the top MedMamba model while using 99.99% fewer parameters (1K vs 14.5M) and 89% fewer GFLOPs. We present the first investigation of knowledge distillation (KD) from classical to quantum vision transformers in biomedical image classification, showing that QViTs maintain comparable performance to classical ViTs across eight diverse datasets spanning multiple modalities, with improved QSA parameter-efficiency. Our higher-qubit architecture benefitted more from KD pre-training, suggesting a scaling relationship between QSA parameters and KD effectiveness. These findings establish QSA as a practical architectural choice toward parameter-efficient biomedical image analysis.
comment: Submitted for EMA4MICCAI 2025
♻ ☆ Time-Aware Auto White Balance in Mobile Photography
Cameras rely on auto white balance (AWB) to correct undesirable color casts caused by scene illumination and the camera's spectral sensitivity. This is typically achieved using an illuminant estimator that determines the global color cast solely from the color information in the camera's raw sensor image. Mobile devices provide valuable additional metadata-such as capture timestamp and geolocation-that offers strong contextual clues to help narrow down the possible illumination solutions. This paper proposes a lightweight illuminant estimation method that incorporates such contextual metadata, along with additional capture information and image colors, into a compact model (~5K parameters), achieving promising results, matching or surpassing larger models. To validate our method, we introduce a dataset of 3,224 smartphone images with contextual metadata collected at various times of day and under diverse lighting conditions. The dataset includes ground-truth illuminant colors, determined using a color chart, and user-preferred illuminants validated through a user study, providing a comprehensive benchmark for AWB evaluation.
♻ ☆ FluoroSAM: A Language-promptable Foundation Model for Flexible X-ray Image Segmentation
Language promptable X-ray image segmentation would enable greater flexibility for human-in-the-loop workflows in diagnostic and interventional precision medicine. Prior efforts have contributed task-specific models capable of solving problems within a narrow scope, but expanding to broader use requires additional data, annotations, and training time. Recently, language-aligned foundation models (LFMs) -- machine learning models trained on large amounts of highly variable image and text data thus enabling broad applicability -- have emerged as promising tools for automated image analysis. Existing foundation models for medical image analysis focus on scenarios and modalities where large, richly annotated datasets are available. However, the X-ray imaging modality features highly variable image appearance and applications, from diagnostic chest X-rays to interventional fluoroscopy, with varying availability of data. To pave the way toward an LFM for comprehensive and language-aligned analysis of arbitrary medical X-ray images, we introduce FluoroSAM, a language-promptable variant of the Segment Anything Model, trained from scratch on 3M synthetic X-ray images from a wide variety of human anatomies, imaging geometries, and viewing angles. These include pseudo-ground truth masks for 128 organ types and 464 tools with associated text descriptions. FluoroSAM is capable of segmenting myriad anatomical structures and tools based on natural language prompts, thanks to the novel incorporation of vector quantization (VQ) of text embeddings in the training process. We demonstrate FluoroSAM's performance quantitatively on real X-ray images and showcase on several applications how FluoroSAM is a key enabler for rich human-machine interaction in the X-ray image acquisition and analysis context. Code is available at https://github.com/arcadelab/fluorosam.
♻ ☆ Dark Channel-Assisted Depth-from-Defocus from a Single Image
We estimate scene depth from a single defocus-blurred image using the dark channel as a complementary cue, leveraging its ability to capture local statistics and scene structure. Traditional depth-from-defocus (DFD) methods use multiple images with varying apertures or focus. Single-image DFD is underexplored due to its inherent challenges. Few attempts have focused on depth-from-defocus (DFD) from a single defocused image because the problem is underconstrained. Our method uses the relationship between local defocus blur and contrast variations as depth cues to improve scene structure estimation. The pipeline is trained end-to-end with adversarial learning. Experiments on real data demonstrate that incorporating the dark channel prior into single-image DFD provides meaningful depth estimation, validating our approach.
♻ ☆ Cross-Frame Representation Alignment for Fine-Tuning Video Diffusion Models
Fine-tuning Video Diffusion Models (VDMs) at the user level to generate videos that reflect specific attributes of training data presents notable challenges, yet remains underexplored despite its practical importance. Meanwhile, recent work such as Representation Alignment (REPA) has shown promise in improving the convergence and quality of DiT-based image diffusion models by aligning, or assimilating, its internal hidden states with external pretrained visual features, suggesting its potential for VDM fine-tuning. In this work, we first propose a straightforward adaptation of REPA for VDMs and empirically show that, while effective for convergence, it is suboptimal in preserving semantic consistency across frames. To address this limitation, we introduce Cross-frame Representation Alignment (CREPA), a novel regularization technique that aligns hidden states of a frame with external features from neighboring frames. Empirical evaluations on large-scale VDMs, including CogVideoX-5B and Hunyuan Video, demonstrate that CREPA improves both visual fidelity and cross-frame semantic coherence when fine-tuned with parameter-efficient methods such as LoRA. We further validate CREPA across diverse datasets with varying attributes, confirming its broad applicability.
comment: Project page: https://crepavideo.github.io
♻ ☆ PanoWan: Lifting Diffusion Video Generation Models to 360° with Latitude/Longitude-aware Mechanisms
Panoramic video generation enables immersive 360{\deg} content creation, valuable in applications that demand scene-consistent world exploration. However, existing panoramic video generation models struggle to leverage pre-trained generative priors from conventional text-to-video models for high-quality and diverse panoramic videos generation, due to limited dataset scale and the gap in spatial feature representations. In this paper, we introduce PanoWan to effectively lift pre-trained text-to-video models to the panoramic domain, equipped with minimal modules. PanoWan employs latitude-aware sampling to avoid latitudinal distortion, while its rotated semantic denoising and padded pixel-wise decoding ensure seamless transitions at longitude boundaries. To provide sufficient panoramic videos for learning these lifted representations, we contribute PanoVid, a high-quality panoramic video dataset with captions and diverse scenarios. Consequently, PanoWan achieves state-of-the-art performance in panoramic video generation and demonstrates robustness for zero-shot downstream tasks. Our project page is available at https://panowan.variantconst.com.
♻ ☆ ViStoryBench: Comprehensive Benchmark Suite for Story Visualization
Story visualization, which aims to generate a sequence of visually coherent images aligning with a given narrative and reference images, has seen significant progress with recent advancements in generative models. To further enhance the performance of story visualization frameworks in real-world scenarios, we introduce a comprehensive evaluation benchmark, ViStoryBench. We collect a diverse dataset encompassing various story types and artistic styles, ensuring models are evaluated across multiple dimensions such as different plots (e.g., comedy, horror) and visual aesthetics (e.g., anime, 3D renderings). ViStoryBench is carefully curated to balance narrative structures and visual elements, featuring stories with single and multiple protagonists to test models' ability to maintain character consistency. Additionally, it includes complex plots and intricate world-building to challenge models in generating accurate visuals. To ensure comprehensive comparisons, our benchmark incorporates a wide range of evaluation metrics assessing critical aspects. This structured and multifaceted framework enables researchers to thoroughly identify both the strengths and weaknesses of different models, fostering targeted improvements.
comment: 33 Pages, Project Page: https://vistorybench.github.io/, Code: https://github.com/vistorybench/vistorybench
♻ ☆ LPOSS: Label Propagation Over Patches and Pixels for Open-vocabulary Semantic Segmentation
We propose a training-free method for open-vocabulary semantic segmentation using Vision-and-Language Models (VLMs). Our approach enhances the initial per-patch predictions of VLMs through label propagation, which jointly optimizes predictions by incorporating patch-to-patch relationships. Since VLMs are primarily optimized for cross-modal alignment and not for intra-modal similarity, we use a Vision Model (VM) that is observed to better capture these relationships. We address resolution limitations inherent to patch-based encoders by applying label propagation at the pixel level as a refinement step, significantly improving segmentation accuracy near class boundaries. Our method, called LPOSS+, performs inference over the entire image, avoiding window-based processing and thereby capturing contextual interactions across the full image. LPOSS+ achieves state-of-the-art performance among training-free methods, across a diverse set of datasets. Code: https://github.com/vladan-stojnic/LPOSS
♻ ☆ MatSwap: Light-aware material transfers in images
We present MatSwap, a method to transfer materials to designated surfaces in an image photorealistically. Such a task is non-trivial due to the large entanglement of material appearance, geometry, and lighting in a photograph. In the literature, material editing methods typically rely on either cumbersome text engineering or extensive manual annotations requiring artist knowledge and 3D scene properties that are impractical to obtain. In contrast, we propose to directly learn the relationship between the input material -- as observed on a flat surface -- and its appearance within the scene, without the need for explicit UV mapping. To achieve this, we rely on a custom light- and geometry-aware diffusion model. We fine-tune a large-scale pre-trained text-to-image model for material transfer using our synthetic dataset, preserving its strong priors to ensure effective generalization to real images. As a result, our method seamlessly integrates a desired material into the target location in the photograph while retaining the identity of the scene. We evaluate our method on synthetic and real images and show that it compares favorably to recent work both qualitatively and quantitatively. We release our code and data on https://github.com/astra-vision/MatSwap
comment: Accepted to EGSR, journal track to appear in Computer Graphics Forum
♻ ☆ MagicPose4D: Crafting Articulated Models with Appearance and Motion Control
With the success of 2D and 3D visual generative models, there is growing interest in generating 4D content. Existing methods primarily rely on text prompts to produce 4D content, but they often fall short of accurately defining complex or rare motions. To address this limitation, we propose MagicPose4D, a novel framework for refined control over both appearance and motion in 4D generation. Unlike current 4D generation methods, MagicPose4D accepts monocular videos or mesh sequences as motion prompts, enabling precise and customizable motion control. MagicPose4D comprises two key modules: (i) Dual-Phase 4D Reconstruction Module, which operates in two phases. The first phase focuses on capturing the model's shape using accurate 2D supervision and less accurate but geometrically informative 3D pseudo-supervision without imposing skeleton constraints. The second phase extracts the 3D motion (skeleton poses) using more accurate pseudo-3D supervision, obtained in the first phase and introduces kinematic chain-based skeleton constraints to ensure physical plausibility. Additionally, we propose a Global-local Chamfer loss that aligns the overall distribution of predicted mesh vertices with the supervision while maintaining part-level alignment without extra annotations. (ii) Cross-category Motion Transfer Module, which leverages the extracted motion from the 4D reconstruction module and uses a kinematic-chain-based skeleton to achieve cross-category motion transfer. It ensures smooth transitions between frames through dynamic rigidity, facilitating robust generalization without additional training. Through extensive experiments, we demonstrate that MagicPose4D significantly improves the accuracy and consistency of 4D content generation, outperforming existing methods in various benchmarks.
comment: Project Page: https://magicpose4d.github.io/
♻ ☆ CLAIM: Clinically-Guided LGE Augmentation for Realistic and Diverse Myocardial Scar Synthesis and Segmentation
Deep learning-based myocardial scar segmentation from late gadolinium enhancement (LGE) cardiac MRI has shown great potential for accurate and timely diagnosis and treatment planning for structural cardiac diseases. However, the limited availability and variability of LGE images with high-quality scar labels restrict the development of robust segmentation models. To address this, we introduce CLAIM: \textbf{C}linically-Guided \textbf{L}GE \textbf{A}ugmentation for Real\textbf{i}stic and Diverse \textbf{M}yocardial Scar Synthesis and Segmentation framework, a framework for anatomically grounded scar generation and segmentation. At its core is the SMILE module (Scar Mask generation guided by cLinical knowledgE), which conditions a diffusion-based generator on the clinically adopted AHA 17-segment model to synthesize images with anatomically consistent and spatially diverse scar patterns. In addition, CLAIM employs a joint training strategy in which the scar segmentation network is optimized alongside the generator, aiming to enhance both the realism of synthesized scars and the accuracy of the scar segmentation performance. Experimental results show that CLAIM produces anatomically coherent scar patterns and achieves higher Dice similarity with real scar distributions compared to baseline models. Our approach enables controllable and realistic myocardial scar synthesis and has demonstrated utility for downstream medical imaging task. Code is available at https://github.com/farheenjabeen/CLAIM-Scar-Synthesis.
comment: 14 Pages
♻ ☆ TCDiff++: An End-to-end Trajectory-Controllable Diffusion Model for Harmonious Music-Driven Group Choreography
Music-driven dance generation has garnered significant attention due to its wide range of industrial applications, particularly in the creation of group choreography. During the group dance generation process, however, most existing methods still face three primary issues: multi-dancer collisions, single-dancer foot sliding and abrupt swapping in the generation of long group dance. In this paper, we propose TCDiff++, a music-driven end-to-end framework designed to generate harmonious group dance. Specifically, to mitigate multi-dancer collisions, we utilize a dancer positioning embedding to better maintain the relative positioning among dancers. Additionally, we incorporate a distance-consistency loss to ensure that inter-dancer distances remain within plausible ranges. To address the issue of single-dancer foot sliding, we introduce a swap mode embedding to indicate dancer swapping patterns and design a Footwork Adaptor to refine raw motion, thereby minimizing foot sliding. For long group dance generation, we present a long group diffusion sampling strategy that reduces abrupt position shifts by injecting positional information into the noisy input. Furthermore, we integrate a Sequence Decoder layer to enhance the model's ability to selectively process long sequences. Extensive experiments demonstrate that our TCDiff++ achieves state-of-the-art performance, particularly in long-duration scenarios, ensuring high-quality and coherent group dance generation.
♻ ☆ LVPNet: A Latent-variable-based Prediction-driven End-to-end Framework for Lossless Compression of Medical Images MICCAI 2025
Autoregressive Initial Bits is a framework that integrates sub-image autoregression and latent variable modeling, demonstrating its advantages in lossless medical image compression. However, in existing methods, the image segmentation process leads to an even distribution of latent variable information across each sub-image, which in turn causes posterior collapse and inefficient utilization of latent variables. To deal with these issues, we propose a prediction-based end-to-end lossless medical image compression method named LVPNet, leveraging global latent variables to predict pixel values and encoding predicted probabilities for lossless compression. Specifically, we introduce the Global Multi-scale Sensing Module (GMSM), which extracts compact and informative latent representations from the entire image, effectively capturing spatial dependencies within the latent space. Furthermore, to mitigate the information loss introduced during quantization, we propose the Quantization Compensation Module (QCM), which learns the distribution of quantization errors and refines the quantized features to compensate for quantization loss. Extensive experiments on challenging benchmarks demonstrate that our method achieves superior compression efficiency compared to state-of-the-art lossless image compression approaches, while maintaining competitive inference speed. The code is at https://github.com/scy-Jackel/LVPNet.
comment: Accepted to MICCAI 2025
♻ ☆ Image Super-Resolution with Guarantees via Conformalized Generative Models
The increasing use of generative ML foundation models for image restoration tasks such as super-resolution calls for robust and interpretable uncertainty quantification methods. We address this need by presenting a novel approach based on conformal prediction techniques to create a 'confidence mask' capable of reliably and intuitively communicating where the generated image can be trusted. Our method is adaptable to any black-box generative model, including those locked behind an opaque API, requires only easily attainable data for calibration, and is highly customizable via the choice of a local image similarity metric. We prove strong theoretical guarantees for our method that span fidelity error control (according to our local image similarity metric), reconstruction quality, and robustness in the face of data leakage. Finally, we empirically evaluate these results and establish our method's solid performance.
comment: 17 pages, 7 figures
♻ ☆ Learning Adaptive Lighting via Channel-Aware Guidance
Learning lighting adaptation is a crucial step in achieving good visual perception and supporting downstream vision tasks. Current research often addresses individual light-related challenges, such as high dynamic range imaging and exposure correction, in isolation. However, we identify shared fundamental properties across these tasks: i) different color channels have different light properties, and ii) the channel differences reflected in the spatial and frequency domains are different. Leveraging these insights, we introduce the channel-aware Learning Adaptive Lighting Network (LALNet), a multi-task framework designed to handle multiple light-related tasks efficiently. Specifically, LALNet incorporates color-separated features that highlight the unique light properties of each color channel, integrated with traditional color-mixed features by Light Guided Attention (LGA). The LGA utilizes color-separated features to guide color-mixed features focusing on channel differences and ensuring visual consistency across all channels. Additionally, LALNet employs dual domain channel modulation for generating color-separated features and a mixed channel modulation and light state space module for producing color-mixed features. Extensive experiments on four representative light-related tasks demonstrate that LALNet significantly outperforms state-of-the-art methods on benchmark tests and requires fewer computational resources. We provide an anonymous online demo at https://xxxxxx2025.github.io/LALNet/.
♻ ☆ Self-Supervised Multimodal NeRF for Autonomous Driving
In this paper, we propose a Neural Radiance Fields (NeRF) based framework, referred to as Novel View Synthesis Framework (NVSF). It jointly learns the implicit neural representation of space and time-varying scene for both LiDAR and Camera. We test this on a real-world autonomous driving scenario containing both static and dynamic scenes. Compared to existing multimodal dynamic NeRFs, our framework is self-supervised, thus eliminating the need for 3D labels. For efficient training and faster convergence, we introduce heuristic-based image pixel sampling to focus on pixels with rich information. To preserve the local features of LiDAR points, a Double Gradient based mask is employed. Extensive experiments on the KITTI-360 dataset show that, compared to the baseline models, our framework has reported best performance on both LiDAR and Camera domain. Code of the model is available at https://github.com/gaurav00700/Selfsupervised-NVSF
♻ ☆ It's not you, it's me -- Global urban visual perception varies across demographics and personalities
Understanding people's preferences and needs is crucial for urban planning decisions, yet current approaches often combine them from multi-cultural and multi-city populations, obscuring important demographic differences and risking amplifying biases. We conducted a large-scale urban visual perception survey of streetscapes worldwide using street view imagery, examining how demographics -- including gender, age, income, education, race and ethnicity, and, for the first time, personality traits -- shape perceptions among 1,000 participants, with balanced demographics, from five countries and 45 nationalities. This dataset, introduced as Street Perception Evaluation Considering Socioeconomics (SPECS), exhibits statistically significant differences in perception scores in six traditionally used indicators (safe, lively, wealthy, beautiful, boring, and depressing) and four new ones we propose (live nearby, walk, cycle, green) among demographics and personalities. We revealed that location-based sentiments are carried over in people's preferences when comparing urban streetscapes with other cities. Further, we compared the perception scores based on where participants and streetscapes are from. We found that an off-the-shelf machine learning model trained on an existing global perception dataset tends to overestimate positive indicators and underestimate negative ones compared to human responses, suggesting that targeted intervention should consider locals' perception. Our study aspires to rectify the myopic treatment of street perception, which rarely considers demographics or personality traits.
comment: Under review
♻ ☆ MambaMorph: a Mamba-based Framework for Medical MR-CT Deformable Registration
Capturing voxel-wise spatial correspondence across distinct modalities is crucial for medical image analysis. However, current registration approaches are not practical enough in terms of registration accuracy and clinical applicability. In this paper, we introduce MambaMorph, a novel multi-modality deformable registration framework. Specifically, MambaMorph utilizes a Mamba-based registration module and a fine-grained, yet simple, feature extractor for efficient long-range correspondence modeling and high-dimensional feature learning, respectively. Additionally, we develop a well-annotated brain MR-CT registration dataset, SR-Reg, to address the scarcity of data in multi-modality registration. To validate MambaMorph's multi-modality registration capabilities, we conduct quantitative experiments on both our SR-Reg dataset and a public T1-T2 dataset. The experimental results on both datasets demonstrate that MambaMorph significantly outperforms the current state-of-the-art learning-based registration methods in terms of registration accuracy. Further study underscores the efficiency of the Mamba-based registration module and the lightweight feature extractor, which achieve notable registration quality while maintaining reasonable computational costs and speeds. We believe that MambaMorph holds significant potential for practical applications in medical image registration. The code for MambaMorph is available at: https://github.com/Guo-Stone/MambaMorph.
♻ ☆ Sampling Matters in Explanations: Towards Trustworthy Attribution Analysis Building Block in Visual Models through Maximizing Explanation Certainty
Image attribution analysis seeks to highlight the feature representations learned by visual models such that the highlighted feature maps can reflect the pixel-wise importance of inputs. Gradient integration is a building block in the attribution analysis by integrating the gradients from multiple derived samples to highlight the semantic features relevant to inferences. Such a building block often combines with other information from visual models such as activation or attention maps to form ultimate explanations. Yet, our theoretical analysis demonstrates that the extent to the alignment of the sample distribution in gradient integration with respect to natural image distribution gives a lower bound of explanation certainty. Prior works add noise into images as samples and the noise distributions can lead to low explanation certainty. Counter-intuitively, our experiment shows that extra information can saturate neural networks. To this end, building trustworthy attribution analysis needs to settle the sample distribution misalignment problem. Instead of adding extra information into input images, we present a semi-optimal sampling approach by suppressing features from inputs. The sample distribution by suppressing features is approximately identical to the distribution of natural images. Our extensive quantitative evaluation on large scale dataset ImageNet affirms that our approach is effective and able to yield more satisfactory explanations against state-of-the-art baselines throughout all experimental models.
comment: Code: https://anonymous.4open.science/r/sampling_matters_reproducibility-BB60/
♻ ☆ VICCA: Visual Interpretation and Comprehension of Chest X-ray Anomalies in Generated Report Without Human Feedback
As artificial intelligence (AI) becomes increasingly central to healthcare, the demand for explainable and trustworthy models is paramount. Current report generation systems for chest X-rays (CXR) often lack mechanisms for validating outputs without expert oversight, raising concerns about reliability and interpretability. To address these challenges, we propose a novel multimodal framework designed to enhance the semantic alignment and localization accuracy of AI-generated medical reports. Our framework integrates two key modules: a Phrase Grounding Model, which identifies and localizes pathologies in CXR images based on textual prompts, and a Text-to-Image Diffusion Module, which generates synthetic CXR images from prompts while preserving anatomical fidelity. By comparing features between the original and generated images, we introduce a dual-scoring system: one score quantifies localization accuracy, while the other evaluates semantic consistency. This approach significantly outperforms existing methods, achieving state-of-the-art results in pathology localization and text-to-image alignment. The integration of phrase grounding with diffusion models, coupled with the dual-scoring evaluation system, provides a robust mechanism for validating report quality, paving the way for more trustworthy and transparent AI in medical imaging.
♻ ☆ Bounding-box Watermarking: Defense against Model Extraction Attacks on Object Detectors KDD2025
Deep neural networks (DNNs) deployed in a cloud often allow users to query models via the APIs. However, these APIs expose the models to model extraction attacks (MEAs). In this attack, the attacker attempts to duplicate the target model by abusing the responses from the API. Backdoor-based DNN watermarking is known as a promising defense against MEAs, wherein the defender injects a backdoor into extracted models via API responses. The backdoor is used as a watermark of the model; if a suspicious model has the watermark (i.e., backdoor), it is verified as an extracted model. This work focuses on object detection (OD) models. Existing backdoor attacks on OD models are not applicable for model watermarking as the defense against MEAs on a realistic threat model. Our proposed approach involves inserting a backdoor into extracted models via APIs by stealthily modifying the bounding-boxes (BBs) of objects detected in queries while keeping the OD capability. In our experiments on three OD datasets, the proposed approach succeeded in identifying the extracted models with 100% accuracy in a wide variety of experimental scenarios.
comment: Accepted at ECML-PKDD2025. Please refer to the conference proceedings for the final version. Source codes: https://zenodo.org/records/15641464
♻ ☆ Neural Graph Map: Dense Mapping with Efficient Loop Closure Integration
Neural field-based SLAM methods typically employ a single, monolithic field as their scene representation. This prevents efficient incorporation of loop closure constraints and limits scalability. To address these shortcomings, we propose a novel RGB-D neural mapping framework in which the scene is represented by a collection of lightweight neural fields which are dynamically anchored to the pose graph of a sparse visual SLAM system. Our approach shows the ability to integrate large-scale loop closures, while requiring only minimal reintegration. Furthermore, we verify the scalability of our approach by demonstrating successful building-scale mapping taking multiple loop closures into account during the optimization, and show that our method outperforms existing state-of-the-art approaches on large scenes in terms of quality and runtime. Our code is available open-source at https://github.com/KTH-RPL/neural_graph_mapping.
comment: WACV 2025, Project page: https://kth-rpl.github.io/neural_graph_mapping/
♻ ☆ ULSR-GS: Ultra Large-scale Surface Reconstruction Gaussian Splatting with Multi-View Geometric Consistency
While Gaussian Splatting (GS) demonstrates efficient and high-quality scene rendering and small area surface extraction ability, it falls short in handling large-scale aerial image surface extraction tasks. To overcome this, we present ULSR-GS, a framework dedicated to high-fidelity surface extraction in ultra-large-scale scenes, addressing the limitations of existing GS-based mesh extraction methods. Specifically, we propose a point-to-photo partitioning approach combined with a multi-view optimal view matching principle to select the best training images for each sub-region. Additionally, during training, ULSR-GS employs a densification strategy based on multi-view geometric consistency to enhance surface extraction details. Experimental results demonstrate that ULSR-GS outperforms other state-of-the-art GS-based works on large-scale aerial photogrammetry benchmark datasets, significantly improving surface extraction accuracy in complex urban environments. Project page: https://ulsrgs.github.io.
comment: Project page: https://ulsrgs.github.io
♻ ☆ World-Consistent Data Generation for Vision-and-Language Navigation
Vision-and-Language Navigation (VLN) is a challenging task that requires an agent to navigate through photorealistic environments following natural-language instructions. One main obstacle existing in VLN is data scarcity, leading to poor generalization performance over unseen environments. Though data argumentation is a promising way for scaling up the dataset, how to generate VLN data both diverse and world-consistent remains problematic. To cope with this issue, we propose the world-consistent data generation (WCGEN), an efficacious data-augmentation framework satisfying both diversity and world-consistency, aimed at enhancing the generalization of agents to novel environments. Roughly, our framework consists of two stages, the trajectory stage which leverages a point-cloud based technique to ensure spatial coherency among viewpoints, and the viewpoint stage which adopts a novel angle synthesis method to guarantee spatial and wraparound consistency within the entire observation. By accurately predicting viewpoint changes with 3D knowledge, our approach maintains the world-consistency during the generation procedure. Experiments on a wide range of datasets verify the effectiveness of our method, demonstrating that our data augmentation strategy enables agents to achieve new state-of-the-art results on all navigation tasks, and is capable of enhancing the VLN agents' generalization ability to unseen environments.
♻ ☆ Provably Improving Generalization of Few-Shot Models with Synthetic Data ICML 2025
Few-shot image classification remains challenging due to the scarcity of labeled training examples. Augmenting them with synthetic data has emerged as a promising way to alleviate this issue, but models trained on synthetic samples often face performance degradation due to the inherent gap between real and synthetic distributions. To address this limitation, we develop a theoretical framework that quantifies the impact of such distribution discrepancies on supervised learning, specifically in the context of image classification. More importantly, our framework suggests practical ways to generate good synthetic samples and to train a predictor with high generalization ability. Building upon this framework, we propose a novel theoretical-based algorithm that integrates prototype learning to optimize both data partitioning and model training, effectively bridging the gap between real few-shot data and synthetic data. Extensive experiments results show that our approach demonstrates superior performance compared to state-of-the-art methods, outperforming them across multiple datasets.
comment: ICML 2025. Our code is released at https://github.com/Fsoft-AIC/ProtoAug
♻ ☆ Mamba Policy: Towards Efficient 3D Diffusion Policy with Hybrid Selective State Models
Diffusion models have been widely employed in the field of 3D manipulation due to their efficient capability to learn distributions, allowing for precise prediction of action trajectories. However, diffusion models typically rely on large parameter UNet backbones as policy networks, which can be challenging to deploy on resource-constrained devices. Recently, the Mamba model has emerged as a promising solution for efficient modeling, offering low computational complexity and strong performance in sequence modeling. In this work, we propose the Mamba Policy, a lighter but stronger policy that reduces the parameter count by over 80% compared to the original policy network while achieving superior performance. Specifically, we introduce the XMamba Block, which effectively integrates input information with conditional features and leverages a combination of Mamba and Attention mechanisms for deep feature extraction. Extensive experiments demonstrate that the Mamba Policy excels on the Adroit, Dexart, and MetaWorld datasets, requiring significantly fewer computational resources. Additionally, we highlight the Mamba Policy's enhanced robustness in long-horizon scenarios compared to baseline methods and explore the performance of various Mamba variants within the Mamba Policy framework. Real-world experiments are also conducted to further validate its effectiveness. Our open-source project page can be found at https://andycao1125.github.io/mamba_policy/.
comment: Accepted to IROS 2025
♻ ☆ WoundAmbit: Bridging State-of-the-Art Semantic Segmentation and Real-World Wound Care KDD 2025
Chronic wounds affect a large population, particularly the elderly and diabetic patients, who often exhibit limited mobility and co-existing health conditions. Automated wound monitoring via mobile image capture can reduce in-person physician visits by enabling remote tracking of wound size. Semantic segmentation is key to this process, yet wound segmentation remains underrepresented in medical imaging research. To address this, we benchmark state-of-the-art deep learning models from general-purpose vision, medical imaging, and top methods from public wound challenges. For a fair comparison, we standardize training, data augmentation, and evaluation, conducting cross-validation to minimize partitioning bias. We also assess real-world deployment aspects, including generalization to an out-of-distribution wound dataset, computational efficiency, and interpretability. Additionally, we propose a reference object-based approach to convert AI-generated masks into clinically relevant wound size estimates and evaluate this, along with mask quality, for the five best architectures based on physician assessments. Overall, the transformer-based TransNeXt showed the highest levels of generalizability. Despite variations in inference times, all models processed at least one image per second on the CPU, which is deemed adequate for the intended application. Interpretability analysis typically revealed prominent activations in wound regions, emphasizing focus on clinically relevant features. Expert evaluation showed high mask approval for all analyzed models, with VWFormer and ConvNeXtS backbone performing the best. Size retrieval accuracy was similar across models, and predictions closely matched expert annotations. Finally, we demonstrate how our AI-driven wound size estimation framework, WoundAmbit, is integrated into a custom telehealth system.
comment: Main paper: 18 pages; supplementary material: 15 pages; the paper has been accepted for publication at the Applied Data Science (ADS) track of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2025)
♻ ☆ Toddlers' Active Gaze Behavior Supports Self-Supervised Object Learning
Toddlers learn to recognize objects from different viewpoints with almost no supervision. During this learning, they execute frequent eye and head movements that shape their visual experience. It is presently unclear if and how these behaviors contribute to toddlers' emerging object recognition abilities. To answer this question, we here combine head-mounted eye tracking during dyadic play with unsupervised machine learning. We approximate toddlers' central visual field experience by cropping image regions from a head-mounted camera centered on the current gaze location estimated via eye tracking. This visual stream feeds an unsupervised computational model of toddlers' learning, which constructs visual representations that slowly change over time. Our experiments demonstrate that toddlers' gaze strategy supports the learning of invariant object representations. Our analysis also shows that the limited size of the central visual field where acuity is high is crucial for this. Overall, our work reveals how toddlers' gaze behavior may support their development of view-invariant object recognition.
comment: 27 pages, 16 figures
♻ ☆ ZigzagPointMamba: Spatial-Semantic Mamba for Point Cloud Understanding
State Space models (SSMs) such as PointMamba enable efficient feature extraction for point cloud self-supervised learning with linear complexity, outperforming Transformers in computational efficiency. However, existing PointMamba-based methods depend on complex token ordering and random masking, which disrupt spatial continuity and local semantic correlations. We propose ZigzagPointMamba to tackle these challenges. The core of our approach is a simple zigzag scan path that globally sequences point cloud tokens, enhancing spatial continuity by preserving the proximity of spatially adjacent point tokens. Nevertheless, random masking undermines local semantic modeling in self-supervised learning. To address this, we introduce a Semantic-Siamese Masking Strategy (SMS), which masks semantically similar tokens to facilitate reconstruction by integrating local features of original and similar tokens. This overcomes the dependence on isolated local features and enables robust global semantic modeling. Our pre-trained ZigzagPointMamba weights significantly improve downstream tasks, achieving a 1.59% mIoU gain on ShapeNetPart for part segmentation, a 0.4% higher accuracy on ModelNet40 for classification, and 0.19%, 1.22%, and 0.72% higher accuracies respectively for the classification tasks on the OBJ-BG, OBJ-ONLY, and PB-T50-RS subsets of ScanObjectNN.
comment: The format of the document has an error and needs to be revised
♻ ☆ KD-DETR: Knowledge Distillation for Detection Transformer with Consistent Distillation Points Sampling CVPR 2024
DETR is a novel end-to-end transformer architecture object detector, which significantly outperforms classic detectors when scaling up. In this paper, we focus on the compression of DETR with knowledge distillation. While knowledge distillation has been well-studied in classic detectors, there is a lack of researches on how to make it work effectively on DETR. We first provide experimental and theoretical analysis to point out that the main challenge in DETR distillation is the lack of consistent distillation points. Distillation points refer to the corresponding inputs of the predictions for student to mimic, which have different formulations in CNN detector and DETR, and reliable distillation requires sufficient distillation points which are consistent between teacher and student. Based on this observation, we propose the first general knowledge distillation paradigm for DETR (KD-DETR) with consistent distillation points sampling, for both homogeneous and heterogeneous distillation. Specifically, we decouple detection and distillation tasks by introducing a set of specialized object queries to construct distillation points for DETR. We further propose a general-to-specific distillation points sampling strategy to explore the extensibility of KD-DETR. Extensive experiments validate the effectiveness and generalization of KD-DETR. For both single-scale DAB-DETR and multis-scale Deformable DETR and DINO, KD-DETR boost the performance of student model with improvements of $2.6\%-5.2\%$. We further extend KD-DETR to heterogeneous distillation, and achieves $2.1\%$ improvement by distilling the knowledge from DINO to Faster R-CNN with ResNet-50, which is comparable with homogeneous distillation methods.The code is available at https://github.com/wennyuhey/KD-DETR.
comment: Accepted to CVPR 2024
♻ ☆ FGS-SLAM: Fourier-based Gaussian Splatting for Real-time SLAM with Sparse and Dense Map Fusion
3D gaussian splatting has advanced simultaneous localization and mapping (SLAM) technology by enabling real-time positioning and the construction of high-fidelity maps. However, the uncertainty in gaussian position and initialization parameters introduces challenges, often requiring extensive iterative convergence and resulting in redundant or insufficient gaussian representations. To address this, we introduce a novel adaptive densification method based on Fourier frequency domain analysis to establish gaussian priors for rapid convergence. Additionally, we propose constructing independent and unified sparse and dense maps, where a sparse map supports efficient tracking via Generalized Iterative Closest Point (GICP) and a dense map creates high-fidelity visual representations. This is the first SLAM system leveraging frequency domain analysis to achieve high-quality gaussian mapping in real-time. Experimental results demonstrate an average frame rate of 36 FPS on Replica and TUM RGB-D datasets, achieving competitive accuracy in both localization and mapping.
♻ ☆ TT3D: Table Tennis 3D Reconstruction
Sports analysis requires processing large amounts of data, which is time-consuming and costly. Advancements in neural networks have significantly alleviated this burden, enabling highly accurate ball tracking in sports broadcasts. However, relying solely on 2D ball tracking is limiting, as it depends on the camera's viewpoint and falls short of supporting comprehensive game analysis. To address this limitation, we propose a novel approach for reconstructing precise 3D ball trajectories from online table tennis match recordings. Our method leverages the underlying physics of the ball's motion to identify the bounce state that minimizes the reprojection error of the ball's flying trajectory, hence ensuring an accurate and reliable 3D reconstruction. A key advantage of our approach is its ability to infer ball spin without relying on human pose estimation or racket tracking, which are often unreliable or unavailable in broadcast footage. We developed an automated camera calibration method capable of reliably tracking camera movements. Additionally, we adapted an existing 3D pose estimation model, which lacks depth motion capture, to accurately track player movements. Together, these contributions enable the full 3D reconstruction of a table tennis rally.
comment: Accepted to CVSport 2025
♻ ☆ Matching-Free Depth Recovery from Structured Light
We introduce a novel approach for depth estimation using images obtained from monocular structured light systems. In contrast to many existing methods that depend on image matching, our technique employs a density voxel grid to represent scene geometry. This grid is trained through self-supervised differentiable volume rendering. Our method leverages color fields derived from the projected patterns in structured light systems during the rendering process, facilitating the isolated optimization of the geometry field. This innovative approach leads to faster convergence and high-quality results. Additionally, we integrate normalized device coordinates (NDC), a distortion loss, and a distinctive surface-based color loss to enhance geometric fidelity. Experimental results demonstrate that our method outperforms current matching-based techniques in terms of geometric performance in few-shot scenarios, achieving an approximately 30% reduction in average estimated depth errors for both synthetic scenes and real-world captured scenes. Moreover, our approach allows for rapid training, being approximately three times faster than previous matching-free methods that utilize implicit representations.
comment: 13 pages, 10 figures
♻ ☆ VideoRFT: Incentivizing Video Reasoning Capability in MLLMs via Reinforced Fine-Tuning
Reinforcement fine-tuning (RFT) has shown great promise in achieving humanlevel reasoning capabilities of Large Language Models (LLMs), and has recently been extended to MLLMs. Nevertheless, reasoning about videos, which is a fundamental aspect of human intelligence, remains a persistent challenge due to the complex logic, temporal and causal structures inherent in video data. To fill this gap, we propose VIDEORFT, a novel approach that extends the RFT paradigm to cultivate human-like video reasoning capabilities in MLLMs. VIDEORFT follows the standard two-stage scheme in RFT: supervised fine-tuning (SFT) with chain-of-thought (CoT) annotations, followed by reinforcement learning (RL) to improve generalization. A central challenge to achieve this in the video domain lies in the scarcity of large-scale, high-quality video CoT datasets. We address this by building a fully automatic CoT curation pipeline. First, we devise a cognitioninspired prompting strategy to elicit a reasoning LLM to generate preliminary CoTs based solely on rich, structured, and literal representations of video content. Subsequently, these CoTs are revised by a visual-language model conditioned on the actual video, ensuring visual consistency and reducing visual hallucinations. This pipeline results in two new datasets - VideoRFT-CoT-102K for SFT and VideoRFT-RL-310K for RL. To further strengthen the RL phase, we introduce a novel semantic-consistency reward that explicitly promotes the alignment between textual reasoning and visual evidence. This reward encourages the model to produce coherent, context-aware reasoning outputs grounded in visual input. Extensive experiments show that VIDEORFT achieves state-of-the-art performance on six video reasoning benchmarks.
comment: Code: https://github.com/QiWang98/VideoRFT
♻ ☆ Skin Color Measurement from Dermatoscopic Images: An Evaluation on a Synthetic Dataset
This paper presents a comprehensive evaluation of skin color measurement methods from dermatoscopic images using a synthetic dataset (S-SYNTH) with controlled ground-truth melanin content, lesion shapes, hair models, and 18 distinct lighting conditions. This allows for rigorous assessment of the robustness and invariance to lighting conditions. We assess four classes of image colorimetry approaches: segmentation-based, patch-based, color quantization, and neural networks. We use these methods to estimate the Individual Typology Angle (ITA) and Fitzpatrick types from dermatoscopic images. Our results show that segmentation-based and color quantization methods yield robust, lighting-invariant estimates, whereas patch-based approaches exhibit significant lighting-dependent biases that require calibration. Furthermore, neural network models, particularly when combined with heavy blurring to reduce overfitting, can provide light-invariant Fitzpatrick predictions, although their generalization to real-world images remains unverified. We conclude with practical recommendations for designing fair and reliable skin color estimation methods.
♻ ☆ ReconX: Reconstruct Any Scene from Sparse Views with Video Diffusion Model
Advancements in 3D scene reconstruction have transformed 2D images from the real world into 3D models, producing realistic 3D results from hundreds of input photos. Despite great success in dense-view reconstruction scenarios, rendering a detailed scene from insufficient captured views is still an ill-posed optimization problem, often resulting in artifacts and distortions in unseen areas. In this paper, we propose ReconX, a novel 3D scene reconstruction paradigm that reframes the ambiguous reconstruction challenge as a temporal generation task. The key insight is to unleash the strong generative prior of large pre-trained video diffusion models for sparse-view reconstruction. However, 3D view consistency struggles to be accurately preserved in directly generated video frames from pre-trained models. To address this, given limited input views, the proposed ReconX first constructs a global point cloud and encodes it into a contextual space as the 3D structure condition. Guided by the condition, the video diffusion model then synthesizes video frames that are both detail-preserved and exhibit a high degree of 3D consistency, ensuring the coherence of the scene from various perspectives. Finally, we recover the 3D scene from the generated video through a confidence-aware 3D Gaussian Splatting optimization scheme. Extensive experiments on various real-world datasets show the superiority of our ReconX over state-of-the-art methods in terms of quality and generalizability.
comment: Project page: https://liuff19.github.io/ReconX
♻ ☆ A Siamese Network to Detect If Two Iris Images Are Monozygotic
This study presents the first automated classifier designed to determine whether a pair of iris images originates from monozygotic individuals, addressing a previously untackled problem in biometric recognition. In Daugman-style iris recognition, the textures of the left and right irises of the same person are traditionally considered as being as different as the irises of two unrelated persons. However, previous research indicates that humans can detect that two iris images are from different eyes of the same person, or eyes of monozygotic twins, with an accuracy of about 80%. In this work, we employ a Siamese network architecture and contrastive learning to categorize a pair of iris images as coming from monozygotic or non-monozygotic irises. This could potentially be applied, for example, as a fast, noninvasive test to determine if twins are monozygotic or non-monozygotic. We construct a dataset comprising both synthetic monozygotic pairs (images of different irises of the same individual) and natural monozygotic pairs (images of different images from persons who are identical twins), in addition to non-monozygotic pairs from unrelated individuals, ensuring a comprehensive evaluation of the model's capabilities. To gain deeper insights into the learned representations, we train and analyze three variants of the model using (1) the original input images, (2) iris-only images (masking everything but the iris region), and (3) non-iris-only images (masking the iris region). This comparison reveals that both iris texture and surrounding ocular structure contain information useful for the model to classify the image pairs as monozygotic or non-monozygotic. Our approach achieves accuracy levels using the full iris image that exceed those previously reported for human classification of monozygotic iris pairs.
♻ ☆ EvDetMAV: Generalized MAV Detection from Moving Event Cameras
Existing micro aerial vehicle (MAV) detection methods mainly rely on the target's appearance features in RGB images, whose diversity makes it difficult to achieve generalized MAV detection. We notice that different types of MAVs share the same distinctive features in event streams due to their high-speed rotating propellers, which are hard to see in RGB images. This paper studies how to detect different types of MAVs from an event camera by fully exploiting the features of propellers in the original event stream. The proposed method consists of three modules to extract the salient and spatio-temporal features of the propellers while filtering out noise from background objects and camera motion. Since there are no existing event-based MAV datasets, we introduce a novel MAV dataset for the community. This is the first event-based MAV dataset comprising multiple scenarios and different types of MAVs. Without training, our method significantly outperforms state-of-the-art methods and can deal with challenging scenarios, achieving a precision rate of 83.0\% (+30.3\%) and a recall rate of 81.5\% (+36.4\%) on the proposed testing dataset. The dataset and code are available at: https://github.com/WindyLab/EvDetMAV.
comment: 8 pages, 7 figures. This paper is accepted by IEEE Robotics and Automation Letters
♻ ☆ TIIF-Bench: How Does Your T2I Model Follow Your Instructions?
The rapid advancements of Text-to-Image (T2I) models have ushered in a new phase of AI-generated content, marked by their growing ability to interpret and follow user instructions. However, existing T2I model evaluation benchmarks fall short in limited prompt diversity and complexity, as well as coarse evaluation metrics, making it difficult to evaluate the fine-grained alignment performance between textual instructions and generated images. In this paper, we present TIIF-Bench (Text-to-Image Instruction Following Benchmark), aiming to systematically assess T2I models' ability in interpreting and following intricate textual instructions. TIIF-Bench comprises a set of 5000 prompts organized along multiple dimensions, which are categorized into three levels of difficulties and complexities. To rigorously evaluate model robustness to varying prompt lengths, we provide a short and a long version for each prompt with identical core semantics. Two critical attributes, i.e., text rendering and style control, are introduced to evaluate the precision of text synthesis and the aesthetic coherence of T2I models. In addition, we collect 100 high-quality designer level prompts that encompass various scenarios to comprehensively assess model performance. Leveraging the world knowledge encoded in large vision language models, we propose a novel computable framework to discern subtle variations in T2I model outputs. Through meticulous benchmarking of mainstream T2I models on TIIF-Bench, we analyze the pros and cons of current T2I models and reveal the limitations of current T2I benchmarks. Project Page: https://a113n-w3i.github.io/TIIF_Bench/.
comment: 23 pages, 12 figures, 11 tables
♻ ☆ USP-Gaussian: Unifying Spike-based Image Reconstruction, Pose Correction and Gaussian Splatting
Spike cameras, as an innovative neuromorphic camera that captures scenes with the 0-1 bit stream at 40 kHz, are increasingly employed for the 3D reconstruction task via Neural Radiance Fields (NeRF) or 3D Gaussian Splatting (3DGS). Previous spike-based 3D reconstruction approaches often employ a casecased pipeline: starting with high-quality image reconstruction from spike streams based on established spike-to-image reconstruction algorithms, then progressing to camera pose estimation and 3D reconstruction. However, this cascaded approach suffers from substantial cumulative errors, where quality limitations of initial image reconstructions negatively impact pose estimation, ultimately degrading the fidelity of the 3D reconstruction. To address these issues, we propose a synergistic optimization framework, \textbf{USP-Gaussian}, that unifies spike-based image reconstruction, pose correction, and Gaussian splatting into an end-to-end framework. Leveraging the multi-view consistency afforded by 3DGS and the motion capture capability of the spike camera, our framework enables a joint iterative optimization that seamlessly integrates information between the spike-to-image network and 3DGS. Experiments on synthetic datasets with accurate poses demonstrate that our method surpasses previous approaches by effectively eliminating cascading errors. Moreover, we integrate pose optimization to achieve robust 3D reconstruction in real-world scenarios with inaccurate initial poses, outperforming alternative methods by effectively reducing noise and preserving fine texture details. Our code, data and trained models will be available at https://github.com/chenkang455/USP-Gaussian.
♻ ☆ VLN-R1: Vision-Language Navigation via Reinforcement Fine-Tuning
Vision-Language Navigation (VLN) is a core challenge in embodied AI, requiring agents to navigate real-world environments using natural language instructions. Current language model-based navigation systems operate on discrete topological graphs, limiting path planning to predefined node connections. We propose VLN-R1, an end-to-end framework that leverages Large Vision-Language Models (LVLM) to directly translate egocentric video streams into continuous navigation actions, adopting GRPO-based training inspired by DeepSeek-R1. To enable effective training, we first construct the VLN-Ego dataset using a 3D simulator, Habitat, and propose Long-Short Memory Sampling to balance historical and current observations. While large language models can supervise complete textual instructions, they lack fine-grained action-level control. Our framework employs a two-stage training approach: a) Supervised fine-tuning (SFT) to align the model's action sequence text predictions with expert demonstrations, followed by b) Reinforcement fine-tuning (RFT) enhanced with a Time-Decayed Reward (TDR) mechanism that strategically weights multi-step future actions. Experimental results show VLN-R1 achieves strong performance on VLN-CE benchmark. VLN-R1 proves LVLMs can drive embodied navigation and enhance task-specific reasoning through data-efficient, reward-driven post-training.
comment: project page: vlnr1.github.io
Machine Learning 204
☆ DemoDiffusion: One-Shot Human Imitation using pre-trained Diffusion Policy
We propose DemoDiffusion, a simple and scalable method for enabling robots to perform manipulation tasks in natural environments by imitating a single human demonstration. Our approach is based on two key insights. First, the hand motion in a human demonstration provides a useful prior for the robot's end-effector trajectory, which we can convert into a rough open-loop robot motion trajectory via kinematic retargeting. Second, while this retargeted motion captures the overall structure of the task, it may not align well with plausible robot actions in-context. To address this, we leverage a pre-trained generalist diffusion policy to modify the trajectory, ensuring it both follows the human motion and remains within the distribution of plausible robot actions. Our approach avoids the need for online reinforcement learning or paired human-robot data, enabling robust adaptation to new tasks and scenes with minimal manual effort. Experiments in both simulation and real-world settings show that DemoDiffusion outperforms both the base policy and the retargeted trajectory, enabling the robot to succeed even on tasks where the pre-trained generalist policy fails entirely. Project page: https://demodiffusion.github.io/
comment: Preprint(17 pages). Under Review
☆ Hear No Evil: Detecting Gradient Leakage by Malicious Servers in Federated Learning
Recent work has shown that gradient updates in federated learning (FL) can unintentionally reveal sensitive information about a client's local data. This risk becomes significantly greater when a malicious server manipulates the global model to provoke information-rich updates from clients. In this paper, we adopt a defender's perspective to provide the first comprehensive analysis of malicious gradient leakage attacks and the model manipulation techniques that enable them. Our investigation reveals a core trade-off: these attacks cannot be both highly effective in reconstructing private data and sufficiently stealthy to evade detection -- especially in realistic FL settings that incorporate common normalization techniques and federated averaging. Building on this insight, we argue that malicious gradient leakage attacks, while theoretically concerning, are inherently limited in practice and often detectable through basic monitoring. As a complementary contribution, we propose a simple, lightweight, and broadly applicable client-side detection mechanism that flags suspicious model updates before local training begins, despite the fact that such detection may not be strictly necessary in realistic FL settings. This mechanism further underscores the feasibility of defending against these attacks with minimal overhead, offering a deployable safeguard for privacy-conscious federated learning systems.
☆ Mastering Multiple-Expert Routing: Realizable $H$-Consistency and Strong Guarantees for Learning to Defer ICML 2025
The problem of learning to defer with multiple experts consists of optimally assigning input instances to experts, balancing the trade-off between their accuracy and computational cost. This is a critical challenge in natural language generation, but also in other fields such as image processing, and medical diagnostics. Recent studies have proposed surrogate loss functions to optimize deferral, but challenges remain in ensuring their consistency properties. This paper introduces novel surrogate loss functions and efficient algorithms with strong theoretical learning guarantees. We address open questions regarding realizable $H$-consistency, $H$-consistency bounds, and Bayes-consistency for both single-stage (jointly learning predictor and deferral function) and two-stage (learning only the deferral function with a fixed expert) learning scenarios. For single-stage deferral, we introduce a family of new realizable $H$-consistent surrogate losses and further prove $H$-consistency for a selected member. For two-stage deferral, we derive new surrogate losses that achieve realizable $H$-consistency, $H$-consistency bounds, and Bayes-consistency for the two-expert scenario and, under natural assumptions, multiple-expert scenario. Additionally, we provide enhanced theoretical guarantees under low-noise assumptions for both scenarios. Finally, we report the results of experiments using our proposed surrogate losses, comparing their performance against existing baselines.
comment: ICML 2025
☆ Disentangled representations of microscopy images
Microscopy image analysis is fundamental for different applications, from diagnosis to synthetic engineering and environmental monitoring. Modern acquisition systems have granted the possibility to acquire an escalating amount of images, requiring a consequent development of a large collection of deep learning-based automatic image analysis methods. Although deep neural networks have demonstrated great performance in this field, interpretability, an essential requirement for microscopy image analysis, remains an open challenge. This work proposes a Disentangled Representation Learning (DRL) methodology to enhance model interpretability for microscopy image classification. Exploiting benchmark datasets from three different microscopic image domains (plankton, yeast vacuoles, and human cells), we show how a DRL framework, based on transferring a representation learnt from synthetic data, can provide a good trade-off between accuracy and interpretability in this domain.
comment: Published in: International Joint Conference on Neural Networks (IJCNN 2025). Project page: https://github.com/JacopoDapueto/disentangled_microscopy
☆ Efficient Federated Learning with Encrypted Data Sharing for Data-Heterogeneous Edge Devices
As privacy protection gains increasing importance, more models are being trained on edge devices and subsequently merged into the central server through Federated Learning (FL). However, current research overlooks the impact of network topology, physical distance, and data heterogeneity on edge devices, leading to issues such as increased latency and degraded model performance. To address these issues, we propose a new federated learning scheme on edge devices that called Federated Learning with Encrypted Data Sharing(FedEDS). FedEDS uses the client model and the model's stochastic layer to train the data encryptor. The data encryptor generates encrypted data and shares it with other clients. The client uses the corresponding client's stochastic layer and encrypted data to train and adjust the local model. FedEDS uses the client's local private data and encrypted shared data from other clients to train the model. This approach accelerates the convergence speed of federated learning training and mitigates the negative impact of data heterogeneity, making it suitable for application services deployed on edge devices requiring rapid convergence. Experiments results show the efficacy of FedEDS in promoting model performance.
comment: Accepted by ICWS 2025
☆ Towards Community-Driven Agents for Machine Learning Engineering
Large language model-based machine learning (ML) agents have shown great promise in automating ML research. However, existing agents typically operate in isolation on a given research problem, without engaging with the broader research community, where human researchers often gain insights and contribute by sharing knowledge. To bridge this gap, we introduce MLE-Live, a live evaluation framework designed to assess an agent's ability to communicate with and leverage collective knowledge from a simulated Kaggle research community. Building on this framework, we propose CoMind, a novel agent that excels at exchanging insights and developing novel solutions within a community context. CoMind achieves state-of-the-art performance on MLE-Live and outperforms 79.2% human competitors on average across four ongoing Kaggle competitions. Our code is released at https://github.com/comind-ml/CoMind.
☆ First-order methods for stochastic and finite-sum convex optimization with deterministic constraints
In this paper, we study a class of stochastic and finite-sum convex optimization problems with deterministic constraints. Existing methods typically aim to find an $\epsilon$-$expectedly\ feasible\ stochastic\ optimal$ solution, in which the expected constraint violation and expected optimality gap are both within a prescribed tolerance $\epsilon$. However, in many practical applications, constraints must be nearly satisfied with certainty, rendering such solutions potentially unsuitable due to the risk of substantial violations. To address this issue, we propose stochastic first-order methods for finding an $\epsilon$-$surely\ feasible\ stochastic\ optimal$ ($\epsilon$-SFSO) solution, where the constraint violation is deterministically bounded by $\epsilon$ and the expected optimality gap is at most $\epsilon$. Our methods apply an accelerated stochastic gradient (ASG) scheme or a modified variance-reduced ASG scheme $only\ once$ to a sequence of quadratic penalty subproblems with appropriately chosen penalty parameters. We establish first-order oracle complexity bounds for the proposed methods in computing an $\epsilon$-SFSO solution. As a byproduct, we also derive first-order oracle complexity results for sample average approximation method in computing an $\epsilon$-SFSO solution of the stochastic optimization problem using our proposed methods to solve the sample average problem.
comment: 41 pages
☆ PLoP: Precise LoRA Placement for Efficient Finetuning of Large Models
Low-Rank Adaptation (LoRA) is a widely used finetuning method for large models. Its small memory footprint allows practitioners to adapt large models to specific tasks at a fraction of the cost of full finetuning. Different modifications have been proposed to enhance its efficiency by, for example, setting the learning rate, the rank, and the initialization. Another improvement axis is adapter placement strategy: when using LoRA, practitioners usually pick module types to adapt with LoRA, such as Query and Key modules. Few works have studied the problem of adapter placement, with nonconclusive results: original LoRA paper suggested placing adapters in attention modules, while other works suggested placing them in the MLP modules. Through an intuitive theoretical analysis, we introduce PLoP (Precise LoRA Placement), a lightweight method that allows automatic identification of module types where LoRA adapters should be placed, given a pretrained model and a finetuning task. We demonstrate that PLoP consistently outperforms, and in the worst case competes, with commonly used placement strategies through comprehensive experiments on supervised finetuning and reinforcement learning for reasoning.
comment: TD,LR: A lightweight module type selection method for LoRA finetuning. PLoP gives precise placements for LoRA adapters for improved performance
☆ Lost in Retraining: Roaming the Parameter Space of Exponential Families Under Closed-Loop Learning
Closed-loop learning is the process of repeatedly estimating a model from data generated from the model itself. It is receiving great attention due to the possibility that large neural network models may, in the future, be primarily trained with data generated by artificial neural networks themselves. We study this process for models that belong to exponential families, deriving equations of motions that govern the dynamics of the parameters. We show that maximum likelihood estimation of the parameters endows sufficient statistics with the martingale property and that as a result the process converges to absorbing states that amplify initial biases present in the data. However, we show that this outcome may be prevented by polluting the data with an infinitesimal fraction of data points generated from a fixed model, by relying on maximum a posteriori estimation or by introducing regularisation. Furthermore, we show that the asymptotic behavior of the dynamics is not reparametrisation invariant.
comment: 13 pages, 2 figures
☆ H-FEX: A Symbolic Learning Method for Hamiltonian Systems
Hamiltonian systems describe a broad class of dynamical systems governed by Hamiltonian functions, which encode the total energy and dictate the evolution of the system. Data-driven approaches, such as symbolic regression and neural network-based methods, provide a means to learn the governing equations of dynamical systems directly from observational data of Hamiltonian systems. However, these methods often struggle to accurately capture complex Hamiltonian functions while preserving energy conservation. To overcome this limitation, we propose the Finite Expression Method for learning Hamiltonian Systems (H-FEX), a symbolic learning method that introduces novel interaction nodes designed to capture intricate interaction terms effectively. Our experiments, including those on highly stiff dynamical systems, demonstrate that H-FEX can recover Hamiltonian functions of complex systems that accurately capture system dynamics and preserve energy over long time horizons. These findings highlight the potential of H-FEX as a powerful framework for discovering closed-form expressions of complex dynamical systems.
comment: 16 pages, 7 figures
☆ The kernel of graph indices for vector search
The most popular graph indices for vector search use principles from computational geometry to build the graph. Hence, their formal graph navigability guarantees are only valid in Euclidean space. In this work, we show that machine learning can be used to build graph indices for vector search in metric and non-metric vector spaces (e.g., for inner product similarity). From this novel perspective, we introduce the Support Vector Graph (SVG), a new type of graph index that leverages kernel methods to establish the graph connectivity and that comes with formal navigability guarantees valid in metric and non-metric vector spaces. In addition, we interpret the most popular graph indices, including HNSW and DiskANN, as particular specializations of SVG and show that new indices can be derived from the principles behind this specialization. Finally, we propose SVG-L0 that incorporates an $\ell_0$ sparsity constraint into the SVG kernel method to build graphs with a bounded out-degree. This yields a principled way of implementing this practical requirement, in contrast to the traditional heuristic of simply truncating the out edges of each node. Additionally, we show that SVG-L0 has a self-tuning property that avoids the heuristic of using a set of candidates to find the out-edges of each node and that keeps its computational complexity in check.
☆ Causal Representation Learning with Observational Grouping for CXR Classification
Identifiable causal representation learning seeks to uncover the true causal relationships underlying a data generation process. In medical imaging, this presents opportunities to improve the generalisability and robustness of task-specific latent features. This work introduces the concept of grouping observations to learn identifiable representations for disease classification in chest X-rays via an end-to-end framework. Our experiments demonstrate that these causal representations improve generalisability and robustness across multiple classification tasks when grouping is used to enforce invariance w.r.t race, sex, and imaging views.
☆ Exploring Graph-Transformer Out-of-Distribution Generalization Abilities
Deep learning on graphs has shown remarkable success across numerous applications, including social networks, bio-physics, traffic networks, and recommendation systems. Regardless of their successes, current methods frequently depend on the assumption that training and testing data share the same distribution, a condition rarely met in real-world scenarios. While graph-transformer (GT) backbones have recently outperformed traditional message-passing neural networks (MPNNs) in multiple in-distribution (ID) benchmarks, their effectiveness under distribution shifts remains largely unexplored. In this work, we address the challenge of out-of-distribution (OOD) generalization for graph neural networks, with a special focus on the impact of backbone architecture. We systematically evaluate GT and hybrid backbones in OOD settings and compare them to MPNNs. To do so, we adapt several leading domain generalization (DG) algorithms to work with GTs and assess their performance on a benchmark designed to test a variety of distribution shifts. Our results reveal that GT and hybrid GT-MPNN backbones consistently demonstrate stronger generalization ability compared to MPNNs, even without specialized DG algorithms. Additionally, we propose a novel post-training analysis approach that compares the clustering structure of the entire ID and OOD test datasets, specifically examining domain alignment and class separation. Demonstrating its model-agnostic design, this approach not only provided meaningful insights into GT and MPNN backbones. It also shows promise for broader applicability to DG problems beyond graph learning, offering a deeper perspective on generalization abilities that goes beyond standard accuracy metrics. Together, our findings highlight the promise of graph-transformers for robust, real-world graph learning and set a new direction for future research in OOD generalization.
☆ Benchmarking Unsupervised Strategies for Anomaly Detection in Multivariate Time Series VLDB 2026
Anomaly detection in multivariate time series is an important problem across various fields such as healthcare, financial services, manufacturing or physics detector monitoring. Accurately identifying when unexpected errors or faults occur is essential, yet challenging, due to the unknown nature of anomalies and the complex interdependencies between time series dimensions. In this paper, we investigate transformer-based approaches for time series anomaly detection, focusing on the recently proposed iTransformer architecture. Our contributions are fourfold: (i) we explore the application of the iTransformer to time series anomaly detection, and analyse the influence of key parameters such as window size, step size, and model dimensions on performance; (ii) we examine methods for extracting anomaly labels from multidimensional anomaly scores and discuss appropriate evaluation metrics for such labels; (iii) we study the impact of anomalous data present during training and assess the effectiveness of alternative loss functions in mitigating their influence; and (iv) we present a comprehensive comparison of several transformer-based models across a diverse set of datasets for time series anomaly detection.
comment: Submitted to VLDB 2026 conference, currently under review
☆ LARP: Learner-Agnostic Robust Data Prefiltering
The widespread availability of large public datasets is a key factor behind the recent successes of statistical inference and machine learning methods. However, these datasets often contain some low-quality or contaminated data, to which many learning procedures are sensitive. Therefore, the question of whether and how public datasets should be prefiltered to facilitate accurate downstream learning arises. On a technical level this requires the construction of principled data prefiltering methods which are learner-agnostic robust, in the sense of provably protecting a set of pre-specified downstream learners from corrupted data. In this work, we formalize the problem of Learner-Agnostic Robust data Prefiltering (LARP), which aims at finding prefiltering procedures that minimize a worst-case loss over a pre-specified set of learners. We first instantiate our framework in the context of scalar mean estimation with Huber estimators under the Huber data contamination model. We provide a hardness result on a specific problem instance and analyze several natural prefiltering procedures. Our theoretical results indicate that performing LARP on a heterogeneous set of learners leads to some loss in model performance compared to the alternative of prefiltering data for each learner/use-case individually. We explore the resulting utility loss and its dependence on the problem parameters via extensive experiments on real-world image and tabular data, observing statistically significant reduction in utility. Finally, we model the trade-off between the utility drop and the cost of repeated (learner-specific) prefiltering within a game-theoretic framework and showcase benefits of LARP for large datasets.
☆ Reinforcement Learning Increases Wind Farm Power Production by Enabling Closed-Loop Collaborative Control
Traditional wind farm control operates each turbine independently to maximize individual power output. However, coordinated wake steering across the entire farm can substantially increase the combined wind farm energy production. Although dynamic closed-loop control has proven effective in flow control applications, wind farm optimization has relied primarily on static, low-fidelity simulators that ignore critical turbulent flow dynamics. In this work, we present the first reinforcement learning (RL) controller integrated directly with high-fidelity large-eddy simulation (LES), enabling real-time response to atmospheric turbulence through collaborative, dynamic control strategies. Our RL controller achieves a 4.30% increase in wind farm power output compared to baseline operation, nearly doubling the 2.19% gain from static optimal yaw control obtained through Bayesian optimization. These results establish dynamic flow-responsive control as a transformative approach to wind farm optimization, with direct implications for accelerating renewable energy deployment to net-zero targets.
☆ Pay Less Attention to Deceptive Artifacts: Robust Detection of Compressed Deepfakes on Online Social Networks
With the rapid advancement of deep learning, particularly through generative adversarial networks (GANs) and diffusion models (DMs), AI-generated images, or ``deepfakes", have become nearly indistinguishable from real ones. These images are widely shared across Online Social Networks (OSNs), raising concerns about their misuse. Existing deepfake detection methods overlook the ``block effects" introduced by compression in OSNs, which obscure deepfake artifacts, and primarily focus on raw images, rarely encountered in real-world scenarios. To address these challenges, we propose PLADA (Pay Less Attention to Deceptive Artifacts), a novel framework designed to tackle the lack of paired data and the ineffective use of compressed images. PLADA consists of two core modules: Block Effect Eraser (B2E), which uses a dual-stage attention mechanism to handle block effects, and Open Data Aggregation (ODA), which processes both paired and unpaired data to improve detection. Extensive experiments across 26 datasets demonstrate that PLADA achieves a remarkable balance in deepfake detection, outperforming SoTA methods in detecting deepfakes on OSNs, even with limited paired data and compression. More importantly, this work introduces the ``block effect" as a critical factor in deepfake detection, providing a robust solution for open-world scenarios. Our code is available at https://github.com/ManyiLee/PLADA.
comment: 20 pages, 10 figures
☆ Demonstration of effective UCB-based routing in skill-based queues on real-world data
This paper is about optimally controlling skill-based queueing systems such as data centers, cloud computing networks, and service systems. By means of a case study using a real-world data set, we investigate the practical implementation of a recently developed reinforcement learning algorithm for optimal customer routing. Our experiments show that the algorithm efficiently learns and adapts to changing environments and outperforms static benchmark policies, indicating its potential for live implementation. We also augment the real-world applicability of this algorithm by introducing a new heuristic routing rule to reduce delays. Moreover, we show that the algorithm can optimize for multiple objectives: next to payoff maximization, secondary objectives such as server load fairness and customer waiting time reduction can be incorporated. Tuning parameters are used for balancing inherent performance trade--offs. Lastly, we investigate the sensitivity to estimation errors and parameter tuning, providing valuable insights for implementing adaptive routing algorithms in complex real-world queueing systems.
☆ Physics-Informed Machine Learning Regulated by Finite Element Analysis for Simulation Acceleration of Laser Powder Bed Fusion
Efficient simulation of Laser Powder Bed Fusion (LPBF) is crucial for process prediction due to the lasting issue of high computation cost using traditional numerical methods such as finite element analysis (FEA). This study presents an efficient modeling framework termed FEA-Regulated Physics-Informed Neural Network (FEA-PINN) to accelerate the thermal field prediction in a LPBF process while maintaining the FEA accuracy. A novel dynamic material updating strategy is developed to capture the dynamic phase change of powder-liquid-solid in the PINN model. The PINN model incorporates temperature-dependent material properties and phase change behavior using the apparent heat capacity method. While the PINN model demonstrates high accuracy with a small training data and enables generalization of new process parameters via transfer learning, it faces the challenge of high computation cost in time-dependent problems due to the residual accumulation. To overcome this issue, the FEA-PINN framework integrates corrective FEA simulations during inference to enforce physical consistency and reduce error drift. A comparative analysis shows that FEA-PINN achieves equivalent accuracy to FEA while significantly reducing computational cost. The framework has been validated using the benchmark FEA data and demonstrated through single-track scanning in LPBF.
☆ WattsOnAI: Measuring, Analyzing, and Visualizing Energy and Carbon Footprint of AI Workloads
The rapid advancement of AI, particularly large language models (LLMs), has raised significant concerns about the energy use and carbon emissions associated with model training and inference. However, existing tools for measuring and reporting such impacts are often fragmented, lacking systematic metric integration and offering limited support for correlation analysis among them. This paper presents WattsOnAI, a comprehensive software toolkit for the measurement, analysis, and visualization of energy use, power draw, hardware performance, and carbon emissions across AI workloads. By seamlessly integrating with existing AI frameworks, WattsOnAI offers standardized reports and exports fine-grained time-series data to support benchmarking and reproducibility in a lightweight manner. It further enables in-depth correlation analysis between hardware metrics and model performance and thus facilitates bottleneck identification and performance enhancement. By addressing critical limitations in existing tools, WattsOnAI encourages the research community to weigh environmental impact alongside raw performance of AI workloads and advances the shift toward more sustainable "Green AI" practices. The code is available at https://github.com/SusCom-Lab/WattsOnAI.
comment: 11 pages, 7 figures and 5 tables
☆ Global Convergence of Iteratively Reweighted Least Squares for Robust Subspace Recovery
Robust subspace estimation is fundamental to many machine learning and data analysis tasks. Iteratively Reweighted Least Squares (IRLS) is an elegant and empirically effective approach to this problem, yet its theoretical properties remain poorly understood. This paper establishes that, under deterministic conditions, a variant of IRLS with dynamic smoothing regularization converges linearly to the underlying subspace from any initialization. We extend these guarantees to affine subspace estimation, a setting that lacks prior recovery theory. Additionally, we illustrate the practical benefits of IRLS through an application to low-dimensional neural network training. Our results provide the first global convergence guarantees for IRLS in robust subspace recovery and, more broadly, for nonconvex IRLS on a Riemannian manifold.
☆ Industrial Energy Disaggregation with Digital Twin-generated Dataset and Efficient Data Augmentation
Industrial Non-Intrusive Load Monitoring (NILM) is limited by the scarcity of high-quality datasets and the complex variability of industrial energy consumption patterns. To address data scarcity and privacy issues, we introduce the Synthetic Industrial Dataset for Energy Disaggregation (SIDED), an open-source dataset generated using Digital Twin simulations. SIDED includes three types of industrial facilities across three different geographic locations, capturing diverse appliance behaviors, weather conditions, and load profiles. We also propose the Appliance-Modulated Data Augmentation (AMDA) method, a computationally efficient technique that enhances NILM model generalization by intelligently scaling appliance power contributions based on their relative impact. We show in experiments that NILM models trained with AMDA-augmented data significantly improve the disaggregation of energy consumption of complex industrial appliances like combined heat and power systems. Specifically, in our out-of-sample scenarios, models trained with AMDA achieved a Normalized Disaggregation Error of 0.093, outperforming models trained without data augmentation (0.451) and those trained with random data augmentation (0.290). Data distribution analyses confirm that AMDA effectively aligns training and test data distributions, enhancing model generalization.
☆ Asymmetric REINFORCE for off-Policy Reinforcement Learning: Balancing positive and negative rewards
Reinforcement learning (RL) is increasingly used to align large language models (LLMs). Off-policy methods offer greater implementation simplicity and data efficiency than on-policy techniques, but often result in suboptimal performance. In this work, we study the intermediate range of algorithms between off-policy RL and supervised fine-tuning by analyzing a simple off-policy REINFORCE algorithm, where the advantage is defined as $A=r-V$, with $r$ a reward and $V$ some tunable baseline. Intuitively, lowering $V$ emphasizes high-reward samples, while raising it penalizes low-reward ones more heavily. We first provide a theoretical analysis of this off-policy REINFORCE algorithm, showing that when the baseline $V$ lower-bounds the expected reward, the algorithm enjoys a policy improvement guarantee. Our analysis reveals that while on-policy updates can safely leverage both positive and negative signals, off-policy updates benefit from focusing more on positive rewards than on negative ones. We validate our findings experimentally in a controlled stochastic bandit setting and through fine-tuning state-of-the-art LLMs on reasoning tasks.
☆ WallStreetFeds: Client-Specific Tokens as Investment Vehicles in Federated Learning
Federated Learning (FL) is a collaborative machine learning paradigm which allows participants to collectively train a model while training data remains private. This paradigm is especially beneficial for sectors like finance, where data privacy, security and model performance are paramount. FL has been extensively studied in the years following its introduction, leading to, among others, better performing collaboration techniques, ways to defend against other clients trying to attack the model, and contribution assessment methods. An important element in for-profit Federated Learning is the development of incentive methods to determine the allocation and distribution of rewards for participants. While numerous methods for allocation have been proposed and thoroughly explored, distribution frameworks remain relatively understudied. In this paper, we propose a novel framework which introduces client-specific tokens as investment vehicles within the FL ecosystem. Our framework aims to address the limitations of existing incentive schemes by leveraging a decentralized finance (DeFi) platform and automated market makers (AMMs) to create a more flexible and scalable reward distribution system for participants, and a mechanism for third parties to invest in the federation learning process.
☆ Fast ground penetrating radar dual-parameter full waveform inversion method accelerated by hybrid compilation of CUDA kernel function and PyTorch
This study proposes a high-performance dual-parameter full waveform inversion framework (FWI) for ground-penetrating radar (GPR), accelerated through the hybrid compilation of CUDA kernel functions and PyTorch. The method leverages the computational efficiency of GPU programming while preserving the flexibility and usability of Python-based deep learning frameworks. By integrating customized CUDA kernels into PyTorch's automatic differentiation mechanism, the framework enables accurate and efficient inversion of both dielectric permittivity and electrical conductivity. Experimental evaluations on synthetic data and real wavefield data demonstrate that the proposed method achieves dual-parameter FWI for GPR data while maintaining high accuracy. Moreover, the framework is flexible and extensible, supporting optional regularization strategies such as total variation and multi-scale inversion. These features make the proposed approach a practical and scalable framework for rapid GPR-based subsurface imaging in applications including civil engineering, environmental monitoring, and geophysical exploration.
☆ OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling
Different base language model families, such as Llama and Qwen, exhibit divergent behaviors during post-training with reinforcement learning (RL), especially on reasoning-intensive tasks. What makes a base language model suitable for reinforcement learning? Gaining deeper insight into this question is essential for developing RL-scalable foundation models of the next generation. In this work, we investigate how mid-training strategies shape RL dynamics, focusing on two representative model families: Qwen and Llama. Our study reveals that (1) high-quality mathematical corpora, such as MegaMath-Web-Pro, significantly improve both base model and RL performance, while existing alternatives (e.g., FineMath-4plus) fail to do so; (2) further adding QA-style data, particularly long chain-of-thought (CoT) reasoning examples, enhances RL outcomes, and instruction data further unlocks this effect; (3) while long-CoT improves reasoning depth, it can also induce verbosity of model responses and unstability of RL training, underscoring the importance of data formatting; (4) scaling mid-training consistently leads to stronger downstream RL performance. Building on these insights, we introduce a two-stage mid-training strategy, Stable-then-Decay, in which base models are first trained on 200B tokens with a constant learning rate, followed by 20B tokens across three CoT-focused branches with learning rate decay. This yields OctoThinker, a family of models demonstrating strong RL compatibility and closing the performance gap with more RL-friendly model families, i.e., Qwen. We hope our work will help shape pre-training strategies for foundation models in the RL era. To support further research, we release our open-source models along with a curated math reasoning-intensive corpus of over 70 billion tokens (i.e., MegaMath-Web-Pro-Max).
comment: 26 pages; The first three authors contribute to this work equally
☆ Collaborative Batch Size Optimization for Federated Learning
Federated Learning (FL) is a decentralized collaborative Machine Learning framework for training models without collecting data in a centralized location. It has seen application across various disciplines, from helping medical diagnoses in hospitals to detecting fraud in financial transactions. In this paper, we focus on improving the local training process through hardware usage optimization. While participants in a federation might share the hardware they are training on, since there is no information exchange between them, their training process can be hindered by an improper training configuration. Taking advantage of the parallel processing inherent to Federated Learning, we use a greedy randomized search to optimize local batch sizes for the best training settings across all participants. Our results show that against default parameter settings, our method improves convergence speed while staying nearly on par with the case where local parameters are optimized.
☆ Unidentified and Confounded? Understanding Two-Tower Models for Unbiased Learning to Rank
Additive two-tower models are popular learning-to-rank methods for handling biased user feedback in industry settings. Recent studies, however, report a concerning phenomenon: training two-tower models on clicks collected by well-performing production systems leads to decreased ranking performance. This paper investigates two recent explanations for this observation: confounding effects from logging policies and model identifiability issues. We theoretically analyze the identifiability conditions of two-tower models, showing that either document swaps across positions or overlapping feature distributions are required to recover model parameters from clicks. We also investigate the effect of logging policies on two-tower models, finding that they introduce no bias when models perfectly capture user behavior. However, logging policies can amplify biases when models imperfectly capture user behavior, particularly when prediction errors correlate with document placement across positions. We propose a sample weighting technique to mitigate these effects and provide actionable insights for researchers and practitioners using two-tower models.
☆ ReCode: Updating Code API Knowledge with Reinforcement Learning
Large Language Models (LLMs) exhibit remarkable code generation capabilities but falter when adapting to frequent updates in external library APIs. This critical limitation, stemming from reliance on outdated API knowledge from their training data, even with access to current documentation, impedes reliable code generation in dynamic environments. To tackle this issue, we propose ReCode (rule-based Reinforcement learning for Code Update), a novel framework that mimics human programmer adaptation to API changes. Specifically, we construct a dataset of approximately 2,000 data entries to train the LLMs to perform version migration based on updated information. Then, we introduce a modified string similarity metric for code evaluation as the reward for reinforcement learning. Our experiments demonstrate that ReCode substantially boosts LLMs' code generation performance in dynamic API scenarios, especially on the unseen CodeUpdateArena task. Crucially, compared to supervised fine-tuning, ReCode has less impact on LLMs' general code generation abilities. We apply ReCode on various LLMs and reinforcement learning algorithms (GRPO and DAPO), all achieving consistent improvements. Notably, after training, Qwen2.5-Coder-7B outperforms that of the 32B parameter code instruction-tuned model and the reasoning model with the same architecture. Code is available at https://github.com/zjunlp/ReCode.
comment: Work in progress
☆ Multimodal Representation Learning and Fusion
Multi-modal learning is a fast growing area in artificial intelligence. It tries to help machines understand complex things by combining information from different sources, like images, text, and audio. By using the strengths of each modality, multi-modal learning allows AI systems to build stronger and richer internal representations. These help machines better interpretation, reasoning, and making decisions in real-life situations. This field includes core techniques such as representation learning (to get shared features from different data types), alignment methods (to match information across modalities), and fusion strategies (to combine them by deep learning models). Although there has been good progress, some major problems still remain. Like dealing with different data formats, missing or incomplete inputs, and defending against adversarial attacks. Researchers now are exploring new methods, such as unsupervised or semi-supervised learning, AutoML tools, to make models more efficient and easier to scale. And also more attention on designing better evaluation metrics or building shared benchmarks, make it easier to compare model performance across tasks and domains. As the field continues to grow, multi-modal learning is expected to improve many areas: computer vision, natural language processing, speech recognition, and healthcare. In the future, it may help to build AI systems that can understand the world in a way more like humans, flexible, context aware, and able to deal with real-world complexity.
☆ Counterfactual Influence as a Distributional Quantity ICML 2025
Machine learning models are known to memorize samples from their training data, raising concerns around privacy and generalization. Counterfactual self-influence is a popular metric to study memorization, quantifying how the model's prediction for a sample changes depending on the sample's inclusion in the training dataset. However, recent work has shown memorization to be affected by factors beyond self-influence, with other training samples, in particular (near-)duplicates, having a large impact. We here study memorization treating counterfactual influence as a distributional quantity, taking into account how all training samples influence how a sample is memorized. For a small language model, we compute the full influence distribution of training samples on each other and analyze its properties. We find that solely looking at self-influence can severely underestimate tangible risks associated with memorization: the presence of (near-)duplicates seriously reduces self-influence, while we find these samples to be (near-)extractable. We observe similar patterns for image classification, where simply looking at the influence distributions reveals the presence of near-duplicates in CIFAR-10. Our findings highlight that memorization stems from complex interactions across training data and is better captured by the full influence distribution than by self-influence alone.
comment: Workshop on The Impact of Memorization on Trustworthy Foundation Models (MemFM) @ ICML 2025
☆ HiWave: Training-Free High-Resolution Image Generation via Wavelet-Based Diffusion Sampling
Diffusion models have emerged as the leading approach for image synthesis, demonstrating exceptional photorealism and diversity. However, training diffusion models at high resolutions remains computationally prohibitive, and existing zero-shot generation techniques for synthesizing images beyond training resolutions often produce artifacts, including object duplication and spatial incoherence. In this paper, we introduce HiWave, a training-free, zero-shot approach that substantially enhances visual fidelity and structural coherence in ultra-high-resolution image synthesis using pretrained diffusion models. Our method employs a two-stage pipeline: generating a base image from the pretrained model followed by a patch-wise DDIM inversion step and a novel wavelet-based detail enhancer module. Specifically, we first utilize inversion methods to derive initial noise vectors that preserve global coherence from the base image. Subsequently, during sampling, our wavelet-domain detail enhancer retains low-frequency components from the base image to ensure structural consistency, while selectively guiding high-frequency components to enrich fine details and textures. Extensive evaluations using Stable Diffusion XL demonstrate that HiWave effectively mitigates common visual artifacts seen in prior methods, achieving superior perceptual quality. A user study confirmed HiWave's performance, where it was preferred over the state-of-the-art alternative in more than 80% of comparisons, highlighting its effectiveness for high-quality, ultra-high-resolution image synthesis without requiring retraining or architectural modifications.
☆ Automatic Demonstration Selection for LLM-based Tabular Data Classification
A fundamental question in applying In-Context Learning (ICL) for tabular data classification is how to determine the ideal number of demonstrations in the prompt. This work addresses this challenge by presenting an algorithm to automatically select a reasonable number of required demonstrations. Our method distinguishes itself by integrating not only the tabular data's distribution but also the user's selected prompt template and the specific Large Language Model (LLM) into its estimation. Rooted in Spectral Graph Theory, our proposed algorithm defines a novel metric to quantify the similarities between different demonstrations. We then construct a similarity graph and analyze the eigenvalues of its Laplacian to derive the minimum number of demonstrations capable of representing the data within the LLM's intrinsic representation space. We validate the efficacy of our approach through experiments comparing its performance against conventional random selection algorithms on diverse datasets and LLMs.
☆ Méthode de quadrature pour les PINNs fondée théoriquement sur la hessienne des résiduels
Physics-informed Neural Networks (PINNs) have emerged as an efficient way to learn surrogate neural solvers of PDEs by embedding the physical model in the loss function and minimizing its residuals using automatic differentiation at so-called collocation points. Originally uniformly sampled, the choice of the latter has been the subject of recent advances leading to adaptive sampling refinements. In this paper, we propose a new quadrature method for approximating definite integrals based on the hessian of the considered function, and that we leverage to guide the selection of the collocation points during the training process of PINNs.
comment: 10 pages. In French. Comments are welcome
☆ Tackling Data Heterogeneity in Federated Learning through Knowledge Distillation with Inequitable Aggregation
Federated learning aims to train a global model in a distributed environment that is close to the performance of centralized training. However, issues such as client label skew, data quantity skew, and other heterogeneity problems severely degrade the model's performance. Most existing methods overlook the scenario where only a small portion of clients participate in training within a large-scale client setting, whereas our experiments show that this scenario presents a more challenging federated learning task. Therefore, we propose a Knowledge Distillation with teacher-student Inequitable Aggregation (KDIA) strategy tailored to address the federated learning setting mentioned above, which can effectively leverage knowledge from all clients. In KDIA, the student model is the average aggregation of the participating clients, while the teacher model is formed by a weighted aggregation of all clients based on three frequencies: participation intervals, participation counts, and data volume proportions. During local training, self-knowledge distillation is performed. Additionally, we utilize a generator trained on the server to generate approximately independent and identically distributed (IID) data features locally for auxiliary training. We conduct extensive experiments on the CIFAR-10/100/CINIC-10 datasets and various heterogeneous settings to evaluate KDIA. The results show that KDIA can achieve better accuracy with fewer rounds of training, and the improvement is more significant under severe heterogeneity.
comment: 33pages,8figures
☆ Scalable Subset Selection in Linear Mixed Models
Linear mixed models (LMMs), which incorporate fixed and random effects, are key tools for analyzing heterogeneous data, such as in personalized medicine or adaptive marketing. Nowadays, this type of data is increasingly wide, sometimes containing thousands of candidate predictors, necessitating sparsity for prediction and interpretation. However, existing sparse learning methods for LMMs do not scale well beyond tens or hundreds of predictors, leaving a large gap compared with sparse methods for linear models, which ignore random effects. This paper closes the gap with a new $\ell_0$ regularized method for LMM subset selection that can run on datasets containing thousands of predictors in seconds to minutes. On the computational front, we develop a coordinate descent algorithm as our main workhorse and provide a guarantee of its convergence. We also develop a local search algorithm to help traverse the nonconvex optimization surface. Both algorithms readily extend to subset selection in generalized LMMs via a penalized quasi-likelihood approximation. On the statistical front, we provide a finite-sample bound on the Kullback-Leibler divergence of the new method. We then demonstrate its excellent performance in synthetic experiments and illustrate its utility on two datasets from biology and journalism.
☆ Off-Policy Evaluation and Learning for the Future under Non-Stationarity
We study the novel problem of future off-policy evaluation (F-OPE) and learning (F-OPL) for estimating and optimizing the future value of policies in non-stationary environments, where distributions vary over time. In e-commerce recommendations, for instance, our goal is often to estimate and optimize the policy value for the upcoming month using data collected by an old policy in the previous month. A critical challenge is that data related to the future environment is not observed in the historical data. Existing methods assume stationarity or depend on restrictive reward-modeling assumptions, leading to significant bias. To address these limitations, we propose a novel estimator named \textit{\textbf{O}ff-\textbf{P}olicy Estimator for the \textbf{F}uture \textbf{V}alue (\textbf{\textit{OPFV}})}, designed for accurately estimating policy values at any future time point. The key feature of OPFV is its ability to leverage the useful structure within time-series data. While future data might not be present in the historical log, we can leverage, for example, seasonal, weekly, or holiday effects that are consistent in both the historical and future data. Our estimator is the first to exploit these time-related structures via a new type of importance weighting, enabling effective F-OPE. Theoretical analysis identifies the conditions under which OPFV becomes low-bias. In addition, we extend our estimator to develop a new policy-gradient method to proactively learn a good future policy using only historical data. Empirical results show that our methods substantially outperform existing methods in estimating and optimizing the future policy value under non-stationarity for various experimental setups.
☆ Client Clustering Meets Knowledge Sharing: Enhancing Privacy and Robustness in Personalized Peer-to-Peer Learning
The growing adoption of Artificial Intelligence (AI) in Internet of Things (IoT) ecosystems has intensified the need for personalized learning methods that can operate efficiently and privately across heterogeneous, resource-constrained devices. However, enabling effective personalized learning in decentralized settings introduces several challenges, including efficient knowledge transfer between clients, protection of data privacy, and resilience against poisoning attacks. In this paper, we address these challenges by developing P4 (Personalized, Private, Peer-to-Peer) -- a method designed to deliver personalized models for resource-constrained IoT devices while ensuring differential privacy and robustness against poisoning attacks. Our solution employs a lightweight, fully decentralized algorithm to privately detect client similarity and form collaborative groups. Within each group, clients leverage differentially private knowledge distillation to co-train their models, maintaining high accuracy while ensuring robustness to the presence of malicious clients. We evaluate P4 on popular benchmark datasets using both linear and CNN-based architectures across various heterogeneity settings and attack scenarios. Experimental results show that P4 achieves 5% to 30% higher accuracy than leading differentially private peer-to-peer approaches and maintains robustness with up to 30% malicious clients. Additionally, we demonstrate its practicality by deploying it on resource-constrained devices, where collaborative training between two clients adds only ~7 seconds of overhead.
☆ POLAR: A Pessimistic Model-based Policy Learning Algorithm for Dynamic Treatment Regimes
Dynamic treatment regimes (DTRs) provide a principled framework for optimizing sequential decision-making in domains where decisions must adapt over time in response to individual trajectories, such as healthcare, education, and digital interventions. However, existing statistical methods often rely on strong positivity assumptions and lack robustness under partial data coverage, while offline reinforcement learning approaches typically focus on average training performance, lack statistical guarantees, and require solving complex optimization problems. To address these challenges, we propose POLAR, a novel pessimistic model-based policy learning algorithm for offline DTR optimization. POLAR estimates the transition dynamics from offline data and quantifies uncertainty for each history-action pair. A pessimistic penalty is then incorporated into the reward function to discourage actions with high uncertainty. Unlike many existing methods that focus on average training performance, POLAR directly targets the suboptimality of the final learned policy and offers theoretical guarantees, without relying on computationally intensive minimax or constrained optimization procedures. To the best of our knowledge, POLAR is the first model-based DTR method to provide both statistical and computational guarantees, including finite-sample bounds on policy suboptimality. Empirical results on both synthetic data and the MIMIC-III dataset demonstrate that POLAR outperforms state-of-the-art methods and yields near-optimal, history-aware treatment strategies.
☆ Exploiting Lightweight Hierarchical ViT and Dynamic Framework for Efficient Visual Tracking
Transformer-based visual trackers have demonstrated significant advancements due to their powerful modeling capabilities. However, their practicality is limited on resource-constrained devices because of their slow processing speeds. To address this challenge, we present HiT, a novel family of efficient tracking models that achieve high performance while maintaining fast operation across various devices. The core innovation of HiT lies in its Bridge Module, which connects lightweight transformers to the tracking framework, enhancing feature representation quality. Additionally, we introduce a dual-image position encoding approach to effectively encode spatial information. HiT achieves an impressive speed of 61 frames per second (fps) on the NVIDIA Jetson AGX platform, alongside a competitive AUC of 64.6% on the LaSOT benchmark, outperforming all previous efficient trackers.Building on HiT, we propose DyHiT, an efficient dynamic tracker that flexibly adapts to scene complexity by selecting routes with varying computational requirements. DyHiT uses search area features extracted by the backbone network and inputs them into an efficient dynamic router to classify tracking scenarios. Based on the classification, DyHiT applies a divide-and-conquer strategy, selecting appropriate routes to achieve a superior trade-off between accuracy and speed. The fastest version of DyHiT achieves 111 fps on NVIDIA Jetson AGX while maintaining an AUC of 62.4% on LaSOT.Furthermore, we introduce a training-free acceleration method based on the dynamic routing architecture of DyHiT. This method significantly improves the execution speed of various high-performance trackers without sacrificing accuracy. For instance, our acceleration method enables the state-of-the-art tracker SeqTrack-B256 to achieve a 2.68 times speedup on an NVIDIA GeForce RTX 2080 Ti GPU while maintaining the same AUC of 69.9% on the LaSOT.
comment: This paper was accepted by International Journal of Computer Vision(IJCV)
☆ TESSERA: Temporal Embeddings of Surface Spectra for Earth Representation and Analysis
Satellite remote sensing (RS) enables a wide array of downstream Earth observation (EO) applications, including climate modeling, carbon accounting, and strategies for conservation and sustainable land use. We present TESSERA, a novel Remote Sensing Foundation Model (RSFM) that uses Self-Supervised Learning (SSL) to generate global, robust representations at 10m scale from pixel-level satellite time series data. TESSERA combines information from only optical and SAR data streams using two parallel Transformer-based encoders: one dedicated to Sentinel-1 SAR polarizations and another to Sentinel-2 MSI data (10 selected spectral bands) to create representations that are then fused using a multilayer perceptron (MLP), resulting in a global representation map covering the years 2017 to 2024. Our precomputed representations set a new state-of-the-art performance benchmark and our open-source approach democratizes access to high-performance, high-resolution representations. We benchmark the performance of TESSERA in five diverse tasks, comparing our work with state-of-the-art task-specific models and other foundation models. Our results show that TESSERA outperforms both traditional RS baselines and the leading geospatial foundation models in these diverse downstream tasks.
☆ InvZW: Invariant Feature Learning via Noise-Adversarial Training for Robust Image Zero-Watermarking
This paper introduces a novel deep learning framework for robust image zero-watermarking based on distortion-invariant feature learning. As a zero-watermarking scheme, our method leaves the original image unaltered and learns a reference signature through optimization in the feature space. The proposed framework consists of two key modules. In the first module, a feature extractor is trained via noise-adversarial learning to generate representations that are both invariant to distortions and semantically expressive. This is achieved by combining adversarial supervision against a distortion discriminator and a reconstruction constraint to retain image content. In the second module, we design a learning-based multibit zero-watermarking scheme where the trained invariant features are projected onto a set of trainable reference codes optimized to match a target binary message. Extensive experiments on diverse image datasets and a wide range of distortions show that our method achieves state-of-the-art robustness in both feature stability and watermark recovery. Comparative evaluations against existing self-supervised and deep watermarking techniques further highlight the superiority of our framework in generalization and robustness.
Self-Supervised Graph Learning via Spectral Bootstrapping and Laplacian-Based Augmentations
We present LaplaceGNN, a novel self-supervised graph learning framework that bypasses the need for negative sampling by leveraging spectral bootstrapping techniques. Our method integrates Laplacian-based signals into the learning process, allowing the model to effectively capture rich structural representations without relying on contrastive objectives or handcrafted augmentations. By focusing on positive alignment, LaplaceGNN achieves linear scaling while offering a simpler, more efficient, self-supervised alternative for graph neural networks, applicable across diverse domains. Our contributions are twofold: we precompute spectral augmentations through max-min centrality-guided optimization, enabling rich structural supervision without relying on handcrafted augmentations, then we integrate an adversarial bootstrapped training scheme that further strengthens feature learning and robustness. Our extensive experiments on different benchmark datasets show that LaplaceGNN achieves superior performance compared to state-of-the-art self-supervised graph methods, offering a promising direction for efficiently learning expressive graph representations.
comment: LaplaceGNN is a novel graph learning framework that employs a bootstrapped teacher-student architecture. Its precomputed spectral augmentations and adversarial training enable robust performance, outperforming SOTA methods while scaling linearly
☆ Towards Interpretable and Efficient Feature Selection in Trajectory Datasets: A Taxonomic Approach
Trajectory analysis is not only about obtaining movement data, but it is also of paramount importance in understanding the pattern in which an object moves through space and time, as well as in predicting its next move. Due to the significant interest in the area, data collection has improved substantially, resulting in a large number of features becoming available for training and predicting models. However, this introduces a high-dimensionality-induced feature explosion problem, which reduces the efficiency and interpretability of the data, thereby reducing the accuracy of machine learning models. To overcome this issue, feature selection has become one of the most prevalent tools. Thus, the objective of this paper was to introduce a taxonomy-based feature selection method that categorizes features based on their internal structure. This approach classifies the data into geometric and kinematic features, further categorizing them into curvature, indentation, speed, and acceleration. The comparative analysis indicated that a taxonomy-based approach consistently achieved comparable or superior predictive performance. Furthermore, due to the taxonomic grouping, which reduces combinatorial space, the time taken to select features was drastically reduced. The taxonomy was also used to gain insights into what feature sets each dataset was more sensitive to. Overall, this study provides robust evidence that a taxonomy-based feature selection method can add a layer of interpretability, reduce dimensionality and computational complexity, and contribute to high-level decision-making. It serves as a step toward providing a methodological framework for researchers and practitioners dealing with trajectory datasets and contributing to the broader field of explainable artificial intelligence.
☆ A foundation model with multi-variate parallel attention to generate neuronal activity
Learning from multi-variate time-series with heterogeneous channel configurations remains a fundamental challenge for deep neural networks (DNNs), particularly in clinical domains such as intracranial electroencephalography (iEEG), where channel setups vary widely across subjects. In this work, we introduce multi-variate parallel attention (MVPA), a novel self-attention mechanism that disentangles content, temporal, and spatial attention, enabling flexible, generalizable, and efficient modeling of time-series data with varying channel counts and configurations. We use MVPA to build MVPFormer, a generative foundation model for human electrophysiology, trained to predict the evolution of iEEG signals across diverse subjects. To support this and future effort by the community, we release the SWEC iEEG dataset, the largest publicly available iEEG dataset to date, comprising nearly 10,000 hours of recordings from heterogeneous clinical sources. MVPFormer leverages MVPA to achieve strong generalization across subjects, demonstrating expert-level performance in seizure detection and outperforming state-of-the-art Transformer baselines on our SWEC, the MAYO, and the FNUSA dataset. We further validate MVPA on standard time-series forecasting and classification tasks, where it matches or exceeds existing attention-based models. Together, our contributions establish MVPA as a general-purpose attention mechanism for heterogeneous time-series and MVPFormer as the first open-source, open-weights, and open-data iEEG foundation model with state-of-the-art clinical performance. The code is available at https://github.com/IBM/multi-variate-parallel-transformer. The SWEC iEEG dataset is available at https://mb-neuro.medical-blocks.ch/public_access/databases/ieeg/swec_ieeg.
comment: The code is available at https://github.com/IBM/multi-variate-parallel-transformer. The SWEC iEEG dataset is available at https://mb-neuro.medical-blocks.ch/public_access/databases/ieeg/swec_ieeg
☆ DipSVD: Dual-importance Protected SVD for Efficient LLM Compression
The ever-increasing computational demands and deployment costs of large language models (LLMs) have spurred numerous compressing methods. Compared to quantization and unstructured pruning, SVD compression offers superior hardware compatibility and theoretical guarantees. However, existing SVD-based methods focus on the overall discrepancy between the original and compressed matrices while overlooking the protection of critical components within the matrix, which leads to inferior performance in the compressed models. This paper proposes a dual-level importance protection mechanism to enhance SVD-based compression methods: (1) local importance protection: preserving the most critical singular vectors within each weight matrix through channel-weighted data whitening; and (2) global importance protection: enabling less important layers to bear a greater portion of the compression burden through either a heuristic or optimization-based approach, thereby minimizing the impact of compression on critical layers. Extensive experiments demonstrate that DipSVD outperforms existing SVD-based compression approaches across multiple benchmarks, achieving superior model performance especially at high model compression ratios.
☆ On the ability of Deep Neural Networks to Learn Granger Causality in Multi-Variate Time Series Data
Granger Causality (GC) offers an elegant statistical framework to study the association between multivariate time series data. Linear Vector Autoregressive models (VAR) though have nice interpretation properties but have limited practical application due to underlying assumptions on the kind of associations that can be captured by these models. Numerous attempts have already been made in the literature that exploit the functional approximation power of Deep Neural Networks (DNNs) for the task of GC estimation. These methods however treat GC as a variable selection problem. We present a novel paradigm for approaching GC. We present this idea that GC is essentially linked with prediction and if a deep learning model is used to model the time series collectively or jointly, a well regularized model may learn the true granger causal structure from the data, given that there is enough training data. We propose to uncover the learned GC structure by comparing the model uncertainty or distribution of the residuals when the past of everything is used as compared to the one where a specific time series component is dropped from the model. We also compare the effect of input layer dropout on the ability of a neural network to learn granger causality from the data. We show that a well regularized model infact can learn the true GC structure from the data without explicitly adding terms in the loss function that guide the model to select variables or perform sparse regression.
☆ A Complete Loss Landscape Analysis of Regularized Deep Matrix Factorization
Despite its wide range of applications across various domains, the optimization foundations of deep matrix factorization (DMF) remain largely open. In this work, we aim to fill this gap by conducting a comprehensive study of the loss landscape of the regularized DMF problem. Toward this goal, we first provide a closed-form expression of all critical points. Building on this, we establish precise conditions under which a critical point is a local minimizer, a global minimizer, a strict saddle point, or a non-strict saddle point. Leveraging these results, we derive a necessary and sufficient condition under which each critical point is either a local minimizer or a strict saddle point. This provides insights into why gradient-based methods almost always converge to a local minimizer of the regularized DMF problem. Finally, we conduct numerical experiments to visualize its loss landscape under different settings to support our theory.
comment: 35 pages, 3 figures
☆ Feature Hallucination for Self-supervised Action Recognition
Understanding human actions in videos requires more than raw pixel analysis; it relies on high-level semantic reasoning and effective integration of multimodal features. We propose a deep translational action recognition framework that enhances recognition accuracy by jointly predicting action concepts and auxiliary features from RGB video frames. At test time, hallucination streams infer missing cues, enriching feature representations without increasing computational overhead. To focus on action-relevant regions beyond raw pixels, we introduce two novel domain-specific descriptors. Object Detection Features (ODF) aggregate outputs from multiple object detectors to capture contextual cues, while Saliency Detection Features (SDF) highlight spatial and intensity patterns crucial for action recognition. Our framework seamlessly integrates these descriptors with auxiliary modalities such as optical flow, Improved Dense Trajectories, skeleton data, and audio cues. It remains compatible with state-of-the-art architectures, including I3D, AssembleNet, Video Transformer Network, FASTER, and recent models like VideoMAE V2 and InternVideo2. To handle uncertainty in auxiliary features, we incorporate aleatoric uncertainty modeling in the hallucination step and introduce a robust loss function to mitigate feature noise. Our multimodal self-supervised action recognition framework achieves state-of-the-art performance on multiple benchmarks, including Kinetics-400, Kinetics-600, and Something-Something V2, demonstrating its effectiveness in capturing fine-grained action dynamics.
comment: Accepted for publication in International Journal of Computer Vision (IJCV)
☆ Recurrent neural network-based robust control systems with closed-loop regional incremental ISS and application to MPC design
This paper investigates the design of output-feedback schemes for systems described by a class of recurrent neural networks. We propose a procedure based on linear matrix inequalities for designing an observer and a static state-feedback controller. The algorithm leverages global and regional incremental input-to-state stability (incremental ISS) and enables the tracking of constant setpoints, ensuring robustness to disturbances and state estimation uncertainty. To address the potential limitations of regional incremental ISS, we introduce an alternative scheme in which the static law is replaced with a tube-based nonlinear model predictive controller (NMPC) that exploits regional incremental ISS properties. We show that these conditions enable the formulation of a robust NMPC law with guarantees of convergence and recursive feasibility, leading to an enlarged region of attraction. Theoretical results are validated through numerical simulations on the pH-neutralisation process benchmark, demonstrating the effectiveness of the proposed schemes.
comment: 16 pages, 7 figures, submitted to IEEE Transactions on Automatic Control (under review)
☆ Biomed-Enriched: A Biomedical Dataset Enriched with LLMs for Pretraining and Extracting Rare and Hidden Content
We introduce Biomed-Enriched, a biomedical text dataset constructed from PubMed via a two-stage annotation process. In the first stage, a large language model annotates 400K paragraphs from PubMed scientific articles, assigning scores for their type (review, study, clinical case, other), domain (clinical, biomedical, other), and educational quality. The educational quality score (rated 1 to 5) estimates how useful a paragraph is for college-level learning. These annotations are then used to fine-tune a small language model, which propagates the labels across the full PMC-OA corpus. The resulting metadata allows us to extract refined subsets, including 2M clinical case paragraphs with over 450K high-quality ones from articles with commercial-use licenses, and to construct several variants via quality filtering and domain upsampling. Clinical text is typically difficult to access due to privacy constraints, as hospital records cannot be publicly shared. Hence, our dataset provides an alternative large-scale, openly available collection of clinical cases from PubMed, making it a valuable resource for biomedical and clinical NLP. Preliminary continual-pretraining experiments with OLMo2 suggest these curated subsets enable targeted improvements, with clinical upsampling boosting performance by ~5% on MMLU ProfMed and educational quality filtering improving MedQA and MedMCQA by ~1%. Combinations of these techniques led to faster convergence, reaching same performance with a third of training tokens, indicating potential for more efficient and effective biomedical pretraining strategies.
comment: Dataset link: https://hf.co/datasets/almanach/Biomed-Enriched
☆ Producer-Fairness in Sequential Bundle Recommendation
We address fairness in the context of sequential bundle recommendation, where users are served in turn with sets of relevant and compatible items. Motivated by real-world scenarios, we formalize producer-fairness, that seeks to achieve desired exposure of different item groups across users in a recommendation session. Our formulation combines naturally with building high quality bundles. Our problem is solved in real time as users arrive. We propose an exact solution that caters to small instances of our problem. We then examine two heuristics, quality-first and fairness-first, and an adaptive variant that determines on-the-fly the right balance between bundle fairness and quality. Our experiments on three real-world datasets underscore the strengths and limitations of each solution and demonstrate their efficacy in providing fair bundle recommendations without compromising bundle quality.
☆ Permutation Equivariant Neural Controlled Differential Equations for Dynamic Graph Representation Learning
Dynamic graphs exhibit complex temporal dynamics due to the interplay between evolving node features and changing network structures. Recently, Graph Neural Controlled Differential Equations (Graph Neural CDEs) successfully adapted Neural CDEs from paths on Euclidean domains to paths on graph domains. Building on this foundation, we introduce Permutation Equivariant Neural Graph CDEs, which project Graph Neural CDEs onto permutation equivariant function spaces. This significantly reduces the model's parameter count without compromising representational power, resulting in more efficient training and improved generalisation. We empirically demonstrate the advantages of our approach through experiments on simulated dynamical systems and real-world tasks, showing improved performance in both interpolation and extrapolation scenarios.
☆ Comparative Analysis of Deep Learning Models for Crop Disease Detection: A Transfer Learning Approach
This research presents the development of an Artificial Intelligence (AI) - driven crop disease detection system designed to assist farmers in rural areas with limited resources. We aim to compare different deep learning models for a comparative analysis, focusing on their efficacy in transfer learning. By leveraging deep learning models, including EfficientNet, ResNet101, MobileNetV2, and our custom CNN, which achieved a validation accuracy of 95.76%, the system effectively classifies plant diseases. This research demonstrates the potential of transfer learning in reshaping agricultural practices, improving crop health management, and supporting sustainable farming in rural environments.
☆ Beyond-Expert Performance with Limited Demonstrations: Efficient Imitation Learning with Double Exploration
Imitation learning is a central problem in reinforcement learning where the goal is to learn a policy that mimics the expert's behavior. In practice, it is often challenging to learn the expert policy from a limited number of demonstrations accurately due to the complexity of the state space. Moreover, it is essential to explore the environment and collect data to achieve beyond-expert performance. To overcome these challenges, we propose a novel imitation learning algorithm called Imitation Learning with Double Exploration (ILDE), which implements exploration in two aspects: (1) optimistic policy optimization via an exploration bonus that rewards state-action pairs with high uncertainty to potentially improve the convergence to the expert policy, and (2) curiosity-driven exploration of the states that deviate from the demonstration trajectories to potentially yield beyond-expert performance. Empirically, we demonstrate that ILDE outperforms the state-of-the-art imitation learning algorithms in terms of sample efficiency and achieves beyond-expert performance on Atari and MuJoCo tasks with fewer demonstrations than in previous work. We also provide a theoretical justification of ILDE as an uncertainty-regularized policy optimization method with optimistic exploration, leading to a regret growing sublinearly in the number of episodes.
☆ Learning Moderately Input-Sensitive Functions: A Case Study in QR Code Decoding
The hardness of learning a function that attains a target task relates to its input-sensitivity. For example, image classification tasks are input-insensitive as minor corruptions should not affect the classification results, whereas arithmetic and symbolic computation, which have been recently attracting interest, are highly input-sensitive as each input variable connects to the computation results. This study presents the first learning-based Quick Response (QR) code decoding and investigates learning functions of medium sensitivity. Our experiments reveal that Transformers can successfully decode QR codes, even beyond the theoretical error-correction limit, by learning the structure of embedded texts. They generalize from English-rich training data to other languages and even random strings. Moreover, we observe that the Transformer-based QR decoder focuses on data bits while ignoring error-correction bits, suggesting a decoding mechanism distinct from standard QR code readers.
comment: 17 pages, 13 figures
☆ OLALa: Online Learned Adaptive Lattice Codes for Heterogeneous Federated Learning
Federated learning (FL) enables collaborative training across distributed clients without sharing raw data, often at the cost of substantial communication overhead induced by transmitting high-dimensional model updates. This overhead can be alleviated by having the clients quantize their model updates, with dithered lattice quantizers identified as an attractive scheme due to its structural simplicity and convergence-preserving properties. However, existing lattice-based FL schemes typically rely on a fixed quantization rule, which is suboptimal in heterogeneous and dynamic environments where the model updates distribution varies across users and training rounds. In this work, we propose Online Learned Adaptive Lattices (OLALa), a heterogeneous FL framework where each client can adjust its quantizer online using lightweight local computations. We first derive convergence guarantees for FL with non-fixed lattice quantizers and show that proper lattice adaptation can tighten the convergence bound. Then, we design an online learning algorithm that enables clients to tune their quantizers throughout the FL process while exchanging only a compact set of quantization parameters. Numerical experiments demonstrate that OLALa consistently improves learning performance under various quantization rates, outperforming conventional fixed-codebook and non-adaptive schemes.
comment: Under review for publication in the IEEE
☆ Distilling A Universal Expert from Clustered Federated Learning
Clustered Federated Learning (CFL) addresses the challenges posed by non-IID data by training multiple group- or cluster-specific expert models. However, existing methods often overlook the shared information across clusters, which represents the generalizable knowledge valuable to all participants in the Federated Learning (FL) system. To overcome this limitation, this paper introduces a novel FL framework that distills a universal expert model from the knowledge of multiple clusters. This universal expert captures globally shared information across all clients and is subsequently distributed to each client as the initialization for the next round of model training. The proposed FL framework operates in three iterative steps: (1) local model training at each client, (2) cluster-specific model aggregation, and (3) universal expert distillation. This three-step learning paradigm ensures the preservation of fine-grained non-IID characteristics while effectively incorporating shared knowledge across clusters. Compared to traditional gradient-based aggregation methods, the distillation-based model aggregation introduces greater flexibility in handling model heterogeneity and reduces conflicts among cluster-specific experts. Extensive experimental results demonstrate the superior performance of the proposed method across various scenarios, highlighting its potential to advance the state of CFL by balancing personalized and shared knowledge more effectively.
☆ Forensic Study of Paintings Through the Comparison of Fabrics
The study of canvas fabrics in works of art is a crucial tool for authentication, attribution and conservation. Traditional methods are based on thread density map matching, which cannot be applied when canvases do not come from contiguous positions on a roll. This paper presents a novel approach based on deep learning to assess the similarity of textiles. We introduce an automatic tool that evaluates the similarity between canvases without relying on thread density maps. A Siamese deep learning model is designed and trained to compare pairs of images by exploiting the feature representations learned from the scans. In addition, a similarity estimation method is proposed, aggregating predictions from multiple pairs of cloth samples to provide a robust similarity score. Our approach is applied to canvases from the Museo Nacional del Prado, corroborating the hypothesis that plain weave canvases, widely used in painting, can be effectively compared even when their thread densities are similar. The results demonstrate the feasibility and accuracy of the proposed method, opening new avenues for the analysis of masterpieces.
☆ X-SiT: Inherently Interpretable Surface Vision Transformers for Dementia Diagnosis MICCAI 2025
Interpretable models are crucial for supporting clinical decision-making, driving advances in their development and application for medical images. However, the nature of 3D volumetric data makes it inherently challenging to visualize and interpret intricate and complex structures like the cerebral cortex. Cortical surface renderings, on the other hand, provide a more accessible and understandable 3D representation of brain anatomy, facilitating visualization and interactive exploration. Motivated by this advantage and the widespread use of surface data for studying neurological disorders, we present the eXplainable Surface Vision Transformer (X-SiT). This is the first inherently interpretable neural network that offers human-understandable predictions based on interpretable cortical features. As part of X-SiT, we introduce a prototypical surface patch decoder for classifying surface patch embeddings, incorporating case-based reasoning with spatially corresponding cortical prototypes. The results demonstrate state-of-the-art performance in detecting Alzheimer's disease and frontotemporal dementia while additionally providing informative prototypes that align with known disease patterns and reveal classification errors.
comment: MICCAI 2025
☆ Exploration-Exploitation Tradeoff in Universal Lossy Compression
Universal compression can learn the source and adapt to it either in a batch mode (forward adaptation), or in a sequential mode (backward adaptation). We recast the sequential mode as a multi-armed bandit problem, a fundamental model in reinforcement-learning, and study the trade-off between exploration and exploitation in the lossy compression case. We show that a previously proposed "natural type selection" scheme can be cast as a reconstruction-directed MAB algorithm, for sequential lossy compression, and explain its limitations in terms of robustness and short-block performance. We then derive and analyze robust cost-directed MAB algorithms, which work at any block length.
comment: An extended version of ISIT 2025 paper
☆ Argumentative Ensembling for Robust Recourse under Model Multiplicity
In machine learning, it is common to obtain multiple equally performing models for the same prediction task, e.g., when training neural networks with different random seeds. Model multiplicity (MM) is the situation which arises when these competing models differ in their predictions for the same input, for which ensembling is often employed to determine an aggregation of the outputs. Providing recourse recommendations via counterfactual explanations (CEs) under MM thus becomes complex, since the CE may not be valid across all models, i.e., the CEs are not robust under MM. In this work, we formalise the problem of providing recourse under MM, which we name recourse-aware ensembling (RAE). We propose the idea that under MM, CEs for each individual model should be considered alongside their predictions so that the aggregated prediction and recourse are decided in tandem. Centred around this intuition, we introduce six desirable properties for solutions to this problem. For solving RAE, we propose a novel argumentative ensembling method which guarantees the robustness of CEs under MM. Specifically, our method leverages computational argumentation to explicitly represent the conflicts between models and counterfactuals regarding prediction results and CE validity. It then uses argumentation semantics to resolve the conflicts and obtain the final solution, in a manner which is parametric to the chosen semantics. Our method also allows for the specification of preferences over the models under MM, allowing further customisation of the ensemble. In a comprehensive theoretical analysis, we characterise the behaviour of argumentative ensembling with four different argumentation semantics. We then empirically demonstrate the effectiveness of our approach in satisfying desirable properties with eight instantiations of our method. (Abstract is shortened for arXiv.)
comment: arXiv admin note: substantial text overlap with arXiv:2312.15097
☆ A Transformer Based Handwriting Recognition System Jointly Using Online and Offline Features
We posit that handwriting recognition benefits from complementary cues carried by the rasterized complex glyph and the pen's trajectory, yet most systems exploit only one modality. We introduce an end-to-end network that performs early fusion of offline images and online stroke data within a shared latent space. A patch encoder converts the grayscale crop into fixed-length visual tokens, while a lightweight transformer embeds the $(x, y, \text{pen})$ sequence. Learnable latent queries attend jointly to both token streams, yielding context-enhanced stroke embeddings that are pooled and decoded under a cross-entropy loss objective. Because integration occurs before any high-level classification, temporal cues reinforce each other during representation learning, producing stronger writer independence. Comprehensive experiments on IAMOn-DB and VNOn-DB demonstrate that our approach achieves state-of-the-art accuracy, exceeding previous bests by up to 1\%. Our study also shows adaptation of this pipeline with gesturification on the ISI-Air dataset. Our code can be found here.
comment: 15 pages, 7 figures
☆ Time-series surrogates from energy consumers generated by machine learning approaches for long-term forecasting scenarios
Forecasting attracts a lot of research attention in the electricity value chain. However, most studies concentrate on short-term forecasting of generation or consumption with a focus on systems and less on individual consumers. Even more neglected is the topic of long-term forecasting of individual power consumption. Here, we provide an in-depth comparative evaluation of data-driven methods for generating synthetic time series data tailored to energy consumption long-term forecasting. High-fidelity synthetic data is crucial for a wide range of applications, including state estimations in energy systems or power grid planning. In this study, we assess and compare the performance of multiple state-of-the-art but less common techniques: a hybrid Wasserstein Generative Adversarial Network (WGAN), Denoising Diffusion Probabilistic Model (DDPM), Hidden Markov Model (HMM), and Masked Autoregressive Bernstein polynomial normalizing Flows (MABF). We analyze the ability of each method to replicate the temporal dynamics, long-range dependencies, and probabilistic transitions characteristic of individual energy consumption profiles. Our comparative evaluation highlights the strengths and limitations of: WGAN, DDPM, HMM and MABF aiding in selecting the most suitable approach for state estimations and other energy-related tasks. Our generation and analysis framework aims to enhance the accuracy and reliability of synthetic power consumption data while generating data that fulfills criteria like anonymisation - preserving privacy concerns mitigating risks of specific profiling of single customers. This study utilizes an open-source dataset from households in Germany with 15min time resolution. The generated synthetic power profiles can readily be used in applications like state estimations or consumption forecasting.
☆ Q-resafe: Assessing Safety Risks and Quantization-aware Safety Patching for Quantized Large Language Models ICML 2025
Quantized large language models (LLMs) have gained increasing attention and significance for enabling deployment in resource-constrained environments. However, emerging studies on a few calibration dataset-free quantization methods suggest that quantization may compromise the safety capabilities of LLMs, underscoring the urgent need for systematic safety evaluations and effective mitigation strategies. In this paper, we present comprehensive safety evaluations across various mainstream quantization techniques and diverse calibration datasets, utilizing widely accepted safety benchmarks. To address the identified safety vulnerabilities, we propose a quantization-aware safety patching framework, Q-resafe, to efficiently restore the safety capabilities of quantized LLMs while minimizing any adverse impact on utility. Extensive experimental results demonstrate that Q-resafe successfully re-aligns the safety of quantized LLMs with their pre-quantization counterparts, even under challenging evaluation scenarios. Project page is available at: https://github.com/Thecommonirin/Qresafe.
comment: ICML 2025
☆ FedBKD: Distilled Federated Learning to Embrace Gerneralization and Personalization on Non-IID Data
Federated learning (FL) is a decentralized collaborative machine learning (ML) technique. It provides a solution to the issues of isolated data islands and data privacy leakage in industrial ML practices. One major challenge in FL is handling the non-identical and independent distributed (non-IID) data. Current solutions either focus on constructing an all-powerful global model, or customizing personalized local models. Few of them can provide both a well-generalized global model and well-performed local models at the same time. Additionally, many FL solutions to the non-IID problem are benefited from introducing public datasets. However, this will also increase the risk of data leakage. To tackle the problems, we propose a novel data-free distillation framework, Federated Bidirectional Knowledge Distillation (FedBKD). Specifically, we train Generative Adversarial Networks (GAN) for synthetic data. During the GAN training, local models serve as discriminators and their parameters are frozen. The synthetic data is then used for bidirectional distillation between global and local models to achieve knowledge interactions so that performances for both sides are improved. We conduct extensive experiments on 4 benchmarks under different non-IID settings. The results show that FedBKD achieves SOTA performances in every case.
☆ Directed Link Prediction using GNN with Local and Global Feature Fusion
Link prediction is a classical problem in graph analysis with many practical applications. For directed graphs, recently developed deep learning approaches typically analyze node similarities through contrastive learning and aggregate neighborhood information through graph convolutions. In this work, we propose a novel graph neural network (GNN) framework to fuse feature embedding with community information. We theoretically demonstrate that such hybrid features can improve the performance of directed link prediction. To utilize such features efficiently, we also propose an approach to transform input graphs into directed line graphs so that nodes in the transformed graph can aggregate more information during graph convolutions. Experiments on benchmark datasets show that our approach outperforms the state-of-the-art in most cases when 30%, 40%, 50%, and 60% of the connected links are used as training data, respectively.
☆ Affective Priming Score: A Data-Driven Method to Detect Priming in Sequential Datasets
Affective priming exemplifies the challenge of ambiguity in affective computing. While the community has largely addressed this issue from a label-based perspective, identifying data points in the sequence affected by the priming effect, the impact of priming on data itself, particularly in physiological signals, remains underexplored. Data affected by priming can lead to misclassifications when used in learning models. This study proposes the Affective Priming Score (APS), a data-driven method to detect data points influenced by the priming effect. The APS assigns a score to each data point, quantifying the extent to which it is affected by priming. To validate this method, we apply it to the SEED and SEED-VII datasets, which contain sufficient transitions between emotional events to exhibit priming effects. We train models with the same configuration using both the original data and priming-free sequences. The misclassification rate is significantly reduced when using priming-free sequences compared to the original data. This work contributes to the broader challenge of ambiguity by identifying and mitigating priming effects at the data level, enhancing model robustness, and offering valuable insights for the design and collection of affective computing datasets.
☆ Zero-Shot Attribution for Large Language Models: A Distribution Testing Approach
A growing fraction of all code is sampled from Large Language Models (LLMs). We investigate the problem of attributing code generated by language models using hypothesis testing to leverage established techniques and guarantees. Given a set of samples $S$ and a suspect model $\mathcal{L}^*$, our goal is to assess the likelihood of $S$ originating from $\mathcal{L}^*$. Due to the curse of dimensionality, this is intractable when only samples from the LLM are given: to circumvent this, we use both samples and density estimates from the LLM, a form of access commonly available. We introduce $\mathsf{Anubis}$, a zero-shot attribution tool that frames attribution as a distribution testing problem. Our experiments on a benchmark of code samples show that $\mathsf{Anubis}$ achieves high AUROC scores ( $\ge0.9$) when distinguishing between LLMs like DeepSeek-Coder, CodeGemma, and Stable-Code using only $\approx 2000$ samples.
comment: 16 pages, 4 figures
☆ DuoGPT: Training-free Dual Sparsity through Activation-aware Pruning in LLMs
Large language models (LLMs) deliver strong performance but are difficult to deploy due to high memory and compute costs. While pruning reduces these demands, most methods ignore activation sparsity observed at runtime. We reinterpret activation sparsity as dynamic structured weight sparsity and propose DuoGPT, a unified framework that constructs dual-sparse (spMspV) workloads by combining unstructured weight pruning with activation sparsity. To preserve accuracy, we extend the Optimal Brain Compression (OBC) framework with activation-aware calibration and introduce output residuals from the dense model as correction terms. We further optimize the solution for efficient GPU execution, enabling scalability to billion-parameter LLMs. Evaluations on LLaMA-2 and LLaMA-3 show that DuoGPT outperforms state-of-the-art structured pruning methods by up to 9.17% accuracy at an iso-speedup of 1.39$\times$ compared to the baseline dense model.
☆ Causal Operator Discovery in Partial Differential Equations via Counterfactual Physics-Informed Neural Networks
We develop a principled framework for discovering causal structure in partial differential equations (PDEs) using physics-informed neural networks and counterfactual perturbations. Unlike classical residual minimization or sparse regression methods, our approach quantifies operator-level necessity through functional interventions on the governing dynamics. We introduce causal sensitivity indices and structural deviation metrics to assess the influence of candidate differential operators within neural surrogates. Theoretically, we prove exact recovery of the causal operator support under restricted isometry or mutual coherence conditions, with residual bounds guaranteeing identifiability. Empirically, we validate the framework on both synthetic and real-world datasets across climate dynamics, tumor diffusion, and ocean flows. Our method consistently recovers governing operators even under noise, redundancy, and data scarcity, outperforming standard PINNs and DeepONets in structural fidelity. This work positions causal PDE discovery as a tractable and interpretable inference task grounded in structural causal models and variational residual analysis.
☆ COIN: Uncertainty-Guarding Selective Question Answering for Foundation Models with Provable Risk Guarantees
Uncertainty quantification (UQ) for foundation models is essential to identify and mitigate potential hallucinations in automatically generated text. However, heuristic UQ approaches lack formal guarantees for key metrics such as the false discovery rate (FDR) in selective prediction. Previous work adopts the split conformal prediction (SCP) framework to ensure desired coverage of admissible answers by constructing prediction sets, but these sets often contain incorrect candidates, limiting their practical utility. To address this, we propose COIN, an uncertainty-guarding selection framework that calibrates statistically valid thresholds to filter a single generated answer per question under user-specified FDR constraints. COIN estimates the empirical error rate on a calibration set and applies confidence interval methods such as Clopper-Pearson to establish a high-probability upper bound on the true error rate (i.e., FDR). This enables the selection of the largest uncertainty threshold that ensures FDR control on test data while significantly increasing sample retention. We demonstrate COIN's robustness in risk control, strong test-time power in retaining admissible answers, and predictive efficiency under limited calibration data across both general and multimodal text generation tasks. Furthermore, we show that employing alternative upper bound constructions and UQ strategies can further boost COIN's power performance, which underscores its extensibility and adaptability to diverse application scenarios.
☆ Valid Selection among Conformal Sets
Conformal prediction offers a distribution-free framework for constructing prediction sets with coverage guarantees. In practice, multiple valid conformal prediction sets may be available, arising from different models or methodologies. However, selecting the most desirable set, such as the smallest, can invalidate the coverage guarantees. To address this challenge, we propose a stability-based approach that ensures coverage for the selected prediction set. We extend our results to the online conformal setting, propose several refinements in settings where additional structure is available, and demonstrate its effectiveness through experiments.
☆ Causal discovery in deterministic discrete LTI-DAE systems
Discovering pure causes or driver variables in deterministic LTI systems is of vital importance in the data-driven reconstruction of causal networks. A recent work by Kathari and Tangirala, proposed in 2022, formulated the causal discovery method as a constraint identification problem. The constraints are identified using a dynamic iterative PCA (DIPCA)-based approach for dynamical systems corrupted with Gaussian measurement errors. The DIPCA-based method works efficiently for dynamical systems devoid of any algebraic relations. However, several dynamical systems operate under feedback control and/or are coupled with conservation laws, leading to differential-algebraic (DAE) or mixed causal systems. In this work, a method, namely the partition of variables (PoV), for causal discovery in LTI-DAE systems is proposed. This method is superior to the method that was presented by Kathari and Tangirala (2022), as PoV also works for pure dynamical systems, which are devoid of algebraic equations. The proposed method identifies the causal drivers up to a minimal subset. PoV deploys DIPCA to first determine the number of algebraic relations ($n_a$), the number of dynamical relations ($n_d$) and the constraint matrix. Subsequently, the subsets are identified through an admissible partitioning of the constraint matrix by finding the condition number of it. Case studies are presented to demonstrate the effectiveness of the proposed method.
☆ Accept More, Reject Less: Reducing up to 19% Unnecessary Desk-Rejections over 11 Years of ICLR Data
The explosive growth of AI research has driven paper submissions at flagship AI conferences to unprecedented levels, necessitating many venues in 2025 (e.g., CVPR, ICCV, KDD, AAAI, IJCAI, WSDM) to enforce strict per-author submission limits and to desk-reject any excess papers by simple ID order. While this policy helps reduce reviewer workload, it may unintentionally discard valuable papers and penalize authors' efforts. In this paper, we ask an essential research question on whether it is possible to follow submission limits while minimizing needless rejections. We first formalize the current desk-rejection policies as an optimization problem, and then develop a practical algorithm based on linear programming relaxation and a rounding scheme. Under extensive evaluation on 11 years of real-world ICLR (International Conference on Learning Representations) data, our method preserves up to $19.23\%$ more papers without violating any author limits. Moreover, our algorithm is highly efficient in practice, with all results on ICLR data computed within at most 53.64 seconds. Our work provides a simple and practical desk-rejection strategy that significantly reduces unnecessary rejections, demonstrating strong potential to improve current CS conference submission policies.
☆ Piecewise Linear Approximation in Learned Index Structures: Theoretical and Empirical Analysis
A growing trend in the database and system communities is to augment conventional index structures, such as B+-trees, with machine learning (ML) models. Among these, error-bounded Piecewise Linear Approximation ($\epsilon$-PLA) has emerged as a popular choice due to its simplicity and effectiveness. Despite its central role in many learned indexes, the design and analysis of $\epsilon$-PLA fitting algorithms remain underexplored. In this paper, we revisit $\epsilon$-PLA from both theoretical and empirical perspectives, with a focus on its application in learned index structures. We first establish a fundamentally improved lower bound of $\Omega(\kappa \cdot \epsilon^2)$ on the expected segment coverage for existing $\epsilon$-PLA fitting algorithms, where $\kappa$ is a data-dependent constant. We then present a comprehensive benchmark of state-of-the-art $\epsilon$-PLA algorithms when used in different learned data structures. Our results highlight key trade-offs among model accuracy, model size, and query performance, providing actionable guidelines for the principled design of future learned data structures.
☆ High-Resolution Live Fuel Moisture Content (LFMC) Maps for Wildfire Risk from Multimodal Earth Observation Data ICML 2025
Wildfires are increasing in intensity and severity at an alarming rate. Recent advances in AI and publicly available satellite data enable monitoring critical wildfire risk factors globally, at high resolution and low latency. Live Fuel Moisture Content (LFMC) is a critical wildfire risk factor and is valuable for both wildfire research and operational response. However, ground-based LFMC samples are both labor intensive and costly to acquire, resulting in sparse and infrequent updates. In this work, we explore the use of a pretrained, highly-multimodal earth-observation model for generating large-scale spatially complete (wall-to-wall) LFMC maps. Our approach achieves significant improvements over previous methods using randomly initialized models (20 reduction in RMSE). We provide an automated pipeline that enables rapid generation of these LFMC maps across the United States, and demonstrate its effectiveness in two regions recently impacted by wildfire (Eaton and Palisades).
comment: 10 pages, ICML 2025 (TerraBytes)
☆ CCRS: A Zero-Shot LLM-as-a-Judge Framework for Comprehensive RAG Evaluation
RAG systems enhance LLMs by incorporating external knowledge, which is crucial for domains that demand factual accuracy and up-to-date information. However, evaluating the multifaceted quality of RAG outputs, spanning aspects such as contextual coherence, query relevance, factual correctness, and informational completeness, poses significant challenges. Existing evaluation methods often rely on simple lexical overlap metrics, which are inadequate for capturing these nuances, or involve complex multi-stage pipelines with intermediate steps like claim extraction or require finetuning specialized judge models, hindering practical efficiency. To address these limitations, we propose CCRS (Contextual Coherence and Relevance Score), a novel suite of five metrics that utilizes a single, powerful, pretrained LLM as a zero-shot, end-to-end judge. CCRS evaluates: Contextual Coherence (CC), Question Relevance (QR), Information Density (ID), Answer Correctness (AC), and Information Recall (IR). We apply CCRS to evaluate six diverse RAG system configurations on the challenging BioASQ dataset. Our analysis demonstrates that CCRS effectively discriminates between system performances, confirming, for instance, that the Mistral-7B reader outperforms Llama variants. We provide a detailed analysis of CCRS metric properties, including score distributions, convergent/discriminant validity, tie rates, population statistics, and discriminative power. Compared to the complex RAGChecker framework, CCRS offers comparable or superior discriminative power for key aspects like recall and faithfulness, while being significantly more computationally efficient. CCRS thus provides a practical, comprehensive, and efficient framework for evaluating and iteratively improving RAG systems.
comment: Accepted at LLM4Eval @ SIGIR 2025
☆ Leveraging AI Graders for Missing Score Imputation to Achieve Accurate Ability Estimation in Constructed-Response Tests
Evaluating the abilities of learners is a fundamental objective in the field of education. In particular, there is an increasing need to assess higher-order abilities such as expressive skills and logical thinking. Constructed-response tests such as short-answer and essay-based questions have become widely used as a method to meet this demand. Although these tests are effective, they require substantial manual grading, making them both labor-intensive and costly. Item response theory (IRT) provides a promising solution by enabling the estimation of ability from incomplete score data, where human raters grade only a subset of answers provided by learners across multiple test items. However, the accuracy of ability estimation declines as the proportion of missing scores increases. Although data augmentation techniques for imputing missing scores have been explored in order to address this limitation, they often struggle with inaccuracy for sparse or heterogeneous data. To overcome these challenges, this study proposes a novel method for imputing missing scores by leveraging automated scoring technologies for accurate IRT-based ability estimation. The proposed method achieves high accuracy in ability estimation while markedly reducing manual grading workload.
comment: Accepted to EvalLAC'25: 2nd Workshop on Automatic Evaluation of Learning and Assessment Content, held at AIED 2025, Palermo, Italy. This is the camera-ready version submitted to CEUR Workshop Proceedings
☆ Extracting Interpretable Models from Tree Ensembles: Computational and Statistical Perspectives
Tree ensembles are non-parametric methods widely recognized for their accuracy and ability to capture complex interactions. While these models excel at prediction, they are difficult to interpret and may fail to uncover useful relationships in the data. We propose an estimator to extract compact sets of decision rules from tree ensembles. The extracted models are accurate and can be manually examined to reveal relationships between the predictors and the response. A key novelty of our estimator is the flexibility to jointly control the number of rules extracted and the interaction depth of each rule, which improves accuracy. We develop a tailored exact algorithm to efficiently solve optimization problems underlying our estimator and an approximate algorithm for computing regularization paths, sequences of solutions that correspond to varying model sizes. We also establish novel non-asymptotic prediction error bounds for our proposed approach, comparing it to an oracle that chooses the best data-dependent linear combination of the rules in the ensemble subject to the same complexity constraint as our estimator. The bounds illustrate that the large-sample predictive performance of our estimator is on par with that of the oracle. Through experiments, we demonstrate that our estimator outperforms existing algorithms for rule extraction.
☆ Autonomous Cyber Resilience via a Co-Evolutionary Arms Race within a Fortified Digital Twin Sandbox
The convergence of IT and OT has created hyper-connected ICS, exposing critical infrastructure to a new class of adaptive, intelligent adversaries that render static defenses obsolete. Existing security paradigms often fail to address a foundational "Trinity of Trust," comprising the fidelity of the system model, the integrity of synchronizing data, and the resilience of the analytical engine against sophisticated evasion. This paper introduces the ARC framework, a method for achieving analytical resilience through an autonomous, closed-loop hardening process. ARC establishes a perpetual co-evolutionary arms race within the high-fidelity sandbox of a F-SCDT. A DRL agent, the "Red Agent," is formalized and incentivized to autonomously discover stealthy, physically-plausible attack paths that maximize process disruption while evading detection. Concurrently, an ensemble-based "Blue Agent" defender is continuously hardened via adversarial training against the evolving threats discovered by its adversary. This co-evolutionary dynamic forces both agents to become progressively more sophisticated, enabling the system to autonomously probe and patch its own vulnerabilities. Experimental validation on both the TEP and the SWaT testbeds demonstrates the framework's superior performance. A comprehensive ablation study, supported by extensive visualizations including ROC curves and SHAP plots, reveals that the co-evolutionary process itself is responsible for a significant performance increase in detecting novel attacks. By integrating XAI to ensure operator trust and proposing a scalable F-ARC architecture, this work presents ARC not merely as an improvement, but as a necessary paradigm shift toward dynamic, self-improving security for the future of critical infrastructure.
comment: 17 pages, 2 figures, 4 equations, 2 algorithms, 4 tables, to be published in ISPACS Conference 2025, unabridged version
☆ MEL: Multi-level Ensemble Learning for Resource-Constrained Environments
AI inference at the edge is becoming increasingly common for low-latency services. However, edge environments are power- and resource-constrained, and susceptible to failures. Conventional failure resilience approaches, such as cloud failover or compressed backups, often compromise latency or accuracy, limiting their effectiveness for critical edge inference services. In this paper, we propose Multi-Level Ensemble Learning (MEL), a new framework for resilient edge inference that simultaneously trains multiple lightweight backup models capable of operating collaboratively, refining each other when multiple servers are available, and independently under failures while maintaining good accuracy. Specifically, we formulate our approach as a multi-objective optimization problem with a loss formulation that inherently encourages diversity among individual models to promote mutually refining representations, while ensuring each model maintains good standalone performance. Empirical evaluations across vision, language, and audio datasets show that MEL provides performance comparable to original architectures while also providing fault tolerance and deployment flexibility across edge platforms. Our results show that our ensemble model, sized at 40\% of the original model, achieves similar performance, while preserving 95.6\% of ensemble accuracy in the case of failures when trained using MEL.
☆ A Survey of Predictive Maintenance Methods: An Analysis of Prognostics via Classification and Regression
Predictive maintenance (PdM) has become a crucial element of modern industrial practice. PdM plays a significant role in operational dependability and cost management by decreasing unforeseen downtime and optimizing asset life cycle management. Machine learning and deep learning have enabled more precise forecasts of equipment failure and remaining useful life (RUL). Although many studies have been conducted on PdM, there has not yet been a standalone comparative study between regression- and classification-based approaches. In this review, we look across a range of PdM methodologies, while focusing more strongly on the comparative use of classification and regression methods in prognostics. While regression-based methods typically provide estimates of RUL, classification-based methods present a forecast of the probability of failure across defined time intervals. Through a comprehensive analysis of recent literature, we highlight key advancements, challenges-such as data imbalance and high-dimensional feature spaces-and emerging trends, including hybrid approaches and AI-enabled prognostic systems. This review aims to provide researchers and practitioners with an awareness of the strengths and compromises of various PdM methods and to help identify future research and build more robust, directed adaptive maintenance systems. Future work may include a systematic review of practical aspects such as public datasets, benchmarking platforms, and open-source tools to support the advancement of PdM research.
comment: 13 pages, 7 figures
☆ Attack Smarter: Attention-Driven Fine-Grained Webpage Fingerprinting Attacks
Website Fingerprinting (WF) attacks aim to infer which websites a user is visiting by analyzing traffic patterns, thereby compromising user anonymity. Although this technique has been demonstrated to be effective in controlled experimental environments, it remains largely limited to small-scale scenarios, typically restricted to recognizing website homepages. In practical settings, however, users frequently access multiple subpages in rapid succession, often before previous content fully loads. WebPage Fingerprinting (WPF) generalizes the WF framework to large-scale environments by modeling subpages of the same site as distinct classes. These pages often share similar page elements, resulting in lower inter-class variance in traffic features. Furthermore, we consider multi-tab browsing scenarios, in which a single trace encompasses multiple categories of webpages. This leads to overlapping traffic segments, and similar features may appear in different positions within the traffic, thereby increasing the difficulty of classification. To address these challenges, we propose an attention-driven fine-grained WPF attack, named ADWPF. Specifically, during the training phase, we apply targeted augmentation to salient regions of the traffic based on attention maps, including attention cropping and attention masking. ADWPF then extracts low-dimensional features from both the original and augmented traffic and applies self-attention modules to capture the global contextual patterns of the trace. Finally, to handle the multi-tab scenario, we employ the residual attention to generate class-specific representations of webpages occurring at different temporal positions. Extensive experiments demonstrate that the proposed method consistently surpasses state-of-the-art baselines across datasets of different scales.
☆ A Modular Multitask Reasoning Framework Integrating Spatio-temporal Models and LLMs
Spatio-temporal data mining plays a pivotal role in informed decision making across diverse domains. However, existing models are often restricted to narrow tasks, lacking the capacity for multi-task inference and complex long-form reasoning that require generation of in-depth, explanatory outputs. These limitations restrict their applicability to real-world, multi-faceted decision scenarios. In this work, we introduce STReason, a novel framework that integrates the reasoning strengths of large language models (LLMs) with the analytical capabilities of spatio-temporal models for multi-task inference and execution. Without requiring task-specific finetuning, STReason leverages in-context learning to decompose complex natural language queries into modular, interpretable programs, which are then systematically executed to generate both solutions and detailed rationales. To facilitate rigorous evaluation, we construct a new benchmark dataset and propose a unified evaluation framework with metrics specifically designed for long-form spatio-temporal reasoning. Experimental results show that STReason significantly outperforms advanced LLM baselines across all metrics, particularly excelling in complex, reasoning-intensive spatio-temporal scenarios. Human evaluations further validate STReason's credibility and practical utility, demonstrating its potential to reduce expert workload and broaden the applicability to real-world spatio-temporal tasks. We believe STReason provides a promising direction for developing more capable and generalizable spatio-temporal reasoning systems.
☆ Multimodal Information Retrieval for Open World with Edit Distance Weak Supervision
Existing multi-media retrieval models either rely on creating a common subspace with modality-specific representation models or require schema mapping among modalities to measure similarities among multi-media data. Our goal is to avoid the annotation overhead incurred from considering retrieval as a supervised classification task and re-use the pretrained encoders in large language models and vision tasks. We propose "FemmIR", a framework to retrieve multimodal results relevant to information needs expressed with multimodal queries by example without any similarity label. Such identification is necessary for real-world applications where data annotations are scarce and satisfactory performance is required without fine-tuning with a common framework across applications. We curate a new dataset called MuQNOL for benchmarking progress on this task. Our technique is based on weak supervision introduced through edit distance between samples: graph edit distance can be modified to consider the cost of replacing a data sample in terms of its properties, and relevance can be measured through the implicit signal from the amount of edit cost among the objects. Unlike metric learning or encoding networks, FemmIR re-uses the high-level properties and maintains the property value and relationship constraints with a multi-level interaction score between data samples and the query example provided by the user. We empirically evaluate FemmIR on a missing person use case with MuQNOL. FemmIR performs comparably to similar retrieval systems in delivering on-demand retrieval results with exact and approximate similarities while using the existing property identifiers in the system.
comment: Submitted to ICDE'24. An earlier version of this paper appeared on TechRxiv: https://www.techrxiv.org/doi/full/10.36227/techrxiv.21990284.v1, uploaded on February 05, 2023
☆ On the Necessity of Output Distribution Reweighting for Effective Class Unlearning
In this work, we introduce an output-reweighting unlearning method, RWFT, a lightweight technique that erases an entire class from a trained classifier without full retraining. Forgetting specific classes from trained models is essential for enforcing user deletion rights and mitigating harmful or biased predictions. The full retraining is costly and existing unlearning methods fail to replicate the behavior of the retrained models when predicting samples from the unlearned class. We prove this failure by designing a variant of membership inference attacks, MIA-NN that successfully reveals the unlearned class for any of these methods. We propose a simple redistribution of the probability mass for the prediction on the samples in the forgotten class which is robust to MIA-NN. We also introduce a new metric based on the total variation (TV) distance of the prediction probabilities to quantify residual leakage to prevent future methods from susceptibility to the new attack. Through extensive experiments with state of the art baselines in machine unlearning, we show that our approach matches the results of full retraining in both metrics used for evaluation by prior work and the new metric we propose in this work. Compare to state-of-the-art methods, we gain 2.79% in previously used metrics and 111.45% in our new TV-based metric over the best existing method.
☆ Omniwise: Predicting GPU Kernels Performance with LLMs
In recent years, the rapid advancement of deep neural networks (DNNs) has revolutionized artificial intelligence, enabling models with unprecedented capabilities in understanding, generating, and processing complex data. These powerful architectures have transformed a wide range of downstream applications, tackling tasks beyond human reach. In this paper, we introduce Omniwise, the first end-to-end, self-supervised fine-tuning pipeline that applies large language models (LLMs) to GPU kernel performance prediction--a novel use case in performance profiling. Omniwise is model-agnostic and lightweight, achieving strong results even with a small 3B-parameter model. It can predict key performance metrics, including memory bandwidth, cache hit rates, GFLOPs, and arithmetic intensity, directly from kernel code without the need for code execution or profiling tools. Our approach achieves over 90% of predictions within 10% relative error on GPU kernels executed on AMD MI250 and MI300X architectures. In addition to the pipeline, we develop an online inference server and a Visual Studio Code plugin that seamlessly integrate LLM-based performance prediction into developers' workflows.
☆ Complex Model Transformations by Reinforcement Learning with Uncertain Human Guidance
Model-driven engineering problems often require complex model transformations (MTs), i.e., MTs that are chained in extensive sequences. Pertinent examples of such problems include model synchronization, automated model repair, and design space exploration. Manually developing complex MTs is an error-prone and often infeasible process. Reinforcement learning (RL) is an apt way to alleviate these issues. In RL, an autonomous agent explores the state space through trial and error to identify beneficial sequences of actions, such as MTs. However, RL methods exhibit performance issues in complex problems. In these situations, human guidance can be of high utility. In this paper, we present an approach and technical framework for developing complex MT sequences through RL, guided by potentially uncertain human advice. Our framework allows user-defined MTs to be mapped onto RL primitives, and executes them as RL programs to find optimal MT sequences. Our evaluation shows that human guidance, even if uncertain, substantially improves RL performance, and results in more efficient development of complex MTs. Through a trade-off between the certainty and timeliness of human advice, our method takes a step towards RL-driven human-in-the-loop engineering methods.
comment: Accepted for ACM/IEEE MODELS'25
☆ Empowering Digital Agriculture: A Privacy-Preserving Framework for Data Sharing and Collaborative Research
Data-driven agriculture, which integrates technology and data into agricultural practices, has the potential to improve crop yield, disease resilience, and long-term soil health. However, privacy concerns, such as adverse pricing, discrimination, and resource manipulation, deter farmers from sharing data, as it can be used against them. To address this barrier, we propose a privacy-preserving framework that enables secure data sharing and collaboration for research and development while mitigating privacy risks. The framework combines dimensionality reduction techniques (like Principal Component Analysis (PCA)) and differential privacy by introducing Laplacian noise to protect sensitive information. The proposed framework allows researchers to identify potential collaborators for a target farmer and train personalized machine learning models either on the data of identified collaborators via federated learning or directly on the aggregated privacy-protected data. It also allows farmers to identify potential collaborators based on similarities. We have validated this on real-life datasets, demonstrating robust privacy protection against adversarial attacks and utility performance comparable to a centralized system. We demonstrate how this framework can facilitate collaboration among farmers and help researchers pursue broader research objectives. The adoption of the framework can empower researchers and policymakers to leverage agricultural data responsibly, paving the way for transformative advances in data-driven agriculture. By addressing critical privacy challenges, this work supports secure data integration, fostering innovation and sustainability in agricultural systems.
comment: arXiv admin note: text overlap with arXiv:2409.06069
☆ Leaner Training, Lower Leakage: Revisiting Memorization in LLM Fine-Tuning with LoRA
Memorization in large language models (LLMs) makes them vulnerable to data extraction attacks. While pre-training memorization has been extensively studied, fewer works have explored its impact in fine-tuning, particularly for LoRA fine-tuning, a widely adopted parameter-efficient method. In this work, we re-examine memorization in fine-tuning and uncover a surprising divergence from prior findings across different fine-tuning strategies. Factors such as model scale and data duplication, which strongly influence memorization in pre-training and full fine-tuning, do not follow the same trend in LoRA fine-tuning. Using a more relaxed similarity-based memorization metric, we demonstrate that LoRA significantly reduces memorization risks compared to full fine-tuning, while still maintaining strong task performance.
☆ Multi-Objective Reinforcement Learning for Cognitive Radar Resource Management
The time allocation problem in multi-function cognitive radar systems focuses on the trade-off between scanning for newly emerging targets and tracking the previously detected targets. We formulate this as a multi-objective optimization problem and employ deep reinforcement learning to find Pareto-optimal solutions and compare deep deterministic policy gradient (DDPG) and soft actor-critic (SAC) algorithms. Our results demonstrate the effectiveness of both algorithms in adapting to various scenarios, with SAC showing improved stability and sample efficiency compared to DDPG. We further employ the NSGA-II algorithm to estimate an upper bound on the Pareto front of the considered problem. This work contributes to the development of more efficient and adaptive cognitive radar systems capable of balancing multiple competing objectives in dynamic environments.
☆ Learning-Based Resource Management in Integrated Sensing and Communication Systems
In this paper, we tackle the task of adaptive time allocation in integrated sensing and communication systems equipped with radar and communication units. The dual-functional radar-communication system's task involves allocating dwell times for tracking multiple targets and utilizing the remaining time for data transmission towards estimated target locations. We introduce a novel constrained deep reinforcement learning (CDRL) approach, designed to optimize resource allocation between tracking and communication under time budget constraints, thereby enhancing target communication quality. Our numerical results demonstrate the efficiency of our proposed CDRL framework, confirming its ability to maximize communication quality in highly dynamic environments while adhering to time constraints.
☆ Uncertainty-Aware Machine-Learning Framework for Predicting Dislocation Plasticity and Stress-Strain Response in FCC Alloys
Machine learning has significantly advanced the understanding and application of structural materials, with an increasing emphasis on integrating existing data and quantifying uncertainties in predictive modeling. This study presents a comprehensive methodology utilizing a mixed density network (MDN) model, trained on extensive experimental data from literature. This approach uniquely predicts the distribution of dislocation density, inferred as a latent variable, and the resulting stress distribution at the grain level. The incorporation of statistical parameters of those predicted distributions into a dislocation-mediated plasticity model allows for accurate stress-strain predictions with explicit uncertainty quantification. This strategy not only improves the accuracy and reliability of mechanical property predictions but also plays a vital role in optimizing alloy design, thereby facilitating the development of new materials in a rapidly evolving industry.
☆ Efficacy of Temporal Fusion Transformers for Runoff Simulation
Combining attention with recurrence has shown to be valuable in sequence modeling, including hydrological predictions. Here, we explore the strength of Temporal Fusion Transformers (TFTs) over Long Short-Term Memory (LSTM) networks in rainfall-runoff modeling. We train ten randomly initialized models, TFT and LSTM, for 531 CAMELS catchments in the US. We repeat the experiment with five subsets of the Caravan dataset, each representing catchments in the US, Australia, Brazil, Great Britain, and Chile. Then, the performance of the models, their variability regarding the catchment attributes, and the difference according to the datasets are assessed. Our findings show that TFT slightly outperforms LSTM, especially in simulating the midsection and peak of hydrographs. Furthermore, we show the ability of TFT to handle longer sequences and why it can be a better candidate for higher or larger catchments. Being an explainable AI technique, TFT identifies the key dynamic and static variables, providing valuable scientific insights. However, both TFT and LSTM exhibit a considerable drop in performance with the Caravan dataset, indicating possible data quality issues. Overall, the study highlights the potential of TFT in improving hydrological modeling and understanding.
☆ Demystifying Distributed Training of Graph Neural Networks for Link Prediction
Graph neural networks (GNNs) are powerful tools for solving graph-related problems. Distributed GNN frameworks and systems enhance the scalability of GNNs and accelerate model training, yet most are optimized for node classification. Their performance on link prediction remains underexplored. This paper demystifies distributed training of GNNs for link prediction by investigating the issue of performance degradation when each worker trains a GNN on its assigned partitioned subgraph without having access to the entire graph. We discover that the main sources of the issue come from not only the information loss caused by graph partitioning but also the ways of drawing negative samples during model training. While sharing the complete graph information with each worker resolves the issue and preserves link prediction accuracy, it incurs a high communication cost. We propose SpLPG, which effectively leverages graph sparsification to mitigate the issue of performance degradation at a reduced communication cost. Experiment results on several public real-world datasets demonstrate the effectiveness of SpLPG, which reduces the communication overhead by up to about 80% while mostly preserving link prediction accuracy.
comment: Accepted by IEEE ICDCS 2025
☆ Universal and Efficient Detection of Adversarial Data through Nonuniform Impact on Network Layers
Deep Neural Networks (DNNs) are notoriously vulnerable to adversarial input designs with limited noise budgets. While numerous successful attacks with subtle modifications to original input have been proposed, defense techniques against these attacks are relatively understudied. Existing defense approaches either focus on improving DNN robustness by negating the effects of perturbations or use a secondary model to detect adversarial data. Although equally important, the attack detection approach, which is studied in this work, provides a more practical defense compared to the robustness approach. We show that the existing detection methods are either ineffective against the state-of-the-art attack techniques or computationally inefficient for real-time processing. We propose a novel universal and efficient method to detect adversarial examples by analyzing the varying degrees of impact of attacks on different DNN layers. {Our method trains a lightweight regression model that predicts deeper-layer features from early-layer features, and uses the prediction error to detect adversarial samples.} Through theoretical arguments and extensive experiments, we demonstrate that our detection method is highly effective, computationally efficient for real-time processing, compatible with any DNN architecture, and applicable across different domains, such as image, video, and audio.
comment: arXiv admin note: substantial text overlap with arXiv:2410.17442
☆ Divide, Specialize, and Route: A New Approach to Efficient Ensemble Learning
Ensemble learning has proven effective in boosting predictive performance, but traditional methods such as bagging, boosting, and dynamic ensemble selection (DES) suffer from high computational cost and limited adaptability to heterogeneous data distributions. To address these limitations, we propose Hellsemble, a novel and interpretable ensemble framework for binary classification that leverages dataset complexity during both training and inference. Hellsemble incrementally partitions the dataset into circles of difficulty by iteratively passing misclassified instances from simpler models to subsequent ones, forming a committee of specialised base learners. Each model is trained on increasingly challenging subsets, while a separate router model learns to assign new instances to the most suitable base model based on inferred difficulty. Hellsemble achieves strong classification accuracy while maintaining computational efficiency and interpretability. Experimental results on OpenML-CC18 and Tabzilla benchmarks demonstrate that Hellsemble often outperforms classical ensemble methods. Our findings suggest that embracing instance-level difficulty offers a promising direction for constructing efficient and robust ensemble systems.
comment: 14 pages, 6 figures
☆ FINN-GL: Generalized Mixed-Precision Extensions for FPGA-Accelerated LSTMs
Recurrent neural networks (RNNs), particularly LSTMs, are effective for time-series tasks like sentiment analysis and short-term stock prediction. However, their computational complexity poses challenges for real-time deployment in resource constrained environments. While FPGAs offer a promising platform for energy-efficient AI acceleration, existing tools mainly target feed-forward networks, and LSTM acceleration typically requires full custom implementation. In this paper, we address this gap by leveraging the open-source and extensible FINN framework to enable the generalized deployment of LSTMs on FPGAs. Specifically, we leverage the Scan operator from the Open Neural Network Exchange (ONNX) specification to model the recurrent nature of LSTM computations, enabling support for mixed quantisation within them and functional verification of LSTM-based models. Furthermore, we introduce custom transformations within the FINN compiler to map the quantised ONNX computation graph to hardware blocks from the HLS kernel library of the FINN compiler and Vitis HLS. We validate the proposed tool-flow by training a quantised ConvLSTM model for a mid-price stock prediction task using the widely used dataset and generating a corresponding hardware IP of the model using our flow, targeting the XCZU7EV device. We show that the generated quantised ConvLSTM accelerator through our flow achieves a balance between performance (latency) and resource consumption, while matching (or bettering) inference accuracy of state-of-the-art models with reduced precision. We believe that the generalisable nature of the proposed flow will pave the way for resource-efficient RNN accelerator designs on FPGAs.
comment: 9 pages, 6 figures, 5 tables, Accepted for publication in IEEE FPL-2025 (https://2025.fpl.org/)
☆ GPU Kernel Scientist: An LLM-Driven Framework for Iterative Kernel Optimization ICML 2025
Optimizing GPU kernels for high performance is a complex task, often demanding deep architectural knowledge, extensive profiling, and iterative experimentation. This challenge is amplified when targeting newer or less-documented GPU architectures where traditional development aids are scarce. This paper introduces an LLM-powered "GPU Kernel Scientist," an automated methodology for iteratively refining accelerator kernels. Our methodology employs LLMs in a multi-stage, evolutionary process: (a) strategically selecting promising prior code versions as a basis for new iterations; (b) generating hypotheses for optimization experiments, based on existing code and assimilated knowledge from general GPU literature; and (c) autonomously implementing these experiments through code modification and subsequent submission to an external evaluation system, using only observed timing data as performance feedback. We detail how this approach navigates the challenges of the AMD MI300 target architecture and leverages LLMs to compensate for limited domain-specific human expertise. Since quantitative results from an ongoing performance competition were embargoed on paper submission date, we present the architectural design, operational workflow, and qualitative insights, highlighting the potential of LLM-driven agents to democratise and accelerate GPU kernel optimization, especially in resource-constrained or rapidly evolving hardware environments.
comment: 4 page paper plus Appendices. Accepted to the ES-FoMo "Efficient Systems for Foundation Models" workshop at ICML 2025
☆ The Ideation-Execution Gap: Execution Outcomes of LLM-Generated versus Human Research Ideas
Large Language Models (LLMs) have shown promise in accelerating the scientific research pipeline. A key capability for this process is the ability to generate novel research ideas, and prior studies have found settings in which LLM-generated research ideas were judged as more novel than human-expert ideas. However, a good idea should not simply appear to be novel, it should also result in better research after being executed. To test whether AI-generated ideas lead to better research outcomes, we conduct an execution study by recruiting 43 expert researchers to execute randomly-assigned ideas, either written by experts or generated by an LLM. Each expert spent over 100 hours implementing the idea and wrote a 4-page short paper to document the experiments. All the executed projects are then reviewed blindly by expert NLP researchers. Comparing the review scores of the same ideas before and after execution, the scores of the LLM-generated ideas decrease significantly more than expert-written ideas on all evaluation metrics (novelty, excitement, effectiveness, and overall; p < 0.05), closing the gap between LLM and human ideas observed at the ideation stage. When comparing the aggregated review scores from the execution study, we even observe that for many metrics there is a flip in rankings where human ideas score higher than LLM ideas. This ideation-execution gap highlights the limitations of current LLMs in generating truly effective research ideas and the challenge of evaluating research ideas in the absence of execution outcomes.
comment: main paper is 14 pages
☆ Structural System Identification via Validation and Adaptation
Estimating the governing equation parameter values is essential for integrating experimental data with scientific theory to understand, validate, and predict the dynamics of complex systems. In this work, we propose a new method for structural system identification (SI), uncertainty quantification, and validation directly from data. Inspired by generative modeling frameworks, a neural network maps random noise to physically meaningful parameters. These parameters are then used in the known equation of motion to obtain fake accelerations, which are compared to real training data via a mean square error loss. To simultaneously validate the learned parameters, we use independent validation datasets. The generated accelerations from these datasets are evaluated by a discriminator network, which determines whether the output is real or fake, and guides the parameter-generator network. Analytical and real experiments show the parameter estimation accuracy and model validation for different nonlinear structural systems.
☆ Stochastic Parameter Decomposition
A key step in reverse engineering neural networks is to decompose them into simpler parts that can be studied in relative isolation. Linear parameter decomposition -- a framework that has been proposed to resolve several issues with current decomposition methods -- decomposes neural network parameters into a sum of sparsely used vectors in parameter space. However, the current main method in this framework, Attribution-based Parameter Decomposition (APD), is impractical on account of its computational cost and sensitivity to hyperparameters. In this work, we introduce \textit{Stochastic Parameter Decomposition} (SPD), a method that is more scalable and robust to hyperparameters than APD, which we demonstrate by decomposing models that are slightly larger and more complex than was possible to decompose with APD. We also show that SPD avoids other issues, such as shrinkage of the learned parameters, and better identifies ground truth mechanisms in toy models. By bridging causal mediation analysis and network decomposition methods, this demonstration opens up new research possibilities in mechanistic interpretability by removing barriers to scaling linear parameter decomposition methods to larger models. We release a library for running SPD and reproducing our experiments at https://github.com/goodfire-ai/spd.
☆ Spiking Neural Networks for SAR Interferometric Phase Unwrapping: A Theoretical Framework for Energy-Efficient Processing
We present the first theoretical framework for applying spiking neural networks (SNNs) to synthetic aperture radar (SAR) interferometric phase unwrapping. Despite extensive research in both domains, our comprehensive literature review confirms that SNNs have never been applied to phase unwrapping, representing a significant gap in current methodologies. As Earth observation data volumes continue to grow exponentially (with missions like NISAR expected to generate 100PB in two years) energy-efficient processing becomes critical for sustainable data center operations. SNNs, with their event-driven computation model, offer potential energy savings of 30-100x compared to conventional approaches while maintaining comparable accuracy. We develop spike encoding schemes specifically designed for wrapped phase data, propose SNN architectures that leverage the spatial propagation nature of phase unwrapping, and provide theoretical analysis of computational complexity and convergence properties. Our framework demonstrates how the temporal dynamics inherent in SNNs can naturally model the spatial continuity constraints fundamental to phase unwrapping. This work opens a new research direction at the intersection of neuromorphic computing and SAR interferometry, offering a complementary approach to existing algorithms that could enable more sustainable large-scale InSAR processing.
comment: 8 pages, 2 figures, patent pending
☆ Stable Minima of ReLU Neural Networks Suffer from the Curse of Dimensionality: The Neural Shattering Phenomenon
We study the implicit bias of flatness / low (loss) curvature and its effects on generalization in two-layer overparameterized ReLU networks with multivariate inputs -- a problem well motivated by the minima stability and edge-of-stability phenomena in gradient-descent training. Existing work either requires interpolation or focuses only on univariate inputs. This paper presents new and somewhat surprising theoretical results for multivariate inputs. On two natural settings (1) generalization gap for flat solutions, and (2) mean-squared error (MSE) in nonparametric function estimation by stable minima, we prove upper and lower bounds, which establish that while flatness does imply generalization, the resulting rates of convergence necessarily deteriorate exponentially as the input dimension grows. This gives an exponential separation between the flat solutions vis-\`a-vis low-norm solutions (i.e., weight decay), which knowingly do not suffer from the curse of dimensionality. In particular, our minimax lower bound construction, based on a novel packing argument with boundary-localized ReLU neurons, reveals how flat solutions can exploit a kind of ''neural shattering'' where neurons rarely activate, but with high weight magnitudes. This leads to poor performance in high dimensions. We corroborate these theoretical findings with extensive numerical simulations. To the best of our knowledge, our analysis provides the first systematic explanation for why flat minima may fail to generalize in high dimensions.
comment: Comments Welcome!
☆ Stochastic and Non-local Closure Modeling for Nonlinear Dynamical Systems via Latent Score-based Generative Models
We propose a latent score-based generative AI framework for learning stochastic, non-local closure models and constitutive laws in nonlinear dynamical systems of computational mechanics. This work addresses a key challenge of modeling complex multiscale dynamical systems without a clear scale separation, for which numerically resolving all scales is prohibitively expensive, e.g., for engineering turbulent flows. While classical closure modeling methods leverage domain knowledge to approximate subgrid-scale phenomena, their deterministic and local assumptions can be too restrictive in regimes lacking a clear scale separation. Recent developments of diffusion-based stochastic models have shown promise in the context of closure modeling, but their prohibitive computational inference cost limits practical applications for many real-world applications. This work addresses this limitation by jointly training convolutional autoencoders with conditional diffusion models in the latent spaces, significantly reducing the dimensionality of the sampling process while preserving essential physical characteristics. Numerical results demonstrate that the joint training approach helps discover a proper latent space that not only guarantees small reconstruction errors but also ensures good performance of the diffusion model in the latent space. When integrated into numerical simulations, the proposed stochastic modeling framework via latent conditional diffusion models achieves significant computational acceleration while maintaining comparable predictive accuracy to standard diffusion models in physical spaces.
☆ Control and optimization for Neural Partial Differential Equations in Supervised Learning
Although there is a substantial body of literature on control and optimization problems for parabolic and hyperbolic systems, the specific problem of controlling and optimizing the coefficients of the associated operators within such systems has not yet been thoroughly explored. In this work, we aim to initiate a line of research in control theory focused on optimizing and controlling the coefficients of these operators-a problem that naturally arises in the context of neural networks and supervised learning. In supervised learning, the primary objective is to transport initial data toward target data through the layers of a neural network. We propose a novel perspective: neural networks can be interpreted as partial differential equations (PDEs). From this viewpoint, the control problem traditionally studied in the context of ordinary differential equations (ODEs) is reformulated as a control problem for PDEs, specifically targeting the optimization and control of coefficients in parabolic and hyperbolic operators. To the best of our knowledge, this specific problem has not yet been systematically addressed in the control theory of PDEs. To this end, we propose a dual system formulation for the control and optimization problem associated with parabolic PDEs, laying the groundwork for the development of efficient numerical schemes in future research. We also provide a theoretical proof showing that the control and optimization problem for parabolic PDEs admits minimizers. Finally, we investigate the control problem associated with hyperbolic PDEs and prove the existence of solutions for a corresponding approximated control problem.
☆ Characterization and Mitigation of Training Instabilities in Microscaling Formats
Training large language models is an expensive, compute-bound process that must be repeated as models scale, algorithms improve, and new data is collected. To address this, next-generation hardware accelerators increasingly support lower-precision arithmetic formats, such as the Microscaling (MX) formats introduced in NVIDIA's Blackwell architecture. These formats use a shared scale within blocks of parameters to extend representable range and perform forward/backward GEMM operations in reduced precision for efficiency gains. In this work, we investigate the challenges and viability of block-scaled precision formats during model training. Across nearly one thousand language models trained from scratch -- spanning compute budgets from $2 \times 10^{17}$ to $4.8 \times 10^{19}$ FLOPs and sweeping over a broad range of weight-activation precision combinations -- we consistently observe that training in MX formats exhibits sharp, stochastic instabilities in the loss, particularly at larger compute scales. To explain this phenomenon, we conduct controlled experiments and ablations on a smaller proxy model that exhibits similar behavior as the language model, sweeping across architectural settings, hyperparameters, and precision formats. These experiments motivate a simple model in which multiplicative gradient bias introduced by the quantization of layer-norm affine parameters and a small fraction of activations can trigger runaway divergence. Through \emph{in situ} intervention experiments on our proxy model, we demonstrate that instabilities can be averted or delayed by modifying precision schemes mid-training. Guided by these findings, we evaluate stabilization strategies in the LLM setting and show that certain hybrid configurations recover performance competitive with full-precision training. We release our code at https://github.com/Hither1/systems-scaling.
comment: 14 pages + appendices
☆ Multiple Streams of Relation Extraction: Enriching and Recalling in Transformers
When an LLM learns a relation during finetuning (e.g., new movie releases, corporate mergers, etc.), where does this information go? Is it extracted when the model processes an entity, recalled just-in-time before a prediction, or are there multiple separate heuristics? Existing localization approaches (e.g. activation patching) are ill-suited for this analysis because they tend to replace parts of the residual stream, potentially deleting information. To fill this gap, we propose dynamic weight-grafting between fine-tuned and pre-trained language models to show that fine-tuned language models both (1) extract relation information learned during finetuning while processing entities and (2) ``recall" this information in later layers while generating predictions. In some cases, models need both of these pathways to correctly generate finetuned information while, in other cases, a single ``enrichment" or ``recall" pathway alone is sufficient. We examine the necessity and sufficiency of these information pathways, examining what layers they occur at, how much redundancy they exhibit, and which model components are involved -- finding that the ``recall" pathway occurs via both task-specific attention mechanisms and a relation extraction step in the output of the attention and the feedforward networks at the final layers before next token prediction.
☆ A Survey of AI for Materials Science: Foundation Models, LLM Agents, Datasets, and Tools
Foundation models (FMs) are catalyzing a transformative shift in materials science (MatSci) by enabling scalable, general-purpose, and multimodal AI systems for scientific discovery. Unlike traditional machine learning models, which are typically narrow in scope and require task-specific engineering, FMs offer cross-domain generalization and exhibit emergent capabilities. Their versatility is especially well-suited to materials science, where research challenges span diverse data types and scales. This survey provides a comprehensive overview of foundation models, agentic systems, datasets, and computational tools supporting this growing field. We introduce a task-driven taxonomy encompassing six broad application areas: data extraction, interpretation and Q\&A; atomistic simulation; property prediction; materials structure, design and discovery; process planning, discovery, and optimization; and multiscale modeling. We discuss recent advances in both unimodal and multimodal FMs, as well as emerging large language model (LLM) agents. Furthermore, we review standardized datasets, open-source tools, and autonomous experimental platforms that collectively fuel the development and integration of FMs into research workflows. We assess the early successes of foundation models and identify persistent limitations, including challenges in generalizability, interpretability, data imbalance, safety concerns, and limited multimodal fusion. Finally, we articulate future research directions centered on scalable pretraining, continual learning, data governance, and trustworthiness.
☆ Test-time Scaling Techniques in Theoretical Physics -- A Comparison of Methods on the TPBench Dataset
Large language models (LLMs) have shown strong capabilities in complex reasoning, and test-time scaling techniques can enhance their performance with comparably low cost. Many of these methods have been developed and evaluated on mathematical reasoning benchmarks such as AIME. This paper investigates whether the lessons learned from these benchmarks generalize to the domain of advanced theoretical physics. We evaluate a range of common test-time scaling methods on the TPBench physics dataset and compare their effectiveness with results on AIME. To better leverage the structure of physics problems, we develop a novel, symbolic weak-verifier framework to improve parallel scaling results. Our empirical results demonstrate that this method significantly outperforms existing test-time scaling approaches on TPBench. We also evaluate our method on AIME, confirming its effectiveness in solving advanced mathematical problems. Our findings highlight the power of step-wise symbolic verification for tackling complex scientific problems.
comment: 23 pages, 6 figures
☆ On Convolutions, Intrinsic Dimension, and Diffusion Models
The manifold hypothesis asserts that data of interest in high-dimensional ambient spaces, such as image data, lies on unknown low-dimensional submanifolds. Diffusion models (DMs) -- which operate by convolving data with progressively larger amounts of Gaussian noise and then learning to revert this process -- have risen to prominence as the most performant generative models, and are known to be able to learn distributions with low-dimensional support. For a given datum in one of these submanifolds, we should thus intuitively expect DMs to have implicitly learned its corresponding local intrinsic dimension (LID), i.e. the dimension of the submanifold it belongs to. Kamkari et al. (2024b) recently showed that this is indeed the case by linking this LID to the rate of change of the log marginal densities of the DM with respect to the amount of added noise, resulting in an LID estimator known as FLIPD. LID estimators such as FLIPD have a plethora of uses, among others they quantify the complexity of a given datum, and can be used to detect outliers, adversarial examples and AI-generated text. FLIPD achieves state-of-the-art performance at LID estimation, yet its theoretical underpinnings are incomplete since Kamkari et al. (2024b) only proved its correctness under the highly unrealistic assumption of affine submanifolds. In this work we bridge this gap by formally proving the correctness of FLIPD under realistic assumptions. Additionally, we show that an analogous result holds when Gaussian convolutions are replaced with uniform ones, and discuss the relevance of this result.
☆ Diffusion Tree Sampling: Scalable inference-time alignment of diffusion models
Adapting a pretrained diffusion model to new objectives at inference time remains an open problem in generative modeling. Existing steering methods suffer from inaccurate value estimation, especially at high noise levels, which biases guidance. Moreover, information from past runs is not reused to improve sample quality, resulting in inefficient use of compute. Inspired by the success of Monte Carlo Tree Search, we address these limitations by casting inference-time alignment as a search problem that reuses past computations. We introduce a tree-based approach that samples from the reward-aligned target density by propagating terminal rewards back through the diffusion chain and iteratively refining value estimates with each additional generation. Our proposed method, Diffusion Tree Sampling (DTS), produces asymptotically exact samples from the target distribution in the limit of infinite rollouts, and its greedy variant, Diffusion Tree Search (DTS$^\star$), performs a global search for high reward samples. On MNIST and CIFAR-10 class-conditional generation, DTS matches the FID of the best-performing baseline with up to $10\times$ less compute. In text-to-image generation and language completion tasks, DTS$^\star$ effectively searches for high reward samples that match best-of-N with up to $5\times$ less compute. By reusing information from previous generations, we get an anytime algorithm that turns additional compute into steadily better samples, providing a scalable approach for inference-time alignment of diffusion models.
☆ On Context-Content Uncertainty Principle
The Context-Content Uncertainty Principle (CCUP) proposes that inference under uncertainty is governed by an entropy asymmetry between context and content: high-entropy contexts must be interpreted through alignment with low-entropy, structured content. In this paper, we develop a layered computational framework that derives operational principles from this foundational asymmetry. At the base level, CCUP formalizes inference as directional entropy minimization, establishing a variational gradient that favors content-first structuring. Building upon this, we identify four hierarchical layers of operational principles: (\textbf{L1}) \emph{Core Inference Constraints}, including structure-before-specificity, asymmetric inference flow, cycle-consistent bootstrapping, and conditional compression, all shown to be mutually reducible; (\textbf{L2}) \emph{Resource Allocation Principles}, such as precision-weighted attention, asymmetric learning rates, and attractor-based memory encoding; (\textbf{L3}) \emph{Temporal Bootstrapping Dynamics}, which organize learning over time via structure-guided curricula; and (\textbf{L4}) \emph{Spatial Hierarchical Composition}, which integrates these mechanisms into self-organizing cycles of memory, inference, and planning. We present formal equivalence theorems, a dependency lattice among principles, and computational simulations demonstrating the efficiency gains of CCUP-aligned inference. This work provides a unified theoretical foundation for understanding how brains and machines minimize uncertainty through recursive structure-specificity alignment. The brain is not just an inference machine. It is a cycle-consistent entropy gradient resolver, aligning structure and specificity via path-dependent, content-seeded simulation.
☆ scMamba: A Scalable Foundation Model for Single-Cell Multi-Omics Integration Beyond Highly Variable Feature Selection
The advent of single-cell multi-omics technologies has enabled the simultaneous profiling of diverse omics layers within individual cells. Integrating such multimodal data provides unprecedented insights into cellular identity, regulatory processes, and disease mechanisms. However, it remains challenging, as current methods often rely on selecting highly variable genes or peaks during preprocessing, which may inadvertently discard crucial biological information. Here, we present scMamba, a foundation model designed to integrate single-cell multi-omics data without the need for prior feature selection while preserving genomic positional information. scMamba introduces a patch-based cell tokenization strategy that treats genomics regions as words (tokens) and cells as sentences. Building upon the concept of state space duality, scMamba distills rich biological insights from high-dimensional, sparse single-cell multi-omics data. Additionally, our novel contrastive learning approach, enhanced with cosine similarity regularization, enables superior alignment across omics layers compared to traditional methods. Systematic benchmarking across multiple datasets demonstrates that scMamba significantly outperforms state-of-the-art methods in preserving biological variation, aligning omics layers, and enhancing key downstream tasks such as clustering, cell type annotation, and trajectory inference. Our findings position scMamba as a powerful tool for large-scale single-cell multi-omics integration, capable of handling large-scale atlases and advancing biological discovery.
☆ Signatures of planets and Galactic subpopulations in solar analogs. Precise chemical abundances with neural networks
The aim of this work is to obtain precise atmospheric parameters and chemical abundances automatically for solar twins and analogs to find signatures of exoplanets, as well as to assess how peculiar the Sun is compared to these stars and to analyze any possible fine structures in the Galactic thin disk. We developed a neural network (NN) algorithm using Python to obtain these parameters for a sample of 99 solar twins and solar analogs previously studied in the literature from normalized high-quality spectra from HARPS, with a resolving power of R $\sim$ 115000 and a signal-to-noise ratio S/N > 400. We obtained precise atmospheric parameters and abundance ratios [X/Fe] of 20 chemical elements (Li, C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, and Ba). The results are in line with the literature, with average differences and standard deviations of $(2 \pm 27)$ K for T$_{\rm eff}$, $(0.00 \pm 0.06)$ dex for log g, $(0.00 \pm 0.02)$ dex for [Fe/H], $(-0.01 \pm 0.05)$ km s$^{-1}$ for microturbulence velocity, $(0.02 \pm 0.08)$ km s$^{-1}$ for the macro turbulence velocity, and $(-0.12 \pm 0.26)$ km s$^{-1}$ for the projected rotational velocity (vsin$i$). Regarding the chemical abundances, most of the elements agree with the literature within 0.01 - 0.02 dex. The abundances were corrected from the effects of the Galactic chemical evolution and analyzed with the condensation temperature (T$_{\rm cond}$) to verify whether the stars presented depletion of refractories compared to volatiles. We found that the Sun is more depleted in refractory elements compared to volatiles than 89% of the studied solar analogs, with a significance of 9.5$\sigma$ when compared to the stars without detected exoplanets. We also found the possible presence of three subpopulations in the solar analogs: one Cu-rich, one Cu-poor, and the last one slightly older and poor in Na.
comment: Accepted by A&A
♻ ☆ Data Quality in Crowdsourcing and Spamming Behavior Detection
As crowdsourcing emerges as an efficient and cost-effective method for obtaining labels for machine learning datasets, it is important to assess the quality of crowd-provided data, so as to improve analysis performance and reduce biases in subsequent machine learning tasks. Given the lack of ground truth in most cases of crowdsourcing, we refer to data quality as annotators' consistency and credibility. Unlike the simple scenarios where Kappa coefficient and intraclass correlation coefficient usually can apply, online crowdsourcing requires dealing with more complex situations. We introduce a systematic method for evaluating data quality and detecting spamming threats via variance decomposition, and we classify spammers into three categories based on their different behavioral patterns. A spammer index is proposed to assess entire data consistency, and two metrics are developed to measure crowd workers' credibility by utilizing the Markov chain and generalized random effects models. Furthermore, we showcase the practicality of our techniques and their advantages by applying them on a face verification task with both simulation and real-world data collected from two crowdsourcing platforms.
comment: Preprint paper, accepted on Behavior Research Methods. 56 pages, 14 figures
♻ ☆ Balancing the Scales: A Theoretical and Algorithmic Framework for Learning from Imbalanced Data ICML 2025
Class imbalance remains a major challenge in machine learning, especially in multi-class problems with long-tailed distributions. Existing methods, such as data resampling, cost-sensitive techniques, and logistic loss modifications, though popular and often effective, lack solid theoretical foundations. As an example, we demonstrate that cost-sensitive methods are not Bayes-consistent. This paper introduces a novel theoretical framework for analyzing generalization in imbalanced classification. We then propose a new class-imbalanced margin loss function for both binary and multi-class settings, prove its strong $H$-consistency, and derive corresponding learning guarantees based on empirical loss and a new notion of class-sensitive Rademacher complexity. Leveraging these theoretical results, we devise novel and general learning algorithms, IMMAX (Imbalanced Margin Maximization), which incorporate confidence margins and are applicable to various hypothesis sets. While our focus is theoretical, we also present extensive empirical results demonstrating the effectiveness of our algorithms compared to existing baselines.
comment: ICML 2025
♻ ☆ Probing Quantum Spin Systems with Kolmogorov-Arnold Neural Network Quantum States
Neural Quantum States (NQS) are a class of variational wave functions parametrized by neural networks (NNs) to study quantum many-body systems. In this work, we propose \texttt{SineKAN}, a NQS \textit{ansatz} based on Kolmogorov-Arnold Networks (KANs), to represent quantum mechanical wave functions as nested univariate functions. We show that \texttt{SineKAN} wavefunction with learnable sinusoidal activation functions can capture the ground state energies, fidelities and various correlation functions of the one dimensional Transverse-Field Ising model, Anisotropic Heisenberg model, and Antiferromagnetic $J_{1}-J_{2}$ model with different chain lengths. In our study of the $J_1-J_2$ model with $L=100$ sites, we find that the \texttt{SineKAN} model outperforms several previously explored neural quantum state \textit{ans\"atze}, including Restricted Boltzmann Machines (RBMs), Long Short-Term Memory models (LSTMs), and Multi-layer Perceptrons (MLP) \textit{a.k.a.} Feed Forward Neural Networks, when compared to the results obtained from the Density Matrix Renormalization Group (DMRG) algorithm. We find that \texttt{SineKAN} models can be trained to high precisions and accuracies with minimal computational costs.
comment: 16 pages, 13 figures
♻ ☆ Recycling the Web: A Method to Enhance Pre-training Data Quality and Quantity for Language Models
Scaling laws predict that the performance of large language models improves with increasing model size and data size. In practice, pre-training has been relying on massive web crawls, using almost all data sources publicly available on the internet so far. However, this pool of natural data does not grow at the same rate as the compute supply. Furthermore, the availability of high-quality texts is even more limited: data filtering pipelines often remove up to 99% of the initial web scrapes to achieve state-of-the-art. To address the "data wall" of pre-training scaling, our work explores ways to transform and recycle data discarded in existing filtering processes. We propose REWIRE, REcycling the Web with guIded REwrite, a method to enrich low-quality documents so that they could become useful for training. This in turn allows us to increase the representation of synthetic data in the final pre-training set. Experiments at 1B, 3B and 7B scales of the DCLM benchmark show that mixing high-quality raw texts and our rewritten texts lead to 1.0, 1.3 and 2.5 percentage points improvement respectively across 22 diverse tasks, compared to training on only filtered web data. Training on the raw-synthetic data mix is also more effective than having access to 2x web data. Through further analysis, we demonstrate that about 82% of the mixed in texts come from transforming lower-quality documents that would otherwise be discarded. REWIRE also outperforms related approaches of generating synthetic data, including Wikipedia-style paraphrasing, question-answer synthesizing and knowledge extraction. These results suggest that recycling web texts holds the potential for being a simple and effective approach for scaling pre-training data.
♻ ☆ Do Concept Bottleneck Models Respect Localities?
Concept-based explainability methods use human-understandable intermediaries to produce explanations for machine learning models. These methods assume concept predictions can help understand a model's internal reasoning. In this work, we assess the degree to which such an assumption is true by analyzing whether concept predictors leverage "relevant" features to make predictions, a term we call locality. Concept-based models that fail to respect localities also fail to be explainable because concept predictions are based on spurious features, making the interpretation of the concept predictions vacuous. To assess whether concept-based models respect localities, we construct and use three metrics to characterize when models respect localities, complementing our analysis with theoretical results. Each of our metrics captures a different notion of perturbation and assess whether perturbing "irrelevant" features impacts the predictions made by a concept predictors. We find that many concept-based models used in practice fail to respect localities because concept predictors cannot always clearly distinguish distinct concepts. Based on these findings, we propose suggestions for alleviating this issue.
comment: Published at TMLR
♻ ☆ From $\mathcal{O}(n^{2})$ to $\mathcal{O}(n)$ Parameters: Quantum Self-Attention in Vision Transformers for Biomedical Image Classification MICCAI 2025
We demonstrate that quantum vision transformers (QViTs), vision transformers (ViTs) with self-attention (SA) mechanisms replaced by quantum self-attention (QSA) mechanisms, can match state-of-the-art (SOTA) biomedical image classifiers while using 99.99% fewer parameters. QSAs are produced by replacing linear SA layers with parameterised quantum neural networks (QNNs), producing a QSA mechanism and reducing parameter scaling from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$. On RetinaMNIST, our ultra parameter-efficient QViT outperforms 13/14 SOTA methods including CNNs and ViTs, achieving 56.5% accuracy, just 0.88% below the top MedMamba model while using 99.99% fewer parameters (1K vs 14.5M) and 89% fewer GFLOPs. We present the first investigation of knowledge distillation (KD) from classical to quantum vision transformers in biomedical image classification, showing that QViTs maintain comparable performance to classical ViTs across eight diverse datasets spanning multiple modalities, with improved QSA parameter-efficiency. Our higher-qubit architecture benefitted more from KD pre-training, suggesting a scaling relationship between QSA parameters and KD effectiveness. These findings establish QSA as a practical architectural choice toward parameter-efficient biomedical image analysis.
comment: Submitted for EMA4MICCAI 2025
♻ ☆ LT-PINN: Lagrangian Topology-conscious Physics-informed Neural Network for Boundary-focused Engineering Optimization
Physics-informed neural networks (PINNs) have emerged as a powerful meshless tool for topology optimization, capable of simultaneously determining optimal topologies and physical solutions. However, conventional PINNs rely on density-based topology descriptions, which necessitate manual interpolation and limit their applicability to complex geometries. To address this, we propose Lagrangian topology-conscious PINNs (LT-PINNs), a novel framework for boundary-focused engineering optimization. By parameterizing the control variables of topology boundary curves as learnable parameters, LT-PINNs eliminate the need for manual interpolation and enable precise boundary determination. We further introduce specialized boundary condition loss function and topology loss function to ensure sharp and accurate boundary representations, even for intricate topologies. The accuracy and robustness of LT-PINNs are validated via two types of partial differential equations (PDEs), including elastic equation with Dirichlet boundary conditions and Laplace's equation with Neumann boundary conditions. Furthermore, we demonstrate effectiveness of LT-PINNs on more complex time-dependent and time-independent flow problems without relying on measurement data, and showcase their engineering application potential in flow velocity rearrangement, transforming a uniform upstream velocity into a sine-shaped downstream profile. The results demonstrate (1) LT-PINNs achieve substantial reductions in relative L2 errors compared with the state-of-art density topology-oriented PINNs (DT-PINNs), (2) LT-PINNs can handle arbitrary boundary conditions, making them suitable for a wide range of PDEs, and (3) LT-PINNs can infer clear topology boundaries without manual interpolation, especially for complex topologies.
♻ ☆ FluoroSAM: A Language-promptable Foundation Model for Flexible X-ray Image Segmentation
Language promptable X-ray image segmentation would enable greater flexibility for human-in-the-loop workflows in diagnostic and interventional precision medicine. Prior efforts have contributed task-specific models capable of solving problems within a narrow scope, but expanding to broader use requires additional data, annotations, and training time. Recently, language-aligned foundation models (LFMs) -- machine learning models trained on large amounts of highly variable image and text data thus enabling broad applicability -- have emerged as promising tools for automated image analysis. Existing foundation models for medical image analysis focus on scenarios and modalities where large, richly annotated datasets are available. However, the X-ray imaging modality features highly variable image appearance and applications, from diagnostic chest X-rays to interventional fluoroscopy, with varying availability of data. To pave the way toward an LFM for comprehensive and language-aligned analysis of arbitrary medical X-ray images, we introduce FluoroSAM, a language-promptable variant of the Segment Anything Model, trained from scratch on 3M synthetic X-ray images from a wide variety of human anatomies, imaging geometries, and viewing angles. These include pseudo-ground truth masks for 128 organ types and 464 tools with associated text descriptions. FluoroSAM is capable of segmenting myriad anatomical structures and tools based on natural language prompts, thanks to the novel incorporation of vector quantization (VQ) of text embeddings in the training process. We demonstrate FluoroSAM's performance quantitatively on real X-ray images and showcase on several applications how FluoroSAM is a key enabler for rich human-machine interaction in the X-ray image acquisition and analysis context. Code is available at https://github.com/arcadelab/fluorosam.
♻ ☆ On the Role of Context in Reading Time Prediction EMNLP 2024
We present a new perspective on how readers integrate context during real-time language comprehension. Our proposals build on surprisal theory, which posits that the processing effort of a linguistic unit (e.g., a word) is an affine function of its in-context information content. We first observe that surprisal is only one out of many potential ways that a contextual predictor can be derived from a language model. Another one is the pointwise mutual information (PMI) between a unit and its context, which turns out to yield the same predictive power as surprisal when controlling for unigram frequency. Moreover, both PMI and surprisal are correlated with frequency. This means that neither PMI nor surprisal contains information about context alone. In response to this, we propose a technique where we project surprisal onto the orthogonal complement of frequency, yielding a new contextual predictor that is uncorrelated with frequency. Our experiments show that the proportion of variance in reading times explained by context is a lot smaller when context is represented by the orthogonalized predictor. From an interpretability standpoint, this indicates that previous studies may have overstated the role that context has in predicting reading times.
comment: EMNLP 2024; preprocessing was corrected to exclude variance due to word skipping and the conclusions remain unchanged
♻ ☆ Rethinking Early Stopping: Refine, Then Calibrate
Machine learning classifiers often produce probabilistic predictions that are critical for accurate and interpretable decision-making in various domains. The quality of these predictions is generally evaluated with proper losses, such as cross-entropy, which decompose into two components: calibration error assesses general under/overconfidence, while refinement error measures the ability to distinguish different classes. In this paper, we present a novel variational formulation of the calibration-refinement decomposition that sheds new light on post-hoc calibration, and enables rapid estimation of the different terms. Equipped with this new perspective, we provide theoretical and empirical evidence that calibration and refinement errors are not minimized simultaneously during training. Selecting the best epoch based on validation loss thus leads to a compromise point that is suboptimal for both terms. To address this, we propose minimizing refinement error only during training (Refine,...), before minimizing calibration error post hoc, using standard techniques (...then Calibrate). Our method integrates seamlessly with any classifier and consistently improves performance across diverse classification tasks.
♻ ☆ Unlocking In-Context Learning for Natural Datasets Beyond Language Modelling
Large Language Models (LLMs) exhibit In-Context Learning (ICL), which enables the model to perform new tasks conditioning only on the examples provided in the context without updating the model's weights. While ICL offers fast adaptation across natural language tasks and domains, its emergence is less straightforward for modalities beyond text. In this work, we systematically uncover properties present in LLMs that support the emergence of ICL for autoregressive models and various modalities by promoting the learning of the needed mechanisms for ICL. We identify exact token repetitions in the training data sequences as an important factor for ICL. Such repetitions further improve stability and reduce transiency in ICL performance. Moreover, we emphasise the significance of training task difficulty for the emergence of ICL. Finally, by applying our novel insights on ICL emergence, we unlock ICL capabilities for various visual datasets and a more challenging EEG classification task in a few-shot learning regime.
♻ ☆ TabArena: A Living Benchmark for Machine Learning on Tabular Data
With the growing popularity of deep learning and foundation models for tabular data, the need for standardized and reliable benchmarks is higher than ever. However, current benchmarks are static. Their design is not updated even if flaws are discovered, model versions are updated, or new models are released. To address this, we introduce TabArena, the first continuously maintained living tabular benchmarking system. To launch TabArena, we manually curate a representative collection of datasets and well-implemented models, conduct a large-scale benchmarking study to initialize a public leaderboard, and assemble a team of experienced maintainers. Our results highlight the influence of validation method and ensembling of hyperparameter configurations to benchmark models at their full potential. While gradient-boosted trees are still strong contenders on practical tabular datasets, we observe that deep learning methods have caught up under larger time budgets with ensembling. At the same time, foundation models excel on smaller datasets. Finally, we show that ensembles across models advance the state-of-the-art in tabular machine learning and investigate the contributions of individual models. We launch TabArena with a public leaderboard, reproducible code, and maintenance protocols to create a living benchmark available at https://tabarena.ai.
comment: v2: fixed author list. 51 pages. Code available at https://tabarena.ai/code; examples at https://tabarena.ai/code-examples; dataset curation at https://tabarena.ai/data-tabular-ml-iid-study and https://tabarena.ai/dataset-curation
♻ ☆ Contextual Optimization under Covariate Shift: A Robust Approach by Intersecting Wasserstein Balls
In contextual optimization, a decision-maker leverages contextual information, often referred to as covariates, to better resolve uncertainty and make informed decisions. In this paper, we examine the challenges of contextual decision-making under covariate shift, a phenomenon where the distribution of covariates differs between the training and test environments. Such shifts can lead to inaccurate upstream estimations for test covariates that lie far from the training data, ultimately resulting in suboptimal downstream decisions. To tackle these challenges, we propose a novel approach called Intersection Wasserstein-balls DRO (IW-DRO), which integrates multiple estimation methods into the distributionally robust optimization (DRO) framework. At the core of our approach is an innovative ambiguity set defined as the intersection of two Wasserstein balls, with their centers constructed using appropriate nonparametric and parametric estimators. On the computational side, we reformulate the IW-DRO problem as a tractable convex program and develop an approximate algorithm tailored for large-scale problems to enhance computational efficiency. From a theoretical perspective, we demonstrate that IW-DRO achieves superior performance compared to single Wasserstein-ball DRO models. We further establish performance guarantees by analyzing the coverage of the intersection ambiguity set and the measure concentration of both estimators under the Wasserstein distance. Notably, we derive a finite-sample concentration result for the Nadaraya-Watson kernel estimator under covariate shift. The proposed IW-DRO framework offers practical value for decision-makers operating in uncertain environments affected by covariate shifts.
♻ ☆ Adversarial Reasoning at Jailbreaking Time ICML 2025
As large language models (LLMs) are becoming more capable and widespread, the study of their failure cases is becoming increasingly important. Recent advances in standardizing, measuring, and scaling test-time compute suggest new methodologies for optimizing models to achieve high performance on hard tasks. In this paper, we apply these advances to the task of model jailbreaking: eliciting harmful responses from aligned LLMs. We develop an adversarial reasoning approach to automatic jailbreaking that leverages a loss signal to guide the test-time compute, achieving SOTA attack success rates against many aligned LLMs, even those that aim to trade inference-time compute for adversarial robustness. Our approach introduces a new paradigm in understanding LLM vulnerabilities, laying the foundation for the development of more robust and trustworthy AI systems.
comment: Accepted to the 42nd International Conference on Machine Learning (ICML 2025)
♻ ☆ Attention with Trained Embeddings Provably Selects Important Tokens
Token embeddings play a crucial role in language modeling but, despite this practical relevance, their theoretical understanding remains limited. Our paper addresses the gap by characterizing the structure of embeddings obtained via gradient descent. Specifically, we consider a one-layer softmax attention model with a linear head for binary classification, i.e., $\texttt{Softmax}( p^\top E_X^\top ) E_X v = \frac{ \sum_{i=1}^T \exp(p^\top E_{x_i}) E_{x_i}^\top v}{\sum_{j=1}^T \exp(p^\top E_{x_{j}}) }$, where $E_X = [ E_{x_1} , \dots, E_{x_T} ]^\top$ contains the embeddings of the input sequence, $p$ is the embedding of the $\mathrm{\langle cls \rangle}$ token and $v$ the output vector. First, we show that, already after a single step of gradient training with the logistic loss, the embeddings $E_X$ capture the importance of tokens in the dataset by aligning with the output vector $v$ proportionally to the frequency with which the corresponding tokens appear in the dataset. Then, after training $p$ via gradient flow until convergence, the softmax selects the important tokens in the sentence (i.e., those that are predictive of the label), and the resulting $\mathrm{\langle cls \rangle}$ embedding maximizes the margin for such a selection. Experiments on real-world datasets (IMDB, Yelp) exhibit a phenomenology close to that unveiled by our theory.
comment: Fix mistakes in Lemma 4.2 and proof of Lemma 4.5, and some other minor changes
♻ ☆ Variational Learning Finds Flatter Solutions at the Edge of Stability
Variational Learning (VL) has recently gained popularity for training deep neural networks and is competitive to standard learning methods. Part of its empirical success can be explained by theories such as PAC-Bayes bounds, minimum description length and marginal likelihood, but there are few tools to unravel the implicit regularization in play. Here, we analyze the implicit regularization of VL through the Edge of Stability (EoS) framework. EoS has previously been used to show that gradient descent can find flat solutions and we extend this result to VL to show that it can find even flatter solutions. This is obtained by controlling the posterior covariance and the number of Monte Carlo samples from the posterior. These results are derived in a similar fashion as the standard EoS literature for deep learning, by first deriving a result for a quadratic problem and then extending it to deep neural networks. We empirically validate these findings on a wide variety of large networks, such as ResNet and ViT, to find that the theoretical results closely match the empirical ones. Ours is the first work to analyze the EoS dynamics in VL.
♻ ☆ Proximal Control of UAVs with Federated Learning for Human-Robot Collaborative Domains
The human-robot interaction (HRI) is a growing area of research. In HRI, complex command (action) classification is still an open problem that usually prevents the real applicability of such a technique. The literature presents some works that use neural networks to detect these actions. However, occlusion is still a major issue in HRI, especially when using uncrewed aerial vehicles (UAVs), since, during the robot's movement, the human operator is often out of the robot's field of view. Furthermore, in multi-robot scenarios, distributed training is also an open problem. In this sense, this work proposes an action recognition and control approach based on Long Short-Term Memory (LSTM) Deep Neural Networks with two layers in association with three densely connected layers and Federated Learning (FL) embedded in multiple drones. The FL enabled our approach to be trained in a distributed fashion, i.e., access to data without the need for cloud or other repositories, which facilitates the multi-robot system's learning. Furthermore, our multi-robot approach results also prevented occlusion situations, with experiments with real robots achieving an accuracy greater than 96%.
comment: version 2
♻ ☆ On Advancements of the Forward-Forward Algorithm
The Forward-Forward algorithm has evolved in machine learning research, tackling more complex tasks that mimic real-life applications. In the last years, it has been improved by several techniques to perform better than its original version, handling a challenging dataset like CIFAR10 without losing its flexibility and low memory usage. We have shown in our results that improvements are achieved through a combination of convolutional channel grouping, learning rate schedules, and independent block structures during training that lead to a 20\% decrease in test error percentage. Additionally, to approach further implementations on low-capacity hardware projects, we have presented a series of lighter models that achieve low test error percentages within (21$\pm$3)\% and number of trainable parameters between 164,706 and 754,386. This serves as a basis for our future study on complete verification and validation of these kinds of neural networks.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ VRAIL: Vectorized Reward-based Attribution for Interpretable Learning
We propose VRAIL (Vectorized Reward-based Attribution for Interpretable Learning), a bi-level framework for value-based reinforcement learning (RL) that learns interpretable weight representations from state features. VRAIL consists of two stages: a deep learning (DL) stage that fits an estimated value function using state features, and an RL stage that uses this to shape learning via potential-based reward transformations. The estimator is modeled in either linear or quadratic form, allowing attribution of importance to individual features and their interactions. Empirical results on the Taxi-v3 environment demonstrate that VRAIL improves training stability and convergence compared to standard DQN, without requiring environment modifications. Further analysis shows that VRAIL uncovers semantically meaningful subgoals, such as passenger possession, highlighting its ability to produce human-interpretable behavior. Our findings suggest that VRAIL serves as a general, model-agnostic framework for reward shaping that enhances both learning and interpretability.
♻ ☆ LPOSS: Label Propagation Over Patches and Pixels for Open-vocabulary Semantic Segmentation
We propose a training-free method for open-vocabulary semantic segmentation using Vision-and-Language Models (VLMs). Our approach enhances the initial per-patch predictions of VLMs through label propagation, which jointly optimizes predictions by incorporating patch-to-patch relationships. Since VLMs are primarily optimized for cross-modal alignment and not for intra-modal similarity, we use a Vision Model (VM) that is observed to better capture these relationships. We address resolution limitations inherent to patch-based encoders by applying label propagation at the pixel level as a refinement step, significantly improving segmentation accuracy near class boundaries. Our method, called LPOSS+, performs inference over the entire image, avoiding window-based processing and thereby capturing contextual interactions across the full image. LPOSS+ achieves state-of-the-art performance among training-free methods, across a diverse set of datasets. Code: https://github.com/vladan-stojnic/LPOSS
♻ ☆ Training Plug-n-Play Knowledge Modules with Deep Context Distillation
Dynamically integrating new or rapidly evolving information after (Large) Language Model pre-training remains challenging, particularly in low-data scenarios or when dealing with private and specialized documents. In-context learning and retrieval-augmented generation (RAG) face limitations, including their high inference costs and their inability to capture global document information. In this paper, we propose a way of modularizing knowledge by training document-level Knowledge Modules (KMs). KMs are lightweight components implemented as parameter-efficient LoRA modules, which are trained to store information about new documents and can be easily plugged into models on demand. We show that next-token prediction performs poorly as the training objective for KMs. We instead propose Deep Context Distillation: we learn KMs parameters such as to simulate hidden states and logits of a teacher that takes the document in context. Our method outperforms standard next-token prediction and pre-instruction training techniques, across two datasets. Finally, we highlight synergies between KMs and RAG.
comment: Preprint
♻ ☆ Fine, I'll Merge It Myself: A Multi-Fidelity Framework for Automated Model Merging
Reasoning capabilities represent a critical frontier for large language models (LLMs), but developing them requires extensive proprietary datasets and computational resources. One way to efficiently supplement capabilities with is by model merging, which offers a promising alternative by combining multiple models without retraining. However, current merging approaches rely on manually-designed strategies for merging hyperparameters, limiting the exploration of potential model combinations and requiring significant human effort. We propose an Automated Model Merging Framework that enables fine-grained exploration of merging strategies while reducing costs through multi-fidelity approximations. We support both single and multi-objective optimization and introduce two novel search spaces: layerwise fusion (LFS) and depth-wise integration (DIS). Evaluating across a number of benchmarks, we find that the search autonomously finds 1) Merges that further boost single-objective performance, even on tasks the model has already been finetuned on, and 2) Merges that optimize multi-objective frontiers across tasks. Effective merges are found with limited compute, e.g. within less than 500 search steps.
♻ ☆ Non-equilibrium Annealed Adjoint Sampler
Recently, there has been significant progress in learning-based diffusion samplers, which aim to sample from a given unnormalized density. These methods typically follow one of two paradigms: (i) formulating sampling as an unbiased stochastic optimal control (SOC) problem using a canonical reference process, or (ii) refining annealed path measures through importance-weighted sampling. Although annealing approaches have advantages in guiding samples toward high-density regions, reliance on importance sampling leads to high variance and limited scalability in practice. In this paper, we introduce the \textbf{Non-equilibrium Annealed Adjoint Sampler (NAAS)}, a novel SOC-based diffusion sampler that leverages annealed reference dynamics without resorting to importance sampling. NAAS employs a lean adjoint system inspired by adjoint matching, enabling efficient and scalable training. We demonstrate the effectiveness of our approach across a range of tasks, including sampling from classical energy landscapes and molecular Boltzmann distribution.
comment: 21 pages, 7 figures
♻ ☆ Offline Goal-Conditioned Reinforcement Learning with Projective Quasimetric Planning
Offline Goal-Conditioned Reinforcement Learning seeks to train agents to reach specified goals from previously collected trajectories. Scaling that promises to long-horizon tasks remains challenging, notably due to compounding value-estimation errors. Principled geometric offers a potential solution to address these issues. Following this insight, we introduce Projective Quasimetric Planning (ProQ), a compositional framework that learns an asymmetric distance and then repurposes it, firstly as a repulsive energy forcing a sparse set of keypoints to uniformly spread over the learned latent space, and secondly as a structured directional cost guiding towards proximal sub-goals. In particular, ProQ couples this geometry with a Lagrangian out-of-distribution detector to ensure the learned keypoints stay within reachable areas. By unifying metric learning, keypoint coverage, and goal-conditioned control, our approach produces meaningful sub-goals and robustly drives long-horizon goal-reaching on diverse a navigation benchmarks.
♻ ☆ Graph Linearization Methods for Reasoning on Graphs with Large Language Models
Large language models have evolved to process multiple modalities beyond text, such as images and audio, which motivates us to explore how to effectively leverage them for graph reasoning tasks. The key question, therefore, is how to transform graphs into linear sequences of tokens, a process we term "graph linearization", so that LLMs can handle graphs naturally. We consider that graphs should be linearized meaningfully to reflect certain properties of natural language text, such as local dependency and global alignment, in order to ease contemporary LLMs, trained on trillions of textual tokens, better understand graphs. To achieve this, we developed several graph linearization methods based on graph centrality and degeneracy. These methods are further enhanced using node relabeling techniques. The experimental results demonstrate the effectiveness of our methods compared to the random linearization baseline. Our work introduces novel graph representations suitable for LLMs, contributing to the potential integration of graph machine learning with the trend of multimodal processing using a unified transformer model.
♻ ☆ MARCO: Multi-Agent Code Optimization with Real-Time Knowledge Integration for High-Performance Computing
Large language models (LLMs) have transformed software development through code generation capabilities, yet their effectiveness for high-performance computing (HPC) remains limited. HPC code requires specialized optimizations for parallelism, memory efficiency, and architecture-specific considerations that general-purpose LLMs often overlook. We present MARCO (Multi-Agent Reactive Code Optimizer), a novel framework that enhances LLM-generated code for HPC through a specialized multi-agent architecture. MARCO employs separate agents for code generation and performance evaluation, connected by a feedback loop that progressively refines optimizations. A key innovation is MARCO's web-search component that retrieves real-time optimization techniques from recent conference proceedings and research publications, bridging the knowledge gap in pre-trained LLMs. Our extensive evaluation on the LeetCode 75 problem set demonstrates that MARCO achieves a 14.6\% average runtime reduction compared to Claude 3.5 Sonnet alone, while the integration of the web-search component yields a 30.9\% performance improvement over the base MARCO system. These results highlight the potential of multi-agent systems to address the specialized requirements of high-performance code generation, offering a cost-effective alternative to domain-specific model fine-tuning.
comment: 9 pages, 4 figures, 2 tables
♻ ☆ Physics-informed Imitative Reinforcement Learning for Real-world Driving
Recent advances in imitative reinforcement learning (IRL) have considerably enhanced the ability of autonomous agents to assimilate expert demonstrations, leading to rapid skill acquisition in a range of demanding tasks. However, such learning-based agents face significant challenges when transferring knowledge to highly dynamic closed-loop environments. Their performance is significantly impacted by the conflicting optimization objectives of imitation learning (IL) and reinforcement learning (RL), sample inefficiency, and the complexity of uncovering the hidden world model and physics. To address this challenge, we propose a physics-informed IRL that is entirely data-driven. It leverages both expert demonstration data and exploratory data with a joint optimization objective, allowing the underlying physical principles of vehicle dynamics to emerge naturally from the training process. The performance is evaluated through empirical experiments and results exceed popular IL, RL and IRL algorithms in closed-loop settings on Waymax benchmark. Our approach exhibits 37.8% reduction in collision rate and 22.2% reduction in off-road rate compared to the baseline method.
♻ ☆ Image Super-Resolution with Guarantees via Conformalized Generative Models
The increasing use of generative ML foundation models for image restoration tasks such as super-resolution calls for robust and interpretable uncertainty quantification methods. We address this need by presenting a novel approach based on conformal prediction techniques to create a 'confidence mask' capable of reliably and intuitively communicating where the generated image can be trusted. Our method is adaptable to any black-box generative model, including those locked behind an opaque API, requires only easily attainable data for calibration, and is highly customizable via the choice of a local image similarity metric. We prove strong theoretical guarantees for our method that span fidelity error control (according to our local image similarity metric), reconstruction quality, and robustness in the face of data leakage. Finally, we empirically evaluate these results and establish our method's solid performance.
comment: 17 pages, 7 figures
♻ ☆ No Free Lunch: Rethinking Internal Feedback for LLM Reasoning
Reinforcement learning has emerged as a powerful paradigm for post-training large language models (LLMs) to improve reasoning. Approaches like Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) have shown strong results, but they require extensive external supervision. We investigate an alternative class of methods, Reinforcement Learning from Internal Feedback (RLIF), which relies solely on intrinsic model-derived signals instead of external rewards. In particular, we leverage unsupervised reward proxies such as token-level entropy, trajectory-level entropy, and self-certainty. Our theoretical analysis shows these internal objectives are partially equivalent, and we empirically evaluate various RLIF strategies on challenging math reasoning benchmarks. Experimental results demonstrate that RLIF can boost the reasoning performance of base LLMs at the beginning phase of the training, matching or surpassing RLVR techniques on these tasks. However, when training progresses, performance degrades even below the model before training. Moreover, we find that RLIF yields little improvement for instruction-tuned models, indicating diminishing returns of intrinsic feedback once an LLM is already instruction-tuned. We further analyze this limitation by mixing model weights and explain the reason of RLIF's training behaviors, providing practical guidelines for integrating internal feedback signals into LLM training. We hope our analysis of internal feedback will inform more principled and effective strategies for LLM post-training.
♻ ☆ Variational quantum regression algorithm with encoded data structure
Hybrid variational quantum algorithms (VQAs) are promising for solving practical problems such as combinatorial optimization, quantum chemistry simulation, quantum machine learning, and quantum error correction on noisy quantum computers. However, with typical random ansatz or quantum alternating operator ansatz, derived variational quantum algorithms become a black box that cannot be trusted for model interpretation, not to mention deploying as applications in informing critical decisions: the results of these variational parameters are just rotational angles for the quantum gates and have nothing to do with interpretable values that a model can provide directly. In this paper, we construct the first interpretable quantum regression algorithm, in which the quantum state exactly encodes the classical data table and the variational parameters correspond directly to the regression coefficients, which are real numbers by construction, providing a high degree of model interpretability and minimal cost to optimize due to the right expressiveness. We also take advantage of the encoded data structure to reduce the time complexity of computing the regression map. To shorten the circuit depth for nonlinear regression, our algorithm can be extended by building nonlinear features by classical preprocessing as the independent encoded column vectors. Even though the realization of compressed encoding in superconducting qubits has been achieved by the less noisy compressed encoding recently by the authors, we envision potential quantum utilities with multi-qubit gates implemented in neutral cold atoms and ions.
♻ ☆ WyckoffDiff -- A Generative Diffusion Model for Crystal Symmetry ICML 2025
Crystalline materials often exhibit a high level of symmetry. However, most generative models do not account for symmetry, but rather model each atom without any constraints on its position or element. We propose a generative model, Wyckoff Diffusion (WyckoffDiff), which generates symmetry-based descriptions of crystals. This is enabled by considering a crystal structure representation that encodes all symmetry, and we design a novel neural network architecture which enables using this representation inside a discrete generative model framework. In addition to respecting symmetry by construction, the discrete nature of our model enables fast generation. We additionally present a new metric, Fr\'echet Wrenformer Distance, which captures the symmetry aspects of the materials generated, and we benchmark WyckoffDiff against recently proposed generative models for crystal generation. As a proof-of-concept study, we use WyckoffDiff to find new materials below the convex hull of thermodynamical stability.
comment: Accepted to ICML 2025, to appear in PMLR 267. Code is available online at https://github.com/httk/wyckoffdiff
♻ ☆ Chemical knowledge-informed framework for privacy-aware retrosynthesis learning
Chemical reaction data is a pivotal asset, driving advances in competitive fields such as pharmaceuticals, materials science, and industrial chemistry. Its proprietary nature renders it sensitive, as it often includes confidential insights and competitive advantages organizations strive to protect. However, in contrast to this need for confidentiality, the current standard training paradigm for machine learning-based retrosynthesis gathers reaction data from multiple sources into one single edge to train prediction models. This paradigm poses considerable privacy risks as it necessitates broad data availability across organizational boundaries and frequent data transmission between entities, potentially exposing proprietary information to unauthorized access or interception during storage and transfer. In the present study, we introduce the chemical knowledge-informed framework (CKIF), a privacy-preserving approach for learning retrosynthesis models. CKIF enables distributed training across multiple chemical organizations without compromising the confidentiality of proprietary reaction data. Instead of gathering raw reaction data, CKIF learns retrosynthesis models through iterative, chemical knowledge-informed aggregation of model parameters. In particular, the chemical properties of predicted reactants are leveraged to quantitatively assess the observable behaviors of individual models, which in turn determines the adaptive weights used for model aggregation. On a variety of reaction datasets, CKIF outperforms several strong baselines by a clear margin.
♻ ☆ A Survey on Explainable Reinforcement Learning: Concepts, Algorithms, Challenges
Reinforcement Learning (RL) is a popular machine learning paradigm where intelligent agents interact with the environment to fulfill a long-term goal. Driven by the resurgence of deep learning, Deep RL (DRL) has witnessed great success over a wide spectrum of complex control tasks. Despite the encouraging results achieved, the deep neural network-based backbone is widely deemed as a black box that impedes practitioners to trust and employ trained agents in realistic scenarios where high security and reliability are essential. To alleviate this issue, a large volume of literature devoted to shedding light on the inner workings of the intelligent agents has been proposed, by constructing intrinsic interpretability or post-hoc explainability. In this survey, we provide a comprehensive review of existing works on eXplainable RL (XRL) and introduce a new taxonomy where prior works are clearly categorized into model-explaining, reward-explaining, state-explaining, and task-explaining methods. We also review and highlight RL methods that conversely leverage human knowledge to promote learning efficiency and performance of agents while this kind of method is often ignored in XRL field. Some challenges and opportunities in XRL are discussed. This survey intends to provide a high-level summarization of XRL and to motivate future research on more effective XRL solutions. Corresponding open source codes are collected and categorized at https://github.com/Plankson/awesome-explainable-reinforcement-learning.
♻ ☆ It's not you, it's me -- Global urban visual perception varies across demographics and personalities
Understanding people's preferences and needs is crucial for urban planning decisions, yet current approaches often combine them from multi-cultural and multi-city populations, obscuring important demographic differences and risking amplifying biases. We conducted a large-scale urban visual perception survey of streetscapes worldwide using street view imagery, examining how demographics -- including gender, age, income, education, race and ethnicity, and, for the first time, personality traits -- shape perceptions among 1,000 participants, with balanced demographics, from five countries and 45 nationalities. This dataset, introduced as Street Perception Evaluation Considering Socioeconomics (SPECS), exhibits statistically significant differences in perception scores in six traditionally used indicators (safe, lively, wealthy, beautiful, boring, and depressing) and four new ones we propose (live nearby, walk, cycle, green) among demographics and personalities. We revealed that location-based sentiments are carried over in people's preferences when comparing urban streetscapes with other cities. Further, we compared the perception scores based on where participants and streetscapes are from. We found that an off-the-shelf machine learning model trained on an existing global perception dataset tends to overestimate positive indicators and underestimate negative ones compared to human responses, suggesting that targeted intervention should consider locals' perception. Our study aspires to rectify the myopic treatment of street perception, which rarely considers demographics or personality traits.
comment: Under review
♻ ☆ Representation Learning with Parameterised Quantum Circuits for Advancing Speech Emotion Recognition
Quantum machine learning (QML) offers a promising avenue for advancing representation learning in complex signal domains. In this study, we investigate the use of parameterised quantum circuits (PQCs) for speech emotion recognition (SER) a challenging task due to the subtle temporal variations and overlapping affective states in vocal signals. We propose a hybrid quantum classical architecture that integrates PQCs into a conventional convolutional neural network (CNN), leveraging quantum properties such as superposition and entanglement to enrich emotional feature representations. Experimental evaluations on three benchmark datasets IEMOCAP, RECOLA, and MSP-IMPROV demonstrate that our hybrid model achieves improved classification performance relative to a purely classical CNN baseline, with over 50% reduction in trainable parameters. This work provides early evidence of the potential for QML to enhance emotion recognition and lays the foundation for future quantum-enabled affective computing systems.
♻ ☆ Confucius3-Math: A Lightweight High-Performance Reasoning LLM for Chinese K-12 Mathematics Learning
We introduce Confucius3-Math, an open-source large language model with 14B parameters that (1) runs efficiently on a single consumer-grade GPU; (2) achieves SOTA performances on a range of mathematical reasoning tasks, outperforming many models with significantly larger sizes. In particular, as part of our mission to enhancing education and knowledge dissemination with AI, Confucius3-Math is specifically committed to mathematics learning for Chinese K-12 students and educators. Built via post-training with large-scale reinforcement learning (RL), Confucius3-Math aligns with national curriculum and excels at solving main-stream Chinese K-12 mathematical problems with low cost. In this report we share our development recipe, the challenges we encounter and the techniques we develop to overcome them. In particular, we introduce three technical innovations: Targeted Entropy Regularization, Recent Sample Recovery and Policy-Specific Hardness Weighting. These innovations encompass a new entropy regularization, a novel data scheduling policy, and an improved group-relative advantage estimator. Collectively, they significantly stabilize the RL training, improve data efficiency, and boost performance. Our work demonstrates the feasibility of building strong reasoning models in a particular domain at low cost. We open-source our model and code at https://github.com/netease-youdao/Confucius3-Math.
♻ ☆ BINDy -- Bayesian identification of nonlinear dynamics with reversible-jump Markov-chain Monte-Carlo
Model parsimony is an important \emph{cognitive bias} in data-driven modelling that aids interpretability and helps to prevent over-fitting. Sparse identification of nonlinear dynamics (SINDy) methods are able to learn sparse representations of complex dynamics directly from data, given a basis of library functions. In this work, a novel Bayesian treatment of dictionary learning system identification, as an alternative to SINDy, is envisaged. The proposed method -- Bayesian identification of nonlinear dynamics (BINDy) -- is distinct from previous approaches in that it targets the full joint posterior distribution over both the terms in the library and their parameterisation in the model. This formulation confers the advantage that an arbitrary prior may be placed over the model structure to produce models that are sparse in the model space rather than in parameter space. Because this posterior is defined over parameter vectors that can change in dimension, the inference cannot be performed by standard techniques. Instead, a Gibbs sampler based on reversible-jump Markov-chain Monte-Carlo is proposed. BINDy is shown to compare favourably to ensemble SINDy in three benchmark case-studies. In particular, it is seen that the proposed method is better able to assign high probability to correct model terms.
♻ ☆ Bilinear MLPs enable weight-based mechanistic interpretability ICLR'25
A mechanistic understanding of how MLPs do computation in deep neural networks remains elusive. Current interpretability work can extract features from hidden activations over an input dataset but generally cannot explain how MLP weights construct features. One challenge is that element-wise nonlinearities introduce higher-order interactions and make it difficult to trace computations through the MLP layer. In this paper, we analyze bilinear MLPs, a type of Gated Linear Unit (GLU) without any element-wise nonlinearity that nevertheless achieves competitive performance. Bilinear MLPs can be fully expressed in terms of linear operations using a third-order tensor, allowing flexible analysis of the weights. Analyzing the spectra of bilinear MLP weights using eigendecomposition reveals interpretable low-rank structure across toy tasks, image classification, and language modeling. We use this understanding to craft adversarial examples, uncover overfitting, and identify small language model circuits directly from the weights alone. Our results demonstrate that bilinear layers serve as an interpretable drop-in replacement for current activation functions and that weight-based interpretability is viable for understanding deep-learning models.
comment: Accepted to ICLR'25
♻ ☆ Graph-Assisted Stitching for Offline Hierarchical Reinforcement Learning ICML 2025
Existing offline hierarchical reinforcement learning methods rely on high-level policy learning to generate subgoal sequences. However, their efficiency degrades as task horizons increase, and they lack effective strategies for stitching useful state transitions across different trajectories. We propose Graph-Assisted Stitching (GAS), a novel framework that formulates subgoal selection as a graph search problem rather than learning an explicit high-level policy. By embedding states into a Temporal Distance Representation (TDR) space, GAS clusters semantically similar states from different trajectories into unified graph nodes, enabling efficient transition stitching. A shortest-path algorithm is then applied to select subgoal sequences within the graph, while a low-level policy learns to reach the subgoals. To improve graph quality, we introduce the Temporal Efficiency (TE) metric, which filters out noisy or inefficient transition states, significantly enhancing task performance. GAS outperforms prior offline HRL methods across locomotion, navigation, and manipulation tasks. Notably, in the most stitching-critical task, it achieves a score of 88.3, dramatically surpassing the previous state-of-the-art score of 1.0. Our source code is available at: https://github.com/qortmdgh4141/GAS.
comment: ICML 2025
♻ ☆ Provably Improving Generalization of Few-Shot Models with Synthetic Data ICML 2025
Few-shot image classification remains challenging due to the scarcity of labeled training examples. Augmenting them with synthetic data has emerged as a promising way to alleviate this issue, but models trained on synthetic samples often face performance degradation due to the inherent gap between real and synthetic distributions. To address this limitation, we develop a theoretical framework that quantifies the impact of such distribution discrepancies on supervised learning, specifically in the context of image classification. More importantly, our framework suggests practical ways to generate good synthetic samples and to train a predictor with high generalization ability. Building upon this framework, we propose a novel theoretical-based algorithm that integrates prototype learning to optimize both data partitioning and model training, effectively bridging the gap between real few-shot data and synthetic data. Extensive experiments results show that our approach demonstrates superior performance compared to state-of-the-art methods, outperforming them across multiple datasets.
comment: ICML 2025. Our code is released at https://github.com/Fsoft-AIC/ProtoAug
♻ ☆ Flexible Infinite-Width Graph Convolutional Neural Networks
A common theoretical approach to understanding neural networks is to take an infinite-width limit, at which point the outputs become Gaussian process (GP) distributed. This is known as a neural network Gaussian process (NNGP). However, the NNGP kernel is fixed and tunable only through a small number of hyperparameters, thus eliminating the possibility of representation learning. This contrasts with finite-width NNs, which are often believed to perform well because they are able to flexibly learn representations for the task at hand. Thus, in simplifying NNs to make them theoretically tractable, NNGPs may eliminate precisely what makes them work well (representation learning). This motivated us to understand whether representation learning is necessary in a range of graph tasks. We develop a precise tool for this task, the graph convolutional deep kernel machine. This is very similar to an NNGP, in that it is an infinite width limit and uses kernels, but comes with a ``knob'' to control the amount of flexibility and hence representation learning. We found that representation learning gives noticeable performance improvements for heterophilous node classification tasks, but less so for homophilous node classification tasks.
comment: Major revision. Title and abstract updated. Added new analysis section on linear models and additional datasets. Paper accepted to TMLR
♻ ☆ Efficient uniform approximation using Random Vector Functional Link networks
A Random Vector Functional Link (RVFL) network is a depth-2 neural network with random inner weights and biases. Only the outer weights of such an architecture are to be learned, so the learning process boils down to a linear optimization task, allowing one to sidestep the pitfalls of nonconvex optimization problems. In this paper, we prove that an RVFL with ReLU activation functions can approximate Lipschitz continuous functions in $L_\infty$ norm. To the best of our knowledge, our result is the first approximation result in $L_\infty$ norm using nice inner weights; namely, Gaussians. We give a nonasymptotic lower bound for the number of hidden-layer nodes to achieve a given accuracy with high probability, depending on, among other things, the Lipschitz constant of the target function, the desired accuracy, and the input dimension. Our method of proof is rooted in probability theory and harmonic analysis.
comment: 21 pages, 0 figures, corrected version of the paper that appeared in the 2023 14th International conference on Sampling Theory and Applications (SampTA)
♻ ☆ Solving Linear-Gaussian Bayesian Inverse Problems with Decoupled Diffusion Sequential Monte Carlo ICML 2025
A recent line of research has exploited pre-trained generative diffusion models as priors for solving Bayesian inverse problems. We contribute to this research direction by designing a sequential Monte Carlo method for linear-Gaussian inverse problems which builds on "decoupled diffusion", where the generative process is designed such that larger updates to the sample are possible. The method is asymptotically exact and we demonstrate the effectiveness of our Decoupled Diffusion Sequential Monte Carlo (DDSMC) algorithm on both synthetic as well as protein and image data. Further, we demonstrate how the approach can be extended to discrete data.
comment: Accepted to ICML 2025, to appear in PMLR 267. Code available at https://github.com/filipekstrm/ddsmc
♻ ☆ Beyond Topological Self-Explainable GNNs: A Formal Explainability Perspective
Self-Explainable Graph Neural Networks (SE-GNNs) are popular explainable-by-design GNNs, but their explanations' properties and limitations are not well understood. Our first contribution fills this gap by formalizing the explanations extracted by some popular SE-GNNs, referred to as Minimal Explanations (MEs), and comparing them to established notions of explanations, namely Prime Implicant (PI) and faithful explanations. Our analysis reveals that MEs match PI explanations for a restricted but significant family of tasks. In general, however, they can be less informative than PI explanations and are surprisingly misaligned with widely accepted notions of faithfulness. Although faithful and PI explanations are informative, they are intractable to find and we show that they can be prohibitively large. Given these observations, a natural choice is to augment SE-GNNs with alternative modalities of explanations taking care of SE-GNNs' limitations. To this end, we propose Dual-Channel GNNs that integrate a white-box rule extractor and a standard SE-GNN, adaptively combining both channels. Our experiments show that even a simple instantiation of Dual-Channel GNNs can recover succinct rules and perform on par or better than widely used SE-GNNs.
♻ ☆ 3D variational autoencoder for fingerprinting microstructure volume elements
Microstructure quantification is an important step towards establishing structure-property relationships in materials. Machine learning-based image processing methods have been shown to outperform conventional image processing techniques and are increasingly applied to microstructure quantification tasks. In this work, we present a 3D variational autoencoder (VAE) for encoding microstructure volume elements (VEs) comprising voxelated crystallographic orientation data. Crystal symmetries in the orientation space are accounted for by mapping to the crystallographic fundamental zone as a preprocessing step, which allows for a continuous loss function to be used and improves the training convergence rate. The VAE is then used to encode a training set of VEs with an equiaxed polycrystalline microstructure with random texture. Accurate reconstructions are achieved with a relative average misorientation error of 3x10^-2 on the test dataset, for a continuous latent space with dimension 256. We show that the model generalises well to microstructures with textures, grain sizes and aspect ratios outside the training distribution. Structure-property relationships are explored through using the training set of VEs as initial configurations in various crystal plasticity (CP) simulations. Microstructural fingerprints extracted from the VAE, which parameterise the VEs in a low-dimensional latent space, are stored alongside the volume-averaged stress response, at each strain increment, to uniaxial tensile deformation from CP simulations. This is then used to train a fully connected neural network mapping the input fingerprint to the resulting stress response, which acts as a surrogate model for the CP simulation. The fingerprint-based surrogate model is shown to accurately predict the microstructural dependence in the CP stress response, with a relative mean-squared error of 2.75 MPa on unseen test data.
comment: 28 pages, 11 figures
♻ ☆ Fine-tuning machine-learned particle-flow reconstruction for new detector geometries in future colliders
We demonstrate transfer learning capabilities in a machine-learned algorithm trained for particle-flow reconstruction in high energy particle colliders. This paper presents a cross-detector fine-tuning study, where we initially pretrain the model on a large full simulation dataset from one detector design, and subsequently fine-tune the model on a sample with a different collider and detector design. Specifically, we use the Compact Linear Collider detector (CLICdet) model for the initial training set and demonstrate successful knowledge transfer to the CLIC-like detector (CLD) proposed for the Future Circular Collider in electron-positron mode. We show that with an order of magnitude less samples from the second dataset, we can achieve the same performance as a costly training from scratch, across particle-level and event-level performance metrics, including jet and missing transverse momentum resolution. Furthermore, we find that the fine-tuned model achieves comparable performance to the traditional rule-based particle-flow approach on event-level metrics after training on 100,000 CLD events, whereas a model trained from scratch requires at least 1 million CLD events to achieve similar reconstruction performance. To our knowledge, this represents the first full-simulation cross-detector transfer learning study for particle-flow reconstruction. These findings offer valuable insights towards building large foundation models that can be fine-tuned across different detector designs and geometries, helping to accelerate the development cycle for new detectors and opening the door to rapid detector design and optimization using machine learning.
comment: 20 pages, 13 figures
♻ ☆ Dual-Channel Multiplex Graph Neural Networks for Recommendation
Effective recommender systems play a crucial role in accurately capturing user and item attributes that mirror individual preferences. Some existing recommendation techniques have started to shift their focus towards modeling various types of interactive relations between users and items in real-world recommendation scenarios, such as clicks, marking favorites, and purchases on online shopping platforms. Nevertheless, these approaches still grapple with two significant challenges: (1) Insufficient modeling and exploitation of the impact of various behavior patterns formed by multiplex relations between users and items on representation learning, and (2) ignoring the effect of different relations within behavior patterns on the target relation in recommender system scenarios. In this work, we introduce a novel recommendation framework, Dual-Channel Multiplex Graph Neural Network (DCMGNN), which addresses the aforementioned challenges. It incorporates an explicit behavior pattern representation learner to capture the behavior patterns composed of multiplex user-item interactive relations, and includes a relation chain representation learner and a relation chain-aware encoder to discover the impact of various auxiliary relations on the target relation, the dependencies between different relations, and mine the appropriate order of relations in a behavior pattern. Extensive experiments on three real-world datasets demonstrate that our DCMGNN surpasses various state-of-the-art recommendation methods. It outperforms the best baselines by 10.06% and 12.15% on average across all datasets in terms of Recall@10 and NDCG@10, respectively.
♻ ☆ Gradient-Free Sequential Bayesian Experimental Design via Interacting Particle Systems
We introduce a gradient-free framework for Bayesian Optimal Experimental Design (BOED) in sequential settings, aimed at complex systems where gradient information is unavailable. Our method combines Ensemble Kalman Inversion (EKI) for design optimization with the Affine-Invariant Langevin Dynamics (ALDI) sampler for efficient posterior sampling-both of which are derivative-free and ensemble-based. To address the computational challenges posed by nested expectations in BOED, we propose variational Gaussian and parametrized Laplace approximations that provide tractable upper and lower bounds on the Expected Information Gain (EIG). These approximations enable scalable utility estimation in high-dimensional spaces and PDE-constrained inverse problems. We demonstrate the performance of our framework through numerical experiments ranging from linear Gaussian models to PDE-based inference tasks, highlighting the method's robustness, accuracy, and efficiency in information-driven experimental design.
♻ ☆ SLEEPING-DISCO 9M: A large-scale pre-training dataset for generative music modeling
We present Sleeping-DISCO 9M, a large-scale pre-training dataset for music and song. To the best of our knowledge, there are no open-source high-quality dataset representing popular and well-known songs for generative music modeling tasks such as text-music, music-captioning, singing-voice synthesis, melody reconstruction and cross-model retrieval. Past contributions focused on isolated and constrained factors whose core perspective was to create synthetic or re-recorded music corpus (e.g. GTSinger, M4Singer) and arbitrarily large-scale audio datasets (e.g. DISCO-10M and LAIONDISCO-12M) had been another focus for the community. Unfortunately, adoption of these datasets has been below substantial in the generative music community as these datasets fail to reflect real-world music and its flavour. Our dataset changes this narrative and provides a dataset that is constructed using actual popular music and world-renowned artists.
♻ ☆ Supporting renewable energy planning and operation with data-driven high-resolution ensemble weather forecast
The planning and operation of renewable energy, especially wind power, depend crucially on accurate, timely, and high-resolution weather information. Coarse-grid global numerical weather forecasts are typically downscaled to meet these requirements, introducing challenges of scale inconsistency, process representation error, computation cost, and entanglement of distinct uncertainty sources from chaoticity, model bias, and large-scale forcing. We address these challenges by learning the climatological distribution of a target wind farm using its high-resolution numerical weather simulations. An optimal combination of this learned high-resolution climatological prior with coarse-grid large scale forecasts yields highly accurate, fine-grained, full-variable, large ensemble of weather pattern forecasts. Using observed meteorological records and wind turbine power outputs as references, the proposed methodology verifies advantageously compared to existing numerical/statistical forecasting-downscaling pipelines, regarding either deterministic/probabilistic skills or economic gains. Moreover, a 100-member, 10-day forecast with spatial resolution of 1 km and output frequency of 15 min takes < 1 hour on a moderate-end GPU, as contrast to $\mathcal{O}(10^3)$ CPU hours for conventional numerical simulation. By drastically reducing computational costs while maintaining accuracy, our method paves the way for more efficient and reliable renewable energy planning and operation.
♻ ☆ MS-TVNet:A Long-Term Time Series Prediction Method Based on Multi-Scale Dynamic Convolution
Long-term time series prediction has predominantly relied on Transformer and MLP models, while the potential of convolutional networks in this domain remains underexplored. To address this gap, we introduce a novel multi-scale time series reshape module, which effectively captures the relationships among multi-period patches and variable dependencies. Building upon this module, we propose MS-TVNet, a multi-scale 3D dynamic convolutional neural network. Through comprehensive evaluations on diverse datasets, MS-TVNet demonstrates superior performance compared to baseline models, achieving state-of-the-art (SOTA) results in long-term time series prediction. Our findings highlight the effectiveness of leveraging convolutional networks for capturing complex temporal patterns, suggesting a promising direction for future research in this field.The code is realsed on https://github.com/Curyyfaust/TVNet.
♻ ☆ Curved representational Bregman divergences and their applications
By analogy to curved exponential families in statistics, we define curved Bregman divergences as Bregman divergences restricted to nonlinear parameter subspaces. We show that the barycenter of a finite weighted set of parameters under a curved Bregman divergence amounts to the right Bregman projection onto the nonlinear subspace of the barycenter with respect to the full Bregman divergence. We demonstrate the significance of curved Bregman divergences with two examples: (1) symmetrized Bregman divergences and (2) the Kullback-Leibler divergence between circular complex normal distributions. We then consider monotonic embeddings to define representational curved Bregman divergences and show that the $\alpha$-divergences are representational curved Bregman divergences with respect to $\alpha$-embeddings of the probability simplex into the positive measure cone. As an application, we report an efficient method to calculate the intersection of a finite set of $\alpha$-divergence spheres.
comment: 12 pages, 5 figures
♻ ☆ IKDiffuser: A Generative Inverse Kinematics Solver for Multi-arm Robots via Diffusion Model
Solving Inverse Kinematics (IK) problems is fundamental to robotics, but has primarily been successful with single serial manipulators. For multi-arm robotic systems, IK remains challenging due to complex self-collisions, coupled joints, and high-dimensional redundancy. These complexities make traditional IK solvers slow, prone to failure, and lacking in solution diversity. In this paper, we present IKDiffuser, a diffusion-based model designed for fast and diverse IK solution generation for multi-arm robotic systems. IKDiffuser learns the joint distribution over the configuration space, capturing complex dependencies and enabling seamless generalization to multi-arm robotic systems of different structures. In addition, IKDiffuser can incorporate additional objectives during inference without retraining, offering versatility and adaptability for task-specific requirements. In experiments on 6 different multi-arm systems, the proposed IKDiffuser achieves superior solution accuracy, precision, diversity, and computational efficiency compared to existing solvers. The proposed IKDiffuser framework offers a scalable, unified approach to solving multi-arm IK problems, facilitating the potential of multi-arm robotic systems in real-time manipulation tasks.
comment: under review
♻ ☆ Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes
Active learning methods aim to improve sample complexity in machine learning. In this work, we investigate an active learning scheme via a novel gradient-free cutting-plane training method for ReLU networks of arbitrary depth and develop a convergence theory. We demonstrate, for the first time, that cutting-plane algorithms, traditionally used in linear models, can be extended to deep neural networks despite their nonconvexity and nonlinear decision boundaries. Moreover, this training method induces the first deep active learning scheme known to achieve convergence guarantees, revealing a geometric contraction rate of the feasible set. We exemplify the effectiveness of our proposed active learning method against popular deep active learning baselines via both synthetic data experiments and sentimental classification task on real datasets.
♻ ☆ Rewarding Graph Reasoning Process makes LLMs more Generalized Reasoners KDD 2025
Despite significant advancements in Large Language Models (LLMs), developing advanced reasoning capabilities in LLMs remains a key challenge. Process Reward Models (PRMs) have demonstrated exceptional promise in enhancing reasoning by providing step-wise feedback, particularly in the context of mathematical reasoning. However, their application to broader reasoning domains remains understudied, largely due to the high costs associated with manually creating step-level supervision. In this work, we explore the potential of PRMs in graph reasoning problems - a domain that demands sophisticated multi-step reasoning and offers opportunities for automated step-level data generation using established graph algorithms. We introduce GraphSILO, the largest dataset for graph reasoning problems with fine-grained step-wise labels, built using automated Task-oriented Trajectories and Monte Carlo Tree Search (MCTS) to generate detailed reasoning steps with step-wise labels. Building upon this dataset, we train GraphPRM, the first PRM designed for graph reasoning problems, and evaluate its effectiveness in two key settings: inference-time scaling and reinforcement learning via Direct Preference Optimization (DPO). Experimental results show that GraphPRM significantly improves LLM performance across 13 graph reasoning tasks, delivering a 9% gain for Qwen2.5-7B and demonstrating transferability to new graph reasoning datasets and new reasoning domains like mathematical problem-solving. Notably, GraphPRM enhances LLM performance on GSM8K and Math500, underscoring the cross-domain applicability of graph-based reasoning rewards. Our findings highlight the potential of PRMs in advancing reasoning across diverse domains, paving the way for more versatile and effective LLMs.
comment: Accepted to KDD 2025 Research Track
♻ ☆ Counterfactual Fairness through Transforming Data Orthogonal to Bias
Machine learning models have shown exceptional prowess in solving complex issues across various domains. However, these models can sometimes exhibit biased decision-making, resulting in unequal treatment of different groups. Despite substantial research on counterfactual fairness, methods to reduce the impact of multivariate and continuous sensitive variables on decision-making outcomes are still underdeveloped. We propose a novel data pre-processing algorithm, Orthogonal to Bias (OB), which is designed to eliminate the influence of a group of continuous sensitive variables, thus promoting counterfactual fairness in machine learning applications. Our approach, based on the assumption of a jointly normal distribution within a structural causal model (SCM), demonstrates that counterfactual fairness can be achieved by ensuring the data is orthogonal to the observed sensitive variables. The OB algorithm is model-agnostic, making it applicable to a wide range of machine learning models and tasks. Additionally, it includes a sparse variant to improve numerical stability through regularization. Empirical evaluations on both simulated and real-world datasets, encompassing settings with both discrete and continuous sensitive variables, show that our methodology effectively promotes fairer outcomes without compromising accuracy.
♻ ☆ TSPulse: Dual Space Tiny Pre-Trained Models for Rapid Time-Series Analysis
The rise of time-series pre-trained models has advanced temporal representation learning, but current state-of-the-art models are often large-scale, requiring substantial compute. We introduce TSPulse, ultra-compact time-series pre-trained models with only 1M parameters, specialized to perform strongly across classification, anomaly detection, imputation, and retrieval tasks. TSPulse introduces innovations at both the architecture and task levels. At the architecture level, it employs a dual-space masked reconstruction, learning from both time and frequency domains to capture complementary signals. This is further enhanced by a dual-embedding disentanglement, generating both detailed embeddings for fine-grained analysis and high-level semantic embeddings for broader task understanding. Notably, TSPulse's semantic embeddings are robust to shifts in time, magnitude, and noise, which is important for robust retrieval. At the task level, TSPulse incorporates TSLens, a fine-tuning component enabling task-specific feature attention. It also introduces a multi-head triangulation technique that correlates deviations from multiple prediction heads, enhancing anomaly detection by fusing complementary model outputs. Additionally, a hybrid mask pretraining is proposed to improves zero-shot imputation by reducing pre-training bias. These architecture and task innovations collectively contribute to TSPulse's significant performance gains: 5-16% on the UEA classification benchmarks, +20% on the TSB-AD anomaly detection leaderboard, +50% in zero-shot imputation, and +25% in time-series retrieval. Remarkably, these results are achieved with just 1M parameters (10-100X smaller than existing SOTA models) and allow GPU-free inference, setting a new standard for efficient time-series pre-trained models. The models can be accessed from https://huggingface.co/ibm-granite/granite-timeseries-tspulse-r1
♻ ☆ Log-Linear Attention
The attention mechanism in Transformers is an important primitive for accurate and scalable sequence modeling. Its quadratic-compute and linear-memory complexity however remain significant bottlenecks. Linear attention and state-space models enable linear-time, constant-memory sequence modeling and can moreover be trained efficiently through matmul-rich parallelization across sequence length. However, at their core these models are still RNNs, and thus their use of a fixed-size hidden state to model the context is a fundamental limitation. This paper develops log-linear attention, an attention mechanism that balances linear attention's efficiency and the expressiveness of softmax attention. Log-linear attention replaces the fixed-size hidden state with a logarithmically growing set of hidden states. We show that with a particular growth function, log-linear attention admits a similarly matmul-rich parallel form whose compute cost is log-linear in sequence length. Log-linear attention is a general framework and can be applied on top of existing linear attention variants. As case studies, we instantiate log-linear variants of two recent architectures -- Mamba-2 and Gated DeltaNet -- and find they perform well compared to their linear-time variants.
♻ ☆ Evaluating Generalization and Representation Stability in Small LMs via Prompting, Fine-Tuning and Out-of-Distribution Prompts ICML
We investigate the generalization capabilities of small language models under two popular adaptation paradigms: few-shot prompting and supervised fine-tuning. While prompting is often favored for its parameter efficiency and flexibility, it remains unclear how robust this approach is in low-resource settings and under distributional shifts. This paper presents a comparative study of prompting and fine-tuning across task formats, prompt styles, and model scales, with a focus on their behavior in both in-distribution and out-of-distribution (OOD) settings. Beyond accuracy, we analyze the internal representations learned by each approach to assess the stability and abstraction of task-specific features. Our findings highlight critical differences in how small models internalize and generalize knowledge under different adaptation strategies. This work offers practical guidance for model selection in low-data regimes and contributes empirical insight into the ongoing debate over prompting versus fine-tuning. Code for the experiments is available at the following
comment: Accepted at ICML
♻ ☆ What Matters in LLM-generated Data: Diversity and Its Effect on Model Fine-Tuning
With the remarkable generative capabilities of large language models (LLMs), using LLM-generated data to train downstream models has emerged as a promising approach to mitigate data scarcity in specific domains and reduce time-consuming annotations. However, recent studies have highlighted a critical issue: iterative training on self-generated data results in model collapse, where model performance degrades over time. Despite extensive research on the implications of LLM-generated data, these works often neglect the importance of data diversity, a key factor in data quality. In this work, we aim to understand the implications of the diversity of LLM-generated data on downstream model performance. Specifically, we explore how varying levels of diversity in LLM-generated data affect downstream model performance. Additionally, we investigate the performance of models trained on data that mixes different proportions of LLM-generated data, which we refer to as synthetic data. Our experimental results show that, with minimal distribution shift, moderately diverse LLM-generated data can enhance model performance in scenarios with insufficient labeled data, whereas highly diverse generated data has a negative impact. We hope our empirical findings will offer valuable guidance for future studies on LLMs as data generators.
comment: Ongoing work
♻ ☆ BeltCrack: the First Sequential-image Industrial Conveyor Belt Crack Detection Dataset and Its Baseline with Triple-domain Feature Learning
Conveyor belts are important equipment in modern industry, widely applied in production and manufacturing. Their health is much critical to operational efficiency and safety. Cracks are a major threat to belt health. Currently, considering safety, how to intelligently detect belt cracks is catching an increasing attention. To implement the intelligent detection with machine learning, real crack samples are believed to be necessary. However, existing crack datasets primarily focus on pavement scenarios or synthetic data, no real-world industrial belt crack datasets at all. Cracks are a major threat to belt health. Furthermore, to validate usability and effectiveness, we propose a special baseline method with triple-domain ($i.e.$, time-space-frequency) feature hierarchical fusion learning for the two whole-new datasets. Experimental results demonstrate the availability and effectiveness of our dataset. Besides, they also show that our baseline is obviously superior to other similar detection methods. Our datasets and source codes are available at https://github.com/UESTC-nnLab/BeltCrack.
comment: 14 pages, 10 figures
♻ ☆ Fine-Grained Perturbation Guidance via Attention Head Selection
Recent guidance methods in diffusion models steer reverse sampling by perturbing the model to construct an implicit weak model and guide generation away from it. Among these approaches, attention perturbation has demonstrated strong empirical performance in unconditional scenarios where classifier-free guidance is not applicable. However, existing attention perturbation methods lack principled approaches for determining where perturbations should be applied, particularly in Diffusion Transformer (DiT) architectures where quality-relevant computations are distributed across layers. In this paper, we investigate the granularity of attention perturbations, ranging from the layer level down to individual attention heads, and discover that specific heads govern distinct visual concepts such as structure, style, and texture quality. Building on this insight, we propose "HeadHunter", a systematic framework for iteratively selecting attention heads that align with user-centric objectives, enabling fine-grained control over generation quality and visual attributes. In addition, we introduce SoftPAG, which linearly interpolates each selected head's attention map toward an identity matrix, providing a continuous knob to tune perturbation strength and suppress artifacts. Our approach not only mitigates the oversmoothing issues of existing layer-level perturbation but also enables targeted manipulation of specific visual styles through compositional head selection. We validate our method on modern large-scale DiT-based text-to-image models including Stable Diffusion 3 and FLUX.1, demonstrating superior performance in both general quality enhancement and style-specific guidance. Our work provides the first head-level analysis of attention perturbation in diffusion models, uncovering interpretable specialization within attention layers and enabling practical design of effective perturbation strategies.
comment: Project page: https://cvlab-kaist.github.io/HeadHunter/
♻ ☆ Understanding World or Predicting Future? A Comprehensive Survey of World Models
The concept of world models has garnered significant attention due to advancements in multimodal large language models such as GPT-4 and video generation models such as Sora, which are central to the pursuit of artificial general intelligence. This survey offers a comprehensive review of the literature on world models. Generally, world models are regarded as tools for either understanding the present state of the world or predicting its future dynamics. This review presents a systematic categorization of world models, emphasizing two primary functions: (1) constructing internal representations to understand the mechanisms of the world, and (2) predicting future states to simulate and guide decision-making. Initially, we examine the current progress in these two categories. We then explore the application of world models in key domains, including autonomous driving, robotics, and social simulacra, with a focus on how each domain utilizes these aspects. Finally, we outline key challenges and provide insights into potential future research directions. We summarize the representative papers along with their code repositories in https://github.com/tsinghua-fib-lab/World-Model.
comment: Accepted by ACM CSUR, 37 pages, 7 figures, 7 tables
♻ ☆ Federated Learning Clients Clustering with Adaptation to Data Drifts
Federated Learning (FL) trains deep models across edge devices without centralizing raw data, preserving user privacy. However, client heterogeneity slows down convergence and limits global model accuracy. Clustered FL (CFL) mitigates this by grouping clients with similar representations and training a separate model for each cluster. In practice, client data evolves over time, a phenomenon we refer to as data drift, which breaks cluster homogeneity and degrades performance. Data drift can take different forms depending on whether changes occur in the output values, the input features, or the relationship between them. We propose FIELDING, a CFL framework for handling diverse types of data drift with low overhead. FIELDING detects drift at individual clients and performs selective re-clustering to balance cluster quality and model performance, while remaining robust to malicious clients and varying levels of heterogeneity. Experiments show that FIELDING improves final model accuracy by 1.9-5.9% and achieves target accuracy 1.16x-2.23x faster than existing state-of-the-art CFL methods.
comment: 24 pages, 16 figures
♻ ☆ Quantum-Classical Hybrid Quantized Neural Network
Here in this work, we present a novel Quadratic Binary Optimization (QBO) model for quantized neural network training, enabling the use of arbitrary activation and loss functions through spline interpolation. We introduce Forward Interval Propagation (FIP), a method designed to tackle the challenges of non-linearity and the multi-layer composite structure in neural networks by discretizing activation functions into linear subintervals. This approach preserves the universal approximation properties of neural networks while allowing complex nonlinear functions to be optimized using quantum computers, thus broadening their applicability in artificial intelligence. We provide theoretical upper bounds on the approximation error and the number of Ising spins required, by deriving the sample complexity of the empirical risk minimization problem, from an optimization perspective. A significant challenge in solving the associated Quadratic Constrained Binary Optimization (QCBO) model on a large scale is the presence of numerous constraints. When employing the penalty method to handle these constraints, tuning a large number of penalty coefficients becomes a critical hyperparameter optimization problem, increasing computational complexity and potentially affecting solution quality. To address this, we employ the Quantum Conditional Gradient Descent (QCGD) algorithm, which leverages quantum computing to directly solve the QCBO problem. We prove the convergence of QCGD under a quantum oracle with randomness and bounded variance in objective value, as well as under limited precision constraints in the coefficient matrix. Additionally, we provide an upper bound on the Time-To-Solution for the QCBO solving process. Experimental results using a coherent Ising machine (CIM) demonstrate a 94.95% accuracy on the Fashion MNIST classification task, with only 1.1-bit precision.
comment: 27 pages, 5 figures, comments are welcome
♻ ☆ mSTEB: Massively Multilingual Evaluation of LLMs on Speech and Text Tasks
Large Language models (LLMs) have demonstrated impressive performance on a wide range of tasks, including in multimodal settings such as speech. However, their evaluation is often limited to English and a few high-resource languages. For low-resource languages, there is no standardized evaluation benchmark. In this paper, we address this gap by introducing mSTEB, a new benchmark to evaluate the performance of LLMs on a wide range of tasks covering language identification, text classification, question answering, and translation tasks on both speech and text modalities. We evaluated the performance of leading LLMs such as Gemini 2.0 Flash and GPT-4o (Audio) and state-of-the-art open models such as Qwen 2 Audio and Gemma 3 27B. Our evaluation shows a wide gap in performance between high-resource and low-resource languages, especially for languages spoken in Africa and Americas/Oceania. Our findings show that more investment is needed to address their under-representation in LLMs coverage.
comment: working paper
♻ ☆ Low-light Pedestrian Detection in Visible and Infrared Image Feeds: Issues and Challenges
Pedestrian detection has become a cornerstone for several high-level tasks, including autonomous driving, intelligent transportation, and traffic surveillance. There are several works focussed on pedestrian detection using visible images, mainly in the daytime. However, this task is very intriguing when the environmental conditions change to poor lighting or nighttime. Recently, new ideas have been spurred to use alternative sources, such as Far InfraRed (FIR) temperature sensor feeds for detecting pedestrians in low-light conditions. This study reviews recent developments in low-light pedestrian detection approaches. It systematically categorizes and analyses various algorithms from region-based to non-region-based and graph-based learning methodologies by highlighting their methodologies, implementation issues, and challenges. It also outlines the key benchmark datasets that can be used for research and development of advanced pedestrian detection algorithms, particularly in low-light situations.
comment: 29 pages, 4 tables, 21 figures
♻ ☆ Thought Anchors: Which LLM Reasoning Steps Matter?
Reasoning large language models have recently achieved state-of-the-art performance in many fields. However, their long-form chain-of-thought reasoning creates interpretability challenges as each generated token depends on all previous ones, making the computation harder to decompose. We argue that analyzing reasoning traces at the sentence level is a promising approach to understanding reasoning processes. We present three complementary attribution methods: (1) a black-box method measuring each sentence's counterfactual importance by comparing final answers across 100 rollouts conditioned on the model generating that sentence or one with a different meaning; (2) a white-box method of aggregating attention patterns between pairs of sentences, which identified "broadcasting" sentences that receive disproportionate attention from all future sentences via "receiver" attention heads; (3) a causal attribution method measuring logical connections between sentences by suppressing attention toward one sentence and measuring the effect on each future sentence's tokens. Each method provides evidence for the existence of thought anchors, reasoning steps that have outsized importance and that disproportionately influence the subsequent reasoning process. These thought anchors are typically planning or backtracking sentences. We provide an open-source tool (www.thought-anchors.com) for visualizing the outputs of our methods, and present a case study showing converging patterns across methods that map how a model performs multi-step reasoning. The consistency across methods demonstrates the potential of sentence-level analysis for a deeper understanding of reasoning models.
comment: Paul C. Bogdan and Uzay Macar contributed equally to this work, and their listed order was determined by coinflip. Neel Nanda and Arthur Conmy contributed equally to this work as senior authors, and their listed order was determined by coinflip
♻ ☆ Conformal Prediction with Upper and Lower Bound Models
This paper studies a Conformal Prediction (CP) methodology for building prediction intervals in a regression setting, given only deterministic lower and upper bounds on the target variable. It proposes a new CP mechanism (CPUL) that goes beyond post-processing by adopting a model selection approach over multiple nested interval construction methods. Paradoxically, many well-established CP methods, including CPUL, may fail to provide adequate coverage in regions where the bounds are tight. To remedy this limitation, the paper proposes an optimal thresholding mechanism, OMLT, that adjusts CPUL intervals in tight regions with undercoverage. The combined CPUL-OMLT is validated on large-scale learning tasks where the goal is to bound the optimal value of a parametric optimization problem. The experimental results demonstrate substantial improvements over baseline methods across various datasets.
♻ ☆ Next-token prediction capacity: general upper bounds and a lower bound for transformers
Given a sequence of tokens, such as words, the task of next-token prediction is to predict the next-token conditional probability distribution. Decoder-only transformers have become effective models for this task, but their properties are still not fully understood. In particular, the largest number of distinct context sequences that a decoder-only transformer can interpolate next-token distributions for has not been established. To fill this gap, we prove upper and lower bounds on this number, which are equal up to a multiplicative constant. We prove these bounds in the general setting where next-token distributions can be arbitrary as well as the empirical setting where they are calculated from a finite number of document sequences. Our lower bounds are for one-layer multi-head decoder-only transformers and our proofs highlight an important injectivity property satisfied by self-attention. Furthermore, we provide numerical evidence that the minimal number of parameters for memorization is sufficient for being able to train the model to the entropy lower bound.
comment: V3: added two examples, a remark, and a second experiment where only the FNN layers are trained
♻ ☆ HyperINF: Unleashing the HyperPower of the Schulz's Method for Data Influence Estimation
Influence functions provide a principled method to assess the contribution of individual training samples to a specific target. Yet, their high computational costs limit their applications on large-scale models and datasets. Existing methods proposed for influence function approximation have significantly reduced the computational overheads. However, they mostly suffer from inaccurate estimation due to the lack of strong convergence guarantees from the algorithm. The family of hyperpower methods are well-known for their rigorous convergence guarantees on matrix inverse approximation, while the matrix multiplication operation can involve intractable memory and computation costs on large-scale models. We propose HyperINF, an efficient and accurate influence function approximation method which leverages the hyperpower method, specifically Schulz's iterative algorithm. To deal with the computation-intensive matrix multiplication, we incorporate the generalized fisher information (GFIM) as a low-rank approximation of the Hessian matrix, which reduces the memory and computation overheads to constant costs independent of ranks on LoRA-tuned models. We first demonstrate the superior accuracy and stability of HyperINF compared to other baselines through a synthetic convergence simulation for matrix inversion. We further validate the efficacy of HyperINF through extensive real-world data attribution tasks, including mislabeled data detection and data selection for LLM and VLM fine-tuning. On LoRA-tuned models, HyperINF achieves superior downstream performance with minimal memory and computational overhead, while other baselines suffer from significant degradation. Our codebase is available at https://github.com/Blackzxy/HyperINF.
♻ ☆ Fairly Accurate: Fairness-aware Multi-group Target Detection in Online Discussion
Target-group detection is the task of detecting which group(s) a social media post is ``directed at or about'', with various applications, such as targeted-marketing. In this work, we focus on the fairness implications of target-group detection in the context of toxicity detection, where the perceived harm of a post often depends on which group(s) it targets. Because toxicity is highly contextual, language that appears benign in general may be harmful when targeting specific demographic groups. It is thus important to first detect which group(s) are being {\em targeted} by a post as a precursor to the subsequent task of determining whether the post is toxic given the group(s). Target-group detection is also challenging: a single post may simultaneously target one to many groups, and we must detect groups fairly in order to promote equitable treatment. We show that our proposed approach to {\em fairness-aware multi target-group detection} not only reduces bias across groups, but also achieves competitive predictive performance, outperforming existing fairness-aware baselines. To spur future research on fairness-aware target-group detection and support competitive benchmarking, we also share our code.
♻ ☆ Always Skip Attention ICCV 2025
We highlight a curious empirical result within modern Vision Transformers (ViTs). Specifically, self-attention catastrophically fails to train unless it is used in conjunction with a skip connection. This is in contrast to other elements of a ViT that continue to exhibit good performance (albeit suboptimal) when skip connections are removed. Further, we show that this critical dependence on skip connections is a relatively new phenomenon, with previous deep architectures (\eg, CNNs) exhibiting good performance in their absence. In this paper, we theoretically characterize that the self-attention mechanism is fundamentally ill-conditioned and is, therefore, uniquely dependent on skip connections for regularization. Additionally, we propose Token Graying -- a simple yet effective complement (to skip connections) that further improves the condition of input tokens. We validate our approach in both supervised and self-supervised training methods.
comment: This work has just been accepted by ICCV 2025
♻ ☆ A3 : an Analytical Low-Rank Approximation Framework for Attention
Large language models have demonstrated remarkable performance; however, their massive parameter counts make deployment highly expensive. Low-rank approximation offers a promising compression solution, yet existing approaches have two main limitations: (1) They focus on minimizing the output error of individual linear layers, without considering the architectural characteristics of Transformers, and (2) they decompose a large weight matrix into two small low-rank matrices. Consequently, these methods often fall short compared to other compression techniques like pruning and quantization, and introduce runtime overhead such as the extra GEMM kernel launches for decomposed small matrices. To address these limitations, we propose $\tt A^\tt 3$, a post-training low-rank approximation framework. $\tt A^\tt 3$ splits a Transformer layer into three functional components, namely $\tt QK$, $\tt OV$, and $\tt MLP$. For each component, $\tt A^\tt 3$ provides an analytical solution that reduces the hidden dimension size inside each component while minimizing the component's functional loss ($\it i.e.$, error in attention scores, attention outputs, and MLP outputs). This approach directly reduces model sizes, KV cache sizes, and FLOPs without introducing any runtime overheads. In addition, it provides a new narrative in advancing the optimization problem from singular linear layer loss optimization toward improved end-to-end performance. Through extensive experiments, we show that $\tt A^\tt 3$ maintains superior performance compared to SoTAs. For example, under the same reduction budget in computation and memory, our low-rank approximated LLaMA 3.1-70B achieves a perplexity of 4.69 on WikiText-2, outperforming the previous SoTA's 7.87 by 3.18. We also demonstrate the versatility of $\tt A^\tt 3$, including KV cache compression, quantization, and mixed-rank assignments for enhanced performance.
♻ ☆ High-dimensional Contextual Bandit Problem without Sparsity
In this research, we investigate the high-dimensional linear contextual bandit problem where the number of features $p$ is greater than the budget $T$, or it may even be infinite. Differing from the majority of previous works in this field, we do not impose sparsity on the regression coefficients. Instead, we rely on recent findings on overparameterized models, which enables us to analyze the performance of the minimum-norm interpolating estimator when data distributions have small effective ranks. We propose an explore-then-commit (EtC) algorithm to address this problem and examine its performance. Through our analysis, we derive the optimal rate of the ETC algorithm in terms of $T$ and show that this rate can be achieved by balancing exploration and exploitation. Moreover, we introduce an adaptive explore-then-commit (AEtC) algorithm that adaptively finds the optimal balance. We assess the performance of the proposed algorithms through a series of simulations.
♻ ☆ Subspace-Distance-Enabled Active Learning for Efficient Data-Driven Model Reduction of Parametric Dynamical Systems
In situations where the solution of a high-fidelity dynamical system needs to be evaluated repeatedly, over a vast pool of parametric configurations and in absence of access to the underlying governing equations, data-driven model reduction techniques are preferable. We propose a novel active learning approach to build a parametric data-driven reduced-order model (ROM) by greedily picking the most important parameter samples from the parameter domain. As a result, during the ROM construction phase, the number of high-fidelity solutions dynamically grow in a principled fashion. The high-fidelity solution snapshots are expressed in several parameter-specific linear subspaces, with the help of proper orthogonal decomposition (POD), and the relative distance between these subspaces is used as a guiding mechanism to perform active learning. For successfully achieving this, we provide a distance measure to evaluate the similarity between pairs of linear subspaces with different dimensions, and also show that this distance measure is a metric. The usability of the proposed subspace-distance-enabled active learning (SDE-AL) framework is demonstrated by augmenting two existing non-intrusive reduced-order modeling approaches, and providing their active-learning-driven (ActLearn) extensions, namely, SDE-ActLearn-POD-KSNN, and SDE-ActLearn-POD-NN. Furthermore, we report positive results for two parametric physical models, highlighting the efficiency of the proposed SDE-AL approach.
comment: 31 pages, 10 figures, 4 tables; v2: minor improvements
♻ ☆ InterFormer: Effective Heterogeneous Interaction Learning for Click-Through Rate Prediction
Click-through rate (CTR) prediction, which predicts the probability of a user clicking an ad, is a fundamental task in recommender systems. The emergence of heterogeneous information, such as user profile and behavior sequences, depicts user interests from different aspects. A mutually beneficial integration of heterogeneous information is the cornerstone towards the success of CTR prediction. However, most of the existing methods suffer from two fundamental limitations, including (1) insufficient inter-mode interaction due to the unidirectional information flow between modes, and (2) aggressive information aggregation caused by early summarization, resulting in excessive information loss. To address the above limitations, we propose a novel module named InterFormer to learn heterogeneous information interaction in an interleaving style. To achieve better interaction learning, InterFormer enables bidirectional information flow for mutually beneficial learning across different modes. To avoid aggressive information aggregation, we retain complete information in each data mode and use a separate bridging arch for effective information selection and summarization. Our proposed InterFormer achieves state-of-the-art performance on three public datasets and a large-scale industrial dataset.
comment: 11 pages, 6 figures
♻ ☆ From Tiny Machine Learning to Tiny Deep Learning: A Survey
The rapid growth of edge devices has driven the demand for deploying artificial intelligence (AI) at the edge, giving rise to Tiny Machine Learning (TinyML) and its evolving counterpart, Tiny Deep Learning (TinyDL). While TinyML initially focused on enabling simple inference tasks on microcontrollers, the emergence of TinyDL marks a paradigm shift toward deploying deep learning models on severely resource-constrained hardware. This survey presents a comprehensive overview of the transition from TinyML to TinyDL, encompassing architectural innovations, hardware platforms, model optimization techniques, and software toolchains. We analyze state-of-the-art methods in quantization, pruning, and neural architecture search (NAS), and examine hardware trends from MCUs to dedicated neural accelerators. Furthermore, we categorize software deployment frameworks, compilers, and AutoML tools enabling practical on-device learning. Applications across domains such as computer vision, audio recognition, healthcare, and industrial monitoring are reviewed to illustrate the real-world impact of TinyDL. Finally, we identify emerging directions including neuromorphic computing, federated TinyDL, edge-native foundation models, and domain-specific co-design approaches. This survey aims to serve as a foundational resource for researchers and practitioners, offering a holistic view of the ecosystem and laying the groundwork for future advancements in edge AI.
♻ ☆ Reducing Biases in Record Matching Through Scores Calibration
Record matching is the task of identifying records that refer to the same real-world entity across datasets. While most existing models optimize for accuracy, fairness has become an important concern due to the potential for unequal outcomes across demographic groups. Prior work typically focuses on binary outcomes evaluated at fixed decision thresholds. However, such evaluations can miss biases in matching scores--biases that persist across thresholds and affect downstream tasks. We propose a threshold-independent framework for measuring and reducing score bias, defined as disparities in the distribution of matching scores across groups. We show that several state-of-the-art matching methods exhibit substantial score bias, even when appearing fair under standard threshold-based metrics. To address this, we introduce two post-processing score calibration algorithms. The first, calib, aligns group-wise score distributions using the Wasserstein barycenter, targeting demographic parity. The second, ccalib, conditions on predicted labels to further reduce label-dependent biases, such as equal opportunity. Both methods are model-agnostic and require no access to model training data. calib also offers theoretical guarantees, ensuring reduced bias with minimal deviation from original scores. Experiments across real-world datasets and matching models confirm that calib and ccalib substantially reduce score bias while minimally impacting model accuracy.
♻ ☆ Discovering Global False Negatives On the Fly for Self-supervised Contrastive Learning ICML 2025
In self-supervised contrastive learning, negative pairs are typically constructed using an anchor image and a sample drawn from the entire dataset, excluding the anchor. However, this approach can result in the creation of negative pairs with similar semantics, referred to as "false negatives", leading to their embeddings being falsely pushed apart. To address this issue, we introduce GloFND, an optimization-based approach that automatically learns on the fly the threshold for each anchor data to identify its false negatives during training. In contrast to previous methods for false negative discovery, our approach globally detects false negatives across the entire dataset rather than locally within the mini-batch. Moreover, its per-iteration computation cost remains independent of the dataset size. Experimental results on image and image-text data demonstrate the effectiveness of the proposed method. Our implementation is available at https://github.com/vibalcam/GloFND.
comment: Accepted to ICML 2025
♻ ☆ Composite Flow Matching for Reinforcement Learning with Shifted-Dynamics Data
Incorporating pre-collected offline data from a source environment can significantly improve the sample efficiency of reinforcement learning (RL), but this benefit is often challenged by discrepancies between the transition dynamics of the source and target environments. Existing methods typically address this issue by penalizing or filtering out source transitions in high dynamics-gap regions. However, their estimation of the dynamics gap often relies on KL divergence or mutual information, which can be ill-defined when the source and target dynamics have disjoint support. To overcome these limitations, we propose CompFlow, a method grounded in the theoretical connection between flow matching and optimal transport. Specifically, we model the target dynamics as a conditional flow built upon the output distribution of the source-domain flow, rather than learning it directly from a Gaussian prior. This composite structure offers two key advantages: (1) improved generalization for learning target dynamics, and (2) a principled estimation of the dynamics gap via the Wasserstein distance between source and target transitions. Leveraging our principled estimation of the dynamics gap, we further introduce an optimistic active data collection strategy that prioritizes exploration in regions of high dynamics gap, and theoretically prove that it reduces the performance disparity with the optimal policy. Empirically, CompFlow outperforms strong baselines across several RL benchmarks with shifted dynamics.
♻ ☆ Harnessing the Universal Geometry of Embeddings
We introduce the first method for translating text embeddings from one vector space to another without any paired data, encoders, or predefined sets of matches. Our unsupervised approach translates any embedding to and from a universal latent representation (i.e., a universal semantic structure conjectured by the Platonic Representation Hypothesis). Our translations achieve high cosine similarity across model pairs with different architectures, parameter counts, and training datasets. The ability to translate unknown embeddings into a different space while preserving their geometry has serious implications for the security of vector databases. An adversary with access only to embedding vectors can extract sensitive information about the underlying documents, sufficient for classification and attribute inference.
♻ ☆ TaxaDiffusion: Progressively Trained Diffusion Model for Fine-Grained Species Generation ICCV 2025
We propose TaxaDiffusion, a taxonomy-informed training framework for diffusion models to generate fine-grained animal images with high morphological and identity accuracy. Unlike standard approaches that treat each species as an independent category, TaxaDiffusion incorporates domain knowledge that many species exhibit strong visual similarities, with distinctions often residing in subtle variations of shape, pattern, and color. To exploit these relationships, TaxaDiffusion progressively trains conditioned diffusion models across different taxonomic levels -- starting from broad classifications such as Class and Order, refining through Family and Genus, and ultimately distinguishing at the Species level. This hierarchical learning strategy first captures coarse-grained morphological traits shared by species with common ancestors, facilitating knowledge transfer before refining fine-grained differences for species-level distinction. As a result, TaxaDiffusion enables accurate generation even with limited training samples per species. Extensive experiments on three fine-grained animal datasets demonstrate that outperforms existing approaches, achieving superior fidelity in fine-grained animal image generation. Project page: https://amink8.github.io/TaxaDiffusion/
comment: Accepted to ICCV 2025
♻ ☆ Advanced computer vision for extracting georeferenced vehicle trajectories from drone imagery
This paper presents a framework for extracting georeferenced vehicle trajectories from high-altitude drone imagery, addressing key challenges in urban traffic monitoring and the limitations of traditional ground-based systems. Our approach integrates several novel contributions, including a tailored object detector optimized for high-altitude bird's-eye view perspectives, a unique track stabilization method that uses detected vehicle bounding boxes as exclusion masks during image registration, and an orthophoto and master frame-based georeferencing strategy that enhances consistent alignment across multiple drone viewpoints. Additionally, our framework features robust vehicle dimension estimation and detailed road segmentation, enabling comprehensive traffic analysis. Conducted in the Songdo International Business District, South Korea, the study utilized a multi-drone experiment covering 20 intersections, capturing approximately 12TB of 4K video data over four days. The framework produced two high-quality datasets: the Songdo Traffic dataset, comprising approximately 700,000 unique vehicle trajectories, and the Songdo Vision dataset, containing over 5,000 human-annotated images with about 300,000 vehicle instances in four classes. Comparisons with high-precision sensor data from an instrumented probe vehicle highlight the accuracy and consistency of our extraction pipeline in dense urban environments. The public release of Songdo Traffic and Songdo Vision, and the complete source code for the extraction pipeline, establishes new benchmarks in data quality, reproducibility, and scalability in traffic research. Results demonstrate the potential of integrating drone technology with advanced computer vision for precise and cost-effective urban traffic monitoring, providing valuable resources for developing intelligent transportation systems and enhancing traffic management strategies.
♻ ☆ Steering Your Diffusion Policy with Latent Space Reinforcement Learning
Robotic control policies learned from human demonstrations have achieved impressive results in many real-world applications. However, in scenarios where initial performance is not satisfactory, as is often the case in novel open-world settings, such behavioral cloning (BC)-learned policies typically require collecting additional human demonstrations to further improve their behavior -- an expensive and time-consuming process. In contrast, reinforcement learning (RL) holds the promise of enabling autonomous online policy improvement, but often falls short of achieving this due to the large number of samples it typically requires. In this work we take steps towards enabling fast autonomous adaptation of BC-trained policies via efficient real-world RL. Focusing in particular on diffusion policies -- a state-of-the-art BC methodology -- we propose diffusion steering via reinforcement learning (DSRL): adapting the BC policy by running RL over its latent-noise space. We show that DSRL is highly sample efficient, requires only black-box access to the BC policy, and enables effective real-world autonomous policy improvement. Furthermore, DSRL avoids many of the challenges associated with finetuning diffusion policies, obviating the need to modify the weights of the base policy at all. We demonstrate DSRL on simulated benchmarks, real-world robotic tasks, and for adapting pretrained generalist policies, illustrating its sample efficiency and effective performance at real-world policy improvement.
♻ ☆ Revealing higher-order neural representations of uncertainty with the Noise Estimation through Reinforcement-based Diffusion (NERD) model
Studies often aim to reveal ``first-order" representations (FORs), which encode aspects of an observer's environment, such as contents or structure. A less-common target is ``higher-order" representations (HORs), which are ``about" FORs -- e.g., their strength or uncertainty -- and which may contribute to learning. HORs about uncertainty are unlikely to be direct ``read-outs" of FOR characteristics, instead reflecting noisy estimation processes incorporating prior expectations about uncertainty, but how the brain represents such expected uncertainty distributions remains largely unexplored. Here, we study ``noise expectation" HORs using neural data from a task which may require the brain to learn about its own noise: decoded neurofeedback, wherein human subjects learn to volitionally produce target neural patterns. We develop and apply a Noise Estimation through Reinforcement-based Diffusion (NERD) model to characterize how brains may undertake this process, and show that NERD offers high explanatory power for human behavior.
comment: 27 pages, 7 figures, 12 equations
♻ ☆ GASP: Efficient Black-Box Generation of Adversarial Suffixes for Jailbreaking LLMs
LLMs have shown impressive capabilities across various natural language processing tasks, yet remain vulnerable to input prompts, known as jailbreak attacks, carefully designed to bypass safety guardrails and elicit harmful responses. Traditional methods rely on manual heuristics but suffer from limited generalizability. Despite being automatic, optimization-based attacks often produce unnatural prompts that can be easily detected by safety filters or require high computational costs due to discrete token optimization. In this paper, we introduce Generative Adversarial Suffix Prompter (GASP), a novel automated framework that can efficiently generate human-readable jailbreak prompts in a fully black-box setting. In particular, GASP leverages latent Bayesian optimization to craft adversarial suffixes by efficiently exploring continuous latent embedding spaces, gradually optimizing the suffix prompter to improve attack efficacy while balancing prompt coherence via a targeted iterative refinement procedure. Through comprehensive experiments, we show that GASP can produce natural adversarial prompts, significantly improving jailbreak success over baselines, reducing training times, and accelerating inference speed, thus making it an efficient and scalable solution for red-teaming LLMs.
comment: 38 pages, 8 tables, 18 figures
♻ ☆ Backpropagation Through Time For Networks With Long-Term Dependencies
Backpropagation through time (BPTT) is a technique of updating tuned parameters within recurrent neural networks (RNNs). Several attempts at creating such an algorithm have been made including: Nth Ordered Approximations and Truncated-BPTT. These methods approximate the backpropagation gradients under the assumption that the RNN only utilises short-term dependencies. This is an acceptable assumption to make for the current state of artificial neural networks. As RNNs become more advanced, a shift towards influence by long-term dependencies is likely. Thus, a new method for backpropagation is required. We propose using the 'discrete forward sensitivity equation' and a variant of it for single and multiple interacting recurrent loops respectively. This solution is exact and also allows the network's parameters to vary between each subsequent step, however it does require the computation of a Jacobian.
comment: 8 Pages, 1 Figure; typos corrected, references added, altered section titles, added further commentary in section 2.1
Genomics 2
☆ inMOTIFin: a lightweight end-to-end simulation software for regulatory sequences
The accurate development, assessment, interpretation, and benchmarking of bioinformatics frameworks for analyzing transcriptional regulatory grammars rely on controlled simulations to validate the underlying methods. However, existing simulators often lack end-to-end flexibility or ease of integration, which limits their practical use. We present inMOTIFin, a lightweight, modular, and user-friendly Python-based software that addresses these gaps by providing versatile and efficient simulation and modification of DNA regulatory sequences. inMOTIFin enables users to simulate or modify regulatory sequences efficiently for the customizable generation of motifs and insertion of motif instances with precise control over their positions, co-occurrences, and spacing, as well as direct modification of real sequences, facilitating a comprehensive evaluation of motif-based methods and interpretation tools. We demonstrate inMOTIFin applications for the assessment of de novo motif discovery prediction, the analysis of transcription factor cooperativity, and the support of explainability analyses for deep learning models. inMOTIFin ensures robust and reproducible analyses for studying transcriptional regulatory grammars. inMOTIFin is available at PyPI https://pypi.org/project/inMOTIFin/ and Docker Hub https://hub.docker.com/r/cbgr/inmotifin. Detailed documentation is available at https://inmotifin.readthedocs.io/en/latest/. The code for use case analyses is available at https://bitbucket.org/CBGR/inmotifin_evaluation/src/main/.
♻ ☆ Harnessing the Potential of Spatial Statistics for Spatial Omics Data with pasta
Spatial omics assays allow for the molecular characterisation of cells in their spatial context. Notably, the two main technological streams, imaging-based and high-throughput sequencing-based, can give rise to very different data modalities. The characteristics of the two data types are well known in adjacent fields such as spatial statistics as point patterns and lattice data, and there is a wide range of tools available. This paper discusses the application of spatial statistics to spatially-resolved omics data and in particular, discusses various advantages, challenges, and nuances. This work is accompanied by a vignette, pasta, that showcases the usefulness of spatial statistics in biology using several R packages.
Quantitative Methods 9
☆ Behavioral Traits as Dynamical Systems: Utilizing Entropy to Analyze Longitudinal Psychometric Data in Coupled Ordinary Differential Equations
Traits such as neuroticism persist across species despite exhibiting characteristics typically regarded as maladaptive. This project presents an alternative model for understanding the stability of such traits by integrating findings from the Swedish Adoption/Twin Study on Aging (Pedersen, 2015) (SATSA) with a system of recursive, biologically inspired ordinary differential equations (ODEs). To utilize the ODEs analytically, Shannon entropy is extracted from longitudinal Likert-scale psychometric data, enabling the translation of high-dimensional behavioral responses into continuous-time dynamical systems. The model incorporates principles from evolutionary biology, including mutation-selection balance, genetic pleiotropy and metabolic constraints, and embeds environmental feedback as a recursive driver of phenotypic expression. The argument is presented that traits such as neuroticism exist not stochastically, but as emergent multistable attractors within a biologically-constrained system. This paper shows that entropy extracted from longitudinal psychometric data can be meaningfully modeled using recursive ordinary differential equations, revealing stable dynamical attractors and biologically and environmentally grounded constraints in traits often deemed maladaptive. This framework offers a scalable, mathematically grounded foundation for analyzing phenotypic expression, with the ultimate goal of biological extension for eventual multi-omic modeling of behavioral traits.
comment: 28 pages, 7 figures
☆ Papanicolaou Stain Unmixing for RGB Image Using Weighted Nucleus Sparsity and Total Variation Regularization
The Papanicolaou stain, consisting of eosin Y, hematoxylin, light Green SF yellowish, orange G, and Bismarck brown Y, provides extensive color information essential for cervical cancer screening in cytopathology. However, the visual observation of these colors is subjective and difficult to characterize. In digital image analysis, the RGB intensities are affected by staining and imaging variations, hindering direct quantification of color in Papanicolaou-stained samples. Stain unmixing is a promising alternative that quantifies the amounts of dyes. In previous work, multispectral imaging was utilized to estimate the dye amounts of Papanicolaou stain for quantitative diagnosis. Still, its application to RGB images presents a challenge since the number of dyes exceeds the three RGB channels. This paper proposes a novel Papanicolaou stain unmixing method for RGB images that incorporates three key assumptions: nonnegative stain abundances; a sparse spatial distribution of hematoxylin, which binds to nuclei; and piecewise smoothness of stain abundances. By formulating this as an optimization problem with nonnegativity, weighted nucleus sparsity, and total variation regularizations, our method achieved excellent performance in stain quantification when validated against the results of multispectral imaging. We also adopted the proposed method for discriminating lobular endocervical glandular hyperplasia (LEGH), a precancerous lesion of gastric-type adenocarcinoma of the cervix. The resulting quantification distinctly characterized differences between LEGH and normal endocervical cells with stain abundance, and a classifier based on the quantification results achieved 98.0% accuracy. This demonstrates the significant potential of RGB-based stain unmixing for quantitative diagnosis.
comment: 22 pages, 12 figures
☆ Integrating Pharmacokinetics and Pharmacodynamics Modeling with Quantum Regression for Predicting Herbal Compound Toxicity
Herbal compounds present complex toxicity profiles that are often influenced by both intrinsic chemical properties and pharmacokinetics (PK) governing absorption and clearance. In this study, we develop a quantum regression model to predict acute toxicity severity for herbal-derived compounds by integrating toxicity data from NICEATM with pharmacological features from TCMSP.
comment: Conference can be found here: https://www.american-cse.org/csce2025/program
☆ Balancing the cellular budget: lessons in metabolism from microbes to cancer
Cancer cells are often seen to prefer glycolytic metabolism over oxidative phosphorylation even in the presence of oxygen-a phenomenon termed the Warburg effect. Despite significant strides in the decades since its discovery, a clear basis is yet to be established for the Warburg effect and why cancer cells show such a preference for aerobic glycolysis. In this review, we draw on what is known about similar metabolic shifts both in normal mammalian physiology and overflow metabolism in microbes to shed new light on whether aerobic glycolysis in cancer represents some form of optimisation of cellular metabolism. From microbes to cancer, we find that metabolic shifts favouring glycolysis are sometimes driven by the need for faster growth, but the growth rate is by no means a universal goal of optimal metabolism. Instead, optimisation goals at the cellular level are often multi-faceted and any given metabolic state must be considered in the context of both its energetic costs and benefits over a range of environmental contexts. For this purpose, we identify the conceptual framework of resource allocation as a potential testbed for the investigation of the cost-benefit balance of cellular metabolic strategies. Such a framework is also readily integrated with dynamical systems modelling, making it a promising avenue for new answers to the age-old question of why cells, from cancers to microbes, choose the metabolic strategies they do.
comment: 18 pages and 1 figure Submitted to the journal BioSystems, see https://www.sciencedirect.com/special-issue/10VK46MFTR8
☆ Evaluating PDE discovery methods for multiscale modeling of biological signals
Biological systems are non-linear, include unobserved variables and the physical principles that govern their dynamics are partly unknown. This makes the characterization of their behavior very challenging. Notably, their activity occurs on multiple interdependent spatial and temporal scales that require linking mechanisms across scales. To address the challenge of bridging gaps between scales, we leverage partial differential equations (PDE) discovery. PDE discovery suggests meso-scale dynamics characteristics from micro-scale data. In this article, we present our framework combining particle-based simulations and PDE discovery and conduct preliminary experiments to assess equation discovery in controlled settings. We evaluate five state-of-the-art PDE discovery methods on particle-based simulations of calcium diffusion in astrocytes. The performances of the methods are evaluated on both the form of the discovered equation and the forecasted temporal variations of calcium concentration. Our results show that several methods accurately recover the diffusion term, highlighting the potential of PDE discovery for capturing macroscopic dynamics in biological systems from microscopic data.
☆ Quantum Variational Transformer Model for Enhanced Cancer Classification
Accurate prediction of cancer type and primary tumor site is critical for effective diagnosis, personalized treatment, and improved outcomes. Traditional models struggle with the complexity of genomic and clinical data, but quantum computing offers enhanced computational capabilities. This study develops a hybrid quantum-classical transformer model, incorporating quantum attention mechanisms via variational quantum circuits (VQCs) to improve prediction accuracy. Using 30,000 anonymized cancer samples from the Genome Warehouse (GWH), data preprocessing included cleaning, encoding, and feature selection. Classical self-attention modules were replaced with quantum attention layers, with classical data encoded into quantum states via amplitude encoding. The model, trained using hybrid backpropagation and quantum gradient calculations, outperformed the classical transformer model, achieving 92.8% accuracy and an AUC of 0.96 compared to 87.5% accuracy and an AUC of 0.89. It also demonstrated 35% faster training and 25% fewer parameters, highlighting computational efficiency. These findings showcase the potential of quantum-enhanced transformers to advance biomedical data analysis, enabling more accurate diagnostics and personalized medicine.
comment: Conference information can be found here: https://ieai.net/prog.html
♻ ☆ Effective Stimulus Propagation in Neural Circuits: Driver Node Selection
Precise control of signal propagation in modular neural networks represents a fundamental challenge in computational neuroscience. We establish a framework for identifying optimal control nodes that maximize stimulus transmission between weakly coupled neural populations. Using spiking stochastic block model networks, we systematically compare driver node selection strategies - including random sampling and topology-based centrality measures (degree, betweenness, closeness, eigenvector, harmonic, and percolation centrality) - to determine minimal control inputs for achieving inter-population synchronization. Targeted stimulation of just 10-20% of the most central neurons in the source population significantly enhances spiking propagation fidelity compared to random selection. This approach yields a 64-fold increase in signal transfer efficiency at critical inter-module connection densities. These findings establish a theoretical foundation for precision neuromodulation in biological neural systems and neurotechnology applications.
♻ ☆ Harnessing the Potential of Spatial Statistics for Spatial Omics Data with pasta
Spatial omics assays allow for the molecular characterisation of cells in their spatial context. Notably, the two main technological streams, imaging-based and high-throughput sequencing-based, can give rise to very different data modalities. The characteristics of the two data types are well known in adjacent fields such as spatial statistics as point patterns and lattice data, and there is a wide range of tools available. This paper discusses the application of spatial statistics to spatially-resolved omics data and in particular, discusses various advantages, challenges, and nuances. This work is accompanied by a vignette, pasta, that showcases the usefulness of spatial statistics in biology using several R packages.
♻ ☆ Predictive Modeling, Pattern Recognition, and Spatiotemporal Representations of Plant Growth in Simulated and Controlled Environments: A Comprehensive Review
Accurate predictions and representations of plant growth patterns in simulated and controlled environments are important for addressing various challenges in plant phenomics research. This review explores various works on state-of-the-art predictive pattern recognition techniques, focusing on the spatiotemporal modeling of plant traits and the integration of dynamic environmental interactions. We provide a comprehensive examination of deterministic, probabilistic, and generative modeling approaches, emphasizing their applications in high-throughput phenotyping and simulation-based plant growth forecasting. Key topics include regressions and neural network-based representation models for the task of forecasting, limitations of existing experiment-based deterministic approaches, and the need for dynamic frameworks that incorporate uncertainty and evolving environmental feedback. This review surveys advances in 2D and 3D structured data representations through functional-structural plant models and conditional generative models. We offer a perspective on opportunities for future works, emphasizing the integration of domain-specific knowledge to data-driven methods, improvements to available datasets, and the implementation of these techniques toward real-world applications.
Cell Behavior 2
☆ Bridging Classical Molecular Dynamics and Quantum Foundations for Comprehensive Protein Structural Analysis
The objective of this paper is to investigate the structural stability, dynamic properties, and potential interactions among Amyloid Precursor Protein (APP), Tau, and Alpha-synuclein through a series of molecular dynamics simulations that integrate publicly available structural data, detailed force-field parameters, and comprehensive analytical protocols. By focusing on these three proteins, which are each implicated in various neurodegenerative disorders, the study aims to elucidate how their conformational changes and interprotein contact sites may influence larger biological processes. Through rigorous evaluation of their folding behaviors, energetic interactions, and residue-specific functions, this work contributes to the broader understanding of protein aggregation mechanisms and offers insights that may ultimately guide therapeutic intervention strategies.
comment: Conference information can be found here: https://ieai.net/prog.html
☆ scMamba: A Scalable Foundation Model for Single-Cell Multi-Omics Integration Beyond Highly Variable Feature Selection
The advent of single-cell multi-omics technologies has enabled the simultaneous profiling of diverse omics layers within individual cells. Integrating such multimodal data provides unprecedented insights into cellular identity, regulatory processes, and disease mechanisms. However, it remains challenging, as current methods often rely on selecting highly variable genes or peaks during preprocessing, which may inadvertently discard crucial biological information. Here, we present scMamba, a foundation model designed to integrate single-cell multi-omics data without the need for prior feature selection while preserving genomic positional information. scMamba introduces a patch-based cell tokenization strategy that treats genomics regions as words (tokens) and cells as sentences. Building upon the concept of state space duality, scMamba distills rich biological insights from high-dimensional, sparse single-cell multi-omics data. Additionally, our novel contrastive learning approach, enhanced with cosine similarity regularization, enables superior alignment across omics layers compared to traditional methods. Systematic benchmarking across multiple datasets demonstrates that scMamba significantly outperforms state-of-the-art methods in preserving biological variation, aligning omics layers, and enhancing key downstream tasks such as clustering, cell type annotation, and trajectory inference. Our findings position scMamba as a powerful tool for large-scale single-cell multi-omics integration, capable of handling large-scale atlases and advancing biological discovery.
Computation and Language 95
☆ ScaleCap: Inference-Time Scalable Image Captioning via Dual-Modality Debiasing
This paper presents ScaleCap, an inference-time scalable image captioning strategy that generates comprehensive and detailed image captions. The key challenges of high-quality image captioning lie in the inherent biases of LVLMs: multimodal bias resulting in imbalanced descriptive granularity, offering detailed accounts of some elements while merely skimming over others; linguistic bias leading to hallucinated descriptions of non-existent objects. To address these issues, we propose a scalable debiased captioning strategy, which continuously enriches and calibrates the caption with increased inference budget. Specifically, we propose two novel components: heuristic question answering and contrastive sentence rating. The former generates content-specific questions based on the image and answers them to progressively inject relevant information into the caption. The latter employs sentence-level offline contrastive decoding to effectively identify and eliminate hallucinations caused by linguistic biases. With increased inference cost, more heuristic questions are raised by ScaleCap to progressively capture additional visual details, generating captions that are more accurate, balanced, and informative. Extensive modality alignment experiments demonstrate the effectiveness of ScaleCap. Annotating 450K images with ScaleCap and using them for LVLM pretraining leads to consistent performance gains across 11 widely used benchmarks. Furthermore, ScaleCap showcases superb richness and fidelity of generated captions with two additional tasks: replacing images with captions in VQA task, and reconstructing images from captions to assess semantic coverage. Code is available at https://github.com/Cooperx521/ScaleCap.
comment: Code is available at https://github.com/Cooperx521/ScaleCap
Orthogonal Finetuning Made Scalable
Orthogonal finetuning (OFT) offers highly parameter-efficient adaptation while preventing catastrophic forgetting, but its high runtime and memory demands limit practical deployment. We identify the core computational bottleneck in OFT as its weight-centric implementation, which relies on costly matrix-matrix multiplications with cubic complexity. To overcome this, we propose OFTv2, an input-centric reformulation that instead uses matrix-vector multiplications (i.e., matrix-free computation), reducing the computational cost to quadratic. We further introduce the Cayley-Neumann parameterization, an efficient orthogonal parameterization that approximates the matrix inversion in Cayley transform via a truncated Neumann series. These modifications allow OFTv2 to achieve up to 10x faster training and 3x lower GPU memory usage without compromising performance. In addition, we extend OFTv2 to support finetuning quantized foundation models and show that it outperforms the popular QLoRA in training stability, efficiency, and memory usage.
comment: Technical report (17 pages, 7 figures, project page: https://spherelab.ai/oftv2/)
☆ MAM: Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis via Role-Specialized Collaboration ACL 2025
Recent advancements in medical Large Language Models (LLMs) have showcased their powerful reasoning and diagnostic capabilities. Despite their success, current unified multimodal medical LLMs face limitations in knowledge update costs, comprehensiveness, and flexibility. To address these challenges, we introduce the Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis (MAM). Inspired by our empirical findings highlighting the benefits of role assignment and diagnostic discernment in LLMs, MAM decomposes the medical diagnostic process into specialized roles: a General Practitioner, Specialist Team, Radiologist, Medical Assistant, and Director, each embodied by an LLM-based agent. This modular and collaborative framework enables efficient knowledge updates and leverages existing medical LLMs and knowledge bases. Extensive experimental evaluations conducted on a wide range of publicly accessible multimodal medical datasets, incorporating text, image, audio, and video modalities, demonstrate that MAM consistently surpasses the performance of modality-specific LLMs. Notably, MAM achieves significant performance improvements ranging from 18% to 365% compared to baseline models. Our code is released at https://github.com/yczhou001/MAM.
comment: ACL 2025 Findings
☆ How Effectively Can BERT Models Interpret Context and Detect Bengali Communal Violent Text?
The spread of cyber hatred has led to communal violence, fueling aggression and conflicts between various religious, ethnic, and social groups, posing a significant threat to social harmony. Despite its critical importance, the classification of communal violent text remains an underexplored area in existing research. This study aims to enhance the accuracy of detecting text that incites communal violence, focusing specifically on Bengali textual data sourced from social media platforms. We introduce a fine-tuned BanglaBERT model tailored for this task, achieving a macro F1 score of 0.60. To address the issue of data imbalance, our dataset was expanded by adding 1,794 instances, which facilitated the development and evaluation of a fine-tuned ensemble model. This ensemble model demonstrated an improved performance, achieving a macro F1 score of 0.63, thus highlighting its effectiveness in this domain. In addition to quantitative performance metrics, qualitative analysis revealed instances where the models struggled with context understanding, leading to occasional misclassifications, even when predictions were made with high confidence. Through analyzing the cosine similarity between words, we identified certain limitations in the pre-trained BanglaBERT models, particularly in their ability to distinguish between closely related communal and non-communal terms. To further interpret the model's decisions, we applied LIME, which helped to uncover specific areas where the model struggled in understanding context, contributing to errors in classification. These findings highlight the promise of NLP and interpretability tools in reducing online communal violence. Our work contributes to the growing body of research in communal violence detection and offers a foundation for future studies aiming to refine these techniques for better accuracy and societal impact.
☆ Scaling Speculative Decoding with Lookahead Reasoning
Reasoning models excel by generating long chain-of-thoughts, but decoding the resulting thousands of tokens is slow. Token-level speculative decoding (SD) helps, but its benefit is capped, because the chance that an entire $\gamma$-token guess is correct falls exponentially as $\gamma$ grows. This means allocating more compute for longer token drafts faces an algorithmic ceiling -- making the speedup modest and hardware-agnostic. We raise this ceiling with Lookahead Reasoning, which exploits a second, step-level layer of parallelism. Our key insight is that reasoning models generate step-by-step, and each step needs only to be semantically correct, not exact token matching. In Lookahead Reasoning, a lightweight draft model proposes several future steps; the target model expands each proposal in one batched pass, and a verifier keeps semantically correct steps while letting the target regenerate any that fail. Token-level SD still operates within each reasoning step, so the two layers of parallelism multiply. We show Lookahead Reasoning lifts the peak speedup of SD both theoretically and empirically. Across GSM8K, AIME, and other benchmarks, Lookahead Reasoning improves the speedup of SD from 1.4x to 2.1x while preserving answer quality, and its speedup scales better with additional GPU throughput. Our code is available at https://github.com/hao-ai-lab/LookaheadReasoning
☆ Evaluating Compliance with Visualization Guidelines in Diagrams for Scientific Publications Using Large Vision Language Models
Diagrams are widely used to visualize data in publications. The research field of data visualization deals with defining principles and guidelines for the creation and use of these diagrams, which are often not known or adhered to by researchers, leading to misinformation caused by providing inaccurate or incomplete information. In this work, large Vision Language Models (VLMs) are used to analyze diagrams in order to identify potential problems in regards to selected data visualization principles and guidelines. To determine the suitability of VLMs for these tasks, five open source VLMs and five prompting strategies are compared using a set of questions derived from selected data visualization guidelines. The results show that the employed VLMs work well to accurately analyze diagram types (F1-score 82.49 %), 3D effects (F1-score 98.55 %), axes labels (F1-score 76.74 %), lines (RMSE 1.16), colors (RMSE 1.60) and legends (F1-score 96.64 %, RMSE 0.70), while they cannot reliably provide feedback about the image quality (F1-score 0.74 %) and tick marks/labels (F1-score 46.13 %). Among the employed VLMs, Qwen2.5VL performs best, and the summarizing prompting strategy performs best for most of the experimental questions. It is shown that VLMs can be used to automatically identify a number of potential issues in diagrams, such as missing axes labels, missing legends, and unnecessary 3D effects. The approach laid out in this work can be extended for further aspects of data visualization.
comment: Accepted at ICDAR 2025
☆ KnowRL: Exploring Knowledgeable Reinforcement Learning for Factuality
Large Language Models (LLMs), particularly slow-thinking models, often exhibit severe hallucination, outputting incorrect content due to an inability to accurately recognize knowledge boundaries during reasoning. While Reinforcement Learning (RL) can enhance complex reasoning abilities, its outcome-oriented reward mechanism often lacks factual supervision over the thinking process, further exacerbating the hallucination problem. To address the high hallucination in slow-thinking models, we propose Knowledge-enhanced RL, KnowRL. KnowRL guides models to perform fact-based slow thinking by integrating a factuality reward, based on knowledge verification, into the RL training process, helping them recognize their knowledge boundaries. KnowRL guides models to perform fact-based slow thinking by integrating a factuality reward, based on knowledge verification, into the RL training process, helping them recognize their knowledge boundaries. This targeted factual input during RL training enables the model to learn and internalize fact-based reasoning strategies. By directly rewarding adherence to facts within the reasoning steps, KnowRL fosters a more reliable thinking process. Experimental results on three hallucination evaluation datasets and two reasoning evaluation datasets demonstrate that KnowRL effectively mitigates hallucinations in slow-thinking models while maintaining their original strong reasoning capabilities. Our code is available at https://github.com/zjunlp/KnowRL.
comment: Work in progress
LLM-Based Social Simulations Require a Boundary
This position paper argues that large language model (LLM)-based social simulations should establish clear boundaries to meaningfully contribute to social science research. While LLMs offer promising capabilities for modeling human-like agents compared to traditional agent-based modeling, they face fundamental limitations that constrain their reliability for social pattern discovery. The core issue lies in LLMs' tendency towards an ``average persona'' that lacks sufficient behavioral heterogeneity, a critical requirement for simulating complex social dynamics. We examine three key boundary problems: alignment (simulated behaviors matching real-world patterns), consistency (maintaining coherent agent behavior over time), and robustness (reproducibility under varying conditions). We propose heuristic boundaries for determining when LLM-based simulations can reliably advance social science understanding. We believe that these simulations are more valuable when focusing on (1) collective patterns rather than individual trajectories, (2) agent behaviors aligning with real population averages despite limited variance, and (3) proper validation methods available for testing simulation robustness. We provide a practical checklist to guide researchers in determining the appropriate scope and claims for LLM-based social simulations.
☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate models across three dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities.
comment: Work in progress
☆ Kling-Foley: Multimodal Diffusion Transformer for High-Quality Video-to-Audio Generation
We propose Kling-Foley, a large-scale multimodal Video-to-Audio generation model that synthesizes high-quality audio synchronized with video content. In Kling-Foley, we introduce multimodal diffusion transformers to model the interactions between video, audio, and text modalities, and combine it with a visual semantic representation module and an audio-visual synchronization module to enhance alignment capabilities. Specifically, these modules align video conditions with latent audio elements at the frame level, thereby improving semantic alignment and audio-visual synchronization. Together with text conditions, this integrated approach enables precise generation of video-matching sound effects. In addition, we propose a universal latent audio codec that can achieve high-quality modeling in various scenarios such as sound effects, speech, singing, and music. We employ a stereo rendering method that imbues synthesized audio with a spatial presence. At the same time, in order to make up for the incomplete types and annotations of the open-source benchmark, we also open-source an industrial-level benchmark Kling-Audio-Eval. Our experiments show that Kling-Foley trained with the flow matching objective achieves new audio-visual SOTA performance among public models in terms of distribution matching, semantic alignment, temporal alignment and audio quality.
☆ SRFT: A Single-Stage Method with Supervised and Reinforcement Fine-Tuning for Reasoning
Large language models (LLMs) have achieved remarkable progress in reasoning tasks, yet the optimal integration of Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) remains a fundamental challenge. Through comprehensive analysis of token distributions, learning dynamics, and integration mechanisms from entropy-based perspectives, we reveal key differences between these paradigms: SFT induces coarse-grained global changes to LLM policy distributions, while RL performs fine-grained selective optimizations, with entropy serving as a critical indicator of training effectiveness. Building on these observations, we propose Supervised Reinforcement Fine-Tuning (SRFT), a single-stage method that unifies both fine-tuning paradigms through entropy-aware weighting mechanisms. Our approach simultaneously applies SFT and RL to directly optimize the LLM using demonstrations and self-exploration rollouts rather than through two-stage sequential methods. Extensive experiments show that SRFT achieves 59.1% average accuracy, outperforming zero-RL methods by 9.0% on five mathematical reasoning benchmarks and 10.9% on three out-of-distribution benchmarks.
☆ Accurate, fast, cheap: Choose three. Replacing Multi-Head-Attention with Bidirectional Recurrent Attention for Long-Form ASR
Long-form speech recognition is an application area of increasing research focus. ASR models based on multi-head attention (MHA) are ill-suited to long-form ASR because of their quadratic complexity in sequence length. We build on recent work that has investigated linear complexity recurrent attention (RA) layers for ASR. We find that bidirectional RA layers can match the accuracy of MHA for both short- and long-form applications. We present a strong limited-context attention (LCA) baseline, and show that RA layers are just as accurate while being more efficient. We develop a long-form training paradigm which further improves RA performance, leading to better accuracy than LCA with 44% higher throughput. We also present Direction Dropout, a novel regularization method that improves accuracy, provides fine-grained control of the accuracy/throughput trade-off of bidirectional RA, and enables a new alternating directions decoding mode with even higher throughput.
comment: Accepted to Interspeech 2025
☆ Arabic Dialect Classification using RNNs, Transformers, and Large Language Models: A Comparative Analysis
The Arabic language is among the most popular languages in the world with a huge variety of dialects spoken in 22 countries. In this study, we address the problem of classifying 18 Arabic dialects of the QADI dataset of Arabic tweets. RNN models, Transformer models, and large language models (LLMs) via prompt engineering are created and tested. Among these, MARBERTv2 performed best with 65% accuracy and 64% F1-score. Through the use of state-of-the-art preprocessing techniques and the latest NLP models, this paper identifies the most significant linguistic issues in Arabic dialect identification. The results corroborate applications like personalized chatbots that respond in users' dialects, social media monitoring, and greater accessibility for Arabic communities.
☆ Evaluating Rare Disease Diagnostic Performance in Symptom Checkers: A Synthetic Vignette Simulation Approach
Background: Symptom Checkers (SCs) provide users with personalized medical information. To prevent performance degradation from algorithm updates, SC developers must evaluate diagnostic performance changes for individual diseases before deployment. However, acquiring sufficient evaluation data for rare diseases is difficult, and manually creating numerous clinical vignettes is costly and impractical. Objective: This study proposes and validates a novel Synthetic Vignette Simulation Approach to evaluate diagnostic performance changes for individual rare diseases following SC algorithm updates. Methods: We used disease-phenotype annotations from the Human Phenotype Ontology (HPO), a knowledge database for rare diseases, to generate synthetic vignettes. With these, we simulated SC interviews to estimate the impact of algorithm updates on real-world diagnostic performance. The method's effectiveness was evaluated retrospectively by comparing estimated values with actual metric changes using the R 2(R-squared) coefficient. Results: The experiment included eight past SC algorithm updates. For updates on diseases with frequency information in HPO (n=5), the R^2 for recall@8 change was 0.831 (p=0.031), and for precision@8 change, it was 0.78 (p=0.047), indicating the method can predict post-deployment performance. In contrast, large prediction errors occurred for diseases without frequency information (n=3), highlighting its importance. The manual effort to map HPO phenotypes to SC symptoms was approximately 2 hours per disease. Conclusions: Our method enables pre-deployment evaluation of SC algorithm changes for individual rare diseases using a publicly available, expert-created knowledge base. This transparent and low-cost approach allows developers to efficiently improve diagnostic performance for rare diseases, potentially enhancing support for early diagnosis.
☆ NEAR$^2$: A Nested Embedding Approach to Efficient Product Retrieval and Ranking
E-commerce information retrieval (IR) systems struggle to simultaneously achieve high accuracy in interpreting complex user queries and maintain efficient processing of vast product catalogs. The dual challenge lies in precisely matching user intent with relevant products while managing the computational demands of real-time search across massive inventories. In this paper, we propose a Nested Embedding Approach to product Retrieval and Ranking, called NEAR$^2$, which can achieve up to $12$ times efficiency in embedding size at inference time while introducing no extra cost in training and improving performance in accuracy for various encoder-based Transformer models. We validate our approach using different loss functions for the retrieval and ranking task, including multiple negative ranking loss and online contrastive loss, on four different test sets with various IR challenges such as short and implicit queries. Our approach achieves an improved performance over a smaller embedding dimension, compared to any existing models.
comment: This paper is accepted to the 2025 SIGIR Workshop on eCommerce
☆ Breaking Barriers: Do Reinforcement Post Training Gains Transfer To Unseen Domains?
Reinforcement post training (RPT) has recently shown promise in improving the reasoning abilities of large language models (LLMs). However, it remains unclear how well these improvements generalize to new domains, as prior work evaluates RPT models on data from the same domains used for fine-tuning. To understand the generalizability of RPT, we conduct two studies. (1) Observational: We compare a wide range of open-weight RPT models against their corresponding base models across multiple domains, including both seen and unseen domains in their fine-tuning data. (2) Interventional: we fine-tune LLMs with RPT on single domains and evaluate their performance across multiple domains. Both studies converge on the same conclusion that, although RPT brings substantial gains on tasks similar to the fine-tuning data, the gains generalize inconsistently and can vanish on domains with different reasoning patterns.
comment: 9 pages, 4 figures, 2 tables
☆ Outlier-Safe Pre-Training for Robust 4-Bit Quantization of Large Language Models
Extreme activation outliers in Large Language Models (LLMs) critically degrade quantization performance, hindering efficient on-device deployment. While channel-wise operations and adaptive gradient scaling are recognized causes, practical mitigation remains challenging. We introduce Outlier-Safe Pre-Training (OSP), a practical guideline that proactively prevents outlier formation rather than relying on post-hoc mitigation. OSP combines three key innovations: (1) the Muon optimizer, eliminating privileged bases while maintaining training efficiency; (2) Single-Scale RMSNorm, preventing channel-wise amplification; and (3) a learnable embedding projection, redistributing activation magnitudes originating from embedding matrices. We validate OSP by training a 1.4B-parameter model on 1 trillion tokens, which is the first production-scale LLM trained without such outliers. Under aggressive 4-bit quantization, our OSP model achieves a 35.7 average score across 10 benchmarks (compared to 26.5 for an Adam-trained model), with only a 2% training overhead. Remarkably, OSP models exhibit near-zero excess kurtosis (0.04) compared to extreme values (1818.56) in standard models, fundamentally altering LLM quantization behavior. Our work demonstrates that outliers are not inherent to LLMs but are consequences of training strategies, paving the way for more efficient LLM deployment. The source code and pretrained checkpoints are available at https://github.com/dmis-lab/Outlier-Safe-Pre-Training.
☆ Recurrent Visual Feature Extraction and Stereo Attentions for CT Report Generation
Generating reports for computed tomography (CT) images is a challenging task, while similar to existing studies for medical image report generation, yet has its unique characteristics, such as spatial encoding of multiple images, alignment between image volume and texts, etc. Existing solutions typically use general 2D or 3D image processing techniques to extract features from a CT volume, where they firstly compress the volume and then divide the compressed CT slices into patches for visual encoding. These approaches do not explicitly account for the transformations among CT slices, nor do they effectively integrate multi-level image features, particularly those containing specific organ lesions, to instruct CT report generation (CTRG). In considering the strong correlation among consecutive slices in CT scans, in this paper, we propose a large language model (LLM) based CTRG method with recurrent visual feature extraction and stereo attentions for hierarchical feature modeling. Specifically, we use a vision Transformer to recurrently process each slice in a CT volume, and employ a set of attentions over the encoded slices from different perspectives to selectively obtain important visual information and align them with textual features, so as to better instruct an LLM for CTRG. Experiment results and further analysis on the benchmark M3D-Cap dataset show that our method outperforms strong baseline models and achieves state-of-the-art results, demonstrating its validity and effectiveness.
comment: 7 pages, 3 figures
☆ Tailored Conversations beyond LLMs: A RL-Based Dialogue Manager
In this work, we propose a novel framework that integrates large language models (LLMs) with an RL-based dialogue manager for open-ended dialogue with a specific goal. By leveraging hierarchical reinforcement learning to model the structured phases of dialogue and employ meta-learning to enhance adaptability across diverse user profiles, our approach enhances adaptability and efficiency, enabling the system to learn from limited data, transition fluidly between dialogue phases, and personalize responses to heterogeneous patient needs. We apply our framework to Motivational Interviews, aiming to foster behavior change, and demonstrate that the proposed dialogue manager outperforms a state-of-the-art LLM baseline in terms of reward, showing a potential benefit of conditioning LLMs to create open-ended dialogue systems with specific goals.
☆ Correcting Hallucinations in News Summaries: Exploration of Self-Correcting LLM Methods with External Knowledge ACL 2025
While large language models (LLMs) have shown remarkable capabilities to generate coherent text, they suffer from the issue of hallucinations -- factually inaccurate statements. Among numerous approaches to tackle hallucinations, especially promising are the self-correcting methods. They leverage the multi-turn nature of LLMs to iteratively generate verification questions inquiring additional evidence, answer them with internal or external knowledge, and use that to refine the original response with the new corrections. These methods have been explored for encyclopedic generation, but less so for domains like news summarization. In this work, we investigate two state-of-the-art self-correcting systems by applying them to correct hallucinated summaries using evidence from three search engines. We analyze the results and provide insights into systems' performance, revealing interesting practical findings on the benefits of search engine snippets and few-shot prompts, as well as high alignment of G-Eval and human evaluation.
comment: Accepted to FEVER @ ACL 2025
☆ Social Hatred: Efficient Multimodal Detection of Hatemongers
Automatic detection of online hate speech serves as a crucial step in the detoxification of the online discourse. Moreover, accurate classification can promote a better understanding of the proliferation of hate as a social phenomenon. While most prior work focus on the detection of hateful utterances, we argue that focusing on the user level is as important, albeit challenging. In this paper we consider a multimodal aggregative approach for the detection of hate-mongers, taking into account the potentially hateful texts, user activity, and the user network. Evaluating our method on three unique datasets X (Twitter), Gab, and Parler we show that processing a user's texts in her social context significantly improves the detection of hate mongers, compared to previously used text and graph-based methods. We offer comprehensive set of results obtained in different experimental settings as well as qualitative analysis of illustrative cases. Our method can be used to improve the classification of coded messages, dog-whistling, and racial gas-lighting, as well as to inform intervention measures. Moreover, we demonstrate that our multimodal approach performs well across very different content platforms and over large datasets and networks.
comment: To be published in WOAH, July 2025. arXiv admin note: text overlap with arXiv:2409.14464
☆ ECCoT: A Framework for Enhancing Effective Cognition via Chain of Thought in Large Language Model
In the era of large-scale artificial intelligence, Large Language Models (LLMs) have made significant strides in natural language processing. However, they often lack transparency and generate unreliable outputs, raising concerns about their interpretability. To address this, the Chain of Thought (CoT) prompting method structures reasoning into step-by-step deductions. Yet, not all reasoning chains are valid, and errors can lead to unreliable conclusions. We propose ECCoT, an End-to-End Cognitive Chain of Thought Validation Framework, to evaluate and refine reasoning chains in LLMs. ECCoT integrates the Markov Random Field-Embedded Topic Model (MRF-ETM) for topic-aware CoT generation and Causal Sentence-BERT (CSBert) for causal reasoning alignment. By filtering ineffective chains using structured ordering statistics, ECCoT improves interpretability, reduces biases, and enhances the trustworthiness of LLM-based decision-making. Key contributions include the introduction of ECCoT, MRF-ETM for topic-driven CoT generation, and CSBert for causal reasoning enhancement. Code is released at: https://github.com/erwinmsmith/ECCoT.git.
☆ Fake or Real, Can Robots Tell? Evaluating Embodied Vision-Language Models on Real and 3D-Printed Objects
Robotic scene understanding increasingly relies on vision-language models (VLMs) to generate natural language descriptions of the environment. In this work, we present a comparative study of captioning strategies for tabletop scenes captured by a robotic arm equipped with an RGB camera. The robot collects images of objects from multiple viewpoints, and we evaluate several models that generate scene descriptions. We compare the performance of various captioning models, like BLIP and VLMs. Our experiments examine the trade-offs between single-view and multi-view captioning, and difference between recognising real-world and 3D printed objects. We quantitatively evaluate object identification accuracy, completeness, and naturalness of the generated captions. Results show that VLMs can be used in robotic settings where common objects need to be recognised, but fail to generalise to novel representations. Our findings provide practical insights into deploying foundation models for embodied agents in real-world settings.
☆ Has Machine Translation Evaluation Achieved Human Parity? The Human Reference and the Limits of Progress ACL 2025
In Machine Translation (MT) evaluation, metric performance is assessed based on agreement with human judgments. In recent years, automatic metrics have demonstrated increasingly high levels of agreement with humans. To gain a clearer understanding of metric performance and establish an upper bound, we incorporate human baselines in the MT meta-evaluation, that is, the assessment of MT metrics' capabilities. Our results show that human annotators are not consistently superior to automatic metrics, with state-of-the-art metrics often ranking on par with or higher than human baselines. Despite these findings suggesting human parity, we discuss several reasons for caution. Finally, we explore the broader implications of our results for the research field, asking: Can we still reliably measure improvements in MT evaluation? With this work, we aim to shed light on the limits of our ability to measure progress in the field, fostering discussion on an issue that we believe is crucial to the entire MT evaluation community.
comment: Accepted at ACL 2025 Main Conference. 24 pages
☆ RCStat: A Statistical Framework for using Relative Contextualization in Transformers
Prior work on input-token importance in auto-regressive transformers has relied on Softmax-normalized attention weights, which obscure the richer structure of pre-Softmax query-key logits. We introduce RCStat, a statistical framework that harnesses raw attention logits via Relative Contextualization (RC), a random variable measuring contextual alignment between token segments, and derive an efficient upper bound for RC. We demonstrate two applications: (i) Key-Value compression, where RC-based thresholds drive adaptive key-value eviction for substantial cache reduction with minimal quality loss; and (ii) Attribution, where RC yields higher-fidelity token-, sentence-, and chunk-level explanations than post-Softmax methods. Across question answering, summarization, and attribution benchmarks, RCStat achieves significant empirical gains, delivering state-of-the-art compression and attribution performance without any model retraining.
☆ Health Sentinel: An AI Pipeline For Real-time Disease Outbreak Detection
Early detection of disease outbreaks is crucial to ensure timely intervention by the health authorities. Due to the challenges associated with traditional indicator-based surveillance, monitoring informal sources such as online media has become increasingly popular. However, owing to the number of online articles getting published everyday, manual screening of the articles is impractical. To address this, we propose Health Sentinel. It is a multi-stage information extraction pipeline that uses a combination of ML and non-ML methods to extract events-structured information concerning disease outbreaks or other unusual health events-from online articles. The extracted events are made available to the Media Scanning and Verification Cell (MSVC) at the National Centre for Disease Control (NCDC), Delhi for analysis, interpretation and further dissemination to local agencies for timely intervention. From April 2022 till date, Health Sentinel has processed over 300 million news articles and identified over 95,000 unique health events across India of which over 3,500 events were shortlisted by the public health experts at NCDC as potential outbreaks.
☆ KnowMap: Efficient Knowledge-Driven Task Adaptation for LLMs
While Large Language Models (LLMs) possess significant capabilities in open-world agent tasks, they also face challenges in rapidly adapting to new, specialized tasks due to their reliance on static pre-trained knowledge. Traditional methods such as fine-tuning are often costly, data-intensive, and may lead to "catastrophic forgetting." Therefore, we present KnowMap, a novel approach that dynamically constructs a knowledge base from environmental and experiential data. KnowMap fine-tunes a small knowledge-embedding model to equip a larger LLM with valuable task-specific knowledge. Our experiments on the ScienceWorld benchmark demonstrate 17.71% improvement for the performance of gpt-4-turbo model. KnowMap not only provides an efficient and effective means for LLM task-adapting, but also highlights how integrating environmental and experiential knowledge can enhance LLMs' reasoning capabilities.
☆ Automatic Posology Structuration : What role for LLMs?
Automatically structuring posology instructions is essential for improving medication safety and enabling clinical decision support. In French prescriptions, these instructions are often ambiguous, irregular, or colloquial, limiting the effectiveness of classic ML pipelines. We explore the use of Large Language Models (LLMs) to convert free-text posologies into structured formats, comparing prompt-based methods and fine-tuning against a "pre-LLM" system based on Named Entity Recognition and Linking (NERL). Our results show that while prompting improves performance, only fine-tuned LLMs match the accuracy of the baseline. Through error analysis, we observe complementary strengths: NERL offers structural precision, while LLMs better handle semantic nuances. Based on this, we propose a hybrid pipeline that routes low-confidence cases from NERL (<0.8) to the LLM, selecting outputs based on confidence scores. This strategy achieves 91% structuration accuracy while minimizing latency and compute. Our results show that this hybrid approach improves structuration accuracy while limiting computational cost, offering a scalable solution for real-world clinical use.
☆ heiDS at ArchEHR-QA 2025: From Fixed-k to Query-dependent-k for Retrieval Augmented Generation ACL 2025
This paper presents the approach of our team called heiDS for the ArchEHR-QA 2025 shared task. A pipeline using a retrieval augmented generation (RAG) framework is designed to generate answers that are attributed to clinical evidence from the electronic health records (EHRs) of patients in response to patient-specific questions. We explored various components of a RAG framework, focusing on ranked list truncation (RLT) retrieval strategies and attribution approaches. Instead of using a fixed top-k RLT retrieval strategy, we employ a query-dependent-k retrieval strategy, including the existing surprise and autocut methods and two new methods proposed in this work, autocut* and elbow. The experimental results show the benefits of our strategy in producing factual and relevant answers when compared to a fixed-$k$.
comment: 12 pages, 2 figures, 6 tables, Workshop on BioNLP and Shared Tasks at ACL 2025
☆ AnTKV: Anchor Token-Aware Sub-Bit Vector Quantization for KV Cache in Large Language Models
Quantization has emerged as an effective and lightweight solution to reduce the memory footprint of the KV cache in Large Language Models (LLMs). Nevertheless, minimizing the performance degradation caused by ultra-low-bit KV cache quantization remains a significant challenge. We observe that quantizing the KV cache of different tokens has varying impacts on the quality of attention outputs. To systematically investigate this phenomenon, we perform forward error propagation analysis on attention and propose the Anchor Score (AnS) that quantifies the sensitivity of each token's KV cache to quantization-induced error. Our analysis reveals significant disparities in AnS across tokens, suggesting that preserving a small subset with full precision (FP16) of high-AnS tokens can greatly mitigate accuracy loss in aggressive quantization scenarios. Based on this insight, we introduce AnTKV, a novel framework that leverages Anchor Token-aware Vector Quantization to compress the KV cache. Furthermore, to support efficient deployment, we design and develop a triton kernel that is fully compatible with FlashAttention, enabling fast online Anchor Token selection. AnTKV enables LLaMA-3-8B to handle context lengths up to 840K tokens on a single 80GB A100 GPU, while achieving up to 3.5x higher decoding throughput compared to the FP16 baseline. Our experiment results demonstrate that AnTKV matches or outperforms prior works such as KIVI, SKVQ, KVQuant, and CQ under 4-bit settings. More importantly, AnTKV achieves significantly lower perplexity under ultra-low-bit quantization on Mistral-7B, with only 6.32 at 1-bit and 8.87 at 0.375-bit, compared to the FP16 baseline of 4.73.
☆ NaviAgent: Bilevel Planning on Tool Dependency Graphs for Function Calling
LLMs' reliance on static knowledge and fragile tool invocation severely hinders the orchestration of complex, heterogeneous toolchains, particularly at large scales. Existing methods typically use rigid single-path execution, resulting in poor error recovery and exponentially growing search spaces. We introduce NaviAgent, a graph-navigated bilevel planning architecture for robust function calling, comprising a Multi-Path Decider and Graph-Encoded Navigator. As an LLM-powered agent, the Multi-Path Decider defines a four-dimensional decision space and continuously perceives environmental states, dynamically selecting the optimal action to fully cover all tool invocation scenarios. The Graph-Encoded Navigator constructs a Tool Dependency Heterogeneous Graph (TDHG), where node embeddings explicitly fuse API schema structure with historical invocation behavior. It also integrates a novel heuristic search strategy that guides the Decider toward efficient and highly successful toolchains, even for unseen tool combinations. Experiments show that NaviAgent consistently achieves the highest task success rate (TSR) across all foundation models and task complexities, outperforming the average baselines (ReAct, ToolLLM, {\alpha}-UMI) by 13.5%, 16.4%, and 19.0% on Qwen2.5-14B, Qwen2.5-32B, and Deepseek-V3, respectively. Its execution steps are typically within one step of the most efficient baseline, ensuring a strong balance between quality and efficiency. Notably, a fine-tuned Qwen2.5-14B model achieves a TSR of 49.5%, surpassing the much larger 32B model (44.9%) under our architecture. Incorporating the Graph-Encoded Navigator further boosts TSR by an average of 2.4 points, with gains up over 9 points on complex tasks for larger models (Deepseek-V3 and GPT-4o), highlighting its essential role in toolchain orchestration.
☆ Is Long-to-Short a Free Lunch? Investigating Inconsistency and Reasoning Efficiency in LRMs
Large Reasoning Models (LRMs) have achieved remarkable performance on complex tasks by engaging in extended reasoning before producing final answers, yet this strength introduces the risk of overthinking, where excessive token generation occurs even for simple tasks. While recent work in efficient reasoning seeks to reduce reasoning length while preserving accuracy, it remains unclear whether such optimization is truly a free lunch. Drawing on the intuition that compressing reasoning may reduce the robustness of model responses and lead models to omit key reasoning steps, we investigate whether efficient reasoning strategies introduce behavioral inconsistencies. To systematically assess this, we introduce $ICBENCH$, a benchmark designed to measure inconsistency in LRMs across three dimensions: inconsistency across task settings (ITS), inconsistency between training objectives and learned behavior (TR-LB), and inconsistency between internal reasoning and self-explanations (IR-SE). Applying $ICBENCH$ to a range of open-source LRMs, we find that while larger models generally exhibit greater consistency than smaller ones, they all display widespread "scheming" behaviors, including self-disagreement, post-hoc rationalization, and the withholding of reasoning cues. Crucially, our results demonstrate that efficient reasoning strategies such as No-Thinking and Simple Token-Budget consistently increase all three defined types of inconsistency. These findings suggest that although efficient reasoning enhances token-level efficiency, further investigation is imperative to ascertain whether it concurrently introduces the risk of models evading effective supervision.
☆ Dialogic Pedagogy for Large Language Models: Aligning Conversational AI with Proven Theories of Learning
Large Language Models (LLMs) are rapidly transforming education by enabling rich conversational learning experiences. This article provides a comprehensive review of how LLM-based conversational agents are being used in higher education, with extensions to secondary and lifelong learning contexts. We synthesize existing literature on LLMs in education and theories of conversational and dialogic pedagogy - including Vygotsky's sociocultural learning (scaffolding and the Zone of Proximal Development), the Socratic method, and Laurillard's conversational framework - and examine how prompting strategies and retrieval-augmented generation (RAG) can align LLM behaviors with these pedagogical theories, and how it can support personalized, adaptive learning. We map educational theories to LLM capabilities, highlighting where LLM-driven dialogue supports established learning principles and where it challenges or falls short of traditional pedagogical assumptions. Notable gaps in applying prior theories to LLMs are identified, such as the models tendency to provide direct answers instead of fostering co-construction of knowledge, and the need to account for the constant availability and broad but non-human expertise of LLM tutors. In response, we propose practical strategies to better align LLM interactions with sound pedagogy - for example, designing prompts that encourage Socratic questioning, scaffolded guidance, and student reflection, as well as integrating retrieval mechanisms to ensure accuracy and contextual relevance. Our aim is to bridge the gap between educational theory and the emerging practice of AI-driven conversational learning, offering insights and tools for making LLM-based dialogues more educationally productive and theory-aligned.
☆ Commonsense Generation and Evaluation for Dialogue Systems using Large Language Models
This paper provides preliminary results on exploring the task of performing turn-level data augmentation for dialogue system based on different types of commonsense relationships, and the automatic evaluation of the generated synthetic turns. The proposed methodology takes advantage of the extended knowledge and zero-shot capabilities of pretrained Large Language Models (LLMs) to follow instructions, understand contextual information, and their commonsense reasoning capabilities. The approach draws inspiration from methodologies like Chain-of-Thought (CoT), applied more explicitly to the task of prompt-based generation for dialogue-based data augmentation conditioned on commonsense attributes, and the automatic evaluation of the generated dialogues. To assess the effectiveness of the proposed approach, first we extracted 200 randomly selected partial dialogues, from 5 different well-known dialogue datasets, and generate alternative responses conditioned on different event commonsense attributes. This novel dataset allows us to measure the proficiency of LLMs in generating contextually relevant commonsense knowledge, particularly up to 12 different specific ATOMIC [10] database relations. Secondly, we propose an evaluation framework to automatically detect the quality of the generated dataset inspired by the ACCENT [26] metric, which offers a nuanced approach to assess event commonsense. However, our method does not follow ACCENT's complex eventrelation tuple extraction process. Instead, we propose an instruction-based prompt for each commonsense attribute and use state-of-the-art LLMs to automatically detect the original attributes used when creating each augmented turn in the previous step. Preliminary results suggest that our approach effectively harnesses LLMs capabilities for commonsense reasoning and evaluation in dialogue systems.
☆ MuBench: Assessment of Multilingual Capabilities of Large Language Models Across 61 Languages
Multilingual large language models (LLMs) are advancing rapidly, with new models frequently claiming support for an increasing number of languages. However, existing evaluation datasets are limited and lack cross-lingual alignment, leaving assessments of multilingual capabilities fragmented in both language and skill coverage. To address this, we introduce MuBench, a benchmark covering 61 languages and evaluating a broad range of capabilities. We evaluate several state-of-the-art multilingual LLMs and find notable gaps between claimed and actual language coverage, particularly a persistent performance disparity between English and low-resource languages. Leveraging MuBench's alignment, we propose Multilingual Consistency (MLC) as a complementary metric to accuracy for analyzing performance bottlenecks and guiding model improvement. Finally, we pretrain a suite of 1.2B-parameter models on English and Chinese with 500B tokens, varying language ratios and parallel data proportions to investigate cross-lingual transfer dynamics.
☆ Can Large Language Models Capture Human Annotator Disagreements?
Human annotation variation (i.e., annotation disagreements) is common in NLP and often reflects important information such as task subjectivity and sample ambiguity. While Large Language Models (LLMs) are increasingly used for automatic annotation to reduce human effort, their evaluation often focuses on predicting the majority-voted "ground truth" labels. It is still unclear, however, whether these models also capture informative human annotation variation. Our work addresses this gap by extensively evaluating LLMs' ability to predict annotation disagreements without access to repeated human labels. Our results show that LLMs struggle with modeling disagreements, which can be overlooked by majority label-based evaluations. Notably, while RLVR-style (Reinforcement learning with verifiable rewards) reasoning generally boosts LLM performance, it degrades performance in disagreement prediction. Our findings highlight the critical need for evaluating and improving LLM annotators in disagreement modeling. Code and data at https://github.com/EdisonNi-hku/Disagreement_Prediction.
comment: Preprint Under Review
☆ TTSDS2: Resources and Benchmark for Evaluating Human-Quality Text to Speech Systems
Evaluation of Text to Speech (TTS) systems is challenging and resource-intensive. Subjective metrics such as Mean Opinion Score (MOS) are not easily comparable between works. Objective metrics are frequently used, but rarely validated against subjective ones. Both kinds of metrics are challenged by recent TTS systems capable of producing synthetic speech indistinguishable from real speech. In this work, we introduce Text to Speech Distribution Score 2 (TTSDS2), a more robust and improved version of TTSDS. Across a range of domains and languages, it is the only one out of 16 compared metrics to correlate with a Spearman correlation above 0.50 for every domain and subjective score evaluated. We also release a range of resources for evaluating synthetic speech close to real speech: A dataset with over 11,000 subjective opinion score ratings; a pipeline for continually recreating a multilingual test dataset to avoid data leakage; and a continually updated benchmark for TTS in 14 languages.
☆ Mem4Nav: Boosting Vision-and-Language Navigation in Urban Environments with a Hierarchical Spatial-Cognition Long-Short Memory System
Vision-and-Language Navigation (VLN) in large-scale urban environments requires embodied agents to ground linguistic instructions in complex scenes and recall relevant experiences over extended time horizons. Prior modular pipelines offer interpretability but lack unified memory, while end-to-end (M)LLM agents excel at fusing vision and language yet remain constrained by fixed context windows and implicit spatial reasoning. We introduce \textbf{Mem4Nav}, a hierarchical spatial-cognition long-short memory system that can augment any VLN backbone. Mem4Nav fuses a sparse octree for fine-grained voxel indexing with a semantic topology graph for high-level landmark connectivity, storing both in trainable memory tokens embedded via a reversible Transformer. Long-term memory (LTM) compresses and retains historical observations at both octree and graph nodes, while short-term memory (STM) caches recent multimodal entries in relative coordinates for real-time obstacle avoidance and local planning. At each step, STM retrieval sharply prunes dynamic context, and, when deeper history is needed, LTM tokens are decoded losslessly to reconstruct past embeddings. Evaluated on Touchdown and Map2Seq across three backbones (modular, state-of-the-art VLN with prompt-based LLM, and state-of-the-art VLN with strided-attention MLLM), Mem4Nav yields 7-13 pp gains in Task Completion, sufficient SPD reduction, and >10 pp nDTW improvement. Ablations confirm the indispensability of both the hierarchical map and dual memory modules. Our codes are open-sourced via https://github.com/tsinghua-fib-lab/Mem4Nav.
☆ Learning to Disentangle Latent Reasoning Rules with Language VAEs: A Systematic Study
Incorporating explicit reasoning rules within the latent space of language models (LMs) offers a promising pathway to enhance generalisation, interpretability, and controllability. While current Transformer-based language models have shown strong performance on Natural Language Inference (NLI) tasks, they often rely on memorisation rather than rule-based inference. This work investigates how reasoning rules can be explicitly embedded and memorised within the LMs through Language Variational Autoencoders (VAEs). We propose a complete pipeline for learning reasoning rules within Transformer-based language VAEs. This pipeline encompasses three rule-based reasoning tasks, a supporting theoretical framework, and a practical end-to-end architecture. The experiment illustrates the following findings: Disentangled reasoning: Under explicit signal supervision, reasoning rules - viewed as functional mappings - can be disentangled within the encoder's parametric space. This separation results in distinct clustering of rules in the output feature space. Prior knowledge injection: injecting reasoning information into the Query enables the model to more effectively retrieve the stored value Value from memory based on Key. This approach offers a simple method for integrating prior knowledge into decoder-only language models. Performance bottleneck: In mathematical reasoning tasks using Qwen2.5(0.5B), increasing sample count doesn't improve performance beyond a point. Moreover, ffn layers are better than attention layers at preserving the separation of reasoning rules in the model's parameters.
☆ Automated Detection of Pre-training Text in Black-box LLMs
Detecting whether a given text is a member of the pre-training data of Large Language Models (LLMs) is crucial for ensuring data privacy and copyright protection. Most existing methods rely on the LLM's hidden information (e.g., model parameters or token probabilities), making them ineffective in the black-box setting, where only input and output texts are accessible. Although some methods have been proposed for the black-box setting, they rely on massive manual efforts such as designing complicated questions or instructions. To address these issues, we propose VeilProbe, the first framework for automatically detecting LLMs' pre-training texts in a black-box setting without human intervention. VeilProbe utilizes a sequence-to-sequence mapping model to infer the latent mapping feature between the input text and the corresponding output suffix generated by the LLM. Then it performs the key token perturbations to obtain more distinguishable membership features. Additionally, considering real-world scenarios where the ground-truth training text samples are limited, a prototype-based membership classifier is introduced to alleviate the overfitting issue. Extensive evaluations on three widely used datasets demonstrate that our framework is effective and superior in the black-box setting.
comment: 13 pages
☆ Measuring and Guiding Monosemanticity
There is growing interest in leveraging mechanistic interpretability and controllability to better understand and influence the internal dynamics of large language models (LLMs). However, current methods face fundamental challenges in reliably localizing and manipulating feature representations. Sparse Autoencoders (SAEs) have recently emerged as a promising direction for feature extraction at scale, yet they, too, are limited by incomplete feature isolation and unreliable monosemanticity. To systematically quantify these limitations, we introduce Feature Monosemanticity Score (FMS), a novel metric to quantify feature monosemanticity in latent representation. Building on these insights, we propose Guided Sparse Autoencoders (G-SAE), a method that conditions latent representations on labeled concepts during training. We demonstrate that reliable localization and disentanglement of target concepts within the latent space improve interpretability, detection of behavior, and control. Specifically, our evaluations on toxicity detection, writing style identification, and privacy attribute recognition show that G-SAE not only enhances monosemanticity but also enables more effective and fine-grained steering with less quality degradation. Our findings provide actionable guidelines for measuring and advancing mechanistic interpretability and control of LLMs.
☆ Spotting Out-of-Character Behavior: Atomic-Level Evaluation of Persona Fidelity in Open-Ended Generation ACL 2025
Ensuring persona fidelity in large language models (LLMs) is essential for maintaining coherent and engaging human-AI interactions. However, LLMs often exhibit Out-of-Character (OOC) behavior, where generated responses deviate from an assigned persona, leading to inconsistencies that affect model reliability. Existing evaluation methods typically assign single scores to entire responses, struggling to capture subtle persona misalignment, particularly in long-form text generation. To address this limitation, we propose an atomic-level evaluation framework that quantifies persona fidelity at a finer granularity. Our three key metrics measure the degree of persona alignment and consistency within and across generations. Our approach enables a more precise and realistic assessment of persona fidelity by identifying subtle deviations that real users would encounter. Through our experiments, we demonstrate that our framework effectively detects persona inconsistencies that prior methods overlook. By analyzing persona fidelity across diverse tasks and personality types, we reveal how task structure and persona desirability influence model adaptability, highlighting challenges in maintaining consistent persona expression.
comment: Findings of ACL 2025; github repo: https://github.com/ddindidu/atomic-persona-evaluation/
☆ In-Context Occam's Razor: How Transformers Prefer Simpler Hypotheses on the Fly
In-context learning (ICL) enables transformers to adapt to new tasks through contextual examples without parameter updates. While existing research has typically studied ICL in fixed-complexity environments, practical language models encounter tasks spanning diverse complexity levels. This paper investigates how transformers navigate hierarchical task structures where higher-complexity categories can perfectly represent any pattern generated by simpler ones. We design well-controlled testbeds based on Markov chains and linear regression that reveal transformers not only identify the appropriate complexity level for each task but also accurately infer the corresponding parameters--even when the in-context examples are compatible with multiple complexity hypotheses. Notably, when presented with data generated by simpler processes, transformers consistently favor the least complex sufficient explanation. We theoretically explain this behavior through a Bayesian framework, demonstrating that transformers effectively implement an in-context Bayesian Occam's razor by balancing model fit against complexity penalties. We further ablate on the roles of model size, training mixture distribution, inference context length, and architecture. Finally, we validate this Occam's razor-like inductive bias on a pretrained GPT-4 model with Boolean-function tasks as case study, suggesting it may be inherent to transformers trained on diverse task distributions.
comment: 28 pages, 19 figures
☆ JCAPT: A Joint Modeling Approach for CAPT
Effective pronunciation feedback is critical in second language (L2) learning, for which computer-assisted pronunciation training (CAPT) systems often encompass two key tasks: automatic pronunciation assessment (APA) and mispronunciation detection and diagnosis (MDD). Recent work has shown that joint modeling of these two tasks can yield mutual benefits. Our unified framework leverages Mamba, a selective state space model (SSM), while integrating phonological features and think token strategies to jointly enhance interpretability and fine-grained temporal reasoning in APA and MDD. To our knowledge, this is the first study to combine phonological attribution, SSM-based modeling, and prompting in CAPT. A series of experiments conducted on the speechocean762 benchmark demonstrate that our model consistently outperforms prior methods, particularly on the MDD task.
comment: Submitted to the ISCA SLaTE-2025 Workshop
☆ Skywork-SWE: Unveiling Data Scaling Laws for Software Engineering in LLMs
Software engineering (SWE) has recently emerged as a crucial testbed for next-generation LLM agents, demanding inherent capabilities in two critical dimensions: sustained iterative problem-solving (e.g., >50 interaction rounds) and long-context dependency resolution (e.g., >32k tokens). However, the data curation process in SWE remains notoriously time-consuming, as it heavily relies on manual annotation for code file filtering and the setup of dedicated runtime environments to execute and validate unit tests. Consequently, most existing datasets are limited to only a few thousand GitHub-sourced instances. To this end, we propose an incremental, automated data-curation pipeline that systematically scales both the volume and diversity of SWE datasets. Our dataset comprises 10,169 real-world Python task instances from 2,531 distinct GitHub repositories, each accompanied by a task specified in natural language and a dedicated runtime-environment image for automated unit-test validation. We have carefully curated over 8,000 successfully runtime-validated training trajectories from our proposed SWE dataset. When fine-tuning the Skywork-SWE model on these trajectories, we uncover a striking data scaling phenomenon: the trained model's performance for software engineering capabilities in LLMs continues to improve as the data size increases, showing no signs of saturation. Notably, our Skywork-SWE model achieves 38.0% pass@1 accuracy on the SWE-bench Verified benchmark without using verifiers or multiple rollouts, establishing a new state-of-the-art (SOTA) among the Qwen2.5-Coder-32B-based LLMs built on the OpenHands agent framework. Furthermore, with the incorporation of test-time scaling techniques, the performance further improves to 47.0% accuracy, surpassing the previous SOTA results for sub-32B parameter models. We release the Skywork-SWE-32B model checkpoint to accelerate future research.
☆ EmoStage: A Framework for Accurate Empathetic Response Generation via Perspective-Taking and Phase Recognition
The rising demand for mental health care has fueled interest in AI-driven counseling systems. While large language models (LLMs) offer significant potential, current approaches face challenges, including limited understanding of clients' psychological states and counseling stages, reliance on high-quality training data, and privacy concerns associated with commercial deployment. To address these issues, we propose EmoStage, a framework that enhances empathetic response generation by leveraging the inference capabilities of open-source LLMs without additional training data. Our framework introduces perspective-taking to infer clients' psychological states and support needs, enabling the generation of emotionally resonant responses. In addition, phase recognition is incorporated to ensure alignment with the counseling process and to prevent contextually inappropriate or inopportune responses. Experiments conducted in both Japanese and Chinese counseling settings demonstrate that EmoStage improves the quality of responses generated by base models and performs competitively with data-driven methods.
☆ What Matters in LLM-generated Data: Diversity and Its Effect on Model Fine-Tuning
With the remarkable generative capabilities of large language models (LLMs), using LLM-generated data to train downstream models has emerged as a promising approach to mitigate data scarcity in specific domains and reduce time-consuming annotations. However, recent studies have highlighted a critical issue: iterative training on self-generated data results in model collapse, where model performance degrades over time. Despite extensive research on the implications of LLM-generated data, these works often neglect the importance of data diversity, a key factor in data quality. In this work, we aim to understand the implications of the diversity of LLM-generated data on downstream model performance. Specifically, we explore how varying levels of diversity in LLM-generated data affect downstream model performance. Additionally, we investigate the performance of models trained on data that mixes different proportions of LLM-generated data, which we refer to as synthetic data. Our experimental results show that, with minimal distribution shift, moderately diverse LLM-generated data can enhance model performance in scenarios with insufficient labeled data, whereas highly diverse generated data has a negative impact. We hope our empirical findings will offer valuable guidance for future studies on LLMs as data generators.
comment: Ongoing work
☆ Personality Prediction from Life Stories using Language Models
Natural Language Processing (NLP) offers new avenues for personality assessment by leveraging rich, open-ended text, moving beyond traditional questionnaires. In this study, we address the challenge of modeling long narrative interview where each exceeds 2000 tokens so as to predict Five-Factor Model (FFM) personality traits. We propose a two-step approach: first, we extract contextual embeddings using sliding-window fine-tuning of pretrained language models; then, we apply Recurrent Neural Networks (RNNs) with attention mechanisms to integrate long-range dependencies and enhance interpretability. This hybrid method effectively bridges the strengths of pretrained transformers and sequence modeling to handle long-context data. Through ablation studies and comparisons with state-of-the-art long-context models such as LLaMA and Longformer, we demonstrate improvements in prediction accuracy, efficiency, and interpretability. Our results highlight the potential of combining language-based features with long-context modeling to advance personality assessment from life narratives.
comment: 13 pages, 5 figures
☆ Augmenting Multi-Agent Communication with State Delta Trajectory
Multi-agent techniques such as role playing or multi-turn debates have been shown to be effective in improving the performance of large language models (LLMs) in downstream tasks. Despite their differences in workflows, existing LLM-based multi-agent systems mostly use natural language for agent communication. While this is appealing for its simplicity and interpretability, it also introduces inevitable information loss as one model must down sample its continuous state vectors to concrete tokens before transferring them to the other model. Such losses are particularly significant when the information to transfer is not simple facts, but reasoning logics or abstractive thoughts. To tackle this problem, we propose a new communication protocol that transfers both natural language tokens and token-wise state transition trajectory from one agent to another. Particularly, compared to the actual state value, we find that the sequence of state changes in LLMs after generating each token can better reflect the information hidden behind the inference process, so we propose a State Delta Encoding (SDE) method to represent state transition trajectories. The experimental results show that multi-agent systems with SDE achieve SOTA performance compared to other communication protocols, particularly in tasks that involve complex reasoning. This shows the potential of communication augmentation for LLM-based multi-agent systems.
comment: 22 pages, 5 figures
☆ Persona-Assigned Large Language Models Exhibit Human-Like Motivated Reasoning
Reasoning in humans is prone to biases due to underlying motivations like identity protection, that undermine rational decision-making and judgment. This motivated reasoning at a collective level can be detrimental to society when debating critical issues such as human-driven climate change or vaccine safety, and can further aggravate political polarization. Prior studies have reported that large language models (LLMs) are also susceptible to human-like cognitive biases, however, the extent to which LLMs selectively reason toward identity-congruent conclusions remains largely unexplored. Here, we investigate whether assigning 8 personas across 4 political and socio-demographic attributes induces motivated reasoning in LLMs. Testing 8 LLMs (open source and proprietary) across two reasoning tasks from human-subject studies -- veracity discernment of misinformation headlines and evaluation of numeric scientific evidence -- we find that persona-assigned LLMs have up to 9% reduced veracity discernment relative to models without personas. Political personas specifically, are up to 90% more likely to correctly evaluate scientific evidence on gun control when the ground truth is congruent with their induced political identity. Prompt-based debiasing methods are largely ineffective at mitigating these effects. Taken together, our empirical findings are the first to suggest that persona-assigned LLMs exhibit human-like motivated reasoning that is hard to mitigate through conventional debiasing prompts -- raising concerns of exacerbating identity-congruent reasoning in both LLMs and humans.
☆ Accurate and Energy Efficient: Local Retrieval-Augmented Generation Models Outperform Commercial Large Language Models in Medical Tasks
Background The increasing adoption of Artificial Intelligence (AI) in healthcare has sparked growing concerns about its environmental and ethical implications. Commercial Large Language Models (LLMs), such as ChatGPT and DeepSeek, require substantial resources, while the utilization of these systems for medical purposes raises critical issues regarding patient privacy and safety. Methods We developed a customizable Retrieval-Augmented Generation (RAG) framework for medical tasks, which monitors its energy usage and CO2 emissions. This system was then used to create RAGs based on various open-source LLMs. The tested models included both general purpose models like llama3.1:8b and medgemma-4b-it, which is medical-domain specific. The best RAGs performance and energy consumption was compared to DeepSeekV3-R1 and OpenAIs o4-mini model. A dataset of medical questions was used for the evaluation. Results Custom RAG models outperformed commercial models in accuracy and energy consumption. The RAG model built on llama3.1:8B achieved the highest accuracy (58.5%) and was significantly better than other models, including o4-mini and DeepSeekV3-R1. The llama3.1-RAG also exhibited the lowest energy consumption and CO2 footprint among all models, with a Performance per kWh of 0.52 and a total CO2 emission of 473g. Compared to o4-mini, the llama3.1-RAG achieved 2.7x times more accuracy points per kWh and 172% less electricity usage while maintaining higher accuracy. Conclusion Our study demonstrates that local LLMs can be leveraged to develop RAGs that outperform commercial, online LLMs in medical tasks, while having a smaller environmental impact. Our modular framework promotes sustainable AI development, reducing electricity usage and aligning with the UNs Sustainable Development Goals.
comment: 18 pages, 3 Figures
☆ A Spatio-Temporal Point Process for Fine-Grained Modeling of Reading Behavior ACL 2025
Reading is a process that unfolds across space and time, alternating between fixations where a reader focuses on a specific point in space, and saccades where a reader rapidly shifts their focus to a new point. An ansatz of psycholinguistics is that modeling a reader's fixations and saccades yields insight into their online sentence processing. However, standard approaches to such modeling rely on aggregated eye-tracking measurements and models that impose strong assumptions, ignoring much of the spatio-temporal dynamics that occur during reading. In this paper, we propose a more general probabilistic model of reading behavior, based on a marked spatio-temporal point process, that captures not only how long fixations last, but also where they land in space and when they take place in time. The saccades are modeled using a Hawkes process, which captures how each fixation excites the probability of a new fixation occurring near it in time and space. The duration time of fixation events is modeled as a function of fixation-specific predictors convolved across time, thus capturing spillover effects. Empirically, our Hawkes process model exhibits a better fit to human saccades than baselines. With respect to fixation durations, we observe that incorporating contextual surprisal as a predictor results in only a marginal improvement in the model's predictive accuracy. This finding suggests that surprisal theory struggles to explain fine-grained eye movements.
comment: ACL 2025
☆ Doc2Agent: Scalable Generation of Tool-Using Agents from API Documentation
REST APIs play important roles in enriching the action space of web agents, yet most API-based agents rely on curated and uniform toolsets that do not reflect the complexity of real-world APIs. Building tool-using agents for arbitrary domains remains a major challenge, as it requires reading unstructured API documentation, testing APIs and inferring correct parameters. We propose Doc2Agent, a scalable pipeline to build agents that can call Python-based tools generated from API documentation. Doc2Agent generates executable tools from API documentations and iteratively refines them using a code agent. We evaluate our approach on real-world APIs, WebArena APIs, and research APIs, producing validated tools. We achieved a 55\% relative performance improvement with 90\% lower cost compared to direct API calling on WebArena benchmark. A domain-specific agent built for glycomaterial science further demonstrates the pipeline's adaptability to complex, knowledge-rich tasks. Doc2Agent offers a generalizable solution for building tool agents from unstructured API documentation at scale.
☆ Inference Scaled GraphRAG: Improving Multi Hop Question Answering on Knowledge Graphs
Large Language Models (LLMs) have achieved impressive capabilities in language understanding and generation, yet they continue to underperform on knowledge-intensive reasoning tasks due to limited access to structured context and multi-hop information. Retrieval-Augmented Generation (RAG) partially mitigates this by grounding generation in retrieved context, but conventional RAG and GraphRAG methods often fail to capture relational structure across nodes in knowledge graphs. We introduce Inference-Scaled GraphRAG, a novel framework that enhances LLM-based graph reasoning by applying inference-time compute scaling. Our method combines sequential scaling with deep chain-of-thought graph traversal, and parallel scaling with majority voting over sampled trajectories within an interleaved reasoning-execution loop. Experiments on the GRBench benchmark demonstrate that our approach significantly improves multi-hop question answering performance, achieving substantial gains over both traditional GraphRAG and prior graph traversal baselines. These findings suggest that inference-time scaling is a practical and architecture-agnostic solution for structured knowledge reasoning with LLMs
☆ CycleDistill: Bootstrapping Machine Translation using LLMs with Cyclical Distillation
Large language models (LLMs), despite their ability to perform few-shot machine translation (MT), often lag behind dedicated MT systems trained on parallel corpora, which are crucial for high quality machine translation (MT). However, parallel corpora are often scarce or non-existent for low-resource languages. In this paper, we propose CycleDistill, a bootstrapping approach leveraging LLMs and few-shot translation to obtain high-quality MT systems. CycleDistill involves iteratively generating synthetic parallel corpora from monolingual corpora via zero- or few-shot MT, which is then used to fine-tune the model that was used for generating said data for MT. CycleDistill does not need parallel corpora beyond 1 to 4 few-shot examples, and in our experiments focusing on three Indian languages, by relying solely on monolingual corpora, it can achieve high-quality machine translation, improving upon a few-shot baseline model by over 20-30 chrF points on average in the first iteration. We also study the effect of leveraging softmax activations during the distillation process and observe mild improvements in translation quality.
♻ ☆ Entropy and type-token ratio in gigaword corpora
There are different ways of measuring diversity in complex systems. In particular, in language, lexical diversity is characterized in terms of the type-token ratio and the word entropy. We here investigate both diversity metrics in six massive linguistic datasets in English, Spanish, and Turkish, consisting of books, news articles, and tweets. These gigaword corpora correspond to languages with distinct morphological features and differ in registers and genres, thus constituting a varied testbed for a quantitative approach to lexical diversity. We unveil an empirical functional relation between entropy and type-token ratio of texts of a given corpus and language, which is a consequence of the statistical laws observed in natural language. Further, in the limit of large text lengths we find an analytical expression for this relation relying on both Zipf and Heaps laws that agrees with our empirical findings.
comment: 15 pages, 10 figures, 8 tables
♻ ☆ Words as Trigger Points in Social Media Discussions: A Large-Scale Case Study about UK Politics on Reddit
Political debates on social media sometimes flare up. From that moment on, users engage much more with one another; their communication is also more emotional and polarised. While it has been difficult to grasp such moments with computational methods, we suggest that trigger points are a useful concept to understand and ultimately model such behaviour. Established in qualitative focus group interviews to understand political polarisation (Mau, Lux, and Westheuser 2023), trigger points represent moments when individuals feel that their understanding of what is fair, normal, or appropriate in society is questioned. In the original studies, individuals show strong and negative emotional responses when certain triggering words or topics are mentioned. Our paper finds that these trigger points also exist in online debates. We examine online deliberations on Reddit between 2020 and 2022 and collect >100 million comments from subreddits related to a set of words identified as trigger points in UK politics. Analysing the comments, we find that trigger words increase user engagement and animosity, i.e., more negativity, hate speech, and controversial comments. Introducing trigger points to computational studies of online communication, our findings are relevant to researchers interested in affective computing, online deliberation, and how citizens debate politics and society in light of affective polarisation.
♻ ☆ A Foundational individual Mobility Prediction Model based on Open-Source Large Language Models
Large Language Models (LLMs) are widely applied to domain-specific tasks due to their massive general knowledge and remarkable inference capacities. Current studies on LLMs have shown immense potential in applying LLMs to model individual mobility prediction problems. However, most LLM-based mobility prediction models only train on specific datasets or use single well-designed prompts, leading to difficulty in adapting to different cities and users with diverse contexts. To fill these gaps, this paper proposes a unified fine-tuning framework to train a foundational open source LLM-based mobility prediction model. We conducted extensive experiments on six real-world mobility datasets to validate the proposed model. The results showed that the proposed model achieved the best performance in prediction accuracy and transferability over state-of-the-art models based on deep learning and LLMs.
♻ ☆ Large language models for automated scholarly paper review: A survey
Large language models (LLMs) have significantly impacted human society, influencing various domains. Among them, academia is not simply a domain affected by LLMs, but it is also the pivotal force in the development of LLMs. In academic publication, this phenomenon is represented during the incorporation of LLMs into the peer review mechanism for reviewing manuscripts. LLMs hold transformative potential for the full-scale implementation of automated scholarly paper review (ASPR), but they also pose new issues and challenges that need to be addressed. In this survey paper, we aim to provide a holistic view of ASPR in the era of LLMs. We begin with a survey to find out which LLMs are used to conduct ASPR. Then, we review what ASPR-related technological bottlenecks have been solved with the incorporation of LLM technology. After that, we move on to explore new methods, new datasets, new source code, and new online systems that come with LLMs for ASPR. Furthermore, we summarize the performance and issues of LLMs in ASPR, and investigate the attitudes and reactions of publishers and academia to ASPR. Lastly, we discuss the challenges and future directions associated with the development of LLMs for ASPR. This survey serves as an inspirational reference for the researchers and can promote the progress of ASPR for its actual implementation.
comment: Please cite the version of Information Fusion
♻ ☆ Sensitive Content Classification in Social Media: A Holistic Resource and Evaluation
The detection of sensitive content in large datasets is crucial for ensuring that shared and analysed data is free from harmful material. However, current moderation tools, such as external APIs, suffer from limitations in customisation, accuracy across diverse sensitive categories, and privacy concerns. Additionally, existing datasets and open-source models focus predominantly on toxic language, leaving gaps in detecting other sensitive categories such as substance abuse or self-harm. In this paper, we put forward a unified dataset tailored for social media content moderation across six sensitive categories: conflictual language, profanity, sexually explicit material, drug-related content, self-harm, and spam. By collecting and annotating data with consistent retrieval strategies and guidelines, we address the shortcomings of previous focalised research. Our analysis demonstrates that fine-tuning large language models (LLMs) on this novel dataset yields significant improvements in detection performance compared to open off-the-shelf models such as LLaMA, and even proprietary OpenAI models, which underperform by 10-15% overall. This limitation is even more pronounced on popular moderation APIs, which cannot be easily tailored to specific sensitive content categories, among others.
comment: Accepted at the 9th Workshop on Online Abuse and Harms (WOAH)
♻ ☆ "I know myself better, but not really greatly": How Well Can LLMs Detect and Explain LLM-Generated Texts?
Distinguishing between human- and LLM-generated texts is crucial given the risks associated with misuse of LLMs. This paper investigates detection and explanation capabilities of current LLMs across two settings: binary (human vs. LLM-generated) and ternary classification (including an ``undecided'' class). We evaluate 6 close- and open-source LLMs of varying sizes and find that self-detection (LLMs identifying their own outputs) consistently outperforms cross-detection (identifying outputs from other LLMs), though both remain suboptimal. Introducing a ternary classification framework improves both detection accuracy and explanation quality across all models. Through comprehensive quantitative and qualitative analyses using our human-annotated dataset, we identify key explanation failures, primarily reliance on inaccurate features, hallucinations, and flawed reasoning. Our findings underscore the limitations of current LLMs in self-detection and self-explanation, highlighting the need for further research to address overfitting and enhance generalizability.
comment: Under review
♻ ☆ jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval
We introduce jina-embeddings-v4, a 3.8 billion parameter multimodal embedding model that unifies text and image representations through a novel architecture supporting both single-vector and multi-vector embeddings in the late interaction style. The model incorporates task-specific Low-Rank Adaptation (LoRA) adapters to optimize performance across diverse retrieval scenarios, including query-document retrieval, semantic text similarity, and code search. Comprehensive evaluations demonstrate that jina-embeddings-v4 achieves state-of-the-art performance on both single-modal and cross-modal retrieval tasks, with particular strength in processing visually rich content such as tables, charts, diagrams, and mixed-media formats. To facilitate evaluation of this capability, we also introduce Jina-VDR, a novel benchmark specifically designed for visually rich image retrieval.
comment: 22 pages, 1-10 main, 14-22 experimental results, benchmark tables
♻ ☆ Detecting Machine-Generated Texts: Not Just "AI vs Humans" and Explainability is Complicated
As LLMs rapidly advance, increasing concerns arise regarding risks about actual authorship of texts we see online and in real world. The task of distinguishing LLM-authored texts is complicated by the nuanced and overlapping behaviors of both machines and humans. In this paper, we challenge the current practice of considering LLM-generated text detection a binary classification task of differentiating human from AI. Instead, we introduce a novel ternary text classification scheme, adding an "undecided" category for texts that could be attributed to either source, and we show that this new category is crucial to understand how to make the detection result more explainable to lay users. This research shifts the paradigm from merely classifying to explaining machine-generated texts, emphasizing need for detectors to provide clear and understandable explanations to users. Our study involves creating four new datasets comprised of texts from various LLMs and human authors. Based on new datasets, we performed binary classification tests to ascertain the most effective SOTA detection methods and identified SOTA LLMs capable of producing harder-to-detect texts. We constructed a new dataset of texts generated by two top-performing LLMs and human authors, and asked three human annotators to produce ternary labels with explanation notes. This dataset was used to investigate how three top-performing SOTA detectors behave in new ternary classification context. Our results highlight why "undecided" category is much needed from the viewpoint of explainability. Additionally, we conducted an analysis of explainability of the three best-performing detectors and the explanation notes of the human annotators, revealing insights about the complexity of explainable detection of machine-generated texts. Finally, we propose guidelines for developing future detection systems with improved explanatory power.
comment: 19 pages, 2 figures
♻ ☆ Local Look-Ahead Guidance via Verifier-in-the-Loop for Automated Theorem Proving ACL 2025
The most promising recent methods for AI reasoning require applying variants of reinforcement learning (RL) either on rolled out trajectories from the LLMs, even for the step-wise rewards, or large quantities of human-annotated trajectory data. The reliance on the rolled-out trajectory renders the compute cost and time prohibitively high. In particular, the correctness of a reasoning trajectory can typically only be judged at its completion, leading to sparse rewards in RL or requiring expensive synthetic data generation in expert iteration-like methods. In this work, we focus on the Automatic Theorem Proving (ATP) task and propose a novel verifier-in-the-loop design, which, unlike existing approaches that leverage feedback on the entire reasoning trajectory, employs an automated verifier to give intermediate feedback at each step of the reasoning process. Using Lean as the verifier, we empirically show that the step-by-step local verification produces a global improvement in the model's reasoning accuracy and efficiency.
comment: Accepted at the Findings of ACL 2025, Accepted at ICLR 2025 Workshop on Reasoning and Planning for Large Language Models
♻ ☆ Language Model Re-rankers are Fooled by Lexical Similarities
Language model (LM) re-rankers are used to refine retrieval results for retrieval-augmented generation (RAG). They are more expensive than lexical matching methods like BM25 but assumed to better process semantic information and the relations between the query and the retrieved answers. To understand whether LM re-rankers always live up to this assumption, we evaluate 6 different LM re-rankers on the NQ, LitQA2 and DRUID datasets. Our results show that LM re-rankers struggle to outperform a simple BM25 baseline on DRUID. Leveraging a novel separation metric based on BM25 scores, we explain and identify re-ranker errors stemming from lexical dissimilarities. We also investigate different methods to improve LM re-ranker performance and find these methods mainly useful for NQ. Taken together, our work identifies and explains weaknesses of LM re-rankers and points to the need for more adversarial and realistic datasets for their evaluation.
comment: Accepted to FEVER 2025
♻ ☆ Right Is Not Enough: The Pitfalls of Outcome Supervision in Training LLMs for Math Reasoning
Outcome-rewarded Large Language Models (LLMs) have demonstrated remarkable success in mathematical problem-solving. However, this success often masks a critical issue: models frequently achieve correct answers through fundamentally unsound reasoning processes, a phenomenon indicative of reward hacking. We introduce MathOlympiadEval, a new dataset with fine-grained annotations, which reveals a significant gap between LLMs' answer correctness and their low process correctness. Existing automated methods like LLM-as-a-judge struggle to reliably detect these reasoning flaws. To address this, we propose ParaStepVerifier, a novel methodology for meticulous, step-by-step verification of mathematical solutions. ParaStepVerifier identifies incorrect reasoning steps. Empirical results demonstrate that ParaStepVerifier substantially improves the accuracy of identifying flawed solutions compared to baselines, especially for complex, multi-step problems. This offers a more robust path towards evaluating and training LLMs with genuine mathematical reasoning.
♻ ☆ PATCH! {P}sychometrics-{A}ssis{T}ed Ben{CH}marking of Large Language Models against Human Populations: A Case Study of Proficiency in 8th Grade Mathematics ACL 2025
Many existing benchmarks of large (multimodal) language models (LLMs) focus on measuring LLMs' academic proficiency, often with also an interest in comparing model performance with human test takers'. While such benchmarks have proven key to the development of LLMs, they suffer from several limitations, including questionable measurement quality (e.g., Do they measure what they are supposed to in a reliable way?), lack of quality assessment on the item level (e.g., Are some items more important or difficult than others?) and unclear human population reference (e.g., To whom can the model be compared?). In response to these challenges, we propose leveraging knowledge from psychometrics -- a field dedicated to the measurement of latent variables like academic proficiency -- into LLM benchmarking. We make four primary contributions. First, we reflect on current LLM benchmark developments and contrast them with psychometrics-based test development. Second, we introduce PATCH: a novel framework for {P}sychometrics-{A}ssis{T}ed ben{CH}marking of LLMs. PATCH addresses the aforementioned limitations. In particular, PATCH enables valid comparison between LLMs and human populations. Third, we demonstrate PATCH by measuring several LLMs' proficiency in 8th grade mathematics against 56 human populations. We show that adopting a psychometrics-based approach yields evaluation outcomes that diverge from those based on current benchmarking practices. Fourth, we release 4 high-quality datasets to support measuring and comparing LLM proficiency in grade school mathematics and science with human populations.
comment: Accepted to GEM2 Workshop: Generation, Evaluation & Metrics - ACL 2025
♻ ☆ Large Language Models as Span Annotators
Span annotation is the task of localizing and classifying text spans according to custom guidelines. Annotated spans can be used to analyze and evaluate high-quality texts for which single-score metrics fail to provide actionable feedback. Until recently, span annotation was limited to human annotators or fine-tuned models. In this study, we show that large language models (LLMs) can serve as flexible and cost-effective span annotation backbones. To demonstrate their utility, we compare LLMs to skilled human annotators on three diverse span annotation tasks: evaluating data-to-text generation, identifying translation errors, and detecting propaganda techniques. We demonstrate that LLMs achieve inter-annotator agreement (IAA) comparable to human annotators at a fraction of a cost per output annotation. We also manually analyze model outputs, finding that LLMs make errors at a similar rate to human annotators. We release the dataset of more than 40k model and human annotations for further research.
♻ ☆ ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation
Recent advancements in large reasoning models (LRMs) like DeepSeek-R1 and OpenAI o1 series have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT). However, an emerging issue is their inclination to produce excessively verbose reasoning processes, leading to the inefficiency problem. Existing literature on improving efficiency mainly adheres to the before-reasoning paradigms such as prompting and reasoning or fine-tuning and reasoning, but ignores the promising direction of directly encouraging the model to speak concisely by intervening during the generation of reasoning. In order to fill the blank, we propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting the textual hint (manually designed or trained on the concise data) during the token generation of the reasoning process. Besides, ConciseHint is adaptive to the complexity of the query by adaptively adjusting the hint intensity, which ensures it will not undermine model performance. Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning processes while maintaining performance well. For instance, we achieve a reduction ratio of 65\% for the reasoning length on GSM8K benchmark with Qwen-3 4B with nearly no accuracy loss.
comment: Codes are available at https://github.com/tsa18/ConciseHint
♻ ☆ KAG-Thinker: Interactive Thinking and Deep Reasoning in LLMs via Knowledge-Augmented Generation
In this paper, we introduce KAG-Thinker, which upgrade KAG to a multi-turn interactive thinking and deep reasoning framework powered by a dedicated parameter-light large language model (LLM). Our approach constructs a structured thinking process for solving complex problems, enhancing the the logical coherence and contextual consistency of the reasoning process in question-answering (Q&A) tasks on domain-specific knowledge bases (KBs) within LLMs. Following the \textbf{Logical Form} guided retrieval and reasoning technology route of KAG, this framework first decomposes complex questions into independently solvable sub-problems (which are also referred to as logical forms) through \textbf{breadth decomposition}. Each such logical form is represented in two equivalent forms-natural language and logical function-and subsequently classified as either a Knowledge Retrieval or Reasoning Analysis task. Dependencies and parameter passing between these tasks are explicitly modeled via logical function interfaces. In the solving process, the Retrieval function performs retrieval tasks. It retrieves one-hop structured and unstructured information of specified knowledge unit. While the Math and Deduce functions are used to perform reasoning analysis tasks. Secondly, it is worth noting that, in the Knowledge Retrieval sub-problem tasks, LLMs and external knowledge sources are regarded as equivalent KBs. We use the \textbf{knowledge boundary} module to determine the optimal source using self-regulatory mechanisms such as confidence calibration and reflective reasoning, and use the \textbf{depth solving} module to enhance the comprehensiveness of knowledge acquisition...
♻ ☆ Benchmarking the Pedagogical Knowledge of Large Language Models
Benchmarks like Massive Multitask Language Understanding (MMLU) have played a pivotal role in evaluating AI's knowledge and abilities across diverse domains. However, existing benchmarks predominantly focus on content knowledge, leaving a critical gap in assessing models' understanding of pedagogy - the method and practice of teaching. This paper introduces The Pedagogy Benchmark, a novel dataset designed to evaluate large language models on their Cross-Domain Pedagogical Knowledge (CDPK) and Special Education Needs and Disability (SEND) pedagogical knowledge. These benchmarks are built on a carefully curated set of questions sourced from professional development exams for teachers, which cover a range of pedagogical subdomains such as teaching strategies and assessment methods. Here we outline the methodology and development of these benchmarks. We report results for 97 models, with accuracies spanning a range from 28% to 89% on the pedagogical knowledge questions. We consider the relationship between cost and accuracy and chart the progression of the Pareto value frontier over time. We provide online leaderboards at https://rebrand.ly/pedagogy which are updated with new models and allow interactive exploration and filtering based on various model properties, such as cost per token and open-vs-closed weights, as well as looking at performance in different subjects. LLMs and generative AI have tremendous potential to influence education and help to address the global learning crisis. Education-focused benchmarks are crucial to measure models' capacities to understand pedagogical concepts, respond appropriately to learners' needs, and support effective teaching practices across diverse contexts. They are needed for informing the responsible and evidence-based deployment of LLMs and LLM-based tools in educational settings, and for guiding both development and policy decisions.
♻ ☆ GeistBERT: Breathing Life into German NLP
Advances in transformer-based language models have highlighted the benefits of language-specific pre-training on high-quality corpora. In this context, German NLP stands to gain from updated architectures and modern datasets tailored to the linguistic characteristics of the German language. GeistBERT seeks to improve German language processing by incrementally training on a diverse corpus and optimizing model performance across various NLP tasks. It was pre-trained using fairseq with standard hyperparameters, initialized from GottBERT weights, and trained on a large-scale German corpus using Whole Word Masking (WWM). Based on the pre-trained model, we derived extended-input variants using Nystr\"omformer and Longformer architectures with support for sequences up to 8k tokens. While these long-context models were not evaluated on dedicated long-context benchmarks, they are included in our release. We assessed all models on NER (CoNLL 2003, GermEval 2014) and text classification (GermEval 2018 fine/coarse, 10kGNAD) using $F_1$ score and accuracy. The GeistBERT models achieved strong performance, leading all tasks among the base models and setting a new state-of-the-art (SOTA). Notably, the base models outperformed larger models in several tasks. To support the German NLP research community, we are releasing GeistBERT under the MIT license.
♻ ☆ ChatSR: Multimodal Large Language Models for Scientific Formula Discovery
Formulas are the language of communication between humans and nature. The discovery of formulas to describe natural laws from observational data is the purpose of scientific research. It is also an important research topic in artificial intelligence, which is called a symbolic regression problem. Most of the existing symbolic regression methods generate expressions directly from observed data. Although in some methods, we can inject some prior knowledge into the model by adding constraints or introducing some special character hints. However, these methods can only introduce a limited amount of prior knowledge specified in advance. Not to mention understanding natural language instructions. In this article, based on the powerful knowledge reserve and language understanding ability of multi-modal large language models, we present ChatSR, which acts like a knowledgeable human scientist, and we can tell it any prior knowledge through natural language to guide it in formula generation. By testing on 13 datasets, ChatSR not only shows state-of-the-art performance on traditional symbolic regression tasks. More notably, ChatSR can well understand the prior knowledge contained in natural language prompts and improve the quality of generated expressions. In addition, it is exciting that ChatSR has a good zero-shot capability to understand prior knowledge that is not present in the training data.
comment: 23 pages,
♻ ☆ DaMO: A Data-Efficient Multimodal Orchestrator for Temporal Reasoning with Video LLMs
Large Language Models (LLMs) have recently been extended to the video domain, enabling sophisticated video-language understanding. However, existing Video LLMs often exhibit limitations in fine-grained temporal reasoning, restricting their ability to precisely attribute responses to specific video moments, especially under constrained supervision. We introduce DaMO, a data-efficient Video LLM explicitly designed for accurate temporal reasoning and multimodal understanding. At its core, the proposed Temporal-aware Fuseformer employs a hierarchical dual-stream architecture that progressively captures temporal dynamics within each modality and effectively fuses complementary visual and audio information. To further enhance computational efficiency, DaMO integrates a global residual that reduces spatial redundancy while preserving essential semantic details. We train DaMO via a structured four-stage progressive training paradigm, incrementally equipping the model with multimodal alignment, semantic grounding, and temporal reasoning capabilities. This work also contributes multiple datasets augmented from existing ones with GPT-generated temporally grounded QA pairs for tasks requiring temporal supervision. Comprehensive experiments on temporal grounding and video QA benchmarks demonstrate that DaMO consistently surpasses prior methods, particularly in tasks demanding precise temporal alignment and reasoning. Our work establishes a promising direction for data-efficient video-language modeling.
comment: I would like to request the withdrawal of this submission because the current version contains significant errors and incomplete results. I intend to revise the manuscript thoroughly before resubmitting. I apologize for the oversight and appreciate your understanding
♻ ☆ LEVOS: Leveraging Vocabulary Overlap with Sanskrit to Generate Technical Lexicons in Indian Languages ACL2025
Translating technical terms into lexically similar, low-resource Indian languages remains a challenge due to limited parallel data and the complexity of linguistic structures. We propose a novel use-case of Sanskrit-based segments for linguistically informed translation of such terms, leveraging subword-level similarity and morphological alignment across related languages. Our approach uses character-level segmentation to identify meaningful subword units, facilitating more accurate and context-aware translation. To enable this, we utilize a Character-level Transformer model for Sanskrit Word Segmentation (CharSS), which addresses the complexities of sandhi and morpho-phonemic changes during segmentation. We observe consistent improvements in two experimental settings for technical term translation using Sanskrit-derived segments, averaging 8.46 and 6.79 chrF++ scores, respectively. Further, we conduct a post hoc human evaluation to verify the quality assessment of the translated technical terms using automated metrics. This work has important implications for the education field, especially in creating accessible, high-quality learning materials in Indian languages. By supporting the accurate and linguistically rooted translation of technical content, our approach facilitates inclusivity and aids in bridging the resource gap for learners in low-resource language communities.
comment: 20th Workshop on Innovative Use of NLP for Building Educational Applications (Co-located with ACL2025)
♻ ☆ Multilingual Tokenization through the Lens of Indian Languages: Challenges and Insights
Tokenization plays a pivotal role in multilingual NLP. However, existing tokenizers are often skewed towards high-resource languages, limiting their effectiveness for linguistically diverse and morphologically rich languages such as those in the Indian subcontinent. This paper presents a comprehensive intrinsic evaluation of tokenization strategies across 17 Indian languages. We quantify the trade-offs between bottom-up and top-down tokenizer algorithms (BPE and Unigram LM), effects of vocabulary sizes, and compare strategies of multilingual vocabulary construction such as joint and cluster-based training. We also show that extremely low-resource languages can benefit from tokenizers trained on related high-resource languages. Our study provides practical insights for building more fair, efficient, and linguistically informed tokenizers for multilingual NLP.
♻ ☆ Statistical Multicriteria Evaluation of LLM-Generated Text
Assessing the quality of LLM-generated text remains a fundamental challenge in natural language processing. Current evaluation approaches often rely on isolated metrics or simplistic aggregations that fail to capture the nuanced trade-offs between coherence, diversity, fluency, and other relevant indicators of text quality. In this work, we adapt a recently proposed framework for statistical inference based on Generalized Stochastic Dominance (GSD) that addresses three critical limitations in existing benchmarking methodologies: the inadequacy of single-metric evaluation, the incompatibility between cardinal automatic metrics and ordinal human judgments, and the lack of inferential statistical guarantees. The GSD-front approach enables simultaneous evaluation across multiple quality dimensions while respecting their different measurement scales, building upon partial orders of decoding strategies, thus avoiding arbitrary weighting of the involved metrics. By applying this framework to evaluate common decoding strategies against human-generated text, we demonstrate its ability to identify statistically significant performance differences while accounting for potential deviations from the i.i.d. assumption of the sampling design.
♻ ☆ ReDit: Reward Dithering for Improved LLM Policy Optimization
DeepSeek-R1 has successfully enhanced Large Language Model (LLM) reasoning capabilities through its rule-based reward system. While it's a ''perfect'' reward system that effectively mitigates reward hacking, such reward functions are often discrete. Our experimental observations suggest that discrete rewards can lead to gradient anomaly, unstable optimization, and slow convergence. To address this issue, we propose ReDit (Reward Dithering), a method that dithers the discrete reward signal by adding simple random noise. With this perturbed reward, exploratory gradients are continuously provided throughout the learning process, enabling smoother gradient updates and accelerating convergence. The injected noise also introduces stochasticity into flat reward regions, encouraging the model to explore novel policies and escape local optima. Experiments across diverse tasks demonstrate the effectiveness and efficiency of ReDit. On average, ReDit achieves performance comparable to vanilla GRPO with only approximately 10% the training steps, and furthermore, still exhibits a 4% performance improvement over vanilla GRPO when trained for a similar duration. Visualizations confirm significant mitigation of gradient issues with ReDit. Moreover, theoretical analyses are provided to further validate these advantages.
comment: 10 pages, 15 figures
♻ ☆ SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented Dialogue Agents NeurIPS 2023
Task-oriented dialogue (TOD) models have made significant progress in recent years. However, previous studies primarily focus on datasets written by annotators, which has resulted in a gap between academic research and real-world spoken conversation scenarios. While several small-scale spoken TOD datasets are proposed to address robustness issues such as ASR errors, they ignore the unique challenges in spoken conversation. To tackle the limitations, we introduce SpokenWOZ, a large-scale speech-text dataset for spoken TOD, containing 8 domains, 203k turns, 5.7k dialogues and 249 hours of audios from human-to-human spoken conversations. SpokenWOZ further incorporates common spoken characteristics such as word-by-word processing and reasoning in spoken language. Based on these characteristics, we present cross-turn slot and reasoning slot detection as new challenges. We conduct experiments on various baselines, including text-modal models, newly proposed dual-modal models, and LLMs, e.g., ChatGPT. The results show that the current models still have substantial room for improvement in spoken conversation, where the most advanced dialogue state tracker only achieves 25.65% in joint goal accuracy and the SOTA end-to-end model only correctly completes the user request in 52.1% of dialogues. The dataset, code, and leaderboard are available: https://spokenwoz.github.io/.
comment: NeurIPS 2023
♻ ☆ Analyzing LLMs' Knowledge Boundary Cognition Across Languages Through the Lens of Internal Representations ACL 2025
While understanding the knowledge boundaries of LLMs is crucial to prevent hallucination, research on the knowledge boundaries of LLMs has predominantly focused on English. In this work, we present the first study to analyze how LLMs recognize knowledge boundaries across different languages by probing their internal representations when processing known and unknown questions in multiple languages. Our empirical studies reveal three key findings: 1) LLMs' perceptions of knowledge boundaries are encoded in the middle to middle-upper layers across different languages. 2) Language differences in knowledge boundary perception follow a linear structure, which motivates our proposal of a training-free alignment method that effectively transfers knowledge boundary perception ability across languages, thereby helping reduce hallucination risk in low-resource languages; 3) Fine-tuning on bilingual question pair translation further enhances LLMs' recognition of knowledge boundaries across languages. Given the absence of standard testbeds for cross-lingual knowledge boundary analysis, we construct a multilingual evaluation suite comprising three representative types of knowledge boundary data. Our code and datasets are publicly available at https://github.com/DAMO-NLP-SG/LLM-Multilingual-Knowledge-Boundaries.
comment: ACL 2025 main; camera ready
♻ ☆ RAG+: Enhancing Retrieval-Augmented Generation with Application-Aware Reasoning
The integration of external knowledge through Retrieval-Augmented Generation (RAG) has become foundational in enhancing large language models (LLMs) for knowledge-intensive tasks. However, existing RAG paradigms often overlook the cognitive step of applying knowledge, leaving a gap between retrieved facts and task-specific reasoning. In this work, we introduce RAG+, a principled and modular extension that explicitly incorporates application-aware reasoning into the RAG pipeline. RAG+ constructs a dual corpus consisting of knowledge and aligned application examples, created either manually or automatically, and retrieves both jointly during inference. This design enables LLMs not only to access relevant information but also to apply it within structured, goal-oriented reasoning processes. Experiments across mathematical, legal, and medical domains, conducted on multiple models, demonstrate that RAG+ consistently outperforms standard RAG variants, achieving average improvements of 3-5%, and peak gains up to 7.5% in complex scenarios. By bridging retrieval with actionable application, RAG+ advances a more cognitively grounded framework for knowledge integration, representing a step toward more interpretable and capable LLMs.
♻ ☆ FLAT-LLM: Fine-grained Low-rank Activation Space Transformation for Large Language Model Compression
Large Language Models (LLMs) have enabled remarkable progress in natural language processing, yet their high computational and memory demands pose challenges for deployment in resource-constrained environments. Although recent low-rank decomposition methods offer a promising path for structural compression, they often suffer from accuracy degradation, expensive calibration procedures, and result in inefficient model architectures that hinder real-world inference speedups. In this paper, we propose FLAT-LLM, a fast and accurate, training-free structural compression method based on fine-grained low-rank transformations in the activation space. Specifically, we reduce the hidden dimension by transforming the weights using truncated eigenvectors computed via head-wise Principal Component Analysis (PCA), and employ an importance-based metric to adaptively allocate ranks across decoders. FLAT-LLM achieves efficient and effective weight compression without recovery fine-tuning, which could complete the calibration within a few minutes. Evaluated across 4 models and 11 datasets, FLAT-LLM outperforms structural pruning baselines in generalization and downstream performance, while delivering inference speedups over decomposition-based methods.
♻ ☆ Long-Context Generalization with Sparse Attention
Transformer-based architectures traditionally employ softmax to compute attention weights, which produces dense distributions over all tokens in a sequence. While effective in many settings, this density has been shown to be detrimental for tasks that demand precise focus on fixed-size patterns: as sequence length increases, non-informative tokens accumulate attention probability mass, leading to dispersion and representational collapse. We show in this paper that sparse attention mechanisms using $\alpha$-entmax can avoid these issues, due to their ability to assign exact zeros to irrelevant tokens. Furthermore, we introduce Adaptive-Scalable Entmax (ASEntmax), which endows $\alpha$-entmax with a learnable temperature parameter, allowing the attention distribution to interpolate between sparse (pattern-focused) and dense (softmax-like) regimes. Finally, we show that the ability to locate and generalize fixed-size patterns can be further improved through a careful design of position encodings, which impacts both dense and sparse attention methods. By integrating ASEntmax into standard transformer layers alongside proper positional encodings, we show that our models greatly outperform softmax, scalable softmax, and fixed-temperature $\alpha$-entmax baselines on long-context generalization.
♻ ☆ Evaluating Transparent Reasoning in Large Language Models for Accountable Critical Tasks NeurIPS 2024
This paper introduces REACT, a benchmark designed to rigorously evaluate the reasoning capabilities of large language models (LLMs) within accountable, high-stakes decision-making tasks in medical and legal domains. Unlike traditional benchmarks primarily focused on prediction accuracy, REACT emphasizes transparent and interpretable reasoning, requiring models to align their logic closely with expert-derived procedures. To assess whether LLM reasoning aligns closely with human experts, we annotated 511 clinical cases from the medical domain and 86 legal cases from the legal domain, each enriched with detailed expert-extracted rationales and evidence supporting each step of the reasoning process. These annotations were guided by carefully constructed reasoning graphs, which explicitly encode domain-specific inference structures and decision criteria derived by domain experts. These reasoning graphs serve not only as standards for expert annotation but also as structured guidelines enabling models to reason transparently and step-by-step. To address the scalability challenges of manual annotation, we further developed a semi-automatic annotation pipeline leveraging expert-defined reasoning graph templates to efficiently generate new graphs, exploring the potential to extend our approach into additional critical domains. Experimental results demonstrate that reasoning graphs substantially enhance the interpretability and accuracy of LLM reasoning compared to traditional baselines, although significant gaps remain relative to expert-level reasoning performance.
comment: This paper is the journal extension of our NeurIPS 2024 paper "DiReCT: Diagnostic Reasoning for Clinical Notes via Large Language Models"
Disentangling Reasoning and Knowledge in Medical Large Language Models
Medical reasoning in large language models (LLMs) aims to emulate clinicians' diagnostic thinking, but current benchmarks such as MedQA-USMLE, MedMCQA, and PubMedQA often mix reasoning with factual recall. We address this by separating 11 biomedical QA benchmarks into reasoning- and knowledge-focused subsets using a PubMedBERT classifier that reaches 81 percent accuracy, comparable to human performance. Our analysis shows that only 32.8 percent of questions require complex reasoning. We evaluate biomedical models (HuatuoGPT-o1, MedReason, m1) and general-domain models (DeepSeek-R1, o4-mini, Qwen3), finding consistent gaps between knowledge and reasoning performance. For example, HuatuoGPT-o1 scores 56.9 on knowledge but only 44.8 on reasoning. In adversarial tests where models are misled with incorrect initial reasoning, biomedical models degrade sharply, while larger or RL-trained general models show more robustness. To address this, we train BioMed-R1 using fine-tuning and reinforcement learning on reasoning-heavy examples. It achieves the strongest performance among similarly sized models. Further gains may come from incorporating clinical case reports and training with adversarial and backtracking scenarios.
♻ ☆ Process Reward Models That Think
Step-by-step verifiers -- also known as process reward models (PRMs) -- are a key ingredient for test-time scaling. PRMs require step-level supervision, making them expensive to train. This work aims to build data-efficient PRMs as verbalized step-wise reward models that verify every step in the solution by generating a verification chain-of-thought (CoT). We propose ThinkPRM, a long CoT verifier fine-tuned on orders of magnitude fewer process labels than those required by discriminative PRMs. Our approach capitalizes on the inherent reasoning abilities of long CoT models, and outperforms LLM-as-a-Judge and discriminative verifiers -- using only 1% of the process labels in PRM800K -- across several challenging benchmarks. Specifically, ThinkPRM beats the baselines on ProcessBench, MATH-500, and AIME '24 under best-of-N selection and reward-guided search. In an out-of-domain evaluation on a subset of GPQA-Diamond and LiveCodeBench, our PRM surpasses discriminative verifiers trained on the full PRM800K by 8% and 4.5%, respectively. Lastly, under the same token budget, ThinkPRM scales up verification compute more effectively compared to LLM-as-a-Judge, outperforming it by 7.2% on a subset of ProcessBench. Our work highlights the value of generative, long CoT PRMs that can scale test-time compute for verification while requiring minimal supervision for training. Our code, data, and models will be released at https://github.com/mukhal/thinkprm.
♻ ☆ The Noisy Path from Source to Citation: Measuring How Scholars Engage with Past Research ACL 2025
Academic citations are widely used for evaluating research and tracing knowledge flows. Such uses typically rely on raw citation counts and neglect variability in citation types. In particular, citations can vary in their fidelity as original knowledge from cited studies may be paraphrased, summarized, or reinterpreted, possibly wrongly, leading to variation in how much information changes from cited to citing paper. In this study, we introduce a computational pipeline to quantify citation fidelity at scale. Using full texts of papers, the pipeline identifies citations in citing papers and the corresponding claims in cited papers, and applies supervised models to measure fidelity at the sentence level. Analyzing a large-scale multi-disciplinary dataset of approximately 13 million citation sentence pairs, we find that citation fidelity is higher when authors cite papers that are 1) more recent and intellectually close, 2) more accessible, and 3) the first author has a lower H-index and the author team is medium-sized. Using a quasi-experiment, we establish the "telephone effect" - when citing papers have low fidelity to the original claim, future papers that cite the citing paper and the original have lower fidelity to the original. Our work reveals systematic differences in citation fidelity, underscoring the limitations of analyses that rely on citation quantity alone and the potential for distortion of evidence.
comment: Accepted by ACL 2025
♻ ☆ Evaluating Long Range Dependency Handling in Code Generation LLMs
As language models support larger and larger context sizes, evaluating their ability to make effective use of that context becomes increasingly important. We analyze the ability of several code generation models to handle long range dependencies using a suite of multi-step key retrieval tasks in context windows up to 8k tokens in length. The tasks progressively increase in difficulty and allow more nuanced evaluation of model capabilities than tests like the popular needle-in-the-haystack test. We find that performance degrades significantly for many models (up to 2x) when a function references another function that is defined later in the prompt. We also observe that models that use sliding window attention mechanisms have difficulty handling references further than the size of a single window. We perform simple prompt modifications using call graph information to improve multi-step retrieval performance up to 3x. Our analysis highlights ways that long-context performance needs deeper consideration beyond retrieval of single facts within a document.
comment: 36 pages, 18 figures
♻ ☆ Language Models Learn Rare Phenomena from Less Rare Phenomena: The Case of the Missing AANNs
Language models learn rare syntactic phenomena, but the extent to which this is attributable to generalization vs. memorization is a major open question. To that end, we iteratively trained transformer language models on systematically manipulated corpora which were human-scale in size, and then evaluated their learning of a rare grammatical phenomenon: the English Article+Adjective+Numeral+Noun (AANN) construction (``a beautiful five days''). We compared how well this construction was learned on the default corpus relative to a counterfactual corpus in which AANN sentences were removed. We found that AANNs were still learned better than systematically perturbed variants of the construction. Using additional counterfactual corpora, we suggest that this learning occurs through generalization from related constructions (e.g., ``a few days''). An additional experiment showed that this learning is enhanced when there is more variability in the input. Taken together, our results provide an existence proof that LMs can learn rare grammatical phenomena by generalization from less rare phenomena. Data and code: https://github.com/kanishkamisra/aannalysis.
comment: Added Corrigendum to correct 4-gram baseline performance and chance performance
♻ ☆ Can Language Models Replace Programmers for Coding? REPOCOD Says 'Not Yet'
Recently, a number of repository-level code generation benchmarks-such as CoderEval, DevEval, RepoEval, RepoBench, and LongCodeArena-have emerged to evaluate the capabilities of large language models (LLMs) beyond standalone benchmarks like HumanEval and MBPP. Thus, a natural question is, would LLMs have similar performance in real world coding tasks as their performance in these benchmarks? Unfortunately, one cannot answer this question, since these benchmarks consist of short completions, synthetic examples, or focus on limited scale repositories, failing to represent real-world coding tasks. To address these challenges, we create REPOCOD, a Python code-generation benchmark containing complex tasks with realistic dependencies in real-world large projects and appropriate metrics for evaluating source code. It includes 980 whole-function generation tasks from 11 popular projects, 50.8% of which require repository-level context. REPOCOD includes 314 developer-written test cases per instance for better evaluation. We evaluate ten LLMs on REPOCOD and find that none achieves more than 30% pass@1 on REPOCOD, indicating the necessity of building stronger LLMs that can help developers in real-world software development. In addition, we found that retrieval-augmented generation achieves better results than using target function dependencies as context.
♻ ☆ WAFFLE: Finetuning Multi-Modal Model for Automated Front-End Development
Web development involves turning UI designs into functional webpages, which can be difficult for both beginners and experienced developers due to the complexity of HTML's hierarchical structures and styles. While Large Language Models (LLMs) have shown promise in generating source code, two major challenges persist in UI-to-HTML code generation: (1) effectively representing HTML's hierarchical structure for LLMs, and (2) bridging the gap between the visual nature of UI designs and the text-based format of HTML code. To tackle these challenges, we introduce Waffle, a new fine-tuning strategy that uses a structure-aware attention mechanism to improve LLMs' understanding of HTML's structure and a contrastive fine-tuning approach to align LLMs' understanding of UI images and HTML code. Models fine-tuned with Waffle show up to 9.00 pp (percentage point) higher HTML match, 0.0982 higher CW-SSIM, 32.99 higher CLIP, and 27.12 pp higher LLEM on our new benchmark WebSight-Test and an existing benchmark Design2Code, outperforming current fine-tuning methods.
♻ ☆ When Large Language Models contradict humans? Large Language Models' Sycophantic Behaviour
Large Language Models have been demonstrating broadly satisfactory generative abilities for users, which seems to be due to the intensive use of human feedback that refines responses. Nevertheless, suggestibility inherited via human feedback improves the inclination to produce answers corresponding to users' viewpoints. This behaviour is known as sycophancy and depicts the tendency of LLMs to generate misleading responses as long as they align with humans. This phenomenon induces bias and reduces the robustness and, consequently, the reliability of these models. In this paper, we study the suggestibility of Large Language Models (LLMs) to sycophantic behaviour, analysing these tendencies via systematic human-interventions prompts over different tasks. Our investigation demonstrates that LLMs have sycophantic tendencies when answering queries that involve subjective opinions and statements that should elicit a contrary response based on facts. In contrast, when faced with math tasks or queries with an objective answer, they, at various scales, do not follow the users' hints by demonstrating confidence in generating the correct answers.
♻ ☆ FactCheckmate: Preemptively Detecting and Mitigating Hallucinations in LMs
Language models (LMs) hallucinate. We inquire: Can we detect and mitigate hallucinations before they happen? This work answers this research question in the positive, by showing that the internal representations of LMs provide rich signals that can be used for this purpose. We introduce FactCheckmate, which preemptively detects hallucinations by learning a classifier that predicts whether the LM will hallucinate, based on the model's hidden states produced over the inputs, before decoding begins. If a hallucination is detected, FactCheckmate then intervenes by adjusting the LM's hidden states such that the model will produce more factual outputs. FactCheckmate provides fresh insights that the inner workings of LMs can be revealed by their hidden states. Practically, both its detection and mitigation models are lightweight, adding little inference overhead; FactCheckmate proves a more efficient approach for mitigating hallucinations compared to many post-hoc alternatives. We evaluate FactCheckmate over LMs of different scales and model families (including Llama, Mistral, Qwen and Gemma), across a variety of QA datasets from different domains. Our results demonstrate the effectiveness of FactCheckmate, achieving over 70% preemptive detection accuracy. On average, outputs generated by LMs with intervention are 34.4% more factual compared to those without.
♻ ☆ Aug2Search: Enhancing Facebook Marketplace Search with LLM-Generated Synthetic Data Augmentation
Embedding-Based Retrieval (EBR) is an important technique in modern search engines, enabling semantic match between search queries and relevant results. However, search logging data on platforms like Facebook Marketplace lacks the diversity and details needed for effective EBR model training, limiting the models' ability to capture nuanced search patterns. To address this challenge, we propose Aug2Search, an EBR-based framework leveraging synthetic data generated by Generative AI (GenAI) models, in a multimodal and multitask approach to optimize query-product relevance. This paper investigates the capabilities of GenAI, particularly Large Language Models (LLMs), in generating high-quality synthetic data, and analyzing its impact on enhancing EBR models. We conducted experiments using eight Llama models and 100 million data points from Facebook Marketplace logs. Our synthetic data generation follows three strategies: (1) generate queries, (2) enhance product listings, and (3) generate queries from enhanced listings. We train EBR models on three different datasets: sampled engagement data or original data ((e.g., "Click" and "Listing Interactions")), synthetic data, and a mixture of both engagement and synthetic data to assess their performance across various training sets. Our findings underscore the robustness of Llama models in producing synthetic queries and listings with high coherence, relevance, and diversity, while maintaining low levels of hallucination. Aug2Search achieves an improvement of up to 4% in ROC_AUC with 100 million synthetic data samples, demonstrating the effectiveness of our approach. Moreover, our experiments reveal that with the same volume of training data, models trained exclusively on synthetic data often outperform those trained on original data only or a mixture of original and synthetic data.
♻ ☆ GlyphPattern: An Abstract Pattern Recognition Benchmark for Vision-Language Models
Vision-Language Models (VLMs) building upon the foundation of powerful large language models have made rapid progress in reasoning across visual and textual data. While VLMs perform well on vision tasks that they are trained on, our results highlight key challenges in abstract pattern recognition. We present GlyphPattern, a 954 item dataset that pairs 318 human-written descriptions of visual patterns from 40 writing systems with three visual presentation styles. GlyphPattern evaluates abstract pattern recognition in VLMs, requiring models to understand and judge natural language descriptions of visual patterns. GlyphPattern patterns are drawn from a large-scale cognitive science investigation of human writing systems; as a result, they are rich in spatial reference and compositionality. Our experiments show that GlyphPattern is challenging for state-of-the-art VLMs (GPT-4o achieves only 55% accuracy), with marginal gains from few-shot prompting. Our detailed error analysis reveals challenges at multiple levels, including visual processing, natural language understanding, and pattern generalization.
Computer Vision and Pattern Recognition 100
☆ Radial Attention: $O(n\log n)$ Sparse Attention with Energy Decay for Long Video Generation
Recent advances in diffusion models have enabled high-quality video generation, but the additional temporal dimension significantly increases computational costs, making training and inference on long videos prohibitively expensive. In this paper, we identify a phenomenon we term Spatiotemporal Energy Decay in video diffusion models: post-softmax attention scores diminish as spatial and temporal distance between tokens increase, akin to the physical decay of signal or waves over space and time in nature. Motivated by this, we propose Radial Attention, a scalable sparse attention mechanism with $O(n \log n)$ complexity that translates energy decay into exponentially decaying compute density, which is significantly more efficient than standard $O(n^2)$ dense attention and more expressive than linear attention. Specifically, Radial Attention employs a simple, static attention mask where each token attends to spatially nearby tokens, with the attention window size shrinking with temporal distance. Moreover, it allows pre-trained video diffusion models to extend their generation length with efficient LoRA-based fine-tuning. Extensive experiments show that Radial Attention maintains video quality across Wan2.1-14B, HunyuanVideo, and Mochi 1, achieving up to a 1.9$\times$ speedup over the original dense attention. With minimal tuning, it enables video generation up to 4$\times$ longer while reducing training costs by up to 4.4$\times$ compared to direct fine-tuning and accelerating inference by up to 3.7$\times$ compared to dense attention inference.
comment: Code: https://github.com/mit-han-lab/radial-attention
☆ AnimaX: Animating the Inanimate in 3D with Joint Video-Pose Diffusion Models
We present AnimaX, a feed-forward 3D animation framework that bridges the motion priors of video diffusion models with the controllable structure of skeleton-based animation. Traditional motion synthesis methods are either restricted to fixed skeletal topologies or require costly optimization in high-dimensional deformation spaces. In contrast, AnimaX effectively transfers video-based motion knowledge to the 3D domain, supporting diverse articulated meshes with arbitrary skeletons. Our method represents 3D motion as multi-view, multi-frame 2D pose maps, and enables joint video-pose diffusion conditioned on template renderings and a textual motion prompt. We introduce shared positional encodings and modality-aware embeddings to ensure spatial-temporal alignment between video and pose sequences, effectively transferring video priors to motion generation task. The resulting multi-view pose sequences are triangulated into 3D joint positions and converted into mesh animation via inverse kinematics. Trained on a newly curated dataset of 160,000 rigged sequences, AnimaX achieves state-of-the-art results on VBench in generalization, motion fidelity, and efficiency, offering a scalable solution for category-agnostic 3D animation. Project page: \href{https://anima-x.github.io/}{https://anima-x.github.io/}.
comment: Project page: https://anima-x.github.io/
☆ Unified Vision-Language-Action Model
Vision-language-action models (VLAs) have garnered significant attention for their potential in advancing robotic manipulation. However, previous approaches predominantly rely on the general comprehension capabilities of vision-language models (VLMs) to generate action signals, often overlooking the rich temporal and causal structure embedded in visual observations. In this paper, we present UniVLA, a unified and native multimodal VLA model that autoregressively models vision, language, and action signals as discrete token sequences. This formulation enables flexible multimodal tasks learning, particularly from large-scale video data. By incorporating world modeling during post-training, UniVLA captures causal dynamics from videos, facilitating effective transfer to downstream policy learning--especially for long-horizon tasks. Our approach sets new state-of-the-art results across several widely used simulation benchmarks, including CALVIN, LIBERO, and Simplenv-Bridge, significantly surpassing previous methods. For example, UniVLA achieves 95.5% average success rate on LIBERO benchmark, surpassing pi0-FAST's 85.5%. We further demonstrate its broad applicability on real-world ALOHA manipulation and autonomous driving.
comment: technical report
☆ ScaleCap: Inference-Time Scalable Image Captioning via Dual-Modality Debiasing
This paper presents ScaleCap, an inference-time scalable image captioning strategy that generates comprehensive and detailed image captions. The key challenges of high-quality image captioning lie in the inherent biases of LVLMs: multimodal bias resulting in imbalanced descriptive granularity, offering detailed accounts of some elements while merely skimming over others; linguistic bias leading to hallucinated descriptions of non-existent objects. To address these issues, we propose a scalable debiased captioning strategy, which continuously enriches and calibrates the caption with increased inference budget. Specifically, we propose two novel components: heuristic question answering and contrastive sentence rating. The former generates content-specific questions based on the image and answers them to progressively inject relevant information into the caption. The latter employs sentence-level offline contrastive decoding to effectively identify and eliminate hallucinations caused by linguistic biases. With increased inference cost, more heuristic questions are raised by ScaleCap to progressively capture additional visual details, generating captions that are more accurate, balanced, and informative. Extensive modality alignment experiments demonstrate the effectiveness of ScaleCap. Annotating 450K images with ScaleCap and using them for LVLM pretraining leads to consistent performance gains across 11 widely used benchmarks. Furthermore, ScaleCap showcases superb richness and fidelity of generated captions with two additional tasks: replacing images with captions in VQA task, and reconstructing images from captions to assess semantic coverage. Code is available at https://github.com/Cooperx521/ScaleCap.
comment: Code is available at https://github.com/Cooperx521/ScaleCap
Orthogonal Finetuning Made Scalable
Orthogonal finetuning (OFT) offers highly parameter-efficient adaptation while preventing catastrophic forgetting, but its high runtime and memory demands limit practical deployment. We identify the core computational bottleneck in OFT as its weight-centric implementation, which relies on costly matrix-matrix multiplications with cubic complexity. To overcome this, we propose OFTv2, an input-centric reformulation that instead uses matrix-vector multiplications (i.e., matrix-free computation), reducing the computational cost to quadratic. We further introduce the Cayley-Neumann parameterization, an efficient orthogonal parameterization that approximates the matrix inversion in Cayley transform via a truncated Neumann series. These modifications allow OFTv2 to achieve up to 10x faster training and 3x lower GPU memory usage without compromising performance. In addition, we extend OFTv2 to support finetuning quantized foundation models and show that it outperforms the popular QLoRA in training stability, efficiency, and memory usage.
comment: Technical report (17 pages, 7 figures, project page: https://spherelab.ai/oftv2/)
☆ A Comparative Study of NAFNet Baselines for Image Restoration
We study NAFNet (Nonlinear Activation Free Network), a simple and efficient deep learning baseline for image restoration. By using CIFAR10 images corrupted with noise and blur, we conduct an ablation study of NAFNet's core components. Our baseline model implements SimpleGate activation, Simplified Channel Activation (SCA), and LayerNormalization. We compare this baseline to different variants that replace or remove components. Quantitative results (PSNR, SSIM) and examples illustrate how each modification affects restoration performance. Our findings support the NAFNet design: the SimpleGate and simplified attention mechanisms yield better results than conventional activations and attention, while LayerNorm proves to be important for stable training. We conclude with recommendations for model design, discuss potential improvements, and future work.
☆ Active View Selector: Fast and Accurate Active View Selection with Cross Reference Image Quality Assessment
We tackle active view selection in novel view synthesis and 3D reconstruction. Existing methods like FisheRF and ActiveNeRF select the next best view by minimizing uncertainty or maximizing information gain in 3D, but they require specialized designs for different 3D representations and involve complex modelling in 3D space. Instead, we reframe this as a 2D image quality assessment (IQA) task, selecting views where current renderings have the lowest quality. Since ground-truth images for candidate views are unavailable, full-reference metrics like PSNR and SSIM are inapplicable, while no-reference metrics, such as MUSIQ and MANIQA, lack the essential multi-view context. Inspired by a recent cross-referencing quality framework CrossScore, we train a model to predict SSIM within a multi-view setup and use it to guide view selection. Our cross-reference IQA framework achieves substantial quantitative and qualitative improvements across standard benchmarks, while being agnostic to 3D representations, and runs 14-33 times faster than previous methods.
comment: Project page: https://avs.active.vision/
☆ GenHSI: Controllable Generation of Human-Scene Interaction Videos
Large-scale pre-trained video diffusion models have exhibited remarkable capabilities in diverse video generation. However, existing solutions face several challenges in using these models to generate long movie-like videos with rich human-object interactions that include unrealistic human-scene interaction, lack of subject identity preservation, and require expensive training. We propose GenHSI, a training-free method for controllable generation of long human-scene interaction videos (HSI). Taking inspiration from movie animation, our key insight is to overcome the limitations of previous work by subdividing the long video generation task into three stages: (1) script writing, (2) pre-visualization, and (3) animation. Given an image of a scene, a user description, and multiple images of a person, we use these three stages to generate long-videos that preserve human-identity and provide rich human-scene interactions. Script writing converts complex human tasks into simple atomic tasks that are used in the pre-visualization stage to generate 3D keyframes (storyboards). These 3D keyframes are rendered and animated by off-the-shelf video diffusion models for consistent long video generation with rich contacts in a 3D-aware manner. A key advantage of our work is that we alleviate the need for scanned, accurate scenes and create 3D keyframes from single-view images. We are the first to generate a long video sequence with a consistent camera pose that contains arbitrary numbers of character actions without training. Experiments demonstrate that our method can generate long videos that effectively preserve scene content and character identity with plausible human-scene interaction from a single image scene. Visit our project homepage https://kunkun0w0.github.io/project/GenHSI/ for more information.
☆ Improving Progressive Generation with Decomposable Flow Matching
Generating high-dimensional visual modalities is a computationally intensive task. A common solution is progressive generation, where the outputs are synthesized in a coarse-to-fine spectral autoregressive manner. While diffusion models benefit from the coarse-to-fine nature of denoising, explicit multi-stage architectures are rarely adopted. These architectures have increased the complexity of the overall approach, introducing the need for a custom diffusion formulation, decomposition-dependent stage transitions, add-hoc samplers, or a model cascade. Our contribution, Decomposable Flow Matching (DFM), is a simple and effective framework for the progressive generation of visual media. DFM applies Flow Matching independently at each level of a user-defined multi-scale representation (such as Laplacian pyramid). As shown by our experiments, our approach improves visual quality for both images and videos, featuring superior results compared to prior multistage frameworks. On Imagenet-1k 512px, DFM achieves 35.2% improvements in FDD scores over the base architecture and 26.4% over the best-performing baseline, under the same training compute. When applied to finetuning of large models, such as FLUX, DFM shows faster convergence speed to the training distribution. Crucially, all these advantages are achieved with a single model, architectural simplicity, and minimal modifications to existing training pipelines.
comment: Project Webpage: https://snap-research.github.io/dfm/
☆ SimpleGVR: A Simple Baseline for Latent-Cascaded Video Super-Resolution
Latent diffusion models have emerged as a leading paradigm for efficient video generation. However, as user expectations shift toward higher-resolution outputs, relying solely on latent computation becomes inadequate. A promising approach involves decoupling the process into two stages: semantic content generation and detail synthesis. The former employs a computationally intensive base model at lower resolutions, while the latter leverages a lightweight cascaded video super-resolution (VSR) model to achieve high-resolution output. In this work, we focus on studying key design principles for latter cascaded VSR models, which are underexplored currently. First, we propose two degradation strategies to generate training pairs that better mimic the output characteristics of the base model, ensuring alignment between the VSR model and its upstream generator. Second, we provide critical insights into VSR model behavior through systematic analysis of (1) timestep sampling strategies, (2) noise augmentation effects on low-resolution (LR) inputs. These findings directly inform our architectural and training innovations. Finally, we introduce interleaving temporal unit and sparse local attention to achieve efficient training and inference, drastically reducing computational overhead. Extensive experiments demonstrate the superiority of our framework over existing methods, with ablation studies confirming the efficacy of each design choice. Our work establishes a simple yet effective baseline for cascaded video super-resolution generation, offering practical insights to guide future advancements in efficient cascaded synthesis systems.
comment: Project webpage available at https://simplegvr.github.io/
☆ Bind-Your-Avatar: Multi-Talking-Character Video Generation with Dynamic 3D-mask-based Embedding Router
Recent years have witnessed remarkable advances in audio-driven talking head generation. However, existing approaches predominantly focus on single-character scenarios. While some methods can create separate conversation videos between two individuals, the critical challenge of generating unified conversation videos with multiple physically co-present characters sharing the same spatial environment remains largely unaddressed. This setting presents two key challenges: audio-to-character correspondence control and the lack of suitable datasets featuring multi-character talking videos within the same scene. To address these challenges, we introduce Bind-Your-Avatar, an MM-DiT-based model specifically designed for multi-talking-character video generation in the same scene. Specifically, we propose (1) A novel framework incorporating a fine-grained Embedding Router that binds `who' and `speak what' together to address the audio-to-character correspondence control. (2) Two methods for implementing a 3D-mask embedding router that enables frame-wise, fine-grained control of individual characters, with distinct loss functions based on observed geometric priors and a mask refinement strategy to enhance the accuracy and temporal smoothness of the predicted masks. (3) The first dataset, to the best of our knowledge, specifically constructed for multi-talking-character video generation, and accompanied by an open-source data processing pipeline, and (4) A benchmark for the dual-talking-characters video generation, with extensive experiments demonstrating superior performance over multiple state-of-the-art methods.
☆ Look to Locate: Vision-Based Multisensory Navigation with 3-D Digital Maps for GNSS-Challenged Environments
In Global Navigation Satellite System (GNSS)-denied environments such as indoor parking structures or dense urban canyons, achieving accurate and robust vehicle positioning remains a significant challenge. This paper proposes a cost-effective, vision-based multi-sensor navigation system that integrates monocular depth estimation, semantic filtering, and visual map registration (VMR) with 3-D digital maps. Extensive testing in real-world indoor and outdoor driving scenarios demonstrates the effectiveness of the proposed system, achieving sub-meter accuracy of 92% indoors and more than 80% outdoors, with consistent horizontal positioning and heading average root mean-square errors of approximately 0.98 m and 1.25 {\deg}, respectively. Compared to the baselines examined, the proposed solution significantly reduced drift and improved robustness under various conditions, achieving positioning accuracy improvements of approximately 88% on average. This work highlights the potential of cost-effective monocular vision systems combined with 3D maps for scalable, GNSS-independent navigation in land vehicles.
☆ CronusVLA: Transferring Latent Motion Across Time for Multi-Frame Prediction in Manipulation
Recent vision-language-action (VLA) models built on pretrained vision-language models (VLMs) have demonstrated strong generalization across manipulation tasks. However, they remain constrained by a single-frame observation paradigm and cannot fully benefit from the motion information offered by aggregated multi-frame historical observations, as the large vision-language backbone introduces substantial computational cost and inference latency. We propose CronusVLA, a unified framework that extends single-frame VLA models to the multi-frame paradigm through an efficient post-training stage. CronusVLA comprises three key components: (1) single-frame pretraining on large-scale embodied datasets with autoregressive action tokens prediction, which establishes an embodied vision-language foundation; (2) multi-frame encoding, adapting the prediction of vision-language backbones from discrete action tokens to motion features during post-training, and aggregating motion features from historical frames into a feature chunking; (3) cross-frame decoding, which maps the feature chunking to accurate actions via a shared decoder with cross-attention. By reducing redundant token computation and caching past motion features, CronusVLA achieves efficient inference. As an application of motion features, we further propose an action adaptation mechanism based on feature-action retrieval to improve model performance during finetuning. CronusVLA achieves state-of-the-art performance on SimplerEnv with 70.9% success rate, and 12.7% improvement over OpenVLA on LIBERO. Real-world Franka experiments also show the strong performance and robustness.
comment: 36 pages, 21 figures
☆ One Prototype Is Enough: Single-Prototype Activation for Interpretable Image Classification
In this paper, we propose ProtoSolo, a novel deep neural architecture for interpretable image classification inspired by prototypical networks such as ProtoPNet. Existing prototype networks usually rely on the collaborative decision-making of multiple prototypes to achieve the classification and interpretation of a single category. In contrast, ProtoSolo only requires the activation of a single prototype to complete the classification. This allows the network to explain each category decision by only providing the features that are most similar to the prototype of that category, significantly reducing the cognitive complexity of the explanation. Secondly, we propose a feature-based comparison method, which uses feature map instead of full-channel feature vector as the object of similarity comparison and prototype learning. This design enables ProtoSolo to utilize richer global information for classification while relying on a single prototype activation. In addition, we propose a non-prototype projection learning strategy, which preserves the information association between the prototype and the training image patches while avoiding the sharp change of the network structure caused by the projection operation, thus avoiding its negative impact on the classification performance. Experiments on the CUB-200-2011 and Stanford Cars datasets show that ProtoSolo achieves superior performance in classification tasks and reaches the best level in terms of cognitive complexity of explanations compared to state-of-the-art interpretable methods. The code is available at https://github.com/pyt19/ProtoSolo.
☆ KnowRL: Exploring Knowledgeable Reinforcement Learning for Factuality
Large Language Models (LLMs), particularly slow-thinking models, often exhibit severe hallucination, outputting incorrect content due to an inability to accurately recognize knowledge boundaries during reasoning. While Reinforcement Learning (RL) can enhance complex reasoning abilities, its outcome-oriented reward mechanism often lacks factual supervision over the thinking process, further exacerbating the hallucination problem. To address the high hallucination in slow-thinking models, we propose Knowledge-enhanced RL, KnowRL. KnowRL guides models to perform fact-based slow thinking by integrating a factuality reward, based on knowledge verification, into the RL training process, helping them recognize their knowledge boundaries. KnowRL guides models to perform fact-based slow thinking by integrating a factuality reward, based on knowledge verification, into the RL training process, helping them recognize their knowledge boundaries. This targeted factual input during RL training enables the model to learn and internalize fact-based reasoning strategies. By directly rewarding adherence to facts within the reasoning steps, KnowRL fosters a more reliable thinking process. Experimental results on three hallucination evaluation datasets and two reasoning evaluation datasets demonstrate that KnowRL effectively mitigates hallucinations in slow-thinking models while maintaining their original strong reasoning capabilities. Our code is available at https://github.com/zjunlp/KnowRL.
comment: Work in progress
☆ CoCo4D: Comprehensive and Complex 4D Scene Generation
Existing 4D synthesis methods primarily focus on object-level generation or dynamic scene synthesis with limited novel views, restricting their ability to generate multi-view consistent and immersive dynamic 4D scenes. To address these constraints, we propose a framework (dubbed as CoCo4D) for generating detailed dynamic 4D scenes from text prompts, with the option to include images. Our method leverages the crucial observation that articulated motion typically characterizes foreground objects, whereas background alterations are less pronounced. Consequently, CoCo4D divides 4D scene synthesis into two responsibilities: modeling the dynamic foreground and creating the evolving background, both directed by a reference motion sequence. Given a text prompt and an optional reference image, CoCo4D first generates an initial motion sequence utilizing video diffusion models. This motion sequence then guides the synthesis of both the dynamic foreground object and the background using a novel progressive outpainting scheme. To ensure seamless integration of the moving foreground object within the dynamic background, CoCo4D optimizes a parametric trajectory for the foreground, resulting in realistic and coherent blending. Extensive experiments show that CoCo4D achieves comparable or superior performance in 4D scene generation compared to existing methods, demonstrating its effectiveness and efficiency. More results are presented on our website https://colezwhy.github.io/coco4d/.
comment: 16 pages,10 figures
☆ Systematic Review of Pituitary Gland and Pituitary Adenoma Automatic Segmentation Techniques in Magnetic Resonance Imaging
Purpose: Accurate segmentation of both the pituitary gland and adenomas from magnetic resonance imaging (MRI) is essential for diagnosis and treatment of pituitary adenomas. This systematic review evaluates automatic segmentation methods for improving the accuracy and efficiency of MRI-based segmentation of pituitary adenomas and the gland itself. Methods: We reviewed 34 studies that employed automatic and semi-automatic segmentation methods. We extracted and synthesized data on segmentation techniques and performance metrics (such as Dice overlap scores). Results: The majority of reviewed studies utilized deep learning approaches, with U-Net-based models being the most prevalent. Automatic methods yielded Dice scores of 0.19--89.00\% for pituitary gland and 4.60--96.41\% for adenoma segmentation. Semi-automatic methods reported 80.00--92.10\% for pituitary gland and 75.90--88.36\% for adenoma segmentation. Conclusion: Most studies did not report important metrics such as MR field strength, age and adenoma size. Automated segmentation techniques such as U-Net-based models show promise, especially for adenoma segmentation, but further improvements are needed to achieve consistently good performance in small structures like the normal pituitary gland. Continued innovation and larger, diverse datasets are likely critical to enhancing clinical applicability.
☆ Systematic Comparison of Projection Methods for Monocular 3D Human Pose Estimation on Fisheye Images
Fisheye cameras offer robots the ability to capture human movements across a wider field of view (FOV) than standard pinhole cameras, making them particularly useful for applications in human-robot interaction and automotive contexts. However, accurately detecting human poses in fisheye images is challenging due to the curved distortions inherent to fisheye optics. While various methods for undistorting fisheye images have been proposed, their effectiveness and limitations for poses that cover a wide FOV has not been systematically evaluated in the context of absolute human pose estimation from monocular fisheye images. To address this gap, we evaluate the impact of pinhole, equidistant and double sphere camera models, as well as cylindrical projection methods, on 3D human pose estimation accuracy. We find that in close-up scenarios, pinhole projection is inadequate, and the optimal projection method varies with the FOV covered by the human pose. The usage of advanced fisheye models like the double sphere model significantly enhances 3D human pose estimation accuracy. We propose a heuristic for selecting the appropriate projection model based on the detection bounding box to enhance prediction quality. Additionally, we introduce and evaluate on our novel dataset FISHnCHIPS, which features 3D human skeleton annotations in fisheye images, including images from unconventional angles, such as extreme close-ups, ground-mounted cameras, and wide-FOV poses, available at: https://www.vision.rwth-aachen.de/fishnchips
comment: Presented at IEEE International Conference on Robotics and Automation 2025
☆ NeRF-based CBCT Reconstruction needs Normalization and Initialization
Cone Beam Computed Tomography (CBCT) is widely used in medical imaging. However, the limited number and intensity of X-ray projections make reconstruction an ill-posed problem with severe artifacts. NeRF-based methods have achieved great success in this task. However, they suffer from a local-global training mismatch between their two key components: the hash encoder and the neural network. Specifically, in each training step, only a subset of the hash encoder's parameters is used (local sparse), whereas all parameters in the neural network participate (global dense). Consequently, hash features generated in each step are highly misaligned, as they come from different subsets of the hash encoder. These misalignments from different training steps are then fed into the neural network, causing repeated inconsistent global updates in training, which leads to unstable training, slower convergence, and degraded reconstruction quality. Aiming to alleviate the impact of this local-global optimization mismatch, we introduce a Normalized Hash Encoder, which enhances feature consistency and mitigates the mismatch. Additionally, we propose a Mapping Consistency Initialization(MCI) strategy that initializes the neural network before training by leveraging the global mapping property from a well-trained model. The initialized neural network exhibits improved stability during early training, enabling faster convergence and enhanced reconstruction performance. Our method is simple yet effective, requiring only a few lines of code while substantially improving training efficiency on 128 CT cases collected from 4 different datasets, covering 7 distinct anatomical regions.
☆ Noise Consistency Training: A Native Approach for One-Step Generator in Learning Additional Controls
The pursuit of efficient and controllable high-quality content generation remains a central challenge in artificial intelligence-generated content (AIGC). While one-step generators, enabled by diffusion distillation techniques, offer excellent generation quality and computational efficiency, adapting them to new control conditions--such as structural constraints, semantic guidelines, or external inputs--poses a significant challenge. Conventional approaches often necessitate computationally expensive modifications to the base model and subsequent diffusion distillation. This paper introduces Noise Consistency Training (NCT), a novel and lightweight approach to directly integrate new control signals into pre-trained one-step generators without requiring access to original training images or retraining the base diffusion model. NCT operates by introducing an adapter module and employs a noise consistency loss in the noise space of the generator. This loss aligns the adapted model's generation behavior across noises that are conditionally dependent to varying degrees, implicitly guiding it to adhere to the new control. Theoretically, this training objective can be understood as minimizing the distributional distance between the adapted generator and the conditional distribution induced by the new conditions. NCT is modular, data-efficient, and easily deployable, relying only on the pre-trained one-step generator and a control signal model. Extensive experiments demonstrate that NCT achieves state-of-the-art controllable generation in a single forward pass, surpassing existing multi-step and distillation-based methods in both generation quality and computational efficiency. Code is available at https://github.com/Luo-Yihong/NCT
☆ Uncovering Conceptual Blindspots in Generative Image Models Using Sparse Autoencoders
Despite their impressive performance, generative image models trained on large-scale datasets frequently fail to produce images with seemingly simple concepts -- e.g., human hands or objects appearing in groups of four -- that are reasonably expected to appear in the training data. These failure modes have largely been documented anecdotally, leaving open the question of whether they reflect idiosyncratic anomalies or more structural limitations of these models. To address this, we introduce a systematic approach for identifying and characterizing "conceptual blindspots" -- concepts present in the training data but absent or misrepresented in a model's generations. Our method leverages sparse autoencoders (SAEs) to extract interpretable concept embeddings, enabling a quantitative comparison of concept prevalence between real and generated images. We train an archetypal SAE (RA-SAE) on DINOv2 features with 32,000 concepts -- the largest such SAE to date -- enabling fine-grained analysis of conceptual disparities. Applied to four popular generative models (Stable Diffusion 1.5/2.1, PixArt, and Kandinsky), our approach reveals specific suppressed blindspots (e.g., bird feeders, DVD discs, and whitespaces on documents) and exaggerated blindspots (e.g., wood background texture and palm trees). At the individual datapoint level, we further isolate memorization artifacts -- instances where models reproduce highly specific visual templates seen during training. Overall, we propose a theoretically grounded framework for systematically identifying conceptual blindspots in generative models by assessing their conceptual fidelity with respect to the underlying data-generating process.
☆ UltraAD: Fine-Grained Ultrasound Anomaly Classification via Few-Shot CLIP Adaptation
Precise anomaly detection in medical images is critical for clinical decision-making. While recent unsupervised or semi-supervised anomaly detection methods trained on large-scale normal data show promising results, they lack fine-grained differentiation, such as benign vs. malignant tumors. Additionally, ultrasound (US) imaging is highly sensitive to devices and acquisition parameter variations, creating significant domain gaps in the resulting US images. To address these challenges, we propose UltraAD, a vision-language model (VLM)-based approach that leverages few-shot US examples for generalized anomaly localization and fine-grained classification. To enhance localization performance, the image-level token of query visual prototypes is first fused with learnable text embeddings. This image-informed prompt feature is then further integrated with patch-level tokens, refining local representations for improved accuracy. For fine-grained classification, a memory bank is constructed from few-shot image samples and corresponding text descriptions that capture anatomical and abnormality-specific features. During training, the stored text embeddings remain frozen, while image features are adapted to better align with medical data. UltraAD has been extensively evaluated on three breast US datasets, outperforming state-of-the-art methods in both lesion localization and fine-grained medical classification. The code will be released upon acceptance.
☆ ReCoGNet: Recurrent Context-Guided Network for 3D MRI Prostate Segmentation
Prostate gland segmentation from T2-weighted MRI is a critical yet challenging task in clinical prostate cancer assessment. While deep learning-based methods have significantly advanced automated segmentation, most conventional approaches-particularly 2D convolutional neural networks (CNNs)-fail to leverage inter-slice anatomical continuity, limiting their accuracy and robustness. Fully 3D models offer improved spatial coherence but require large amounts of annotated data, which is often impractical in clinical settings. To address these limitations, we propose a hybrid architecture that models MRI sequences as spatiotemporal data. Our method uses a deep, pretrained DeepLabV3 backbone to extract high-level semantic features from each MRI slice and a recurrent convolutional head, built with ConvLSTM layers, to integrate information across slices while preserving spatial structure. This combination enables context-aware segmentation with improved consistency, particularly in data-limited and noisy imaging conditions. We evaluate our method on the PROMISE12 benchmark under both clean and contrast-degraded test settings. Compared to state-of-the-art 2D and 3D segmentation models, our approach demonstrates superior performance in terms of precision, recall, Intersection over Union (IoU), and Dice Similarity Coefficient (DSC), highlighting its potential for robust clinical deployment.
☆ Semantic Scene Graph for Ultrasound Image Explanation and Scanning Guidance
Understanding medical ultrasound imaging remains a long-standing challenge due to significant visual variability caused by differences in imaging and acquisition parameters. Recent advancements in large language models (LLMs) have been used to automatically generate terminology-rich summaries orientated to clinicians with sufficient physiological knowledge. Nevertheless, the increasing demand for improved ultrasound interpretability and basic scanning guidance among non-expert users, e.g., in point-of-care settings, has not yet been explored. In this study, we first introduce the scene graph (SG) for ultrasound images to explain image content to ordinary and provide guidance for ultrasound scanning. The ultrasound SG is first computed using a transformer-based one-stage method, eliminating the need for explicit object detection. To generate a graspable image explanation for ordinary, the user query is then used to further refine the abstract SG representation through LLMs. Additionally, the predicted SG is explored for its potential in guiding ultrasound scanning toward missing anatomies within the current imaging view, assisting ordinary users in achieving more standardized and complete anatomical exploration. The effectiveness of this SG-based image explanation and scanning guidance has been validated on images from the left and right neck regions, including the carotid and thyroid, across five volunteers. The results demonstrate the potential of the method to maximally democratize ultrasound by enhancing its interpretability and usability for ordinaries.
☆ Genome-Anchored Foundation Model Embeddings Improve Molecular Prediction from Histology Images
Precision oncology requires accurate molecular insights, yet obtaining these directly from genomics is costly and time-consuming for broad clinical use. Predicting complex molecular features and patient prognosis directly from routine whole-slide images (WSI) remains a major challenge for current deep learning methods. Here we introduce PathLUPI, which uses transcriptomic privileged information during training to extract genome-anchored histological embeddings, enabling effective molecular prediction using only WSIs at inference. Through extensive evaluation across 49 molecular oncology tasks using 11,257 cases among 20 cohorts, PathLUPI demonstrated superior performance compared to conventional methods trained solely on WSIs. Crucially, it achieves AUC $\geq$ 0.80 in 14 of the biomarker prediction and molecular subtyping tasks and C-index $\geq$ 0.70 in survival cohorts of 5 major cancer types. Moreover, PathLUPI embeddings reveal distinct cellular morphological signatures associated with specific genotypes and related biological pathways within WSIs. By effectively encoding molecular context to refine WSI representations, PathLUPI overcomes a key limitation of existing models and offers a novel strategy to bridge molecular insights with routine pathology workflows for wider clinical application.
comment: Under Review
☆ Recurrent Visual Feature Extraction and Stereo Attentions for CT Report Generation
Generating reports for computed tomography (CT) images is a challenging task, while similar to existing studies for medical image report generation, yet has its unique characteristics, such as spatial encoding of multiple images, alignment between image volume and texts, etc. Existing solutions typically use general 2D or 3D image processing techniques to extract features from a CT volume, where they firstly compress the volume and then divide the compressed CT slices into patches for visual encoding. These approaches do not explicitly account for the transformations among CT slices, nor do they effectively integrate multi-level image features, particularly those containing specific organ lesions, to instruct CT report generation (CTRG). In considering the strong correlation among consecutive slices in CT scans, in this paper, we propose a large language model (LLM) based CTRG method with recurrent visual feature extraction and stereo attentions for hierarchical feature modeling. Specifically, we use a vision Transformer to recurrently process each slice in a CT volume, and employ a set of attentions over the encoded slices from different perspectives to selectively obtain important visual information and align them with textual features, so as to better instruct an LLM for CTRG. Experiment results and further analysis on the benchmark M3D-Cap dataset show that our method outperforms strong baseline models and achieves state-of-the-art results, demonstrating its validity and effectiveness.
comment: 7 pages, 3 figures
☆ SAM2-SGP: Enhancing SAM2 for Medical Image Segmentation via Support-Set Guided Prompting
Although new vision foundation models such as Segment Anything Model 2 (SAM2) have significantly enhanced zero-shot image segmentation capabilities, reliance on human-provided prompts poses significant challenges in adapting SAM2 to medical image segmentation tasks. Moreover, SAM2's performance in medical image segmentation was limited by the domain shift issue, since it was originally trained on natural images and videos. To address these challenges, we proposed SAM2 with support-set guided prompting (SAM2-SGP), a framework that eliminated the need for manual prompts. The proposed model leveraged the memory mechanism of SAM2 to generate pseudo-masks using image-mask pairs from a support set via a Pseudo-mask Generation (PMG) module. We further introduced a novel Pseudo-mask Attention (PMA) module, which used these pseudo-masks to automatically generate bounding boxes and enhance localized feature extraction by guiding attention to relevant areas. Furthermore, a low-rank adaptation (LoRA) strategy was adopted to mitigate the domain shift issue. The proposed framework was evaluated on both 2D and 3D datasets across multiple medical imaging modalities, including fundus photography, X-ray, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasound. The results demonstrated a significant performance improvement over state-of-the-art models, such as nnUNet and SwinUNet, as well as foundation models, such as SAM2 and MedSAM2, underscoring the effectiveness of the proposed approach. Our code is publicly available at https://github.com/astlian9/SAM_Support.
☆ Video Compression for Spatiotemporal Earth System Data
Large-scale Earth system datasets, from high-resolution remote sensing imagery to spatiotemporal climate model outputs, exhibit characteristics analogous to those of standard videos. Their inherent spatial, temporal, and spectral redundancies can thus be readily exploited by established video compression techniques. Here, we present xarrayvideo, a Python library for compressing multichannel spatiotemporal datasets by encoding them as videos. Our approach achieves compression ratios of up to 250x while maintaining high fidelity by leveraging standard, well-optimized video codecs through ffmpeg. We demonstrate the library's effectiveness on four real-world multichannel spatiotemporal datasets: DynamicEarthNet (very high resolution Planet images), DeepExtremeCubes (high resolution Sentinel-2 images), ERA5 (weather reanalysis data), and the SimpleS2 dataset (high resolution multichannel Sentinel-2 images), achieving Peak Signal-to-Noise Ratios (PSNRs) of 55.86, 40.60, 46.58, and 43.23 dB at 0.1 bits per pixel per band (bpppb) and 65.91, 54.28, 62.90, and 55.04 dB at 1 bpppb. We are redistributing two of these datasets, DeepExtremeCubes (2.3 Tb) and DynamicEarthNet (525 Gb), in the machine-learning-ready and cloud-ready TACO format through HuggingFace at significantly reduced sizes (270 Gb and 8.5 Gb, respectively) without compromising quality (PSNR 55.77-56.65 and 60.15). No performance loss is observed when the compressed versions of these datasets are used in their respective deep learning-based downstream tasks (next step reflectance prediction and landcover segmentation). In conclusion, xarrayvideo presents an efficient solution for handling the rapidly growing size of Earth observation datasets, making advanced compression techniques accessible and practical to the Earth science community. The library is available for use at https://github.com/IPL-UV/xarrayvideo
☆ PEVLM: Parallel Encoding for Vision-Language Models
Vision-Language Models (VLMs) have demonstrated strong performance in video-language tasks, yet their application to long video understanding remains constrained by the quadratic complexity of standard attention mechanisms. In this paper, we propose \textbf{PEVLM}, a parallel encoding strategy specifically designed to improve the prefill efficiency of VLMs without requiring model finetuning. PEVLM partitions the input into block-wise segments with a shared sink, preserves full-attention positional embeddings, and aligns attention weights to mimic full-attention distributions. This design reduces attention computation from $O((T \times N)^2)$ to $O(T \times N)$ while maintaining high accuracy. Extensive experiments on the LongVideoBench benchmark show that PEVLM achieves up to 8.37\% accuracy improvement over existing inference-efficient methods and delivers up to 7.47x speedup in attention computation and 40\% reduction in end-to-end latency. Under strict latency constraints, PEVLM significantly outperforms baselines, raising accuracy from 23.26\% to 61.03\%. These results highlight PEVLM's effectiveness for low-latency, long-context video understanding, making it well-suited for real-world applications such as autonomous driving.
☆ HOIverse: A Synthetic Scene Graph Dataset With Human Object Interactions
When humans and robotic agents coexist in an environment, scene understanding becomes crucial for the agents to carry out various downstream tasks like navigation and planning. Hence, an agent must be capable of localizing and identifying actions performed by the human. Current research lacks reliable datasets for performing scene understanding within indoor environments where humans are also a part of the scene. Scene Graphs enable us to generate a structured representation of a scene or an image to perform visual scene understanding. To tackle this, we present HOIverse a synthetic dataset at the intersection of scene graph and human-object interaction, consisting of accurate and dense relationship ground truths between humans and surrounding objects along with corresponding RGB images, segmentation masks, depth images and human keypoints. We compute parametric relations between various pairs of objects and human-object pairs, resulting in an accurate and unambiguous relation definitions. In addition, we benchmark our dataset on state-of-the-art scene graph generation models to predict parametric relations and human-object interactions. Through this dataset, we aim to accelerate research in the field of scene understanding involving people.
☆ VideoPCDNet: Video Parsing and Prediction with Phase Correlation Networks
Understanding and predicting video content is essential for planning and reasoning in dynamic environments. Despite advancements, unsupervised learning of object representations and dynamics remains challenging. We present VideoPCDNet, an unsupervised framework for object-centric video decomposition and prediction. Our model uses frequency-domain phase correlation techniques to recursively parse videos into object components, which are represented as transformed versions of learned object prototypes, enabling accurate and interpretable tracking. By explicitly modeling object motion through a combination of frequency domain operations and lightweight learned modules, VideoPCDNet enables accurate unsupervised object tracking and prediction of future video frames. In our experiments, we demonstrate that VideoPCDNet outperforms multiple object-centric baseline models for unsupervised tracking and prediction on several synthetic datasets, while learning interpretable object and motion representations.
comment: Accepted for Publication at ICANN 2025
Self-Supervised Multimodal NeRF for Autonomous Driving
In this paper, we propose a Neural Radiance Fields (NeRF) based framework, referred to as Novel View Synthesis Framework (NVSF). It jointly learns the implicit neural representation of space and time-varying scene for both LiDAR and Camera. We test this on a real-world autonomous driving scenario containing both static and dynamic scenes. Compared to existing multimodal dynamic NeRFs, our framework is self-supervised, thus eliminating the need for 3D labels. For efficient training and faster convergence, we introduce heuristic-based image pixel sampling to focus on pixels with rich information. To preserve the local features of LiDAR points, a Double Gradient based mask is employed. Extensive experiments on the KITTI-360 dataset show that, compared to the baseline models, our framework has reported best performance on both LiDAR and Camera domain. Code of the model is available at https://github.com/gaurav00700/Selfsupervised-NVSF
☆ Filling of incomplete sinograms from sparse PET detector configurations using a residual U-Net
Long axial field-of-view PET scanners offer increased field-of-view and sensitivity compared to traditional PET scanners. However, a significant cost is associated with the densely packed photodetectors required for the extended-coverage systems, limiting clinical utilisation. To mitigate the cost limitations, alternative sparse system configurations have been proposed, allowing an extended field-of-view PET design with detector costs similar to a standard PET system, albeit at the expense of image quality. In this work, we propose a deep sinogram restoration network to fill in the missing sinogram data. Our method utilises a modified Residual U-Net, trained on clinical PET scans from a GE Signa PET/MR, simulating the removal of 50% of the detectors in a chessboard pattern (retaining only 25% of all lines of response). The model successfully recovers missing counts, with a mean absolute error below two events per pixel, outperforming 2D interpolation in both sinogram and reconstructed image domain. Notably, the predicted sinograms exhibit a smoothing effect, leading to reconstructed images lacking sharpness in finer details. Despite these limitations, the model demonstrates a substantial capacity for compensating for the undersampling caused by the sparse detector configuration. This proof-of-concept study suggests that sparse detector configurations, combined with deep learning techniques, offer a viable alternative to conventional PET scanner designs. This approach supports the development of cost-effective, total body PET scanners, allowing a significant step forward in medical imaging technology.
comment: 15 pages, 9 figures
☆ Implementing blind navigation through multi-modal sensing and gait guidance
By the year 2023, the global population of individuals with impaired vision has surpassed 220 million. People with impaired vision will find it difficult while finding path or avoiding obstacles, and must ask for auxiliary tools for help. Although traditional aids such as guide canes and guide dogs exist, they still have some shortcomings. In this paper, we present our wearable blind guiding device, what perform navigation guidance through our proposed Gait-based Guiding System. Our device innovatively integrates gait phase analysis for walking guide, and in terms of environmental perception, we use multimodal sensing to acquire diverse environment information. During the experiment, we conducted both indoor and outdoor experiments, and compared with the standard guide cane. The result shows superior performance of our device in blind guidance.
☆ Vision Transformer-Based Time-Series Image Reconstruction for Cloud-Filling Applications
Cloud cover in multispectral imagery (MSI) poses significant challenges for early season crop mapping, as it leads to missing or corrupted spectral information. Synthetic aperture radar (SAR) data, which is not affected by cloud interference, offers a complementary solution, but lack sufficient spectral detail for precise crop mapping. To address this, we propose a novel framework, Time-series MSI Image Reconstruction using Vision Transformer (ViT), to reconstruct MSI data in cloud-covered regions by leveraging the temporal coherence of MSI and the complementary information from SAR from the attention mechanism. Comprehensive experiments, using rigorous reconstruction evaluation metrics, demonstrate that Time-series ViT framework significantly outperforms baselines that use non-time-series MSI and SAR or time-series MSI without SAR, effectively enhancing MSI image reconstruction in cloud-covered regions.
comment: This paper has been accepted as a conference paper at the 2025 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
☆ Learning from Anatomy: Supervised Anatomical Pretraining (SAP) for Improved Metastatic Bone Disease Segmentation in Whole-Body MRI
The segmentation of metastatic bone disease (MBD) in whole-body MRI (WB-MRI) is a challenging problem. Due to varying appearances and anatomical locations of lesions, ambiguous boundaries, and severe class imbalance, obtaining reliable segmentations requires large, well-annotated datasets capturing lesion variability. Generating such datasets requires substantial time and expertise, and is prone to error. While self-supervised learning (SSL) can leverage large unlabeled datasets, learned generic representations often fail to capture the nuanced features needed for accurate lesion detection. In this work, we propose a Supervised Anatomical Pretraining (SAP) method that learns from a limited dataset of anatomical labels. First, an MRI-based skeletal segmentation model is developed and trained on WB-MRI scans from healthy individuals for high-quality skeletal delineation. Then, we compare its downstream efficacy in segmenting MBD on a cohort of 44 patients with metastatic prostate cancer, against both a baseline random initialization and a state-of-the-art SSL method. SAP significantly outperforms both the baseline and SSL-pretrained models, achieving a normalized surface Dice of 0.76 and a Dice coefficient of 0.64. The method achieved a lesion detection F2 score of 0.44, improving on 0.24 (baseline) and 0.31 (SSL). When considering only clinically relevant lesions larger than 1~ml, SAP achieves a detection sensitivity of 100% in 28 out of 32 patients. Learning bone morphology from anatomy yields an effective and domain-relevant inductive bias that can be leveraged for the downstream segmentation task of bone lesions. All code and models are made publicly available.
comment: This preprint is currently under review at *Computers in Biology and Medicine* (Elsevier). This version has not been peer-reviewed
☆ SMARTIES: Spectrum-Aware Multi-Sensor Auto-Encoder for Remote Sensing Images
From optical sensors to microwave radars, leveraging the complementary strengths of remote sensing (RS) sensors is crucial for achieving dense spatio-temporal monitoring of our planet. In contrast, recent deep learning models, whether task-specific or foundational, are often specific to single sensors or to fixed combinations: adapting such models to different sensory inputs requires both architectural changes and re-training, limiting scalability and generalization across multiple RS sensors. On the contrary, a single model able to modulate its feature representations to accept diverse sensors as input would pave the way to agile and flexible multi-sensor RS data processing. To address this, we introduce SMARTIES, a generic and versatile foundation model lifting sensor-specific/dependent efforts and enabling scalability and generalization to diverse RS sensors: SMARTIES projects data from heterogeneous sensors into a shared spectrum-aware space, enabling the use of arbitrary combinations of bands both for training and inference. To obtain sensor-agnostic representations, we train a single, unified transformer model reconstructing masked multi-sensor data with cross-sensor token mixup. On both single- and multi-modal tasks across diverse sensors, SMARTIES outperforms previous models that rely on sensor-specific pretraining. Our code and pretrained models are available at https://gsumbul.github.io/SMARTIES.
☆ Fake or Real, Can Robots Tell? Evaluating Embodied Vision-Language Models on Real and 3D-Printed Objects
Robotic scene understanding increasingly relies on vision-language models (VLMs) to generate natural language descriptions of the environment. In this work, we present a comparative study of captioning strategies for tabletop scenes captured by a robotic arm equipped with an RGB camera. The robot collects images of objects from multiple viewpoints, and we evaluate several models that generate scene descriptions. We compare the performance of various captioning models, like BLIP and VLMs. Our experiments examine the trade-offs between single-view and multi-view captioning, and difference between recognising real-world and 3D printed objects. We quantitatively evaluate object identification accuracy, completeness, and naturalness of the generated captions. Results show that VLMs can be used in robotic settings where common objects need to be recognised, but fail to generalise to novel representations. Our findings provide practical insights into deploying foundation models for embodied agents in real-world settings.
☆ MambaOutRS: A Hybrid CNN-Fourier Architecture for Remote Sensing Image Classification
Recent advances in deep learning for vision tasks have seen the rise of State Space Models (SSMs) like Mamba, celebrated for their linear scalability. However, their adaptation to 2D visual data often necessitates complex modifications that may diminish efficiency. In this paper, we introduce MambaOutRS, a novel hybrid convolutional architecture for remote sensing image classification that re-evaluates the necessity of recurrent SSMs. MambaOutRS builds upon stacked Gated CNN blocks for local feature extraction and introduces a novel Fourier Filter Gate (FFG) module that operates in the frequency domain to capture global contextual information efficiently. Our architecture employs a four-stage hierarchical design and was extensively evaluated on challenging remote sensing datasets: UC Merced, AID, NWPU-RESISC45, and EuroSAT. MambaOutRS consistently achieved state-of-the-art (SOTA) performance across these benchmarks. Notably, our MambaOutRS-t variant (24.0M parameters) attained the highest F1-scores of 98.41\% on UC Merced and 95.99\% on AID, significantly outperforming existing baselines, including larger transformer models and Mamba-based architectures, despite using considerably fewer parameters. An ablation study conclusively demonstrates the critical role of the Fourier Filter Gate in enhancing the model's ability to capture global spatial patterns, leading to robust and accurate classification. These results strongly suggest that the complexities of recurrent SSMs can be effectively superseded by a judicious combination of gated convolutions for spatial mixing and frequency-based gates for spectral global context. Thus, MambaOutRS provides a compelling and efficient paradigm for developing high-performance deep learning models in remote sensing and other vision domains, particularly where computational efficiency is paramount.
☆ ConCM: Consistency-Driven Calibration and Matching for Few-Shot Class-Incremental Learning
Few-Shot Class-Incremental Learning (FSCIL) requires models to adapt to novel classes with limited supervision while preserving learned knowledge. Existing prospective learning-based space construction methods reserve space to accommodate novel classes. However, prototype deviation and structure fixity limit the expressiveness of the embedding space. In contrast to fixed space reservation, we explore the optimization of feature-structure dual consistency and propose a Consistency-driven Calibration and Matching Framework (ConCM) that systematically mitigate the knowledge conflict inherent in FSCIL. Specifically, inspired by hippocampal associative memory, we design a memory-aware prototype calibration that extracts generalized semantic attributes from base classes and reintegrates them into novel classes to enhance the conceptual center consistency of features. Further, we propose dynamic structure matching, which adaptively aligns the calibrated features to a session-specific optimal manifold space, ensuring cross-session structure consistency. Theoretical analysis shows that our method satisfies both geometric optimality and maximum matching, thereby overcoming the need for class-number priors. On large-scale FSCIL benchmarks including mini-ImageNet and CUB200, ConCM achieves state-of-the-art performance, surpassing current optimal method by 3.20% and 3.68% in harmonic accuracy of incremental sessions.
comment: 9 pages, 5 figures(Excluding the appendix)
☆ General Methods Make Great Domain-specific Foundation Models: A Case-study on Fetal Ultrasound MICCAI 2025
With access to large-scale, unlabeled medical datasets, researchers are confronted with two questions: Should they attempt to pretrain a custom foundation model on this medical data, or use transfer-learning from an existing generalist model? And, if a custom model is pretrained, are novel methods required? In this paper we explore these questions by conducting a case-study, in which we train a foundation model on a large regional fetal ultrasound dataset of 2M images. By selecting the well-established DINOv2 method for pretraining, we achieve state-of-the-art results on three fetal ultrasound datasets, covering data from different countries, classification, segmentation, and few-shot tasks. We compare against a series of models pretrained on natural images, ultrasound images, and supervised baselines. Our results demonstrate two key insights: (i) Pretraining on custom data is worth it, even if smaller models are trained on less data, as scaling in natural image pretraining does not translate to ultrasound performance. (ii) Well-tuned methods from computer vision are making it feasible to train custom foundation models for a given medical domain, requiring no hyperparameter tuning and little methodological adaptation. Given these findings, we argue that a bias towards methodological innovation should be avoided when developing domain specific foundation models under common computational resource constraints.
comment: Submitted version of paper accepted at MICCAI 2025
☆ Identifying Physically Realizable Triggers for Backdoored Face Recognition Networks
Backdoor attacks embed a hidden functionality into deep neural networks, causing the network to display anomalous behavior when activated by a predetermined pattern in the input Trigger, while behaving well otherwise on public test data. Recent works have shown that backdoored face recognition (FR) systems can respond to natural-looking triggers like a particular pair of sunglasses. Such attacks pose a serious threat to the applicability of FR systems in high-security applications. We propose a novel technique to (1) detect whether an FR network is compromised with a natural, physically realizable trigger, and (2) identify such triggers given a compromised network. We demonstrate the effectiveness of our methods with a compromised FR network, where we are able to identify the trigger (e.g., green sunglasses or red hat) with a top-5 accuracy of 74%, whereas a naive brute force baseline achieves 56% accuracy.
comment: Accepted to ICIP 2021
☆ ReMAR-DS: Recalibrated Feature Learning for Metal Artifact Reduction and CT Domain Transformation
Artifacts in kilo-Voltage CT (kVCT) imaging degrade image quality, impacting clinical decisions. We propose a deep learning framework for metal artifact reduction (MAR) and domain transformation from kVCT to Mega-Voltage CT (MVCT). The proposed framework, ReMAR-DS, utilizes an encoder-decoder architecture with enhanced feature recalibration, effectively reducing artifacts while preserving anatomical structures. This ensures that only relevant information is utilized in the reconstruction process. By infusing recalibrated features from the encoder block, the model focuses on relevant spatial regions (e.g., areas with artifacts) and highlights key features across channels (e.g., anatomical structures), leading to improved reconstruction of artifact-corrupted regions. Unlike traditional MAR methods, our approach bridges the gap between high-resolution kVCT and artifact-resistant MVCT, enhancing radiotherapy planning. It produces high-quality MVCT-like reconstructions, validated through qualitative and quantitative evaluations. Clinically, this enables oncologists to rely on kVCT alone, reducing repeated high-dose MVCT scans and lowering radiation exposure for cancer patients.
comment: Accepted in 23rd International Conference on Image Analysis and Processing (ICIAP) 2025, Italy
☆ Visual hallucination detection in large vision-language models via evidential conflict
Despite the remarkable multimodal capabilities of Large Vision-Language Models (LVLMs), discrepancies often occur between visual inputs and textual outputs--a phenomenon we term visual hallucination. This critical reliability gap poses substantial risks in safety-critical Artificial Intelligence (AI) applications, necessitating a comprehensive evaluation benchmark and effective detection methods. Firstly, we observe that existing visual-centric hallucination benchmarks mainly assess LVLMs from a perception perspective, overlooking hallucinations arising from advanced reasoning capabilities. We develop the Perception-Reasoning Evaluation Hallucination (PRE-HAL) dataset, which enables the systematic evaluation of both perception and reasoning capabilities of LVLMs across multiple visual semantics, such as instances, scenes, and relations. Comprehensive evaluation with this new benchmark exposed more visual vulnerabilities, particularly in the more challenging task of relation reasoning. To address this issue, we propose, to the best of our knowledge, the first Dempster-Shafer theory (DST)-based visual hallucination detection method for LVLMs through uncertainty estimation. This method aims to efficiently capture the degree of conflict in high-level features at the model inference phase. Specifically, our approach employs simple mass functions to mitigate the computational complexity of evidence combination on power sets. We conduct an extensive evaluation of state-of-the-art LVLMs, LLaVA-v1.5, mPLUG-Owl2 and mPLUG-Owl3, with the new PRE-HAL benchmark. Experimental results indicate that our method outperforms five baseline uncertainty metrics, achieving average AUROC improvements of 4%, 10%, and 7% across three LVLMs. Our code is available at https://github.com/HT86159/Evidential-Conflict.
☆ Experimental Assessment of Neural 3D Reconstruction for Small UAV-based Applications
The increasing miniaturization of Unmanned Aerial Vehicles (UAVs) has expanded their deployment potential to indoor and hard-to-reach areas. However, this trend introduces distinct challenges, particularly in terms of flight dynamics and power consumption, which limit the UAVs' autonomy and mission capabilities. This paper presents a novel approach to overcoming these limitations by integrating Neural 3D Reconstruction (N3DR) with small UAV systems for fine-grained 3-Dimensional (3D) digital reconstruction of small static objects. Specifically, we design, implement, and evaluate an N3DR-based pipeline that leverages advanced models, i.e., Instant-ngp, Nerfacto, and Splatfacto, to improve the quality of 3D reconstructions using images of the object captured by a fleet of small UAVs. We assess the performance of the considered models using various imagery and pointcloud metrics, comparing them against the baseline Structure from Motion (SfM) algorithm. The experimental results demonstrate that the N3DR-enhanced pipeline significantly improves reconstruction quality, making it feasible for small UAVs to support high-precision 3D mapping and anomaly detection in constrained environments. In more general terms, our results highlight the potential of N3DR in advancing the capabilities of miniaturized UAV systems.
comment: 6 pages, 7 figures, 2 tables, accepted at IEEE International Symposium on Personal, Indoor and Mobile Radio Communications 2025
☆ SceneCrafter: Controllable Multi-View Driving Scene Editing CVPR 2025
Simulation is crucial for developing and evaluating autonomous vehicle (AV) systems. Recent literature builds on a new generation of generative models to synthesize highly realistic images for full-stack simulation. However, purely synthetically generated scenes are not grounded in reality and have difficulty in inspiring confidence in the relevance of its outcomes. Editing models, on the other hand, leverage source scenes from real driving logs, and enable the simulation of different traffic layouts, behaviors, and operating conditions such as weather and time of day. While image editing is an established topic in computer vision, it presents fresh sets of challenges in driving simulation: (1) the need for cross-camera 3D consistency, (2) learning ``empty street" priors from driving data with foreground occlusions, and (3) obtaining paired image tuples of varied editing conditions while preserving consistent layout and geometry. To address these challenges, we propose SceneCrafter, a versatile editor for realistic 3D-consistent manipulation of driving scenes captured from multiple cameras. We build on recent advancements in multi-view diffusion models, using a fully controllable framework that scales seamlessly to multi-modality conditions like weather, time of day, agent boxes and high-definition maps. To generate paired data for supervising the editing model, we propose a novel framework on top of Prompt-to-Prompt to generate geometrically consistent synthetic paired data with global edits. We also introduce an alpha-blending framework to synthesize data with local edits, leveraging a model trained on empty street priors through novel masked training and multi-view repaint paradigm. SceneCrafter demonstrates powerful editing capabilities and achieves state-of-the-art realism, controllability, 3D consistency, and scene editing quality compared to existing baselines.
comment: CVPR 2025
☆ HMSViT: A Hierarchical Masked Self-Supervised Vision Transformer for Corneal Nerve Segmentation and Diabetic Neuropathy Diagnosis
Diabetic Peripheral Neuropathy (DPN) affects nearly half of diabetes patients, requiring early detection. Corneal Confocal Microscopy (CCM) enables non-invasive diagnosis, but automated methods suffer from inefficient feature extraction, reliance on handcrafted priors, and data limitations. We propose HMSViT, a novel Hierarchical Masked Self-Supervised Vision Transformer (HMSViT) designed for corneal nerve segmentation and DPN diagnosis. Unlike existing methods, HMSViT employs pooling-based hierarchical and dual attention mechanisms with absolute positional encoding, enabling efficient multi-scale feature extraction by capturing fine-grained local details in early layers and integrating global context in deeper layers, all at a lower computational cost. A block-masked self supervised learning framework is designed for the HMSViT that reduces reliance on labelled data, enhancing feature robustness, while a multi-scale decoder is used for segmentation and classification by fusing hierarchical features. Experiments on clinical CCM datasets showed HMSViT achieves state-of-the-art performance, with 61.34% mIoU for nerve segmentation and 70.40% diagnostic accuracy, outperforming leading hierarchical models like the Swin Transformer and HiViT by margins of up to 6.39% in segmentation accuracy while using fewer parameters. Detailed ablation studies further reveal that integrating block-masked SSL with hierarchical multi-scale feature extraction substantially enhances performance compared to conventional supervised training. Overall, these comprehensive experiments confirm that HMSViT delivers excellent, robust, and clinically viable results, demonstrating its potential for scalable deployment in real-world diagnostic applications.
☆ USIS16K: High-Quality Dataset for Underwater Salient Instance Segmentation
Inspired by the biological visual system that selectively allocates attention to efficiently identify salient objects or regions, underwater salient instance segmentation (USIS) aims to jointly address the problems of where to look (saliency prediction) and what is there (instance segmentation) in underwater scenarios. However, USIS remains an underexplored challenge due to the inaccessibility and dynamic nature of underwater environments, as well as the scarcity of large-scale, high-quality annotated datasets. In this paper, we introduce USIS16K, a large-scale dataset comprising 16,151 high-resolution underwater images collected from diverse environmental settings and covering 158 categories of underwater objects. Each image is annotated with high-quality instance-level salient object masks, representing a significant advance in terms of diversity, complexity, and scalability. Furthermore, we provide benchmark evaluations on underwater object detection and USIS tasks using USIS16K. To facilitate future research in this domain, the dataset and benchmark models are publicly available.
comment: 8 pages 10 figures
☆ Surgery-R1: Advancing Surgical-VQLA with Reasoning Multimodal Large Language Model via Reinforcement Learning
In recent years, significant progress has been made in the field of surgical scene understanding, particularly in the task of Visual Question Localized-Answering in robotic surgery (Surgical-VQLA). However, existing Surgical-VQLA models lack deep reasoning capabilities and interpretability in surgical scenes, which limits their reliability and potential for development in clinical applications. To address this issue, inspired by the development of Reasoning Multimodal Large Language Models (MLLMs), we first build the Surgery-R1-54k dataset, including paired data for Visual-QA, Grounding-QA, and Chain-of-Thought (CoT). Then, we propose the first Reasoning MLLM for Surgical-VQLA (Surgery-R1). In our Surgery-R1, we design a two-stage fine-tuning mechanism to enable the basic MLLM with complex reasoning abilities by utilizing supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT). Furthermore, for an efficient and high-quality rule-based reward system in our RFT, we design a Multimodal Coherence reward mechanism to mitigate positional illusions that may arise in surgical scenarios. Experiment results demonstrate that Surgery-R1 outperforms other existing state-of-the-art (SOTA) models in the Surgical-VQLA task and widely-used MLLMs, while also validating its reasoning capabilities and the effectiveness of our approach. The code and dataset will be organized in https://github.com/FiFi-HAO467/Surgery-R1.
☆ Stylized Structural Patterns for Improved Neural Network Pre-training
Modern deep learning models in computer vision require large datasets of real images, which are difficult to curate and pose privacy and legal concerns, limiting their commercial use. Recent works suggest synthetic data as an alternative, yet models trained with it often underperform. This paper proposes a two-step approach to bridge this gap. First, we propose an improved neural fractal formulation through which we introduce a new class of synthetic data. Second, we propose reverse stylization, a technique that transfers visual features from a small, license-free set of real images onto synthetic datasets, enhancing their effectiveness. We analyze the domain gap between our synthetic datasets and real images using Kernel Inception Distance (KID) and show that our method achieves a significantly lower distributional gap compared to existing synthetic datasets. Furthermore, our experiments across different tasks demonstrate the practical impact of this reduced gap. We show that pretraining the EDM2 diffusion model on our synthetic dataset leads to an 11% reduction in FID during image generation, compared to models trained on existing synthetic datasets, and a 20% decrease in autoencoder reconstruction error, indicating improved performance in data representation. Furthermore, a ViT-S model trained for classification on this synthetic data achieves over a 10% improvement in ImageNet-100 accuracy. Our work opens up exciting possibilities for training practical models when sufficiently large real training sets are not available.
☆ Assessing Risk of Stealing Proprietary Models for Medical Imaging Tasks MICCAI 2024
The success of deep learning in medical imaging applications has led several companies to deploy proprietary models in diagnostic workflows, offering monetized services. Even though model weights are hidden to protect the intellectual property of the service provider, these models are exposed to model stealing (MS) attacks, where adversaries can clone the model's functionality by querying it with a proxy dataset and training a thief model on the acquired predictions. While extensively studied on general vision tasks, the susceptibility of medical imaging models to MS attacks remains inadequately explored. This paper investigates the vulnerability of black-box medical imaging models to MS attacks under realistic conditions where the adversary lacks access to the victim model's training data and operates with limited query budgets. We demonstrate that adversaries can effectively execute MS attacks by using publicly available datasets. To further enhance MS capabilities with limited query budgets, we propose a two-step model stealing approach termed QueryWise. This method capitalizes on unlabeled data obtained from a proxy distribution to train the thief model without incurring additional queries. Evaluation on two medical imaging models for Gallbladder Cancer and COVID-19 classification substantiates the effectiveness of the proposed attack. The source code is available at https://github.com/rajankita/QueryWise.
comment: Accepted to MICCAI 2024
☆ Angio-Diff: Learning a Self-Supervised Adversarial Diffusion Model for Angiographic Geometry Generation
Vascular diseases pose a significant threat to human health, with X-ray angiography established as the gold standard for diagnosis, allowing for detailed observation of blood vessels. However, angiographic X-rays expose personnel and patients to higher radiation levels than non-angiographic X-rays, which are unwanted. Thus, modality translation from non-angiographic to angiographic X-rays is desirable. Data-driven deep approaches are hindered by the lack of paired large-scale X-ray angiography datasets. While making high-quality vascular angiography synthesis crucial, it remains challenging. We find that current medical image synthesis primarily operates at pixel level and struggles to adapt to the complex geometric structure of blood vessels, resulting in unsatisfactory quality of blood vessel image synthesis, such as disconnections or unnatural curvatures. To overcome this issue, we propose a self-supervised method via diffusion models to transform non-angiographic X-rays into angiographic X-rays, mitigating data shortages for data-driven approaches. Our model comprises a diffusion model that learns the distribution of vascular data from diffusion latent, a generator for vessel synthesis, and a mask-based adversarial module. To enhance geometric accuracy, we propose a parametric vascular model to fit the shape and distribution of blood vessels. The proposed method contributes a pipeline and a synthetic dataset for X-ray angiography. We conducted extensive comparative and ablation experiments to evaluate the Angio-Diff. The results demonstrate that our method achieves state-of-the-art performance in synthetic angiography image quality and more accurately synthesizes the geometric structure of blood vessels. The code is available at https://github.com/zfw-cv/AngioDiff.
☆ Deblurring in the Wild: A Real-World Dataset from Smartphone High-Speed Videos
We introduce the largest real-world image deblurring dataset constructed from smartphone slow-motion videos. Using 240 frames captured over one second, we simulate realistic long-exposure blur by averaging frames to produce blurry images, while using the temporally centered frame as the sharp reference. Our dataset contains over 42,000 high-resolution blur-sharp image pairs, making it approximately 10 times larger than widely used datasets, with 8 times the amount of different scenes, including indoor and outdoor environments, with varying object and camera motions. We benchmark multiple state-of-the-art (SOTA) deblurring models on our dataset and observe significant performance degradation, highlighting the complexity and diversity of our benchmark. Our dataset serves as a challenging new benchmark to facilitate robust and generalizable deblurring models.
comment: 8 pages (without references), 3 figures. Dataset https://huggingface.co/datasets/masterda/SloMoBlur
☆ Sampling Matters in Explanations: Towards Trustworthy Attribution Analysis Building Block in Visual Models through Maximizing Explanation Certainty
Image attribution analysis seeks to highlight the feature representations learned by visual models such that the highlighted feature maps can reflect the pixel-wise importance of inputs. Gradient integration is a building block in the attribution analysis by integrating the gradients from multiple derived samples to highlight the semantic features relevant to inferences. Such a building block often combines with other information from visual models such as activation or attention maps to form ultimate explanations. Yet, our theoretical analysis demonstrates that the extent to the alignment of the sample distribution in gradient integration with respect to natural image distribution gives a lower bound of explanation certainty. Prior works add noise into images as samples and the noise distributions can lead to low explanation certainty. Counter-intuitively, our experiment shows that extra information can saturate neural networks. To this end, building trustworthy attribution analysis needs to settle the sample distribution misalignment problem. Instead of adding extra information into input images, we present a semi-optimal sampling approach by suppressing features from inputs. The sample distribution by suppressing features is approximately identical to the distribution of natural images. Our extensive quantitative evaluation on large scale dataset ImageNet affirms that our approach is effective and able to yield more satisfactory explanations against state-of-the-art baselines throughout all experimental models.
comment: Code: https://anonymous.4open.science/r/sampling_matters_reproducibility-BB60/
☆ AMF-MedIT: An Efficient Align-Modulation-Fusion Framework for Medical Image-Tabular Data
Multimodal medical analysis combining image and tabular data has gained increasing attention. However, effective fusion remains challenging due to cross-modal discrepancies in feature dimensions and modality contributions, as well as the noise from high-dimensional tabular inputs. To address these problems, we present AMF-MedIT, an efficient Align-Modulation-Fusion framework for medical image and tabular data integration, particularly under data-scarce conditions. To harmonize dimension discrepancies and dynamically adjust modality contributions, we propose the Adaptive Modulation and Fusion (AMF) module, a novel modulation-based fusion paradigm with a streamlined architecture. We first derive the modulation objectives and introduce a modality confidence ratio, enabling the incorporation of prior knowledge into the fusion process. Then, the feature masks, density and leakage losses are proposed to achieve the modulation objectives. Additionally, we introduce FT-Mamba, a powerful tabular encoder leveraging a selective mechanism to handle noisy medical tabular data efficiently. Furthermore, interpretability studies are conducted to explore how different tabular encoders supervise the imaging modality during contrastive pretraining for the first time. Extensive experiments demonstrate that AMF-MedIT achieves a superior balance between multimodal performance and data efficiency while showing strong adaptability to incomplete tabular data. Interpretability analysis also highlights FT-Mamba's capabilities in extracting distinct tabular features and guiding the image encoder toward more accurate and flexible attention patterns.
☆ Mem4Nav: Boosting Vision-and-Language Navigation in Urban Environments with a Hierarchical Spatial-Cognition Long-Short Memory System
Vision-and-Language Navigation (VLN) in large-scale urban environments requires embodied agents to ground linguistic instructions in complex scenes and recall relevant experiences over extended time horizons. Prior modular pipelines offer interpretability but lack unified memory, while end-to-end (M)LLM agents excel at fusing vision and language yet remain constrained by fixed context windows and implicit spatial reasoning. We introduce \textbf{Mem4Nav}, a hierarchical spatial-cognition long-short memory system that can augment any VLN backbone. Mem4Nav fuses a sparse octree for fine-grained voxel indexing with a semantic topology graph for high-level landmark connectivity, storing both in trainable memory tokens embedded via a reversible Transformer. Long-term memory (LTM) compresses and retains historical observations at both octree and graph nodes, while short-term memory (STM) caches recent multimodal entries in relative coordinates for real-time obstacle avoidance and local planning. At each step, STM retrieval sharply prunes dynamic context, and, when deeper history is needed, LTM tokens are decoded losslessly to reconstruct past embeddings. Evaluated on Touchdown and Map2Seq across three backbones (modular, state-of-the-art VLN with prompt-based LLM, and state-of-the-art VLN with strided-attention MLLM), Mem4Nav yields 7-13 pp gains in Task Completion, sufficient SPD reduction, and >10 pp nDTW improvement. Ablations confirm the indispensability of both the hierarchical map and dual memory modules. Our codes are open-sourced via https://github.com/tsinghua-fib-lab/Mem4Nav.
☆ EvDetMAV: Generalized MAV Detection from Moving Event Cameras
Existing micro aerial vehicle (MAV) detection methods mainly rely on the target's appearance features in RGB images, whose diversity makes it difficult to achieve generalized MAV detection. We notice that different types of MAVs share the same distinctive features in event streams due to their high-speed rotating propellers, which are hard to see in RGB images. This paper studies how to detect different types of MAVs from an event camera by fully exploiting the features of propellers in the original event stream. The proposed method consists of three modules to extract the salient and spatio-temporal features of the propellers while filtering out noise from background objects and camera motion. Since there are no existing event-based MAV datasets, we introduce a novel MAV dataset for the community. This is the first event-based MAV dataset comprising multiple scenarios and different types of MAVs. Without training, our method significantly outperforms state-of-the-art methods and can deal with challenging scenarios, achieving a precision rate of 83.0\% (+30.3\%) and a recall rate of 81.5\% (+36.4\%) on the proposed testing dataset. The dataset and code are available at: https://github.com/WindyLab/EvDetMAV.
comment: 8 pages, 7 figures. This paper is accepted by IEEE Robotics and Automation Letters
☆ Virtual Memory for 3D Gaussian Splatting
3D Gaussian Splatting represents a breakthrough in the field of novel view synthesis. It establishes Gaussians as core rendering primitives for highly accurate real-world environment reconstruction. Recent advances have drastically increased the size of scenes that can be created. In this work, we present a method for rendering large and complex 3D Gaussian Splatting scenes using virtual memory. By leveraging well-established virtual memory and virtual texturing techniques, our approach efficiently identifies visible Gaussians and dynamically streams them to the GPU just in time for real-time rendering. Selecting only the necessary Gaussians for both storage and rendering results in reduced memory usage and effectively accelerates rendering, especially for highly complex scenes. Furthermore, we demonstrate how level of detail can be integrated into our proposed method to further enhance rendering speed for large-scale scenes. With an optimized implementation, we highlight key practical considerations and thoroughly evaluate the proposed technique and its impact on desktop and mobile devices.
comment: Based on the Master Thesis from Jonathan Haberl from 2024, Submitted to TVCG in Feb. 2025;
☆ A Global-Local Cross-Attention Network for Ultra-high Resolution Remote Sensing Image Semantic Segmentation
With the rapid development of ultra-high resolution (UHR) remote sensing technology, the demand for accurate and efficient semantic segmentation has increased significantly. However, existing methods face challenges in computational efficiency and multi-scale feature fusion. To address these issues, we propose GLCANet (Global-Local Cross-Attention Network), a lightweight segmentation framework designed for UHR remote sensing imagery.GLCANet employs a dual-stream architecture to efficiently fuse global semantics and local details while minimizing GPU usage. A self-attention mechanism enhances long-range dependencies, refines global features, and preserves local details for better semantic consistency. A masked cross-attention mechanism also adaptively fuses global-local features, selectively enhancing fine-grained details while exploiting global context to improve segmentation accuracy. Experimental results show that GLCANet outperforms state-of-the-art methods regarding accuracy and computational efficiency. The model effectively processes large, high-resolution images with a small memory footprint, providing a promising solution for real-world remote sensing applications.
☆ Generate the Forest before the Trees -- A Hierarchical Diffusion model for Climate Downscaling
Downscaling is essential for generating the high-resolution climate data needed for local planning, but traditional methods remain computationally demanding. Recent years have seen impressive results from AI downscaling models, particularly diffusion models, which have attracted attention due to their ability to generate ensembles and overcome the smoothing problem common in other AI methods. However, these models typically remain computationally intensive. We introduce a Hierarchical Diffusion Downscaling (HDD) model, which introduces an easily-extensible hierarchical sampling process to the diffusion framework. A coarse-to-fine hierarchy is imposed via a simple downsampling scheme. HDD achieves competitive accuracy on ERA5 reanalysis datasets and CMIP6 models, significantly reducing computational load by running on up to half as many pixels with competitive results. Additionally, a single model trained at 0.25{\deg} resolution transfers seamlessly across multiple CMIP6 models with much coarser resolution. HDD thus offers a lightweight alternative for probabilistic climate downscaling, facilitating affordable large-ensemble high-resolution climate projections. See a full code implementation at: https://github.com/HDD-Hierarchical-Diffusion-Downscaling/HDD-Hierarchical-Diffusion-Downscaling.
comment: 8 pages
☆ Emergence of Text Readability in Vision Language Models CVPR 2025
We investigate how the ability to recognize textual content within images emerges during the training of Vision-Language Models (VLMs). Our analysis reveals a critical phenomenon: the ability to read textual information in a given image \textbf{(text readability)} emerges abruptly after substantial training iterations, in contrast to semantic content understanding which develops gradually from the early stages of training. This delayed emergence may reflect how contrastive learning tends to initially prioritize general semantic understanding, with text-specific symbolic processing developing later. Interestingly, the ability to match images with rendered text develops even slower, indicating a deeper need for semantic integration. These findings highlight the need for tailored training strategies to accelerate robust text comprehension in VLMs, laying the groundwork for future research on optimizing multimodal learning.
comment: EVAL-FoMo Workshop @ CVPR 2025
☆ Online camera-pose-free stereo endoscopic tissue deformation recovery with tissue-invariant vision-biomechanics consistency
Tissue deformation recovery based on stereo endoscopic images is crucial for tool-tissue interaction analysis and benefits surgical navigation and autonomous soft tissue manipulation. Previous research suffers from the problems raised from camera motion, occlusion, large tissue deformation, lack of tissue-specific biomechanical priors, and reliance on offline processing. Unlike previous studies where the tissue geometry and deformation are represented by 3D points and displacements, the proposed method models tissue geometry as the 3D point and derivative map and tissue deformation as the 3D displacement and local deformation map. For a single surface point, 6 parameters are used to describe its rigid motion and 3 parameters for its local deformation. The method is formulated under the camera-centric setting, where all motions are regarded as the scene motion with respect to the camera. Inter-frame alignment is realized by optimizing the inter-frame deformation, making it unnecessary to estimate camera pose. The concept of the canonical map is introduced to optimize tissue geometry and deformation in an online approach. Quantitative and qualitative experiments were conducted using in vivo and ex vivo laparoscopic datasets. With the inputs of depth and optical flow, the method stably models tissue geometry and deformation even when the tissue is partially occluded or moving outside the field of view. Results show that the 3D reconstruction accuracy in the non-occluded and occluded areas reaches 0.37$\pm$0.27 mm and 0.39$\pm$0.21 mm in terms of surface distance, respectively. The method can also estimate surface strain distribution during various manipulations as an extra modality for mechanical-based analysis.
☆ NAADA: A Noise-Aware Attention Denoising Autoencoder for Dental Panoramic Radiographs
Convolutional denoising autoencoders (DAEs) are powerful tools for image restoration. However, they inherit a key limitation of convolutional neural networks (CNNs): they tend to recover low-frequency features, such as smooth regions, more effectively than high-frequency details. This leads to the loss of fine details, which is particularly problematic in dental radiographs where preserving subtle anatomical structures is crucial. While self-attention mechanisms can help mitigate this issue by emphasizing important features, conventional attention methods often prioritize features corresponding to cleaner regions and may overlook those obscured by noise. To address this limitation, we propose a noise-aware self-attention method, which allows the model to effectively focus on and recover key features even within noisy regions. Building on this approach, we introduce the noise-aware attention-enhanced denoising autoencoder (NAADA) network for enhancing noisy panoramic dental radiographs. Compared with the recent state of the art (and much heavier) methods like Uformer, MResDNN etc., our method improves the reconstruction of fine details, ensuring better image quality and diagnostic accuracy.
comment: 10 pages, 8 figures
♻ ☆ ObjCtrl-2.5D: Training-free Object Control with Camera Poses
This study aims to achieve more precise and versatile object control in image-to-video (I2V) generation. Current methods typically represent the spatial movement of target objects with 2D trajectories, which often fail to capture user intention and frequently produce unnatural results. To enhance control, we present ObjCtrl-2.5D, a training-free object control approach that uses a 3D trajectory, extended from a 2D trajectory with depth information, as a control signal. By modeling object movement as camera movement, ObjCtrl-2.5D represents the 3D trajectory as a sequence of camera poses, enabling object motion control using an existing camera motion control I2V generation model (CMC-I2V) without training. To adapt the CMC-I2V model originally designed for global motion control to handle local object motion, we introduce a module to isolate the target object from the background, enabling independent local control. In addition, we devise an effective way to achieve more accurate object control by sharing low-frequency warped latent within the object's region across frames. Extensive experiments demonstrate that ObjCtrl-2.5D significantly improves object control accuracy compared to training-free methods and offers more diverse control capabilities than training-based approaches using 2D trajectories, enabling complex effects like object rotation. Code and results are available at https://wzhouxiff.github.io/projects/ObjCtrl-2.5D/.
comment: Project Page: https://wzhouxiff.github.io/projects/ObjCtrl-2.5D/
♻ ☆ Two-Stream Spatial-Temporal Transformer Framework for Person Identification via Natural Conversational Keypoints
In the age of AI-driven generative technologies, traditional biometric recognition systems face unprecedented challenges, particularly from sophisticated deepfake and face reenactment techniques. In this study, we propose a Two-Stream Spatial-Temporal Transformer Framework for person identification using upper body keypoints visible during online conversations, which we term conversational keypoints. Our framework processes both spatial relationships between keypoints and their temporal evolution through two specialized branches: a Spatial Transformer (STR) that learns distinctive structural patterns in keypoint configurations, and a Temporal Transformer (TTR) that captures sequential motion patterns. Using the state-of-the-art Sapiens pose estimator, we extract 133 keypoints (based on COCO-WholeBody format) representing facial features, head pose, and hand positions. The framework was evaluated on a dataset of 114 individuals engaged in natural conversations, achieving recognition accuracies of 80.12% for the spatial stream, 63.61% for the temporal stream. We then explored two fusion strategies: a shared loss function approach achieving 82.22% accuracy, and a feature-level fusion method that concatenates feature maps from both streams, significantly improving performance to 94.86%. By jointly modeling both static anatomical relationships and dynamic movement patterns, our approach learns comprehensive identity signatures that are more robust to spoofing than traditional appearance-based methods.
comment: I would like to withdraw this submission due to the need for substantial revisions in the results and analysis. I plan to correct and improve the study and submit a more complete version in the near future
♻ ☆ Aligning Anime Video Generation with Human Feedback
Anime video generation faces significant challenges due to the scarcity of anime data and unusual motion patterns, leading to issues such as motion distortion and flickering artifacts, which result in misalignment with human preferences. Existing reward models, designed primarily for real-world videos, fail to capture the unique appearance and consistency requirements of anime. In this work, we propose a pipeline to enhance anime video generation by leveraging human feedback for better alignment. Specifically, we construct the first multi-dimensional reward dataset for anime videos, comprising 30k human-annotated samples that incorporating human preferences for both visual appearance and visual consistency. Based on this, we develop AnimeReward, a powerful reward model that employs specialized vision-language models for different evaluation dimensions to guide preference alignment. Furthermore, we introduce Gap-Aware Preference Optimization (GAPO), a novel training method that explicitly incorporates preference gaps into the optimization process, enhancing alignment performance and efficiency. Extensive experiment results show that AnimeReward outperforms existing reward models, and the inclusion of GAPO leads to superior alignment in both quantitative benchmarks and human evaluations, demonstrating the effectiveness of our pipeline in enhancing anime video quality. Our code and dataset are publicly available at https://github.com/bilibili/Index-anisora.
comment: 10 pages, 7 figures, 7 tables
♻ ☆ RA-NeRF: Robust Neural Radiance Field Reconstruction with Accurate Camera Pose Estimation under Complex Trajectories
Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have emerged as powerful tools for 3D reconstruction and SLAM tasks. However, their performance depends heavily on accurate camera pose priors. Existing approaches attempt to address this issue by introducing external constraints but fall short of achieving satisfactory accuracy, particularly when camera trajectories are complex. In this paper, we propose a novel method, RA-NeRF, capable of predicting highly accurate camera poses even with complex camera trajectories. Following the incremental pipeline, RA-NeRF reconstructs the scene using NeRF with photometric consistency and incorporates flow-driven pose regulation to enhance robustness during initialization and localization. Additionally, RA-NeRF employs an implicit pose filter to capture the camera movement pattern and eliminate the noise for pose estimation. To validate our method, we conduct extensive experiments on the Tanks\&Temple dataset for standard evaluation, as well as the NeRFBuster dataset, which presents challenging camera pose trajectories. On both datasets, RA-NeRF achieves state-of-the-art results in both camera pose estimation and visual quality, demonstrating its effectiveness and robustness in scene reconstruction under complex pose trajectories.
comment: IROS 2025
♻ ☆ Grounding Beyond Detection: Enhancing Contextual Understanding in Embodied 3D Grounding
Embodied 3D grounding aims to localize target objects described in human instructions from ego-centric viewpoint. Most methods typically follow a two-stage paradigm where a trained 3D detector's optimized backbone parameters are used to initialize a grounding model. In this study, we explore a fundamental question: Does embodied 3D grounding benefit enough from detection? To answer this question, we assess the grounding performance of detection models using predicted boxes filtered by the target category. Surprisingly, these detection models without any instruction-specific training outperform the grounding models explicitly trained with language instructions. This indicates that even category-level embodied 3D grounding may not be well resolved, let alone more fine-grained context-aware grounding. Motivated by this finding, we propose DEGround, which shares DETR queries as object representation for both DEtection and Grounding and enables the grounding to benefit from basic category classification and box detection. Based on this framework, we further introduce a regional activation grounding module that highlights instruction-related regions and a query-wise modulation module that incorporates sentence-level semantic into the query representation, strengthening the context-aware understanding of language instructions. Remarkably, DEGround outperforms state-of-the-art model BIP3D by 7.52% at overall accuracy on the EmbodiedScan validation set. The source code will be publicly available at https://github.com/zyn213/DEGround.
comment: 1st place on EmbodiedScan visual grounding
♻ ☆ Beyond Reconstruction: A Physics Based Neural Deferred Shader for Photo-realistic Rendering
Deep learning based rendering has achieved major improvements in photo-realistic image synthesis, with potential applications including visual effects in movies and photo-realistic scene building in video games. However, a significant limitation is the difficulty of decomposing the illumination and material parameters, which limits such methods to reconstructing an input scene, without any possibility to control these parameters. This paper introduces a novel physics based neural deferred shading pipeline to decompose the data-driven rendering process, learn a generalizable shading function to produce photo-realistic results for shading and relighting tasks; we also propose a shadow estimator to efficiently mimic shadowing effects. Our model achieves improved performance compared to classical models and a state-of-art neural shading model, and enables generalizable photo-realistic shading from arbitrary illumination input.
♻ ☆ ASR-enhanced Multimodal Representation Learning for Cross-Domain Product Retrieval
E-commerce is increasingly multimedia-enriched, with products exhibited in a broad-domain manner as images, short videos, or live stream promotions. A unified and vectorized cross-domain production representation is essential. Due to large intra-product variance and high inter-product similarity in the broad-domain scenario, a visual-only representation is inadequate. While Automatic Speech Recognition (ASR) text derived from the short or live-stream videos is readily accessible, how to de-noise the excessively noisy text for multimodal representation learning is mostly untouched. We propose ASR-enhanced Multimodal Product Representation Learning (AMPere). In order to extract product-specific information from the raw ASR text, AMPere uses an easy-to-implement LLM-based ASR text summarizer. The LLM-summarized text, together with visual data, is then fed into a multi-branch network to generate compact multimodal embeddings. Extensive experiments on a large-scale tri-domain dataset verify the effectiveness of AMPere in obtaining a unified multimodal product representation that clearly improves cross-domain product retrieval.
comment: accepted for publication as a REGULAR paper in the IEEE Transactions on Multimedia
♻ ☆ IgCONDA-PET: Weakly-Supervised PET Anomaly Detection using Implicitly-Guided Attention-Conditional Counterfactual Diffusion Modeling -- a Multi-Center, Multi-Cancer, and Multi-Tracer Study
Minimizing the need for pixel-level annotated data to train PET lesion detection and segmentation networks is highly desired and can be transformative, given time and cost constraints associated with expert annotations. Current unsupervised or weakly-supervised anomaly detection methods rely on autoencoder or generative adversarial networks (GANs) trained only on healthy data. While these approaches reduce annotation dependency, GAN-based methods are notably more challenging to train than non-GAN alternatives (such as autoencoders) due to issues such as the simultaneous optimization of two competing networks, mode collapse, and training instability. In this paper, we present the weakly-supervised $\textbf{I}$mplicitly-$\textbf{g}$uided $\textbf{CO}$u$\textbf{N}$terfactual diffusion model for $\textbf{D}$etecting $\textbf{A}$nomalies in $\textbf{PET}$ images (IgCONDA-PET). The solution is developed and validated using PET scans from six retrospective cohorts consisting of a total of 2652 cases (multi-cancer, multi-tracer) containing both local and public datasets (spanning multiple centers). The training is conditioned on image class labels (healthy vs. unhealthy) via attention modules, and we employ implicit diffusion guidance. We perform counterfactual generation which facilitates "unhealthy-to-healthy" domain translation by generating a synthetic, healthy version of an unhealthy input image, enabling the detection of anomalies through the calculated differences. The performance of our method was compared against several other deep learning based weakly-supervised or unsupervised methods as well as traditional methods like 41% SUV$_\text{max}$ thresholding. We also highlight the importance of incorporating attention modules in our network for the detection of small anomalies. The code is publicly available at: https://github.com/ahxmeds/IgCONDA-PET.git.
comment: 48 pages, 13 figures, 4 tables
♻ ☆ Light of Normals: Unified Feature Representation for Universal Photometric Stereo
Universal photometric stereo (PS) aims to recover high-quality surface normals from objects under arbitrary lighting conditions without relying on specific illumination models. Despite recent advances such as SDM-UniPS and Uni MS-PS, two fundamental challenges persist: 1) the deep coupling between varying illumination and surface normal features, where ambiguity in observed intensity makes it difficult to determine whether brightness variations stem from lighting changes or surface orientation; and 2) the preservation of high-frequency geometric details in complex surfaces, where intricate geometries create self-shadowing, inter-reflections, and subtle normal variations that conventional feature processing operations struggle to capture accurately.
comment: Home: https://houyuanchen111.github.io/lino.github.io Github: https://github.com/houyuanchen111/LINO_UniPS HuggingFace Demo: https://huggingface.co/spaces/houyuanchen/lino
♻ ☆ MAMMA: Markerless & Automatic Multi-Person Motion Action Capture
We present MAMMA, a markerless motion-capture pipeline that accurately recovers SMPL-X parameters from multi-view video of two-person interaction sequences. Traditional motion-capture systems rely on physical markers. Although they offer high accuracy, their requirements of specialized hardware, manual marker placement, and extensive post-processing make them costly and time-consuming. Recent learning-based methods attempt to overcome these limitations, but most are designed for single-person capture, rely on sparse keypoints, or struggle with occlusions and physical interactions. In this work, we introduce a method that predicts dense 2D surface landmarks conditioned on segmentation masks, enabling person-specific correspondence estimation even under heavy occlusion. We employ a novel architecture that exploits learnable queries for each landmark. We demonstrate that our approach can handle complex person--person interaction and offers greater accuracy than existing methods. To train our network, we construct a large, synthetic multi-view dataset combining human motions from diverse sources, including extreme poses, hand motions, and close interactions. Our dataset yields high-variability synthetic sequences with rich body contact and occlusion, and includes SMPL-X ground-truth annotations with dense 2D landmarks. The result is a system capable of capturing human motion without the need for markers. Our approach offers competitive reconstruction quality compared to commercial marker-based motion-capture solutions, without the extensive manual cleanup. Finally, we address the absence of common benchmarks for dense-landmark prediction and markerless motion capture by introducing two evaluation settings built from real multi-view sequences. We will release our dataset, benchmark, method, training code, and pre-trained model weights for research purposes.
♻ ☆ LoRA-Edit: Controllable First-Frame-Guided Video Editing via Mask-Aware LoRA Fine-Tuning
Video editing using diffusion models has achieved remarkable results in generating high-quality edits for videos. However, current methods often rely on large-scale pretraining, limiting flexibility for specific edits. First-frame-guided editing provides control over the first frame, but lacks flexibility over subsequent frames. To address this, we propose a mask-based LoRA (Low-Rank Adaptation) tuning method that adapts pretrained Image-to-Video (I2V) models for flexible video editing. Our approach preserves background regions while enabling controllable edits propagation. This solution offers efficient and adaptable video editing without altering the model architecture. To better steer this process, we incorporate additional references, such as alternate viewpoints or representative scene states, which serve as visual anchors for how content should unfold. We address the control challenge using a mask-driven LoRA tuning strategy that adapts a pre-trained image-to-video model to the editing context. The model must learn from two distinct sources: the input video provides spatial structure and motion cues, while reference images offer appearance guidance. A spatial mask enables region-specific learning by dynamically modulating what the model attends to, ensuring that each area draws from the appropriate source. Experimental results show our method achieves superior video editing performance compared to state-of-the-art methods. Project Page: https://cjeen.github.io/LoraEditPaper
comment: 12 pages
♻ ☆ ReconX: Reconstruct Any Scene from Sparse Views with Video Diffusion Model
Advancements in 3D scene reconstruction have transformed 2D images from the real world into 3D models, producing realistic 3D results from hundreds of input photos. Despite great success in dense-view reconstruction scenarios, rendering a detailed scene from insufficient captured views is still an ill-posed optimization problem, often resulting in artifacts and distortions in unseen areas. In this paper, we propose ReconX, a novel 3D scene reconstruction paradigm that reframes the ambiguous reconstruction challenge as a temporal generation task. The key insight is to unleash the strong generative prior of large pre-trained video diffusion models for sparse-view reconstruction. However, 3D view consistency struggles to be accurately preserved in directly generated video frames from pre-trained models. To address this, given limited input views, the proposed ReconX first constructs a global point cloud and encodes it into a contextual space as the 3D structure condition. Guided by the condition, the video diffusion model then synthesizes video frames that are both detail-preserved and exhibit a high degree of 3D consistency, ensuring the coherence of the scene from various perspectives. Finally, we recover the 3D scene from the generated video through a confidence-aware 3D Gaussian Splatting optimization scheme. Extensive experiments on various real-world datasets show the superiority of our ReconX over state-of-the-art methods in terms of quality and generalizability.
comment: Project page: https://liuff19.github.io/ReconX
♻ ☆ FOCoOp: Enhancing Out-of-Distribution Robustness in Federated Prompt Learning for Vision-Language Models ICML25
Federated prompt learning (FPL) for vision-language models is a powerful approach to collaboratively adapt models across distributed clients while preserving data privacy. However, existing FPL approaches suffer from a trade-off between performance and robustness, particularly in out-of-distribution (OOD) shifts, limiting their reliability in real-world scenarios. The inherent in-distribution (ID) data heterogeneity among different clients makes it more challenging to maintain this trade-off. To fill this gap, we introduce a Federated OOD-aware Context Optimization (FOCoOp) framework, which captures diverse distributions among clients using ID global prompts, local prompts, and OOD prompts. Specifically, FOCoOp leverages three sets of prompts to create both class-level and distribution-level separations, which adapt to OOD shifts through bi-level distributionally robust optimization. Additionally, FOCoOp improves the discrimination consistency among clients, i.e., calibrating global prompts, seemingly OOD prompts, and OOD prompts by semi-unbalanced optimal transport. The extensive experiments on real-world datasets demonstrate that FOCoOp effectively captures decentralized heterogeneous distributions and enhances robustness of different OOD shifts. The project is available at GitHub.
comment: Accepted by ICML25
♻ ☆ GCE-Pose: Global Context Enhancement for Category-level Object Pose Estimation CVPR 2025
A key challenge in model-free category-level pose estimation is the extraction of contextual object features that generalize across varying instances within a specific category. Recent approaches leverage foundational features to capture semantic and geometry cues from data. However, these approaches fail under partial visibility. We overcome this with a first-complete-then-aggregate strategy for feature extraction utilizing class priors. In this paper, we present GCE-Pose, a method that enhances pose estimation for novel instances by integrating category-level global context prior. GCE-Pose performs semantic shape reconstruction with a proposed Semantic Shape Reconstruction (SSR) module. Given an unseen partial RGB-D object instance, our SSR module reconstructs the instance's global geometry and semantics by deforming category-specific 3D semantic prototypes through a learned deep Linear Shape Model. We further introduce a Global Context Enhanced (GCE) feature fusion module that effectively fuses features from partial RGB-D observations and the reconstructed global context. Extensive experiments validate the impact of our global context prior and the effectiveness of the GCE fusion module, demonstrating that GCE-Pose significantly outperforms existing methods on challenging real-world datasets HouseCat6D and NOCS-REAL275. Our project page is available at https://colin-de.github.io/GCE-Pose/.
comment: CVPR 2025 accepted
♻ ☆ crossMoDA Challenge: Evolution of Cross-Modality Domain Adaptation Techniques for Vestibular Schwannoma and Cochlea Segmentation from 2021 to 2023
The cross-Modality Domain Adaptation (crossMoDA) challenge series, initiated in 2021 in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), focuses on unsupervised cross-modality segmentation, learning from contrast-enhanced T1 (ceT1) and transferring to T2 MRI. The task is an extreme example of domain shift chosen to serve as a meaningful and illustrative benchmark. From a clinical application perspective, it aims to automate Vestibular Schwannoma (VS) and cochlea segmentation on T2 scans for more cost-effective VS management. Over time, the challenge objectives have evolved to enhance its clinical relevance. The challenge evolved from using single-institutional data and basic segmentation in 2021 to incorporating multi-institutional data and Koos grading in 2022, and by 2023, it included heterogeneous routine data and sub-segmentation of intra- and extra-meatal tumour components. In this work, we report the findings of the 2022 and 2023 editions and perform a retrospective analysis of the challenge progression over the years. The observations from the successive challenge contributions indicate that the number of outliers decreases with an expanding dataset. This is notable since the diversity of scanning protocols of the datasets concurrently increased. The winning approach of the 2023 edition reduced the number of outliers on the 2021 and 2022 testing data, demonstrating how increased data heterogeneity can enhance segmentation performance even on homogeneous data. However, the cochlea Dice score declined in 2023, likely due to the added complexity from tumour sub-annotations affecting overall segmentation performance. While progress is still needed for clinically acceptable VS segmentation, the plateauing performance suggests that a more challenging cross-modal task may better serve future benchmarking.
♻ ☆ FusionForce: End-to-end Differentiable Neural-Symbolic Layer for Trajectory Prediction
We propose end-to-end differentiable model that predicts robot trajectories on rough offroad terrain from camera images and/or lidar point clouds. The model integrates a learnable component that predicts robot-terrain interaction forces with a neural-symbolic layer that enforces the laws of classical mechanics and consequently improves generalization on out-of-distribution data. The neural-symbolic layer includes a differentiable physics engine that computes the robot's trajectory by querying these forces at the points of contact with the terrain. As the proposed architecture comprises substantial geometrical and physics priors, the resulting model can also be seen as a learnable physics engine conditioned on real sensor data that delivers $10^4$ trajectories per second. We argue and empirically demonstrate that this architecture reduces the sim-to-real gap and mitigates out-of-distribution sensitivity. The differentiability, in conjunction with the rapid simulation speed, makes the model well-suited for various applications including model predictive control, trajectory shooting, supervised and reinforcement learning, or SLAM.
comment: Code: https://github.com/ctu-vras/fusionforce
♻ ☆ AI-based Multimodal Biometrics for Detecting Smartphone Distractions: Application to Online Learning
This work investigates the use of multimodal biometrics to detect distractions caused by smartphone use during tasks that require sustained attention, with a focus on computer-based online learning. Although the methods are applicable to various domains, such as autonomous driving, we concentrate on the challenges learners face in maintaining engagement amid internal (e.g., motivation), system-related (e.g., course design) and contextual (e.g., smartphone use) factors. Traditional learning platforms often lack detailed behavioral data, but Multimodal Learning Analytics (MMLA) and biosensors provide new insights into learner attention. We propose an AI-based approach that leverages physiological signals and head pose data to detect phone use. Our results show that single biometric signals, such as brain waves or heart rate, offer limited accuracy, while head pose alone achieves 87%. A multimodal model combining all signals reaches 91% accuracy, highlighting the benefits of integration. We conclude by discussing the implications and limitations of deploying these models for real-time support in online learning environments.
comment: Accepted in EC-TEL25: 20th European Conference on Technology Enhanced Learning, Newcastle and Durham, UK, 15-19 September 2025
♻ ☆ Contactless Cardiac Pulse Monitoring Using Event Cameras
Time event cameras are a novel technology for recording scene information at extremely low latency and with low power consumption. Event cameras output a stream of events that encapsulate pixel-level light intensity changes within the scene, capturing information with a higher dynamic range and temporal resolution than traditional cameras. This study investigates the contact-free reconstruction of an individual's cardiac pulse signal from time event recording of their face using a supervised convolutional neural network (CNN) model. An end-to-end model is trained to extract the cardiac signal from a two-dimensional representation of the event stream, with model performance evaluated based on the accuracy of the calculated heart rate. The experimental results confirm that physiological cardiac information in the facial region is effectively preserved within the event stream, showcasing the potential of this novel sensor for remote heart rate monitoring. The model trained on event frames achieves a root mean square error (RMSE) of 3.32 beats per minute (bpm) compared to the RMSE of 2.92 bpm achieved by the baseline model trained on standard camera frames. Furthermore, models trained on event frames generated at 60 and 120 FPS outperformed the 30 FPS standard camera results, achieving an RMSE of 2.54 and 2.13 bpm, respectively.
♻ ☆ Diff-Def: Diffusion-Generated Deformation Fields for Conditional Atlases
Anatomical atlases are widely used for population studies and analysis. Conditional atlases target a specific sub-population defined via certain conditions, such as demographics or pathologies, and allow for the investigation of fine-grained anatomical differences like morphological changes associated with ageing or disease. Existing approaches use either registration-based methods that are often unable to handle large anatomical variations or generative adversarial models, which are challenging to train since they can suffer from training instabilities. Instead of generating atlases directly in as intensities, we propose using latent diffusion models to generate deformation fields, which transform a general population atlas into one representing a specific sub-population. Our approach ensures structural integrity, enhances interpretability and avoids hallucinations that may arise during direct image synthesis by generating this deformation field and regularising it using a neighbourhood of images. We compare our method to several state-of-the-art atlas generation methods using brain MR images from the UK Biobank. Our method generates highly realistic atlases with smooth transformations and high anatomical fidelity, outperforming existing baselines. We demonstrate the quality of these atlases through comprehensive evaluations, including quantitative metrics for anatomical accuracy, perceptual similarity, and qualitative analyses displaying the consistency and realism of the generated atlases.
♻ ☆ ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation
Recent advancements in large reasoning models (LRMs) like DeepSeek-R1 and OpenAI o1 series have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT). However, an emerging issue is their inclination to produce excessively verbose reasoning processes, leading to the inefficiency problem. Existing literature on improving efficiency mainly adheres to the before-reasoning paradigms such as prompting and reasoning or fine-tuning and reasoning, but ignores the promising direction of directly encouraging the model to speak concisely by intervening during the generation of reasoning. In order to fill the blank, we propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting the textual hint (manually designed or trained on the concise data) during the token generation of the reasoning process. Besides, ConciseHint is adaptive to the complexity of the query by adaptively adjusting the hint intensity, which ensures it will not undermine model performance. Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning processes while maintaining performance well. For instance, we achieve a reduction ratio of 65\% for the reasoning length on GSM8K benchmark with Qwen-3 4B with nearly no accuracy loss.
comment: Codes are available at https://github.com/tsa18/ConciseHint
♻ ☆ Cross-sensor self-supervised training and alignment for remote sensing
Large-scale ''foundation models'' have gained traction as a way to leverage the vast amounts of unlabeled remote sensing data collected every day. However, due to the multiplicity of Earth Observation satellites, these models should learn ''sensor agnostic'' representations, that generalize across sensor characteristics with minimal fine-tuning. This is complicated by data availability, as low-resolution imagery, such as Sentinel-2 and Landsat-8 data, are available in large amounts, while very high-resolution aerial or satellite data is less common. To tackle these challenges, we introduce cross-sensor self-supervised training and alignment for remote sensing (X-STARS). We design a self-supervised training loss, the Multi-Sensor Alignment Dense loss (MSAD), to align representations across sensors, even with vastly different resolutions. Our X-STARS can be applied to train models from scratch, or to adapt large models pretrained on e.g low-resolution EO data to new high-resolution sensors, in a continual pretraining framework. We collect and release MSC-France, a new multi-sensor dataset, on which we train our X-STARS models, then evaluated on seven downstream classification and segmentation tasks. We demonstrate that X-STARS outperform s the state-of-the-art by a significant margin with less data across various conditions of data availability and resolutions.
♻ ☆ Improving Out-of-Distribution Detection via Dynamic Covariance Calibration ICML25
Out-of-Distribution (OOD) detection is essential for the trustworthiness of AI systems. Methods using prior information (i.e., subspace-based methods) have shown effective performance by extracting information geometry to detect OOD data with a more appropriate distance metric. However, these methods fail to address the geometry distorted by ill-distributed samples, due to the limitation of statically extracting information geometry from the training distribution. In this paper, we argue that the influence of ill-distributed samples can be corrected by dynamically adjusting the prior geometry in response to new data. Based on this insight, we propose a novel approach that dynamically updates the prior covariance matrix using real-time input features, refining its information. Specifically, we reduce the covariance along the direction of real-time input features and constrain adjustments to the residual space, thus preserving essential data characteristics and avoiding effects on unintended directions in the principal space. We evaluate our method on two pre-trained models for the CIFAR dataset and five pre-trained models for ImageNet-1k, including the self-supervised DINO model. Extensive experiments demonstrate that our approach significantly enhances OOD detection across various models. The code is released at https://github.com/workerbcd/ooddcc.
comment: Accepted by ICML25
♻ ☆ DaMO: A Data-Efficient Multimodal Orchestrator for Temporal Reasoning with Video LLMs
Large Language Models (LLMs) have recently been extended to the video domain, enabling sophisticated video-language understanding. However, existing Video LLMs often exhibit limitations in fine-grained temporal reasoning, restricting their ability to precisely attribute responses to specific video moments, especially under constrained supervision. We introduce DaMO, a data-efficient Video LLM explicitly designed for accurate temporal reasoning and multimodal understanding. At its core, the proposed Temporal-aware Fuseformer employs a hierarchical dual-stream architecture that progressively captures temporal dynamics within each modality and effectively fuses complementary visual and audio information. To further enhance computational efficiency, DaMO integrates a global residual that reduces spatial redundancy while preserving essential semantic details. We train DaMO via a structured four-stage progressive training paradigm, incrementally equipping the model with multimodal alignment, semantic grounding, and temporal reasoning capabilities. This work also contributes multiple datasets augmented from existing ones with GPT-generated temporally grounded QA pairs for tasks requiring temporal supervision. Comprehensive experiments on temporal grounding and video QA benchmarks demonstrate that DaMO consistently surpasses prior methods, particularly in tasks demanding precise temporal alignment and reasoning. Our work establishes a promising direction for data-efficient video-language modeling.
comment: I would like to request the withdrawal of this submission because the current version contains significant errors and incomplete results. I intend to revise the manuscript thoroughly before resubmitting. I apologize for the oversight and appreciate your understanding
♻ ☆ SemGauss-SLAM: Dense Semantic Gaussian Splatting SLAM
We propose SemGauss-SLAM, a dense semantic SLAM system utilizing 3D Gaussian representation, that enables accurate 3D semantic mapping, robust camera tracking, and high-quality rendering simultaneously. In this system, we incorporate semantic feature embedding into 3D Gaussian representation, which effectively encodes semantic information within the spatial layout of the environment for precise semantic scene representation. Furthermore, we propose feature-level loss for updating 3D Gaussian representation, enabling higher-level guidance for 3D Gaussian optimization. In addition, to reduce cumulative drift in tracking and improve semantic reconstruction accuracy, we introduce semantic-informed bundle adjustment. By leveraging multi-frame semantic associations, this strategy enables joint optimization of 3D Gaussian representation and camera poses, resulting in low-drift tracking and accurate semantic mapping. Our SemGauss-SLAM demonstrates superior performance over existing radiance field-based SLAM methods in terms of mapping and tracking accuracy on Replica and ScanNet datasets, while also showing excellent capabilities in high-precision semantic segmentation and dense semantic mapping.
comment: IROS 2025
♻ ☆ Unfolding the Past: A Comprehensive Deep Learning Approach to Analyzing Incunabula Pages
We developed a proof-of-concept method for the automatic analysis of the structure and content of incunabula pages. A custom dataset comprising 500 annotated pages from five different incunabula was created using resources from the Jagiellonian Digital Library. Each page was manually labeled with five predefined classes: Text, Title, Picture, Table, and Handwriting. Additionally, the publicly available DocLayNet dataset was utilized as supplementary training data. To perform object detection, YOLO11n and YOLO11s models were employed and trained using two strategies: a combined dataset (DocLayNet and the custom dataset) and the custom dataset alone. The highest performance (F1 = 0.94) was achieved by the YOLO11n model trained exclusively on the custom data. Optical character recognition was then conducted on regions classified as Text, using both Tesseract and Kraken OCR, with Tesseract demonstrating superior results. Subsequently, image classification was applied to the Picture class using a ResNet18 model, achieving an accuracy of 98.7% across five subclasses: Decorative_letter, Illustration, Other, Stamp, and Wrong_detection. Furthermore, the CLIP model was utilized to generate semantic descriptions of illustrations. The results confirm the potential of machine learning in the analysis of early printed books, while emphasizing the need for further advancements in OCR performance and visual content interpretation.
comment: 10 pages, 8 figures; submitted to TPDL 2025; change in v2: updated e-mail address
♻ ☆ Privacy Attacks on Image AutoRegressive Models ICML2025
Image AutoRegressive generation has emerged as a new powerful paradigm with image autoregressive models (IARs) matching state-of-the-art diffusion models (DMs) in image quality (FID: 1.48 vs. 1.58) while allowing for a higher generation speed. However, the privacy risks associated with IARs remain unexplored, raising concerns regarding their responsible deployment. To address this gap, we conduct a comprehensive privacy analysis of IARs, comparing their privacy risks to the ones of DMs as reference points. Concretely, we develop a novel membership inference attack (MIA) that achieves a remarkably high success rate in detecting training images (with a True Positive Rate at False Positive Rate = 1% of 86.38% vs. 6.38% for DMs with comparable attacks). We leverage our novel MIA to provide dataset inference (DI) for IARs, and show that it requires as few as 6 samples to detect dataset membership (compared to 200 for DI in DMs), confirming a higher information leakage in IARs. Finally, we are able to extract hundreds of training data points from an IAR (e.g., 698 from VAR-d30). Our results suggest a fundamental privacy-utility trade-off: while IARs excel in image generation quality and speed, they are empirically significantly more vulnerable to privacy attacks compared to DMs that achieve similar performance. We release the code at https://github.com/sprintml/privacy_attacks_against_iars for reproducibility.
comment: Accepted at ICML2025
♻ ☆ PicoSAM2: Low-Latency Segmentation In-Sensor for Edge Vision Applications
Real-time, on-device segmentation is critical for latency-sensitive and privacy-aware applications like smart glasses and IoT devices. We introduce PicoSAM2, a lightweight (1.3M parameters, 336M MACs) promptable segmentation model optimized for edge and in-sensor execution, including the Sony IMX500. It builds on a depthwise separable U-Net, with knowledge distillation and fixed-point prompt encoding to learn from the Segment Anything Model 2 (SAM2). On COCO and LVIS, it achieves 51.9% and 44.9% mIoU, respectively. The quantized model (1.22MB) runs at 14.3 ms on the IMX500-achieving 86 MACs/cycle, making it the only model meeting both memory and compute constraints for in-sensor deployment. Distillation boosts LVIS performance by +3.5% mIoU and +5.1% mAP. These results demonstrate that efficient, promptable segmentation is feasible directly on-camera, enabling privacy-preserving vision without cloud or host processing.
♻ ☆ Multimodal Fusion SLAM with Fourier Attention
Visual SLAM is particularly challenging in environments affected by noise, varying lighting conditions, and darkness. Learning-based optical flow algorithms can leverage multiple modalities to address these challenges, but traditional optical flow-based visual SLAM approaches often require significant computational resources.To overcome this limitation, we propose FMF-SLAM, an efficient multimodal fusion SLAM method that utilizes fast Fourier transform (FFT) to enhance the algorithm efficiency. Specifically, we introduce a novel Fourier-based self-attention and cross-attention mechanism to extract features from RGB and depth signals. We further enhance the interaction of multimodal features by incorporating multi-scale knowledge distillation across modalities. We also demonstrate the practical feasibility of FMF-SLAM in real-world scenarios with real time performance by integrating it with a security robot by fusing with a global positioning module GNSS-RTK and global Bundle Adjustment. Our approach is validated using video sequences from TUM, TartanAir, and our real-world datasets, showcasing state-of-the-art performance under noisy, varying lighting, and dark conditions.Our code and datasets are available at https://github.com/youjie-zhou/FMF-SLAM.git.
comment: Accepted in IEEE RAL
♻ ☆ Cross-Level Multi-Instance Distillation for Self-Supervised Fine-Grained Visual Categorization
High-quality annotation of fine-grained visual categories demands great expert knowledge, which is taxing and time consuming. Alternatively, learning fine-grained visual representation from enormous unlabeled images (e.g., species, brands) by self-supervised learning becomes a feasible solution. However, recent researches find that existing self-supervised learning methods are less qualified to represent fine-grained categories. The bottleneck lies in that the pre-text representation is built from every patch-wise embedding, while fine-grained categories are only determined by several key patches of an image. In this paper, we propose a Cross-level Multi-instance Distillation (CMD) framework to tackle the challenge. Our key idea is to consider the importance of each image patch in determining the fine-grained pre-text representation by multiple instance learning. To comprehensively learn the relation between informative patches and fine-grained semantics, the multi-instance knowledge distillation is implemented on both the region/image crop pairs from the teacher and student net, and the region-image crops inside the teacher / student net, which we term as intra-level multi-instance distillation and inter-level multi-instance distillation. Extensive experiments on CUB-200-2011, Stanford Cars and FGVC Aircraft show that the proposed method outperforms the contemporary method by upto 10.14% and existing state-of-the-art self-supervised learning approaches by upto 19.78% on both top-1 accuracy and Rank-1 retrieval metric.
comment: Accepted by IEEE Transactions on Image Processing (TIP)
♻ ☆ Exclusive Style Removal for Cross Domain Novel Class Discovery
As a promising field in open-world learning, \textit{Novel Class Discovery} (NCD) is usually a task to cluster unseen novel classes in an unlabeled set based on the prior knowledge of labeled data within the same domain. However, the performance of existing NCD methods could be severely compromised when novel classes are sampled from a different distribution with the labeled ones. In this paper, we explore and establish the solvability of NCD with cross domain setting under the necessary condition that the style information needs to be removed. Based on the theoretical analysis, we introduce an exclusive style removal module for extracting style information that is distinctive from the baseline features, thereby facilitating inference. Moreover, this module is easy to integrate with other NCD methods, acting as a plug-in to improve performance on novel classes with different distributions compared to the labeled set. Additionally, recognizing the non-negligible influence of different backbones and pre-training strategies on the performance of the NCD methods, we build a fair benchmark for future NCD research. Extensive experiments on three common datasets demonstrate the effectiveness of our proposed style removal strategy.
♻ ☆ DivTrackee versus DynTracker: Promoting Diversity in Anti-Facial Recognition against Dynamic FR Strategy
The widespread adoption of facial recognition (FR) models raises serious concerns about their potential misuse, motivating the development of anti-facial recognition (AFR) to protect user facial privacy. In this paper, we argue that the static FR strategy, predominantly adopted in prior literature for evaluating AFR efficacy, cannot faithfully characterize the actual capabilities of determined trackers who aim to track a specific target identity. In particular, we introduce DynTracker, a dynamic FR strategy where the model's gallery database is iteratively updated with newly recognized target identity images. Surprisingly, such a simple approach renders all the existing AFR protections ineffective. To mitigate the privacy threats posed by DynTracker, we advocate for explicitly promoting diversity in the AFR-protected images. We hypothesize that the lack of diversity is the primary cause of the failure of existing AFR methods. Specifically, we develop DivTrackee, a novel method for crafting diverse AFR protections that builds upon a text-guided image generation framework and diversity-promoting adversarial losses. Through comprehensive experiments on various image benchmarks and feature extractors, we demonstrate DynTracker's strength in breaking existing AFR methods and the superiority of DivTrackee in preventing user facial images from being identified by dynamic FR strategies. We believe our work can act as an important initial step towards developing more effective AFR methods for protecting user facial privacy against determined trackers.
♻ ☆ RRCANet: Recurrent Reusable-Convolution Attention Network for Infrared Small Target Detection
Infrared small target detection is a challenging task due to its unique characteristics (e.g., small, dim, shapeless and changeable). Recently published CNN-based methods have achieved promising performance with heavy feature extraction and fusion modules. To achieve efficient and effective detection, we propose a recurrent reusable-convolution attention network (RRCA-Net) for infrared small target detection. Specifically, RRCA-Net incorporates reusable-convolution block (RuCB) in a recurrent manner without introducing extra parameters. With the help of the repetitive iteration in RuCB, the high-level information of small targets in the deep layers can be well maintained and further refined. Then, a dual interactive attention aggregation module (DIAAM) is proposed to promote the mutual enhancement and fusion of refined information. In this way, RRCA-Net can both achieve high-level feature refinement and enhance the correlation of contextual information between adjacent layers. Moreover, to achieve steady convergence, we design a target characteristic inspired loss function (DpT-k loss) by integrating physical and mathematical constraints. Experimental results on three benchmark datasets (e.g. NUAA-SIRST, IRSTD-1k, DenseSIRST) demonstrate that our RRCA-Net can achieve comparable performance to the state-of-the-art methods while maintaining a small number of parameters, and act as a plug and play module to introduce consistent performance improvement for several popular IRSTD methods. Our code will be available at https://github.com/yongxianLiu/ soon.
comment: We have corrected some annotation errors in the figures
♻ ☆ Improved and Explainable Cervical Cancer Classification using Ensemble Pooling of Block Fused Descriptors
Cervical cancer is the second most common cancer in women and causes high death rates. Earlier models for detecting cervical cancer had limited success. In this work, we propose new models that substantially outperform previous models. Previous studies show that pretrained ResNets extract features from cervical cancer images well. Hence, our first model involves working with three ResNets (50, 101, 152). All the existing works use only the last convolution block of their respective ResNet, which captures abstract features (e.g., shapes, objects). However, we believe that detailed features (e.g., color, edges, texture), coming from earlier convolution blocks, are equally important for cancer (specifically cervical cancer) classification. Since now the number of features become large, we use a novel feature selection technique of Global Max Pooling for detailed features and Global Average Pooling for abstract features. Hence, our second model consists of the resulting Cascaded Block Fused variants of the three ResNets. To improve the performance further, we combine and normalize the features of the three standard ResNets as well as our proposed three Cascaded Block Fused ResNets. This type of combination is also new in cancer classification domain (also in cervical cancer), and results in our third and fourth models, respectively. We use a linear SVM for classification. We exhaustively perform experiments on two public datasets, IARC and AnnoCerv, achieving an average performance of 97.92% and 92.97% surpassing standard ResNets performance of 90.89% and 87.97%, respectively. We outperform the competitive approach available on IARC dataset with an average gain of 13.20%, while no prior competitive work available on AnnoCerv. Additionally, we introduce a novel SHAP+LIME explainability method, accurately identifying the cancerous region in 97% of cases.
comment: 26 Pages, 10 figures, and 8 tables
♻ ☆ Controllable Video Generation with Provable Disentanglement
Controllable video generation remains a significant challenge, despite recent advances in generating high-quality and consistent videos. Most existing methods for controlling video generation treat the video as a whole, neglecting intricate fine-grained spatiotemporal relationships, which limits both control precision and efficiency. In this paper, we propose Controllable Video Generative Adversarial Networks (CoVoGAN) to disentangle the video concepts, thus facilitating efficient and independent control over individual concepts. Specifically, following the minimal change principle, we first disentangle static and dynamic latent variables. We then leverage the sufficient change property to achieve component-wise identifiability of dynamic latent variables, enabling disentangled control of video generation. To establish the theoretical foundation, we provide a rigorous analysis demonstrating the identifiability of our approach. Building on these theoretical insights, we design a Temporal Transition Module to disentangle latent dynamics. To enforce the minimal change principle and sufficient change property, we minimize the dimensionality of latent dynamic variables and impose temporal conditional independence. To validate our approach, we integrate this module as a plug-in for GANs. Extensive qualitative and quantitative experiments on various video generation benchmarks demonstrate that our method significantly improves generation quality and controllability across diverse real-world scenarios.
♻ ☆ FineCLIPER: Multi-modal Fine-grained CLIP for Dynamic Facial Expression Recognition with AdaptERs
Dynamic Facial Expression Recognition (DFER) is crucial for understanding human behavior. However, current methods exhibit limited performance mainly due to the scarcity of high-quality data, the insufficient utilization of facial dynamics, and the ambiguity of expression semantics, etc. To this end, we propose a novel framework, named Multi-modal Fine-grained CLIP for Dynamic Facial Expression Recognition with AdaptERs (FineCLIPER), incorporating the following novel designs: 1) To better distinguish between similar facial expressions, we extend the class labels to textual descriptions from both positive and negative aspects, and obtain supervision by calculating the cross-modal similarity based on the CLIP model; 2) Our FineCLIPER adopts a hierarchical manner to effectively mine useful cues from DFE videos. Specifically, besides directly embedding video frames as input (low semantic level), we propose to extract the face segmentation masks and landmarks based on each frame (middle semantic level) and utilize the Multi-modal Large Language Model (MLLM) to further generate detailed descriptions of facial changes across frames with designed prompts (high semantic level). Additionally, we also adopt Parameter-Efficient Fine-Tuning (PEFT) to enable efficient adaptation of large pre-trained models (i.e., CLIP) for this task. Our FineCLIPER achieves SOTA performance on the DFEW, FERV39k, and MAFW datasets in both supervised and zero-shot settings with few tunable parameters. Project Page: https://haroldchen19.github.io/FineCLIPER-Page/
comment: Accepted to ACM MM 2024
♻ ☆ VideoMathQA: Benchmarking Mathematical Reasoning via Multimodal Understanding in Videos
Mathematical reasoning in real-world video settings presents a fundamentally different challenge than in static images or text. It requires interpreting fine-grained visual information, accurately reading handwritten or digital text, and integrating spoken cues, often dispersed non-linearly over time. In such multimodal contexts, success hinges not just on perception, but on selectively identifying and integrating the right contextual details from a rich and noisy stream of content. To this end, we introduce VideoMathQA, a benchmark designed to evaluate whether models can perform such temporally extended cross-modal reasoning on videos. The benchmark spans 10 diverse mathematical domains, covering videos ranging from 10 seconds to over 1 hour. It requires models to interpret structured visual content, understand instructional narratives, and jointly ground concepts across visual, audio, and textual modalities. We employ graduate-level experts to ensure high quality, totaling over $920$ man-hours of annotation. To reflect real-world scenarios, questions are designed around three core reasoning challenges: direct problem solving, where answers are grounded in the presented question; conceptual transfer, which requires applying learned methods to new problems; and deep instructional comprehension, involving multi-step reasoning over extended explanations and partially worked-out solutions. Each question includes multi-step reasoning annotations, enabling fine-grained diagnosis of model capabilities. Through this benchmark, we highlight the limitations of existing approaches and establish a systematic evaluation framework for models that must reason, rather than merely perceive, across temporally extended and modality-rich mathematical problem settings. Our benchmark and evaluation code are available at: https://mbzuai-oryx.github.io/VideoMathQA
comment: VideoMathQA Technical Report
♻ ☆ Flopping for FLOPs: Leveraging equivariance for computational efficiency ICML 2025
Incorporating geometric invariance into neural networks enhances parameter efficiency but typically increases computational costs. This paper introduces new equivariant neural networks that preserve symmetry while maintaining a comparable number of floating-point operations (FLOPs) per parameter to standard non-equivariant networks. We focus on horizontal mirroring (flopping) invariance, common in many computer vision tasks. The main idea is to parametrize the feature spaces in terms of mirror-symmetric and mirror-antisymmetric features, i.e., irreps of the flopping group. This decomposes the linear layers to be block-diagonal, requiring half the number of FLOPs. Our approach reduces both FLOPs and wall-clock time, providing a practical solution for efficient, scalable symmetry-aware architectures.
comment: ICML 2025
Machine Learning 211
☆ Radial Attention: $O(n\log n)$ Sparse Attention with Energy Decay for Long Video Generation
Recent advances in diffusion models have enabled high-quality video generation, but the additional temporal dimension significantly increases computational costs, making training and inference on long videos prohibitively expensive. In this paper, we identify a phenomenon we term Spatiotemporal Energy Decay in video diffusion models: post-softmax attention scores diminish as spatial and temporal distance between tokens increase, akin to the physical decay of signal or waves over space and time in nature. Motivated by this, we propose Radial Attention, a scalable sparse attention mechanism with $O(n \log n)$ complexity that translates energy decay into exponentially decaying compute density, which is significantly more efficient than standard $O(n^2)$ dense attention and more expressive than linear attention. Specifically, Radial Attention employs a simple, static attention mask where each token attends to spatially nearby tokens, with the attention window size shrinking with temporal distance. Moreover, it allows pre-trained video diffusion models to extend their generation length with efficient LoRA-based fine-tuning. Extensive experiments show that Radial Attention maintains video quality across Wan2.1-14B, HunyuanVideo, and Mochi 1, achieving up to a 1.9$\times$ speedup over the original dense attention. With minimal tuning, it enables video generation up to 4$\times$ longer while reducing training costs by up to 4.4$\times$ compared to direct fine-tuning and accelerating inference by up to 3.7$\times$ compared to dense attention inference.
comment: Code: https://github.com/mit-han-lab/radial-attention
Orthogonal Finetuning Made Scalable
Orthogonal finetuning (OFT) offers highly parameter-efficient adaptation while preventing catastrophic forgetting, but its high runtime and memory demands limit practical deployment. We identify the core computational bottleneck in OFT as its weight-centric implementation, which relies on costly matrix-matrix multiplications with cubic complexity. To overcome this, we propose OFTv2, an input-centric reformulation that instead uses matrix-vector multiplications (i.e., matrix-free computation), reducing the computational cost to quadratic. We further introduce the Cayley-Neumann parameterization, an efficient orthogonal parameterization that approximates the matrix inversion in Cayley transform via a truncated Neumann series. These modifications allow OFTv2 to achieve up to 10x faster training and 3x lower GPU memory usage without compromising performance. In addition, we extend OFTv2 to support finetuning quantized foundation models and show that it outperforms the popular QLoRA in training stability, efficiency, and memory usage.
comment: Technical report (17 pages, 7 figures, project page: https://spherelab.ai/oftv2/)
☆ A Comparative Study of NAFNet Baselines for Image Restoration
We study NAFNet (Nonlinear Activation Free Network), a simple and efficient deep learning baseline for image restoration. By using CIFAR10 images corrupted with noise and blur, we conduct an ablation study of NAFNet's core components. Our baseline model implements SimpleGate activation, Simplified Channel Activation (SCA), and LayerNormalization. We compare this baseline to different variants that replace or remove components. Quantitative results (PSNR, SSIM) and examples illustrate how each modification affects restoration performance. Our findings support the NAFNet design: the SimpleGate and simplified attention mechanisms yield better results than conventional activations and attention, while LayerNorm proves to be important for stable training. We conclude with recommendations for model design, discuss potential improvements, and future work.
☆ Convergence of Mean Shift Algorithms for Large Bandwidths and Simultaneous Accurate Clustering
The mean shift (MS) is a non-parametric, density-based, iterative algorithm that has prominent usage in clustering and image segmentation. A rigorous proof for its convergence in full generality remains unknown. Two significant steps in this direction were taken in the paper \cite{Gh1}, which proved that for \textit{sufficiently large bandwidth}, the MS algorithm with the Gaussian kernel always converges in any dimension, and also by the same author in \cite{Gh2}, proved that MS always converges in one dimension for kernels with differentiable, strictly decreasing, convex profiles. In the more recent paper \cite{YT}, they have proved the convergence in more generality,\textit{ without any restriction on the bandwidth}, with the assumption that the KDE $f$ has a continuous Lipschitz gradient on the closure of the convex hull of the trajectory of the iterated sequence of the mode estimate, and also satisfies the {\L}ojasiewicz property there. The main theoretical result of this paper is a generalization of those of \cite{Gh1}, where we show that (1) for\textit{ sufficiently large bandwidth} convergence is guaranteed in any dimension with \textit{any radially symmetric and strictly positive definite kernels}. The proof uses two alternate characterizations of radially symmetric positive definite smooth kernels by Schoenberg and Bernstein \cite{Fass}, and borrows some steps from the proofs in \cite{Gh1}. Although the authors acknowledge that the result in that paper is more restrictive than that of \cite{YT} due to the lower bandwidth limit, it uses a different set of assumptions than \cite{YT}, and the proof technique is different.
☆ Machine Learning with Privacy for Protected Attributes
Differential privacy (DP) has become the standard for private data analysis. Certain machine learning applications only require privacy protection for specific protected attributes. Using naive variants of differential privacy in such use cases can result in unnecessary degradation of utility. In this work, we refine the definition of DP to create a more general and flexible framework that we call feature differential privacy (FDP). Our definition is simulation-based and allows for both addition/removal and replacement variants of privacy, and can handle arbitrary and adaptive separation of protected and non-protected features. We prove the properties of FDP, such as adaptive composition, and demonstrate its implications for limiting attribute inference attacks. We also propose a modification of the standard DP-SGD algorithm that satisfies FDP while leveraging desirable properties such as amplification via sub-sampling. We apply our framework to various machine learning tasks and show that it can significantly improve the utility of DP-trained models when public features are available. For example, we train diffusion models on the AFHQ dataset of animal faces and observe a drastic improvement in FID compared to DP, from 286.7 to 101.9 at $\epsilon=8$, assuming that the blurred version of a training image is available as a public feature. Overall, our work provides a new approach to private data analysis that can help reduce the utility cost of DP while still providing strong privacy guarantees.
☆ A standard transformer and attention with linear biases for molecular conformer generation
Sampling low-energy molecular conformations, spatial arrangements of atoms in a molecule, is a critical task for many different calculations performed in the drug discovery and optimization process. Numerous specialized equivariant networks have been designed to generate molecular conformations from 2D molecular graphs. Recently, non-equivariant transformer models have emerged as a viable alternative due to their capability to scale to improve generalization. However, the concern has been that non-equivariant models require a large model size to compensate the lack of equivariant bias. In this paper, we demonstrate that a well-chosen positional encoding effectively addresses these size limitations. A standard transformer model incorporating relative positional encoding for molecular graphs when scaled to 25 million parameters surpasses the current state-of-the-art non-equivariant base model with 64 million parameters on the GEOM-DRUGS benchmark. We implemented relative positional encoding as a negative attention bias that linearly increases with the shortest path distances between graph nodes at varying slopes for different attention heads, similar to ALiBi, a widely adopted relative positional encoding technique in the NLP domain. This architecture has the potential to serve as a foundation for a novel class of generative models for molecular conformations.
comment: Revision of paper at OpenReview: https://openreview.net/forum?id=BjjerMYL3F
☆ Scaling Speculative Decoding with Lookahead Reasoning
Reasoning models excel by generating long chain-of-thoughts, but decoding the resulting thousands of tokens is slow. Token-level speculative decoding (SD) helps, but its benefit is capped, because the chance that an entire $\gamma$-token guess is correct falls exponentially as $\gamma$ grows. This means allocating more compute for longer token drafts faces an algorithmic ceiling -- making the speedup modest and hardware-agnostic. We raise this ceiling with Lookahead Reasoning, which exploits a second, step-level layer of parallelism. Our key insight is that reasoning models generate step-by-step, and each step needs only to be semantically correct, not exact token matching. In Lookahead Reasoning, a lightweight draft model proposes several future steps; the target model expands each proposal in one batched pass, and a verifier keeps semantically correct steps while letting the target regenerate any that fail. Token-level SD still operates within each reasoning step, so the two layers of parallelism multiply. We show Lookahead Reasoning lifts the peak speedup of SD both theoretically and empirically. Across GSM8K, AIME, and other benchmarks, Lookahead Reasoning improves the speedup of SD from 1.4x to 2.1x while preserving answer quality, and its speedup scales better with additional GPU throughput. Our code is available at https://github.com/hao-ai-lab/LookaheadReasoning
☆ Persona Features Control Emergent Misalignment
Understanding how language models generalize behaviors from their training to a broader deployment distribution is an important problem in AI safety. Betley et al. discovered that fine-tuning GPT-4o on intentionally insecure code causes "emergent misalignment," where models give stereotypically malicious responses to unrelated prompts. We extend this work, demonstrating emergent misalignment across diverse conditions, including reinforcement learning on reasoning models, fine-tuning on various synthetic datasets, and in models without safety training. To investigate the mechanisms behind this generalized misalignment, we apply a "model diffing" approach using sparse autoencoders to compare internal model representations before and after fine-tuning. This approach reveals several "misaligned persona" features in activation space, including a toxic persona feature which most strongly controls emergent misalignment and can be used to predict whether a model will exhibit such behavior. Additionally, we investigate mitigation strategies, discovering that fine-tuning an emergently misaligned model on just a few hundred benign samples efficiently restores alignment.
ProxelGen: Generating Proteins as 3D Densities
We develop ProxelGen, a protein structure generative model that operates on 3D densities as opposed to the prevailing 3D point cloud representations. Representing proteins as voxelized densities, or proxels, enables new tasks and conditioning capabilities. We generate proteins encoded as proxels via a 3D CNN-based VAE in conjunction with a diffusion model operating on its latent space. Compared to state-of-the-art models, ProxelGen's samples achieve higher novelty, better FID scores, and the same level of designability as the training set. ProxelGen's advantages are demonstrated in a standard motif scaffolding benchmark, and we show how 3D density-based generation allows for more flexible shape conditioning.
☆ Curating art exhibitions using machine learning
Art curatorship has always been mostly the subjective work of human experts, who, with extensive knowledge of many and diverse artworks, select a few of those to present in communal spaces, spaces that evolved into what we now call art galleries. There are no hard and fast set of rules on how to select these artworks, given a theme which either is presented to the art curator or constructed by her/him. Here we present a series of artificial models -- a total of four related models -- based on machine learning techniques (a subset of artificial intelligence) that attempt to learn from existing exhibitions which have been curated by human experts, in order to be able to do similar curatorship work. We focus exclusively on the last 25 years of past exhibitions at the Metropolitan Museum of Art in New York, due to the quality of the data available and the physical and time limitations of our research. Our four artificial intelligence models achieve a reasonable ability at imitating these various curators responsible for all those exhibitions, with various degrees of precision and curatorial coherence. In particular, we can conclude two key insights: first, that there is sufficient information in these exhibitions to construct an artificial intelligence model that replicates past exhibitions with an accuracy well above random choices; second, that using feature engineering and carefully designing the architecture of modest size models can make them as good as those using the so-called large language models such as GPT in a brute force approach. We also believe, based on small attempts to use the models in out-of-sample experiments, that given more much more data, it should be possible for these kinds of artificial intelligence agents to be closer and closer to the aesthetic and curatorial judgment of human art curators.
☆ Ambiguous Online Learning
We propose a new variant of online learning that we call "ambiguous online learning". In this setting, the learner is allowed to produce multiple predicted labels. Such an "ambiguous prediction" is considered correct when at least one of the labels is correct, and none of the labels are "predictably wrong". The definition of "predictably wrong" comes from a hypothesis class in which hypotheses are also multi-valued. Thus, a prediction is "predictably wrong" if it's not allowed by the (unknown) true hypothesis. In particular, this setting is natural in the context of multivalued dynamical systems, recommendation algorithms and lossless compression. It is also strongly related to so-called "apple tasting". We show that in this setting, there is a trichotomy of mistake bounds: up to logarithmic factors, any hypothesis class has an optimal mistake bound of either Theta(1), Theta(sqrt(N)) or N.
☆ KnowRL: Exploring Knowledgeable Reinforcement Learning for Factuality
Large Language Models (LLMs), particularly slow-thinking models, often exhibit severe hallucination, outputting incorrect content due to an inability to accurately recognize knowledge boundaries during reasoning. While Reinforcement Learning (RL) can enhance complex reasoning abilities, its outcome-oriented reward mechanism often lacks factual supervision over the thinking process, further exacerbating the hallucination problem. To address the high hallucination in slow-thinking models, we propose Knowledge-enhanced RL, KnowRL. KnowRL guides models to perform fact-based slow thinking by integrating a factuality reward, based on knowledge verification, into the RL training process, helping them recognize their knowledge boundaries. KnowRL guides models to perform fact-based slow thinking by integrating a factuality reward, based on knowledge verification, into the RL training process, helping them recognize their knowledge boundaries. This targeted factual input during RL training enables the model to learn and internalize fact-based reasoning strategies. By directly rewarding adherence to facts within the reasoning steps, KnowRL fosters a more reliable thinking process. Experimental results on three hallucination evaluation datasets and two reasoning evaluation datasets demonstrate that KnowRL effectively mitigates hallucinations in slow-thinking models while maintaining their original strong reasoning capabilities. Our code is available at https://github.com/zjunlp/KnowRL.
comment: Work in progress
☆ Convolution-weighting method for the physics-informed neural network: A Primal-Dual Optimization Perspective
Physics-informed neural networks (PINNs) are extensively employed to solve partial differential equations (PDEs) by ensuring that the outputs and gradients of deep learning models adhere to the governing equations. However, constrained by computational limitations, PINNs are typically optimized using a finite set of points, which poses significant challenges in guaranteeing their convergence and accuracy. In this study, we proposed a new weighting scheme that will adaptively change the weights to the loss functions from isolated points to their continuous neighborhood regions. The empirical results show that our weighting scheme can reduce the relative $L^2$ errors to a lower value.
comment: 18 pages, 12 figures
☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate models across three dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities.
comment: Work in progress
☆ A comparative analysis of machine learning algorithms for predicting probabilities of default
Predicting the probability of default (PD) of prospective loans is a critical objective for financial institutions. In recent years, machine learning (ML) algorithms have achieved remarkable success across a wide variety of prediction tasks; yet, they remain relatively underutilised in credit risk analysis. This paper highlights the opportunities that ML algorithms offer to this field by comparing the performance of five predictive models-Random Forests, Decision Trees, XGBoost, Gradient Boosting and AdaBoost-to the predominantly used logistic regression, over a benchmark dataset from Scheule et al. (Credit Risk Analytics: The R Companion). Our findings underscore the strengths and weaknesses of each method, providing valuable insights into the most effective ML algorithms for PD prediction in the context of loan portfolios.
comment: 6 pages, 2 tables, to appear in Book of Short Papers - IES 2025
☆ Multi-Preference Lambda-weighted Listwise DPO for Dynamic Preference Alignment AAAI 2026
While large-scale unsupervised language models (LMs) capture broad world knowledge and reasoning capabilities, steering their behavior toward desired objectives remains challenging due to the lack of explicit supervision. Existing alignment techniques, such as reinforcement learning from human feedback (RLHF), rely on training a reward model and performing reinforcement learning to align with human preferences. However, RLHF is often computationally intensive, unstable, and sensitive to hyperparameters. To address these limitations, Direct Preference Optimization (DPO) was introduced as a lightweight and stable alternative, enabling direct alignment of language models with pairwise preference data via classification loss. However, DPO and its extensions generally assume a single static preference distribution, limiting flexibility in multi-objective or dynamic alignment settings. In this paper, we propose a novel framework: Multi-Preference Lambda-weighted Listwise DPO, which extends DPO to incorporate multiple human preference dimensions (e.g., helpfulness, harmlessness, informativeness) and enables dynamic interpolation through a controllable simplex-weighted formulation. Our method supports both listwise preference feedback and flexible alignment across varying user intents without re-training. Empirical and theoretical analysis demonstrates that our method is as effective as traditional DPO on static objectives while offering greater generality and adaptability for real-world deployment.
comment: 10 pages, 4 figures, appendix included. To appear in Proceedings of AAAI 2026. Code: https://github.com/yuhui15/Multi-Preference-Lambda-weighted-DPO
☆ SRFT: A Single-Stage Method with Supervised and Reinforcement Fine-Tuning for Reasoning
Large language models (LLMs) have achieved remarkable progress in reasoning tasks, yet the optimal integration of Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) remains a fundamental challenge. Through comprehensive analysis of token distributions, learning dynamics, and integration mechanisms from entropy-based perspectives, we reveal key differences between these paradigms: SFT induces coarse-grained global changes to LLM policy distributions, while RL performs fine-grained selective optimizations, with entropy serving as a critical indicator of training effectiveness. Building on these observations, we propose Supervised Reinforcement Fine-Tuning (SRFT), a single-stage method that unifies both fine-tuning paradigms through entropy-aware weighting mechanisms. Our approach simultaneously applies SFT and RL to directly optimize the LLM using demonstrations and self-exploration rollouts rather than through two-stage sequential methods. Extensive experiments show that SRFT achieves 59.1% average accuracy, outperforming zero-RL methods by 9.0% on five mathematical reasoning benchmarks and 10.9% on three out-of-distribution benchmarks.
☆ The Shape of Consumer Behavior: A Symbolic and Topological Analysis of Time Series
Understanding temporal patterns in online search behavior is crucial for real-time marketing and trend forecasting. Google Trends offers a rich proxy for public interest, yet the high dimensionality and noise of its time-series data present challenges for effective clustering. This study evaluates three unsupervised clustering approaches, Symbolic Aggregate approXimation (SAX), enhanced SAX (eSAX), and Topological Data Analysis (TDA), applied to 20 Google Trends keywords representing major consumer categories. Our results show that while SAX and eSAX offer fast and interpretable clustering for stable time series, they struggle with volatility and complexity, often producing ambiguous ``catch-all'' clusters. TDA, by contrast, captures global structural features through persistent homology and achieves more balanced and meaningful groupings. We conclude with practical guidance for using symbolic and topological methods in consumer analytics and suggest that hybrid approaches combining both perspectives hold strong potential for future applications.
comment: 33 pages, 30 figures
☆ Cross-regularization: Adaptive Model Complexity through Validation Gradients ICML 2025
Model regularization requires extensive manual tuning to balance complexity against overfitting. Cross-regularization resolves this tradeoff by directly adapting regularization parameters through validation gradients during training. The method splits parameter optimization - training data guides feature learning while validation data shapes complexity controls - converging provably to cross-validation optima. When implemented through noise injection in neural networks, this approach reveals striking patterns: unexpectedly high noise tolerance and architecture-specific regularization that emerges organically during training. Beyond complexity control, the framework integrates seamlessly with data augmentation, uncertainty calibration and growing datasets while maintaining single-run efficiency through a simple gradient-based approach.
comment: 21 pages, 13 figures. Accepted at ICML 2025
☆ On the necessity of adaptive regularisation:Optimal anytime online learning on $\boldsymbol{\ell_p}$-balls
We study online convex optimization on $\ell_p$-balls in $\mathbb{R}^d$ for $p > 2$. While always sub-linear, the optimal regret exhibits a shift between the high-dimensional setting ($d > T$), when the dimension $d$ is greater than the time horizon $T$ and the low-dimensional setting ($d \leq T$). We show that Follow-the-Regularised-Leader (FTRL) with time-varying regularisation which is adaptive to the dimension regime is anytime optimal for all dimension regimes. Motivated by this, we ask whether it is possible to obtain anytime optimality of FTRL with fixed non-adaptive regularisation. Our main result establishes that for separable regularisers, adaptivity in the regulariser is necessary, and that any fixed regulariser will be sub-optimal in one of the two dimension regimes. Finally, we provide lower bounds which rule out sub-linear regret bounds for the linear bandit problem in sufficiently high-dimension for all $\ell_p$-balls with $p \geq 1$.
☆ Noise Consistency Training: A Native Approach for One-Step Generator in Learning Additional Controls
The pursuit of efficient and controllable high-quality content generation remains a central challenge in artificial intelligence-generated content (AIGC). While one-step generators, enabled by diffusion distillation techniques, offer excellent generation quality and computational efficiency, adapting them to new control conditions--such as structural constraints, semantic guidelines, or external inputs--poses a significant challenge. Conventional approaches often necessitate computationally expensive modifications to the base model and subsequent diffusion distillation. This paper introduces Noise Consistency Training (NCT), a novel and lightweight approach to directly integrate new control signals into pre-trained one-step generators without requiring access to original training images or retraining the base diffusion model. NCT operates by introducing an adapter module and employs a noise consistency loss in the noise space of the generator. This loss aligns the adapted model's generation behavior across noises that are conditionally dependent to varying degrees, implicitly guiding it to adhere to the new control. Theoretically, this training objective can be understood as minimizing the distributional distance between the adapted generator and the conditional distribution induced by the new conditions. NCT is modular, data-efficient, and easily deployable, relying only on the pre-trained one-step generator and a control signal model. Extensive experiments demonstrate that NCT achieves state-of-the-art controllable generation in a single forward pass, surpassing existing multi-step and distillation-based methods in both generation quality and computational efficiency. Code is available at https://github.com/Luo-Yihong/NCT
☆ DRIFT: Data Reduction via Informative Feature Transformation- Generalization Begins Before Deep Learning starts
Modern deep learning architectures excel at optimization, but only after the data has entered the network. The true bottleneck lies in preparing the right input: minimal, salient, and structured in a way that reflects the essential patterns of the data. We propose DRIFT (Data Reduction via Informative Feature Transformation), a novel preprocessing technique inspired by vibrational analysis in physical systems, to identify and extract the most resonant modes of input data prior to training. Unlike traditional models that attempt to learn amidst both signal and noise, DRIFT mimics physics perception by emphasizing informative features while discarding irrelevant elements. The result is a more compact and interpretable representation that enhances training stability and generalization performance. In DRIFT, images are projected onto a low-dimensional basis formed by spatial vibration mode shapes of plates, offering a physically grounded feature set. This enables neural networks to operate with drastically fewer input dimensions (~ 50 features on MNIST and less than 100 on CIFAR100) while achieving competitive classification accuracy. Extensive experiments across MNIST and CIFAR100 demonstrate DRIFT's superiority over standard pixel-based models and PCA in terms of training stability, resistance to overfitting, and generalization robustness. Notably, DRIFT displays minimal sensitivity to changes in batch size, network architecture, and image resolution, further establishing it as a resilient and efficient data representation strategy. This work shifts the focus from architecture engineering to input curation and underscores the power of physics-driven data transformations in advancing deep learning performance.
☆ Who Does What in Deep Learning? Multidimensional Game-Theoretic Attribution of Function of Neural Units
Neural networks now generate text, images, and speech with billions of parameters, producing a need to know how each neural unit contributes to these high-dimensional outputs. Existing explainable-AI methods, such as SHAP, attribute importance to inputs, but cannot quantify the contributions of neural units across thousands of output pixels, tokens, or logits. Here we close that gap with Multiperturbation Shapley-value Analysis (MSA), a model-agnostic game-theoretic framework. By systematically lesioning combinations of units, MSA yields Shapley Modes, unit-wise contribution maps that share the exact dimensionality of the model's output. We apply MSA across scales, from multi-layer perceptrons to the 56-billion-parameter Mixtral-8x7B and Generative Adversarial Networks (GAN). The approach demonstrates how regularisation concentrates computation in a few hubs, exposes language-specific experts inside the LLM, and reveals an inverted pixel-generation hierarchy in GANs. Together, these results showcase MSA as a powerful approach for interpreting, editing, and compressing deep neural networks.
☆ Geometric-Aware Variational Inference: Robust and Adaptive Regularization with Directional Weight Uncertainty
Deep neural networks require principled uncertainty quantification, yet existing variational inference methods often employ isotropic Gaussian approximations in weight space that poorly match the network's inherent geometry. We address this mismatch by introducing Concentration-Adapted Perturbations (CAP), a variational framework that models weight uncertainties directly on the unit hypersphere using von Mises-Fisher distributions. Building on recent work in radial-directional posterior decompositions and spherical weight constraints, CAP provides the first complete theoretical framework connecting directional statistics to practical noise regularization in neural networks. Our key contribution is an analytical derivation linking vMF concentration parameters to activation noise variance, enabling each layer to learn its optimal uncertainty level through a novel closed-form KL divergence regularizer. In experiments on CIFAR-10, CAP significantly improves model calibration - reducing Expected Calibration Error by 5.6x - while providing interpretable layer-wise uncertainty profiles. CAP requires minimal computational overhead and integrates seamlessly into standard architectures, offering a theoretically grounded yet practical approach to uncertainty quantification in deep learning.
comment: 19 pages, 4 figures
☆ Conservative quantum offline model-based optimization
Offline model-based optimization (MBO) refers to the task of optimizing a black-box objective function using only a fixed set of prior input-output data, without any active experimentation. Recent work has introduced quantum extremal learning (QEL), which leverages the expressive power of variational quantum circuits to learn accurate surrogate functions by training on a few data points. However, as widely studied in the classical machine learning literature, predictive models may incorrectly extrapolate objective values in unexplored regions, leading to the selection of overly optimistic solutions. In this paper, we propose integrating QEL with conservative objective models (COM) - a regularization technique aimed at ensuring cautious predictions on out-of-distribution inputs. The resulting hybrid algorithm, COM-QEL, builds on the expressive power of quantum neural networks while safeguarding generalization via conservative modeling. Empirical results on benchmark optimization tasks demonstrate that COM-QEL reliably finds solutions with higher true objective values compared to the original QEL, validating its superiority for offline design problems.
comment: 5 pages, 5 figures, initial version
☆ Guidance in the Frequency Domain Enables High-Fidelity Sampling at Low CFG Scales
Classifier-free guidance (CFG) has become an essential component of modern conditional diffusion models. Although highly effective in practice, the underlying mechanisms by which CFG enhances quality, detail, and prompt alignment are not fully understood. We present a novel perspective on CFG by analyzing its effects in the frequency domain, showing that low and high frequencies have distinct impacts on generation quality. Specifically, low-frequency guidance governs global structure and condition alignment, while high-frequency guidance mainly enhances visual fidelity. However, applying a uniform scale across all frequencies -- as is done in standard CFG -- leads to oversaturation and reduced diversity at high scales and degraded visual quality at low scales. Based on these insights, we propose frequency-decoupled guidance (FDG), an effective approach that decomposes CFG into low- and high-frequency components and applies separate guidance strengths to each component. FDG improves image quality at low guidance scales and avoids the drawbacks of high CFG scales by design. Through extensive experiments across multiple datasets and models, we demonstrate that FDG consistently enhances sample fidelity while preserving diversity, leading to improved FID and recall compared to CFG, establishing our method as a plug-and-play alternative to standard classifier-free guidance.
☆ Learning-aided Bigraph Matching Approach to Multi-Crew Restoration of Damaged Power Networks Coupled with Road Transportation Networks
The resilience of critical infrastructure networks (CINs) after disruptions, such as those caused by natural hazards, depends on both the speed of restoration and the extent to which operational functionality can be regained. Allocating resources for restoration is a combinatorial optimal planning problem that involves determining which crews will repair specific network nodes and in what order. This paper presents a novel graph-based formulation that merges two interconnected graphs, representing crew and transportation nodes and power grid nodes, into a single heterogeneous graph. To enable efficient planning, graph reinforcement learning (GRL) is integrated with bigraph matching. GRL is utilized to design the incentive function for assigning crews to repair tasks based on the graph-abstracted state of the environment, ensuring generalization across damage scenarios. Two learning techniques are employed: a graph neural network trained using Proximal Policy Optimization and another trained via Neuroevolution. The learned incentive functions inform a bipartite graph that links crews to repair tasks, enabling weighted maximum matching for crew-to-task allocations. An efficient simulation environment that pre-computes optimal node-to-node path plans is used to train the proposed restoration planning methods. An IEEE 8500-bus power distribution test network coupled with a 21 square km transportation network is used as the case study, with scenarios varying in terms of numbers of damaged nodes, depots, and crews. Results demonstrate the approach's generalizability and scalability across scenarios, with learned policies providing 3-fold better performance than random policies, while also outperforming optimization-based solutions in both computation time (by several orders of magnitude) and power restored.
comment: IDETC 2025
☆ Outlier-Safe Pre-Training for Robust 4-Bit Quantization of Large Language Models
Extreme activation outliers in Large Language Models (LLMs) critically degrade quantization performance, hindering efficient on-device deployment. While channel-wise operations and adaptive gradient scaling are recognized causes, practical mitigation remains challenging. We introduce Outlier-Safe Pre-Training (OSP), a practical guideline that proactively prevents outlier formation rather than relying on post-hoc mitigation. OSP combines three key innovations: (1) the Muon optimizer, eliminating privileged bases while maintaining training efficiency; (2) Single-Scale RMSNorm, preventing channel-wise amplification; and (3) a learnable embedding projection, redistributing activation magnitudes originating from embedding matrices. We validate OSP by training a 1.4B-parameter model on 1 trillion tokens, which is the first production-scale LLM trained without such outliers. Under aggressive 4-bit quantization, our OSP model achieves a 35.7 average score across 10 benchmarks (compared to 26.5 for an Adam-trained model), with only a 2% training overhead. Remarkably, OSP models exhibit near-zero excess kurtosis (0.04) compared to extreme values (1818.56) in standard models, fundamentally altering LLM quantization behavior. Our work demonstrates that outliers are not inherent to LLMs but are consequences of training strategies, paving the way for more efficient LLM deployment. The source code and pretrained checkpoints are available at https://github.com/dmis-lab/Outlier-Safe-Pre-Training.
☆ Near-optimal estimates for the $\ell^p$-Lipschitz constants of deep random ReLU neural networks
This paper studies the $\ell^p$-Lipschitz constants of ReLU neural networks $\Phi: \mathbb{R}^d \to \mathbb{R}$ with random parameters for $p \in [1,\infty]$. The distribution of the weights follows a variant of the He initialization and the biases are drawn from symmetric distributions. We derive high probability upper and lower bounds for wide networks that differ at most by a factor that is logarithmic in the network's width and linear in its depth. In the special case of shallow networks, we obtain matching bounds. Remarkably, the behavior of the $\ell^p$-Lipschitz constant varies significantly between the regimes $ p \in [1,2) $ and $ p \in [2,\infty] $. For $p \in [2,\infty]$, the $\ell^p$-Lipschitz constant behaves similarly to $\Vert g\Vert_{p'}$, where $g \in \mathbb{R}^d$ is a $d$-dimensional standard Gaussian vector and $1/p + 1/p' = 1$. In contrast, for $p \in [1,2)$, the $\ell^p$-Lipschitz constant aligns more closely to $\Vert g \Vert_{2}$.
comment: The introduction will still be expanded with additional references
☆ ReBoot: Encrypted Training of Deep Neural Networks with CKKS Bootstrapping
Growing concerns over data privacy underscore the need for deep learning methods capable of processing sensitive information without compromising confidentiality. Among privacy-enhancing technologies, Homomorphic Encryption (HE) stands out by providing post-quantum cryptographic security and end-to-end data protection, safeguarding data even during computation. While Deep Neural Networks (DNNs) have gained attention in HE settings, their use has largely been restricted to encrypted inference. Prior research on encrypted training has primarily focused on logistic regression or has relied on multi-party computation to enable model fine-tuning. This stems from the substantial computational overhead and algorithmic complexity involved in DNNs training under HE. In this paper, we present ReBoot, the first framework to enable fully encrypted and non-interactive training of DNNs. Built upon the CKKS scheme, ReBoot introduces a novel HE-compliant neural network architecture based on local error signals, specifically designed to minimize multiplicative depth and reduce noise accumulation. ReBoot employs a tailored packing strategy that leverages real-number arithmetic via SIMD operations, significantly lowering both computational and memory overhead. Furthermore, by integrating approximate bootstrapping, ReBoot learning algorithm supports effective training of arbitrarily deep multi-layer perceptrons, making it well-suited for machine learning as-a-service. ReBoot is evaluated on both image recognition and tabular benchmarks, achieving accuracy comparable to 32-bit floating-point plaintext training while enabling fully encrypted training. It improves test accuracy by up to +3.27% over encrypted logistic regression, and up to +6.83% over existing encrypted DNN frameworks, while reducing training latency by up to 8.83x. ReBoot is made available to the scientific community as a public repository.
☆ Leveraging Lightweight Generators for Memory Efficient Continual Learning
Catastrophic forgetting can be trivially alleviated by keeping all data from previous tasks in memory. Therefore, minimizing the memory footprint while maximizing the amount of relevant information is crucial to the challenge of continual learning. This paper aims to decrease required memory for memory-based continuous learning algorithms. We explore the options of extracting a minimal amount of information, while maximally alleviating forgetting. We propose the usage of lightweight generators based on Singular Value Decomposition to enhance existing continual learning methods, such as A-GEM and Experience Replay. These generators need a minimal amount of memory while being maximally effective. They require no training time, just a single linear-time fitting step, and can capture a distribution effectively from a small number of data samples. Depending on the dataset and network architecture, our results show a significant increase in average accuracy compared to the original methods. Our method shows great potential in minimizing the memory footprint of memory-based continual learning algorithms.
☆ When Can We Reuse a Calibration Set for Multiple Conformal Predictions?
Reliable uncertainty quantification is crucial for the trustworthiness of machine learning applications. Inductive Conformal Prediction (ICP) offers a distribution-free framework for generating prediction sets or intervals with user-specified confidence. However, standard ICP guarantees are marginal and typically require a fresh calibration set for each new prediction to maintain their validity. This paper addresses this practical limitation by demonstrating how e-conformal prediction, in conjunction with Hoeffding's inequality, can enable the repeated use of a single calibration set with a high probability of preserving the desired coverage. Through a case study on the CIFAR-10 dataset, we train a deep neural network and utilise a calibration set to estimate a Hoeffding correction. This correction allows us to apply a modified Markov's inequality, leading to the construction of prediction sets with quantifiable confidence. Our results illustrate the feasibility of maintaining provable performance in conformal prediction while enhancing its practicality by reducing the need for repeated calibration. The code for this work is publicly available.
☆ Semantic Scene Graph for Ultrasound Image Explanation and Scanning Guidance
Understanding medical ultrasound imaging remains a long-standing challenge due to significant visual variability caused by differences in imaging and acquisition parameters. Recent advancements in large language models (LLMs) have been used to automatically generate terminology-rich summaries orientated to clinicians with sufficient physiological knowledge. Nevertheless, the increasing demand for improved ultrasound interpretability and basic scanning guidance among non-expert users, e.g., in point-of-care settings, has not yet been explored. In this study, we first introduce the scene graph (SG) for ultrasound images to explain image content to ordinary and provide guidance for ultrasound scanning. The ultrasound SG is first computed using a transformer-based one-stage method, eliminating the need for explicit object detection. To generate a graspable image explanation for ordinary, the user query is then used to further refine the abstract SG representation through LLMs. Additionally, the predicted SG is explored for its potential in guiding ultrasound scanning toward missing anatomies within the current imaging view, assisting ordinary users in achieving more standardized and complete anatomical exploration. The effectiveness of this SG-based image explanation and scanning guidance has been validated on images from the left and right neck regions, including the carotid and thyroid, across five volunteers. The results demonstrate the potential of the method to maximally democratize ultrasound by enhancing its interpretability and usability for ordinaries.
☆ Model Guidance via Robust Feature Attribution
Controlling the patterns a model learns is essential to preventing reliance on irrelevant or misleading features. Such reliance on irrelevant features, often called shortcut features, has been observed across domains, including medical imaging and natural language processing, where it may lead to real-world harms. A common mitigation strategy leverages annotations (provided by humans or machines) indicating which features are relevant or irrelevant. These annotations are compared to model explanations, typically in the form of feature salience, and used to guide the loss function during training. Unfortunately, recent works have demonstrated that feature salience methods are unreliable and therefore offer a poor signal to optimize. In this work, we propose a simplified objective that simultaneously optimizes for explanation robustness and mitigation of shortcut learning. Unlike prior objectives with similar aims, we demonstrate theoretically why our approach ought to be more effective. Across a comprehensive series of experiments, we show that our approach consistently reduces test-time misclassifications by 20% compared to state-of-the-art methods. We also extend prior experimental settings to include natural language processing tasks. Additionally, we conduct novel ablations that yield practical insights, including the relative importance of annotation quality over quantity. Code for our method and experiments is available at: https://github.com/Mihneaghitu/ModelGuidanceViaRobustFeatureAttribution.
☆ Higher-Order Graph Databases
Recent advances in graph databases (GDBs) have been driving interest in large-scale analytics, yet current systems fail to support higher-order (HO) interactions beyond first-order (one-hop) relations, which are crucial for tasks such as subgraph counting, polyadic modeling, and HO graph learning. We address this by introducing a new class of systems, higher-order graph databases (HO-GDBs) that use lifting and lowering paradigms to seamlessly extend traditional GDBs with HO. We provide a theoretical analysis of OLTP and OLAP queries, ensuring correctness, scalability, and ACID compliance. We implement a lightweight, modular, and parallelizable HO-GDB prototype that offers native support for hypergraphs, node-tuples, subgraphs, and other HO structures under a unified API. The prototype scales to large HO OLTP & OLAP workloads and shows how HO improves analytical tasks, for example enhancing accuracy of graph neural networks within a GDB by 44%. Our work ensures low latency and high query throughput, and generalizes both ACID-compliant and eventually consistent systems.
☆ PEVLM: Parallel Encoding for Vision-Language Models
Vision-Language Models (VLMs) have demonstrated strong performance in video-language tasks, yet their application to long video understanding remains constrained by the quadratic complexity of standard attention mechanisms. In this paper, we propose \textbf{PEVLM}, a parallel encoding strategy specifically designed to improve the prefill efficiency of VLMs without requiring model finetuning. PEVLM partitions the input into block-wise segments with a shared sink, preserves full-attention positional embeddings, and aligns attention weights to mimic full-attention distributions. This design reduces attention computation from $O((T \times N)^2)$ to $O(T \times N)$ while maintaining high accuracy. Extensive experiments on the LongVideoBench benchmark show that PEVLM achieves up to 8.37\% accuracy improvement over existing inference-efficient methods and delivers up to 7.47x speedup in attention computation and 40\% reduction in end-to-end latency. Under strict latency constraints, PEVLM significantly outperforms baselines, raising accuracy from 23.26\% to 61.03\%. These results highlight PEVLM's effectiveness for low-latency, long-context video understanding, making it well-suited for real-world applications such as autonomous driving.
☆ Tensor-Parallelism with Partially Synchronized Activations
Training and inference of Large Language Models (LLMs) with tensor-parallelism requires substantial communication to synchronize activations. Our findings suggest that with a few minor adjustments to current practices, LLMs can be trained without fully synchronizing activations, reducing bandwidth demands. We name this "Communication-Aware Architecture for Tensor-parallelism" (CAAT-Net). We train 1B and 7B parameter CAAT-Net models, with a 50% reduction in tensor-parallel communication and no significant drop in pretraining accuracy. Furthermore, we demonstrate how CAAT-Net accelerates both training and inference workloads.
☆ Unsupervised Data Generation for Offline Reinforcement Learning: A Perspective from Model
Offline reinforcement learning (RL) recently gains growing interests from RL researchers. However, the performance of offline RL suffers from the out-of-distribution problem, which can be corrected by feedback in online RL. Previous offline RL research focuses on restricting the offline algorithm in in-distribution even in-sample action sampling. In contrast, fewer work pays attention to the influence of the batch data. In this paper, we first build a bridge over the batch data and the performance of offline RL algorithms theoretically, from the perspective of model-based offline RL optimization. We draw a conclusion that, with mild assumptions, the distance between the state-action pair distribution generated by the behavioural policy and the distribution generated by the optimal policy, accounts for the performance gap between the policy learned by model-based offline RL and the optimal policy. Secondly, we reveal that in task-agnostic settings, a series of policies trained by unsupervised RL can minimize the worst-case regret in the performance gap. Inspired by the theoretical conclusions, UDG (Unsupervised Data Generation) is devised to generate data and select proper data for offline training under tasks-agnostic settings. Empirical results demonstrate that UDG can outperform supervised data generation on solving unknown tasks.
☆ Hierarchical Time Series Forecasting Via Latent Mean Encoding
Coherently forecasting the behaviour of a target variable across both coarse and fine temporal scales is crucial for profit-optimized decision-making in several business applications, and remains an open research problem in temporal hierarchical forecasting. Here, we propose a new hierarchical architecture that tackles this problem by leveraging modules that specialize in forecasting the different temporal aggregation levels of interest. The architecture, which learns to encode the average behaviour of the target variable within its hidden layers, makes accurate and coherent forecasts across the target temporal hierarchies. We validate our architecture on the challenging, real-world M5 dataset and show that it outperforms established methods, such as the TSMixer model.
☆ Why Uncertainty Calibration Matters for Reliable Perturbation-based Explanations ICLR 2025
Perturbation-based explanations are widely utilized to enhance the transparency of modern machine-learning models. However, their reliability is often compromised by the unknown model behavior under the specific perturbations used. This paper investigates the relationship between uncertainty calibration - the alignment of model confidence with actual accuracy - and perturbation-based explanations. We show that models frequently produce unreliable probability estimates when subjected to explainability-specific perturbations and theoretically prove that this directly undermines explanation quality. To address this, we introduce ReCalX, a novel approach to recalibrate models for improved perturbation-based explanations while preserving their original predictions. Experiments on popular computer vision models demonstrate that our calibration strategy produces explanations that are more aligned with human perception and actual object locations.
comment: ICLR 2025 Workshop: XAI4Science: From Understanding Model Behavior to Discovering New Scientific Knowledge
☆ Operator Forces For Coarse-Grained Molecular Dynamics
Coarse-grained (CG) molecular dynamics simulations extend the length and time scale of atomistic simulations by replacing groups of correlated atoms with CG beads. Machine-learned coarse-graining (MLCG) has recently emerged as a promising approach to construct highly accurate force fields for CG molecular dynamics. However, the calibration of MLCG force fields typically hinges on force matching, which demands extensive reference atomistic trajectories with corresponding force labels. In practice, atomistic forces are often not recorded, making traditional force matching infeasible on pre-existing datasets. Recently, noise-based kernels have been introduced to adapt force matching to the low-data regime, including situations in which reference atomistic forces are not present. While this approach produces force fields which recapitulate slow collective motion, it introduces significant local distortions due to the corrupting effects of the noise-based kernel. In this work, we introduce more general kernels based on normalizing flows that substantially reduce these local distortions while preserving global conformational accuracy. We demonstrate our method on small proteins, showing that flow-based kernels can generate high-quality CG forces solely from configurational samples.
☆ Scaling Up Unbiased Search-based Symbolic Regression
In a regression task, a function is learned from labeled data to predict the labels at new data points. The goal is to achieve small prediction errors. In symbolic regression, the goal is more ambitious, namely, to learn an interpretable function that makes small prediction errors. This additional goal largely rules out the standard approach used in regression, that is, reducing the learning problem to learning parameters of an expansion of basis functions by optimization. Instead, symbolic regression methods search for a good solution in a space of symbolic expressions. To cope with the typically vast search space, most symbolic regression methods make implicit, or sometimes even explicit, assumptions about its structure. Here, we argue that the only obvious structure of the search space is that it contains small expressions, that is, expressions that can be decomposed into a few subexpressions. We show that systematically searching spaces of small expressions finds solutions that are more accurate and more robust against noise than those obtained by state-of-the-art symbolic regression methods. In particular, systematic search outperforms state-of-the-art symbolic regressors in terms of its ability to recover the true underlying symbolic expressions on established benchmark data sets.
☆ Beyond Static Models: Hypernetworks for Adaptive and Generalizable Forecasting in Complex Parametric Dynamical Systems
Dynamical systems play a key role in modeling, forecasting, and decision-making across a wide range of scientific domains. However, variations in system parameters, also referred to as parametric variability, can lead to drastically different model behavior and output, posing challenges for constructing models that generalize across parameter regimes. In this work, we introduce the Parametric Hypernetwork for Learning Interpolated Networks (PHLieNet), a framework that simultaneously learns: (a) a global mapping from the parameter space to a nonlinear embedding and (b) a mapping from the inferred embedding to the weights of a dynamics propagation network. The learned embedding serves as a latent representation that modulates a base network, termed the hypernetwork, enabling it to generate the weights of a target network responsible for forecasting the system's state evolution conditioned on the previous time history. By interpolating in the space of models rather than observations, PHLieNet facilitates smooth transitions across parameterized system behaviors, enabling a unified model that captures the dynamic behavior across a broad range of system parameterizations. The performance of the proposed technique is validated in a series of dynamical systems with respect to its ability to extrapolate in time and interpolate and extrapolate in the parameter space, i.e., generalize to dynamics that were unseen during training. In all cases, our approach outperforms or matches state-of-the-art baselines in both short-term forecast accuracy and in capturing long-term dynamical features, such as attractor statistics.
☆ ChordPrompt: Orchestrating Cross-Modal Prompt Synergy for Multi-Domain Incremental Learning in CLIP KDD 2025
Continual learning (CL) empowers pre-trained vision-language models to adapt effectively to novel or previously underrepresented data distributions without comprehensive retraining, enhancing their adaptability and efficiency. While vision-language models like CLIP show great promise, they struggle to maintain performance across domains in incremental learning scenarios. Existing prompt learning methods face two main limitations: 1) they primarily focus on class-incremental learning scenarios, lacking specific strategies for multi-domain task incremental learning; 2) most current approaches employ single-modal prompts, neglecting the potential benefits of cross-modal information exchange. To address these challenges, we propose the \ChordPrompt framework, which facilitates a harmonious interplay between visual and textual prompts. \ChordPrompt introduces cross-modal prompts to leverage interactions between visual and textual information. Our approach also employs domain-adaptive text prompts to select appropriate prompts for continual adaptation across multiple domains. Comprehensive experiments on multi-domain incremental learning benchmarks demonstrate that \ChordPrompt outperforms state-of-the-art methods in zero-shot generalization and downstream task performance.
comment: Accept by ECML-PKDD 2025
☆ Training Flexible Models of Genetic Variant Effects from Functional Annotations using Accelerated Linear Algebra ICML 2025
To understand how genetic variants in human genomes manifest in phenotypes -- traits like height or diseases like asthma -- geneticists have sequenced and measured hundreds of thousands of individuals. Geneticists use this data to build models that predict how a genetic variant impacts phenotype given genomic features of the variant, like DNA accessibility or the presence of nearby DNA-bound proteins. As more data and features become available, one might expect predictive models to improve. Unfortunately, training these models is bottlenecked by the need to solve expensive linear algebra problems because variants in the genome are correlated with nearby variants, requiring inversion of large matrices. Previous methods have therefore been restricted to fitting small models, and fitting simplified summary statistics, rather than the full likelihood of the statistical model. In this paper, we leverage modern fast linear algebra techniques to develop DeepWAS (Deep genome Wide Association Studies), a method to train large and flexible neural network predictive models to optimize likelihood. Notably, we find that larger models only improve performance when using our full likelihood approach; when trained by fitting traditional summary statistics, larger models perform no better than small ones. We find larger models trained on more features make better predictions, potentially improving disease predictions and therapeutic target identification.
comment: For example: ICML 2025. Code available at: https://github.com/AlanNawzadAmin/DeepWAS
☆ Vision Transformer-Based Time-Series Image Reconstruction for Cloud-Filling Applications
Cloud cover in multispectral imagery (MSI) poses significant challenges for early season crop mapping, as it leads to missing or corrupted spectral information. Synthetic aperture radar (SAR) data, which is not affected by cloud interference, offers a complementary solution, but lack sufficient spectral detail for precise crop mapping. To address this, we propose a novel framework, Time-series MSI Image Reconstruction using Vision Transformer (ViT), to reconstruct MSI data in cloud-covered regions by leveraging the temporal coherence of MSI and the complementary information from SAR from the attention mechanism. Comprehensive experiments, using rigorous reconstruction evaluation metrics, demonstrate that Time-series ViT framework significantly outperforms baselines that use non-time-series MSI and SAR or time-series MSI without SAR, effectively enhancing MSI image reconstruction in cloud-covered regions.
comment: This paper has been accepted as a conference paper at the 2025 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
☆ ConStellaration: A dataset of QI-like stellarator plasma boundaries and optimization benchmarks
Stellarators are magnetic confinement devices under active development to deliver steady-state carbon-free fusion energy. Their design involves a high-dimensional, constrained optimization problem that requires expensive physics simulations and significant domain expertise. Recent advances in plasma physics and open-source tools have made stellarator optimization more accessible. However, broader community progress is currently bottlenecked by the lack of standardized optimization problems with strong baselines and datasets that enable data-driven approaches, particularly for quasi-isodynamic (QI) stellarator configurations, considered as a promising path to commercial fusion due to their inherent resilience to current-driven disruptions. Here, we release an open dataset of diverse QI-like stellarator plasma boundary shapes, paired with their ideal magnetohydrodynamic (MHD) equilibria and performance metrics. We generated this dataset by sampling a variety of QI fields and optimizing corresponding stellarator plasma boundaries. We introduce three optimization benchmarks of increasing complexity: (1) a single-objective geometric optimization problem, (2) a "simple-to-build" QI stellarator, and (3) a multi-objective ideal-MHD stable QI stellarator that investigates trade-offs between compactness and coil simplicity. For every benchmark, we provide reference code, evaluation scripts, and strong baselines based on classical optimization techniques. Finally, we show how learned models trained on our dataset can efficiently generate novel, feasible configurations without querying expensive physics oracles. By openly releasing the dataset along with benchmark problems and baselines, we aim to lower the entry barrier for optimization and machine learning researchers to engage in stellarator design and to accelerate cross-disciplinary progress toward bringing fusion energy to the grid.
☆ Fake or Real, Can Robots Tell? Evaluating Embodied Vision-Language Models on Real and 3D-Printed Objects
Robotic scene understanding increasingly relies on vision-language models (VLMs) to generate natural language descriptions of the environment. In this work, we present a comparative study of captioning strategies for tabletop scenes captured by a robotic arm equipped with an RGB camera. The robot collects images of objects from multiple viewpoints, and we evaluate several models that generate scene descriptions. We compare the performance of various captioning models, like BLIP and VLMs. Our experiments examine the trade-offs between single-view and multi-view captioning, and difference between recognising real-world and 3D printed objects. We quantitatively evaluate object identification accuracy, completeness, and naturalness of the generated captions. Results show that VLMs can be used in robotic settings where common objects need to be recognised, but fail to generalise to novel representations. Our findings provide practical insights into deploying foundation models for embodied agents in real-world settings.
☆ FAF: A Feature-Adaptive Framework for Few-Shot Time Series Forecasting
Multi-task and few-shot time series forecasting tasks are commonly encountered in scenarios such as the launch of new products in different cities. However, traditional time series forecasting methods suffer from insufficient historical data, which stems from a disregard for the generalized and specific features among different tasks. For the aforementioned challenges, we propose the Feature-Adaptive Time Series Forecasting Framework (FAF), which consists of three key components: the Generalized Knowledge Module (GKM), the Task-Specific Module (TSM), and the Rank Module (RM). During training phase, the GKM is updated through a meta-learning mechanism that enables the model to extract generalized features across related tasks. Meanwhile, the TSM is trained to capture diverse local dynamics through multiple functional regions, each of which learns specific features from individual tasks. During testing phase, the RM dynamically selects the most relevant functional region from the TSM based on input sequence features, which is then combined with the generalized knowledge learned by the GKM to generate accurate forecasts. This design enables FAF to achieve robust and personalized forecasting even with sparse historical observations We evaluate FAF on five diverse real-world datasets under few-shot time series forecasting settings. Experimental results demonstrate that FAF consistently outperforms baselines that include three categories of time series forecasting methods. In particular, FAF achieves a 41.81\% improvement over the best baseline, iTransformer, on the CO$_2$ emissions dataset.
comment: 12 pages,4 figures, 8 tables
☆ ConCM: Consistency-Driven Calibration and Matching for Few-Shot Class-Incremental Learning
Few-Shot Class-Incremental Learning (FSCIL) requires models to adapt to novel classes with limited supervision while preserving learned knowledge. Existing prospective learning-based space construction methods reserve space to accommodate novel classes. However, prototype deviation and structure fixity limit the expressiveness of the embedding space. In contrast to fixed space reservation, we explore the optimization of feature-structure dual consistency and propose a Consistency-driven Calibration and Matching Framework (ConCM) that systematically mitigate the knowledge conflict inherent in FSCIL. Specifically, inspired by hippocampal associative memory, we design a memory-aware prototype calibration that extracts generalized semantic attributes from base classes and reintegrates them into novel classes to enhance the conceptual center consistency of features. Further, we propose dynamic structure matching, which adaptively aligns the calibrated features to a session-specific optimal manifold space, ensuring cross-session structure consistency. Theoretical analysis shows that our method satisfies both geometric optimality and maximum matching, thereby overcoming the need for class-number priors. On large-scale FSCIL benchmarks including mini-ImageNet and CUB200, ConCM achieves state-of-the-art performance, surpassing current optimal method by 3.20% and 3.68% in harmonic accuracy of incremental sessions.
comment: 9 pages, 5 figures(Excluding the appendix)
☆ General Methods Make Great Domain-specific Foundation Models: A Case-study on Fetal Ultrasound MICCAI 2025
With access to large-scale, unlabeled medical datasets, researchers are confronted with two questions: Should they attempt to pretrain a custom foundation model on this medical data, or use transfer-learning from an existing generalist model? And, if a custom model is pretrained, are novel methods required? In this paper we explore these questions by conducting a case-study, in which we train a foundation model on a large regional fetal ultrasound dataset of 2M images. By selecting the well-established DINOv2 method for pretraining, we achieve state-of-the-art results on three fetal ultrasound datasets, covering data from different countries, classification, segmentation, and few-shot tasks. We compare against a series of models pretrained on natural images, ultrasound images, and supervised baselines. Our results demonstrate two key insights: (i) Pretraining on custom data is worth it, even if smaller models are trained on less data, as scaling in natural image pretraining does not translate to ultrasound performance. (ii) Well-tuned methods from computer vision are making it feasible to train custom foundation models for a given medical domain, requiring no hyperparameter tuning and little methodological adaptation. Given these findings, we argue that a bias towards methodological innovation should be avoided when developing domain specific foundation models under common computational resource constraints.
comment: Submitted version of paper accepted at MICCAI 2025
☆ Discovering Symmetries of ODEs by Symbolic Regression
Solving systems of ordinary differential equations (ODEs) is essential when it comes to understanding the behavior of dynamical systems. Yet, automated solving remains challenging, in particular for nonlinear systems. Computer algebra systems (CASs) provide support for solving ODEs by first simplifying them, in particular through the use of Lie point symmetries. Finding these symmetries is, however, itself a difficult problem for CASs. Recent works in symbolic regression have shown promising results for recovering symbolic expressions from data. Here, we adapt search-based symbolic regression to the task of finding generators of Lie point symmetries. With this approach, we can find symmetries of ODEs that existing CASs cannot find.
☆ RCStat: A Statistical Framework for using Relative Contextualization in Transformers
Prior work on input-token importance in auto-regressive transformers has relied on Softmax-normalized attention weights, which obscure the richer structure of pre-Softmax query-key logits. We introduce RCStat, a statistical framework that harnesses raw attention logits via Relative Contextualization (RC), a random variable measuring contextual alignment between token segments, and derive an efficient upper bound for RC. We demonstrate two applications: (i) Key-Value compression, where RC-based thresholds drive adaptive key-value eviction for substantial cache reduction with minimal quality loss; and (ii) Attribution, where RC yields higher-fidelity token-, sentence-, and chunk-level explanations than post-Softmax methods. Across question answering, summarization, and attribution benchmarks, RCStat achieves significant empirical gains, delivering state-of-the-art compression and attribution performance without any model retraining.
☆ Overtuning in Hyperparameter Optimization
Hyperparameter optimization (HPO) aims to identify an optimal hyperparameter configuration (HPC) such that the resulting model generalizes well to unseen data. As the expected generalization error cannot be optimized directly, it is estimated with a resampling strategy, such as holdout or cross-validation. This approach implicitly assumes that minimizing the validation error leads to improved generalization. However, since validation error estimates are inherently stochastic and depend on the resampling strategy, a natural question arises: Can excessive optimization of the validation error lead to overfitting at the HPO level, akin to overfitting in model training based on empirical risk minimization? In this paper, we investigate this phenomenon, which we term overtuning, a form of overfitting specific to HPO. Despite its practical relevance, overtuning has received limited attention in the HPO and AutoML literature. We provide a formal definition of overtuning and distinguish it from related concepts such as meta-overfitting. We then conduct a large-scale reanalysis of HPO benchmark data to assess the prevalence and severity of overtuning. Our results show that overtuning is more common than previously assumed, typically mild but occasionally severe. In approximately 10% of cases, overtuning leads to the selection of a seemingly optimal HPC with worse generalization error than the default or first configuration tried. We further analyze how factors such as performance metric, resampling strategy, dataset size, learning algorithm, and HPO method affect overtuning and discuss mitigation strategies. Our results highlight the need to raise awareness of overtuning, particularly in the small-data regime, indicating that further mitigation strategies should be studied.
comment: Accepted at the Fourth Conference on Automated Machine Learning (Methods Track). 43 pages, 9 tables, 14 figures
☆ Dimension Reduction for Symbolic Regression
Solutions of symbolic regression problems are expressions that are composed of input variables and operators from a finite set of function symbols. One measure for evaluating symbolic regression algorithms is their ability to recover formulae, up to symbolic equivalence, from finite samples. Not unexpectedly, the recovery problem becomes harder when the formula gets more complex, that is, when the number of variables and operators gets larger. Variables in naturally occurring symbolic formulas often appear only in fixed combinations. This can be exploited in symbolic regression by substituting one new variable for the combination, effectively reducing the number of variables. However, finding valid substitutions is challenging. Here, we address this challenge by searching over the expression space of small substitutions and testing for validity. The validity test is reduced to a test of functional dependence. The resulting iterative dimension reduction procedure can be used with any symbolic regression approach. We show that it reliably identifies valid substitutions and significantly boosts the performance of different types of state-of-the-art symbolic regression algorithms.
☆ Identifying Physically Realizable Triggers for Backdoored Face Recognition Networks
Backdoor attacks embed a hidden functionality into deep neural networks, causing the network to display anomalous behavior when activated by a predetermined pattern in the input Trigger, while behaving well otherwise on public test data. Recent works have shown that backdoored face recognition (FR) systems can respond to natural-looking triggers like a particular pair of sunglasses. Such attacks pose a serious threat to the applicability of FR systems in high-security applications. We propose a novel technique to (1) detect whether an FR network is compromised with a natural, physically realizable trigger, and (2) identify such triggers given a compromised network. We demonstrate the effectiveness of our methods with a compromised FR network, where we are able to identify the trigger (e.g., green sunglasses or red hat) with a top-5 accuracy of 74%, whereas a naive brute force baseline achieves 56% accuracy.
comment: Accepted to ICIP 2021
☆ Visual hallucination detection in large vision-language models via evidential conflict
Despite the remarkable multimodal capabilities of Large Vision-Language Models (LVLMs), discrepancies often occur between visual inputs and textual outputs--a phenomenon we term visual hallucination. This critical reliability gap poses substantial risks in safety-critical Artificial Intelligence (AI) applications, necessitating a comprehensive evaluation benchmark and effective detection methods. Firstly, we observe that existing visual-centric hallucination benchmarks mainly assess LVLMs from a perception perspective, overlooking hallucinations arising from advanced reasoning capabilities. We develop the Perception-Reasoning Evaluation Hallucination (PRE-HAL) dataset, which enables the systematic evaluation of both perception and reasoning capabilities of LVLMs across multiple visual semantics, such as instances, scenes, and relations. Comprehensive evaluation with this new benchmark exposed more visual vulnerabilities, particularly in the more challenging task of relation reasoning. To address this issue, we propose, to the best of our knowledge, the first Dempster-Shafer theory (DST)-based visual hallucination detection method for LVLMs through uncertainty estimation. This method aims to efficiently capture the degree of conflict in high-level features at the model inference phase. Specifically, our approach employs simple mass functions to mitigate the computational complexity of evidence combination on power sets. We conduct an extensive evaluation of state-of-the-art LVLMs, LLaVA-v1.5, mPLUG-Owl2 and mPLUG-Owl3, with the new PRE-HAL benchmark. Experimental results indicate that our method outperforms five baseline uncertainty metrics, achieving average AUROC improvements of 4%, 10%, and 7% across three LVLMs. Our code is available at https://github.com/HT86159/Evidential-Conflict.
☆ MATE: LLM-Powered Multi-Agent Translation Environment for Accessibility Applications
Accessibility remains a critical concern in today's society, as many technologies are not developed to support the full range of user needs. Existing multi-agent systems (MAS) often cannot provide comprehensive assistance for users in need due to the lack of customization stemming from closed-source designs. Consequently, individuals with disabilities frequently encounter significant barriers when attempting to interact with digital environments. We introduce MATE, a multimodal accessibility MAS, which performs the modality conversions based on the user's needs. The system is useful for assisting people with disabilities by ensuring that data will be converted to an understandable format. For instance, if the user cannot see well and receives an image, the system converts this image to its audio description. MATE can be applied to a wide range of domains, industries, and areas, such as healthcare, and can become a useful assistant for various groups of users. The system supports multiple types of models, ranging from LLM API calling to using custom machine learning (ML) classifiers. This flexibility ensures that the system can be adapted to various needs and is compatible with a wide variety of hardware. Since the system is expected to run locally, it ensures the privacy and security of sensitive information. In addition, the framework can be effectively integrated with institutional technologies (e.g., digital healthcare service) for real-time user assistance. Furthermore, we introduce ModCon-Task-Identifier, a model that is capable of extracting the precise modality conversion task from the user input. Numerous experiments show that ModCon-Task-Identifier consistently outperforms other LLMs and statistical models on our custom data. Our code and data are publicly available at https://github.com/AlgazinovAleksandr/Multi-Agent-MATE.
☆ NaviAgent: Bilevel Planning on Tool Dependency Graphs for Function Calling
LLMs' reliance on static knowledge and fragile tool invocation severely hinders the orchestration of complex, heterogeneous toolchains, particularly at large scales. Existing methods typically use rigid single-path execution, resulting in poor error recovery and exponentially growing search spaces. We introduce NaviAgent, a graph-navigated bilevel planning architecture for robust function calling, comprising a Multi-Path Decider and Graph-Encoded Navigator. As an LLM-powered agent, the Multi-Path Decider defines a four-dimensional decision space and continuously perceives environmental states, dynamically selecting the optimal action to fully cover all tool invocation scenarios. The Graph-Encoded Navigator constructs a Tool Dependency Heterogeneous Graph (TDHG), where node embeddings explicitly fuse API schema structure with historical invocation behavior. It also integrates a novel heuristic search strategy that guides the Decider toward efficient and highly successful toolchains, even for unseen tool combinations. Experiments show that NaviAgent consistently achieves the highest task success rate (TSR) across all foundation models and task complexities, outperforming the average baselines (ReAct, ToolLLM, {\alpha}-UMI) by 13.5%, 16.4%, and 19.0% on Qwen2.5-14B, Qwen2.5-32B, and Deepseek-V3, respectively. Its execution steps are typically within one step of the most efficient baseline, ensuring a strong balance between quality and efficiency. Notably, a fine-tuned Qwen2.5-14B model achieves a TSR of 49.5%, surpassing the much larger 32B model (44.9%) under our architecture. Incorporating the Graph-Encoded Navigator further boosts TSR by an average of 2.4 points, with gains up over 9 points on complex tasks for larger models (Deepseek-V3 and GPT-4o), highlighting its essential role in toolchain orchestration.
☆ COLUR: Confidence-Oriented Learning, Unlearning and Relearning with Noisy-Label Data for Model Restoration and Refinement IJCAI 2025
Large deep learning models have achieved significant success in various tasks. However, the performance of a model can significantly degrade if it is needed to train on datasets with noisy labels with misleading or ambiguous information. To date, there are limited investigations on how to restore performance when model degradation has been incurred by noisy label data. Inspired by the ``forgetting mechanism'' in neuroscience, which enables accelerating the relearning of correct knowledge by unlearning the wrong knowledge, we propose a robust model restoration and refinement (MRR) framework COLUR, namely Confidence-Oriented Learning, Unlearning and Relearning. Specifically, we implement COLUR with an efficient co-training architecture to unlearn the influence of label noise, and then refine model confidence on each label for relearning. Extensive experiments are conducted on four real datasets and all evaluation results show that COLUR consistently outperforms other SOTA methods after MRR.
comment: IJCAI 2025
☆ Recalling The Forgotten Class Memberships: Unlearned Models Can Be Noisy Labelers to Leak Privacy IJCAI 2025
Machine Unlearning (MU) technology facilitates the removal of the influence of specific data instances from trained models on request. Despite rapid advancements in MU technology, its vulnerabilities are still underexplored, posing potential risks of privacy breaches through leaks of ostensibly unlearned information. Current limited research on MU attacks requires access to original models containing privacy data, which violates the critical privacy-preserving objective of MU. To address this gap, we initiate an innovative study on recalling the forgotten class memberships from unlearned models (ULMs) without requiring access to the original one. Specifically, we implement a Membership Recall Attack (MRA) framework with a teacher-student knowledge distillation architecture, where ULMs serve as noisy labelers to transfer knowledge to student models. Then, it is translated into a Learning with Noisy Labels (LNL) problem for inferring the correct labels of the forgetting instances. Extensive experiments on state-of-the-art MU methods with multiple real datasets demonstrate that the proposed MRA strategy exhibits high efficacy in recovering class memberships of unlearned instances. As a result, our study and evaluation have established a benchmark for future research on MU vulnerabilities.
comment: IJCAI 2025
☆ Fast and Distributed Equivariant Graph Neural Networks by Virtual Node Learning
Equivariant Graph Neural Networks (GNNs) have achieved remarkable success across diverse scientific applications. However, existing approaches face critical efficiency challenges when scaling to large geometric graphs and suffer significant performance degradation when the input graphs are sparsified for computational tractability. To address these limitations, we introduce FastEGNN and DistEGNN, two novel enhancements to equivariant GNNs for large-scale geometric graphs. FastEGNN employs a key innovation: a small ordered set of virtual nodes that effectively approximates the large unordered graph of real nodes. Specifically, we implement distinct message passing and aggregation mechanisms for different virtual nodes to ensure mutual distinctiveness, and minimize Maximum Mean Discrepancy (MMD) between virtual and real coordinates to achieve global distributedness. This design enables FastEGNN to maintain high accuracy while efficiently processing large-scale sparse graphs. For extremely large-scale geometric graphs, we present DistEGNN, a distributed extension where virtual nodes act as global bridges between subgraphs in different devices, maintaining consistency while dramatically reducing memory and computational overhead. We comprehensively evaluate our models across four challenging domains: N-body systems (100 nodes), protein dynamics (800 nodes), Water-3D (8,000 nodes), and our new Fluid113K benchmark (113,000 nodes). Results demonstrate superior efficiency and performance, establishing new capabilities in large-scale equivariant graph learning. Code is available at https://github.com/GLAD-RUC/DistEGNN.
☆ ADDQ: Adaptive Distributional Double Q-Learning
Bias problems in the estimation of $Q$-values are a well-known obstacle that slows down convergence of $Q$-learning and actor-critic methods. One of the reasons of the success of modern RL algorithms is partially a direct or indirect overestimation reduction mechanism. We propose an easy to implement method built on top of distributional reinforcement learning (DRL) algorithms to deal with the overestimation in a locally adaptive way. Our framework is simple to implement, existing distributional algorithms can be improved with a few lines of code. We provide theoretical evidence and use double $Q$-learning to show how to include locally adaptive overestimation control in existing algorithms. Experiments are provided for tabular, Atari, and MuJoCo environments.
☆ Stylized Structural Patterns for Improved Neural Network Pre-training
Modern deep learning models in computer vision require large datasets of real images, which are difficult to curate and pose privacy and legal concerns, limiting their commercial use. Recent works suggest synthetic data as an alternative, yet models trained with it often underperform. This paper proposes a two-step approach to bridge this gap. First, we propose an improved neural fractal formulation through which we introduce a new class of synthetic data. Second, we propose reverse stylization, a technique that transfers visual features from a small, license-free set of real images onto synthetic datasets, enhancing their effectiveness. We analyze the domain gap between our synthetic datasets and real images using Kernel Inception Distance (KID) and show that our method achieves a significantly lower distributional gap compared to existing synthetic datasets. Furthermore, our experiments across different tasks demonstrate the practical impact of this reduced gap. We show that pretraining the EDM2 diffusion model on our synthetic dataset leads to an 11% reduction in FID during image generation, compared to models trained on existing synthetic datasets, and a 20% decrease in autoencoder reconstruction error, indicating improved performance in data representation. Furthermore, a ViT-S model trained for classification on this synthetic data achieves over a 10% improvement in ImageNet-100 accuracy. Our work opens up exciting possibilities for training practical models when sufficiently large real training sets are not available.
☆ Tagged for Direction: Pinning Down Causal Edge Directions with Precision
Not every causal relation between variables is equal, and this can be leveraged for the task of causal discovery. Recent research shows that pairs of variables with particular type assignments induce a preference on the causal direction of other pairs of variables with the same type. Although useful, this assignment of a specific type to a variable can be tricky in practice. We propose a tag-based causal discovery approach where multiple tags are assigned to each variable in a causal graph. Existing causal discovery approaches are first applied to direct some edges, which are then used to determine edge relations between tags. Then, these edge relations are used to direct the undirected edges. Doing so improves upon purely type-based relations, where the assumption of type consistency lacks robustness and flexibility due to being restricted to single types for each variable. Our experimental evaluations show that this boosts causal discovery and that these high-level tag relations fit common knowledge.
☆ Low-Complexity Semantic Packet Aggregation for Token Communication via Lookahead Search
Tokens are fundamental processing units of generative AI (GenAI) and large language models (LLMs), and token communication (TC) is essential for enabling remote AI-generate content (AIGC) and wireless LLM applications. Unlike traditional bits, each of which is independently treated, the semantics of each token depends on its surrounding context tokens. This inter-token dependency makes TC vulnerable to outage channels, where the loss of a single token can significantly distort the original message semantics. Motivated by this, this paper focuses on optimizing token packetization to maximize the average token similarity (ATS) between the original and received token messages under outage channels. Due to inter-token dependency, this token grouping problem is combinatorial, with complexity growing exponentially with message length. To address this, we propose a novel framework of semantic packet aggregation with lookahead search (SemPA-Look), built on two core ideas. First, it introduces the residual semantic score (RSS) as a token-level surrogate for the message-level ATS, allowing robust semantic preservation even when a certain token packet is lost. Second, instead of full search, SemPA-Look applies a lookahead search-inspired algorithm that samples intra-packet token candidates without replacement (fixed depth), conditioned on inter-packet token candidates sampled with replacement (fixed width), thereby achieving linear complexity. Experiments on a remote AIGC task with the MS-COCO dataset (text captioned images) demonstrate that SemPA-Look achieves high ATS and LPIPS scores comparable to exhaustive search, while reducing computational complexity by up to 40$\times$. Compared to other linear-complexity algorithms such as the genetic algorithm (GA), SemPA-Look achieves 10$\times$ lower complexity, demonstrating its practicality for remote AIGC and other TC applications.
☆ Center of Gravity-Guided Focusing Influence Mechanism for Multi-Agent Reinforcement Learning
Cooperative multi-agent reinforcement learning (MARL) under sparse rewards presents a fundamental challenge due to limited exploration and insufficient coordinated attention among agents. In this work, we propose the Focusing Influence Mechanism (FIM), a novel framework that enhances cooperation by directing agent influence toward task-critical elements, referred to as Center of Gravity (CoG) state dimensions, inspired by Clausewitz's military theory. FIM consists of three core components: (1) identifying CoG state dimensions based on their stability under agent behavior, (2) designing counterfactual intrinsic rewards to promote meaningful influence on these dimensions, and (3) encouraging persistent and synchronized focus through eligibility-trace-based credit accumulation. These mechanisms enable agents to induce more targeted and effective state transitions, facilitating robust cooperation even in extremely sparse reward settings. Empirical evaluations across diverse MARL benchmarks demonstrate that the proposed FIM significantly improves cooperative performance compared to baselines.
comment: 9 technical page followed by references and appendix
☆ Maximal Update Parametrization and Zero-Shot Hyperparameter Transfer for Fourier Neural Operators ICML 2025
Fourier Neural Operators (FNOs) offer a principled approach for solving complex partial differential equations (PDEs). However, scaling them to handle more complex PDEs requires increasing the number of Fourier modes, which significantly expands the number of model parameters and makes hyperparameter tuning computationally impractical. To address this, we introduce $\mu$Transfer-FNO, a zero-shot hyperparameter transfer technique that enables optimal configurations, tuned on smaller FNOs, to be directly applied to billion-parameter FNOs without additional tuning. Building on the Maximal Update Parametrization ($\mu$P) framework, we mathematically derive a parametrization scheme that facilitates the transfer of optimal hyperparameters across models with different numbers of Fourier modes in FNOs, which is validated through extensive experiments on various PDEs. Our empirical study shows that Transfer-FNO reduces computational cost for tuning hyperparameters on large FNOs while maintaining or improving accuracy.
comment: ICML 2025
☆ NAADA: A Noise-Aware Attention Denoising Autoencoder for Dental Panoramic Radiographs
Convolutional denoising autoencoders (DAEs) are powerful tools for image restoration. However, they inherit a key limitation of convolutional neural networks (CNNs): they tend to recover low-frequency features, such as smooth regions, more effectively than high-frequency details. This leads to the loss of fine details, which is particularly problematic in dental radiographs where preserving subtle anatomical structures is crucial. While self-attention mechanisms can help mitigate this issue by emphasizing important features, conventional attention methods often prioritize features corresponding to cleaner regions and may overlook those obscured by noise. To address this limitation, we propose a noise-aware self-attention method, which allows the model to effectively focus on and recover key features even within noisy regions. Building on this approach, we introduce the noise-aware attention-enhanced denoising autoencoder (NAADA) network for enhancing noisy panoramic dental radiographs. Compared with the recent state of the art (and much heavier) methods like Uformer, MResDNN etc., our method improves the reconstruction of fine details, ensuring better image quality and diagnostic accuracy.
comment: 10 pages, 8 figures
☆ Deep Electromagnetic Structure Design Under Limited Evaluation Budgets ICML 2025
Electromagnetic structure (EMS) design plays a critical role in developing advanced antennas and materials, but remains challenging due to high-dimensional design spaces and expensive evaluations. While existing methods commonly employ high-quality predictors or generators to alleviate evaluations, they are often data-intensive and struggle with real-world scale and budget constraints. To address this, we propose a novel method called Progressive Quadtree-based Search (PQS). Rather than exhaustively exploring the high-dimensional space, PQS converts the conventional image-like layout into a quadtree-based hierarchical representation, enabling a progressive search from global patterns to local details. Furthermore, to lessen reliance on highly accurate predictors, we introduce a consistency-driven sample selection mechanism. This mechanism quantifies the reliability of predictions, balancing exploitation and exploration when selecting candidate designs. We evaluate PQS on two real-world engineering tasks, i.e., Dual-layer Frequency Selective Surface and High-gain Antenna. Experimental results show that our method can achieve satisfactory designs under limited computational budgets, outperforming baseline methods. In particular, compared to generative approaches, it cuts evaluation costs by 75-85%, effectively saving 20.27-38.80 days of product designing cycle.
comment: ICML 2025 (accepted)
☆ Explainable Artificial Intelligence Credit Risk Assessment using Machine Learning
This paper presents an intelligent and transparent AI-driven system for Credit Risk Assessment using three state-of-the-art ensemble machine learning models combined with Explainable AI (XAI) techniques. The system leverages XGBoost, LightGBM, and Random Forest algorithms for predictive analysis of loan default risks, addressing the challenges of model interpretability using SHAP and LIME. Preprocessing steps include custom imputation, one-hot encoding, and standardization. Class imbalance is managed using SMOTE, and hyperparameter tuning is performed with GridSearchCV. The model is evaluated on multiple performance metrics including ROC-AUC, precision, recall, and F1-score. LightGBM emerges as the most business-optimal model with the highest accuracy and best trade off between approval and default rates. Furthermore, the system generates applicant-specific XAI visual reports and business impact summaries to ensure transparent decision-making.
comment: 15 pages, 8 Figures, 3 Tables
☆ Path Learning with Trajectory Advantage Regression
In this paper, we propose trajectory advantage regression, a method of offline path learning and path attribution based on reinforcement learning. The proposed method can be used to solve path optimization problems while algorithmically only solving a regression problem.
☆ WebGuard++:Interpretable Malicious URL Detection via Bidirectional Fusion of HTML Subgraphs and Multi-Scale Convolutional BERT
URL+HTML feature fusion shows promise for robust malicious URL detection, since attacker artifacts persist in DOM structures. However, prior work suffers from four critical shortcomings: (1) incomplete URL modeling, failing to jointly capture lexical patterns and semantic context; (2) HTML graph sparsity, where threat-indicative nodes (e.g., obfuscated scripts) are isolated amid benign content, causing signal dilution during graph aggregation; (3) unidirectional analysis, ignoring URL-HTML feature bidirectional interaction; and (4) opaque decisions, lacking attribution to malicious DOM components. To address these challenges, we present WebGuard++, a detection framework with 4 novel components: 1) Cross-scale URL Encoder: Hierarchically learns local-to-global and coarse to fine URL features based on Transformer network with dynamic convolution. 2) Subgraph-aware HTML Encoder: Decomposes DOM graphs into interpretable substructures, amplifying sparse threat signals via Hierarchical feature fusion. 3) Bidirectional Coupling Module: Aligns URL and HTML embeddings through cross-modal contrastive learning, optimizing inter-modal consistency and intra-modal specificity. 4) Voting Module: Localizes malicious regions through consensus voting on malicious subgraph predictions. Experiments show WebGuard++ achieves significant improvements over state-of-the-art baselines, achieving 1.1x-7.9x higher TPR at fixed FPR of 0.001 and 0.0001 across both datasets.
☆ In-Context Occam's Razor: How Transformers Prefer Simpler Hypotheses on the Fly
In-context learning (ICL) enables transformers to adapt to new tasks through contextual examples without parameter updates. While existing research has typically studied ICL in fixed-complexity environments, practical language models encounter tasks spanning diverse complexity levels. This paper investigates how transformers navigate hierarchical task structures where higher-complexity categories can perfectly represent any pattern generated by simpler ones. We design well-controlled testbeds based on Markov chains and linear regression that reveal transformers not only identify the appropriate complexity level for each task but also accurately infer the corresponding parameters--even when the in-context examples are compatible with multiple complexity hypotheses. Notably, when presented with data generated by simpler processes, transformers consistently favor the least complex sufficient explanation. We theoretically explain this behavior through a Bayesian framework, demonstrating that transformers effectively implement an in-context Bayesian Occam's razor by balancing model fit against complexity penalties. We further ablate on the roles of model size, training mixture distribution, inference context length, and architecture. Finally, we validate this Occam's razor-like inductive bias on a pretrained GPT-4 model with Boolean-function tasks as case study, suggesting it may be inherent to transformers trained on diverse task distributions.
comment: 28 pages, 19 figures
☆ Discrepancy-Aware Graph Mask Auto-Encoder
Masked Graph Auto-Encoder, a powerful graph self-supervised training paradigm, has recently shown superior performance in graph representation learning. Existing works typically rely on node contextual information to recover the masked information. However, they fail to generalize well to heterophilic graphs where connected nodes may be not similar, because they focus only on capturing the neighborhood information and ignoring the discrepancy information between different nodes, resulting in indistinguishable node representations. In this paper, to address this issue, we propose a Discrepancy-Aware Graph Mask Auto-Encoder (DGMAE). It obtains more distinguishable node representations by reconstructing the discrepancy information of neighboring nodes during the masking process. We conduct extensive experiments on 17 widely-used benchmark datasets. The results show that our DGMAE can effectively preserve the discrepancies of nodes in low-dimensional space. Moreover, DGMAE significantly outperforms state-of-the-art graph self-supervised learning methods on three graph analytic including tasks node classification, node clustering, and graph classification, demonstrating its remarkable superiority. The code of DGMAE is available at https://github.com/zhengziyu77/DGMAE.
☆ Unlocking Insights Addressing Alcohol Inference Mismatch through Database-Narrative Alignment
Road traffic crashes are a significant global cause of fatalities, emphasizing the urgent need for accurate crash data to enhance prevention strategies and inform policy development. This study addresses the challenge of alcohol inference mismatch (AIM) by employing database narrative alignment to identify AIM in crash data. A framework was developed to improve data quality in crash management systems and reduce the percentage of AIM crashes. Utilizing the BERT model, the analysis of 371,062 crash records from Iowa (2016-2022) revealed 2,767 AIM incidents, resulting in an overall AIM percentage of 24.03%. Statistical tools, including the Probit Logit model, were used to explore the crash characteristics affecting AIM patterns. The findings indicate that alcohol-related fatal crashes and nighttime incidents have a lower percentage of the mismatch, while crashes involving unknown vehicle types and older drivers are more susceptible to mismatch. The geospatial cluster as part of this study can identify the regions which have an increased need for education and training. These insights highlight the necessity for targeted training programs and data management teams to improve the accuracy of crash reporting and support evidence-based policymaking.
☆ CAM-NET: An AI Model for Whole Atmosphere with Thermosphere and Ionosphere Extension
We present Compressible Atmospheric Model-Network (CAM-NET), an AI model designed to predict neutral atmospheric variables from the Earth's surface to the ionosphere with high accuracy and computational efficiency. Accurate modeling of the entire atmosphere is critical for understanding the upward propagation of gravity waves, which influence upper-atmospheric dynamics and coupling across atmospheric layers. CAM-NET leverages the Spherical Fourier Neural Operator (SFNO) to capture global-scale atmospheric dynamics while preserving the Earth's spherical structure. Trained on a decade of datasets from the Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (WACCM-X), CAM-NET demonstrates accuracy comparable to WACCM-X while achieving a speedup of over 1000x in inference time, can provide one year simulation within a few minutes once trained. The model effectively predicts key atmospheric parameters, including zonal and meridional winds, temperature, and time rate of pressure. Inspired by traditional modeling approaches that use external couplers to simulate tracer transport, CAM-NET introduces a modular architecture that explicitly separates tracer prediction from core dynamics. The core backbone of CAM-NET focuses on forecasting primary physical variables (e.g., temperature, wind velocity), while tracer variables are predicted through a lightweight, fine-tuned model. This design allows for efficient adaptation to specific tracer scenarios with minimal computational cost, avoiding the need to retrain the entire model. We have validated this approach on the $O^2$ tracer, demonstrating strong performance and generalization capabilities.
☆ Contrastive Cross-Modal Learning for Infusing Chest X-ray Knowledge into ECGs
Modern diagnostic workflows are increasingly multimodal, integrating diverse data sources such as medical images, structured records, and physiological time series. Among these, electrocardiograms (ECGs) and chest X-rays (CXRs) are two of the most widely used modalities for cardiac assessment. While CXRs provide rich diagnostic information, ECGs are more accessible and can support scalable early warning systems. In this work, we propose CroMoTEX, a novel contrastive learning-based framework that leverages chest X-rays during training to learn clinically informative ECG representations for multiple cardiac-related pathologies: cardiomegaly, pleural effusion, and edema. Our method aligns ECG and CXR representations using a novel supervised cross-modal contrastive objective with adaptive hard negative weighting, enabling robust and task-relevant feature learning. At test time, CroMoTEX relies solely on ECG input, allowing scalable deployment in real-world settings where CXRs may be unavailable. Evaluated on the large-scale MIMIC-IV-ECG and MIMIC-CXR datasets, CroMoTEX outperforms baselines across all three pathologies, achieving up to 78.31 AUROC on edema. Our code is available at github.com/vineetpmoorty/cromotex.
☆ Adversarial Attacks on Deep Learning-Based False Data Injection Detection in Differential Relays
The application of Deep Learning-based Schemes (DLSs) for detecting False Data Injection Attacks (FDIAs) in smart grids has attracted significant attention. This paper demonstrates that adversarial attacks, carefully crafted FDIAs, can evade existing DLSs used for FDIA detection in Line Current Differential Relays (LCDRs). We propose a novel adversarial attack framework, utilizing the Fast Gradient Sign Method, which exploits DLS vulnerabilities by introducing small perturbations to LCDR remote measurements, leading to misclassification of the FDIA as a legitimate fault while also triggering the LCDR to trip. We evaluate the robustness of multiple deep learning models, including multi-layer perceptrons, convolutional neural networks, long short-term memory networks, and residual networks, under adversarial conditions. Our experimental results demonstrate that while these models perform well, they exhibit high degrees of vulnerability to adversarial attacks. For some models, the adversarial attack success rate exceeds 99.7%. To address this threat, we introduce adversarial training as a proactive defense mechanism, significantly enhancing the models' ability to withstand adversarial FDIAs without compromising fault detection accuracy. Our results highlight the significant threat posed by adversarial attacks to DLS-based FDIA detection, underscore the necessity for robust cybersecurity measures in smart grids, and demonstrate the effectiveness of adversarial training in enhancing model robustness against adversarial FDIAs.
☆ The Effect of Depth on the Expressivity of Deep Linear State-Space Models
Deep state-space models (SSMs) have gained increasing popularity in sequence modelling. While there are numerous theoretical investigations of shallow SSMs, how the depth of the SSM affects its expressiveness remains a crucial problem. In this paper, we systematically investigate the role of depth and width in deep linear SSMs, aiming to characterize how they influence the expressive capacity of the architecture. First, we rigorously prove that in the absence of parameter constraints, increasing depth and increasing width are generally equivalent, provided that the parameter count remains within the same order of magnitude. However, under the assumption that the parameter norms are constrained, the effects of depth and width differ significantly. We show that a shallow linear SSM with large parameter norms can be represented by a deep linear SSM with smaller norms using a constructive method. In particular, this demonstrates that deep SSMs are more capable of representing targets with large norms than shallow SSMs under norm constraints. Finally, we derive upper bounds on the minimal depth required for a deep linear SSM to represent a given shallow linear SSM under constrained parameter norms. We also validate our theoretical results with numerical experiments
☆ Efficient Extreme Operating Condition Search for Online Relay Setting Calculation in Renewable Power Systems Based on Parallel Graph Neural Network
The Extreme Operating Conditions Search (EOCS) problem is one of the key problems in relay setting calculation, which is used to ensure that the setting values of protection relays can adapt to the changing operating conditions of power systems over a period of time after deployment. The high penetration of renewable energy and the wide application of inverter-based resources make the operating conditions of renewable power systems more volatile, which urges the adoption of the online relay setting calculation strategy. However, the computation speed of existing EOCS methods based on local enumeration, heuristic algorithms, and mathematical programming cannot meet the efficiency requirement of online relay setting calculation. To reduce the time overhead, this paper, for the first time, proposes an efficient deep learning-based EOCS method suitable for online relay setting calculation. First, the power system information is formulated as four layers, i.e., a component parameter layer, a topological connection layer, an electrical distance layer, and a graph distance layer, which are fed into a parallel graph neural network (PGNN) model for feature extraction. Then, the four feature layers corresponding to each node are spliced and stretched, and then fed into the decision network to predict the extreme operating condition of the system. Finally, the proposed PGNN method is validated on the modified IEEE 39-bus and 118-bus test systems, where some of the synchronous generators are replaced by renewable generation units. The nonlinear fault characteristics of renewables are fully considered when computing fault currents. The experiment results show that the proposed PGNN method achieves higher accuracy than the existing methods in solving the EOCS problem. Meanwhile, it also provides greater improvements in online computation time.
☆ A Batch-Insensitive Dynamic GNN Approach to Address Temporal Discontinuity in Graph Streams
In dynamic graphs, preserving temporal continuity is critical. However, Memory-based Dynamic Graph Neural Networks (MDGNNs) trained with large batches often disrupt event sequences, leading to temporal information loss. This discontinuity not only deteriorates temporal modeling but also hinders optimization by increasing the difficulty of parameter convergence. Our theoretical study quantifies this through a Lipschitz upper bound, showing that large batch sizes enlarge the parameter search space. In response, we propose BADGNN, a novel batch-agnostic framework consisting of two core components: (1) Temporal Lipschitz Regularization (TLR) to control parameter search space expansion, and (2) Adaptive Attention Adjustment (A3) to alleviate attention distortion induced by both regularization and batching. Empirical results on three benchmark datasets show that BADGNN maintains strong performance while enabling significantly larger batch sizes and faster training compared to TGN. Our code is available at Code: https://anonymous.4open.science/r/TGN_Lipichitz-C033/.
comment: 8pages, 5figures
☆ Robust OOD Graph Learning via Mean Constraints and Noise Reduction
Graph Out-of-Distribution (OOD) classification often suffers from sharp performance drops, particularly under category imbalance and structural noise. This work tackles two pressing challenges in this context: (1) the underperformance of minority classes due to skewed label distributions, and (2) their heightened sensitivity to structural noise in graph data. To address these problems, we propose two complementary solutions. First, Constrained Mean Optimization (CMO) improves minority class robustness by encouraging similarity-based instance aggregation under worst-case conditions. Second, the Neighbor-Aware Noise Reweighting (NNR) mechanism assigns dynamic weights to training samples based on local structural consistency, mitigating noise influence. We provide theoretical justification for our methods, and validate their effectiveness with extensive experiments on both synthetic and real-world datasets, showing significant improvements in Graph OOD generalization and classification accuracy. The code for our method is available at: https://anonymous.4open.science/r/CMO-NNR-2F30.
comment: 8 pages, 6 figures
☆ Emotion Detection on User Front-Facing App Interfaces for Enhanced Schedule Optimization: A Machine Learning Approach
Human-Computer Interaction (HCI) has evolved significantly to incorporate emotion recognition capabilities, creating unprecedented opportunities for adaptive and personalized user experiences. This paper explores the integration of emotion detection into calendar applications, enabling user interfaces to dynamically respond to users' emotional states and stress levels, thereby enhancing both productivity and engagement. We present and evaluate two complementary approaches to emotion detection: a biometric-based method utilizing heart rate (HR) data extracted from electrocardiogram (ECG) signals processed through Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural networks to predict the emotional dimensions of Valence, Arousal, and Dominance; and a behavioral method analyzing computer activity through multiple machine learning models to classify emotions based on fine-grained user interactions such as mouse movements, clicks, and keystroke patterns. Our comparative analysis, from real-world datasets, reveals that while both approaches demonstrate effectiveness, the computer activity-based method delivers superior consistency and accuracy, particularly for mouse-related interactions, which achieved approximately 90\% accuracy. Furthermore, GRU networks outperformed LSTM models in the biometric approach, with Valence prediction reaching 84.38\% accuracy.
☆ Rare dense solutions clusters in asymmetric binary perceptrons -- local entropy via fully lifted RDT
We study classical asymmetric binary perceptron (ABP) and associated \emph{local entropy} (LE) as potential source of its algorithmic hardness. Isolation of \emph{typical} ABP solutions in SAT phase seemingly suggests a universal algorithmic hardness. Paradoxically, efficient algorithms do exist even for constraint densities $\alpha$ fairly close but at a finite distance (\emph{computational gap}) from the capacity. In recent years, existence of rare large dense clusters and magical ability of fast algorithms to find them have been posited as the conceptual resolution of this paradox. Monotonicity or breakdown of the LEs associated with such \emph{atypical} clusters are predicated to play a key role in their thinning-out or even complete defragmentation. Invention of fully lifted random duality theory (fl RDT) [90,93,94] allows studying random structures \emph{typical} features. A large deviation upgrade, sfl LD RDT [96,97], moves things further and enables \emph{atypical} features characterizations as well. Utilizing the machinery of [96,97] we here develop a generic framework to study LE as an ABP's atypical feature. Already on the second level of lifting we discover that the LE results are closely matching those obtained through replica methods. For classical zero threshold ABP, we obtain that LE breaks down for $\alpha$ in $(0.77,0.78)$ interval which basically matches $\alpha\sim 0.75-0.77$ range that currently best ABP solvers can handle and effectively indicates that LE's behavior might indeed be among key reflections of the ABP's computational gaps presumable existence.
☆ A Qubit-Efficient Hybrid Quantum Encoding Mechanism for Quantum Machine Learning
Efficiently embedding high-dimensional datasets onto noisy and low-qubit quantum systems is a significant barrier to practical Quantum Machine Learning (QML). Approaches such as quantum autoencoders can be constrained by current hardware capabilities and may exhibit vulnerabilities to reconstruction attacks due to their invertibility. We propose Quantum Principal Geodesic Analysis (qPGA), a novel, non-invertible method for dimensionality reduction and qubit-efficient encoding. Executed classically, qPGA leverages Riemannian geometry to project data onto the unit Hilbert sphere, generating outputs inherently suitable for quantum amplitude encoding. This technique preserves the neighborhood structure of high-dimensional datasets within a compact latent space, significantly reducing qubit requirements for amplitude encoding. We derive theoretical bounds quantifying qubit requirements for effective encoding onto noisy systems. Empirical results on MNIST, Fashion-MNIST, and CIFAR-10 show that qPGA preserves local structure more effectively than both quantum and hybrid autoencoders. Additionally, we demonstrate that qPGA enhances resistance to reconstruction attacks due to its non-invertible nature. In downstream QML classification tasks, qPGA can achieve over 99% accuracy and F1-score on MNIST and Fashion-MNIST, outperforming quantum-dependent baselines. Initial tests on real hardware and noisy simulators confirm its potential for noise-resilient performance, offering a scalable solution for advancing QML applications.
☆ Stabilizing PDE--ML Coupled System
A long-standing obstacle in the use of machine-learnt surrogates with larger PDE systems is the onset of instabilities when solved numerically. Efforts towards ameliorating these have mostly concentrated on improving the accuracy of the surrogates or imbuing them with additional structure, and have garnered limited success. In this article, we study a prototype problem and draw insights that can help with more complex systems. In particular, we focus on a viscous Burgers'-ML system and, after identifying the cause of the instabilities, prescribe strategies to stabilize the coupled system. To improve the accuracy of the stabilized system, we next explore methods based on the Mori--Zwanzig formalism.
☆ Continuous-variable Quantum Diffusion Model for State Generation and Restoration
The generation and preservation of complex quantum states against environmental noise are paramount challenges in advancing continuous-variable (CV) quantum information processing. This paper introduces a novel framework based on continuous-variable quantum diffusion principles, synergizing them with CV quantum neural networks (CVQNNs) to address these dual challenges. For the task of state generation, our Continuous-Variable Quantum Diffusion Generative model (CVQD-G) employs a physically driven forward diffusion process using a thermal loss channel, which is then inverted by a learnable, parameter-efficient backward denoising process based on a CVQNN with time-embedding. This framework's capability is further extended for state recovery by the Continuous-Variable Quantum Diffusion Restoration model (CVQD-R), a specialized variant designed to restore quantum states, particularly coherent states with unknown parameters, from thermal degradation. Extensive numerical simulations validate these dual capabilities, demonstrating the high-fidelity generation of diverse Gaussian (coherent, squeezed) and non-Gaussian (Fock, cat) states, typically with fidelities exceeding 99%, and confirming the model's ability to robustly restore corrupted states. Furthermore, a comprehensive complexity analysis reveals favorable training and inference costs, highlighting the framework's efficiency, scalability, and its potential as a robust tool for quantum state engineering and noise mitigation in realistic CV quantum systems.
comment: 15+3 pages, 14 figures, 7 tables
☆ HARPT: A Corpus for Analyzing Consumers' Trust and Privacy Concerns in Mobile Health Apps
We present HARPT, a large-scale annotated corpus of mobile health app store reviews aimed at advancing research in user privacy and trust. The dataset comprises over 480,000 user reviews labeled into seven categories that capture critical aspects of trust in applications, trust in providers and privacy concerns. Creating HARPT required addressing multiple complexities, such as defining a nuanced label schema, isolating relevant content from large volumes of noisy data, and designing an annotation strategy that balanced scalability with accuracy. This strategy integrated rule-based filtering, iterative manual labeling with review, targeted data augmentation, and weak supervision using transformer-based classifiers to accelerate coverage. In parallel, a carefully curated subset of 7,000 reviews was manually annotated to support model development and evaluation. We benchmark a broad range of classification models, demonstrating that strong performance is achievable and providing a baseline for future research. HARPT is released as a public resource to support work in health informatics, cybersecurity, and natural language processing.
comment: Under review at The 34th ACM International Conference on Information and Knowledge Management (CIKM'25)
☆ What Matters in LLM-generated Data: Diversity and Its Effect on Model Fine-Tuning
With the remarkable generative capabilities of large language models (LLMs), using LLM-generated data to train downstream models has emerged as a promising approach to mitigate data scarcity in specific domains and reduce time-consuming annotations. However, recent studies have highlighted a critical issue: iterative training on self-generated data results in model collapse, where model performance degrades over time. Despite extensive research on the implications of LLM-generated data, these works often neglect the importance of data diversity, a key factor in data quality. In this work, we aim to understand the implications of the diversity of LLM-generated data on downstream model performance. Specifically, we explore how varying levels of diversity in LLM-generated data affect downstream model performance. Additionally, we investigate the performance of models trained on data that mixes different proportions of LLM-generated data, which we refer to as synthetic data. Our experimental results show that, with minimal distribution shift, moderately diverse LLM-generated data can enhance model performance in scenarios with insufficient labeled data, whereas highly diverse generated data has a negative impact. We hope our empirical findings will offer valuable guidance for future studies on LLMs as data generators.
comment: Ongoing work
☆ Network Structures as an Attack Surface: Topology-Based Privacy Leakage in Federated Learning
Federated learning systems increasingly rely on diverse network topologies to address scalability and organizational constraints. While existing privacy research focuses on gradient-based attacks, the privacy implications of network topology knowledge remain critically understudied. We conduct the first comprehensive analysis of topology-based privacy leakage across realistic adversarial knowledge scenarios, demonstrating that adversaries with varying degrees of structural knowledge can infer sensitive data distribution patterns even under strong differential privacy guarantees. Through systematic evaluation of 4,720 attack instances, we analyze six distinct adversarial knowledge scenarios: complete topology knowledge and five partial knowledge configurations reflecting real-world deployment constraints. We propose three complementary attack vectors: communication pattern analysis, parameter magnitude profiling, and structural position correlation, achieving success rates of 84.1%, 65.0%, and 47.2% under complete knowledge conditions. Critically, we find that 80% of realistic partial knowledge scenarios maintain attack effectiveness above security thresholds, with certain partial knowledge configurations achieving performance superior to the baseline complete knowledge scenario. To address these vulnerabilities, we propose and empirically validate structural noise injection as a complementary defense mechanism across 808 configurations, demonstrating up to 51.4% additional attack reduction when properly layered with existing privacy techniques. These results establish that network topology represents a fundamental privacy vulnerability in federated learning systems while providing practical pathways for mitigation through topology-aware defense mechanisms.
comment: 13 pages, 7 figures, 5 tables. Data from the experiments and source code can be found here: https://doi.org/10.5281/zenodo.15622123
☆ Personality Prediction from Life Stories using Language Models
Natural Language Processing (NLP) offers new avenues for personality assessment by leveraging rich, open-ended text, moving beyond traditional questionnaires. In this study, we address the challenge of modeling long narrative interview where each exceeds 2000 tokens so as to predict Five-Factor Model (FFM) personality traits. We propose a two-step approach: first, we extract contextual embeddings using sliding-window fine-tuning of pretrained language models; then, we apply Recurrent Neural Networks (RNNs) with attention mechanisms to integrate long-range dependencies and enhance interpretability. This hybrid method effectively bridges the strengths of pretrained transformers and sequence modeling to handle long-context data. Through ablation studies and comparisons with state-of-the-art long-context models such as LLaMA and Longformer, we demonstrate improvements in prediction accuracy, efficiency, and interpretability. Our results highlight the potential of combining language-based features with long-context modeling to advance personality assessment from life narratives.
comment: 13 pages, 5 figures
☆ Robust Behavior Cloning Via Global Lipschitz Regularization
Behavior Cloning (BC) is an effective imitation learning technique and has even been adopted in some safety-critical domains such as autonomous vehicles. BC trains a policy to mimic the behavior of an expert by using a dataset composed of only state-action pairs demonstrated by the expert, without any additional interaction with the environment. However, During deployment, the policy observations may contain measurement errors or adversarial disturbances. Since the observations may deviate from the true states, they can mislead the agent into making sub-optimal actions. In this work, we use a global Lipschitz regularization approach to enhance the robustness of the learned policy network. We then show that the resulting global Lipschitz property provides a robustness certificate to the policy with respect to different bounded norm perturbations. Then, we propose a way to construct a Lipschitz neural network that ensures the policy robustness. We empirically validate our theory across various environments in Gymnasium. Keywords: Robust Reinforcement Learning; Behavior Cloning; Lipschitz Neural Network
☆ Inference-Time Reward Hacking in Large Language Models ICML 2025
A common paradigm to improve the performance of large language models is optimizing for a reward model. Reward models assign a numerical score to LLM outputs indicating, for example, which response would likely be preferred by a user or is most aligned with safety goals. However, reward models are never perfect. They inevitably function as proxies for complex desiderata such as correctness, helpfulness, and safety. By overoptimizing for a misspecified reward, we can subvert intended alignment goals and reduce overall performance -- a phenomenon commonly referred to as reward hacking. In this work, we characterize reward hacking in inference-time alignment and demonstrate when and how we can mitigate it by hedging on the proxy reward. We study this phenomenon under Best-of-$n$ (BoN) and Soft-Best-of-$n$ (SBoN), and we introduce Best-of-Poisson (BoP) that provides an efficient, near-exact approximation of the optimal reward-KL divergence policy at inference time. We show that the characteristic pattern of hacking as observed in practice (where the true reward first increases before declining) is an inevitable property of a broad class of inference-time mechanisms, including BoN and BoP. To counter this effect, hedging offers a tactical choice to avoid placing undue confidence in high but potentially misleading proxy reward signals. We introduce HedgeTune, an efficient algorithm to find the optimal inference-time parameter and avoid reward hacking. We demonstrate through experiments that hedging mitigates reward hacking and achieves superior distortion-reward tradeoffs with minimal computational overhead.
comment: Accepted to ICML 2025 Workshop on Models of Human Feedback for AI Alignment
☆ Behavioral Anomaly Detection in Distributed Systems via Federated Contrastive Learning
This paper addresses the increasingly prominent problem of anomaly detection in distributed systems. It proposes a detection method based on federated contrastive learning. The goal is to overcome the limitations of traditional centralized approaches in terms of data privacy, node heterogeneity, and anomaly pattern recognition. The proposed method combines the distributed collaborative modeling capabilities of federated learning with the feature discrimination enhancement of contrastive learning. It builds embedding representations on local nodes and constructs positive and negative sample pairs to guide the model in learning a more discriminative feature space. Without exposing raw data, the method optimizes a global model through a federated aggregation strategy. Specifically, the method uses an encoder to represent local behavior data in high-dimensional space. This includes system logs, operational metrics, and system calls. The model is trained using both contrastive loss and classification loss to improve its ability to detect fine-grained anomaly patterns. The method is evaluated under multiple typical attack types. It is also tested in a simulated real-time data stream scenario to examine its responsiveness. Experimental results show that the proposed method outperforms existing approaches across multiple performance metrics. It demonstrates strong detection accuracy and adaptability, effectively addressing complex anomalies in distributed environments. Through careful design of key modules and optimization of the training mechanism, the proposed method achieves a balance between privacy preservation and detection performance. It offers a feasible technical path for intelligent security management in distributed systems.
☆ Universal kernels via harmonic analysis on Riemannian symmetric spaces
The universality properties of kernels characterize the class of functions that can be approximated in the associated reproducing kernel Hilbert space and are of fundamental importance in the theoretical underpinning of kernel methods in machine learning. In this work, we establish fundamental tools for investigating universality properties of kernels in Riemannian symmetric spaces, thereby extending the study of this important topic to kernels in non-Euclidean domains. Moreover, we use the developed tools to prove the universality of several recent examples from the literature on positive definite kernels defined on Riemannian symmetric spaces, thus providing theoretical justification for their use in applications involving manifold-valued data.
☆ High precision PINNs in unbounded domains: application to singularity formulation in PDEs
We investigate the high-precision training of Physics-Informed Neural Networks (PINNs) in unbounded domains, with a special focus on applications to singularity formulation in PDEs. We propose a modularized approach and study the choices of neural network ansatz, sampling strategy, and optimization algorithm. When combined with rigorous computer-assisted proofs and PDE analysis, the numerical solutions identified by PINNs, provided they are of high precision, can serve as a powerful tool for studying singularities in PDEs. For 1D Burgers equation, our framework can lead to a solution with very high precision, and for the 2D Boussinesq equation, which is directly related to the singularity formulation in 3D Euler and Navier-Stokes equations, we obtain a solution whose loss is $4$ digits smaller than that obtained in \cite{wang2023asymptotic} with fewer training steps. We also discuss potential directions for pushing towards machine precision for higher-dimensional problems.
☆ Private Model Personalization Revisited ICML 2025
We study model personalization under user-level differential privacy (DP) in the shared representation framework. In this problem, there are $n$ users whose data is statistically heterogeneous, and their optimal parameters share an unknown embedding $U^* \in\mathbb{R}^{d\times k}$ that maps the user parameters in $\mathbb{R}^d$ to low-dimensional representations in $\mathbb{R}^k$, where $k\ll d$. Our goal is to privately recover the shared embedding and the local low-dimensional representations with small excess risk in the federated setting. We propose a private, efficient federated learning algorithm to learn the shared embedding based on the FedRep algorithm in [CHM+21]. Unlike [CHM+21], our algorithm satisfies differential privacy, and our results hold for the case of noisy labels. In contrast to prior work on private model personalization [JRS+21], our utility guarantees hold under a larger class of users' distributions (sub-Gaussian instead of Gaussian distributions). Additionally, in natural parameter regimes, we improve the privacy error term in [JRS+21] by a factor of $\widetilde{O}(dk)$. Next, we consider the binary classification setting. We present an information-theoretic construction to privately learn the shared embedding and derive a margin-based accuracy guarantee that is independent of $d$. Our method utilizes the Johnson-Lindenstrauss transform to reduce the effective dimensions of the shared embedding and the users' data. This result shows that dimension-independent risk bounds are possible in this setting under a margin loss.
comment: ICML 2025
☆ Supervised Coupled Matrix-Tensor Factorization (SCMTF) for Computational Phenotyping of Patient Reported Outcomes in Ulcerative Colitis
Phenotyping is the process of distinguishing groups of patients to identify different types of disease progression. A recent trend employs low-rank matrix and tensor factorization methods for their capability of dealing with multi-modal, heterogeneous, and missing data. Symptom quantification is crucial for understanding patient experiences in inflammatory bowel disease, especially in conditions such as ulcerative colitis (UC). However, patient-reported symptoms are typically noisy, subjective, and significantly more sparse than other data types. For this reason, they are usually not included in phenotyping and other machine learning methods. This paper explores the application of computational phenotyping to leverage Patient-Reported Outcomes (PROs) using a novel supervised coupled matrix-tensor factorization (SCMTF) method, which integrates temporal PROs and temporal labs with static features to predict medication persistence in ulcerative colitis. This is the first tensor-based method that is both supervised and coupled, it is the first application to the UC domain, and the first application to PROs. We use a deep learning framework that makes the model flexible and easy to train. The proposed method allows us to handle the large amount of missing data in the PROs. The best model predicts changes in medication 8 and 20 months in the future with AUCs of 0.853 and 0.803 on the test set respectively. We derive interpretable phenotypes consisting of static features and temporal features (including their temporal patterns). We show that low-rank matrix and tensor based phenotyping can be successfully applied to the UC domain and to highly missing PRO data. We identify phenotypes useful to predict medication persistence - these phenotypes include several symptom variables, showing that PROs contain relevant infromation that is usually discarded.
☆ Learning Instruction-Following Policies through Open-Ended Instruction Relabeling with Large Language Models
Developing effective instruction-following policies in reinforcement learning remains challenging due to the reliance on extensive human-labeled instruction datasets and the difficulty of learning from sparse rewards. In this paper, we propose a novel approach that leverages the capabilities of large language models (LLMs) to automatically generate open-ended instructions retrospectively from previously collected agent trajectories. Our core idea is to employ LLMs to relabel unsuccessful trajectories by identifying meaningful subtasks the agent has implicitly accomplished, thereby enriching the agent's training data and substantially alleviating reliance on human annotations. Through this open-ended instruction relabeling, we efficiently learn a unified instruction-following policy capable of handling diverse tasks within a single policy. We empirically evaluate our proposed method in the challenging Craftax environment, demonstrating clear improvements in sample efficiency, instruction coverage, and overall policy performance compared to state-of-the-art baselines. Our results highlight the effectiveness of utilizing LLM-guided open-ended instruction relabeling to enhance instruction-following reinforcement learning.
comment: Under Review
☆ Universal pre-training by iterated random computation
We investigate the use of randomly generated data for the sake of pre-training a model. We justify this approach theoretically from the perspective of algorithmic complexity, building on recent research that shows that sequence models can be trained to approximate Solomonoff induction. We derive similar, but complementary theoretical results. We show empirically that synthetically generated data can be used to pre-train a model before the data is seen. We replicate earlier results that models trained this way show zero-shot in-context learning across a variety of datasets, and that this performance improves with scale. We extend earlier results to real-world data, and show that finetuning a model after pre-training offers faster convergence and better generalization.
☆ Machine-Learning-Assisted Photonic Device Development: A Multiscale Approach from Theory to Characterization
Photonic device development (PDD) has achieved remarkable success in designing and implementing new devices for controlling light across various wavelengths, scales, and applications, including telecommunications, imaging, sensing, and quantum information processing. PDD is an iterative, five-step process that consists of: i) deriving device behavior from design parameters, ii) simulating device performance, iii) finding the optimal candidate designs from simulations, iv) fabricating the optimal device, and v) measuring device performance. Classically, all these steps involve Bayesian optimization, material science, control theory, and direct physics-driven numerical methods. However, many of these techniques are computationally intractable, monetarily costly, or difficult to implement at scale. In addition, PDD suffers from large optimization landscapes, uncertainties in structural or optical characterization, and difficulties in implementing robust fabrication processes. However, the advent of machine learning over the past decade has provided novel, data-driven strategies for tackling these challenges, including surrogate estimators for speeding up computations, generative modeling for noisy measurement modeling and data augmentation, reinforcement learning for fabrication, and active learning for experimental physical discovery. In this review, we present a comprehensive perspective on these methods to enable machine-learning-assisted PDD (ML-PDD) for efficient design optimization with powerful generative models, fast simulation and characterization modeling under noisy measurements, and reinforcement learning for fabrication. This review will provide researchers from diverse backgrounds with valuable insights into this emerging topic, fostering interdisciplinary efforts to accelerate the development of complex photonic devices and systems.
☆ A Principled Path to Fitted Distributional Evaluation
In reinforcement learning, distributional off-policy evaluation (OPE) focuses on estimating the return distribution of a target policy using offline data collected under a different policy. This work focuses on extending the widely used fitted-Q evaluation -- developed for expectation-based reinforcement learning -- to the distributional OPE setting. We refer to this extension as fitted distributional evaluation (FDE). While only a few related approaches exist, there remains no unified framework for designing FDE methods. To fill this gap, we present a set of guiding principles for constructing theoretically grounded FDE methods. Building on these principles, we develop several new FDE methods with convergence analysis and provide theoretical justification for existing methods, even in non-tabular environments. Extensive experiments, including simulations on linear quadratic regulators and Atari games, demonstrate the superior performance of the FDE methods.
☆ GNN's Uncertainty Quantification using Self-Distillation
Graph Neural Networks (GNNs) have shown remarkable performance in the healthcare domain. However, what remained challenging is quantifying the predictive uncertainty of GNNs, which is an important aspect of trustworthiness in clinical settings. While Bayesian and ensemble methods can be used to quantify uncertainty, they are computationally expensive. Additionally, the disagreement metric used by ensemble methods to compute uncertainty cannot capture the diversity of models in an ensemble network. In this paper, we propose a novel method, based on knowledge distillation, to quantify GNNs' uncertainty more efficiently and with higher precision. We apply self-distillation, where the same network serves as both the teacher and student models, thereby avoiding the need to train several networks independently. To ensure the impact of self-distillation, we develop an uncertainty metric that captures the diverse nature of the network by assigning different weights to each GNN classifier. We experimentally evaluate the precision, performance, and ability of our approach in distinguishing out-of-distribution data on two graph datasets: MIMIC-IV and Enzymes. The evaluation results demonstrate that the proposed method can effectively capture the predictive uncertainty of the model while having performance similar to that of the MC Dropout and ensemble methods. The code is publicly available at https://github.com/tailabTMU/UQ_GNN.
comment: The paper has been accepted in the International Conference on AI in Healthcare (AIiH) 2025 and will appear in the conference proceedings
☆ PocketVina Enables Scalable and Highly Accurate Physically Valid Docking through Multi-Pocket Conditioning
Sampling physically valid ligand-binding poses remains a major challenge in molecular docking, particularly for unseen or structurally diverse targets. We introduce PocketVina, a fast and memory-efficient, search-based docking framework that combines pocket prediction with systematic multi-pocket exploration. We evaluate PocketVina across four established benchmarks--PDBbind2020 (timesplit and unseen), DockGen, Astex, and PoseBusters--and observe consistently strong performance in sampling physically valid docking poses. PocketVina achieves state-of-the-art performance when jointly considering ligand RMSD and physical validity (PB-valid), while remaining competitive with deep learning-based approaches in terms of RMSD alone, particularly on structurally diverse and previously unseen targets. PocketVina also maintains state-of-the-art physically valid docking accuracy across ligands with varying degrees of flexibility. We further introduce TargetDock-AI, a benchmarking dataset we curated, consisting of over 500000 protein-ligand pairs, and a partition of the dataset labeled with PubChem activity annotations. On this large-scale dataset, PocketVina successfully discriminates active from inactive targets, outperforming a deep learning baseline while requiring significantly less GPU memory and runtime. PocketVina offers a robust and scalable docking strategy that requires no task-specific training and runs efficiently on standard GPUs, making it well-suited for high-throughput virtual screening and structure-based drug discovery.
☆ LSH-DynED: A Dynamic Ensemble Framework with LSH-Based Undersampling for Evolving Multi-Class Imbalanced Classification
The classification of imbalanced data streams, which have unequal class distributions, is a key difficulty in machine learning, especially when dealing with multiple classes. While binary imbalanced data stream classification tasks have received considerable attention, only a few studies have focused on multi-class imbalanced data streams. Effectively managing the dynamic imbalance ratio is a key challenge in this domain. This study introduces a novel, robust, and resilient approach to address these challenges by integrating Locality Sensitive Hashing with Random Hyperplane Projections (LSH-RHP) into the Dynamic Ensemble Diversification (DynED) framework. To the best of our knowledge, we present the first application of LSH-RHP for undersampling in the context of imbalanced non-stationary data streams. The proposed method undersamples the majority classes by utilizing LSH-RHP, provides a balanced training set, and improves the ensemble's prediction performance. We conduct comprehensive experiments on 23 real-world and ten semi-synthetic datasets and compare LSH-DynED with 15 state-of-the-art methods. The results reveal that LSH-DynED outperforms other approaches in terms of both Kappa and mG-Mean effectiveness measures, demonstrating its capability in dealing with multi-class imbalanced non-stationary data streams. Notably, LSH-DynED performs well in large-scale, high-dimensional datasets with considerable class imbalances and demonstrates adaptation and robustness in real-world circumstances. To motivate our design, we review existing methods for imbalanced data streams, outline key challenges, and offer guidance for future work. For the reproducibility of our results, we have made our implementation available on GitHub.
☆ Cross-Layer Discrete Concept Discovery for Interpreting Language Models
Uncovering emergent concepts across transformer layers remains a significant challenge because the residual stream linearly mixes and duplicates information, obscuring how features evolve within large language models. Current research efforts primarily inspect neural representations at single layers, thereby overlooking this cross-layer superposition and the redundancy it introduces. These representations are typically either analyzed directly for activation patterns or passed to probing classifiers that map them to a limited set of predefined concepts. To address these limitations, we propose \gls{clvqvae}, a framework that uses vector quantization to map representations across layers and in the process collapse duplicated residual-stream features into compact, interpretable concept vectors. Our approach uniquely combines top-$k$ temperature-based sampling during quantization with EMA codebook updates, providing controlled exploration of the discrete latent space while maintaining code-book diversity. We further enhance the framework with scaled-spherical k-means++ for codebook initialization, which clusters by directional similarity rather than magnitude, better aligning with semantic structure in word embedding space.
☆ Learning Bilateral Team Formation in Cooperative Multi-Agent Reinforcement Learning
Team formation and the dynamics of team-based learning have drawn significant interest in the context of Multi-Agent Reinforcement Learning (MARL). However, existing studies primarily focus on unilateral groupings, predefined teams, or fixed-population settings, leaving the effects of algorithmic bilateral grouping choices in dynamic populations underexplored. To address this gap, we introduce a framework for learning two-sided team formation in dynamic multi-agent systems. Through this study, we gain insight into what algorithmic properties in bilateral team formation influence policy performance and generalization. We validate our approach using widely adopted multi-agent scenarios, demonstrating competitive performance and improved generalization in most scenarios.
comment: Accepted to the 2nd Coordination and Cooperation in Multi-Agent Reinforcement Learning (CoCoMARL) Workshop at RLC 2025
☆ Verifiable Unlearning on Edge
Machine learning providers commonly distribute global models to edge devices, which subsequently personalize these models using local data. However, issues such as copyright infringements, biases, or regulatory requirements may require the verifiable removal of certain data samples across all edge devices. Ensuring that edge devices correctly execute such unlearning operations is critical to maintaining integrity. In this work, we introduce a verification framework leveraging zero-knowledge proofs, specifically zk-SNARKs, to confirm data unlearning on personalized edge-device models without compromising privacy. We have developed algorithms explicitly designed to facilitate unlearning operations that are compatible with efficient zk-SNARK proof generation, ensuring minimal computational and memory overhead suitable for constrained edge environments. Furthermore, our approach carefully preserves personalized enhancements on edge devices, maintaining model performance post-unlearning. Our results affirm the practicality and effectiveness of this verification framework, demonstrating verifiable unlearning with minimal degradation in personalization-induced performance improvements. Our methodology ensures verifiable, privacy-preserving, and effective machine unlearning across edge devices.
comment: This paper has been accepted to the IEEE European Symposium on Security and Privacy (EuroS&P) 2025
☆ Automated Generation of Diverse Courses of Actions for Multi-Agent Operations using Binary Optimization and Graph Learning
Operations in disaster response, search \& rescue, and military missions that involve multiple agents demand automated processes to support the planning of the courses of action (COA). Moreover, traverse-affecting changes in the environment (rain, snow, blockades, etc.) may impact the expected performance of a COA, making it desirable to have a pool of COAs that are diverse in task distributions across agents. Further, variations in agent capabilities, which could be human crews and/or autonomous systems, present practical opportunities and computational challenges to the planning process. This paper presents a new theoretical formulation and computational framework to generate such diverse pools of COAs for operations with soft variations in agent-task compatibility. Key to the problem formulation is a graph abstraction of the task space and the pool of COAs itself to quantify its diversity. Formulating the COAs as a centralized multi-robot task allocation problem, a genetic algorithm is used for (order-ignoring) allocations of tasks to each agent that jointly maximize diversity within the COA pool and overall compatibility of the agent-task mappings. A graph neural network is trained using a policy gradient approach to then perform single agent task sequencing in each COA, which maximizes completion rates adaptive to task features. Our tests of the COA generation process in a simulated environment demonstrate significant performance gain over a random walk baseline, small optimality gap in task sequencing, and execution time of about 50 minutes to plan up to 20 COAs for 5 agent/100 task operations.
☆ Thumb on the Scale: Optimal Loss Weighting in Last Layer Retraining
While machine learning models become more capable in discriminative tasks at scale, their ability to overcome biases introduced by training data has come under increasing scrutiny. Previous results suggest that there are two extremes of parameterization with very different behaviors: the population (underparameterized) setting where loss weighting is optimal and the separable overparameterized setting where loss weighting is ineffective at ensuring equal performance across classes. This work explores the regime of last layer retraining (LLR) in which the unseen limited (retraining) data is frequently inseparable and the model proportionately sized, falling between the two aforementioned extremes. We show, in theory and practice, that loss weighting is still effective in this regime, but that these weights \emph{must} take into account the relative overparameterization of the model.
☆ Elucidated Rolling Diffusion Models for Probabilistic Weather Forecasting
Diffusion models are a powerful tool for probabilistic forecasting, yet most applications in high-dimensional chaotic systems predict future snapshots one-by-one. This common approach struggles to model complex temporal dependencies and fails to explicitly account for the progressive growth of uncertainty inherent to such systems. While rolling diffusion frameworks, which apply increasing noise to forecasts at longer lead times, have been proposed to address this, their integration with state-of-the-art, high-fidelity diffusion techniques remains a significant challenge. We tackle this problem by introducing Elucidated Rolling Diffusion Models (ERDM), the first framework to successfully unify a rolling forecast structure with the principled, performant design of Elucidated Diffusion Models (EDM). To do this, we adapt the core EDM components-its noise schedule, network preconditioning, and Heun sampler-to the rolling forecast setting. The success of this integration is driven by three key contributions: (i) a novel loss weighting scheme that focuses model capacity on the mid-range forecast horizons where determinism gives way to stochasticity; (ii) an efficient initialization strategy using a pre-trained EDM for the initial window; and (iii) a bespoke hybrid sequence architecture for robust spatiotemporal feature extraction under progressive denoising. On 2D Navier-Stokes simulations and ERA5 global weather forecasting at 1.5^\circ resolution, ERDM consistently outperforms key diffusion-based baselines, including conditional autoregressive EDM. ERDM offers a flexible and powerful general framework for tackling diffusion-based sequence generation problems where modeling escalating uncertainty is paramount. Code is available at: https://github.com/salvaRC/erdm
☆ DIM-SUM: Dynamic IMputation for Smart Utility Management
Time series imputation models have traditionally been developed using complete datasets with artificial masking patterns to simulate missing values. However, in real-world infrastructure monitoring, practitioners often encounter datasets where large amounts of data are missing and follow complex, heterogeneous patterns. We introduce DIM-SUM, a preprocessing framework for training robust imputation models that bridges the gap between artificially masked training data and real missing patterns. DIM-SUM combines pattern clustering and adaptive masking strategies with theoretical learning guarantees to handle diverse missing patterns actually observed in the data. Through extensive experiments on over 2 billion readings from California water districts, electricity datasets, and benchmarks, we demonstrate that DIM-SUM outperforms traditional methods by reaching similar accuracy with lower processing time and significantly less training data. When compared against a large pre-trained model, DIM-SUM averages 2x higher accuracy with significantly less inference time.
☆ New Insights on Unfolding and Fine-tuning Quantum Federated Learning
Client heterogeneity poses significant challenges to the performance of Quantum Federated Learning (QFL). To overcome these limitations, we propose a new approach leveraging deep unfolding, which enables clients to autonomously optimize hyperparameters, such as learning rates and regularization factors, based on their specific training behavior. This dynamic adaptation mitigates overfitting and ensures robust optimization in highly heterogeneous environments where standard aggregation methods often fail. Our framework achieves approximately 90% accuracy, significantly outperforming traditional methods, which typically yield around 55% accuracy, as demonstrated through real-time training on IBM quantum hardware and Qiskit Aer simulators. By developing self adaptive fine tuning, the proposed method proves particularly effective in critical applications such as gene expression analysis and cancer detection, enhancing diagnostic precision and predictive modeling within quantum systems. Our results are attributed to convergence-aware, learnable optimization steps intrinsic to the deep unfolded framework, which maintains the generalization. Hence, this study addresses the core limitations of conventional QFL, streamlining its applicability to any complex challenges such as healthcare and genomic research.
comment: 12 pages, 9 figures, 7 Tables, Submitted to IEEE/ACM journal 2025
☆ Neuromorphic Wireless Split Computing with Resonate-and-Fire Neurons
Neuromorphic computing offers an energy-efficient alternative to conventional deep learning accelerators for real-time time-series processing. However, many edge applications, such as wireless sensing and audio recognition, generate streaming signals with rich spectral features that are not effectively captured by conventional leaky integrate-and-fire (LIF) spiking neurons. This paper investigates a wireless split computing architecture that employs resonate-and-fire (RF) neurons with oscillatory dynamics to process time-domain signals directly, eliminating the need for costly spectral pre-processing. By resonating at tunable frequencies, RF neurons extract time-localized spectral features while maintaining low spiking activity. This temporal sparsity translates into significant savings in both computation and transmission energy. Assuming an OFDM-based analog wireless interface for spike transmission, we present a complete system design and evaluate its performance on audio classification and modulation classification tasks. Experimental results show that the proposed RF-SNN architecture achieves comparable accuracy to conventional LIF-SNNs and ANNs, while substantially reducing spike rates and total energy consumption during inference and communication.
☆ Can One Safety Loop Guard Them All? Agentic Guard Rails for Federated Computing ICML 2025
We propose Guardian-FC, a novel two-layer framework for privacy preserving federated computing that unifies safety enforcement across diverse privacy preserving mechanisms, including cryptographic back-ends like fully homomorphic encryption (FHE) and multiparty computation (MPC), as well as statistical techniques such as differential privacy (DP). Guardian-FC decouples guard-rails from privacy mechanisms by executing plug-ins (modular computation units), written in a backend-neutral, domain-specific language (DSL) designed specifically for federated computing workflows and interchangeable Execution Providers (EPs), which implement DSL operations for various privacy back-ends. An Agentic-AI control plane enforces a finite-state safety loop through signed telemetry and commands, ensuring consistent risk management and auditability. The manifest-centric design supports fail-fast job admission and seamless extensibility to new privacy back-ends. We present qualitative scenarios illustrating backend-agnostic safety and a formal model foundation for verification. Finally, we outline a research agenda inviting the community to advance adaptive guard-rail tuning, multi-backend composition, DSL specification development, implementation, and compiler extensibility alongside human-override usability.
comment: Accepted at ICML 2025 Workshop on Collaborative and Federated Agentic Workflows (CFAgentic@ICML'25)
☆ A Spatio-Temporal Point Process for Fine-Grained Modeling of Reading Behavior ACL 2025
Reading is a process that unfolds across space and time, alternating between fixations where a reader focuses on a specific point in space, and saccades where a reader rapidly shifts their focus to a new point. An ansatz of psycholinguistics is that modeling a reader's fixations and saccades yields insight into their online sentence processing. However, standard approaches to such modeling rely on aggregated eye-tracking measurements and models that impose strong assumptions, ignoring much of the spatio-temporal dynamics that occur during reading. In this paper, we propose a more general probabilistic model of reading behavior, based on a marked spatio-temporal point process, that captures not only how long fixations last, but also where they land in space and when they take place in time. The saccades are modeled using a Hawkes process, which captures how each fixation excites the probability of a new fixation occurring near it in time and space. The duration time of fixation events is modeled as a function of fixation-specific predictors convolved across time, thus capturing spillover effects. Empirically, our Hawkes process model exhibits a better fit to human saccades than baselines. With respect to fixation durations, we observe that incorporating contextual surprisal as a predictor results in only a marginal improvement in the model's predictive accuracy. This finding suggests that surprisal theory struggles to explain fine-grained eye movements.
comment: ACL 2025
☆ TRACED: Transition-aware Regret Approximation with Co-learnability for Environment Design
Generalizing deep reinforcement learning agents to unseen environments remains a significant challenge. One promising solution is Unsupervised Environment Design (UED), a co-evolutionary framework in which a teacher adaptively generates tasks with high learning potential, while a student learns a robust policy from this evolving curriculum. Existing UED methods typically measure learning potential via regret, the gap between optimal and current performance, approximated solely by value-function loss. Building on these approaches, we introduce the transition prediction error as an additional term in our regret approximation. To capture how training on one task affects performance on others, we further propose a lightweight metric called co-learnability. By combining these two measures, we present Transition-aware Regret Approximation with Co-learnability for Environment Design (TRACED). Empirical evaluations show that TRACED yields curricula that improve zero-shot generalization across multiple benchmarks while requiring up to 2x fewer environment interactions than strong baselines. Ablation studies confirm that the transition prediction error drives rapid complexity ramp-up and that co-learnability delivers additional gains when paired with the transition prediction error. These results demonstrate how refined regret approximation and explicit modeling of task relationships can be leveraged for sample-efficient curriculum design in UED.
☆ CoVE: Compressed Vocabulary Expansion Makes Better LLM-based Recommender Systems ACL 2025
Recommender systems play a pivotal role in providing relevant content to users. With the rapid development of large language models (LLMs), researchers have begun utilizing LLMs to build more powerful recommender systems. However, existing approaches that focus on aligning LLMs with recommendation tasks do not fully leverage their sequential information processing capabilities, leading to suboptimal performance. In this paper, we propose a novel system called compressed vocabulary expansion (CoVE). In CoVE, each item is assigned a unique ID within the expanded vocabulary. Our framework effectively capitalizes on sequence understanding abilities of LLMs, significantly enhancing their performance on recommendation tasks. Additionally, we compress the embedding layer, making CoVE practical for large-scale industrial applications. The effectiveness and performance of CoVE are demonstrated through comprehensive experiments on multiple recommendation datasets and comparisons with prior works. Our code can be found at https://github.com/HaochenZhang717/CoVE-official-Repo.
comment: Accepted by ACL 2025 Findings
☆ HERCULES: Hierarchical Embedding-based Recursive Clustering Using LLMs for Efficient Summarization
The explosive growth of complex datasets across various modalities necessitates advanced analytical tools that not only group data effectively but also provide human-understandable insights into the discovered structures. We introduce HERCULES (Hierarchical Embedding-based Recursive Clustering Using LLMs for Efficient Summarization), a novel algorithm and Python package designed for hierarchical k-means clustering of diverse data types, including text, images, and numeric data (processed one modality per run). HERCULES constructs a cluster hierarchy by recursively applying k-means clustering, starting from individual data points at level 0. A key innovation is its deep integration of Large Language Models (LLMs) to generate semantically rich titles and descriptions for clusters at each level of the hierarchy, significantly enhancing interpretability. The algorithm supports two main representation modes: `direct' mode, which clusters based on original data embeddings or scaled numeric features, and `description' mode, which clusters based on embeddings derived from LLM-generated summaries. Users can provide a `topic\_seed' to guide LLM-generated summaries towards specific themes. An interactive visualization tool facilitates thorough analysis and understanding of the clustering results. We demonstrate HERCULES's capabilities and discuss its potential for extracting meaningful, hierarchical knowledge from complex datasets.
☆ MAIZX: A Carbon-Aware Framework for Optimizing Cloud Computing Emissions
Cloud computing drives innovation but also poses significant environmental challenges due to its high-energy consumption and carbon emissions. Data centers account for 2-4% of global energy usage, and the ICT sector's share of electricity consumption is projected to reach 40% by 2040. As the goal of achieving net-zero emissions by 2050 becomes increasingly urgent, there is a growing need for more efficient and transparent solutions, particularly for private cloud infrastructures, which are utilized by 87% of organizations, despite the dominance of public-cloud systems. This study evaluates the MAIZX framework, designed to optimize cloud operations and reduce carbon footprint by dynamically ranking resources, including data centers, edge computing nodes, and multi-cloud environments, based on real-time and forecasted carbon intensity, Power Usage Effectiveness (PUE), and energy consumption. Leveraging a flexible ranking algorithm, MAIZX achieved an 85.68% reduction in CO2 emissions compared to baseline hypervisor operations. Tested across geographically distributed data centers, the framework demonstrates scalability and effectiveness, directly interfacing with hypervisors to optimize workloads in private, hybrid, and multi-cloud environments. MAIZX integrates real-time data on carbon intensity, power consumption, and carbon footprint, as well as forecasted values, into cloud management, providing a robust tool for enhancing climate performance potential while maintaining operational efficiency.
comment: 2 pages, 2 figures. LOCO 2024, December 3, 2024, Glasgow/Online
☆ MILAAP: Mobile Link Allocation via Attention-based Prediction
Channel hopping (CS) communication systems must adapt to interference changes in the wireless network and to node mobility for maintaining throughput efficiency. Optimal scheduling requires up-to-date network state information (i.e., of channel occupancy) to select non-overlapping channels for links in interference regions. However, state sharing among nodes introduces significant communication overhead, especially as network size or node mobility scale, thereby decreasing throughput efficiency of already capacity-limited networks. In this paper, we eschew state sharing while adapting the CS schedule based on a learning-based channel occupancy prediction. We propose the MiLAAP attention-based prediction framework for machine learning models of spectral, spatial, and temporal dependencies among network nodes. MiLAAP uses a self-attention mechanism that lets each node capture the temporospectral CS pattern in its interference region and accordingly predict the channel occupancy state within that region. Notably, the prediction relies only on locally and passively observed channel activities, and thus introduces no communication overhead. To deal with node mobility, MiLAAP also uses a multi-head self-attention mechanism that lets each node locally capture the spatiotemporal dependencies on other network nodes that can interfere with it and accordingly predict the motion trajectory of those nodes. Detecting nodes that enter or move outside the interference region is used to further improve the prediction accuracy of channel occupancy. We show that for dynamic networks that use local CS sequences to support relatively long-lived flow traffics, the channel state prediction accuracy of MiLAAP is remarkably ~100% across different node mobility patterns and it achieves zero-shot generalizability across different periods of CS sequences.
☆ Data-Driven Dynamic Factor Modeling via Manifold Learning
We propose a data-driven dynamic factor framework where a response variable depends on a high-dimensional set of covariates, without imposing any parametric model on the joint dynamics. Leveraging Anisotropic Diffusion Maps, a nonlinear manifold learning technique introduced by Singer and Coifman, our framework uncovers the joint dynamics of the covariates and responses in a purely data-driven way. We approximate the embedding dynamics using linear diffusions, and exploit Kalman filtering to predict the evolution of the covariates and response variables directly from the diffusion map embedding space. We generalize Singer's convergence rate analysis of the graph Laplacian from the case of independent uniform samples on a compact manifold to the case of time series arising from Langevin diffusions in Euclidean space. Furthermore, we provide rigorous justification for our procedure by showing the robustness of approximations of the diffusion map coordinates by linear diffusions, and the convergence of ergodic averages under standard spectral assumptions on the underlying dynamics. We apply our method to the stress testing of equity portfolios using a combination of financial and macroeconomic factors from the Federal Reserve's supervisory scenarios. We demonstrate that our data-driven stress testing method outperforms standard scenario analysis and Principal Component Analysis benchmarks through historical backtests spanning three major financial crises, achieving reductions in mean absolute error of up to 55% and 39% for scenario-based portfolio return prediction, respectively.
☆ The Most Important Features in Generalized Additive Models Might Be Groups of Features
While analyzing the importance of features has become ubiquitous in interpretable machine learning, the joint signal from a group of related features is sometimes overlooked or inadvertently excluded. Neglecting the joint signal could bypass a critical insight: in many instances, the most significant predictors are not isolated features, but rather the combined effect of groups of features. This can be especially problematic for datasets that contain natural groupings of features, including multimodal datasets. This paper introduces a novel approach to determine the importance of a group of features for Generalized Additive Models (GAMs) that is efficient, requires no model retraining, allows defining groups posthoc, permits overlapping groups, and remains meaningful in high-dimensional settings. Moreover, this definition offers a parallel with explained variation in statistics. We showcase properties of our method on three synthetic experiments that illustrate the behavior of group importance across various data regimes. We then demonstrate the importance of groups of features in identifying depressive symptoms from a multimodal neuroscience dataset, and study the importance of social determinants of health after total hip arthroplasty. These two case studies reveal that analyzing group importance offers a more accurate, holistic view of the medical issues compared to a single-feature analysis.
☆ Any-Order GPT as Masked Diffusion Model: Decoupling Formulation and Architecture
Large language models (LLMs) predominantly use autoregressive (AR) approaches, but masked diffusion models (MDMs) are emerging as viable alternatives. A key challenge in comparing AR and MDM paradigms is their typical architectural difference: AR models are often decoder-only, while MDMs have largely been encoder-only. This practice of changing both the modeling paradigm and architecture simultaneously makes direct comparisons unfair, as it's hard to distinguish whether observed differences stem from the paradigm itself or the architectural shift. This research evaluates MDMs within a decoder-only framework to: (1) equitably compare MDM (as Any-Order AR, or AO-AR) and standard AR paradigms. Our investigation suggests that the standard AO-AR objective, which averages over all token permutations, may benefit from refinement, as many permutations appear less informative compared to the language's inherent left-to-right structure. (2) Investigate architectural influences (decoder-only vs. encoder-only) within MDMs. We demonstrate that while encoder-only MDMs model a simpler conditional probability space, decoder-only MDMs can achieve dramatic generation speedups ($\sim25\times$) and comparable perplexity with temperature annealing despite modeling a vastly larger space, highlighting key trade-offs. This work thus decouples core paradigm differences from architectural influences, offering insights for future model design. Code is available at https://github.com/scxue/AO-GPT-MDM.
☆ A Comparative Analysis of Reinforcement Learning and Conventional Deep Learning Approaches for Bearing Fault Diagnosis
Bearing faults in rotating machinery can lead to significant operational disruptions and maintenance costs. Modern methods for bearing fault diagnosis rely heavily on vibration analysis and machine learning techniques, which often require extensive labeled data and may not adapt well to dynamic environments. This study explores the feasibility of reinforcement learning (RL), specifically Deep Q-Networks (DQNs), for bearing fault classification tasks in machine condition monitoring to enhance the accuracy and adaptability of bearing fault diagnosis. The results demonstrate that while RL models developed in this study can match the performance of traditional supervised learning models under controlled conditions, they excel in adaptability when equipped with optimized reward structures. However, their computational demands highlight areas for further improvement. These findings demonstrate RL's potential to complement traditional methods, paving the way for adaptive diagnostic frameworks.
comment: 5 pages, 5 figures. To appear in the Proceedings of the Canadian Society for Mechanical Engineering (CSME) Congress 2025
☆ Prover Agent: An Agent-based Framework for Formal Mathematical Proofs
We present Prover Agent, a novel AI agent for automated theorem proving that integrates large language models (LLMs) with a formal proof assistant, Lean. Prover Agent coordinates an informal reasoning LLM, a formal prover model, and feedback from Lean while also generating auxiliary lemmas to assist in discovering the overall proof strategy. It achieves an 86.1% success rate on the MiniF2F benchmark, establishing a new state-of-the-art among methods using small language models (SLMs) with a much lower sample budget than previous approaches. We also present case studies illustrating how these generated lemmas contribute to solving challenging problems.
comment: 22 pages, 2 figures
☆ Extreme Learning Machines for Exoplanet Simulations: A Faster, Lightweight Alternative to Deep Learning
Increasing resolution and coverage of astrophysical and climate data necessitates increasingly sophisticated models, often pushing the limits of computational feasibility. While emulation methods can reduce calculation costs, the neural architectures typically used--optimised via gradient descent--are themselves computationally expensive to train, particularly in terms of data generation requirements. This paper investigates the utility of the Extreme Learning Machine (ELM) as a lightweight, non-gradient-based machine learning algorithm for accelerating complex physical models. We evaluate ELM surrogate models in two test cases with different data structures: (i) sequentially-structured data, and (ii) image-structured data. For test case (i), where the number of samples $N$ >> the dimensionality of input data $d$, ELMs achieve remarkable efficiency, offering a 100,000$\times$ faster training time and a 40$\times$ faster prediction speed compared to a Bi-Directional Recurrent Neural Network (BIRNN), whilst improving upon BIRNN test performance. For test case (ii), characterised by $d >> N$ and image-based inputs, a single ELM was insufficient, but an ensemble of 50 individual ELM predictors achieves comparable accuracy to a benchmark Convolutional Neural Network (CNN), with a 16.4$\times$ reduction in training time, though costing a 6.9$\times$ increase in prediction time. We find different sample efficiency characteristics between the test cases: in test case (i) individual ELMs demonstrate superior sample efficiency, requiring only 0.28% of the training dataset compared to the benchmark BIRNN, while in test case (ii) the ensemble approach requires 78% of the data used by the CNN to achieve comparable results--representing a trade-off between sample efficiency and model complexity.
comment: 20 pages, 16 figures
☆ A Framework for Uncertainty Quantification Based on Nearest Neighbors Across Layers
Neural Networks have high accuracy in solving problems where it is difficult to detect patterns or create a logical model. However, these algorithms sometimes return wrong solutions, which become problematic in high-risk domains like medical diagnosis or autonomous driving. One strategy to detect and mitigate these errors is the measurement of the uncertainty over neural network decisions. In this paper, we present a novel post-hoc framework for measuring the uncertainty of a decision based on retrieved training cases that have a similar activation vector to the query for each layer. Based on these retrieved cases, we propose two new metrics: Decision Change and Layer Uncertainty, which capture changes in nearest-neighbor class distributions across layers. We evaluated our approach in a classification model for two datasets: CIFAR-10 and MNIST. The results show that these metrics enhance uncertainty estimation, especially in challenging classification tasks, outperforming softmax-based confidence.
comment: This paper has been accepted for presentation at ICANN 2025 (International Conference on Artificial Neural Networks) and will appear in the conference proceedings published by Springer Nature in the Lecture Notes in Computer Science (LNCS) series. The final authenticated version will be available on the publisher website
☆ Explaining deep neural network models for electricity price forecasting with XAI
Electricity markets are highly complex, involving lots of interactions and complex dependencies that make it hard to understand the inner workings of the market and what is driving prices. Econometric methods have been developed for this, white-box models, however, they are not as powerful as deep neural network models (DNN). In this paper, we use a DNN to forecast the price and then use XAI methods to understand the factors driving the price dynamics in the market. The objective is to increase our understanding of how different electricity markets work. To do that, we apply explainable methods such as SHAP and Gradient, combined with visual techniques like heatmaps (saliency maps) to analyse the behaviour and contributions of various features across five electricity markets. We introduce the novel concepts of SSHAP values and SSHAP lines to enhance the complex representation of high-dimensional tabular models.
☆ Distillation-Enabled Knowledge Alignment for Generative Semantic Communications in AIGC Provisioning Tasks
Due to the surging amount of AI-generated content (AIGC), its provisioning to edges and mobile users from the cloud incurs substantial traffic on networks. Generative semantic communication (GSC) offers a promising solution by transmitting highly compact information, i.e., prompt text and latent representations, instead of high-dimensional AIGC data. However, GSC relies on the alignment between the knowledge in the cloud generative AI (GAI) and that possessed by the edges and users, and between the knowledge for wireless transmission and that of actual channels, which remains challenging. In this paper, we propose DeKA-g, a distillation-enabled knowledge alignment algorithm for GSC systems. The core idea is to distill the generation knowledge from the cloud-GAI into low-rank matrices, which can be incorporated by the edge and used to adapt the transmission knowledge to diverse wireless channel conditions. DeKA-g comprises two novel methods: metaword-aided knowledge distillation (MAKD) and variable-rate grouped SNR adaptation (VGSA). For MAKD, an optimized metaword is employed to enhance the efficiency of knowledge distillation, while VGSA enables efficient adaptation to diverse compression rates and SNR ranges. From simulation results, DeKA-g improves the alignment between the edge-generated images and the cloud-generated ones by 44%. Moreover, it adapts to compression rates with 116% higher efficiency than the baseline and enhances the performance in low-SNR conditions by 28%.
☆ RepuNet: A Reputation System for Mitigating Malicious Clients in DFL
Decentralized Federated Learning (DFL) enables nodes to collaboratively train models without a central server, introducing new vulnerabilities since each node independently selects peers for model aggregation. Malicious nodes may exploit this autonomy by sending corrupted models (model poisoning), delaying model submissions (delay attack), or flooding the network with excessive messages, negatively affecting system performance. Existing solutions often depend on rigid configurations or additional infrastructures such as blockchain, leading to computational overhead, scalability issues, or limited adaptability. To overcome these limitations, this paper proposes RepuNet, a decentralized reputation system that categorizes threats in DFL and dynamically evaluates node behavior using metrics like model similarity, parameter changes, message latency, and communication volume. Nodes' influence in model aggregation is adjusted based on their reputation scores. RepuNet was integrated into the Nebula DFL platform and experimentally evaluated with MNIST and CIFAR-10 datasets under non-IID distributions, using federations of up to 25 nodes in both fully connected and random topologies. Different attack intensities, frequencies, and activation intervals were tested. Results demonstrated that RepuNet effectively detects and mitigates malicious behavior, achieving F1 scores above 95% for MNIST scenarios and approximately 76% for CIFAR-10 cases. These outcomes highlight RepuNet's adaptability, robustness, and practical potential for mitigating threats in decentralized federated learning environments.
♻ ☆ Inferring Higher-Order Couplings with Neural Networks
Maximum entropy methods, rooted in the inverse Ising/Potts problem from statistical physics, are widely used to model pairwise interactions in complex systems across disciplines such as bioinformatics and neuroscience. While successful, these approaches often fail to capture higher-order interactions that are critical for understanding collective behavior. In contrast, modern machine learning methods can model such interactions, but their interpretability often comes at a prohibitive computational cost. Restricted Boltzmann Machines (RBMs) provide a computationally efficient alternative by encoding statistical correlations through hidden units in a bipartite architecture. In this work, we introduce a method that maps RBMs onto generalized Potts models, enabling the systematic extraction of interactions up to arbitrary order. Leveraging large-$N$ approximations -- made tractable by the RBM's structure -- we extract effective many-body couplings with minimal computational effort. We further propose a robust framework for recovering higher-order interactions in more complex generative models, and introduce a simple gauge-fixing scheme for the effective Potts representation. Validation on synthetic data demonstrates accurate recovery of two- and three-body interactions. Applied to protein sequence data, our method reconstructs contact maps with high fidelity and outperforms state-of-the-art inverse Potts models. These results establish RBMs as a powerful and efficient tool for modeling higher-order structure in high-dimensional categorical data.
comment: 24 Pages and 9 Figures
♻ ☆ Fourier Multi-Component and Multi-Layer Neural Networks: Unlocking High-Frequency Potential
The architecture of a neural network and the selection of its activation function are both fundamental to its performance. Equally vital is ensuring these two elements are well-matched, as their alignment is key to achieving effective representation and learning. In this paper, we introduce the Fourier Multi-Component and Multi-Layer Neural Network (FMMNN), a novel model that creates a strong synergy between them. We demonstrate that FMMNNs are highly effective and flexible in modeling high-frequency components. Our theoretical results demonstrate that FMMNNs have exponential expressive power for function approximation. We also analyze the optimization landscape of FMMNNs and find it to be much more favorable than that of standard fully connected neural networks, especially when dealing with high-frequency features. In addition, we propose a scaled random initialization method for the first layer's weights in FMMNNs, which significantly speeds up training and enhances overall performance. Extensive numerical experiments support our theoretical insights, showing that FMMNNs consistently outperform traditional approaches in accuracy and efficiency across various tasks.
comment: Our code and implementation details are available at https://github.com/ShijunZhangMath/FMMNN
♻ ☆ Model-Based Exploration in Monitored Markov Decision Processes
A tenet of reinforcement learning is that the agent always observes rewards. However, this is not true in many realistic settings, e.g., a human observer may not always be available to provide rewards, sensors may be limited or malfunctioning, or rewards may be inaccessible during deployment. Monitored Markov decision processes (Mon-MDPs) have recently been proposed to model such settings. However, existing Mon-MDP algorithms have several limitations: they do not fully exploit the problem structure, cannot leverage a known monitor, lack worst-case guarantees for 'unsolvable' Mon-MDPs without specific initialization, and offer only asymptotic convergence proofs. This paper makes three contributions. First, we introduce a model-based algorithm for Mon-MDPs that addresses these shortcomings. The algorithm employs two instances of model-based interval estimation: one to ensure that observable rewards are reliably captured, and another to learn the minimax-optimal policy. Second, we empirically demonstrate the advantages. We show faster convergence than prior algorithms in over four dozen benchmarks, and even more dramatic improvement when the monitoring process is known. Third, we present the first finite-sample bound on performance. We show convergence to a minimax-optimal policy even when some rewards are never observable.
♻ ☆ First-Passage Approach to Optimizing Perturbations for Improved Training of Machine Learning Models
Machine learning models have become indispensable tools in applications across the physical sciences. Their training is often time-consuming, vastly exceeding the inference timescales. Several protocols have been developed to perturb the learning process and improve the training, such as shrink and perturb, warm restarts, and stochastic resetting. For classifiers, these perturbations have been shown to result in enhanced speedups or improved generalization. However, the design of such perturbations is usually done ad hoc by intuition and trial and error. To rationally optimize training protocols, we frame them as first-passage processes and consider their response to perturbations. We show that if the unperturbed learning process reaches a quasi-steady state, the response at a single perturbation frequency can predict the behavior at a wide range of frequencies. We employ this approach to a CIFAR-10 classifier using the ResNet-18 model and identify a useful perturbation and frequency among several possibilities. We demonstrate the transferability of the approach to other datasets, architectures, optimizers and even tasks (regression instead of classification). Our work allows optimization of perturbations for improving the training of machine learning models using a first-passage approach.
♻ ☆ Multiscale Training of Convolutional Neural Networks
Training convolutional neural networks (CNNs) on high-resolution images is often bottlenecked by the cost of evaluating gradients of the loss on the finest spatial mesh. To address this, we propose Multiscale Gradient Estimation (MGE), a Multilevel Monte Carlo-inspired estimator that expresses the expected gradient on the finest mesh as a telescopic sum of gradients computed on progressively coarser meshes. By assigning larger batches to the cheaper coarse levels, MGE achieves the same variance as single-scale stochastic gradient estimation while reducing the number of fine mesh convolutions by a factor of 4 with each downsampling. We further embed MGE within a Full-Multiscale training algorithm that solves the learning problem on coarse meshes first and "hot-starts" the next finer level, cutting the required fine mesh iterations by an additional order of magnitude. Extensive experiments on image denoising, deblurring, inpainting and super-resolution tasks using UNet, ResNet and ESPCN backbones confirm the practical benefits: Full-Multiscale reduces the computation costs by 4-16$\times$ with no significant loss in performance. Together, MGE and Full-Multiscale offer a principled, architecture-agnostic route to accelerate CNN training on high-resolution data without sacrificing accuracy, and they can be combined with other variance-reduction or learning-rate schedules to further enhance scalability.
comment: 23 pages, 10 figures, 8 tables
♻ ☆ FDA-Opt: Communication-Efficient Federated Fine-Tuning of Language Models
Federated Learning (FL) enables the utilization of vast, previously inaccessible data sources. At the same time, pre-trained Language Models (LMs) have taken the world by storm and for good reason. They exhibit remarkable emergent abilities and are readily adapted to downstream tasks. This opens one of the most exciting frontiers in FL: fine-tuning LMs. Yet, a persistent challenge in FL is the frequent, rigid communication of parameters -- a problem magnified by the sheer size of these contemporary models. The FedOpt family of algorithms has become the go-to approach for FL, relying on fixed but arbitrary intervals for model exchanges. Recently, the FDA algorithm prescribed a dynamic approach by monitoring the training progress. However, it introduced a hard-to-calibrate parameter and imposed a rigid synchronization scheme. In this work, we address these limitations by proposing the FDA-Opt family of algorithms -- a unified generalization of both FDA and FedOpt. Our experimental evaluation focuses on fine-tuning LMs on downstream NLP tasks and demonstrates that FDA-Opt outperforms FedOpt even when it is configured with hyper-parameters specifically optimized for the latter. In other words, we show that FDA-Opt is a practical, drop-in replacement for FedOpt in modern FL libraries and systems: it requires no additional configuration and delivers superior performance out of the box.
♻ ☆ A Robust Twin Parametric Margin Support Vector Machine for Multiclass Classification
In this paper, we introduce novel Twin Parametric Margin Support Vector Machine (TPMSVM) models designed to address multiclass classification tasks under feature uncertainty. To handle data perturbations, we construct bounded-by-norm uncertainty set around each training observation and derive the robust counterparts of the deterministic models using robust optimization techniques. To capture complex data structure, we explore both linear and kernel-induced classifiers, providing computationally tractable reformulations of the resulting robust models. Additionally, we propose two alternatives for the final decision function, enhancing models' flexibility. Finally, we validate the effectiveness of the proposed robust multiclass TPMSVM methodology on real-world datasets, showing the good performance of the approach in the presence of uncertainty.
♻ ☆ Continuous Bayesian Model Selection for Multivariate Causal Discovery
Current causal discovery approaches require restrictive model assumptions in the absence of interventional data to ensure structure identifiability. These assumptions often do not hold in real-world applications leading to a loss of guarantees and poor performance in practice. Recent work has shown that, in the bivariate case, Bayesian model selection can greatly improve performance by exchanging restrictive modelling for more flexible assumptions, at the cost of a small probability of making an error. Our work shows that this approach is useful in the important multivariate case as well. We propose a scalable algorithm leveraging a continuous relaxation of the discrete model selection problem. Specifically, we employ the Causal Gaussian Process Conditional Density Estimator (CGP-CDE) as a Bayesian non-parametric model, using its hyperparameters to construct an adjacency matrix. This matrix is then optimised using the marginal likelihood and an acyclicity regulariser, giving the maximum a posteriori causal graph. We demonstrate the competitiveness of our approach, showing it is advantageous to perform multivariate causal discovery without infeasible assumptions using Bayesian model selection.
♻ ☆ DecDEC: A Systems Approach to Advancing Low-Bit LLM Quantization
Quantization of Large Language Models (LLMs) has recently gained popularity, particularly for on-device settings with limited hardware resources. While efficient, quantization inevitably degrades model quality, especially in aggressive low-bit settings such as 3-bit and 4-bit precision. In this paper, we propose DecDEC, an inference scheme that improves the quality of low-bit LLMs while preserving the key benefits of quantization: GPU memory savings and latency reduction. DecDEC stores the residual matrix -- the difference between full-precision and quantized weights -- in CPU, and dynamically fetches the residuals for only a small portion of the weights. This portion corresponds to the salient channels, marked by activation outliers, with the fetched residuals helping to correct quantization errors in these channels. Salient channels are identified dynamically at each decoding step by analyzing the input activations -- this enables adaptation to the dynamic nature of activation distribution, thus maximizing the effectiveness of error compensation. We demonstrate the effectiveness of DecDEC by augmenting state-of-the-art quantization methods. For example, DecDEC reduces the perplexity of a 3-bit Llama-3-8B-Instruct model from 10.15 to 9.12 -- outperforming its 3.5-bit counterpart -- while adding less than 0.0003\% to GPU memory usage and incurring only a 1.7\% inference slowdown on NVIDIA RTX 4050 Mobile.
comment: OSDI 2025
♻ ☆ Q2SAR: A Quantum Multiple Kernel Learning Approach for Drug Discovery
Quantitative Structure-Activity Relationship (QSAR) modeling is a cornerstone of computational drug discovery. This research demonstrates the successful application of a Quantum Multiple Kernel Learning (QMKL) framework to enhance QSAR classification, showing a notable performance improvement over classical methods. We apply this methodology to a dataset for identifying DYRK1A kinase inhibitors. The workflow involves converting SMILES representations into numerical molecular descriptors, reducing dimensionality via Principal Component Analysis (PCA), and employing a Support Vector Machine (SVM) trained on an optimized combination of multiple quantum and classical kernels. By benchmarking the QMKL-SVM against a classical Gradient Boosting model, we show that the quantum-enhanced approach achieves a superior AUC score, highlighting its potential to provide a quantum advantage in challenging cheminformatics classification tasks.
♻ ☆ Unscrambling disease progression at scale: fast inference of event permutations with optimal transport NeurIPS 2024
Disease progression models infer group-level temporal trajectories of change in patients' features as a chronic degenerative condition plays out. They provide unique insight into disease biology and staging systems with individual-level clinical utility. Discrete models consider disease progression as a latent permutation of events, where each event corresponds to a feature becoming measurably abnormal. However, permutation inference using traditional maximum likelihood approaches becomes prohibitive due to combinatoric explosion, severely limiting model dimensionality and utility. Here we leverage ideas from optimal transport to model disease progression as a latent permutation matrix of events belonging to the Birkhoff polytope, facilitating fast inference via optimisation of the variational lower bound. This enables a factor of 1000 times faster inference than the current state of the art and, correspondingly, supports models with several orders of magnitude more features than the current state of the art can consider. Experiments demonstrate the increase in speed, accuracy and robustness to noise in simulation. Further experiments with real-world imaging data from two separate datasets, one from Alzheimer's disease patients, the other age-related macular degeneration, showcase, for the first time, pixel-level disease progression events in the brain and eye, respectively. Our method is low compute, interpretable and applicable to any progressive condition and data modality, giving it broad potential clinical utility.
comment: Camera-ready version of paper accepted to NeurIPS 2024
♻ ☆ IgCONDA-PET: Weakly-Supervised PET Anomaly Detection using Implicitly-Guided Attention-Conditional Counterfactual Diffusion Modeling -- a Multi-Center, Multi-Cancer, and Multi-Tracer Study
Minimizing the need for pixel-level annotated data to train PET lesion detection and segmentation networks is highly desired and can be transformative, given time and cost constraints associated with expert annotations. Current unsupervised or weakly-supervised anomaly detection methods rely on autoencoder or generative adversarial networks (GANs) trained only on healthy data. While these approaches reduce annotation dependency, GAN-based methods are notably more challenging to train than non-GAN alternatives (such as autoencoders) due to issues such as the simultaneous optimization of two competing networks, mode collapse, and training instability. In this paper, we present the weakly-supervised $\textbf{I}$mplicitly-$\textbf{g}$uided $\textbf{CO}$u$\textbf{N}$terfactual diffusion model for $\textbf{D}$etecting $\textbf{A}$nomalies in $\textbf{PET}$ images (IgCONDA-PET). The solution is developed and validated using PET scans from six retrospective cohorts consisting of a total of 2652 cases (multi-cancer, multi-tracer) containing both local and public datasets (spanning multiple centers). The training is conditioned on image class labels (healthy vs. unhealthy) via attention modules, and we employ implicit diffusion guidance. We perform counterfactual generation which facilitates "unhealthy-to-healthy" domain translation by generating a synthetic, healthy version of an unhealthy input image, enabling the detection of anomalies through the calculated differences. The performance of our method was compared against several other deep learning based weakly-supervised or unsupervised methods as well as traditional methods like 41% SUV$_\text{max}$ thresholding. We also highlight the importance of incorporating attention modules in our network for the detection of small anomalies. The code is publicly available at: https://github.com/ahxmeds/IgCONDA-PET.git.
comment: 48 pages, 13 figures, 4 tables
♻ ☆ Local Look-Ahead Guidance via Verifier-in-the-Loop for Automated Theorem Proving ACL 2025
The most promising recent methods for AI reasoning require applying variants of reinforcement learning (RL) either on rolled out trajectories from the LLMs, even for the step-wise rewards, or large quantities of human-annotated trajectory data. The reliance on the rolled-out trajectory renders the compute cost and time prohibitively high. In particular, the correctness of a reasoning trajectory can typically only be judged at its completion, leading to sparse rewards in RL or requiring expensive synthetic data generation in expert iteration-like methods. In this work, we focus on the Automatic Theorem Proving (ATP) task and propose a novel verifier-in-the-loop design, which, unlike existing approaches that leverage feedback on the entire reasoning trajectory, employs an automated verifier to give intermediate feedback at each step of the reasoning process. Using Lean as the verifier, we empirically show that the step-by-step local verification produces a global improvement in the model's reasoning accuracy and efficiency.
comment: Accepted at the Findings of ACL 2025, Accepted at ICLR 2025 Workshop on Reasoning and Planning for Large Language Models
♻ ☆ Identifying Unknown Stochastic Dynamics via Finite expression methods
Modeling stochastic differential equations (SDEs) is crucial for understanding complex dynamical systems in various scientific fields. Recent methods often employ neural network-based models, which typically represent SDEs through a combination of deterministic and stochastic terms. However, these models usually lack interpretability and have difficulty generalizing beyond their training domain. This paper introduces the Finite Expression Method (FEX), a symbolic learning approach designed to derive interpretable mathematical representations of the deterministic component of SDEs. For the stochastic component, we integrate FEX with advanced generative modeling techniques to provide a comprehensive representation of SDEs. The numerical experiments on linear, nonlinear, and multidimensional SDEs demonstrate that FEX generalizes well beyond the training domain and delivers more accurate long-term predictions compared to neural network-based methods. The symbolic expressions identified by FEX not only improve prediction accuracy but also offer valuable scientific insights into the underlying dynamics of the systems, paving the way for new scientific discoveries.
comment: 19 pages, 15 figures, 5 tables
♻ ☆ AYLA: Amplifying Gradient Sensitivity via Loss Transformation in Non-Convex Optimization
Stochastic Gradient Descent (SGD) and its variants, such as ADAM, are foundational to deep learning optimization, adjusting model parameters through fixed or adaptive learning rates based on loss function gradients. However, these methods often struggle to balance adaptability and efficiency in high-dimensional, non-convex settings. This paper introduces AYLA, a novel optimization framework that enhances training dynamics via loss function transformation. AYLA applies a tunable power-law transformation to the loss, preserving critical points while scaling loss values to amplify gradient sensitivity and accelerate convergence. Additionally, we propose an effective learning rate that dynamically adapts to the transformed loss, further improving optimization efficiency. Empirical evaluations on minimizing a synthetic non-convex polynomial, solving a non-convex curve-fitting task, and performing digit classification (MNIST) and image recognition (CIFAR-100) demonstrate that AYLA consistently outperforms SGD and ADAM in both convergence speed and training stability. By reshaping the loss landscape, AYLA provides a model-agnostic enhancement to existing optimization methods, offering a promising advancement in deep neural network training.
♻ ☆ Multimodal Machine Learning in Mental Health: A Survey of Data, Algorithms, and Challenges
Multimodal machine learning (MML) is rapidly reshaping the way mental-health disorders are detected, characterized, and longitudinally monitored. Whereas early studies relied on isolated data streams -- such as speech, text, or wearable signals -- recent research has converged on architectures that integrate heterogeneous modalities to capture the rich, complex signatures of psychiatric conditions. This survey provides the first comprehensive, clinically grounded synthesis of MML for mental health. We (i) catalog 26 public datasets spanning audio, visual, physiological signals, and text modalities; (ii) systematically compare transformer, graph, and hybrid-based fusion strategies across 28 models, highlighting trends in representation learning and cross-modal alignment. Beyond summarizing current capabilities, we interrogate open challenges: data governance and privacy, demographic and intersectional fairness, evaluation explainability, and the complexity of mental health disorders in multimodal settings. By bridging methodological innovation with psychiatric utility, this survey aims to orient both ML researchers and mental-health practitioners toward the next generation of trustworthy, multimodal decision-support systems.
♻ ☆ Contactless Cardiac Pulse Monitoring Using Event Cameras
Time event cameras are a novel technology for recording scene information at extremely low latency and with low power consumption. Event cameras output a stream of events that encapsulate pixel-level light intensity changes within the scene, capturing information with a higher dynamic range and temporal resolution than traditional cameras. This study investigates the contact-free reconstruction of an individual's cardiac pulse signal from time event recording of their face using a supervised convolutional neural network (CNN) model. An end-to-end model is trained to extract the cardiac signal from a two-dimensional representation of the event stream, with model performance evaluated based on the accuracy of the calculated heart rate. The experimental results confirm that physiological cardiac information in the facial region is effectively preserved within the event stream, showcasing the potential of this novel sensor for remote heart rate monitoring. The model trained on event frames achieves a root mean square error (RMSE) of 3.32 beats per minute (bpm) compared to the RMSE of 2.92 bpm achieved by the baseline model trained on standard camera frames. Furthermore, models trained on event frames generated at 60 and 120 FPS outperformed the 30 FPS standard camera results, achieving an RMSE of 2.54 and 2.13 bpm, respectively.
♻ ☆ ECG-SMART-NET: A Deep Learning Architecture for Precise ECG Diagnosis of Occlusion Myocardial Infarction
Objective: In this paper we develop and evaluate ECG-SMART-NET for occlusion myocardial infarction (OMI) identification. OMI is a severe form of heart attack characterized by complete blockage of one or more coronary arteries requiring immediate referral for cardiac catheterization to restore blood flow to the heart. Two thirds of OMI cases are difficult to visually identify from a 12-lead electrocardiogram (ECG) and can be potentially fatal if not identified quickly. Previous works on this topic are scarce, and current state-of-the-art evidence suggests both feature-based random forests and convolutional neural networks (CNNs) are promising approaches to improve ECG detection of OMI. Methods: While the ResNet architecture has been adapted for use with ECG recordings, it is not ideally suited to capture informative temporal features within each lead and the spatial concordance or discordance across leads. We propose a clinically informed modification of the ResNet-18 architecture. The model first learns temporal features through temporal convolutional layers with 1xk kernels followed by a spatial convolutional layer, after the residual blocks, with 12x1 kernels to learn spatial features. Results: ECG-SMART-NET was benchmarked against the original ResNet-18 and other state-of-the-art models on a multisite real-word clinical dataset that consists of 10,393 ECGs from 7,397 unique patients (rate of OMI =7.2%). ECG-SMART-NET outperformed other models in the classification of OMI with a test AUC of 0.953 [0.921, 0.978]. Conclusion and Significance: ECG-SMART-NET can outperform the state-of-the-art random forest for OMI prediction and is better suited for this task than the original ResNet-18 architecture.
comment: 9 pages, 7 figures, 6 tables
♻ ☆ A text-to-tabular approach to generate synthetic patient data using LLMs
Access to large-scale high-quality healthcare databases is key to accelerate medical research and make insightful discoveries about diseases. However, access to such data is often limited by patient privacy concerns, data sharing restrictions and high costs. To overcome these limitations, synthetic patient data has emerged as an alternative. However, synthetic data generation (SDG) methods typically rely on machine learning (ML) models trained on original data, leading back to the data scarcity problem. We propose an approach to generate synthetic tabular patient data that does not require access to the original data, but only a description of the desired database. We leverage prior medical knowledge and in-context learning capabilities of large language models (LLMs) to generate realistic patient data, even in a low-resource setting. We quantitatively evaluate our approach against state-of-the-art SDG models, using fidelity, privacy, and utility metrics. Our results show that while LLMs may not match the performance of state-of-the-art models trained on the original data, they effectively generate realistic patient data with well-preserved clinical correlations. An ablation study highlights key elements of our prompt contributing to high-quality synthetic patient data generation. This approach, which is easy to use and does not require original data or advanced ML skills, is particularly valuable for quickly generating custom-designed patient data, supporting project implementation and providing educational resources.
comment: 12 pages, 3 figures. Accepted to the 2025 IEEE International Conference on Healthcare Informatics (IEEE ICHI 2025), 2025, Rende (CS), Calabria, Italy
♻ ☆ Constructive Universal Approximation and Finite Sample Memorization by Narrow Deep ReLU Networks
We present a fully constructive analysis of deep ReLU neural networks for classification and function approximation tasks. First, we prove that any dataset with $N$ distinct points in $\mathbb{R}^d$ and $M$ output classes can be exactly classified using a multilayer perceptron (MLP) of width $2$ and depth at most $2N + 4M - 1$, with all network parameters constructed explicitly. This result is sharp with respect to width and is interpreted through the lens of simultaneous or ensemble controllability in discrete nonlinear dynamics. Second, we show that these explicit constructions yield uniform bounds on the parameter norms and, in particular, provide upper estimates for minimizers of standard regularized training loss functionals in supervised learning. As the regularization parameter vanishes, the trained networks converge to exact classifiers with bounded norm, explaining the effectiveness of overparameterized training in the small-regularization regime. We also prove a universal approximation theorem in $L^p(\Omega; \mathbb{R}_+)$ for any bounded domain $\Omega \subset \mathbb{R}^d$ and $p \in [1, \infty)$, using MLPs of fixed width $d + 1$. The proof is constructive, geometrically motivated, and provides explicit estimates on the network depth when the target function belongs to the Sobolev space $W^{1,p}$. We also extend the approximation and depth estimation results to $L^p(\Omega; \mathbb{R}^m)$ for any $m \geq 1$. Our results offer a unified and interpretable framework connecting controllability, expressivity, and training dynamics in deep neural networks.
♻ ☆ Diff-Def: Diffusion-Generated Deformation Fields for Conditional Atlases
Anatomical atlases are widely used for population studies and analysis. Conditional atlases target a specific sub-population defined via certain conditions, such as demographics or pathologies, and allow for the investigation of fine-grained anatomical differences like morphological changes associated with ageing or disease. Existing approaches use either registration-based methods that are often unable to handle large anatomical variations or generative adversarial models, which are challenging to train since they can suffer from training instabilities. Instead of generating atlases directly in as intensities, we propose using latent diffusion models to generate deformation fields, which transform a general population atlas into one representing a specific sub-population. Our approach ensures structural integrity, enhances interpretability and avoids hallucinations that may arise during direct image synthesis by generating this deformation field and regularising it using a neighbourhood of images. We compare our method to several state-of-the-art atlas generation methods using brain MR images from the UK Biobank. Our method generates highly realistic atlases with smooth transformations and high anatomical fidelity, outperforming existing baselines. We demonstrate the quality of these atlases through comprehensive evaluations, including quantitative metrics for anatomical accuracy, perceptual similarity, and qualitative analyses displaying the consistency and realism of the generated atlases.
♻ ☆ Realistic Image-to-Image Machine Unlearning via Decoupling and Knowledge Retention
Machine Unlearning allows participants to remove their data from a trained machine learning model in order to preserve their privacy, and security. However, the machine unlearning literature for generative models is rather limited. The literature for image-to-image generative model (I2I model) considers minimizing the distance between Gaussian noise and the output of I2I model for forget samples as machine unlearning. However, we argue that the machine learning model performs fairly well on unseen data i.e., a retrained model will be able to catch generic patterns in the data and hence will not generate an output which is equivalent to Gaussian noise. In this paper, we consider that the model after unlearning should treat forget samples as out-of-distribution (OOD) data, i.e., the unlearned model should no longer recognize or encode the specific patterns found in the forget samples. To achieve this, we propose a framework which decouples the model parameters with gradient ascent, ensuring that forget samples are OOD for unlearned model with theoretical guarantee. We also provide $(\epsilon, \delta)$-unlearning guarantee for model updates with gradient ascent. The unlearned model is further fine-tuned on the remaining samples to maintain its performance. We also propose an attack model to ensure that the unlearned model has effectively removed the influence of forget samples. Extensive empirical evaluation on two large-scale datasets, ImageNet-1K and Places365 highlights the superiority of our approach. To show comparable performance with retrained model, we also show the comparison of a simple AutoEncoder on various baselines on CIFAR-10 dataset.
♻ ☆ Rethinking Neural Combinatorial Optimization for Vehicle Routing Problems with Different Constraint Tightness Degrees
Recent neural combinatorial optimization (NCO) methods have shown promising problem-solving ability without requiring domain-specific expertise. Most existing NCO methods use training and testing data with a fixed constraint value and lack research on the effect of constraint tightness on the performance of NCO methods. This paper takes the capacity-constrained vehicle routing problem (CVRP) as an example to empirically analyze the NCO performance under different tightness degrees of the capacity constraint. Our analysis reveals that existing NCO methods overfit the capacity constraint, and they can only perform satisfactorily on a small range of the constraint values but poorly on other values. To tackle this drawback of existing NCO methods, we develop an efficient training scheme that explicitly considers varying degrees of constraint tightness and proposes a multi-expert module to learn a generally adaptable solving strategy. Experimental results show that the proposed method can effectively overcome the overfitting issue, demonstrating superior performances on the CVRP and CVRP with time windows (CVRPTW) with various constraint tightness degrees.
comment: arXiv admin note: substantial text overlap with arXiv:2505.13904
♻ ☆ Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges
Smart grids are crucial for meeting rising energy demands driven by global population growth and urbanization. By integrating renewable energy sources, they enhance efficiency, reliability, and sustainability. However, ensuring their availability and security requires advanced operational control and safety measures. Although artificial intelligence and machine learning can help assess grid stability, challenges such as data scarcity and cybersecurity threats, particularly adversarial attacks, remain. Data scarcity is a major issue, as obtaining real-world instances of grid instability requires significant expertise, resources, and time. Yet, these instances are critical for testing new research advancements and security mitigations. This paper introduces a novel framework for detecting instability in smart grids using only stable data. It employs a Generative Adversarial Network (GAN) where the generator is designed not to produce near-realistic data but instead to generate Out-Of-Distribution (OOD) samples with respect to the stable class. These OOD samples represent unstable behavior, anomalies, or disturbances that deviate from the stable data distribution. By training exclusively on stable data and exposing the discriminator to OOD samples, our framework learns a robust decision boundary to distinguish stable conditions from any unstable behavior, without requiring unstable data during training. Furthermore, we incorporate an adversarial training layer to enhance resilience against attacks. Evaluated on a real-world dataset, our solution achieves up to 98.1\% accuracy in predicting grid stability and 98.9\% in detecting adversarial attacks. Implemented on a single-board computer, it enables real-time decision-making with an average response time of under 7ms.
♻ ☆ Towards Unsupervised Multi-Agent Reinforcement Learning via Task-Agnostic Exploration
In reinforcement learning, we typically refer to unsupervised pre-training when we aim to pre-train a policy without a priori access to the task specification, i.e. rewards, to be later employed for efficient learning of downstream tasks. In single-agent settings, the problem has been extensively studied and mostly understood. A popular approach, called task-agnostic exploration, casts the unsupervised objective as maximizing the entropy of the state distribution induced by the agent's policy, from which principles and methods follow. In contrast, little is known about it in multi-agent settings, which are ubiquitous in the real world. What are the pros and cons of alternative problem formulations in this setting? How hard is the problem in theory, how can we solve it in practice? In this paper, we address these questions by first characterizing those alternative formulations and highlighting how the problem, even when tractable in theory, is non-trivial in practice. Then, we present a scalable, decentralized, trust-region policy search algorithm to address the problem in practical settings. Finally, we provide numerical validations to both corroborate the theoretical findings and pave the way for unsupervised multi-agent reinforcement learning via task-agnostic exploration in challenging domains, showing that optimizing for a specific objective, namely mixture entropy, provides an excellent trade-off between tractability and performances.
♻ ☆ TrainVerify: Equivalence-Based Verification for Distributed LLM Training
Training large language models (LLMs) at scale requires parallel execution across thousands of devices, incurring enormous computational costs. Yet, these costly distributed trainings are rarely verified, leaving them prone to silent errors and potentially wasting millions of GPU hours. We introduce TrainVerify, a system for verifiable distributed training of LLMs. Given a deep learning model's logical specification as the ground truth, TrainVerify formally verifies that a distributed parallel execution plan is mathematically equivalent to it. Direct verification is notoriously difficult due to the sheer scale of LLMs which often involves billions of variables and highly intricate computation graphs. Therefore, TrainVerify introduces shape-reduction techniques and a stage-wise parallel verification algorithm that significantly reduces complexity while preserving formal correctness. TrainVerify scales to frontier LLMs, including the successful verification of the Llama3 (405B) and DeepSeek-V3 (671B) training plans.
♻ ☆ HeNCler: Node Clustering in Heterophilous Graphs via Learned Asymmetric Similarity
Clustering nodes in heterophilous graphs is challenging as traditional methods assume that effective clustering is characterized by high intra-cluster and low inter-cluster connectivity. To address this, we introduce HeNCler-a novel approach for Heterophilous Node Clustering. HeNCler learns a similarity graph by optimizing a clustering-specific objective based on weighted kernel singular value decomposition. Our approach enables spectral clustering on an asymmetric similarity graph, providing flexibility for both directed and undirected graphs. By solving the primal problem directly, our method overcomes the computational difficulties of traditional adjacency partitioning-based approaches. Experimental results show that HeNCler significantly improves node clustering performance in heterophilous graph settings, highlighting the advantage of its asymmetric graph-learning framework.
comment: Accepted at International Conference on Artificial Neural Networks (ICANN 2025), Special Session on Neural Network for Graphs and Beyond
♻ ☆ Tunable correlation retention: A statistical method for generating synthetic data
We propose a method to generate statistically representative synthetic data from a given dataset. The main goal of our method is for the created data set to mimic the inter--feature correlations present in the original data, while also offering a tunable parameter to influence the privacy level. In particular, our method constructs a statistical map by using the empirical conditional distributions between the features of the original dataset. Part of the tunability is achieved by limiting the depths of conditional distributions that are being used. We describe in detail our algorithms used both in the construction of a statistical map and how to use this map to generate synthetic observations. This approach is tested in three different ways: with a hand calculated example; a manufactured dataset; and a real world energy-related dataset of consumption/production of households in Madeira Island. We evaluate the method by comparing the datasets using the Pearson correlation matrix with different levels of resolution and depths of correlation. These two considerations are being viewed as tunable parameters influencing the resulting datasets fidelity and privacy. The proposed methodology is general in the sense that it does not rely on the used test dataset. We expect it to be applicable in a much broader context than indicated here.
♻ ☆ Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story
Parallel data collection has redefined Reinforcement Learning (RL), unlocking unprecedented efficiency and powering breakthroughs in large-scale real-world applications. In this paradigm, $N$ identical agents operate in $N$ replicas of an environment simulator, accelerating data collection by a factor of $N$. A critical question arises: \textit{Does specializing the policies of the parallel agents hold the key to surpass the $N$ factor acceleration?} In this paper, we introduce a novel learning framework that maximizes the entropy of collected data in a parallel setting. Our approach carefully balances the entropy of individual agents with inter-agent diversity, effectively minimizing redundancies. The latter idea is implemented with a centralized policy gradient method, which shows promise when evaluated empirically against systems of identical agents, as well as synergy with batch RL techniques that can exploit data diversity. Finally, we provide an original concentration analysis that shows faster rates for specialized parallel sampling distributions, which supports our methodology and may be of independent interest.
♻ ☆ Privacy Attacks on Image AutoRegressive Models ICML2025
Image AutoRegressive generation has emerged as a new powerful paradigm with image autoregressive models (IARs) matching state-of-the-art diffusion models (DMs) in image quality (FID: 1.48 vs. 1.58) while allowing for a higher generation speed. However, the privacy risks associated with IARs remain unexplored, raising concerns regarding their responsible deployment. To address this gap, we conduct a comprehensive privacy analysis of IARs, comparing their privacy risks to the ones of DMs as reference points. Concretely, we develop a novel membership inference attack (MIA) that achieves a remarkably high success rate in detecting training images (with a True Positive Rate at False Positive Rate = 1% of 86.38% vs. 6.38% for DMs with comparable attacks). We leverage our novel MIA to provide dataset inference (DI) for IARs, and show that it requires as few as 6 samples to detect dataset membership (compared to 200 for DI in DMs), confirming a higher information leakage in IARs. Finally, we are able to extract hundreds of training data points from an IAR (e.g., 698 from VAR-d30). Our results suggest a fundamental privacy-utility trade-off: while IARs excel in image generation quality and speed, they are empirically significantly more vulnerable to privacy attacks compared to DMs that achieve similar performance. We release the code at https://github.com/sprintml/privacy_attacks_against_iars for reproducibility.
comment: Accepted at ICML2025
♻ ☆ Deep neural networks with ReLU, leaky ReLU, and softplus activation provably overcome the curse of dimensionality for Kolmogorov partial differential equations with Lipschitz nonlinearities in the $L^p$-sense
Recently, several deep learning (DL) methods for approximating high-dimensional partial differential equations (PDEs) have been proposed. The interest that these methods have generated in the literature is in large part due to simulations which appear to demonstrate that such DL methods have the capacity to overcome the curse of dimensionality (COD) for PDEs in the sense that the number of computational operations they require to achieve a certain approximation accuracy $\varepsilon\in(0,\infty)$ grows at most polynomially in the PDE dimension $d\in\mathbb N$ and the reciprocal of $\varepsilon$. While there is thus far no mathematical result that proves that one of such methods is indeed capable of overcoming the COD, there are now a number of rigorous results in the literature that show that deep neural networks (DNNs) have the expressive power to approximate PDE solutions without the COD in the sense that the number of parameters used to describe the approximating DNN grows at most polynomially in both the PDE dimension $d\in\mathbb N$ and the reciprocal of the approximation accuracy $\varepsilon>0$. Roughly speaking, in the literature it is has been proved for every $T>0$ that solutions $u_d\colon [0,T]\times\mathbb R^d\to \mathbb R$, $d\in\mathbb N$, of semilinear heat PDEs with Lipschitz continuous nonlinearities can be approximated by DNNs with ReLU activation at the terminal time in the $L^2$-sense without the COD provided that the initial value functions $\mathbb R^d\ni x\mapsto u_d(0,x)\in\mathbb R$, $d\in\mathbb N$, can be approximated by ReLU DNNs without the COD. It is the key contribution of this work to generalize this result by establishing this statement in the $L^p$-sense with $p\in(0,\infty)$ and by allowing the activation function to be more general covering the ReLU, the leaky ReLU, and the softplus activation functions as special cases.
comment: 52 pages
♻ ☆ Uncertainty Quantification on Graph Learning: A Survey
Graphical models have demonstrated their exceptional capabilities across numerous applications, such as social networks, citation networks, and online recommendation systems. However, their performance, confidence, and trustworthiness are often limited by the inherent randomness in data and the challenges of accurately modeling real-world complexities. There has been increased interest in developing uncertainty quantification (UQ) techniques tailored to graphical models. In this survey, we comprehensively examine existing works on UQ for graphical models, focusing on key aspects such as the sources, representation, handling, and evaluation of uncertainty. This survey distinguishes itself from most existing UQ surveys by specifically concentrating on UQ in graphical models, including probabilistic graphical models (PGMs) and graph neural networks (GNNs). After reviewing sources of uncertainty, we organize the work using two high-level dimensions: uncertainty representation and uncertainty handling. By offering a comprehensive overview of the current landscape, including both established methodologies and emerging trends, we aim to bridge gaps in understanding key challenges and opportunities in UQ for graphical models, hoping to inspire researchers working on graphical models or uncertainty quantification to make further advancements at the cross of the two fields.
♻ ☆ Mixture of Cache-Conditional Experts for Efficient Mobile Device Inference
Mixture of Experts (MoE) LLMs have recently gained attention for their ability to enhance performance by selectively engaging specialized subnetworks or "experts" for each input. However, deploying MoEs on memory-constrained devices remains challenging, particularly when generating tokens sequentially with a batch size of one, as opposed to typical high-throughput settings involving long sequences or large batches. In this work, we optimize MoE on memory-constrained devices where only a subset of expert weights fit in DRAM. We introduce a novel cache-aware routing strategy that leverages expert reuse during token generation to improve cache locality. We evaluate our approach on language modeling, MMLU, and GSM8K benchmarks and present on-device results demonstrating 2$\times$ speedups on mobile devices, offering a flexible, training-free solution to extend MoE's applicability across real-world applications.
comment: Published in Transactions on Machine Learning Research (06/2025)
♻ ☆ SSPS: Self-Supervised Positive Sampling for Robust Self-Supervised Speaker Verification
Self-Supervised Learning (SSL) has led to considerable progress in Speaker Verification (SV). The standard framework uses same-utterance positive sampling and data-augmentation to generate anchor-positive pairs of the same speaker. This is a major limitation, as this strategy primarily encodes channel information from the recording condition, shared by the anchor and positive. We propose a new positive sampling technique to address this bottleneck: Self-Supervised Positive Sampling (SSPS). For a given anchor, SSPS aims to find an appropriate positive, i.e., of the same speaker identity but a different recording condition, in the latent space using clustering assignments and a memory queue of positive embeddings. SSPS improves SV performance for both SimCLR and DINO, reaching 2.57% and 2.53% EER, outperforming SOTA SSL methods on VoxCeleb1-O. In particular, SimCLR-SSPS achieves a 58% EER reduction by lowering intra-speaker variance, providing comparable performance to DINO-SSPS.
comment: accepted at Interspeech 2025
♻ ☆ The Elements of Differentiable Programming
Artificial intelligence has recently experienced remarkable advances, fueled by large models, vast datasets, accelerated hardware, and, last but not least, the transformative power of differentiable programming. This new programming paradigm enables end-to-end differentiation of complex computer programs (including those with control flows and data structures), making gradient-based optimization of program parameters possible. As an emerging paradigm, differentiable programming builds upon several areas of computer science and applied mathematics, including automatic differentiation, graphical models, optimization and statistics. This book presents a comprehensive review of the fundamental concepts useful for differentiable programming. We adopt two main perspectives, that of optimization and that of probability, with clear analogies between the two. Differentiable programming is not merely the differentiation of programs, but also the thoughtful design of programs intended for differentiation. By making programs differentiable, we inherently introduce probability distributions over their execution, providing a means to quantify the uncertainty associated with program outputs.
comment: Draft version 3
♻ ☆ Multi-Continental Healthcare Modelling Using Blockchain-Enabled Federated Learning
One of the biggest challenges of building artificial intelligence (AI) model in the healthcare area is the data sharing. Since healthcare data is private, sensitive, and heterogeneous, collecting sufficient data for modelling is exhausting, costly, and sometimes impossible. In this paper, we propose a framework for global healthcare modelling using datasets from multi-continents (Europe, North America, and Asia) without sharing the local datasets, and choose glucose management as a study model to verify its effectiveness. Technically, blockchain-enabled federated learning is implemented with adaptation to meet the privacy and safety requirements of healthcare data, meanwhile, it rewards honest participation and penalizes malicious activities using its on-chain incentive mechanism. Experimental results show that the proposed framework is effective, efficient, and privacy-preserving. Its prediction accuracy consistently outperforms models trained on limited personal data and achieves comparable or even slightly better results than centralized training in certain scenarios, all while preserving data privacy. This work paves the way for international collaborations on healthcare projects, where additional data is crucial for reducing bias and providing benefits to humanity.
comment: Accepted by IEEE Global Blockchain Conference, 2025
♻ ☆ Meta-Reasoner: Dynamic Guidance for Optimized Inference-time Reasoning in Large Language Models
Large Language Models (LLMs) increasingly rely on prolonged reasoning chains to solve complex tasks. However, this trial-and-error approach often leads to high computational overhead and error propagation, where early mistakes can derail subsequent steps. To address these issues, we introduce Meta-Reasoner, a framework that dynamically optimizes inference-time reasoning by enabling LLMs to "think about how to think." Drawing inspiration from human meta-cognition and dual-process theory, Meta-Reasoner operates as a strategic advisor, decoupling high-level guidance from step-by-step generation. It employs contextual multi-armed bandits to iteratively evaluate reasoning progress and select optimal strategies (e.g., backtrack, clarify ambiguity, restart from scratch, or propose alternative approaches), and reallocates computational resources toward the most promising paths. Our evaluations on mathematical reasoning and puzzles highlight the potential of dynamic reasoning chains to overcome inherent challenges in the LLM reasoning process and also show promise in broader applications, offering a scalable and adaptable solution for reasoning-intensive tasks.
♻ ☆ Online Discovery of Simulation Models for Evolving Business Processes (Extended Version)
Business Process Simulation (BPS) refers to techniques designed to replicate the dynamic behavior of a business process. Many approaches have been proposed to automatically discover simulation models from historical event logs, reducing the cost and time to manually design them. However, in dynamic business environments, organizations continuously refine their processes to enhance efficiency, reduce costs, and improve customer satisfaction. Existing techniques to process simulation discovery lack adaptability to real-time operational changes. In this paper, we propose a streaming process simulation discovery technique that integrates Incremental Process Discovery with Online Machine Learning methods. This technique prioritizes recent data while preserving historical information, ensuring adaptation to evolving process dynamics. Experiments conducted on four different event logs demonstrate the importance in simulation of giving more weight to recent data while retaining historical knowledge. Our technique not only produces more stable simulations but also exhibits robustness in handling concept drift, as highlighted in one of the use cases.
♻ ☆ M3D: Manifold-based Domain Adaptation with Dynamic Distribution for Non-Deep Transfer Learning in Cross-subject and Cross-session EEG-based Emotion Recognition
Emotion decoding using Electroencephalography (EEG)-based affective brain-computer interfaces (aBCIs) plays a crucial role in affective computing but is limited by challenges such as EEG's non-stationarity, individual variability, and the high cost of large labeled datasets. While deep learning methods are effective, they require extensive computational resources and large data volumes, limiting their practical application. To overcome these issues, we propose Manifold-based Domain Adaptation with Dynamic Distribution (M3D), a lightweight, non-deep transfer learning framework. M3D consists of four key modules: manifold feature transformation, dynamic distribution alignment, classifier learning, and ensemble learning. The data is mapped to an optimal Grassmann manifold space, enabling dynamic alignment of source and target domains. This alignment is designed to prioritize both marginal and conditional distributions, improving adaptation efficiency across diverse datasets. In classifier learning, the principle of structural risk minimization is applied to build robust classification models. Additionally, dynamic distribution alignment iteratively refines the classifier. The ensemble learning module aggregates classifiers from different optimization stages to leverage diversity and enhance prediction accuracy. M3D is evaluated on two EEG emotion recognition datasets using two validation protocols (cross-subject single-session and cross-subject cross-session) and a clinical EEG dataset for Major Depressive Disorder (MDD). Experimental results show that M3D outperforms traditional non-deep learning methods with a 4.47% average improvement and achieves deep learning-level performance with reduced data and computational requirements, demonstrating its potential for real-world aBCI applications.
♻ ☆ Improved and Explainable Cervical Cancer Classification using Ensemble Pooling of Block Fused Descriptors
Cervical cancer is the second most common cancer in women and causes high death rates. Earlier models for detecting cervical cancer had limited success. In this work, we propose new models that substantially outperform previous models. Previous studies show that pretrained ResNets extract features from cervical cancer images well. Hence, our first model involves working with three ResNets (50, 101, 152). All the existing works use only the last convolution block of their respective ResNet, which captures abstract features (e.g., shapes, objects). However, we believe that detailed features (e.g., color, edges, texture), coming from earlier convolution blocks, are equally important for cancer (specifically cervical cancer) classification. Since now the number of features become large, we use a novel feature selection technique of Global Max Pooling for detailed features and Global Average Pooling for abstract features. Hence, our second model consists of the resulting Cascaded Block Fused variants of the three ResNets. To improve the performance further, we combine and normalize the features of the three standard ResNets as well as our proposed three Cascaded Block Fused ResNets. This type of combination is also new in cancer classification domain (also in cervical cancer), and results in our third and fourth models, respectively. We use a linear SVM for classification. We exhaustively perform experiments on two public datasets, IARC and AnnoCerv, achieving an average performance of 97.92% and 92.97% surpassing standard ResNets performance of 90.89% and 87.97%, respectively. We outperform the competitive approach available on IARC dataset with an average gain of 13.20%, while no prior competitive work available on AnnoCerv. Additionally, we introduce a novel SHAP+LIME explainability method, accurately identifying the cancerous region in 97% of cases.
comment: 26 Pages, 10 figures, and 8 tables
♻ ☆ Controllable Video Generation with Provable Disentanglement
Controllable video generation remains a significant challenge, despite recent advances in generating high-quality and consistent videos. Most existing methods for controlling video generation treat the video as a whole, neglecting intricate fine-grained spatiotemporal relationships, which limits both control precision and efficiency. In this paper, we propose Controllable Video Generative Adversarial Networks (CoVoGAN) to disentangle the video concepts, thus facilitating efficient and independent control over individual concepts. Specifically, following the minimal change principle, we first disentangle static and dynamic latent variables. We then leverage the sufficient change property to achieve component-wise identifiability of dynamic latent variables, enabling disentangled control of video generation. To establish the theoretical foundation, we provide a rigorous analysis demonstrating the identifiability of our approach. Building on these theoretical insights, we design a Temporal Transition Module to disentangle latent dynamics. To enforce the minimal change principle and sufficient change property, we minimize the dimensionality of latent dynamic variables and impose temporal conditional independence. To validate our approach, we integrate this module as a plug-in for GANs. Extensive qualitative and quantitative experiments on various video generation benchmarks demonstrate that our method significantly improves generation quality and controllability across diverse real-world scenarios.
♻ ☆ ANOVA-boosting for Random Fourier Features
We propose two algorithms for boosting random Fourier feature models for approximating high-dimensional functions. These methods utilize the classical and generalized analysis of variance (ANOVA) decomposition to learn low-order functions, where there are few interactions between the variables. Our algorithms are able to find an index set of important input variables and variable interactions reliably. Furthermore, we generalize already existing random Fourier feature models to an ANOVA setting, where terms of different order can be used. Our algorithms have the advantage of interpretability, meaning that the influence of every input variable is known in the learned model, even for dependent input variables. We give theoretical as well as numerical results that our algorithms perform well for sensitivity analysis. The ANOVA-boosting step reduces the approximation error of existing methods significantly.
♻ ☆ Do Vendi Scores Converge with Finite Samples? Truncated Vendi Score for Finite-Sample Convergence Guarantees
Evaluating the diversity of generative models without reference data poses methodological challenges. The reference-free Vendi and RKE scores address this by quantifying the diversity of generated data using matrix-based entropy measures. Among these two, the Vendi score is typically computed via the eigendecomposition of an $n \times n$ kernel matrix constructed from n generated samples. However, the prohibitive computational cost of eigendecomposition for large $n$ often limits the number of samples used to fewer than 20,000. In this paper, we investigate the statistical convergence of the Vendi and RKE scores under restricted sample sizes. We numerically demonstrate that, in general, the Vendi score computed with standard sample sizes below 20,000 may not converge to its asymptotic value under infinite sampling. To address this, we introduce the $t$-truncated Vendi score by truncating the eigenspectrum of the kernel matrix, which is provably guaranteed to converge to its population limit with $n=\mathcal{O}(t)$ samples. We further show that existing Nystr\"om and FKEA approximation methods converge to the asymptotic limit of the truncated Vendi score. In contrast to the Vendi score, we prove that the RKE score enjoys universal convergence guarantees across all kernel functions. We conduct several numerical experiments to illustrate the concentration of Nystr\"om and FKEA computed Vendi scores around the truncated Vendi score, and we analyze how the truncated Vendi and RKE scores correlate with the diversity of image and text data. The code is available at https://github.com/aziksh-ospanov/truncated-vendi.
♻ ☆ ReDit: Reward Dithering for Improved LLM Policy Optimization
DeepSeek-R1 has successfully enhanced Large Language Model (LLM) reasoning capabilities through its rule-based reward system. While it's a ''perfect'' reward system that effectively mitigates reward hacking, such reward functions are often discrete. Our experimental observations suggest that discrete rewards can lead to gradient anomaly, unstable optimization, and slow convergence. To address this issue, we propose ReDit (Reward Dithering), a method that dithers the discrete reward signal by adding simple random noise. With this perturbed reward, exploratory gradients are continuously provided throughout the learning process, enabling smoother gradient updates and accelerating convergence. The injected noise also introduces stochasticity into flat reward regions, encouraging the model to explore novel policies and escape local optima. Experiments across diverse tasks demonstrate the effectiveness and efficiency of ReDit. On average, ReDit achieves performance comparable to vanilla GRPO with only approximately 10% the training steps, and furthermore, still exhibits a 4% performance improvement over vanilla GRPO when trained for a similar duration. Visualizations confirm significant mitigation of gradient issues with ReDit. Moreover, theoretical analyses are provided to further validate these advantages.
comment: 10 pages, 15 figures
♻ ☆ Flopping for FLOPs: Leveraging equivariance for computational efficiency ICML 2025
Incorporating geometric invariance into neural networks enhances parameter efficiency but typically increases computational costs. This paper introduces new equivariant neural networks that preserve symmetry while maintaining a comparable number of floating-point operations (FLOPs) per parameter to standard non-equivariant networks. We focus on horizontal mirroring (flopping) invariance, common in many computer vision tasks. The main idea is to parametrize the feature spaces in terms of mirror-symmetric and mirror-antisymmetric features, i.e., irreps of the flopping group. This decomposes the linear layers to be block-diagonal, requiring half the number of FLOPs. Our approach reduces both FLOPs and wall-clock time, providing a practical solution for efficient, scalable symmetry-aware architectures.
comment: ICML 2025
♻ ☆ Sum-of-Parts: Self-Attributing Neural Networks with End-to-End Learning of Feature Groups ICML2025
Self-attributing neural networks (SANNs) present a potential path towards interpretable models for high-dimensional problems, but often face significant trade-offs in performance. In this work, we formally prove a lower bound on errors of per-feature SANNs, whereas group-based SANNs can achieve zero error and thus high performance. Motivated by these insights, we propose Sum-of-Parts (SOP), a framework that transforms any differentiable model into a group-based SANN, where feature groups are learned end-to-end without group supervision. SOP achieves state-of-the-art performance for SANNs on vision and language tasks, and we validate that the groups are interpretable on a range of quantitative and semantic metrics. We further validate the utility of SOP explanations in model debugging and cosmological scientific discovery. Our code is available at https://github.com/BrachioLab/sop
comment: ICML2025 Camera Ready
♻ ☆ LAuReL: Learned Augmented Residual Layer
One of the core pillars of efficient deep learning methods is architectural improvements such as the residual/skip connection, which has led to significantly better model convergence and quality. Since then the residual connection has become ubiquitous in not just convolutional neural networks but also transformer-based architectures, the backbone of LLMs. In this paper we introduce Learned Augmented Residual Layer (LAuReL) -- a novel generalization of the canonical residual connection -- with the goal to be an in-situ replacement of the latter while outperforming on both model quality and footprint metrics. Our experiments show that using LAuReL can help boost performance for both vision and language models. For example, on the ResNet-50, ImageNet 1K task, it achieves 60% of the gains from adding an extra layer, while only adding 0.003% more parameters, and matches it while adding 2.6 times fewer parameters. Similarly, when pre-training 1B and 4B parameter LLMs, LAuReL improves performance on a variety of challenging downstream evaluation tasks by 2.54% to 20.05%, while adding only 0.012% and 0.1% additional parameters, respectively.
comment: Accepted at 42nd International Conference on Machine Learning (2025), Vancouver, Canada
♻ ☆ SycnMapV2: Robust and Adaptive Unsupervised Segmentation
Human vision excels at segmenting visual cues without the need for explicit training, and it remains remarkably robust even as noise severity increases. In contrast, existing AI algorithms struggle to maintain accuracy under similar conditions. Here, we present SyncMapV2, the first to solve unsupervised segmentation with state-of-the-art robustness. SyncMapV2 exhibits a minimal drop in mIoU, only 0.01%, under digital corruption, compared to a 23.8% drop observed in SOTA methods. This superior performance extends across various types of corruption: noise (7.3% vs. 37.7%), weather (7.5% vs. 33.8%), and blur (7.0% vs. 29.5%). Notably, SyncMapV2 accomplishes this without any robust training, supervision, or loss functions. It is based on a learning paradigm that uses self-organizing dynamical equations combined with concepts from random networks. Moreover, unlike conventional methods that require re-initialization for each new input, SyncMapV2 adapts online, mimicking the continuous adaptability of human vision. Thus, we go beyond the accurate and robust results, and present the first algorithm that can do all the above online, adapting to input rather than re-initializing. In adaptability tests, SyncMapV2 demonstrates near-zero performance degradation, which motivates and fosters a new generation of robust and adaptive intelligence in the near future.
♻ ☆ Information-Theoretic Proofs for Diffusion Sampling
This paper provides an elementary, self-contained analysis of diffusion-based sampling methods for generative modeling. In contrast to existing approaches that rely on continuous-time processes and then discretize, our treatment works directly with discrete-time stochastic processes and yields precise non-asymptotic convergence guarantees under broad assumptions. The key insight is to couple the sampling process of interest with an idealized comparison process that has an explicit Gaussian-convolution structure. We then leverage simple identities from information theory, including the I-MMSE relationship, to bound the discrepancy (in terms of the Kullback-Leibler divergence) between these two discrete-time processes. In particular, we show that, if the diffusion step sizes are chosen sufficiently small and one can approximate certain conditional mean estimators well, then the sampling distribution is provably close to the target distribution. Our results also provide a transparent view on how to accelerate convergence by using additional randomness in each step to match higher-order moments in the comparison process.
♻ ☆ DF2: Distribution-Free Decision-Focused Learning
Decision-focused learning (DFL), which differentiates through the KKT conditions, has recently emerged as a powerful approach for predict-then-optimize problems. However, under probabilistic settings, DFL faces three major bottlenecks: model mismatch error, sample average approximation error, and gradient approximation error. Model mismatch error stems from the misalignment between the model's parameterized predictive distribution and the true probability distribution. Sample average approximation error arises when using finite samples to approximate the expected optimization objective. Gradient approximation error occurs when the objectives are non-convex and KKT conditions cannot be directly applied. In this paper, we present DF2, the first distribution-free decision-focused learning method designed to mitigate these three bottlenecks. Rather than depending on a task-specific forecaster that requires precise model assumptions, our method directly learns the expected optimization function during training. To efficiently learn this function in a data-driven manner, we devise an attention-based model architecture inspired by the distribution-based parameterization of the expected objective. We evaluate DF2 on two synthetic problems and three real-world problems, demonstrating the effectiveness of DF2. Our code is available at: https://github.com/Lingkai-Kong/DF2.
comment: UAI 2025
♻ ☆ Compound Fault Diagnosis for Train Transmission Systems Using Deep Learning with Fourier-enhanced Representation
Fault diagnosis prevents train disruptions by ensuring the stability and reliability of their transmission systems. Data-driven fault diagnosis models have several advantages over traditional methods in terms of dealing with non-linearity, adaptability, scalability, and automation. However, existing data-driven models are trained on separate transmission components and only consider single faults due to the limitations of existing datasets. These models will perform worse in scenarios where components operate with each other at the same time, affecting each component's vibration signals. To address some of these challenges, we propose a frequency domain representation and a 1-dimensional convolutional neural network for compound fault diagnosis and applied it on the PHM Beijing 2024 dataset, which includes 21 sensor channels, 17 single faults, and 42 compound faults from 4 interacting components, that is, motor, gearbox, left axle box, and right axle box. Our proposed model achieved 97.67% and 93.93% accuracies on the test set with 17 single faults and on the test set with 42 compound faults, respectively.
comment: Accepted for the 2025 IEEE Conference on Prognostics and Health Management (ICPHM 2025)
♻ ☆ Process Reward Models That Think
Step-by-step verifiers -- also known as process reward models (PRMs) -- are a key ingredient for test-time scaling. PRMs require step-level supervision, making them expensive to train. This work aims to build data-efficient PRMs as verbalized step-wise reward models that verify every step in the solution by generating a verification chain-of-thought (CoT). We propose ThinkPRM, a long CoT verifier fine-tuned on orders of magnitude fewer process labels than those required by discriminative PRMs. Our approach capitalizes on the inherent reasoning abilities of long CoT models, and outperforms LLM-as-a-Judge and discriminative verifiers -- using only 1% of the process labels in PRM800K -- across several challenging benchmarks. Specifically, ThinkPRM beats the baselines on ProcessBench, MATH-500, and AIME '24 under best-of-N selection and reward-guided search. In an out-of-domain evaluation on a subset of GPQA-Diamond and LiveCodeBench, our PRM surpasses discriminative verifiers trained on the full PRM800K by 8% and 4.5%, respectively. Lastly, under the same token budget, ThinkPRM scales up verification compute more effectively compared to LLM-as-a-Judge, outperforming it by 7.2% on a subset of ProcessBench. Our work highlights the value of generative, long CoT PRMs that can scale test-time compute for verification while requiring minimal supervision for training. Our code, data, and models will be released at https://github.com/mukhal/thinkprm.
♻ ☆ Learning Treatment Representations for Downstream Instrumental Variable Regression
Traditional instrumental variable (IV) estimators face a fundamental constraint: they can only accommodate as many endogenous treatment variables as available instruments. This limitation becomes particularly challenging in settings where the treatment is presented in a high-dimensional and unstructured manner (e.g. descriptions of patient treatment pathways in a hospital). In such settings, researchers typically resort to applying unsupervised dimension reduction techniques to learn a low-dimensional treatment representation prior to implementing IV regression analysis. We show that such methods can suffer from substantial omitted variable bias due to implicit regularization in the representation learning step. We propose a novel approach to construct treatment representations by explicitly incorporating instrumental variables during the representation learning process. Our approach provides a framework for handling high-dimensional endogenous variables with limited instruments. We demonstrate both theoretically and empirically that fitting IV models on these instrument-informed representations ensures identification of directions that optimize outcome prediction. Our experiments show that our proposed methodology improves upon the conventional two-stage approaches that perform dimension reduction without incorporating instrument information.
♻ ☆ Leveraging Large Language Models to Democratize Access to Costly Datasets for Academic Research
Unequal access to costly datasets essential for empirical research has long hindered researchers from disadvantaged institutions, limiting their ability to contribute to their fields and advance their careers. Recent breakthroughs in Large Language Models (LLMs) have the potential to democratize data access by automating data collection from unstructured sources. We develop and evaluate a novel methodology using GPT-4o-mini within a Retrieval-Augmented Generation (RAG) framework to collect data from corporate disclosures. Our approach achieves human-level accuracy in collecting CEO pay ratios from approximately 10,000 proxy statements and Critical Audit Matters (CAMs) from more than 12,000 10-K filings, with LLM processing times of 9 and 40 minutes respectively, each at a cost under $10. This stands in stark contrast to the hundreds of hours needed for manual collection or the thousands of dollars required for commercial database subscriptions. To foster a more inclusive research community by empowering researchers with limited resources to explore new avenues of inquiry, we share our methodology and the resulting datasets.
comment: 52 pagegs, 5 figures, 5 tables
♻ ☆ SASSHA: Sharpness-aware Adaptive Second-order Optimization with Stable Hessian Approximation ICML 2025
Approximate second-order optimization methods often exhibit poorer generalization compared to first-order approaches. In this work, we look into this issue through the lens of the loss landscape and find that existing second-order methods tend to converge to sharper minima compared to SGD. In response, we propose Sassha, a novel second-order method designed to enhance generalization by explicitly reducing sharpness of the solution, while stabilizing the computation of approximate Hessians along the optimization trajectory. In fact, this sharpness minimization scheme is crafted also to accommodate lazy Hessian updates, so as to secure efficiency besides flatness. To validate its effectiveness, we conduct a wide range of standard deep learning experiments where Sassha demonstrates its outstanding generalization performance that is comparable to, and mostly better than, other methods. We provide a comprehensive set of analyses including convergence, robustness, stability, efficiency, and cost.
comment: ICML 2025
♻ ☆ Understanding Reasoning in Thinking Language Models via Steering Vectors
Recent advances in large language models (LLMs) have led to the development of thinking language models that generate extensive internal reasoning chains before producing responses. While these models achieve improved performance, controlling their reasoning processes remains challenging. This work presents a steering approach for thinking LLMs by analyzing and manipulating specific reasoning behaviors in DeepSeek-R1-Distill models. Through a systematic experiment on 500 tasks across 10 diverse categories, we identify several reasoning behaviors exhibited by thinking models, including expressing uncertainty, generating examples for hypothesis validation, and backtracking in reasoning chains. We demonstrate that these behaviors are mediated by linear directions in the model's activation space and can be controlled using steering vectors. By extracting and applying these vectors, we provide a method to modulate specific aspects of the model's reasoning process, such as its tendency to backtrack or express uncertainty. Our approach offers practical tools for steering reasoning processes in thinking models in a controlled and interpretable manner. We validate our steering method using three DeepSeek-R1-Distill models, demonstrating consistent control across different model architectures.
♻ ☆ A General Framework for Property-Driven Machine Learning
Neural networks have been shown to frequently fail to learn critical safety and correctness properties purely from data, highlighting the need for training methods that directly integrate logical specifications. While adversarial training can be used to improve robustness to small perturbations within $\epsilon$-cubes, domains other than computer vision -- such as control systems and natural language processing -- may require more flexible input region specifications via generalised hyper-rectangles. Differentiable logics offer a way to encode arbitrary logical constraints as additional loss terms that guide the learning process towards satisfying these constraints. In this paper, we investigate how these two complementary approaches can be unified within a single framework for property-driven machine learning, as a step toward effective formal verification of neural networks. We show that well-known properties from the literature are subcases of this general approach, and we demonstrate its practical effectiveness on a case study involving a neural network controller for a drone system. Our framework is made publicly available at https://github.com/tflinkow/property-driven-ml.
comment: 24 pages, 4 tables, 4 figures
♻ ☆ Limits of Discrete Energy of Families of Increasing Sets
The Hausdorff dimension of a set can be detected using the Riesz energy. Here, we consider situations where a sequence of points, $\{x_n\}$, ``fills in'' a set $E \subset \mathbb{R}^d$ in an appropriate sense and investigate the degree to which the discrete analog to the Riesz energy of these sets can be used to bound the Hausdorff dimension of $E$. We also discuss applications to data science and Erd\H{o}s/Falconer type problems.
♻ ☆ Iterative Minimax Games with Coupled Linear Constraints
The study of nonconvex minimax games has gained significant momentum in machine learning and decision science communities due to their fundamental connections to adversarial training scenarios. This work develops a primal-dual alternating proximal gradient (PDAPG) algorithm framework for resolving iterative minimax games featuring nonsmooth nonconvex objectives subject to coupled linear constraints. We establish rigorous convergence guarantees for both nonconvex-strongly concave and nonconvex-concave game configurations, demonstrating that PDAPG achieves an $\varepsilon$-stationary solution within $\mathcal{O}\left( \varepsilon ^{-2} \right)$ iterations for strongly concave settings and $\mathcal{O}\left( \varepsilon ^{-4} \right)$ iterations for concave scenarios. Our analysis provides the first known iteration complexity bounds for this class of constrained minimax games, particularly addressing the critical challenge of coupled linear constraints that induce inherent interdependencies among strategy variables. The proposed game-theoretic framework advances existing solution methodologies by simultaneously handling nonsmooth components and coordinated constraint structures through alternating primal-dual updates.
♻ ☆ Identifying Heterogeneity in Distributed Learning
We study methods for identifying heterogeneous parameter components in distributed M-estimation with minimal data transmission. One is based on a re-normalized Wald test, which is shown to be consistent as long as the number of distributed data blocks $K$ is of a smaller order of the minimum block sample size and the level of heterogeneity is dense. The second one is an extreme contrast test (ECT) based on the difference between the largest and smallest component-wise estimated parameters among data blocks. By introducing a sample splitting procedure, the ECT can avoid the bias accumulation arising from the M-estimation procedures, and exhibits consistency for $K$ being much larger than the sample size while the heterogeneity is sparse. The ECT procedure is easy to operate and communication-efficient. A combination of the Wald and the extreme contrast tests is formulated to attain more robust power under varying levels of sparsity of the heterogeneity. We also conduct intensive numerical experiments to compare the family-wise error rate (FWER) and the power of the proposed methods. Additionally, we conduct a case study to present the implementation and validity of the proposed methods.
♻ ☆ The Alignment Trap: Complexity Barriers
This paper argues that AI alignment is not merely difficult, but is founded on a fundamental logical contradiction. We first establish The Enumeration Paradox: we use machine learning precisely because we cannot enumerate all necessary safety rules, yet making ML safe requires examples that can only be generated from the very enumeration we admit is impossible. This paradox is then confirmed by a set of five independent mathematical proofs, or "pillars of impossibility." Our main results show that: (1) Geometric Impossibility: The set of safe policies has measure zero, a necessary consequence of projecting infinite-dimensional world-context requirements onto finite-dimensional models. (2) Computational Impossibility: Verifying a policy's safety is coNP-complete, even for non-zero error tolerances. (3) Statistical Impossibility: The training data required for safety (abundant examples of rare disasters) is a logical contradiction and thus unobtainable. (4) Information-Theoretic Impossibility: Safety rules contain more incompressible, arbitrary information than any feasible network can store. (5) Dynamic Impossibility: The optimization process for increasing AI capability is actively hostile to safety, as the gradients for the two objectives are generally anti-aligned. Together, these results demonstrate that the pursuit of safe, highly capable AI is not a matter of overcoming technical hurdles, but of confronting fundamental, interlocking barriers. The paper concludes by presenting a strategic trilemma that these impossibilities force upon the field. A formal verification of the core theorems in Lean4 is currently in progress.
comment: 31 Pages, 4 Figures. Substantial revision. Restructured around the Enumeration Paradox and Five Pillars of Impossibility. Core mathematical results unchanged but significantly expanded. Added new impossibility proofs from statistical, information-theoretic, and dynamic perspectives
♻ ☆ Neural network-based Godunov corrections for approximate Riemann solvers using bi-fidelity learning
The Riemann problem is fundamental in the computational modeling of hyperbolic partial differential equations, enabling the development of stable and accurate upwind schemes. While exact solvers provide robust upwinding fluxes, their high computational cost necessitates approximate solvers. Although approximate solvers achieve accuracy in many scenarios, they produce inaccurate solutions in certain cases. To overcome this limitation, we propose constructing neural network-based surrogate models, trained using supervised learning, designed to map interior and exterior conservative state variables to the corresponding exact flux. Specifically, we propose two distinct approaches: one utilizing a vanilla neural network and the other employing a bi-fidelity neural network. The performance of the proposed approaches is demonstrated through applications to one-dimensional and two-dimensional partial differential equations, showcasing their robustness and accuracy.
comment: 22 pages, 17 figures
♻ ☆ Evaluating Long Range Dependency Handling in Code Generation LLMs
As language models support larger and larger context sizes, evaluating their ability to make effective use of that context becomes increasingly important. We analyze the ability of several code generation models to handle long range dependencies using a suite of multi-step key retrieval tasks in context windows up to 8k tokens in length. The tasks progressively increase in difficulty and allow more nuanced evaluation of model capabilities than tests like the popular needle-in-the-haystack test. We find that performance degrades significantly for many models (up to 2x) when a function references another function that is defined later in the prompt. We also observe that models that use sliding window attention mechanisms have difficulty handling references further than the size of a single window. We perform simple prompt modifications using call graph information to improve multi-step retrieval performance up to 3x. Our analysis highlights ways that long-context performance needs deeper consideration beyond retrieval of single facts within a document.
comment: 36 pages, 18 figures
♻ ☆ Towards Better Benchmark Datasets for Inductive Knowledge Graph Completion KDD'25
Knowledge Graph Completion (KGC) attempts to predict missing facts in a Knowledge Graph (KG). Recently, there's been an increased focus on designing KGC methods that can excel in the inductive setting, where a portion or all of the entities and relations seen in inference are unobserved during training. Numerous benchmark datasets have been proposed for inductive KGC, all of which are subsets of existing KGs used for transductive KGC. However, we find that the current procedure for constructing inductive KGC datasets inadvertently creates a shortcut that can be exploited even while disregarding the relational information. Specifically, we observe that the Personalized PageRank (PPR) score can achieve strong or near SOTA performance on most datasets. In this paper, we study the root cause of this problem. Using these insights, we propose an alternative strategy for constructing inductive KGC datasets that helps mitigate the PPR shortcut. We then benchmark multiple popular methods using the newly constructed datasets and analyze their performance. The new benchmark datasets help promote a better understanding of the capabilities and challenges of inductive KGC by removing any shortcuts that obfuscate performance. The code and dataset and can be found at https://github.com/HarryShomer/Better-Inductive-KGC.
comment: KDD'25 Datasets & Benchmark Track
♻ ☆ DRO-Augment Framework: Robustness by Synergizing Wasserstein Distributionally Robust Optimization and Data Augmentation
In many real-world applications, ensuring the robustness and stability of deep neural networks (DNNs) is crucial, particularly for image classification tasks that encounter various input perturbations. While data augmentation techniques have been widely adopted to enhance the resilience of a trained model against such perturbations, there remains significant room for improvement in robustness against corrupted data and adversarial attacks simultaneously. To address this challenge, we introduce DRO-Augment, a novel framework that integrates Wasserstein Distributionally Robust Optimization (W-DRO) with various data augmentation strategies to improve the robustness of the models significantly across a broad spectrum of corruptions. Our method outperforms existing augmentation methods under severe data perturbations and adversarial attack scenarios while maintaining the accuracy on the clean datasets on a range of benchmark datasets, including but not limited to CIFAR-10-C, CIFAR-100-C, MNIST, and Fashion-MNIST. On the theoretical side, we establish novel generalization error bounds for neural networks trained using a computationally efficient, variation-regularized loss function closely related to the W-DRO problem.
comment: 26 pages,3 figures
♻ ☆ Scalable Machine Learning Algorithms using Path Signatures
The interface between stochastic analysis and machine learning is a rapidly evolving field, with path signatures - iterated integrals that provide faithful, hierarchical representations of paths - offering a principled and universal feature map for sequential and structured data. Rooted in rough path theory, path signatures are invariant to reparameterization and well-suited for modelling evolving dynamics, long-range dependencies, and irregular sampling - common challenges in real-world time series and graph data. This thesis investigates how to harness the expressive power of path signatures within scalable machine learning pipelines. It introduces a suite of models that combine theoretical robustness with computational efficiency, bridging rough path theory with probabilistic modelling, deep learning, and kernel methods. Key contributions include: Gaussian processes with signature kernel-based covariance functions for uncertainty-aware time series modelling; the Seq2Tens framework, which employs low-rank tensor structure in the weight space for scalable deep modelling of long-range dependencies; and graph-based models where expected signatures over graphs induce hypo-elliptic diffusion processes, offering expressive yet tractable alternatives to standard graph neural networks. Further developments include Random Fourier Signature Features, a scalable kernel approximation with theoretical guarantees, and Recurrent Sparse Spectrum Signature Gaussian Processes, which combine Gaussian processes, signature kernels, and random features with a principled forgetting mechanism for multi-horizon time series forecasting with adaptive context length. We hope this thesis serves as both a methodological toolkit and a conceptual bridge, and provides a useful reference for the current state of the art in scalable, signature-based learning for sequential and structured data.
comment: PhD thesis
♻ ☆ In-Context Learning for Gradient-Free Receiver Adaptation: Principles, Applications, and Theory
In recent years, deep learning has facilitated the creation of wireless receivers capable of functioning effectively in conditions that challenge traditional model-based designs. Leveraging programmable hardware architectures, deep learning-based receivers offer the potential to dynamically adapt to varying channel environments. However, current adaptation strategies, including joint training, hypernetwork-based methods, and meta-learning, either demonstrate limited flexibility or necessitate explicit optimization through gradient descent. This paper presents gradient-free adaptation techniques rooted in the emerging paradigm of in-context learning (ICL). We review architectural frameworks for ICL based on Transformer models and structured state-space models (SSMs), alongside theoretical insights into how sequence models effectively learn adaptation from contextual information. Further, we explore the application of ICL to cell-free massive MIMO networks, providing both theoretical analyses and empirical evidence. Our findings indicate that ICL represents a principled and efficient approach to real-time receiver adaptation using pilot signals and auxiliary contextual information-without requiring online retraining.
♻ ☆ Follow-the-Perturbed-Leader Approaches Best-of-Both-Worlds for the m-Set Semi-Bandit Problems
We consider a common case of the combinatorial semi-bandit problem, the $m$-set semi-bandit, where the learner exactly selects $m$ arms from the total $d$ arms. In the adversarial setting, the best regret bound, known to be $\mathcal{O}(\sqrt{nmd})$ for time horizon $n$, is achieved by the well-known Follow-the-Regularized-Leader (FTRL) policy. However, this requires to explicitly compute the arm-selection probabilities via optimizing problems at each time step and sample according to them. This problem can be avoided by the Follow-the-Perturbed-Leader (FTPL) policy, which simply pulls the $m$ arms that rank among the $m$ smallest (estimated) loss with random perturbation. In this paper, we show that FTPL with a Fr\'echet perturbation also enjoys the near optimal regret bound $\mathcal{O}(\sqrt{nm}(\sqrt{d\log(d)}+m^{5/6}))$ in the adversarial setting and approaches best-of-both-world regret bounds, i.e., achieves a logarithmic regret for the stochastic setting. Moreover, our lower bounds show that the extra factors are unavoidable with our approach; any improvement would require a fundamentally different and more challenging method.
♻ ☆ MaizeField3D: A Curated 3D Point Cloud and Procedural Model Dataset of Field-Grown Maize from a Diversity Panel
The development of artificial intelligence (AI) and machine learning (ML) based tools for 3D phenotyping, especially for maize, has been limited due to the lack of large and diverse 3D datasets. 2D image datasets fail to capture essential structural details such as leaf architecture, plant volume, and spatial arrangements that 3D data provide. To address this limitation, we present MaizeField3D (https://baskargroup.github.io/MaizeField3D/), a curated dataset of 3D point clouds of field-grown maize plants from a diverse genetic panel, designed to be AI-ready for advancing agricultural research. Our dataset includes 1,045 high-quality point clouds of field-grown maize collected using a terrestrial laser scanner (TLS). Point clouds of 520 plants from this dataset were segmented and annotated using a graph-based segmentation method to isolate individual leaves and stalks, ensuring consistent labeling across all samples. This labeled data was then used for fitting procedural models that provide a structured parametric representation of the maize plants. The leaves of the maize plants in the procedural models are represented using Non-Uniform Rational B-Spline (NURBS) surfaces that were generated using a two-step optimization process combining gradient-free and gradient-based methods. We conducted rigorous manual quality control on all datasets, correcting errors in segmentation, ensuring accurate leaf ordering, and validating metadata annotations. The dataset also includes metadata detailing plant morphology and quality, alongside multi-resolution subsampled point cloud data (100k, 50k, 10k points), which can be readily used for different downstream computational tasks. MaizeField3D will serve as a comprehensive foundational dataset for AI-driven phenotyping, plant structural analysis, and 3D applications in agricultural research.
comment: Elvis Kimara and Mozhgan Hadadi contributed equally to this work
♻ ☆ Proofs as Explanations: Short Certificates for Reliable Predictions
We consider a model for explainable AI in which an explanation for a prediction $h(x)=y$ consists of a subset $S'$ of the training data (if it exists) such that all classifiers $h' \in H$ that make at most $b$ mistakes on $S'$ predict $h'(x)=y$. Such a set $S'$ serves as a proof that $x$ indeed has label $y$ under the assumption that (1) the target function $h^\star$ belongs to $H$, and (2) the set $S$ contains at most $b$ corrupted points. For example, if $b=0$ and $H$ is the family of linear classifiers in $\mathbb{R}^d$, and if $x$ lies inside the convex hull of the positive data points in $S$ (and hence every consistent linear classifier labels $x$ as positive), then Carath\'eodory's theorem states that $x$ lies inside the convex hull of $d+1$ of those points. So, a set $S'$ of size $d+1$ could be released as an explanation for a positive prediction, and would serve as a short proof of correctness of the prediction under the assumption of realizability. In this work, we consider this problem more generally, for general hypothesis classes $H$ and general values $b\geq 0$. We define the notion of the robust hollow star number of $H$ (which generalizes the standard hollow star number), and show that it precisely characterizes the worst-case size of the smallest certificate achievable, and analyze its size for natural classes. We also consider worst-case distributional bounds on certificate size, as well as distribution-dependent bounds that we show tightly control the sample size needed to get a certificate for any given test example. In particular, we define a notion of the certificate coefficient $\varepsilon_x$ of an example $x$ with respect to a data distribution $D$ and target function $h^\star$, and prove matching upper and lower bounds on sample size as a function of $\varepsilon_x$, $b$, and the VC dimension $d$ of $H$.
comment: Fixed typo for robust hollow star number sb -> s_b, updated bibliography, other minor changes
♻ ☆ FORTRESS: Frontier Risk Evaluation for National Security and Public Safety NeurIPS
The rapid advancement of large language models (LLMs) introduces dual-use capabilities that could both threaten and bolster national security and public safety (NSPS). Models implement safeguards to protect against potential misuse relevant to NSPS and allow for benign users to receive helpful information. However, current benchmarks often fail to test safeguard robustness to potential NSPS risks in an objective, robust way. We introduce FORTRESS: 500 expert-crafted adversarial prompts with instance-based rubrics of 4-7 binary questions for automated evaluation across 3 domains (unclassified information only): Chemical, Biological, Radiological, Nuclear and Explosive (CBRNE), Political Violence & Terrorism, and Criminal & Financial Illicit Activities, with 10 total subcategories across these domains. Each prompt-rubric pair has a corresponding benign version to test for model over-refusals. This evaluation of frontier LLMs' safeguard robustness reveals varying trade-offs between potential risks and model usefulness: Claude-3.5-Sonnet demonstrates a low average risk score (ARS) (14.09 out of 100) but the highest over-refusal score (ORS) (21.8 out of 100), while Gemini 2.5 Pro shows low over-refusal (1.4) but a high average potential risk (66.29). Deepseek-R1 has the highest ARS at 78.05, but the lowest ORS at only 0.06. Models such as o1 display a more even trade-off between potential risks and over-refusals (with an ARS of 21.69 and ORS of 5.2). To provide policymakers and researchers with a clear understanding of models' potential risks, we publicly release FORTRESS at https://huggingface.co/datasets/ScaleAI/fortress_public. We also maintain a private set for evaluation.
comment: 12 pages, 7 figures, submitted to NeurIPS
♻ ☆ COBRA-PPM: A Causal Bayesian Reasoning Architecture Using Probabilistic Programming for Robot Manipulation Under Uncertainty
Manipulation tasks require robots to reason about cause and effect when interacting with objects. Yet, many data-driven approaches lack causal semantics and thus only consider correlations. We introduce COBRA-PPM, a novel causal Bayesian reasoning architecture that combines causal Bayesian networks and probabilistic programming to perform interventional inference for robot manipulation under uncertainty. We demonstrate its capabilities through high-fidelity Gazebo-based experiments on an exemplar block stacking task, where it predicts manipulation outcomes with high accuracy (Pred Acc: 88.6%) and performs greedy next-best action selection with a 94.2% task success rate. We further demonstrate sim2real transfer on a domestic robot, showing effectiveness in handling real-world uncertainty from sensor noise and stochastic actions. Our generalised and extensible framework supports a wide range of manipulation scenarios and lays a foundation for future work at the intersection of robotics and causality.
comment: 8 pages, 7 figures, accepted to the 2025 IEEE European Conference on Mobile Robots (ECMR 2025)
♻ ☆ Fuzz-Testing Meets LLM-Based Agents: An Automated and Efficient Framework for Jailbreaking Text-To-Image Generation Models
Text-to-image (T2I) generative models have revolutionized content creation by transforming textual descriptions into high-quality images. However, these models are vulnerable to jailbreaking attacks, where carefully crafted prompts bypass safety mechanisms to produce unsafe content. While researchers have developed various jailbreak attacks to expose this risk, these methods face significant limitations, including impractical access requirements, easily detectable unnatural prompts, restricted search spaces, and high query demands on the target system. In this paper, we propose JailFuzzer, a novel fuzzing framework driven by large language model (LLM) agents, designed to efficiently generate natural and semantically meaningful jailbreak prompts in a black-box setting. Specifically, JailFuzzer employs fuzz-testing principles with three components: a seed pool for initial and jailbreak prompts, a guided mutation engine for generating meaningful variations, and an oracle function to evaluate jailbreak success. Furthermore, we construct the guided mutation engine and oracle function by LLM-based agents, which further ensures efficiency and adaptability in black-box settings. Extensive experiments demonstrate that JailFuzzer has significant advantages in jailbreaking T2I models. It generates natural and semantically coherent prompts, reducing the likelihood of detection by traditional defenses. Additionally, it achieves a high success rate in jailbreak attacks with minimal query overhead, outperforming existing methods across all key metrics. This study underscores the need for stronger safety mechanisms in generative models and provides a foundation for future research on defending against sophisticated jailbreaking attacks. JailFuzzer is open-source and available at this repository: https://github.com/YingkaiD/JailFuzzer.
♻ ☆ Protein Structure Tokenization: Benchmarking and New Recipe ICML 2025
Recent years have witnessed a surge in the development of protein structural tokenization methods, which chunk protein 3D structures into discrete or continuous representations. Structure tokenization enables the direct application of powerful techniques like language modeling for protein structures, and large multimodal models to integrate structures with protein sequences and functional texts. Despite the progress, the capabilities and limitations of these methods remain poorly understood due to the lack of a unified evaluation framework. We first introduce StructTokenBench, a framework that comprehensively evaluates the quality and efficiency of structure tokenizers, focusing on fine-grained local substructures rather than global structures, as typical in existing benchmarks. Our evaluations reveal that no single model dominates all benchmarking perspectives. Observations of codebook under-utilization led us to develop AminoAseed, a simple yet effective strategy that enhances codebook gradient updates and optimally balances codebook size and dimension for improved tokenizer utilization and quality. Compared to the leading model ESM3, our method achieves an average of 6.31% performance improvement across 24 supervised tasks, with sensitivity and utilization rates increased by 12.83% and 124.03%, respectively. Source code and model weights are available at https://github.com/KatarinaYuan/StructTokenBench
comment: Accepted at ICML 2025
♻ ☆ SA-Solver: Stochastic Adams Solver for Fast Sampling of Diffusion Models NeurIPS 2023
Diffusion Probabilistic Models (DPMs) have achieved considerable success in generation tasks. As sampling from DPMs is equivalent to solving diffusion SDE or ODE which is time-consuming, numerous fast sampling methods built upon improved differential equation solvers are proposed. The majority of such techniques consider solving the diffusion ODE due to its superior efficiency. However, stochastic sampling could offer additional advantages in generating diverse and high-quality data. In this work, we engage in a comprehensive analysis of stochastic sampling from two aspects: variance-controlled diffusion SDE and linear multi-step SDE solver. Based on our analysis, we propose \textit{SA-Solver}, which is an improved efficient stochastic Adams method for solving diffusion SDE to generate data with high quality. Our experiments show that \textit{SA-Solver} achieves: 1) improved or comparable performance compared with the existing state-of-the-art (SOTA) sampling methods for few-step sampling; 2) SOTA FID on substantial benchmark datasets under a suitable number of function evaluations (NFEs). Code is available at https://github.com/scxue/SA-Solver.
comment: Accepted in NeurIPS 2023
♻ ☆ LLM Watermarking Using Mixtures and Statistical-to-Computational Gaps
Given a text, can we determine whether it was generated by a large language model (LLM) or by a human? A widely studied approach to this problem is watermarking. We propose an undetectable and elementary watermarking scheme in the closed setting. Also, in the harder open setting, where the adversary has access to most of the model, we propose an unremovable watermarking scheme.
♻ ☆ C-Learner: Constrained Learning for Causal Inference
Popular debiased estimation methods for causal inference -- such as augmented inverse propensity weighting and targeted maximum likelihood estimation -- enjoy desirable asymptotic properties like statistical efficiency and double robustness but they can produce unstable estimates when there is limited overlap between treatment and control, requiring additional assumptions or ad hoc adjustments in practice (e.g., truncating propensity scores). In contrast, simple plug-in estimators are stable but lack desirable asymptotic properties. We propose a novel debiasing approach that achieves the best of both worlds, producing stable plug-in estimates with desirable asymptotic properties. Our constrained learning framework solves for the best plug-in estimator under the constraint that the first-order error with respect to the plugged-in quantity is zero, and can leverage flexible model classes including neural networks and tree ensembles. In several experimental settings, including ones in which we handle text-based covariates by fine-tuning language models, our constrained learning-based estimator outperforms basic versions of one-step estimation and targeting in challenging settings with limited overlap between treatment and control, and performs similarly otherwise. Finally, to understand why our method exhibits superior performance in settings with low overlap, we present a theoretical example with heavy-tailed inverse propensity scores in which other debiased estimators converge more slowly compared to ours.
♻ ☆ Anomaly Detection and Radio-frequency Interference Classification with Unsupervised Learning in Narrowband Radio Technosignature Searches
The search for radio technosignatures is an anomaly detection problem: Candidate signals represent needles of interest in the proverbial haystack of radio-frequency interference (RFI). Current search frameworks find an enormity of false-positive signals, especially in large surveys, requiring manual follow-up to a sometimes prohibitive degree. Unsupervised learning provides an algorithmic way to winnow the most anomalous signals from the chaff, as well as group together RFI signals that bear morphological similarities. We present GLOBULAR (Grouping Low-frequency Observations By Unsupervised Learning After Reduction) clustering, a signal processing method that uses HDBSCAN to reduce the false-positive rate and isolate outlier signals for further analysis. When combined with a standard narrowband signal detection and spatial filtering pipeline, such as turboSETI, GLOBULAR clustering offers significant improvements in the false-positive rate over the standard pipeline alone, suggesting dramatic potential for the amelioration of manual follow-up requirements for future large surveys. By removing RFI signals in regions of high spectral occupancy, GLOBULAR clustering may also enable the detection of signals missed by the standard pipeline. We benchmark our method against the Choza et al. turboSETI-only search of 97 nearby galaxies at the L band, demonstrating a false-positive hit reduction rate of 93.1% and a false-positive event reduction rate of 99.3%.
comment: 21 pages, 14 figures
♻ ☆ Bridging the Gap Between Approximation and Learning via Optimal Approximation by ReLU MLPs of Maximal Regularity
The foundations of deep learning are supported by the seemingly opposing perspectives of approximation or learning theory. The former advocates for large/expressive models that need not generalize, while the latter considers classes that generalize but may be too small/constrained to be universal approximators. Motivated by real-world deep learning implementations that are both expressive and statistically reliable, we ask: "Is there a class of neural networks that is both large enough to be universal but structured enough to generalize?" This paper constructively provides a positive answer to this question by identifying a highly structured class of ReLU multilayer perceptions (MLPs), which are optimal function approximators and are statistically well-behaved. We show that any $(L,\alpha)$-H\"{o}lder function from $[0,1]^d$ to $[-n,n]$ can be approximated to a uniform $\mathcal{O}(1/n)$ error on $[0,1]^d$ with a sparsely connected ReLU MLP with the same H\"{o}lder exponent $\alpha$ and coefficient $L$, of width $\mathcal{O}(dn^{d/\alpha})$, depth $\mathcal{O}(\log(d))$, with $\mathcal{O}(dn^{d/\alpha})$ nonzero parameters, and whose weights and biases take values in $\{0,\pm 1/2\}$ except in the first and last layers which instead have magnitude at-most $n$. Further, our class of MLPs achieves a near-optimal sample complexity of $\mathcal{O}(\log(N)/\sqrt{N})$ when given $N$ i.i.d. normalized sub-Gaussian training samples. We achieve this through a new construction that perfectly fits together linear pieces using Kuhn triangulations, along with a new proof technique which shows that our construction preserves the regularity of not only the H\"{o}lder functions, but also any uniformly continuous function. Our results imply that neural networks can solve the McShane extension problem on suitable finite sets.
comment: 16 pages main body, 40 pages proofs, 10 figures, 1 table
Quantitative Methods 5
☆ From Brownian dynamics to Poisson-Nernst-Planck equations: multi-resolution simulations of ions
Starting with a microscopic (individual-based) Brownian dynamics model of charged particles (ions), its macroscopic description is derived as a system of partial differential equations that govern the evolution of ion concentrations in space and time. The macroscopic equations are obtained in the form of the Poisson-Nernst-Planck system. A multi-resolution method for simulating charged particles is then developed, combining the detailed Brownian dynamics model in a part of the computational domain with coarser macroscopic equations in the remainder. The strengths, limitations, and applicability of microscopic, macroscopic, and multi-resolution simulation approaches are demonstrated through an illustrative model comprising a system of Na$^+$ and Cl$^-$ ions.
☆ PocketVina Enables Scalable and Highly Accurate Physically Valid Docking through Multi-Pocket Conditioning
Sampling physically valid ligand-binding poses remains a major challenge in molecular docking, particularly for unseen or structurally diverse targets. We introduce PocketVina, a fast and memory-efficient, search-based docking framework that combines pocket prediction with systematic multi-pocket exploration. We evaluate PocketVina across four established benchmarks--PDBbind2020 (timesplit and unseen), DockGen, Astex, and PoseBusters--and observe consistently strong performance in sampling physically valid docking poses. PocketVina achieves state-of-the-art performance when jointly considering ligand RMSD and physical validity (PB-valid), while remaining competitive with deep learning-based approaches in terms of RMSD alone, particularly on structurally diverse and previously unseen targets. PocketVina also maintains state-of-the-art physically valid docking accuracy across ligands with varying degrees of flexibility. We further introduce TargetDock-AI, a benchmarking dataset we curated, consisting of over 500000 protein-ligand pairs, and a partition of the dataset labeled with PubChem activity annotations. On this large-scale dataset, PocketVina successfully discriminates active from inactive targets, outperforming a deep learning baseline while requiring significantly less GPU memory and runtime. PocketVina offers a robust and scalable docking strategy that requires no task-specific training and runs efficiently on standard GPUs, making it well-suited for high-throughput virtual screening and structure-based drug discovery.
☆ Tube into pearls: A membrane-driven pearling instability shapes platelet biogenesis
At the end of the 19th century, Rayleigh and Plateau explained the physical principle behind the fragmentation of a liquid jet into regular droplets commonly observed in everyday life from a faucet. The classical Rayleigh-Plateau instability concerns liquid jets governed by inertia and surface tension, whereas biological tubes are membrane-bounded and inertia-free. We therefore refer to the process observed here as a pearling instability, formally analogous to Rayleigh-Plateau but dominated by membrane mechanics. Although pearling-type instabilities have long been recognised in lipid tubes and some biological systems, a clear physiological example remained elusive. Here, we present results showing that pearling instability occurs during the physiological process of platelet formation. Platelets are formed from megakaryocytes in the bone marrow by the extension of long protrusions, called proplatelets, that traverse the blood vessels. As they extend in the bloodstream, proplatelets become pearled and detach. Long and pearled proplatelets then circulate in the peripheral blood before their fragmentation into calibrated platelets. We propose that this pearling, by creating regular constrictions along the proplatelet, is key to the process of proplatelet fragmentation into individual platelets of calibrated size. Pearling instability thus acts as a mechanobiological regulator allowing local delivery of the right size platelets to the right place at the right time. Our observations quantitatively match parameter-free theoretical predictions for membrane pearling, supporting a unified physical picture.
♻ ☆ Screen Them All: High-Throughput Pan-Cancer Genetic and Phenotypic Biomarker Screening from H&E Whole Slide Images
Molecular assays are standard of care for detecting genomic alterations in cancer prognosis and therapy selection but are costly, tissue-destructive and time-consuming. Artificial intelligence (AI) applied to routine hematoxylin and eosin (H&E)-stained whole slide images (WSIs) offers a fast and economical alternative for screening molecular biomarkers. We introduce OmniScreen, a high-throughput AI-based system leveraging Virchow2 embeddings extracted from 60,529 cancer patients with paired 489-gene MSK-IMPACT targeted biomarker panel and WSIs. Unlike conventional approaches that train separate models for each biomarker, OmniScreen employs a unified model to predict a broad range of clinically relevant biomarkers across cancers, including low-prevalence targets impractical to model individually. OmniScreen reliably identifies therapeutic targets and shared phenotypic features across common and rare tumors. We investigate the biomarker prediction probabilities and accuracies of OmniScreen in relation to tumor area, cohort size, histologic subtype alignment, and pathway-level morphological patterns. These findings underscore the potential of OmniScreen for routine clinical screening.
♻ ☆ Protein Structure Tokenization: Benchmarking and New Recipe ICML 2025
Recent years have witnessed a surge in the development of protein structural tokenization methods, which chunk protein 3D structures into discrete or continuous representations. Structure tokenization enables the direct application of powerful techniques like language modeling for protein structures, and large multimodal models to integrate structures with protein sequences and functional texts. Despite the progress, the capabilities and limitations of these methods remain poorly understood due to the lack of a unified evaluation framework. We first introduce StructTokenBench, a framework that comprehensively evaluates the quality and efficiency of structure tokenizers, focusing on fine-grained local substructures rather than global structures, as typical in existing benchmarks. Our evaluations reveal that no single model dominates all benchmarking perspectives. Observations of codebook under-utilization led us to develop AminoAseed, a simple yet effective strategy that enhances codebook gradient updates and optimally balances codebook size and dimension for improved tokenizer utilization and quality. Compared to the leading model ESM3, our method achieves an average of 6.31% performance improvement across 24 supervised tasks, with sensitivity and utilization rates increased by 12.83% and 124.03%, respectively. Source code and model weights are available at https://github.com/KatarinaYuan/StructTokenBench
comment: Accepted at ICML 2025
Computation and Language 113
☆ jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval
We introduce jina-embeddings-v4, a 3.8 billion parameter multimodal embedding model that unifies text and image representations through a novel architecture supporting both single-vector and multi-vector embeddings in the late interaction style. The model incorporates task-specific Low-Rank Adaptation (LoRA) adapters to optimize performance across diverse retrieval scenarios, including query-based information retrieval, cross-modal semantic similarity, and programming code search. Comprehensive evaluations demonstrate that jina-embeddings-v4 achieves state-of-the-art performance on both single- modal and cross-modal retrieval tasks, with particular strength in processing visually rich content such as tables, charts, diagrams, and mixed-media formats. To facilitate evaluation of this capability, we also introduce Jina-VDR, a novel benchmark specifically designed for visually rich image retrieval.
comment: 22 pages, 1-10 main, 14-22 experimental results, benchmark tables
☆ Vision as a Dialect: Unifying Visual Understanding and Generation via Text-Aligned Representations
This paper presents a multimodal framework that attempts to unify visual understanding and generation within a shared discrete semantic representation. At its core is the Text-Aligned Tokenizer (TA-Tok), which converts images into discrete tokens using a text-aligned codebook projected from a large language model's (LLM) vocabulary. By integrating vision and text into a unified space with an expanded vocabulary, our multimodal LLM, Tar, enables cross-modal input and output through a shared interface, without the need for modality-specific designs. Additionally, we propose scale-adaptive encoding and decoding to balance efficiency and visual detail, along with a generative de-tokenizer to produce high-fidelity visual outputs. To address diverse decoding needs, we utilize two complementary de-tokenizers: a fast autoregressive model and a diffusion-based model. To enhance modality fusion, we investigate advanced pre-training tasks, demonstrating improvements in both visual understanding and generation. Experiments across benchmarks show that Tar matches or surpasses existing multimodal LLM methods, achieving faster convergence and greater training efficiency. Code, models, and data are available at https://tar.csuhan.com
comment: Project page: https://tar.csuhan.com
☆ ReasonFlux-PRM: Trajectory-Aware PRMs for Long Chain-of-Thought Reasoning in LLMs
Process Reward Models (PRMs) have recently emerged as a powerful framework for supervising intermediate reasoning steps in large language models (LLMs). Previous PRMs are primarily trained on model final output responses and struggle to evaluate intermediate thinking trajectories robustly, especially in the emerging setting of trajectory-response outputs generated by frontier reasoning models like Deepseek-R1. In this work, we introduce ReasonFlux-PRM, a novel trajectory-aware PRM explicitly designed to evaluate the trajectory-response type of reasoning traces. ReasonFlux-PRM incorporates both step-level and trajectory-level supervision, enabling fine-grained reward assignment aligned with structured chain-of-thought data. We adapt ReasonFlux-PRM to support reward supervision under both offline and online settings, including (i) selecting high-quality model distillation data for downstream supervised fine-tuning of smaller models, (ii) providing dense process-level rewards for policy optimization during reinforcement learning, and (iii) enabling reward-guided Best-of-N test-time scaling. Empirical results on challenging downstream benchmarks such as AIME, MATH500, and GPQA-Diamond demonstrate that ReasonFlux-PRM-7B selects higher quality data than strong PRMs (e.g., Qwen2.5-Math-PRM-72B) and human-curated baselines. Furthermore, our derived ReasonFlux-PRM-7B yields consistent performance improvements, achieving average gains of 12.1% in supervised fine-tuning, 4.5% in reinforcement learning, and 6.3% in test-time scaling. We also release our efficient ReasonFlux-PRM-1.5B for resource-constrained applications and edge deployment. Projects: https://github.com/Gen-Verse/ReasonFlux
comment: Codes and Models: https://github.com/Gen-Verse/ReasonFlux
☆ OMEGA: Can LLMs Reason Outside the Box in Math? Evaluating Exploratory, Compositional, and Transformative Generalization
Recent large-scale language models (LLMs) with long Chain-of-Thought reasoning-such as DeepSeek-R1-have achieved impressive results on Olympiad-level mathematics benchmarks. However, they often rely on a narrow set of strategies and struggle with problems that require a novel way of thinking. To systematically investigate these limitations, we introduce OMEGA-Out-of-distribution Math Problems Evaluation with 3 Generalization Axes-a controlled yet diverse benchmark designed to evaluate three axes of out-of-distribution generalization, inspired by Boden's typology of creativity: (1) Exploratory-applying known problem solving skills to more complex instances within the same problem domain; (2) Compositional-combining distinct reasoning skills, previously learned in isolation, to solve novel problems that require integrating these skills in new and coherent ways; and (3) Transformative-adopting novel, often unconventional strategies by moving beyond familiar approaches to solve problems more effectively. OMEGA consists of programmatically generated training-test pairs derived from templated problem generators across geometry, number theory, algebra, combinatorics, logic, and puzzles, with solutions verified using symbolic, numerical, or graphical methods. We evaluate frontier (or top-tier) LLMs and observe sharp performance degradation as problem complexity increases. Moreover, we fine-tune the Qwen-series models across all generalization settings and observe notable improvements in exploratory generalization, while compositional generalization remains limited and transformative reasoning shows little to no improvement. By isolating and quantifying these fine-grained failures, OMEGA lays the groundwork for advancing LLMs toward genuine mathematical creativity beyond mechanical proficiency.
☆ CommVQ: Commutative Vector Quantization for KV Cache Compression ICML 2025
Large Language Models (LLMs) are increasingly used in applications requiring long context lengths, but the key-value (KV) cache often becomes a memory bottleneck on GPUs as context grows. To address this, we propose Commutative Vector Quantization (CommVQ) to significantly reduce memory usage for long-context LLM inference. We first introduce additive quantization with a lightweight encoder and codebook to compress the KV cache, which can be decoded via simple matrix multiplication. To further reduce computational costs during decoding, we design the codebook to be commutative with Rotary Position Embedding (RoPE) and train it using an Expectation-Maximization (EM) algorithm. This enables efficient integration of decoding into the self-attention mechanism. Our approach achieves high accuracy with additive quantization and low overhead via the RoPE-commutative codebook. Experiments on long-context benchmarks and GSM8K show that our method reduces FP16 KV cache size by 87.5% with 2-bit quantization, while outperforming state-of-the-art KV cache quantization methods. Notably, it enables 1-bit KV cache quantization with minimal accuracy loss, allowing a LLaMA-3.1 8B model to run with a 128K context length on a single RTX 4090 GPU. The source code is available at: https://github.com/UMass-Embodied-AGI/CommVQ.
comment: ICML 2025 poster
☆ OmniGen2: Exploration to Advanced Multimodal Generation
In this work, we introduce OmniGen2, a versatile and open-source generative model designed to provide a unified solution for diverse generation tasks, including text-to-image, image editing, and in-context generation. Unlike OmniGen v1, OmniGen2 features two distinct decoding pathways for text and image modalities, utilizing unshared parameters and a decoupled image tokenizer. This design enables OmniGen2 to build upon existing multimodal understanding models without the need to re-adapt VAE inputs, thereby preserving the original text generation capabilities. To facilitate the training of OmniGen2, we developed comprehensive data construction pipelines, encompassing image editing and in-context generation data. Additionally, we introduce a reflection mechanism tailored for image generation tasks and curate a dedicated reflection dataset based on OmniGen2. Despite its relatively modest parameter size, OmniGen2 achieves competitive results on multiple task benchmarks, including text-to-image and image editing. To further evaluate in-context generation, also referred to as subject-driven tasks, we introduce a new benchmark named OmniContext. OmniGen2 achieves state-of-the-art performance among open-source models in terms of consistency. We will release our models, training code, datasets, and data construction pipeline to support future research in this field. Project Page: https://vectorspacelab.github.io/OmniGen2; GitHub Link: https://github.com/VectorSpaceLab/OmniGen2
☆ Mechanistic Interpretability Needs Philosophy
Mechanistic interpretability (MI) aims to explain how neural networks work by uncovering their underlying causal mechanisms. As the field grows in influence, it is increasingly important to examine not just models themselves, but the assumptions, concepts and explanatory strategies implicit in MI research. We argue that mechanistic interpretability needs philosophy: not as an afterthought, but as an ongoing partner in clarifying its concepts, refining its methods, and assessing the epistemic and ethical stakes of interpreting AI systems. Taking three open problems from the MI literature as examples, this position paper illustrates the value philosophy can add to MI research, and outlines a path toward deeper interdisciplinary dialogue.
☆ USAD: Universal Speech and Audio Representation via Distillation
Self-supervised learning (SSL) has revolutionized audio representations, yet models often remain domain-specific, focusing on either speech or non-speech tasks. In this work, we present Universal Speech and Audio Distillation (USAD), a unified approach to audio representation learning that integrates diverse audio types - speech, sound, and music - into a single model. USAD employs efficient layer-to-layer distillation from domain-specific SSL models to train a student on a comprehensive audio dataset. USAD offers competitive performance across various benchmarks and datasets, including frame and instance-level speech processing tasks, audio tagging, and sound classification, achieving near state-of-the-art results with a single encoder on SUPERB and HEAR benchmarks.
comment: Preprint
☆ LongWriter-Zero: Mastering Ultra-Long Text Generation via Reinforcement Learning
Ultra-long generation by large language models (LLMs) is a widely demanded scenario, yet it remains a significant challenge due to their maximum generation length limit and overall quality degradation as sequence length increases. Previous approaches, exemplified by LongWriter, typically rely on ''teaching'', which involves supervised fine-tuning (SFT) on synthetic long-form outputs. However, this strategy heavily depends on synthetic SFT data, which is difficult and costly to construct, often lacks coherence and consistency, and tends to be overly artificial and structurally monotonous. In this work, we propose an incentivization-based approach that, starting entirely from scratch and without relying on any annotated or synthetic data, leverages reinforcement learning (RL) to foster the emergence of ultra-long, high-quality text generation capabilities in LLMs. We perform RL training starting from a base model, similar to R1-Zero, guiding it to engage in reasoning that facilitates planning and refinement during the writing process. To support this, we employ specialized reward models that steer the LLM towards improved length control, writing quality, and structural formatting. Experimental evaluations show that our LongWriter-Zero model, trained from Qwen2.5-32B, consistently outperforms traditional SFT methods on long-form writing tasks, achieving state-of-the-art results across all metrics on WritingBench and Arena-Write, and even surpassing 100B+ models such as DeepSeek R1 and Qwen3-235B. We open-source our data and model checkpoints under https://huggingface.co/THU-KEG/LongWriter-Zero-32B
☆ STU-PID: Steering Token Usage via PID Controller for Efficient Large Language Model Reasoning
Large Language Models employing extended chain-of-thought (CoT) reasoning often suffer from the overthinking phenomenon, generating excessive and redundant reasoning steps that increase computational costs while potentially degrading performance. While recent work has explored static steering approaches to mitigate this issue, they lack the adaptability to dynamically adjust intervention strength based on real-time reasoning quality. We propose STUPID (Steering Token Usage via PID controller), a novel training-free method that employs a PID controller to dynamically modulate activation steering strength during inference. Our approach combines a chunk-level classifier for detecting redundant reasoning patterns with a PID control mechanism that adaptively adjusts steering intensity based on the predicted redundancy probability. Experimental evaluation on GSM8K demonstrates that STUPID achieves a 6% improvement in accuracy while reducing token usage by 32%, outperforming static steering baselines. Our method provides a principled framework for dynamic reasoning calibration that maintains reasoning quality while significantly improving computational efficiency.
☆ MLLP-VRAIN UPV system for the IWSLT 2025 Simultaneous Speech Translation Translation task
This work describes the participation of the MLLP-VRAIN research group in the shared task of the IWSLT 2025 Simultaneous Speech Translation track. Our submission addresses the unique challenges of real-time translation of long-form speech by developing a modular cascade system that adapts strong pre-trained models to streaming scenarios. We combine Whisper Large-V3-Turbo for ASR with the multilingual NLLB-3.3B model for MT, implementing lightweight adaptation techniques rather than training new end-to-end models from scratch. Our approach employs document-level adaptation with prefix training to enhance the MT model's ability to handle incomplete inputs, while incorporating adaptive emission policies including a wait-$k$ strategy and RALCP for managing the translation stream. Specialized buffer management techniques and segmentation strategies ensure coherent translations across long audio sequences. Experimental results on the ACL60/60 dataset demonstrate that our system achieves a favorable balance between translation quality and latency, with a BLEU score of 31.96 and non-computational-aware StreamLAAL latency of 2.94 seconds. Our final model achieves a preliminary score on the official test set (IWSLT25Instruct) of 29.8 BLEU. Our work demonstrates that carefully adapted pre-trained components can create effective simultaneous translation systems for long-form content without requiring extensive in-domain parallel data or specialized end-to-end training.
comment: IWSLT 2025 System Description
☆ RWESummary: A Framework and Test for Choosing Large Language Models to Summarize Real-World Evidence (RWE) Studies
Large Language Models (LLMs) have been extensively evaluated for general summarization tasks as well as medical research assistance, but they have not been specifically evaluated for the task of summarizing real-world evidence (RWE) from structured output of RWE studies. We introduce RWESummary, a proposed addition to the MedHELM framework (Bedi, Cui, Fuentes, Unell et al., 2025) to enable benchmarking of LLMs for this task. RWESummary includes one scenario and three evaluations covering major types of errors observed in summarization of medical research studies and was developed using Atropos Health proprietary data. Additionally, we use RWESummary to compare the performance of different LLMs in our internal RWE summarization tool. At the time of publication, with 13 distinct RWE studies, we found the Gemini 2.5 models performed best overall (both Flash and Pro). We suggest RWESummary as a novel and useful foundation model benchmark for real-world evidence study summarization.
comment: 24 pages, 2 figures
☆ ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation
Recent advancements in large reasoning models (LRMs) like DeepSeek-R1 and OpenAI o1 series have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT). However, an emerging issue is their inclination to produce excessively verbose reasoning processes, leading to the inefficiency problem. Existing literature on improving efficiency mainly adheres to the before-reasoning paradigms such as prompting and reasoning or fine-tuning and reasoning, but ignores the promising direction of directly encouraging the model to speak concisely by intervening during the generation of reasoning. In order to fill the blank, we propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting the textual hint (manually designed or trained on the concise data) during the token generation of the reasoning process. Besides, ConciseHint is adaptive to the complexity of the query by adaptively adjusting the hint intensity, which ensures it will not undermine model performance. Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning processes while maintaining performance well. For instance, we achieve a reduction ratio of 65\% for the reasoning length on GSM8K benchmark with Qwen-3 4B with nearly no accuracy loss.
comment: Codes are available at https://github.com/tsa18/ConciseHint
☆ Existing LLMs Are Not Self-Consistent For Simple Tasks
Large Language Models (LLMs) have grown increasingly powerful, yet ensuring their decisions remain transparent and trustworthy requires self-consistency -- no contradictions in their internal reasoning. Our study reveals that even on simple tasks, such as comparing points on a line or a plane, or reasoning in a family tree, all smaller models are highly inconsistent, and even state-of-the-art models like DeepSeek-R1 and GPT-o4-mini are not fully self-consistent. To quantify and mitigate these inconsistencies, we introduce inconsistency metrics and propose two automated methods -- a graph-based and an energy-based approach. While these fixes provide partial improvements, they also highlight the complexity and importance of self-consistency in building more reliable and interpretable AI. The code and data are available at https://github.com/scorpio-nova/llm-self-consistency.
comment: 10 pages, 6 figures
☆ Programming by Backprop: LLMs Acquire Reusable Algorithmic Abstractions During Code Training
Training large language models (LLMs) on source code significantly enhances their general-purpose reasoning abilities, but the mechanisms underlying this generalisation are poorly understood. In this paper, we propose Programming by Backprop (PBB) as a potential driver of this effect - teaching a model to evaluate a program for inputs by training on its source code alone, without ever seeing I/O examples. To explore this idea, we finetune LLMs on two sets of programs representing simple maths problems and algorithms: one with source code and I/O examples (w/ IO), the other with source code only (w/o IO). We find evidence that LLMs have some ability to evaluate w/o IO programs for inputs in a range of experimental settings, and make several observations. Firstly, PBB works significantly better when programs are provided as code rather than semantically equivalent language descriptions. Secondly, LLMs can produce outputs for w/o IO programs directly, by implicitly evaluating the program within the forward pass, and more reliably when stepping through the program in-context via chain-of-thought. We further show that PBB leads to more robust evaluation of programs across inputs than training on I/O pairs drawn from a distribution that mirrors naturally occurring data. Our findings suggest a mechanism for enhanced reasoning through code training: it allows LLMs to internalise reusable algorithmic abstractions. Significant scope remains for future work to enable LLMs to more effectively learn from symbolic procedures, and progress in this direction opens other avenues like model alignment by training on formal constitutional principles.
☆ Neural Total Variation Distance Estimators for Changepoint Detection in News Data
Detecting when public discourse shifts in response to major events is crucial for understanding societal dynamics. Real-world data is high-dimensional, sparse, and noisy, making changepoint detection in this domain a challenging endeavor. In this paper, we leverage neural networks for changepoint detection in news data, introducing a method based on the so-called learning-by-confusion scheme, which was originally developed for detecting phase transitions in physical systems. We train classifiers to distinguish between articles from different time periods. The resulting classification accuracy is used to estimate the total variation distance between underlying content distributions, where significant distances highlight changepoints. We demonstrate the effectiveness of this method on both synthetic datasets and real-world data from The Guardian newspaper, successfully identifying major historical events including 9/11, the COVID-19 pandemic, and presidential elections. Our approach requires minimal domain knowledge, can autonomously discover significant shifts in public discourse, and yields a quantitative measure of change in content, making it valuable for journalism, policy analysis, and crisis monitoring.
comment: 16 pages, 3 figures
☆ Multi-modal Anchor Gated Transformer with Knowledge Distillation for Emotion Recognition in Conversation IJCAI2025
Emotion Recognition in Conversation (ERC) aims to detect the emotions of individual utterances within a conversation. Generating efficient and modality-specific representations for each utterance remains a significant challenge. Previous studies have proposed various models to integrate features extracted using different modality-specific encoders. However, they neglect the varying contributions of modalities to this task and introduce high complexity by aligning modalities at the frame level. To address these challenges, we propose the Multi-modal Anchor Gated Transformer with Knowledge Distillation (MAGTKD) for the ERC task. Specifically, prompt learning is employed to enhance textual modality representations, while knowledge distillation is utilized to strengthen representations of weaker modalities. Furthermore, we introduce a multi-modal anchor gated transformer to effectively integrate utterance-level representations across modalities. Extensive experiments on the IEMOCAP and MELD datasets demonstrate the effectiveness of knowledge distillation in enhancing modality representations and achieve state-of-the-art performance in emotion recognition. Our code is available at: https://github.com/JieLi-dd/MAGTKD.
comment: This paper has been accepted by IJCAI2025
☆ Benchmarking the Pedagogical Knowledge of Large Language Models
Benchmarks like Massive Multitask Language Understanding (MMLU) have played a pivotal role in evaluating AI's knowledge and abilities across diverse domains. However, existing benchmarks predominantly focus on content knowledge, leaving a critical gap in assessing models' understanding of pedagogy - the method and practice of teaching. This paper introduces The Pedagogy Benchmark, a novel dataset designed to evaluate large language models on their Cross-Domain Pedagogical Knowledge (CDPK) and Special Education Needs and Disability (SEND) pedagogical knowledge. These benchmarks are built on a carefully curated set of questions sourced from professional development exams for teachers, which cover a range of pedagogical subdomains such as teaching strategies and assessment methods. Here we outline the methodology and development of these benchmarks. We report results for 97 models, with accuracies spanning a range from 28% to 89% on the pedagogical knowledge questions. We consider the relationship between cost and accuracy and chart the progression of the Pareto value frontier over time. We provide online leaderboards at https://rebrand.ly/pedagogy which are updated with new models and allow interactive exploration and filtering based on various model properties, such as cost per token and open-vs-closed weights, as well as looking at performance in different subjects. LLMs and generative AI have tremendous potential to influence education and help to address the global learning crisis. Education-focused benchmarks are crucial to measure models' capacities to understand pedagogical concepts, respond appropriately to learners' needs, and support effective teaching practices across diverse contexts. They are needed for informing the responsible and evidence-based deployment of LLMs and LLM-based tools in educational settings, and for guiding both development and policy decisions.
☆ Context Biasing for Pronunciations-Orthography Mismatch in Automatic Speech Recognition
Neural sequence-to-sequence systems deliver state-of-the-art performance for automatic speech recognition. When using appropriate modeling units, e.g., byte-pair encoded characters, these systems are in principal open vocabulary systems. In practice, however, they often fail to recognize words not seen during training, e.g., named entities, acronyms, or domain-specific special words. To address this problem, many context biasing methods have been proposed; however, for words with a pronunciation-orthography mismatch, these methods may still struggle. We propose a method which allows corrections of substitution errors to improve the recognition accuracy of such challenging words. Users can add corrections on the fly during inference. We show that with this method we get a relative improvement in biased word error rate of up to 11\%, while maintaining a competitive overall word error rate.
☆ Is There a Case for Conversation Optimized Tokenizers in Large Language Models?
The computational and energy costs of Large Language Models (LLMs) have increased exponentially driven by the growing model sizes and the massive adoption of LLMs by hundreds of millions of users. The unit cost of an LLM is the computation of a token. Therefore, the tokenizer plays an important role in the efficiency of a model, and they are carefully optimized to minimize the number of tokens for the text in their training corpus. One of the most popular applications of LLMs are chatbots that interact with users. A key observation is that, for those chatbots, what is important is the performance of the tokenizer in the user text input and the chatbot responses. Those are most likely different from the text in the training corpus. So, a question that immediately arises is whether there is a potential benefit in optimizing tokenizers for chatbot conversations. In this paper, this idea is explored for different tokenizers by using a publicly available corpus of chatbot conversations to redesign their vocabularies and evaluate their performance in this domain. The results show that conversation-optimized tokenizers consistently reduce the number of tokens in chatbot dialogues, which can lead to meaningful energy savings, in the range of 5% to 10% while having minimal or even slightly positive impact on tokenization efficiency for the original training corpus.
☆ ByteSpan: Information-Driven Subword Tokenisation
Recent dynamic tokenisation methods operate directly on bytes and pool their latent representations into patches. This bears similarities to computational models of word segmentation that determine lexical boundaries using spikes in an autoregressive model's prediction error. Inspired by this connection, we explore whether grouping predictable bytes - rather than pooling their representations - can yield a useful fixed subword vocabulary. We propose a new information-driven subword tokeniser, ByteSpan, that uses an external byte-level LM during training to identify contiguous predictable byte sequences and group them into subwords. Experiments show that ByteSpan yields efficient vocabularies with higher morphological alignment scores than BPE for English. Multilingual experiments show similar compression and R\'enyi efficiency for 25 languages.
comment: Accepted to TokShop 2025 (Non-archival)
☆ ReDit: Reward Dithering for Improved LLM Policy Optimization
DeepSeek-R1 has successfully enhanced Large Language Model (LLM) reasoning capabilities through its rule-based reward system. While it's a ''perfect'' reward system that effectively mitigates reward hacking, such reward functions are often discrete. Our experimental observations suggest that discrete rewards can lead to gradient anomaly, unstable optimization, and slow convergence. To address this issue, we propose ReDit (Reward Dithering), a method that dithers the discrete reward signal by adding simple random noise. With this perturbed reward, exploratory gradients are continuously provided throughout the learning process, enabling smoother gradient updates and accelerating convergence. The injected noise also introduces stochasticity into flat reward regions, encouraging the model to explore novel policies and escape local optima. Experiments across diverse tasks demonstrate the effectiveness and efficiency of ReDit. On average, ReDit achieves performance comparable to vanilla GRPO with only approximately 10% the training steps, and furthermore, still exhibits a 4% performance improvement over vanilla GRPO when trained for a similar duration. Visualizations confirm significant mitigation of gradient issues with ReDit. Moreover, theoretical analyses are provided to further validate these advantages.
comment: 10 pages, 15 figures
☆ AggTruth: Contextual Hallucination Detection using Aggregated Attention Scores in LLMs
In real-world applications, Large Language Models (LLMs) often hallucinate, even in Retrieval-Augmented Generation (RAG) settings, which poses a significant challenge to their deployment. In this paper, we introduce AggTruth, a method for online detection of contextual hallucinations by analyzing the distribution of internal attention scores in the provided context (passage). Specifically, we propose four different variants of the method, each varying in the aggregation technique used to calculate attention scores. Across all LLMs examined, AggTruth demonstrated stable performance in both same-task and cross-task setups, outperforming the current SOTA in multiple scenarios. Furthermore, we conducted an in-depth analysis of feature selection techniques and examined how the number of selected attention heads impacts detection performance, demonstrating that careful selection of heads is essential to achieve optimal results.
comment: ICCS 2025 Workshops
☆ The Anatomy of Speech Persuasion: Linguistic Shifts in LLM-Modified Speeches
This study examines how large language models understand the concept of persuasiveness in public speaking by modifying speech transcripts from PhD candidates in the "Ma These en 180 Secondes" competition, using the 3MT French dataset. Our contributions include a novel methodology and an interpretable textual feature set integrating rhetorical devices and discourse markers. We prompt GPT-4o to enhance or diminish persuasiveness and analyze linguistic shifts between original and generated speech in terms of the new features. Results indicate that GPT-4o applies systematic stylistic modifications rather than optimizing persuasiveness in a human-like manner. Notably, it manipulates emotional lexicon and syntactic structures (such as interrogative and exclamatory clauses) to amplify rhetorical impact.
comment: Under submission to ICNLSP 2025. 9 pages, 2 tables
☆ Semantic similarity estimation for domain specific data using BERT and other techniques
Estimation of semantic similarity is an important research problem both in natural language processing and the natural language understanding, and that has tremendous application on various downstream tasks such as question answering, semantic search, information retrieval, document clustering, word-sense disambiguation and machine translation. In this work, we carry out the estimation of semantic similarity using different state-of-the-art techniques including the USE (Universal Sentence Encoder), InferSent and the most recent BERT, or Bidirectional Encoder Representations from Transformers, models. We use two question pairs datasets for the analysis, one is a domain specific in-house dataset and the other is a public dataset which is the Quora's question pairs dataset. We observe that the BERT model gave much superior performance as compared to the other methods. This should be because of the fine-tuning procedure that is involved in its training process, allowing it to learn patterns based on the training data that is used. This works demonstrates the applicability of BERT on domain specific datasets. We infer from the analysis that BERT is the best technique to use in the case of domain specific data.
comment: This is a preprint version of an article accepted for publication in the proceedings of Machine Learning and Data Mining 2019
☆ Reply to "Emergent LLM behaviors are observationally equivalent to data leakage"
A potential concern when simulating populations of large language models (LLMs) is data contamination, i.e. the possibility that training data may shape outcomes in unintended ways. While this concern is important and may hinder certain experiments with multi-agent models, it does not preclude the study of genuinely emergent dynamics in LLM populations. The recent critique by Barrie and T\"ornberg [1] of the results of Flint Ashery et al. [2] offers an opportunity to clarify that self-organisation and model-dependent emergent dynamics can be studied in LLM populations, highlighting how such dynamics have been empirically observed in the specific case of social conventions.
comment: Reply to arXiv:2505.23796
☆ No Training Wheels: Steering Vectors for Bias Correction at Inference Time
Neural network classifiers trained on datasets with uneven group representation often inherit class biases and learn spurious correlations. These models may perform well on average but consistently fail on atypical groups. For example, in hair color classification, datasets may over-represent females with blond hair, reinforcing stereotypes. Although various algorithmic and data-centric methods have been proposed to address such biases, they often require retraining or significant compute. In this work, we propose a cheap, training-free method inspired by steering vectors used to edit behaviors in large language models. We compute the difference in mean activations between majority and minority groups to define a "bias vector," which we subtract from the model's residual stream. This leads to reduced classification bias and improved worst-group accuracy. We explore multiple strategies for extracting and applying these vectors in transformer-like classifiers, showing that steering vectors, traditionally used in generative models, can also be effective in classification. More broadly, we showcase an extremely cheap, inference time, training free method to mitigate bias in classification models.
☆ Airalogy: AI-empowered universal data digitization for research automation
Research data are the foundation of Artificial Intelligence (AI)-driven science, yet current AI applications remain limited to a few fields with readily available, well-structured, digitized datasets. Achieving comprehensive AI empowerment across multiple disciplines is still out of reach. Present-day research data collection is often fragmented, lacking unified standards, inefficiently managed, and difficult to share. Creating a single platform for standardized data digitization needs to overcome the inherent challenge of balancing between universality (supporting the diverse, ever-evolving needs of various disciplines) and standardization (enforcing consistent formats to fully enable AI). No existing platform accommodates both facets. Building a truly multidisciplinary platform requires integrating scientific domain knowledge with sophisticated computing skills. Researchers often lack the computational expertise to design customized and standardized data recording methods, whereas platform developers rarely grasp the intricate needs of multiple scientific domains. These gaps impede research data standardization and hamper AI-driven progress. In this study, we address these challenges by developing Airalogy (https://airalogy.com), the world's first AI- and community-driven platform that balances universality and standardization for digitizing research data across multiple disciplines. Airalogy represents entire research workflows using customizable, standardized data records and offers an advanced AI research copilot for intelligent Q&A, automated data entry, analysis, and research automation. Already deployed in laboratories across all four schools of Westlake University, Airalogy has the potential to accelerate and automate scientific innovation in universities, industry, and the global research community-ultimately benefiting humanity as a whole.
comment: 146 pages, 6 figures, 49 supplementary figures
☆ Parallel Continuous Chain-of-Thought with Jacobi Iteration
Continuous chain-of-thought has been shown to be effective in saving reasoning tokens for large language models. By reasoning with continuous latent thought tokens, continuous CoT is able to perform implicit reasoning in a compact manner. However, the sequential dependencies between latent thought tokens spoil parallel training, leading to long training time. In this paper, we propose Parallel Continuous Chain-of-Thought (PCCoT), which performs Jacobi iteration on the latent thought tokens, updating them iteratively in parallel instead of sequentially and thus improving both training and inference efficiency of continuous CoT. Experiments demonstrate that by choosing the proper number of iterations, we are able to achieve comparable or even better performance while saving nearly 50% of the training and inference time. Moreover, PCCoT shows better stability and robustness in the training process. Our code is available at https://github.com/whyNLP/PCCoT.
comment: under review
☆ A Modular Taxonomy for Hate Speech Definitions and Its Impact on Zero-Shot LLM Classification Performance
Detecting harmful content is a crucial task in the landscape of NLP applications for Social Good, with hate speech being one of its most dangerous forms. But what do we mean by hate speech, how can we define it, and how does prompting different definitions of hate speech affect model performance? The contribution of this work is twofold. At the theoretical level, we address the ambiguity surrounding hate speech by collecting and analyzing existing definitions from the literature. We organize these definitions into a taxonomy of 14 Conceptual Elements-building blocks that capture different aspects of hate speech definitions, such as references to the target of hate (individual or groups) or of the potential consequences of it. At the experimental level, we employ the collection of definitions in a systematic zero-shot evaluation of three LLMs, on three hate speech datasets representing different types of data (synthetic, human-in-the-loop, and real-world). We find that choosing different definitions, i.e., definitions with a different degree of specificity in terms of encoded elements, impacts model performance, but this effect is not consistent across all architectures.
☆ When Fine-Tuning Fails: Lessons from MS MARCO Passage Ranking
This paper investigates the counterintuitive phenomenon where fine-tuning pre-trained transformer models degrades performance on the MS MARCO passage ranking task. Through comprehensive experiments involving five model variants-including full parameter fine-tuning and parameter efficient LoRA adaptations-we demonstrate that all fine-tuning approaches underperform the base sentence-transformers/all- MiniLM-L6-v2 model (MRR@10: 0.3026). Our analysis reveals that fine-tuning disrupts the optimal embedding space structure learned during the base model's extensive pre-training on 1 billion sentence pairs, including 9.1 million MS MARCO samples. UMAP visualizations show progressive embedding space flattening, while training dynamics analysis and computational efficiency metrics further support our findings. These results challenge conventional wisdom about transfer learning effectiveness on saturated benchmarks and suggest architectural innovations may be necessary for meaningful improvements.
☆ End-to-End Spoken Grammatical Error Correction
Grammatical Error Correction (GEC) and feedback play a vital role in supporting second language (L2) learners, educators, and examiners. While written GEC is well-established, spoken GEC (SGEC), aiming to provide feedback based on learners' speech, poses additional challenges due to disfluencies, transcription errors, and the lack of structured input. SGEC systems typically follow a cascaded pipeline consisting of Automatic Speech Recognition (ASR), disfluency detection, and GEC, making them vulnerable to error propagation across modules. This work examines an End-to-End (E2E) framework for SGEC and feedback generation, highlighting challenges and possible solutions when developing these systems. Cascaded, partial-cascaded and E2E architectures are compared, all built on the Whisper foundation model. A challenge for E2E systems is the scarcity of GEC labeled spoken data. To address this, an automatic pseudo-labeling framework is examined, increasing the training data from 77 to over 2500 hours. To improve the accuracy of the SGEC system, additional contextual information, exploiting the ASR output, is investigated. Candidate feedback of their mistakes is an essential step to improving performance. In E2E systems the SGEC output must be compared with an estimate of the fluent transcription to obtain the feedback. To improve the precision of this feedback, a novel reference alignment process is proposed that aims to remove hypothesised edits that results from fluent transcription errors. Finally, these approaches are combined with an edit confidence estimation approach, to exclude low-confidence edits. Experiments on the in-house Linguaskill (LNG) corpora and the publicly available Speak & Improve (S&I) corpus show that the proposed approaches significantly boost E2E SGEC performance.
comment: This work has been submitted to the IEEE for possible publication
☆ Smooth Operators: LLMs Translating Imperfect Hints into Disfluency-Rich Transcripts
Accurate detection of disfluencies in spoken language is crucial for enhancing the performance of automatic speech and language processing systems, as well as fostering the development of more inclusive speech and language technologies. Leveraging the growing trend of large language models (LLMs) as versatile learners capable of processing both lexical and non-lexical inputs (e.g., audio and video), we propose a novel approach to transcribing disfluencies as explicit tokens with timestamps, enabling the generation of fully annotated disfluency-rich transcripts. Our method integrates acoustic representations extracted from an audio encoder with textual inputs of varying quality: clean transcriptions without disfluencies, time-aligned transcriptions from aligners, or outputs from phoneme-based ASR models -- all of which may contain imperfections. Importantly, our experiments demonstrate that textual inputs do not need to be flawless. As long as they include timestamp-related cues, LLMs can effectively smooth the input and produce fully disfluency-annotated transcripts, underscoring their robustness in handling imperfect hints.
comment: Accepted to INTERSPEECH2025 workshop DISS2025
☆ Comparative Evaluation of ChatGPT and DeepSeek Across Key NLP Tasks: Strengths, Weaknesses, and Domain-Specific Performance
The increasing use of large language models (LLMs) in natural language processing (NLP) tasks has sparked significant interest in evaluating their effectiveness across diverse applications. While models like ChatGPT and DeepSeek have shown strong results in many NLP domains, a comprehensive evaluation is needed to understand their strengths, weaknesses, and domain-specific abilities. This is critical as these models are applied to various tasks, from sentiment analysis to more nuanced tasks like textual entailment and translation. This study aims to evaluate ChatGPT and DeepSeek across five key NLP tasks: sentiment analysis, topic classification, text summarization, machine translation, and textual entailment. A structured experimental protocol is used to ensure fairness and minimize variability. Both models are tested with identical, neutral prompts and evaluated on two benchmark datasets per task, covering domains like news, reviews, and formal/informal texts. The results show that DeepSeek excels in classification stability and logical reasoning, while ChatGPT performs better in tasks requiring nuanced understanding and flexibility. These findings provide valuable insights for selecting the appropriate LLM based on task requirements.
☆ AI-Generated Song Detection via Lyrics Transcripts
The recent rise in capabilities of AI-based music generation tools has created an upheaval in the music industry, necessitating the creation of accurate methods to detect such AI-generated content. This can be done using audio-based detectors; however, it has been shown that they struggle to generalize to unseen generators or when the audio is perturbed. Furthermore, recent work used accurate and cleanly formatted lyrics sourced from a lyrics provider database to detect AI-generated music. However, in practice, such perfect lyrics are not available (only the audio is); this leaves a substantial gap in applicability in real-life use cases. In this work, we instead propose solving this gap by transcribing songs using general automatic speech recognition (ASR) models. We do this using several detectors. The results on diverse, multi-genre, and multi-lingual lyrics show generally strong detection performance across languages and genres, particularly for our best-performing model using Whisper large-v2 and LLM2Vec embeddings. In addition, we show that our method is more robust than state-of-the-art audio-based ones when the audio is perturbed in different ways and when evaluated on different music generators. Our code is available at https://github.com/deezer/robust-AI-lyrics-detection.
comment: Accepted to ISMIR 2025
☆ MeRF: Motivation-enhanced Reinforcement Finetuning for Large Reasoning Models
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful learn-to-reason paradigm for Large Language Models (LLMs) to tackle complex reasoning tasks. However, existing RLVR methods overlook one of the most distinctive capabilities of LLMs, their in-context learning ability, as prominently demonstrated by the success of Chain-of-Thought (CoT) prompting. This motivates us to explore how reinforcement learning can be effectively combined with in-context learning to better improve the reasoning capabilities of LLMs. In this paper, we introduce Motivation-enhanced Reinforcement Finetuning} (MeRF), an intuitive yet effective method enhancing reinforcement learning of LLMs by involving ``telling LLMs the rules of the game''. Specifically, MeRF directly injects the reward specification into the prompt, which serves as an in-context motivation for model to improve its responses with awareness of the optimization objective. This simple modification leverages the in-context learning ability of LLMs aligning generation with optimization, thereby incentivizing the model to generate desired outputs from both inner motivation and external reward. Empirical evaluations on the Knights and Knaves~(K&K) logic puzzle reasoning benchmark demonstrate that \texttt{MeRF} achieves substantial performance gains over baselines. Moreover, ablation studies show that performance improves with greater consistency between the in-context motivation and the external reward function, while the model also demonstrates an ability to adapt to misleading motivations through reinforcement learning.
☆ TReB: A Comprehensive Benchmark for Evaluating Table Reasoning Capabilities of Large Language Models
The majority of data in businesses and industries is stored in tables, databases, and data warehouses. Reasoning with table-structured data poses significant challenges for large language models (LLMs) due to its hidden semantics, inherent complexity, and structured nature. One of these challenges is lacking an effective evaluation benchmark fairly reflecting the performances of LLMs on broad table reasoning abilities. In this paper, we fill in this gap, presenting a comprehensive table reasoning evolution benchmark, TReB, which measures both shallow table understanding abilities and deep table reasoning abilities, a total of 26 sub-tasks. We construct a high quality dataset through an iterative data processing procedure. We create an evaluation framework to robustly measure table reasoning capabilities with three distinct inference modes, TCoT, PoT and ICoT. Further, we benchmark over 20 state-of-the-art LLMs using this frame work and prove its effectiveness. Experimental results reveal that existing LLMs still have significant room for improvement in addressing the complex and real world Table related tasks. Both the dataset and evaluation framework are publicly available, with the dataset hosted on [HuggingFace] and the framework on [GitHub].
comment: Benmark report v1.0
☆ Lemmatization as a Classification Task: Results from Arabic across Multiple Genres
Lemmatization is crucial for NLP tasks in morphologically rich languages with ambiguous orthography like Arabic, but existing tools face challenges due to inconsistent standards and limited genre coverage. This paper introduces two novel approaches that frame lemmatization as classification into a Lemma-POS-Gloss (LPG) tagset, leveraging machine translation and semantic clustering. We also present a new Arabic lemmatization test set covering diverse genres, standardized alongside existing datasets. We evaluate character level sequence-to-sequence models, which perform competitively and offer complementary value, but are limited to lemma prediction (not LPG) and prone to hallucinating implausible forms. Our results show that classification and clustering yield more robust, interpretable outputs, setting new benchmarks for Arabic lemmatization.
☆ Evaluating Causal Explanation in Medical Reports with LLM-Based and Human-Aligned Metrics
This study investigates how accurately different evaluation metrics capture the quality of causal explanations in automatically generated diagnostic reports. We compare six metrics: BERTScore, Cosine Similarity, BioSentVec, GPT-White, GPT-Black, and expert qualitative assessment across two input types: observation-based and multiple-choice-based report generation. Two weighting strategies are applied: one reflecting task-specific priorities, and the other assigning equal weights to all metrics. Our results show that GPT-Black demonstrates the strongest discriminative power in identifying logically coherent and clinically valid causal narratives. GPT-White also aligns well with expert evaluations, while similarity-based metrics diverge from clinical reasoning quality. These findings emphasize the impact of metric selection and weighting on evaluation outcomes, supporting the use of LLM-based evaluation for tasks requiring interpretability and causal reasoning.
comment: 9 pages, presented at LLM4Eval Workshop, SIGIR 2025 Padova, Italy, July 17, 2025
☆ SlimMoE: Structured Compression of Large MoE Models via Expert Slimming and Distillation
The Mixture of Experts (MoE) architecture has emerged as a powerful paradigm for scaling large language models (LLMs) while maintaining inference efficiency. However, their enormous memory requirements make them prohibitively expensive to fine-tune or deploy in resource-constrained environments. To address this challenge, we introduce SlimMoE, a multi-stage compression framework for transforming large MoE models into much smaller, efficient variants without incurring the prohibitive costs of training from scratch. Our method systematically reduces parameter counts by slimming experts and transferring knowledge through intermediate stages, effectively mitigating the performance degradation common in one-shot pruning approaches. Using this framework, we compress Phi 3.5-MoE (41.9B total/6.6B activated parameters) to create Phi-mini-MoE (7.6B total/2.4B activated parameters) and Phi-tiny-MoE (3.8B total/1.1B activated parameters) using only 400B tokens--less than 10% of the original model's training data. These compressed models can be fine-tuned on a single GPU (A100 for Phi-mini-MoE, A6000 for Phi-tiny-MoE), making them highly suitable for academic and resource-limited settings. Our experiments demonstrate that these compressed models outperform others of similar size and remain competitive with larger models. For instance, Phi-mini-MoE achieves similar or better performance to Phi-3-mini using only 2/3 of the activated parameters and yields comparable MMLU scores to Llama 3.1 8B despite having significantly lower latency. Our findings demonstrate that structured pruning combined with staged distillation offers an effective path to creating high-quality, compact MoE models, paving the way for broader adoption of MoE architectures. We make our models publicly available at https://huggingface.co/microsoft/Phi-mini-MoE-instruct and https://huggingface.co/microsoft/Phi-tiny-MoE-instruct .
☆ Less Data Less Tokens: Multilingual Unification Learning for Efficient Test-Time Reasoning in LLMs
This paper explores the challenges of test-time scaling of large language models (LLMs), regarding both the data and inference efficiency. We highlight the diversity of multi-lingual reasoning based on our pilot studies, and then introduce a novel approach, \(L^2\) multi-lingual unification learning with a decoding intervention strategy for further investigation. The basic idea of \(L^2\) is that the reasoning process varies across different languages, which may be mutually beneficial to enhance both model performance and efficiency. In specific, there are two types of multi-lingual data: the entire long chain-of-thought annotations in different languages and the step-wise mixture of languages. By further tuning based on them, we show that even small amounts of data can significantly improve reasoning capabilities. Our findings suggest that multilingual learning reduces both the required data and the number of inference tokens while maintaining a comparable performance. Furthermore, \(L^2\) is orthogonal to other data efficient methods. Thus, we also emphasize the importance of diverse data selection. The \(L^2\) method offers a promising solution to the challenges of data collection and test-time compute efficiency in LLMs.
☆ TranslationCorrect: A Unified Framework for Machine Translation Post-Editing with Predictive Error Assistance
Machine translation (MT) post-editing and research data collection often rely on inefficient, disconnected workflows. We introduce TranslationCorrect, an integrated framework designed to streamline these tasks. TranslationCorrect combines MT generation using models like NLLB, automated error prediction using models like XCOMET or LLM APIs (providing detailed reasoning), and an intuitive post-editing interface within a single environment. Built with human-computer interaction (HCI) principles in mind to minimize cognitive load, as confirmed by a user study. For translators, it enables them to correct errors and batch translate efficiently. For researchers, TranslationCorrect exports high-quality span-based annotations in the Error Span Annotation (ESA) format, using an error taxonomy inspired by Multidimensional Quality Metrics (MQM). These outputs are compatible with state-of-the-art error detection models and suitable for training MT or post-editing systems. Our user study confirms that TranslationCorrect significantly improves translation efficiency and user satisfaction over traditional annotation methods.
comment: Preprint
☆ Confucius3-Math: A Lightweight High-Performance Reasoning LLM for Chinese K-12 Mathematics Learning
We introduce Confucius3-Math, an open-source large language model with 14B parameters that (1) runs efficiently on a single consumer-grade GPU; (2) achieves SOTA performances on a range of mathematical reasoning tasks, outperforming many models with significantly larger sizes. In particular, as part of our mission to enhancing education and knowledge dissemination with AI, Confucius3-Math is specifically committed to mathematics learning for Chinese K-12 students and educators. Built via post-training with large-scale reinforcement learning (RL), Confucius3-Math aligns with national curriculum and excels at solving main-stream Chinese K-12 mathematical problems with low cost. In this report we share our development recipe, the challenges we encounter and the techniques we develop to overcome them. In particular, we introduce three technical innovations: Targeted Entropy Regularization, Recent Sample Recovery and Policy-Specific Hardness Weighting. These innovations encompass a new entropy regularization, a novel data scheduling policy, and an improved group-relative advantage estimator. Collectively, they significantly stabilize the RL training, improve data efficiency, and boost performance. Our work demonstrates the feasibility of building strong reasoning models in a particular domain at low cost. We open-source our model and code at https://github.com/netease-youdao/Confucius3-Math.
☆ Enhancing Entity Aware Machine Translation with Multi-task Learning
Entity-aware machine translation (EAMT) is a complicated task in natural language processing due to not only the shortage of translation data related to the entities needed to translate but also the complexity in the context needed to process while translating those entities. In this paper, we propose a method that applies multi-task learning to optimize the performance of the two subtasks named entity recognition and machine translation, which improves the final performance of the Entity-aware machine translation task. The result and analysis are performed on the dataset provided by the organizer of Task 2 of the SemEval 2025 competition.
comment: In the Proceedings of SCIDOCA 2025
☆ Team LA at SCIDOCA shared task 2025: Citation Discovery via relation-based zero-shot retrieval
The Citation Discovery Shared Task focuses on predicting the correct citation from a given candidate pool for a given paragraph. The main challenges stem from the length of the abstract paragraphs and the high similarity among candidate abstracts, making it difficult to determine the exact paper to cite. To address this, we develop a system that first retrieves the top-k most similar abstracts based on extracted relational features from the given paragraph. From this subset, we leverage a Large Language Model (LLM) to accurately identify the most relevant citation. We evaluate our framework on the training dataset provided by the SCIDOCA 2025 organizers, demonstrating its effectiveness in citation prediction.
comment: In the Proceedings of SCIDOCA 2025
☆ Enhancing Document Retrieval in COVID-19 Research: Leveraging Large Language Models for Hidden Relation Extraction
In recent years, with the appearance of the COVID-19 pandemic, numerous publications relevant to this disease have been issued. Because of the massive volume of publications, an efficient retrieval system is necessary to provide researchers with useful information if an unexpected pandemic happens so suddenly, like COVID-19. In this work, we present a method to help the retrieval system, the Covrelex-SE system, to provide more high-quality search results. We exploited the power of the large language models (LLMs) to extract the hidden relationships inside the unlabeled publication that cannot be found by the current parsing tools that the system is using. Since then, help the system to have more useful information during retrieval progress.
comment: In the Proceedings of SCIDOCA 2024
☆ RLPR: Extrapolating RLVR to General Domains without Verifiers
Reinforcement Learning with Verifiable Rewards (RLVR) demonstrates promising potential in advancing the reasoning capabilities of LLMs. However, its success remains largely confined to mathematical and code domains. This primary limitation stems from the heavy reliance on domain-specific verifiers, which results in prohibitive complexity and limited scalability. To address the challenge, our key observation is that LLM's intrinsic probability of generating a correct free-form answer directly indicates its own evaluation of the reasoning reward (i.e., how well the reasoning process leads to the correct answer). Building on this insight, we propose RLPR, a simple verifier-free framework that extrapolates RLVR to broader general domains. RLPR uses the LLM's own token probability scores for reference answers as the reward signal and maximizes the expected reward during training. We find that addressing the high variance of this noisy probability reward is crucial to make it work, and propose prob-to-reward and stabilizing methods to ensure a precise and stable reward from LLM intrinsic probabilities. Comprehensive experiments in four general-domain benchmarks and three mathematical benchmarks show that RLPR consistently improves reasoning capabilities in both areas for Gemma, Llama, and Qwen based models. Notably, RLPR outperforms concurrent VeriFree by 7.6 points on TheoremQA and 7.5 points on Minerva, and even surpasses strong verifier-model-dependent approaches General-Reasoner by 1.6 average points across seven benchmarks.
comment: Project Website: https://github.com/openbmb/RLPR
☆ AdapThink: Adaptive Thinking Preferences for Reasoning Language Model
Reinforcement Learning (RL)-based post-training has significantly advanced the complex reasoning capabilities of language models, fostering sophisticated self-reflection processes. However, this ``slow thinking'' paradigm presents a critical challenge to reasoning efficiency: models may expend excessive computation on simple questions and shift reasoning prematurely for complex ones. Previous mechanisms typically rely on static length budgets or predefined rules, lacking the adaptability for varying question complexities and models' evolving capabilities. To this end, we propose AdapThink, an adaptive post-training framework designed to induce more efficient thinking while maintaining the performance of reasoning language models. Specifically, AdapThink incorporates two key mechanisms: 1) A group-relative reward function that leverages model confidence and response's characteristic to dynamically adjust the preference of reflection-related transition words without resorting to a fixed length preference. 2) A diversity-aware sampling mechanism that balances the training group's solution accuracy with reasoning diversity via an entropy-guided score. Experiments on several mathematical reasoning datasets with DeepSeek-distilled models demonstrate AdapThink's advantages in enabling adaptive reasoning patterns and mitigating the inefficiencies.
☆ Bayesian Evolutionary Swarm Architecture: A Formal Epistemic System Grounded in Truth-Based Competition
We introduce a mathematically rigorous framework for an artificial intelligence system composed of probabilistic agents evolving through structured competition and belief revision. The architecture, grounded in Bayesian inference, measure theory, and population dynamics, defines agent fitness as a function of alignment with a fixed external oracle representing ground truth. Agents compete in a discrete-time environment, adjusting posterior beliefs through observed outcomes, with higher-rated agents reproducing and lower-rated agents undergoing extinction. Ratings are updated via pairwise truth-aligned utility comparisons, and belief updates preserve measurable consistency and stochastic convergence. We introduce hash-based cryptographic identity commitments to ensure traceability, alongside causal inference operators using do-calculus. Formal theorems on convergence, robustness, and evolutionary stability are provided. The system establishes truth as an evolutionary attractor, demonstrating that verifiable knowledge arises from adversarial epistemic pressure within a computable, self-regulating swarm.
comment: 83 pages, 14 sections, 92 formal results, no prior conference publication
☆ Prompt, Translate, Fine-Tune, Re-Initialize, or Instruction-Tune? Adapting LLMs for In-Context Learning in Low-Resource Languages ACL
LLMs are typically trained in high-resource languages, and tasks in lower-resourced languages tend to underperform the higher-resource language counterparts for in-context learning. Despite the large body of work on prompting settings, it is still unclear how LLMs should be adapted cross-lingually specifically for in-context learning in the low-resource target languages. We perform a comprehensive study spanning five diverse target languages, three base LLMs, and seven downstream tasks spanning over 4,100 GPU training hours (9,900+ TFLOPs) across various adaptation techniques: few-shot prompting, translate-test, fine-tuning, embedding re-initialization, and instruction fine-tuning. Our results show that the few-shot prompting and translate-test settings tend to heavily outperform the gradient-based adaptation methods. To better understand this discrepancy, we design a novel metric, Valid Output Recall (VOR), and analyze model outputs to empirically attribute the degradation of these trained models to catastrophic forgetting. To the extent of our knowledge, this is the largest study done on in-context learning for low-resource languages with respect to train compute and number of adaptation techniques considered. We make all our datasets and trained models available for public use.
comment: Accepted to ACL GEM 2025
☆ Enhanced Hybrid Transducer and Attention Encoder Decoder with Text Data
A joint speech and text optimization method is proposed for hybrid transducer and attention-based encoder decoder (TAED) modeling to leverage large amounts of text corpus and enhance ASR accuracy. The joint TAED (J-TAED) is trained with both speech and text input modalities together, while it only takes speech data as input during inference. The trained model can unify the internal representations from different modalities, and be further extended to text-based domain adaptation. It can effectively alleviate data scarcity for mismatch domain tasks since no speech data is required. Our experiments show J-TAED successfully integrates speech and linguistic information into one model, and reduce the WER by 5.8 ~12.8% on the Librispeech dataset. The model is also evaluated on two out-of-domain datasets: one is finance and another is named entity focused. The text-based domain adaptation brings 15.3% and 17.8% WER reduction on those two datasets respectively.
comment: Accepted by Interspeech2025
☆ Thought Anchors: Which LLM Reasoning Steps Matter?
Reasoning large language models have recently achieved state-of-the-art performance in many fields. However, their long-form chain-of-thought reasoning creates interpretability challenges as each generated token depends on all previous ones, making the computation harder to decompose. We argue that analyzing reasoning traces at the sentence level is a promising approach to understanding reasoning processes. We present three complementary attribution methods: (1) a black-box method measuring each sentence's counterfactual importance by comparing final answers across 100 rollouts conditioned on the model generating that sentence or one with a different meaning; (2) a white-box method of aggregating attention patterns between pairs of sentences, which identified ``broadcasting'' sentences that receive disproportionate attention from all future sentences via ``receiver'' attention heads; (3) a causal attribution method measuring logical connections between sentences by suppressing attention toward one sentence and measuring the effect on each future sentence's tokens. Each method provides evidence for the existence of thought anchors, reasoning steps that have outsized importance and that disproportionately influence the subsequent reasoning process. These thought anchors are typically planning or backtracking sentences. We provide an open-source tool (www.thought-anchors.com) for visualizing the outputs of our methods, and present a case study showing converging patterns across methods that map how a model performs multi-step reasoning. The consistency across methods demonstrates the potential of sentence-level analysis for a deeper understanding of reasoning models.
comment: Paul C. Bogdan and Uzay Macar contributed equally to this work, and their listed order was determined by coinflip. Neel Nanda and Arthur Conmy contributed equally to this work as senior authors, and their listed order was determined by coinflip
☆ Human-Aligned Faithfulness in Toxicity Explanations of LLMs
The discourse around toxicity and LLMs in NLP largely revolves around detection tasks. This work shifts the focus to evaluating LLMs' reasoning about toxicity -- from their explanations that justify a stance -- to enhance their trustworthiness in downstream tasks. Despite extensive research on explainability, it is not straightforward to adopt existing methods to evaluate free-form toxicity explanation due to their over-reliance on input text perturbations, among other challenges. To account for these, we propose a novel, theoretically-grounded multi-dimensional criterion, Human-Aligned Faithfulness (HAF), that measures the extent to which LLMs' free-form toxicity explanations align with those of a rational human under ideal conditions. We develop six metrics, based on uncertainty quantification, to comprehensively evaluate \haf of LLMs' toxicity explanations with no human involvement, and highlight how "non-ideal" the explanations are. We conduct several experiments on three Llama models (of size up to 70B) and an 8B Ministral model on five diverse toxicity datasets. Our results show that while LLMs generate plausible explanations to simple prompts, their reasoning about toxicity breaks down when prompted about the nuanced relations between the complete set of reasons, the individual reasons, and their toxicity stances, resulting in inconsistent and nonsensical responses. We open-source our code and LLM-generated explanations at https://github.com/uofthcdslab/HAF.
comment: 21 pages, 5 figures, 7 tables
☆ Language Models Might Not Understand You: Evaluating Theory of Mind via Story Prompting
We introduce $\texttt{StorySim}$, a programmable framework for synthetically generating stories to evaluate the theory of mind (ToM) and world modeling (WM) capabilities of large language models (LLMs). Unlike prior benchmarks that may suffer from contamination in pretraining data, $\texttt{StorySim}$ produces novel, compositional story prompts anchored by a highly controllable $\texttt{Storyboard}$, enabling precise manipulation of character perspectives and events. We use this framework to design first- and second-order ToM tasks alongside WM tasks that control for the ability to track and model mental states. Our experiments across a suite of state-of-the-art LLMs reveal that most models perform better on WM tasks than ToM tasks, and that models tend to perform better reasoning with humans compared to inanimate objects. Additionally, our framework enabled us to find evidence of heuristic behavior such as recency bias and an over-reliance on earlier events in the story. All code for generating data and evaluations is freely available.
comment: 14 pages, 11 figures
☆ MFTCXplain: A Multilingual Benchmark Dataset for Evaluating the Moral Reasoning of LLMs through Hate Speech Multi-hop Explanation
Ensuring the moral reasoning capabilities of Large Language Models (LLMs) is a growing concern as these systems are used in socially sensitive tasks. Nevertheless, current evaluation benchmarks present two major shortcomings: a lack of annotations that justify moral classifications, which limits transparency and interpretability; and a predominant focus on English, which constrains the assessment of moral reasoning across diverse cultural settings. In this paper, we introduce MFTCXplain, a multilingual benchmark dataset for evaluating the moral reasoning of LLMs via hate speech multi-hop explanation using Moral Foundation Theory (MFT). The dataset comprises 3,000 tweets across Portuguese, Italian, Persian, and English, annotated with binary hate speech labels, moral categories, and text span-level rationales. Empirical results highlight a misalignment between LLM outputs and human annotations in moral reasoning tasks. While LLMs perform well in hate speech detection (F1 up to 0.836), their ability to predict moral sentiments is notably weak (F1 < 0.35). Furthermore, rationale alignment remains limited mainly in underrepresented languages. These findings show the limited capacity of current LLMs to internalize and reflect human moral reasoning.
comment: Under Review
☆ HAWAII: Hierarchical Visual Knowledge Transfer for Efficient Vision-Language Models
Improving the visual understanding ability of vision-language models (VLMs) is crucial for enhancing their performance across various tasks. While using multiple pretrained visual experts has shown great promise, it often incurs significant computational costs during training and inference. To address this challenge, we propose HAWAII, a novel framework that distills knowledge from multiple visual experts into a single vision encoder, enabling it to inherit the complementary strengths of several experts with minimal computational overhead. To mitigate conflicts among different teachers and switch between different teacher-specific knowledge, instead of using a fixed set of adapters for multiple teachers, we propose to use teacher-specific Low-Rank Adaptation (LoRA) adapters with a corresponding router. Each adapter is aligned with a specific teacher, avoiding noisy guidance during distillation. To enable efficient knowledge distillation, we propose fine-grained and coarse-grained distillation. At the fine-grained level, token importance scores are employed to emphasize the most informative tokens from each teacher adaptively. At the coarse-grained level, we summarize the knowledge from multiple teachers and transfer it to the student using a set of general-knowledge LoRA adapters with a router. Extensive experiments on various vision-language tasks demonstrate the superiority of HAWAII, compared to the popular open-source VLMs.
comment: Work in progress
☆ NLPnorth @ TalentCLEF 2025: Comparing Discriminative, Contrastive, and Prompt-Based Methods for Job Title and Skill Matching
Matching job titles is a highly relevant task in the computational job market domain, as it improves e.g., automatic candidate matching, career path prediction, and job market analysis. Furthermore, aligning job titles to job skills can be considered an extension to this task, with similar relevance for the same downstream tasks. In this report, we outline NLPnorth's submission to TalentCLEF 2025, which includes both of these tasks: Multilingual Job Title Matching, and Job Title-Based Skill Prediction. For both tasks we compare (fine-tuned) classification-based, (fine-tuned) contrastive-based, and prompting methods. We observe that for Task A, our prompting approach performs best with an average of 0.492 mean average precision (MAP) on test data, averaged over English, Spanish, and German. For Task B, we obtain an MAP of 0.290 on test data with our fine-tuned classification-based approach. Additionally, we made use of extra data by pulling all the language-specific titles and corresponding \emph{descriptions} from ESCO for each job and skill. Overall, we find that the largest multilingual language models perform best for both tasks. Per the provisional results and only counting the unique teams, the ranking on Task A is 5$^{\text{th}}$/20 and for Task B 3$^{\text{rd}}$/14.
comment: TalentCLEF 2025
☆ Plan for Speed -- Dilated Scheduling for Masked Diffusion Language Models
Masked diffusion language models (MDLM) have shown strong promise for non-autoregressive text generation, yet existing samplers act as implicit planners, selecting tokens to unmask via denoiser confidence or entropy scores. Such heuristics falter under parallel unmasking - they ignore pairwise interactions between tokens and cannot account for dependencies when unmasking multiple positions at once, limiting their inference time to traditional auto-regressive (AR) models. We introduce the Dilated-scheduled Unmasking Strategy (DUS), an inference-only, planner-model-free method that requires no additional training. DUS leverages a first-order Markov assumption to partition sequence positions into dilation-based groups of non-adjacent tokens, enabling independent, parallel unmasking steps that respect local context that minimizes the joint entropy of each iteration step. Unlike semi-AR block approaches (e.g., LLADA and Dream) that still invoke the denoiser per block, DUS reduces the number of denoiser calls to O(log B) per generation block - yielding substantial speedup over the O(B) run time of state-of-the-art diffusion models, where B is the block size in the semi-AR inference process. In experiments on math (GSM8K) and code completion (Humaneval, MBPP) benchmarks - domains suited to non-ordinal generation - DUS improves scores over parallel confidence-based planner, without modifying the underlying denoiser. DUS offers a lightweight, budget-aware approach to efficient, high-quality text generation, paving the way to unlock the true capabilities of MDLMs.
☆ Quantifying Fairness in LLMs Beyond Tokens: A Semantic and Statistical Perspective
Large Language Models (LLMs) often generate responses with inherent biases, undermining their reliability in real-world applications. Existing evaluation methods often overlook biases in long-form responses and the intrinsic variability of LLM outputs. To address these challenges, we propose FiSCo(Fine-grained Semantic Computation), a novel statistical framework to evaluate group-level fairness in LLMs by detecting subtle semantic differences in long-form responses across demographic groups. Unlike prior work focusing on sentiment or token-level comparisons, FiSCo goes beyond surface-level analysis by operating at the claim level, leveraging entailment checks to assess the consistency of meaning across responses. We decompose model outputs into semantically distinct claims and apply statistical hypothesis testing to compare inter- and intra-group similarities, enabling robust detection of subtle biases. We formalize a new group counterfactual fairness definition and validate FiSCo on both synthetic and human-annotated datasets spanning gender, race, and age. Experiments show that FiSco more reliably identifies nuanced biases while reducing the impact of stochastic LLM variability, outperforming various evaluation metrics.
comment: 29 pages, 9 figures, 15 tables
♻ ☆ EMULATE: A Multi-Agent Framework for Determining the Veracity of Atomic Claims by Emulating Human Actions ACL 2025
Determining the veracity of atomic claims is an imperative component of many recently proposed fact-checking systems. Many approaches tackle this problem by first retrieving evidence by querying a search engine and then performing classification by providing the evidence set and atomic claim to a large language model, but this process deviates from what a human would do in order to perform the task. Recent work attempted to address this issue by proposing iterative evidence retrieval, allowing for evidence to be collected several times and only when necessary. Continuing along this line of research, we propose a novel claim verification system, called EMULATE, which is designed to better emulate human actions through the use of a multi-agent framework where each agent performs a small part of the larger task, such as ranking search results according to predefined criteria or evaluating webpage content. Extensive experiments on several benchmarks show clear improvements over prior work, demonstrating the efficacy of our new multi-agent framework.
comment: FEVER 2025 (co-located with ACL 2025)
♻ ☆ A Survey on Data Selection for LLM Instruction Tuning
Instruction tuning is a vital step of training large language models (LLM), so how to enhance the effect of instruction tuning has received increased attention. Existing works indicate that the quality of the dataset is more crucial than the quantity during instruction tuning of LLM. Therefore, recently a lot of studies focus on exploring the methods of selecting high-quality subset from instruction datasets, aiming to reduce training costs and enhance the instruction-following capabilities of LLMs. This paper presents a comprehensive survey on data selection for LLM instruction tuning. Firstly, we introduce the wildly used instruction datasets. Then, we propose a new taxonomy of the data selection methods and provide a detailed introduction of recent advances,and the evaluation strategies and results of data selection methods are also elaborated in detail. Finally, we emphasize the open challenges and present new frontiers of this task.
comment: Accepted by JAIR
♻ ☆ Step-by-Step Unmasking for Parameter-Efficient Fine-tuning of Large Language Models
Fine-tuning large language models (LLMs) on downstream tasks requires substantial computational resources. Selective PEFT, a class of parameter-efficient fine-tuning (PEFT) methodologies, aims to mitigate these computational challenges by selectively fine-tuning only a small fraction of the model parameters. Although parameter-efficient, these techniques often fail to match the performance of fully fine-tuned models, primarily due to inherent biases introduced during parameter selection. Traditional selective PEFT techniques use a fixed set of parameters selected using different importance heuristics, failing to capture parameter importance dynamically and often leading to suboptimal performance. We introduce $\text{ID}^3$, a novel selective PEFT method that calculates parameter importance continually, and dynamically unmasks parameters by balancing exploration and exploitation in parameter selection. Our empirical study on 16 tasks spanning natural language understanding, mathematical reasoning and summarization demonstrates the effectiveness of our method compared to fixed-masking selective PEFT techniques. We analytically show that $\text{ID}^3$ reduces the number of gradient updates by a factor of two, enhancing computational efficiency. Since $\text{ID}^3$ is robust to random initialization of neurons and operates directly on the optimization process, it is highly flexible and can be integrated with existing additive and reparametrization-based PEFT techniques such as adapters and LoRA respectively.
comment: 15 pages, 7 tables, 9 figures
♻ ☆ SEAL: Scaling to Emphasize Attention for Long-Context Retrieval ACL 2025
While many advanced LLMs are designed to handle long sequence data, we can still observe notable quality degradation even within the sequence limit. In this work, we introduce a novel approach called Scaling to Emphasize Attention for Long-context retrieval (SEAL), which enhances the retrieval performance of large language models (LLMs) over long contexts. We observe that specific attention heads are closely tied to long-context retrieval, showing positive or negative correlation with retrieval scores, and adjusting the strength of these heads boosts the quality of LLMs in long context by a large margin. Built on this insight, we propose a learning-based mechanism that leverages generated data to emphasize these heads. By applying SEAL, we achieve significant improvements in long-context retrieval performance across various tasks and models. Additionally, when combined with existing training-free context extension techniques, SEAL extends the contextual limits of LLMs while maintaining highly reliable outputs.
comment: Accepted at ACL 2025 Main
♻ ☆ Eye of Judgement: Dissecting the Evaluation of Russian-speaking LLMs with POLLUX
We introduce POLLUX, a comprehensive open-source benchmark designed to evaluate the generative capabilities of large language models (LLMs) in Russian. Our main contribution is a novel evaluation methodology that enhances the interpretability of LLM assessment. For each task type, we define a set of detailed criteria and develop a scoring protocol where models evaluate responses and provide justifications for their ratings. This enables transparent, criteria-driven evaluation beyond traditional resource-consuming, side-by-side human comparisons. POLLUX includes a detailed, fine-grained taxonomy of 35 task types covering diverse generative domains such as code generation, creative writing, and practical assistant use cases, totaling 2,100 manually crafted and professionally authored prompts. Each task is categorized by difficulty (easy/medium/hard), with experts constructing the dataset entirely from scratch. We also release a family of LLM-as-a-Judge (7B and 32B) evaluators trained for nuanced assessment of generative outputs. This approach provides scalable, interpretable evaluation and annotation tools for model development, effectively replacing costly and less precise human judgments.
comment: 179 pages
♻ ☆ Handling Numeric Expressions in Automatic Speech Recognition
This paper addresses the problem of correctly formatting numeric expressions in automatic speech recognition (ASR) transcripts. This is challenging since the expected transcript format depends on the context, e.g., 1945 (year) vs. 19:45 (timestamp). We compare cascaded and end-to-end approaches to recognize and format numeric expressions such as years, timestamps, currency amounts, and quantities. For the end-to-end approach, we employed a data generation strategy using a large language model (LLM) together with a text to speech (TTS) model to generate adaptation data. The results on our test data set show that while approaches based on LLMs perform well in recognizing formatted numeric expressions, adapted end-to-end models offer competitive performance with the advantage of lower latency and inference cost.
♻ ☆ Better Language Model Inversion by Compactly Representing Next-Token Distributions
Language model inversion seeks to recover hidden prompts using only language model outputs. This capability has implications for security and accountability in language model deployments, such as leaking private information from an API-protected language model's system message. We propose a new method -- prompt inversion from logprob sequences (PILS) -- that recovers hidden prompts by gleaning clues from the model's next-token probabilities over the course of multiple generation steps. Our method is enabled by a key insight: The vector-valued outputs of a language model occupy a low-dimensional subspace. This enables us to losslessly compress the full next-token probability distribution over multiple generation steps using a linear map, allowing more output information to be used for inversion. Our approach yields massive gains over previous state-of-the-art methods for recovering hidden prompts, achieving 2--3.5 times higher exact recovery rates across test sets, in one case increasing the recovery rate from 17% to 60%. Our method also exhibits surprisingly good generalization behavior; for instance, an inverter trained on 16 generations steps gets 5--27 points higher prompt recovery when we increase the number of steps to 32 at test time. Furthermore, we demonstrate strong performance of our method on the more challenging task of recovering hidden system messages. We also analyze the role of verbatim repetition in prompt recovery and propose a new method for cross-family model transfer for logit-based inverters. Our findings show that next-token probabilities are a considerably more vulnerable attack surface for inversion attacks than previously known.
♻ ☆ HausaNLP at SemEval-2025 Task 11: Hausa Text Emotion Detection
This paper presents our approach to multi-label emotion detection in Hausa, a low-resource African language, for SemEval Track A. We fine-tuned AfriBERTa, a transformer-based model pre-trained on African languages, to classify Hausa text into six emotions: anger, disgust, fear, joy, sadness, and surprise. Our methodology involved data preprocessing, tokenization, and model fine-tuning using the Hugging Face Trainer API. The system achieved a validation accuracy of 74.00%, with an F1-score of 73.50%, demonstrating the effectiveness of transformer-based models for emotion detection in low-resource languages.
♻ ☆ "I understand why I got this grade": Automatic Short Answer Grading with Feedback
In recent years, there has been a growing interest in using Artificial Intelligence (AI) to automate student assessment in education. Among different types of assessments, summative assessments play a crucial role in evaluating a student's understanding level of a course. Such examinations often involve short-answer questions. However, grading these responses and providing meaningful feedback manually at scale is both time-consuming and labor-intensive. Feedback is particularly important, as it helps students recognize their strengths and areas for improvement. Despite the importance of this task, there is a significant lack of publicly available datasets that support automatic short-answer grading with feedback generation. To address this gap, we introduce Engineering Short Answer Feedback (EngSAF), a dataset designed for automatic short-answer grading with feedback. The dataset covers a diverse range of subjects, questions, and answer patterns from multiple engineering domains and contains ~5.8k data points. We incorporate feedback into our dataset by leveraging the generative capabilities of state-of-the-art large language models (LLMs) using our Label-Aware Synthetic Feedback Generation (LASFG) strategy. This paper underscores the importance of enhanced feedback in practical educational settings, outlines dataset annotation and feedback generation processes, conducts a thorough EngSAF analysis, and provides different LLMs-based zero-shot and finetuned baselines for future comparison. The best-performing model (Mistral-7B) achieves an overall accuracy of 75.4% and 58.7% on unseen answers and unseen question test sets, respectively. Additionally, we demonstrate the efficiency and effectiveness of our ASAG system through its deployment in a real-world end-semester exam at a reputed institute.
♻ ☆ C-SEO Bench: Does Conversational SEO Work?
Large Language Models (LLMs) are transforming search engines into Conversational Search Engines (CSE). Consequently, Search Engine Optimization (SEO) is being shifted into Conversational Search Engine Optimization (C-SEO). We are beginning to see dedicated C-SEO methods for modifying web documents to increase their visibility in CSE responses. However, they are often tested only for a limited breadth of application domains; we do not understand whether certain C-SEO methods would be effective for a broad range of domains. Moreover, existing evaluations consider only a single-actor scenario where only one web document adopts a C-SEO method; in reality, multiple players are likely to competitively adopt the cutting-edge C-SEO techniques, drawing an analogy from the dynamics we have seen in SEO. We present C-SEO Bench, the first benchmark designed to evaluate C-SEO methods across multiple tasks, domains, and number of actors. We consider two search tasks, question answering and product recommendation, with three domains each. We also formalize a new evaluation protocol with varying adoption rates among involved actors. Our experiments reveal that most current C-SEO methods are largely ineffective, contrary to reported results in the literature. Instead, traditional SEO strategies, those aiming to improve the ranking of the source in the LLM context, are significantly more effective. We also observe that as we increase the number of C-SEO adopters, the overall gains decrease, depicting a congested and zero-sum nature of the problem. Our code and data are available at https://github.com/parameterlab/c-seo-bench and https://huggingface.co/datasets/parameterlab/c-seo-bench.
♻ ☆ Alignment Helps Make the Most of Multimodal Data
Political scientists increasingly analyze multimodal data. However, the effective analysis of such data requires aligning information across different modalities. In our paper, we demonstrate the significance of such alignment. Informed by a systematic review of 2,703 papers, we find that political scientists typically do not align their multimodal data. Introducing a decision tree that guides alignment choices, our framework highlights alignment's untapped potential and provides concrete advice in research design and modeling decisions. We illustrate alignment's analytical value through two applications: predicting tonality in U.S. presidential campaign ads and cross-modal querying of German parliamentary speeches to examine responses to the far-right AfD.
comment: Working Paper
♻ ☆ Pretraining Language Models to Ponder in Continuous Space
Humans ponder before articulating complex sentence elements, enabling deeper cognitive processing through focused effort. In this work, we introduce this pondering process into language models by repeatedly invoking the forward process within a single token generation step. During pondering, instead of generating an actual token sampled from the prediction distribution, the model ponders by yielding a weighted sum of all token embeddings according to the predicted token distribution. The generated embedding is then fed back as input for another forward pass. We show that the model can learn to ponder in this way through self-supervised learning, without any human annotations. Experiments across three widely used open-source architectures-GPT-2, Pythia, and LLaMA-and extensive downstream task evaluations demonstrate the effectiveness and generality of our method. For language modeling tasks, pondering language models achieve performance comparable to vanilla models with twice the number of parameters. On 9 downstream benchmarks, our pondering-enhanced Pythia models significantly outperform the official Pythia models. Notably, PonderingPythia-2.8B surpasses Pythia-6.9B, and PonderingPythia-1B is comparable to TinyLlama-1.1B, which is trained on 10 times more data. The code is available at https://github.com/LUMIA-Group/PonderingLM.
♻ ☆ LLMs Lost in Translation: M-ALERT uncovers Cross-Linguistic Safety Inconsistencies
Building safe Large Language Models (LLMs) across multiple languages is essential in ensuring both safe access and linguistic diversity. To this end, we conduct a large-scale, comprehensive safety evaluation of the current LLM landscape. For this purpose, we introduce M-ALERT, a multilingual benchmark that evaluates the safety of LLMs in five languages: English, French, German, Italian, and Spanish. M-ALERT includes 15k high-quality prompts per language, totaling 75k, with category-wise annotations. Our extensive experiments on 39 state-of-the-art LLMs highlight the importance of language-specific safety analysis, revealing that models often exhibit significant inconsistencies in safety across languages and categories. For instance, Llama3.2 shows high unsafety in category crime_tax for Italian but remains safe in other languages. Similar inconsistencies can be observed across all models. In contrast, certain categories, such as substance_cannabis and crime_propaganda, consistently trigger unsafe responses across models and languages. These findings underscore the need for robust multilingual safety practices in LLMs to ensure responsible usage across diverse communities.
♻ ☆ Affordable AI Assistants with Knowledge Graph of Thoughts
Large Language Models (LLMs) are revolutionizing the development of AI assistants capable of performing diverse tasks across domains. However, current state-of-the-art LLM-driven agents face significant challenges, including high operational costs and limited success rates on complex benchmarks like GAIA. To address these issues, we propose Knowledge Graph of Thoughts (KGoT), an innovative AI assistant architecture that integrates LLM reasoning with dynamically constructed knowledge graphs (KGs). KGoT extracts and structures task-relevant knowledge into a dynamic KG representation, iteratively enhanced through external tools such as math solvers, web crawlers, and Python scripts. Such structured representation of task-relevant knowledge enables low-cost models to solve complex tasks effectively while also minimizing bias and noise. For example, KGoT achieves a 29% improvement in task success rates on the GAIA benchmark compared to Hugging Face Agents with GPT-4o mini. Moreover, harnessing a smaller model dramatically reduces operational costs by over 36x compared to GPT-4o. Improvements for other models (e.g., Qwen2.5-32B and Deepseek-R1-70B) and benchmarks (e.g., SimpleQA) are similar. KGoT offers a scalable, affordable, versatile, and high-performing solution for AI assistants.
♻ ☆ Piloting Copilot, Codex, and StarCoder2: Hot Temperature, Cold Prompts, or Black Magic?
Language models are promising solutions for tackling increasing complex problems. In software engineering, they recently gained attention in code assistants, which generate programs from a natural language task description (prompt). They have the potential to save time and effort but remain poorly understood, limiting their optimal use. In this article, we investigate the impact of input variations on two configurations of a language model, focusing on parameters such as task description, surrounding context, model creativity, and the number of generated solutions. We design specific operators to modify these inputs and apply them to three LLM-based code assistants (Copilot, Codex, StarCoder2) and two benchmarks representing algorithmic problems (HumanEval, LeetCode). Our study examines whether these variations significantly affect program quality and how these effects generalize across models. Our results show that varying input parameters can greatly improve performance, achieving up to 79.27% success in one-shot generation compared to 22.44% for Codex and 31.1% for Copilot in default settings. Actioning this potential in practice is challenging due to the complex interplay in our study - the optimal settings for temperature, prompt, and number of generated solutions vary by problem. Reproducing our study with StarCoder2 confirms these findings, indicating they are not model-specific. We also uncover surprising behaviors (e.g., fully removing the prompt can be effective), revealing model brittleness and areas for improvement.
comment: 53 pages, 3 Figures (not counted the subfigures), 16 Tables
♻ ☆ ASCenD-BDS: Adaptable, Stochastic and Context-aware framework for Detection of Bias, Discrimination and Stereotyping
The rapid evolution of Large Language Models (LLMs) has transformed natural language processing but raises critical concerns about biases inherent in their deployment and use across diverse linguistic and sociocultural contexts. This paper presents a framework named ASCenD BDS (Adaptable, Stochastic and Context-aware framework for Detection of Bias, Discrimination and Stereotyping). The framework presents approach to detecting bias, discrimination, stereotyping across various categories such as gender, caste, age, disability, socioeconomic status, linguistic variations, etc., using an approach which is Adaptive, Stochastic and Context-Aware. The existing frameworks rely heavily on usage of datasets to generate scenarios for detection of Bias, Discrimination and Stereotyping. Examples include datasets such as Civil Comments, Wino Gender, WinoBias, BOLD, CrowS Pairs and BBQ. However, such an approach provides point solutions. As a result, these datasets provide a finite number of scenarios for assessment. The current framework overcomes this limitation by having features which enable Adaptability, Stochasticity, Context Awareness. Context awareness can be customized for any nation or culture or sub-culture (for example an organization's unique culture). In this paper, context awareness in the Indian context has been established. Content has been leveraged from Indian Census 2011 to have a commonality of categorization. A framework has been developed using Category, Sub-Category, STEM, X-Factor, Synonym to enable the features for Adaptability, Stochasticity and Context awareness. The framework has been described in detail in Section 3. Overall 800 plus STEMs, 10 Categories, 31 unique SubCategories were developed by a team of consultants at Saint Fox Consultancy Private Ltd. The concept has been tested out in SFCLabs as part of product development.
comment: 17 pages, 6 Figures and this manuscript will be submitted to Q1,Q2 Journals
♻ ☆ HiRAG: Retrieval-Augmented Generation with Hierarchical Knowledge
Graph-based Retrieval-Augmented Generation (RAG) methods have significantly enhanced the performance of large language models (LLMs) in domain-specific tasks. However, existing RAG methods do not adequately utilize the naturally inherent hierarchical knowledge in human cognition, which limits the capabilities of RAG systems. In this paper, we introduce a new RAG approach, called HiRAG, which utilizes hierarchical knowledge to enhance the semantic understanding and structure capturing capabilities of RAG systems in the indexing and retrieval processes. Our extensive experiments demonstrate that HiRAG achieves significant performance improvements over the state-of-the-art baseline methods.
♻ ☆ MORTAR: Multi-turn Metamorphic Testing for LLM-based Dialogue Systems
With the widespread application of LLM-based dialogue systems in daily life, quality assurance has become more important than ever. Recent research has successfully introduced methods to identify unexpected behaviour in single-turn testing scenarios. However, multi-turn interaction is the common real-world usage of dialogue systems, yet testing methods for such interactions remain underexplored. This is largely due to the oracle problem in multi-turn testing, which continues to pose a significant challenge for dialogue system developers and researchers. In this paper, we propose MORTAR, a metamorphic multi-turn dialogue testing approach, which mitigates the test oracle problem in testing LLM-based dialogue systems. MORTAR formalises the multi-turn testing for dialogue systems, and automates the generation of question-answer dialogue test cases with multiple dialogue-level perturbations and metamorphic relations (MRs). The automated MR matching mechanism allows MORTAR more flexibility and efficiency in metamorphic testing. The proposed approach is fully automated without reliance on LLM judges. In testing six popular LLM-based dialogue systems, MORTAR reaches significantly better effectiveness with over 150\% more bugs revealed per test case when compared to the single-turn metamorphic testing baseline. Regarding the quality of bugs, MORTAR reveals higher-quality bugs in terms of diversity, precision and uniqueness. MORTAR is expected to inspire more multi-turn testing approaches, and assist developers in evaluating the dialogue system performance more comprehensively with constrained test resources and budget.
♻ ☆ Proper Noun Diacritization for Arabic Wikipedia: A Benchmark Dataset
Proper nouns in Arabic Wikipedia are frequently undiacritized, creating ambiguity in pronunciation and interpretation, especially for transliterated named entities of foreign origin. While transliteration and diacritization have been well-studied separately in Arabic NLP, their intersection remains underexplored. In this paper, we introduce a new manually diacritized dataset of Arabic proper nouns of various origins with their English Wikipedia equivalent glosses, and present the challenges and guidelines we followed to create it. We benchmark GPT-4o on the task of recovering full diacritization given the undiacritized Arabic and English forms, and analyze its performance. Achieving 73% accuracy, our results underscore both the difficulty of the task and the need for improved models and resources. We release our dataset to facilitate further research on Arabic Wikipedia proper noun diacritization.
♻ ☆ PlantDeBERTa: An Open Source Language Model for Plant Science
The rapid advancement of transformer-based language models has catalyzed breakthroughs in biomedical and clinical natural language processing; however, plant science remains markedly underserved by such domain-adapted tools. In this work, we present PlantDeBERTa, a high-performance, open-source language model specifically tailored for extracting structured knowledge from plant stress-response literature. Built upon the DeBERTa architecture-known for its disentangled attention and robust contextual encoding-PlantDeBERTa is fine-tuned on a meticulously curated corpus of expert-annotated abstracts, with a primary focus on lentil (Lens culinaris) responses to diverse abiotic and biotic stressors. Our methodology combines transformer-based modeling with rule-enhanced linguistic post-processing and ontology-grounded entity normalization, enabling PlantDeBERTa to capture biologically meaningful relationships with precision and semantic fidelity. The underlying corpus is annotated using a hierarchical schema aligned with the Crop Ontology, encompassing molecular, physiological, biochemical, and agronomic dimensions of plant adaptation. PlantDeBERTa exhibits strong generalization capabilities across entity types and demonstrates the feasibility of robust domain adaptation in low-resource scientific fields.By providing a scalable and reproducible framework for high-resolution entity recognition, PlantDeBERTa bridges a critical gap in agricultural NLP and paves the way for intelligent, data-driven systems in plant genomics, phenomics, and agronomic knowledge discovery. Our model is publicly released to promote transparency and accelerate cross-disciplinary innovation in computational plant science.
♻ ☆ OAgents: An Empirical Study of Building Effective Agents
Recently, Agentic AI has become an increasingly popular research field. However, we argue that current agent research practices lack standardization and scientific rigor, making it hard to conduct fair comparisons among methods. As a result, it is still unclear how different design choices in agent frameworks affect effectiveness, and measuring their progress remains challenging. In this work, we conduct a systematic empirical study on GAIA benchmark and BrowseComp to examine the impact of popular design choices in key agent components in a fair and rigorous manner. We find that the lack of a standard evaluation protocol makes previous works, even open-sourced ones, non-reproducible, with significant variance between random runs. Therefore, we introduce a more robust evaluation protocol to stabilize comparisons. Our study reveals which components and designs are crucial for effective agents, while others are redundant, despite seeming logical. Based on our findings, we build and open-source OAgents, a new foundation agent framework that achieves state-of-the-art performance among open-source projects. OAgents offers a modular design for various agent components, promoting future research in Agentic AI.
comment: 28 pages
♻ ☆ Circuit Compositions: Exploring Modular Structures in Transformer-Based Language Models ACL 2025
A fundamental question in interpretability research is to what extent neural networks, particularly language models, implement reusable functions through subnetworks that can be composed to perform more complex tasks. Recent advances in mechanistic interpretability have made progress in identifying $\textit{circuits}$, which represent the minimal computational subgraphs responsible for a model's behavior on specific tasks. However, most studies focus on identifying circuits for individual tasks without investigating how functionally similar circuits $\textit{relate}$ to each other. To address this gap, we study the modularity of neural networks by analyzing circuits for highly compositional subtasks within a transformer-based language model. Specifically, given a probabilistic context-free grammar, we identify and compare circuits responsible for ten modular string-edit operations. Our results indicate that functionally similar circuits exhibit both notable node overlap and cross-task faithfulness. Moreover, we demonstrate that the circuits identified can be reused and combined through set operations to represent more complex functional model capabilities.
comment: ACL 2025 main, 22 pages, 21 figures
♻ ☆ Compromising Honesty and Harmlessness in Language Models via Deception Attacks
Recent research on large language models (LLMs) has demonstrated their ability to understand and employ deceptive behavior, even without explicit prompting. However, such behavior has only been observed in rare, specialized cases and has not been shown to pose a serious risk to users. Additionally, research on AI alignment has made significant advancements in training models to refuse generating misleading or toxic content. As a result, LLMs generally became honest and harmless. In this study, we introduce "deception attacks" that undermine both of these traits, revealing a vulnerability that, if exploited, could have serious real-world consequences. We introduce fine-tuning methods that cause models to selectively deceive users on targeted topics while remaining accurate on others. Through a series of experiments, we show that such targeted deception is effective even in high-stakes domains or ideologically charged subjects. In addition, we find that deceptive fine-tuning often compromises other safety properties: deceptive models are more likely to produce toxic content, including hate speech and stereotypes. Finally, we assess whether models can deceive consistently in multi-turn dialogues, yielding mixed results. Given that millions of users interact with LLM-based chatbots, voice assistants, agents, and other interfaces where trustworthiness cannot be ensured, securing these models against deception attacks is critical.
♻ ☆ Infi-MMR: Curriculum-based Unlocking Multimodal Reasoning via Phased Reinforcement Learning in Multimodal Small Language Models
Recent advancements in large language models (LLMs) have demonstrated substantial progress in reasoning capabilities, such as DeepSeek-R1, which leverages rule-based reinforcement learning to enhance logical reasoning significantly. However, extending these achievements to multimodal large language models (MLLMs) presents critical challenges, which are frequently more pronounced for Multimodal Small Language Models (MSLMs) given their typically weaker foundational reasoning abilities: (1) the scarcity of high-quality multimodal reasoning datasets, (2) the degradation of reasoning capabilities due to the integration of visual processing, and (3) the risk that direct application of reinforcement learning may produce complex yet incorrect reasoning processes. To address these challenges, we design a novel framework Infi-MMR to systematically unlock the reasoning potential of MSLMs through a curriculum of three carefully structured phases and propose our multimodal reasoning model Infi-MMR-3B. The first phase, Foundational Reasoning Activation, leverages high-quality textual reasoning datasets to activate and strengthen the model's logical reasoning capabilities. The second phase, Cross-Modal Reasoning Adaptation, utilizes caption-augmented multimodal data to facilitate the progressive transfer of reasoning skills to multimodal contexts. The third phase, Multimodal Reasoning Enhancement, employs curated, caption-free multimodal data to mitigate linguistic biases and promote robust cross-modal reasoning. Infi-MMR-3B achieves both state-of-the-art multimodal math reasoning ability (43.68% on MathVerse testmini, 27.04% on MathVision test, and 21.33% on OlympiadBench) and general reasoning ability (67.2% on MathVista testmini). Resources are available at https://huggingface.co/Reallm-Labs/Infi-MMR-3B.
♻ ☆ SLR: An Automated Synthesis Framework for Scalable Logical Reasoning
We introduce SLR, an end-to-end framework for systematic evaluation and training of Large Language Models (LLMs) via Scalable Logical Reasoning. Given a user's task specification, SLR enables scalable, automated synthesis of inductive reasoning tasks with precisely controlled difficulty. For each task, SLR synthesizes (i) a latent ground-truth rule, (ii) an executable validation program used by a symbolic judge to deterministically verify model outputs, and (iii) an instruction prompt for the reasoning task. Using SLR, we create SLR-Bench, a benchmark comprising over 19k prompts spanning 20 curriculum levels that progressively increase in relational, arithmetic, and recursive complexity. Large-scale evaluation reveals that contemporary LLMs readily produce syntactically valid rules, yet often fail at correct logical inference. Recent reasoning LLMs do somewhat better, but incur substantial increases in test-time compute, sometimes exceeding 15k completion tokens. Finally, logic-tuning via SLR doubles Llama-3-8B accuracy on SLR-Bench, achieving parity with Gemini-Flash-Thinking at a fraction of computational cost. SLR is fully automated, requires no human annotation, ensures dataset novelty, and offers a scalable environment for probing and advancing LLMs' reasoning capabilities.
♻ ☆ Song Form-aware Full-Song Text-to-Lyrics Generation with Multi-Level Granularity Syllable Count Control
Lyrics generation presents unique challenges, particularly in achieving precise syllable control while adhering to song form structures such as verses and choruses. Conventional line-by-line approaches often lead to unnatural phrasing, underscoring the need for more granular syllable management. We propose a framework for lyrics generation that enables multi-level syllable control at the word, phrase, line, and paragraph levels, aware of song form. Our approach generates complete lyrics conditioned on input text and song form, ensuring alignment with specified syllable constraints. Generated lyrics samples are available at: https://tinyurl.com/lyrics9999
comment: Accepted to Interspeech 2025
♻ ☆ A Rigorous Evaluation of LLM Data Generation Strategies for Low-Resource Languages
Large Language Models (LLMs) are increasingly used to generate synthetic textual data for training smaller specialized models. However, a comparison of various generation strategies for low-resource language settings is lacking. While various prompting strategies have been proposed, such as demonstrations, label-based summaries, and self-revision, their comparative effectiveness remains unclear, especially for low-resource languages. In this paper, we systematically evaluate the performance of these generation strategies and their combinations across 11 typologically diverse languages, including several extremely low-resource ones. Using three NLP tasks and four open-source LLMs, we assess downstream model performance on generated versus gold-standard data. Our results show that strategic combinations of generation methods, particularly target-language demonstrations with LLM-based revisions, yield strong performance, narrowing the gap with real data to as little as 5% in some settings. We also find that smart prompting techniques can reduce the advantage of larger LLMs, highlighting efficient generation strategies for synthetic data generation in low-resource scenarios with smaller models.
comment: 21 pages, fixed typo
♻ ☆ Factual Knowledge in Language Models: Robustness and Anomalies under Simple Temporal Context Variations ACL 2025
This paper explores the robustness of language models (LMs) to variations in the temporal context within factual knowledge. It examines whether LMs can correctly associate a temporal context with a past fact valid over a defined period, by asking them to differentiate correct from incorrect contexts. The LMs' ability to distinguish is analyzed along two dimensions: the distance of the incorrect context from the validity period and the granularity of the context. To this end, a dataset called TimeStress is introduced, enabling the evaluation of 18 diverse LMs. Results reveal that the best LM achieves a perfect distinction for only 11% of the studied facts, with errors, certainly rare, but critical that humans would not make. This work highlights the limitations of current LMs in temporal representation.
comment: preprint v6, accepted for publication at ACL 2025 - L2M2 Workshop
♻ ☆ A Survey on Large Language Model based Human-Agent Systems
Recent advances in large language models (LLMs) have sparked growing interest in building fully autonomous agents. However, fully autonomous LLM-based agents still face significant challenges, including limited reliability due to hallucinations, difficulty in handling complex tasks, and substantial safety and ethical risks, all of which limit their feasibility and trustworthiness in real-world applications. To overcome these limitations, LLM-based human-agent systems (LLM-HAS) incorporate human-provided information, feedback, or control into the agent system to enhance system performance, reliability and safety. These human-agent collaboration systems enable humans and LLM-based agents to collaborate effectively by leveraging their complementary strengths. This paper provides the first comprehensive and structured survey of LLM-HAS. It clarifies fundamental concepts, systematically presents core components shaping these systems, including environment & profiling, human feedback, interaction types, orchestration and communication, explores emerging applications, and discusses unique challenges and opportunities arising from human-AI collaboration. By consolidating current knowledge and offering a structured overview, we aim to foster further research and innovation in this rapidly evolving interdisciplinary field. Paper lists and resources are available at https://github.com/HenryPengZou/Awesome-LLM-Based-Human-Agent-Systems.
comment: Paper lists and resources are available at https://github.com/HenryPengZou/Awesome-LLM-Based-Human-Agent-Systems
♻ ☆ RePST: Language Model Empowered Spatio-Temporal Forecasting via Semantic-Oriented Reprogramming
Spatio-temporal forecasting is pivotal in numerous real-world applications, including transportation planning, energy management, and climate monitoring. In this work, we aim to harness the reasoning and generalization abilities of Pre-trained Language Models (PLMs) for more effective spatio-temporal forecasting, particularly in data-scarce scenarios. However, recent studies uncover that PLMs, which are primarily trained on textual data, often falter when tasked with modeling the intricate correlations in numerical time series, thereby limiting their effectiveness in comprehending spatio-temporal data. To bridge the gap, we propose RePST, a semantic-oriented PLM reprogramming framework tailored for spatio-temporal forecasting. Specifically, we first propose a semantic-oriented decomposer that adaptively disentangles spatially correlated time series into interpretable sub-components, which facilitates PLM to understand sophisticated spatio-temporal dynamics via a divide-and-conquer strategy. Moreover, we propose a selective discrete reprogramming scheme, which introduces an expanded spatio-temporal vocabulary space to project spatio-temporal series into discrete representations. This scheme minimizes the information loss during reprogramming and enriches the representations derived by PLMs. Extensive experiments on real-world datasets show that the proposed RePST outperforms twelve state-of-the-art baseline methods, particularly in data-scarce scenarios, highlighting the effectiveness and superior generalization capabilities of PLMs for spatio-temporal forecasting. Our codes can be found at https://github.com/usail-hkust/REPST.
♻ ☆ Systematic Reward Gap Optimization for Mitigating VLM Hallucinations
The success of Direct Preference Optimization (DPO) in mitigating hallucinations in Vision Language Models (VLMs) critically hinges on the true reward gaps within preference pairs. However, current methods, typically relying on ranking or rewriting strategies, often struggle to optimize these reward gaps in a systematic way during data curation. A core difficulty lies in precisely characterizing and strategically manipulating the overall reward gap configuration, that is, the deliberate design of how to shape these reward gaps within each preference pair across the data. To address this, we introduce Topic-level Preference Rewriting(TPR), a novel framework designed for the systematic optimization of reward gap configuration. Through selectively replacing semantic topics within VLM responses with model's own resampled candidates for targeted rewriting, TPR can provide topic-level control over fine-grained semantic details. This precise control enables advanced data curation strategies, such as progressively adjusting the difficulty of rejected responses, thereby sculpting an effective reward gap configuration that guides the model to overcome challenging hallucinations. Comprehensive experiments demonstrate TPR achieves state-of-the-art performance on multiple hallucination benchmarks, outperforming previous methods by an average of 20%. Notably, it significantly reduces hallucinations by up to 93% on ObjectHal-Bench, and also exhibits superior data efficiency towards robust and cost-effective VLM alignment.
♻ ☆ Position is Power: System Prompts as a Mechanism of Bias in Large Language Models (LLMs)
System prompts in Large Language Models (LLMs) are predefined directives that guide model behaviour, taking precedence over user inputs in text processing and generation. LLM deployers increasingly use them to ensure consistent responses across contexts. While model providers set a foundation of system prompts, deployers and third-party developers can append additional prompts without visibility into others' additions, while this layered implementation remains entirely hidden from end-users. As system prompts become more complex, they can directly or indirectly introduce unaccounted for side effects. This lack of transparency raises fundamental questions about how the position of information in different directives shapes model outputs. As such, this work examines how the placement of information affects model behaviour. To this end, we compare how models process demographic information in system versus user prompts across six commercially available LLMs and 50 demographic groups. Our analysis reveals significant biases, manifesting in differences in user representation and decision-making scenarios. Since these variations stem from inaccessible and opaque system-level configurations, they risk representational, allocative and potential other biases and downstream harms beyond the user's ability to detect or correct. Our findings draw attention to these critical issues, which have the potential to perpetuate harms if left unexamined. Further, we argue that system prompt analysis must be incorporated into AI auditing processes, particularly as customisable system prompts become increasingly prevalent in commercial AI deployments.
comment: Published in Proceedings of ACM FAccT 2025 Update Comment: Fixed the error where user vs. system and implicit vs. explicit labels in the heatmaps were switched. The takeaways remain the same
♻ ☆ HiddenDetect: Detecting Jailbreak Attacks against Large Vision-Language Models via Monitoring Hidden States ACL 2025
The integration of additional modalities increases the susceptibility of large vision-language models (LVLMs) to safety risks, such as jailbreak attacks, compared to their language-only counterparts. While existing research primarily focuses on post-hoc alignment techniques, the underlying safety mechanisms within LVLMs remain largely unexplored. In this work , we investigate whether LVLMs inherently encode safety-relevant signals within their internal activations during inference. Our findings reveal that LVLMs exhibit distinct activation patterns when processing unsafe prompts, which can be leveraged to detect and mitigate adversarial inputs without requiring extensive fine-tuning. Building on this insight, we introduce HiddenDetect, a novel tuning-free framework that harnesses internal model activations to enhance safety. Experimental results show that {HiddenDetect} surpasses state-of-the-art methods in detecting jailbreak attacks against LVLMs. By utilizing intrinsic safety-aware patterns, our method provides an efficient and scalable solution for strengthening LVLM robustness against multimodal threats. Our code will be released publicly at https://github.com/leigest519/HiddenDetect.
comment: Accepted by ACL 2025 (Main)
♻ ☆ PlanGenLLMs: A Modern Survey of LLM Planning Capabilities ACL 2025
LLMs have immense potential for generating plans, transforming an initial world state into a desired goal state. A large body of research has explored the use of LLMs for various planning tasks, from web navigation to travel planning and database querying. However, many of these systems are tailored to specific problems, making it challenging to compare them or determine the best approach for new tasks. There is also a lack of clear and consistent evaluation criteria. Our survey aims to offer a comprehensive overview of current LLM planners to fill this gap. It builds on foundational work by Kartam and Wilkins (1990) and examines six key performance criteria: completeness, executability, optimality, representation, generalization, and efficiency. For each, we provide a thorough analysis of representative works and highlight their strengths and weaknesses. Our paper also identifies crucial future directions, making it a valuable resource for both practitioners and newcomers interested in leveraging LLM planning to support agentic workflows.
comment: Accepted by ACL 2025
♻ ☆ AlzheimerRAG: Multimodal Retrieval Augmented Generation for Clinical Use Cases using PubMed articles
Recent advancements in generative AI have fostered the development of highly adept Large Language Models (LLMs) that integrate diverse data types to empower decision-making. Among these, multimodal retrieval-augmented generation (RAG) applications are promising because they combine the strengths of information retrieval and generative models, enhancing their utility across various domains, including clinical use cases. This paper introduces AlzheimerRAG, a Multimodal RAG application for clinical use cases, primarily focusing on Alzheimer's Disease case studies from PubMed articles. This application incorporates cross-modal attention fusion techniques to integrate textual and visual data processing by efficiently indexing and accessing vast amounts of biomedical literature. Our experimental results, compared to benchmarks such as BioASQ and PubMedQA, have yielded improved performance in the retrieval and synthesis of domain-specific information. We also present a case study using our multimodal RAG in various Alzheimer's clinical scenarios. We infer that AlzheimerRAG can generate responses with accuracy non-inferior to humans and with low rates of hallucination.
♻ ☆ LoRA vs Full Fine-tuning: An Illusion of Equivalence
Fine-tuning is a crucial paradigm for adapting pre-trained large language models to downstream tasks. Recently, methods like Low-Rank Adaptation (LoRA) have been shown to effectively fine-tune LLMs with an extreme reduction in trainable parameters. But, \emph{are their learned solutions really equivalent?} We study how LoRA and full-finetuning change pre-trained models by analyzing the model's weight matrices through the lens of their spectral properties. We find that LoRA and full fine-tuning yield weight matrices whose singular value decompositions exhibit very different structure: weight matrices trained with LoRA have new, high-ranking singular vectors, which we call \emph{intruder dimensions}, while those trained with full fine-tuning do not. Further, we extend the finding that LoRA forgets less than full fine-tuning and find its forgetting is vastly localized to the intruder dimension -- by causally intervening on the intruder dimensions by changing their associated singular values post-fine-tuning, we show that they cause forgetting. Moreover, scaling them down significantly improves modeling of the pre-training distribution with a minimal drop in downstream task performance. Given this, we should expect accumulating intruder dimensions to be harmful and lead to more forgetting. This will be amplified during continual learning because of sequentially fine-tuning, and we show that LoRA models do accumulate intruder dimensions here tend to perform worse in this setting, emphasizing the practicality of our findings.
♻ ☆ When Large Language Models Meet Vector Databases: A Survey
This survey explores the synergistic potential of Large Language Models (LLMs) and Vector Databases (VecDBs), a burgeoning but rapidly evolving research area. With the proliferation of LLMs comes a host of challenges, including hallucinations, outdated knowledge, prohibitive commercial application costs, and memory issues. VecDBs emerge as a compelling solution to these issues by offering an efficient means to store, retrieve, and manage the high-dimensional vector representations intrinsic to LLM operations. Through this nuanced review, we delineate the foundational principles of LLMs and VecDBs and critically analyze their integration's impact on enhancing LLM functionalities. This discourse extends into a discussion on the speculative future developments in this domain, aiming to catalyze further research into optimizing the confluence of LLMs and VecDBs for advanced data handling and knowledge extraction capabilities.
♻ ☆ FutureFill: Fast Generation from Convolutional Sequence Models
We address the challenge of efficient auto-regressive generation in sequence prediction models by introducing FutureFill, a general-purpose fast generation method for any sequence prediction algorithm based on convolutional operators. FutureFill reduces generation time from quadratic to quasilinear in the context length. Moreover, when generating from a prompt, it requires a prefill cache whose size grows only with the number of tokens to be generated, often much smaller than the caches required by standard convolutional or attention based models. We validate our theoretical claims with experiments on synthetic tasks and demonstrate substantial efficiency gains when generating from a deep convolutional sequence prediction model.
♻ ☆ AdaLRS: Loss-Guided Adaptive Learning Rate Search for Efficient Foundation Model Pretraining
Learning rate is widely regarded as crucial for effective foundation model pretraining. Recent research explores and demonstrates the transferability of learning rate configurations across varying model and dataset sizes, etc. Nevertheless, these approaches are constrained to specific training scenarios and typically necessitate extensive hyperparameter tuning on proxy models. In this work, we propose \textbf{AdaLRS}, a plug-in-and-play adaptive learning rate search algorithm that conducts online optimal learning rate search via optimizing loss descent velocities. We provide experiment results to show that the optimization of training loss and loss descent velocity in foundation model pretraining are both convex and share the same optimal learning rate. Relying solely on training loss dynamics, AdaLRS involves few extra computations to guide the search process, and its convergence is guaranteed via theoretical analysis. Experiments on both LLM and VLM pretraining show that AdaLRS adjusts suboptimal learning rates to the neighborhood of optimum with marked efficiency and effectiveness, with model performance improved accordingly. We also show the robust generalizability of AdaLRS across varying training scenarios, such as different model sizes, training paradigms, and base learning rate scheduler choices.
♻ ☆ RAPID: Long-Context Inference with Retrieval-Augmented Speculative Decoding ICML 2025
The emergence of long-context large language models (LLMs) offers a promising alternative to traditional retrieval-augmented generation (RAG) for processing extensive documents. However, the computational overhead of long-context inference presents significant efficiency challenges. While Speculative Decoding (SD) traditionally accelerates inference using smaller draft models, its effectiveness diminishes substantially in long-context scenarios due to memory-bound KV cache operations. We introduce Retrieval-Augmented Speculative Decoding (RAPID), which leverages RAG for both accelerating and enhancing generation quality in long-context inference. RAPID introduces the RAG drafter-a draft LLM operating on shortened retrieval contexts-to speculate on the generation of long-context target LLMs. Our approach enables a new paradigm where same-scale or even larger LLMs can serve as RAG drafters while maintaining computational efficiency. To fully leverage the potentially superior capabilities from stronger RAG drafters, we develop an inference-time knowledge transfer that enriches the target distribution by RAG. Extensive experiments on the LLaMA-3.1 and Qwen2.5 backbones demonstrate that RAPID effectively integrates the strengths of both RAG and long-context LLMs, achieving significant performance improvements (e.g., from 39.33 to 42.83 on InfiniteBench for LLaMA-3.1-8B) with more than 2x speedups for long-context inference. Our analyses also reveal the robustness of RAPID across various context lengths and retrieval quality.
comment: ICML 2025 Spotlight
♻ ☆ Sycophancy in Vision-Language Models: A Systematic Analysis and an Inference-Time Mitigation Framework
Large Vision-Language Models (LVLMs) have shown significant capability in vision-language understanding. However, one critical issue that persists in these models is sycophancy, where models are unduly influenced by leading or deceptive prompts, resulting in biased outputs and hallucinations. Despite the rapid development of LVLMs, evaluating and mitigating sycophancy remains largely under-explored. In this work, we fill this gap by systematically analyzing sycophancy across multiple vision-language benchmarks and propose an inference-time mitigation framework. We curate leading queries and quantify the susceptibility of state-of-the-art LVLMs to prompt-induced bias, revealing consistent performance degradation and instability across models and tasks. Our analysis further uncovers model-specific behavioral traits, such as sentiment sensitivity and prediction polarity shifts under sycophancy. To mitigate these issues, we propose a training-free, model-agnostic framework that operates entirely at inference time. Our approach first employs a query neutralizer, leveraging an language model to suppress implicit sycophantic bias in user queries. We then introduce a sycophancy-aware contrastive decoding mechanism that dynamically recalibrates token-level output distributions by contrasting responses to neutralized and leading queries. Finally, an adaptive logits refinement module further modifies the contrasted logits by integrating both a adaptive plausibility filter and query sentiment scaler, ensuring coherent and robust generation. Extensive experiments demonstrate that this framework effectively mitigates sycophancy across all evaluated models, while maintaining performance on neutral prompts. Our results suggest that sycophancy in LVLMs is a general and urgent challenge, and that inference-time strategies offer a promising path toward trustworthy multimodal reasoning.
♻ ☆ Craw4LLM: Efficient Web Crawling for LLM Pretraining
Web crawl is a main source of large language models' (LLMs) pretraining data, but the majority of crawled web pages are discarded in pretraining due to low data quality. This paper presents Craw4LLM, an efficient web crawling method that explores the web graph based on the preference of LLM pretraining. Specifically, it leverages the influence of a webpage in LLM pretraining as the priority score of the web crawler's scheduler, replacing the standard graph connectivity based priority. Our experiments on a web graph containing 900 million webpages from a commercial search engine's index demonstrate the efficiency of Craw4LLM in obtaining high-quality pretraining data. With just 21% URLs crawled, LLMs pretrained on Craw4LLM data reach the same downstream performances of previous crawls, significantly reducing the crawling waste and alleviating the burdens on websites. Our code is publicly available at https://github.com/cxcscmu/Craw4LLM.
♻ ☆ From RAG to Agentic: Validating Islamic-Medicine Responses with LLM Agents ICML-25
Centuries-old Islamic medical texts like Avicenna's Canon of Medicine and the Prophetic Tibb-e-Nabawi encode a wealth of preventive care, nutrition, and holistic therapies, yet remain inaccessible to many and underutilized in modern AI systems. Existing language-model benchmarks focus narrowly on factual recall or user preference, leaving a gap in validating culturally grounded medical guidance at scale. We propose a unified evaluation pipeline, Tibbe-AG, that aligns 30 carefully curated Prophetic-medicine questions with human-verified remedies and compares three LLMs (LLaMA-3, Mistral-7B, Qwen2-7B) under three configurations: direct generation, retrieval-augmented generation, and a scientific self-critique filter. Each answer is then assessed by a secondary LLM serving as an agentic judge, yielding a single 3C3H quality score. Retrieval improves factual accuracy by 13%, while the agentic prompt adds another 10% improvement through deeper mechanistic insight and safety considerations. Our results demonstrate that blending classical Islamic texts with retrieval and self-evaluation enables reliable, culturally sensitive medical question-answering.
comment: Published at the 4th Muslims in Machine Learning (MusIML) Workshop (ICML-25)
♻ ☆ NovelHopQA: Diagnosing Multi-Hop Reasoning Failures in Long Narrative Contexts
Current large language models (LLMs) struggle to answer questions that span tens of thousands of tokens, especially when multi-hop reasoning is involved. While prior benchmarks explore long-context comprehension or multi-hop reasoning in isolation, none jointly vary context length and reasoning depth in natural narrative settings. We introduce NovelHopQA, the first benchmark to evaluate 1-4 hop QA over 64k-128k-token excerpts from 83 full-length public-domain novels. A keyword-guided pipeline builds hop-separated chains grounded in coherent storylines. We evaluate seven state-of-the-art models and apply oracle-context filtering to ensure all questions are genuinely answerable. Human annotators validate both alignment and hop depth. We additionally present retrieval-augmented generation (RAG) evaluations to test model performance when only selected passages are provided instead of the full context. We noticed consistent accuracy drops with increased hops and context length increase, even for frontier models-revealing that sheer scale does not guarantee robust reasoning. Failure-mode analysis highlights common breakdowns such as missed final-hop integration and long-range drift. NovelHopQA offers a controlled diagnostic setting to test multi-hop reasoning at scale. All code and datasets are available at https://novelhopqa.github.io.
♻ ☆ Advancing African-Accented Speech Recognition: Epistemic Uncertainty-Driven Data Selection for Generalizable ASR Models ACL
Accents play a pivotal role in shaping human communication, enhancing our ability to convey and comprehend messages with clarity and cultural nuance. While there has been significant progress in Automatic Speech Recognition (ASR), African-accented English ASR has been understudied due to a lack of training datasets, which are often expensive to create and demand colossal human labor. Combining several active learning paradigms and the core-set approach, we propose a new multi-rounds adaptation process that uses epistemic uncertainty to automate the annotation process, significantly reducing the associated costs and human labor. This novel method streamlines data annotation and strategically selects data samples contributing most to model uncertainty, enhancing training efficiency. We define a new U-WER metric to track model adaptation to hard accents. We evaluate our approach across several domains, datasets, and high-performing speech models. Our results show that our approach leads to a 27\% WER relative average improvement while requiring on average 45\% less data than established baselines. Our approach also improves out-of-distribution generalization for very low-resource accents, demonstrating its viability for building generalizable ASR models in the context of accented African ASR. We open-source the code here: https://github.com/bonaventuredossou/active_learning_african_asr.
comment: Accepted at ACL SRW 2025
♻ ☆ Transferring Features Across Language Models With Model Stitching
In this work, we demonstrate that affine mappings between residual streams of language models is a cheap way to effectively transfer represented features between models. We apply this technique to transfer the weights of Sparse Autoencoders (SAEs) between models of different sizes to compare their representations. We find that small and large models learn similar representation spaces, which motivates training expensive components like SAEs on a smaller model and transferring to a larger model at a FLOPs savings. In particular, using a small-to-large transferred SAE as initialization can lead to 50% cheaper training runs when training SAEs on larger models. Next, we show that transferred probes and steering vectors can effectively recover ground truth performance. Finally, we dive deeper into feature-level transferability, finding that semantic and structural features transfer noticeably differently while specific classes of functional features have their roles faithfully mapped. Overall, our findings illustrate similarities and differences in the linear representation spaces of small and large models and demonstrate a method for improving the training efficiency of SAEs.
♻ ☆ ProxSparse: Regularized Learning of Semi-Structured Sparsity Masks for Pretrained LLMs ICML25
Large Language Models (LLMs) have demonstrated exceptional performance in natural language processing tasks, yet their massive size makes serving them inefficient and costly. Semi-structured pruning has emerged as an effective method for model acceleration, but existing approaches are suboptimal because they focus on local, layer-wise optimizations using heuristic rules, failing to leverage global feedback. We present ProxSparse, a learning-based framework for mask selection enabled by regularized optimization. ProxSparse transforms the rigid, non-differentiable mask selection process into a smoother optimization procedure, allowing gradual mask exploration with flexibility. ProxSparse does not involve additional weight updates once the mask is determined. Our extensive evaluations on 7 widely used models show that ProxSparse consistently outperforms previously proposed semi-structured mask selection methods with significant improvement, demonstrating the effectiveness of our learned approach towards semi-structured pruning.
comment: ICML25
♻ ☆ Time-IMM: A Dataset and Benchmark for Irregular Multimodal Multivariate Time Series
Time series data in real-world applications such as healthcare, climate modeling, and finance are often irregular, multimodal, and messy, with varying sampling rates, asynchronous modalities, and pervasive missingness. However, existing benchmarks typically assume clean, regularly sampled, unimodal data, creating a significant gap between research and real-world deployment. We introduce Time-IMM, a dataset specifically designed to capture cause-driven irregularity in multimodal multivariate time series. Time-IMM represents nine distinct types of time series irregularity, categorized into trigger-based, constraint-based, and artifact-based mechanisms. Complementing the dataset, we introduce IMM-TSF, a benchmark library for forecasting on irregular multimodal time series, enabling asynchronous integration and realistic evaluation. IMM-TSF includes specialized fusion modules, including a timestamp-to-text fusion module and a multimodality fusion module, which support both recency-aware averaging and attention-based integration strategies. Empirical results demonstrate that explicitly modeling multimodality on irregular time series data leads to substantial gains in forecasting performance. Time-IMM and IMM-TSF provide a foundation for advancing time series analysis under real-world conditions. The dataset is publicly available at https://www.kaggle.com/datasets/blacksnail789521/time-imm/data, and the benchmark library can be accessed at https://anonymous.4open.science/r/IMMTSF_NeurIPS2025.
comment: This paper is currently under review
♻ ☆ TRAIL: Trace Reasoning and Agentic Issue Localization
The increasing adoption of agentic workflows across diverse domains brings a critical need to scalably and systematically evaluate the complex traces these systems generate. Current evaluation methods depend on manual, domain-specific human analysis of lengthy workflow traces - an approach that does not scale with the growing complexity and volume of agentic outputs. Error analysis in these settings is further complicated by the interplay of external tool outputs and language model reasoning, making it more challenging than traditional software debugging. In this work, we (1) articulate the need for robust and dynamic evaluation methods for agentic workflow traces, (2) introduce a formal taxonomy of error types encountered in agentic systems, and (3) present a set of 148 large human-annotated traces (TRAIL) constructed using this taxonomy and grounded in established agentic benchmarks. To ensure ecological validity, we curate traces from both single and multi-agent systems, focusing on real-world applications such as software engineering and open-world information retrieval. Our evaluations reveal that modern long context LLMs perform poorly at trace debugging, with the best Gemini-2.5-pro model scoring a mere 11% on TRAIL. Our dataset and code are made publicly available to support and accelerate future research in scalable evaluation for agentic workflows.
comment: Dataset: https://huggingface.co/datasets/PatronusAI/TRAIL
♻ ☆ ADVLLM: Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities NAACL 2025
Recent research has shown that Large Language Models (LLMs) are vulnerable to automated jailbreak attacks, where adversarial suffixes crafted by algorithms appended to harmful queries bypass safety alignment and trigger unintended responses. Current methods for generating these suffixes are computationally expensive and have low Attack Success Rates (ASR), especially against well-aligned models like Llama2 and Llama3. To overcome these limitations, we introduce ADV-LLM, an iterative self-tuning process that crafts adversarial LLMs with enhanced jailbreak ability. Our framework significantly reduces the computational cost of generating adversarial suffixes while achieving nearly 100\% ASR on various open-source LLMs. Moreover, it exhibits strong attack transferability to closed-source models, achieving 99\% ASR on GPT-3.5 and 49\% ASR on GPT-4, despite being optimized solely on Llama3. Beyond improving jailbreak ability, ADV-LLM provides valuable insights for future safety alignment research through its ability to generate large datasets for studying LLM safety.
comment: Accepted to NAACL 2025 Main (oral)
♻ ☆ Small Language Models in the Real World: Insights from Industrial Text Classification ACL
With the emergence of ChatGPT, Transformer models have significantly advanced text classification and related tasks. Decoder-only models such as Llama exhibit strong performance and flexibility, yet they suffer from inefficiency on inference due to token-by-token generation, and their effectiveness in text classification tasks heavily depends on prompt quality. Moreover, their substantial GPU resource requirements often limit widespread adoption. Thus, the question of whether smaller language models are capable of effectively handling text classification tasks emerges as a topic of significant interest. However, the selection of appropriate models and methodologies remains largely underexplored. In this paper, we conduct a comprehensive evaluation of prompt engineering and supervised fine-tuning methods for transformer-based text classification. Specifically, we focus on practical industrial scenarios, including email classification, legal document categorization, and the classification of extremely long academic texts. We examine the strengths and limitations of smaller models, with particular attention to both their performance and their efficiency in Video Random-Access Memory (VRAM) utilization, thereby providing valuable insights for the local deployment and application of compact models in industrial settings.
comment: This paper has been accepted as a conference paper in the Industry Track of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL)
♻ ☆ Impact of Visual Context on Noisy Multimodal NMT: An Empirical Study for English to Indian Languages
Neural Machine Translation (NMT) has made remarkable progress using large-scale textual data, but the potential of incorporating multimodal inputs, especially visual information, remains underexplored in high-resource settings. While prior research has focused on using multimodal data in low-resource scenarios, this study examines how image features impact translation when added to a large-scale, pre-trained unimodal NMT system. Surprisingly, the study finds that images might be redundant in this context. Additionally, the research introduces synthetic noise to assess whether images help the model handle textual noise. Multimodal models slightly outperform text-only models in noisy settings, even when random images are used. The study's experiments translate from English to Hindi, Bengali, and Malayalam, significantly outperforming state-of-the-art benchmarks. Interestingly, the effect of visual context varies with the level of source text noise: no visual context works best for non-noisy translations, cropped image features are optimal for low noise, and full image features perform better in high-noise scenarios. This sheds light on the role of visual context, especially in noisy settings, and opens up a new research direction for Noisy Neural Machine Translation in multimodal setups. The research emphasizes the importance of combining visual and textual information to improve translation across various environments. Our code is publicly available at https://github.com/babangain/indicMMT.
♻ ☆ Rational Metareasoning for Large Language Models
Being prompted to engage in reasoning has emerged as a core technique for using large language models (LLMs), deploying additional inference-time compute to improve task performance. However, as LLMs increase in both size and adoption, inference costs are correspondingly becoming increasingly burdensome. How, then, might we optimize reasoning's cost-performance tradeoff? This work introduces a novel approach based on computational models of metareasoning used in cognitive science, training LLMs to selectively use intermediate reasoning steps only when necessary. We first develop a reward function that incorporates the Value of Computation by penalizing unnecessary reasoning, then use this reward function with Expert Iteration to train the LLM. Compared to few-shot chain-of-thought prompting and STaR, our method significantly reduces inference costs (20-37\% fewer tokens generated across three models) while maintaining task performance across diverse datasets.
♻ ☆ Self-reflecting Large Language Models: A Hegelian Dialectical Approach
Investigating NLP through a philosophical lens has recently caught researchers' eyes, as it bridges computational methods with classical schools of philosophy. This paper introduces a philosophical framework inspired by the Hegelian Dialectic to enable LLMs' self-reflection, utilizing a self-dialectical approach to emulate internal critiques and synthesize new scientific ideas (spanning domains such as mathematics, physics, and more). Additionally, we explore the effect of generation temperature in LLMs by introducing a dynamic annealing approach, which encourages creativity in the early stages and gradually focuses on refinement and nuance, as well as a constant-temperature strategy. Furthermore, we implement a Multi-Agent Majority Voting (MAMV) strategy to assess the validity and novelty of the generated ideas, which proves useful in the absence of domain experts. We also evaluate the effectiveness of our method in generating novel scientific ideas and improving LLMs' reasoning capabilities. Our experiments demonstrate promising results in ideation, along with significant improvements in mathematical and symbolic reasoning.
Computer Vision and Pattern Recognition 100
☆ TC-Light: Temporally Consistent Relighting for Dynamic Long Videos
Editing illumination in long videos with complex dynamics has significant value in various downstream tasks, including visual content creation and manipulation, as well as data scaling up for embodied AI through sim2real and real2real transfer. Nevertheless, existing video relighting techniques are predominantly limited to portrait videos or fall into the bottleneck of temporal consistency and computation efficiency. In this paper, we propose TC-Light, a novel paradigm characterized by the proposed two-stage post optimization mechanism. Starting from the video preliminarily relighted by an inflated video relighting model, it optimizes appearance embedding in the first stage to align global illumination. Then it optimizes the proposed canonical video representation, i.e., Unique Video Tensor (UVT), to align fine-grained texture and lighting in the second stage. To comprehensively evaluate performance, we also establish a long and highly dynamic video benchmark. Extensive experiments show that our method enables physically plausible relighting results with superior temporal coherence and low computation cost. The code and video demos are available at https://dekuliutesla.github.io/tclight/.
comment: Project Page: https://dekuliutesla.github.io/tclight/ Code: https://github.com/Linketic/TC-Light
☆ VMem: Consistent Interactive Video Scene Generation with Surfel-Indexed View Memory
We propose a novel memory mechanism to build video generators that can explore environments interactively. Similar results have previously been achieved by out-painting 2D views of the scene while incrementally reconstructing its 3D geometry, which quickly accumulates errors, or by video generators with a short context window, which struggle to maintain scene coherence over the long term. To address these limitations, we introduce Surfel-Indexed View Memory (VMem), a mechanism that remembers past views by indexing them geometrically based on the 3D surface elements (surfels) they have observed. VMem enables the efficient retrieval of the most relevant past views when generating new ones. By focusing only on these relevant views, our method produces consistent explorations of imagined environments at a fraction of the computational cost of using all past views as context. We evaluate our approach on challenging long-term scene synthesis benchmarks and demonstrate superior performance compared to existing methods in maintaining scene coherence and camera control.
comment: Project page: https://v-mem.github.io
☆ From Virtual Games to Real-World Play
We introduce RealPlay, a neural network-based real-world game engine that enables interactive video generation from user control signals. Unlike prior works focused on game-style visuals, RealPlay aims to produce photorealistic, temporally consistent video sequences that resemble real-world footage. It operates in an interactive loop: users observe a generated scene, issue a control command, and receive a short video chunk in response. To enable such realistic and responsive generation, we address key challenges including iterative chunk-wise prediction for low-latency feedback, temporal consistency across iterations, and accurate control response. RealPlay is trained on a combination of labeled game data and unlabeled real-world videos, without requiring real-world action annotations. Notably, we observe two forms of generalization: (1) control transfer-RealPlay effectively maps control signals from virtual to real-world scenarios; and (2) entity transfer-although training labels originate solely from a car racing game, RealPlay generalizes to control diverse real-world entities, including bicycles and pedestrians, beyond vehicles. Project page can be found: https://wenqsun.github.io/RealPlay/
comment: Project page: https://wenqsun.github.io/RealPlay/
☆ Audit & Repair: An Agentic Framework for Consistent Story Visualization in Text-to-Image Diffusion Models
Story visualization has become a popular task where visual scenes are generated to depict a narrative across multiple panels. A central challenge in this setting is maintaining visual consistency, particularly in how characters and objects persist and evolve throughout the story. Despite recent advances in diffusion models, current approaches often fail to preserve key character attributes, leading to incoherent narratives. In this work, we propose a collaborative multi-agent framework that autonomously identifies, corrects, and refines inconsistencies across multi-panel story visualizations. The agents operate in an iterative loop, enabling fine-grained, panel-level updates without re-generating entire sequences. Our framework is model-agnostic and flexibly integrates with a variety of diffusion models, including rectified flow transformers such as Flux and latent diffusion models such as Stable Diffusion. Quantitative and qualitative experiments show that our method outperforms prior approaches in terms of multi-panel consistency.
comment: Project webpage: https://auditandrepair.github.io/
☆ FilMaster: Bridging Cinematic Principles and Generative AI for Automated Film Generation
AI-driven content creation has shown potential in film production. However, existing film generation systems struggle to implement cinematic principles and thus fail to generate professional-quality films, particularly lacking diverse camera language and cinematic rhythm. This results in templated visuals and unengaging narratives. To address this, we introduce FilMaster, an end-to-end AI system that integrates real-world cinematic principles for professional-grade film generation, yielding editable, industry-standard outputs. FilMaster is built on two key principles: (1) learning cinematography from extensive real-world film data and (2) emulating professional, audience-centric post-production workflows. Inspired by these principles, FilMaster incorporates two stages: a Reference-Guided Generation Stage which transforms user input to video clips, and a Generative Post-Production Stage which transforms raw footage into audiovisual outputs by orchestrating visual and auditory elements for cinematic rhythm. Our generation stage highlights a Multi-shot Synergized RAG Camera Language Design module to guide the AI in generating professional camera language by retrieving reference clips from a vast corpus of 440,000 film clips. Our post-production stage emulates professional workflows by designing an Audience-Centric Cinematic Rhythm Control module, including Rough Cut and Fine Cut processes informed by simulated audience feedback, for effective integration of audiovisual elements to achieve engaging content. The system is empowered by generative AI models like (M)LLMs and video generation models. Furthermore, we introduce FilmEval, a comprehensive benchmark for evaluating AI-generated films. Extensive experiments show FilMaster's superior performance in camera language design and cinematic rhythm control, advancing generative AI in professional filmmaking.
comment: Project Page: https://filmaster-ai.github.io/
☆ Vision as a Dialect: Unifying Visual Understanding and Generation via Text-Aligned Representations
This paper presents a multimodal framework that attempts to unify visual understanding and generation within a shared discrete semantic representation. At its core is the Text-Aligned Tokenizer (TA-Tok), which converts images into discrete tokens using a text-aligned codebook projected from a large language model's (LLM) vocabulary. By integrating vision and text into a unified space with an expanded vocabulary, our multimodal LLM, Tar, enables cross-modal input and output through a shared interface, without the need for modality-specific designs. Additionally, we propose scale-adaptive encoding and decoding to balance efficiency and visual detail, along with a generative de-tokenizer to produce high-fidelity visual outputs. To address diverse decoding needs, we utilize two complementary de-tokenizers: a fast autoregressive model and a diffusion-based model. To enhance modality fusion, we investigate advanced pre-training tasks, demonstrating improvements in both visual understanding and generation. Experiments across benchmarks show that Tar matches or surpasses existing multimodal LLM methods, achieving faster convergence and greater training efficiency. Code, models, and data are available at https://tar.csuhan.com
comment: Project page: https://tar.csuhan.com
☆ 4D-LRM: Large Space-Time Reconstruction Model From and To Any View at Any Time
Can we scale 4D pretraining to learn general space-time representations that reconstruct an object from a few views at some times to any view at any time? We provide an affirmative answer with 4D-LRM, the first large-scale 4D reconstruction model that takes input from unconstrained views and timestamps and renders arbitrary novel view-time combinations. Unlike prior 4D approaches, e.g., optimization-based, geometry-based, or generative, that struggle with efficiency, generalization, or faithfulness, 4D-LRM learns a unified space-time representation and directly predicts per-pixel 4D Gaussian primitives from posed image tokens across time, enabling fast, high-quality rendering at, in principle, infinite frame rate. Our results demonstrate that scaling spatiotemporal pretraining enables accurate and efficient 4D reconstruction. We show that 4D-LRM generalizes to novel objects, interpolates across time, and handles diverse camera setups. It reconstructs 24-frame sequences in one forward pass with less than 1.5 seconds on a single A100 GPU.
comment: Project page: https://4dlrm.github.io/
☆ GRAND-SLAM: Local Optimization for Globally Consistent Large-Scale Multi-Agent Gaussian SLAM
3D Gaussian splatting has emerged as an expressive scene representation for RGB-D visual SLAM, but its application to large-scale, multi-agent outdoor environments remains unexplored. Multi-agent Gaussian SLAM is a promising approach to rapid exploration and reconstruction of environments, offering scalable environment representations, but existing approaches are limited to small-scale, indoor environments. To that end, we propose Gaussian Reconstruction via Multi-Agent Dense SLAM, or GRAND-SLAM, a collaborative Gaussian splatting SLAM method that integrates i) an implicit tracking module based on local optimization over submaps and ii) an approach to inter- and intra-robot loop closure integrated into a pose-graph optimization framework. Experiments show that GRAND-SLAM provides state-of-the-art tracking performance and 28% higher PSNR than existing methods on the Replica indoor dataset, as well as 91% lower multi-agent tracking error and improved rendering over existing multi-agent methods on the large-scale, outdoor Kimera-Multi dataset.
☆ Universal Video Temporal Grounding with Generative Multi-modal Large Language Models
This paper presents a computational model for universal video temporal grounding, which accurately localizes temporal moments in videos based on natural language queries (e.g., questions or descriptions). Unlike existing methods that are often limited to specific video domains or durations, we propose UniTime, a robust and universal video grounding model leveraging the strong vision-language understanding capabilities of generative Multi-modal Large Language Models (MLLMs). Our model effectively handles videos of diverse views, genres, and lengths while comprehending complex language queries. The key contributions include: (i) We consider steering strong MLLMs for temporal grounding in videos. To enable precise timestamp outputs, we incorporate temporal information by interleaving timestamp tokens with video tokens. (ii) By training the model to handle videos with different input granularities through adaptive frame scaling, our approach achieves robust temporal grounding for both short and long videos. (iii) Comprehensive experiments show that UniTime outperforms state-of-the-art approaches in both zero-shot and dataset-specific finetuned settings across five public temporal grounding benchmarks. (iv) When employed as a preliminary moment retriever for long-form video question-answering (VideoQA), UniTime significantly improves VideoQA accuracy, highlighting its value for complex video understanding tasks.
☆ Light of Normals: Unified Feature Representation for Universal Photometric Stereo
Universal photometric stereo (PS) aims to recover high-quality surface normals from objects under arbitrary lighting conditions without relying on specific illumination models. Despite recent advances such as SDM-UniPS and Uni MS-PS, two fundamental challenges persist: 1) the deep coupling between varying illumination and surface normal features, where ambiguity in observed intensity makes it difficult to determine whether brightness variations stem from lighting changes or surface orientation; and 2) the preservation of high-frequency geometric details in complex surfaces, where intricate geometries create self-shadowing, inter-reflections, and subtle normal variations that conventional feature processing operations struggle to capture accurately.
☆ Let Your Video Listen to Your Music!
Aligning the rhythm of visual motion in a video with a given music track is a practical need in multimedia production, yet remains an underexplored task in autonomous video editing. Effective alignment between motion and musical beats enhances viewer engagement and visual appeal, particularly in music videos, promotional content, and cinematic editing. Existing methods typically depend on labor-intensive manual cutting, speed adjustments, or heuristic-based editing techniques to achieve synchronization. While some generative models handle joint video and music generation, they often entangle the two modalities, limiting flexibility in aligning video to music beats while preserving the full visual content. In this paper, we propose a novel and efficient framework, termed MVAA (Music-Video Auto-Alignment), that automatically edits video to align with the rhythm of a given music track while preserving the original visual content. To enhance flexibility, we modularize the task into a two-step process in our MVAA: aligning motion keyframes with audio beats, followed by rhythm-aware video inpainting. Specifically, we first insert keyframes at timestamps aligned with musical beats, then use a frame-conditioned diffusion model to generate coherent intermediate frames, preserving the original video's semantic content. Since comprehensive test-time training can be time-consuming, we adopt a two-stage strategy: pretraining the inpainting module on a small video set to learn general motion priors, followed by rapid inference-time fine-tuning for video-specific adaptation. This hybrid approach enables adaptation within 10 minutes with one epoch on a single NVIDIA 4090 GPU using CogVideoX-5b-I2V as the backbone. Extensive experiments show that our approach can achieve high-quality beat alignment and visual smoothness.
comment: project page: https://zhangxinyu-xyz.github.io/MVAA/
☆ OmniGen2: Exploration to Advanced Multimodal Generation
In this work, we introduce OmniGen2, a versatile and open-source generative model designed to provide a unified solution for diverse generation tasks, including text-to-image, image editing, and in-context generation. Unlike OmniGen v1, OmniGen2 features two distinct decoding pathways for text and image modalities, utilizing unshared parameters and a decoupled image tokenizer. This design enables OmniGen2 to build upon existing multimodal understanding models without the need to re-adapt VAE inputs, thereby preserving the original text generation capabilities. To facilitate the training of OmniGen2, we developed comprehensive data construction pipelines, encompassing image editing and in-context generation data. Additionally, we introduce a reflection mechanism tailored for image generation tasks and curate a dedicated reflection dataset based on OmniGen2. Despite its relatively modest parameter size, OmniGen2 achieves competitive results on multiple task benchmarks, including text-to-image and image editing. To further evaluate in-context generation, also referred to as subject-driven tasks, we introduce a new benchmark named OmniContext. OmniGen2 achieves state-of-the-art performance among open-source models in terms of consistency. We will release our models, training code, datasets, and data construction pipeline to support future research in this field. Project Page: https://vectorspacelab.github.io/OmniGen2; GitHub Link: https://github.com/VectorSpaceLab/OmniGen2
☆ OmniAvatar: Efficient Audio-Driven Avatar Video Generation with Adaptive Body Animation
Significant progress has been made in audio-driven human animation, while most existing methods focus mainly on facial movements, limiting their ability to create full-body animations with natural synchronization and fluidity. They also struggle with precise prompt control for fine-grained generation. To tackle these challenges, we introduce OmniAvatar, an innovative audio-driven full-body video generation model that enhances human animation with improved lip-sync accuracy and natural movements. OmniAvatar introduces a pixel-wise multi-hierarchical audio embedding strategy to better capture audio features in the latent space, enhancing lip-syncing across diverse scenes. To preserve the capability for prompt-driven control of foundation models while effectively incorporating audio features, we employ a LoRA-based training approach. Extensive experiments show that OmniAvatar surpasses existing models in both facial and semi-body video generation, offering precise text-based control for creating videos in various domains, such as podcasts, human interactions, dynamic scenes, and singing. Our project page is https://omni-avatar.github.io/.
comment: Project page: https://omni-avatar.github.io/
☆ TAMMs: Temporal-Aware Multimodal Model for Satellite Image Change Understanding and Forecasting
Satellite image time-series analysis demands fine-grained spatial-temporal reasoning, which remains a challenge for existing multimodal large language models (MLLMs). In this work, we study the capabilities of MLLMs on a novel task that jointly targets temporal change understanding and future scene generation, aiming to assess their potential for modeling complex multimodal dynamics over time. We propose TAMMs, a Temporal-Aware Multimodal Model for satellite image change understanding and forecasting, which enhances frozen MLLMs with lightweight temporal modules for structured sequence encoding and contextual prompting. To guide future image generation, TAMMs introduces a Semantic-Fused Control Injection (SFCI) mechanism that adaptively combines high-level semantic reasoning and structural priors within an enhanced ControlNet. This dual-path conditioning enables temporally consistent and semantically grounded image synthesis. Experiments demonstrate that TAMMs outperforms strong MLLM baselines in both temporal change understanding and future image forecasting tasks, highlighting how carefully designed temporal reasoning and semantic fusion can unlock the full potential of MLLMs for spatio-temporal understanding.
comment: Submitted to the 33rd ACM International Conference on Multimedia. Our dataset can be found at https://huggingface.co/datasets/IceInPot/TAMMs
☆ RAG-6DPose: Retrieval-Augmented 6D Pose Estimation via Leveraging CAD as Knowledge Base
Accurate 6D pose estimation is key for robotic manipulation, enabling precise object localization for tasks like grasping. We present RAG-6DPose, a retrieval-augmented approach that leverages 3D CAD models as a knowledge base by integrating both visual and geometric cues. Our RAG-6DPose roughly contains three stages: 1) Building a Multi-Modal CAD Knowledge Base by extracting 2D visual features from multi-view CAD rendered images and also attaching 3D points; 2) Retrieving relevant CAD features from the knowledge base based on the current query image via our ReSPC module; and 3) Incorporating retrieved CAD information to refine pose predictions via retrieval-augmented decoding. Experimental results on standard benchmarks and real-world robotic tasks demonstrate the effectiveness and robustness of our approach, particularly in handling occlusions and novel viewpoints. Supplementary material is available on our project website: https://sressers.github.io/RAG-6DPose .
comment: Accepted by IROS 2025
☆ Phantom-Data : Towards a General Subject-Consistent Video Generation Dataset
Subject-to-video generation has witnessed substantial progress in recent years. However, existing models still face significant challenges in faithfully following textual instructions. This limitation, commonly known as the copy-paste problem, arises from the widely used in-pair training paradigm. This approach inherently entangles subject identity with background and contextual attributes by sampling reference images from the same scene as the target video. To address this issue, we introduce \textbf{Phantom-Data, the first general-purpose cross-pair subject-to-video consistency dataset}, containing approximately one million identity-consistent pairs across diverse categories. Our dataset is constructed via a three-stage pipeline: (1) a general and input-aligned subject detection module, (2) large-scale cross-context subject retrieval from more than 53 million videos and 3 billion images, and (3) prior-guided identity verification to ensure visual consistency under contextual variation. Comprehensive experiments show that training with Phantom-Data significantly improves prompt alignment and visual quality while preserving identity consistency on par with in-pair baselines.
comment: Project page:https://phantom-video.github.io/Phantom-Data/
☆ LIGHTHOUSE: Fast and precise distance to shoreline calculations from anywhere on earth ICML 2025
We introduce a new dataset and algorithm for fast and efficient coastal distance calculations from Anywhere on Earth (AoE). Existing global coastal datasets are only available at coarse resolution (e.g. 1-4 km) which limits their utility. Publicly available satellite imagery combined with computer vision enable much higher precision. We provide a global coastline dataset at 10 meter resolution, a 100+ fold improvement in precision over existing data. To handle the computational challenge of querying at such an increased scale, we introduce a new library: Layered Iterative Geospatial Hierarchical Terrain-Oriented Unified Search Engine (Lighthouse). Lighthouse is both exceptionally fast and resource-efficient, requiring only 1 CPU and 2 GB of RAM to achieve millisecond online inference, making it well suited for real-time applications in resource-constrained environments.
comment: 8 pages, 7 figures, 1 table, ICML 2025 ML4RS
☆ ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation
Recent advancements in large reasoning models (LRMs) like DeepSeek-R1 and OpenAI o1 series have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT). However, an emerging issue is their inclination to produce excessively verbose reasoning processes, leading to the inefficiency problem. Existing literature on improving efficiency mainly adheres to the before-reasoning paradigms such as prompting and reasoning or fine-tuning and reasoning, but ignores the promising direction of directly encouraging the model to speak concisely by intervening during the generation of reasoning. In order to fill the blank, we propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting the textual hint (manually designed or trained on the concise data) during the token generation of the reasoning process. Besides, ConciseHint is adaptive to the complexity of the query by adaptively adjusting the hint intensity, which ensures it will not undermine model performance. Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning processes while maintaining performance well. For instance, we achieve a reduction ratio of 65\% for the reasoning length on GSM8K benchmark with Qwen-3 4B with nearly no accuracy loss.
comment: Codes are available at https://github.com/tsa18/ConciseHint
☆ PicoSAM2: Low-Latency Segmentation In-Sensor for Edge Vision Applications
Real-time, on-device segmentation is critical for latency-sensitive and privacy-aware applications like smart glasses and IoT devices. We introduce PicoSAM2, a lightweight (1.3M parameters, 336M MACs) promptable segmentation model optimized for edge and in-sensor execution, including the Sony IMX500. It builds on a depthwise separable U-Net, with knowledge distillation and fixed-point prompt encoding to learn from the Segment Anything Model 2 (SAM2). On COCO and LVIS, it achieves 51.9% and 44.9% mIoU, respectively. The quantized model (1.22MB) runs at 14.3 ms on the IMX500-achieving 86 MACs/cycle, making it the only model meeting both memory and compute constraints for in-sensor deployment. Distillation boosts LVIS performance by +3.5% mIoU and +5.1% mAP. These results demonstrate that efficient, promptable segmentation is feasible directly on-camera, enabling privacy-preserving vision without cloud or host processing.
☆ OC-SOP: Enhancing Vision-Based 3D Semantic Occupancy Prediction by Object-Centric Awareness
Autonomous driving perception faces significant challenges due to occlusions and incomplete scene data in the environment. To overcome these issues, the task of semantic occupancy prediction (SOP) is proposed, which aims to jointly infer both the geometry and semantic labels of a scene from images. However, conventional camera-based methods typically treat all categories equally and primarily rely on local features, leading to suboptimal predictions, especially for dynamic foreground objects. To address this, we propose Object-Centric SOP (OC-SOP), a framework that integrates high-level object-centric cues extracted via a detection branch into the semantic occupancy prediction pipeline. This object-centric integration significantly enhances the prediction accuracy for foreground objects and achieves state-of-the-art performance among all categories on SemanticKITTI.
comment: under review
☆ ViDAR: Video Diffusion-Aware 4D Reconstruction From Monocular Inputs
Dynamic Novel View Synthesis aims to generate photorealistic views of moving subjects from arbitrary viewpoints. This task is particularly challenging when relying on monocular video, where disentangling structure from motion is ill-posed and supervision is scarce. We introduce Video Diffusion-Aware Reconstruction (ViDAR), a novel 4D reconstruction framework that leverages personalised diffusion models to synthesise a pseudo multi-view supervision signal for training a Gaussian splatting representation. By conditioning on scene-specific features, ViDAR recovers fine-grained appearance details while mitigating artefacts introduced by monocular ambiguity. To address the spatio-temporal inconsistency of diffusion-based supervision, we propose a diffusion-aware loss function and a camera pose optimisation strategy that aligns synthetic views with the underlying scene geometry. Experiments on DyCheck, a challenging benchmark with extreme viewpoint variation, show that ViDAR outperforms all state-of-the-art baselines in visual quality and geometric consistency. We further highlight ViDAR's strong improvement over baselines on dynamic regions and provide a new benchmark to compare performance in reconstructing motion-rich parts of the scene. Project page: https://vidar-4d.github.io
☆ Focus Your Attention: Towards Data-Intuitive Lightweight Vision Transformers
The evolution of Vision Transformers has led to their widespread adaptation to different domains. Despite large-scale success, there remain significant challenges including their reliance on extensive computational and memory resources for pre-training on huge datasets as well as difficulties in task-specific transfer learning. These limitations coupled with energy inefficiencies mainly arise due to the computation-intensive self-attention mechanism. To address these issues, we propose a novel Super-Pixel Based Patch Pooling (SPPP) technique that generates context-aware, semantically rich, patch embeddings to effectively reduce the architectural complexity and improve efficiency. Additionally, we introduce the Light Latent Attention (LLA) module in our pipeline by integrating latent tokens into the attention mechanism allowing cross-attention operations to significantly reduce the time and space complexity of the attention module. By leveraging the data-intuitive patch embeddings coupled with dynamic positional encodings, our approach adaptively modulates the cross-attention process to focus on informative regions while maintaining the global semantic structure. This targeted attention improves training efficiency and accelerates convergence. Notably, the SPPP module is lightweight and can be easily integrated into existing transformer architectures. Extensive experiments demonstrate that our proposed architecture provides significant improvements in terms of computational efficiency while achieving comparable results with the state-of-the-art approaches, highlighting its potential for energy-efficient transformers suitable for edge deployment. (The code is available on our GitHub repository: https://github.com/zser092/Focused-Attention-ViT).
☆ 3D Arena: An Open Platform for Generative 3D Evaluation
Evaluating Generative 3D models remains challenging due to misalignment between automated metrics and human perception of quality. Current benchmarks rely on image-based metrics that ignore 3D structure or geometric measures that fail to capture perceptual appeal and real-world utility. To address this gap, we present 3D Arena, an open platform for evaluating image-to-3D generation models through large-scale human preference collection using pairwise comparisons. Since launching in June 2024, the platform has collected 123,243 votes from 8,096 users across 19 state-of-the-art models, establishing the largest human preference evaluation for Generative 3D. We contribute the iso3d dataset of 100 evaluation prompts and demonstrate quality control achieving 99.75% user authenticity through statistical fraud detection. Our ELO-based ranking system provides reliable model assessment, with the platform becoming an established evaluation resource. Through analysis of this preference data, we present insights into human preference patterns. Our findings reveal preferences for visual presentation features, with Gaussian splat outputs achieving a 16.6 ELO advantage over meshes and textured models receiving a 144.1 ELO advantage over untextured models. We provide recommendations for improving evaluation methods, including multi-criteria assessment, task-oriented evaluation, and format-aware comparison. The platform's community engagement establishes 3D Arena as a benchmark for the field while advancing understanding of human-centered evaluation in Generative 3D.
comment: 9 pages, 2 figures
☆ SWA-SOP: Spatially-aware Window Attention for Semantic Occupancy Prediction in Autonomous Driving
Perception systems in autonomous driving rely on sensors such as LiDAR and cameras to perceive the 3D environment. However, due to occlusions and data sparsity, these sensors often fail to capture complete information. Semantic Occupancy Prediction (SOP) addresses this challenge by inferring both occupancy and semantics of unobserved regions. Existing transformer-based SOP methods lack explicit modeling of spatial structure in attention computation, resulting in limited geometric awareness and poor performance in sparse or occluded areas. To this end, we propose Spatially-aware Window Attention (SWA), a novel mechanism that incorporates local spatial context into attention. SWA significantly improves scene completion and achieves state-of-the-art results on LiDAR-based SOP benchmarks. We further validate its generality by integrating SWA into a camera-based SOP pipeline, where it also yields consistent gains across modalities.
comment: under reviewed
☆ USVTrack: USV-Based 4D Radar-Camera Tracking Dataset for Autonomous Driving in Inland Waterways
Object tracking in inland waterways plays a crucial role in safe and cost-effective applications, including waterborne transportation, sightseeing tours, environmental monitoring and surface rescue. Our Unmanned Surface Vehicle (USV), equipped with a 4D radar, a monocular camera, a GPS, and an IMU, delivers robust tracking capabilities in complex waterborne environments. By leveraging these sensors, our USV collected comprehensive object tracking data, which we present as USVTrack, the first 4D radar-camera tracking dataset tailored for autonomous driving in new generation waterborne transportation systems. Our USVTrack dataset presents rich scenarios, featuring diverse various waterways, varying times of day, and multiple weather and lighting conditions. Moreover, we present a simple but effective radar-camera matching method, termed RCM, which can be plugged into popular two-stage association trackers. Experimental results utilizing RCM demonstrate the effectiveness of the radar-camera matching in improving object tracking accuracy and reliability for autonomous driving in waterborne environments. The USVTrack dataset is public on https://usvtrack.github.io.
comment: Accepted by IROS
☆ Deep CNN Face Matchers Inherently Support Revocable Biometric Templates
One common critique of biometric authentication is that if an individual's biometric is compromised, then the individual has no recourse. The concept of revocable biometrics was developed to address this concern. A biometric scheme is revocable if an individual can have their current enrollment in the scheme revoked, so that the compromised biometric template becomes worthless, and the individual can re-enroll with a new template that has similar recognition power. We show that modern deep CNN face matchers inherently allow for a robust revocable biometric scheme. For a given state-of-the-art deep CNN backbone and training set, it is possible to generate an unlimited number of distinct face matcher models that have both (1) equivalent recognition power, and (2) strongly incompatible biometric templates. The equivalent recognition power extends to the point of generating impostor and genuine distributions that have the same shape and placement on the similarity dimension, meaning that the models can share a similarity threshold for a 1-in-10,000 false match rate. The biometric templates from different model instances are so strongly incompatible that the cross-instance similarity score for images of the same person is typically lower than the same-instance similarity score for images of different persons. That is, a stolen biometric template that is revoked is of less value in attempting to match the re-enrolled identity than the average impostor template. We also explore the feasibility of using a Vision Transformer (ViT) backbone-based face matcher in the revocable biometric system proposed in this work and demonstrate that it is less suitable compared to typical ResNet-based deep CNN backbones.
☆ TDACloud: Point Cloud Recognition Using Topological Data Analysis
Point cloud-based object/place recognition remains a problem of interest in applications such as autonomous driving, scene reconstruction, and localization. Extracting meaningful local descriptors from a query point cloud that can be matched with the descriptors of the collected point clouds is a challenging problem. Furthermore, when the query point cloud is noisy or has been transformed (e.g., rotated), it adds to the complexity. To this end, we propose a novel methodology, named TDACloud, using Topological Data Analysis (TDA) for local descriptor extraction from a point cloud, which does not need resource-intensive GPU-based machine learning training. More specifically, we used the ATOL vectorization method to generate vectors for point clouds. Unlike voxelization, our proposed technique can take raw point clouds as inputs and outputs a fixed-size TDA-descriptor vector. To test the quality of the proposed TDACloud technique, we have implemented it on multiple real-world (e.g., Oxford RobotCar, KITTI-360) and realistic (e.g., ShapeNet) point cloud datasets for object and place recognition. We have also tested TDACloud on noisy and transformed test cases where the query point cloud has been scaled, translated, or rotated. Our results demonstrate high recognition accuracies in noisy conditions and large-scale real-world place recognition while outperforming the baselines by up to approximately 14%.
☆ Including Semantic Information via Word Embeddings for Skeleton-based Action Recognition
Effective human action recognition is widely used for cobots in Industry 4.0 to assist in assembly tasks. However, conventional skeleton-based methods often lose keypoint semantics, limiting their effectiveness in complex interactions. In this work, we introduce a novel approach to skeleton-based action recognition that enriches input representations by leveraging word embeddings to encode semantic information. Our method replaces one-hot encodings with semantic volumes, enabling the model to capture meaningful relationships between joints and objects. Through extensive experiments on multiple assembly datasets, we demonstrate that our approach significantly improves classification performance, and enhances generalization capabilities by simultaneously supporting different skeleton types and object classes. Our findings highlight the potential of incorporating semantic information to enhance skeleton-based action recognition in dynamic and diverse environments.
comment: IEEE International Joint Conference on Neural Networks (IJCNN) 2025
☆ Temporal Neural Cellular Automata: Application to modeling of contrast enhancement in breast MRI MICCAI 2025
Synthetic contrast enhancement offers fast image acquisition and eliminates the need for intravenous injection of contrast agent. This is particularly beneficial for breast imaging, where long acquisition times and high cost are significantly limiting the applicability of magnetic resonance imaging (MRI) as a widespread screening modality. Recent studies have demonstrated the feasibility of synthetic contrast generation. However, current state-of-the-art (SOTA) methods lack sufficient measures for consistent temporal evolution. Neural cellular automata (NCA) offer a robust and lightweight architecture to model evolving patterns between neighboring cells or pixels. In this work we introduce TeNCA (Temporal Neural Cellular Automata), which extends and further refines NCAs to effectively model temporally sparse, non-uniformly sampled imaging data. To achieve this, we advance the training strategy by enabling adaptive loss computation and define the iterative nature of the method to resemble a physical progression in time. This conditions the model to learn a physiologically plausible evolution of contrast enhancement. We rigorously train and test TeNCA on a diverse breast MRI dataset and demonstrate its effectiveness, surpassing the performance of existing methods in generation of images that align with ground truth post-contrast sequences.
comment: MICCAI 2025
☆ Matrix-Game: Interactive World Foundation Model
We introduce Matrix-Game, an interactive world foundation model for controllable game world generation. Matrix-Game is trained using a two-stage pipeline that first performs large-scale unlabeled pretraining for environment understanding, followed by action-labeled training for interactive video generation. To support this, we curate Matrix-Game-MC, a comprehensive Minecraft dataset comprising over 2,700 hours of unlabeled gameplay video clips and over 1,000 hours of high-quality labeled clips with fine-grained keyboard and mouse action annotations. Our model adopts a controllable image-to-world generation paradigm, conditioned on a reference image, motion context, and user actions. With over 17 billion parameters, Matrix-Game enables precise control over character actions and camera movements, while maintaining high visual quality and temporal coherence. To evaluate performance, we develop GameWorld Score, a unified benchmark measuring visual quality, temporal quality, action controllability, and physical rule understanding for Minecraft world generation. Extensive experiments show that Matrix-Game consistently outperforms prior open-source Minecraft world models (including Oasis and MineWorld) across all metrics, with particularly strong gains in controllability and physical consistency. Double-blind human evaluations further confirm the superiority of Matrix-Game, highlighting its ability to generate perceptually realistic and precisely controllable videos across diverse game scenarios. To facilitate future research on interactive image-to-world generation, we will open-source the Matrix-Game model weights and the GameWorld Score benchmark at https://github.com/SkyworkAI/Matrix-Game.
comment: Technical Report
☆ SIM-Net: A Multimodal Fusion Network Using Inferred 3D Object Shape Point Clouds from RGB Images for 2D Classification
We introduce the Shape-Image Multimodal Network (SIM-Net), a novel 2D image classification architecture that integrates 3D point cloud representations inferred directly from RGB images. Our key contribution lies in a pixel-to-point transformation that converts 2D object masks into 3D point clouds, enabling the fusion of texture-based and geometric features for enhanced classification performance. SIM-Net is particularly well-suited for the classification of digitized herbarium specimens (a task made challenging by heterogeneous backgrounds), non-plant elements, and occlusions that compromise conventional image-based models. To address these issues, SIM-Net employs a segmentation-based preprocessing step to extract object masks prior to 3D point cloud generation. The architecture comprises a CNN encoder for 2D image features and a PointNet-based encoder for geometric features, which are fused into a unified latent space. Experimental evaluations on herbarium datasets demonstrate that SIM-Net consistently outperforms ResNet101, achieving gains of up to 9.9% in accuracy and 12.3% in F-score. It also surpasses several transformer-based state-of-the-art architectures, highlighting the benefits of incorporating 3D structural reasoning into 2D image classification tasks.
comment: 25 pages, 9 figures, 14 tables
☆ Multi-Scale Spectral Attention Module-based Hyperspectral Segmentation in Autonomous Driving Scenarios
Recent advances in autonomous driving (AD) have highlighted the potential of Hyperspectral Imaging (HSI) for enhanced environmental perception, particularly in challenging weather and lighting conditions. However, efficiently processing its high-dimensional spectral data remains a significant challenge. This paper introduces a Multi-scale Spectral Attention Module (MSAM) that enhances spectral feature extraction through three parallel 1D convolutions with varying kernel sizes between 1 to 11, coupled with an adaptive feature aggregation mechanism. By integrating MSAM into UNet's skip connections (UNet-SC), our proposed UNet-MSAM achieves significant improvements in semantic segmentation performance across multiple HSI datasets: HyKo-VIS v2, HSI-Drive v2, and Hyperspectral City v2. Our comprehensive experiments demonstrate that with minimal computational overhead (on average 0.02% in parameters and 0.82% GFLOPS), UNet-MSAM consistently outperforms UNet-SC, achieving average improvements of 3.61% in mean IoU and 3.80% in mF1 across the three datasets. Through extensive ablation studies, we have established that multi-scale kernel combinations perform better than single-scale configurations. These findings demonstrate the potential of HSI processing for AD and provide valuable insights into designing robust, multi-scale spectral feature extractors for real-world applications.
☆ DuetGen: Music Driven Two-Person Dance Generation via Hierarchical Masked Modeling
We present DuetGen, a novel framework for generating interactive two-person dances from music. The key challenge of this task lies in the inherent complexities of two-person dance interactions, where the partners need to synchronize both with each other and with the music. Inspired by the recent advances in motion synthesis, we propose a two-stage solution: encoding two-person motions into discrete tokens and then generating these tokens from music. To effectively capture intricate interactions, we represent both dancers' motions as a unified whole to learn the necessary motion tokens, and adopt a coarse-to-fine learning strategy in both the stages. Our first stage utilizes a VQ-VAE that hierarchically separates high-level semantic features at a coarse temporal resolution from low-level details at a finer resolution, producing two discrete token sequences at different abstraction levels. Subsequently, in the second stage, two generative masked transformers learn to map music signals to these dance tokens: the first producing high-level semantic tokens, and the second, conditioned on music and these semantic tokens, producing the low-level tokens. We train both transformers to learn to predict randomly masked tokens within the sequence, enabling them to iteratively generate motion tokens by filling an empty token sequence during inference. Through the hierarchical masked modeling and dedicated interaction representation, DuetGen achieves the generation of synchronized and interactive two-person dances across various genres. Extensive experiments and user studies on a benchmark duet dance dataset demonstrate state-of-the-art performance of DuetGen in motion realism, music-dance alignment, and partner coordination.
comment: 11 pages, 7 figures, 2 tables, accepted in ACM Siggraph 2025 conference track
☆ MARL-MambaContour: Unleashing Multi-Agent Deep Reinforcement Learning for Active Contour Optimization in Medical Image Segmentation
We introduce MARL-MambaContour, the first contour-based medical image segmentation framework based on Multi-Agent Reinforcement Learning (MARL). Our approach reframes segmentation as a multi-agent cooperation task focused on generate topologically consistent object-level contours, addressing the limitations of traditional pixel-based methods which could lack topological constraints and holistic structural awareness of anatomical regions. Each contour point is modeled as an autonomous agent that iteratively adjusts its position to align precisely with the target boundary, enabling adaptation to blurred edges and intricate morphologies common in medical images. This iterative adjustment process is optimized by a contour-specific Soft Actor-Critic (SAC) algorithm, further enhanced with the Entropy Regularization Adjustment Mechanism (ERAM) which dynamically balance agent exploration with contour smoothness. Furthermore, the framework incorporates a Mamba-based policy network featuring a novel Bidirectional Cross-attention Hidden-state Fusion Mechanism (BCHFM). This mechanism mitigates potential memory confusion limitations associated with long-range modeling in state space models, thereby facilitating more accurate inter-agent information exchange and informed decision-making. Extensive experiments on five diverse medical imaging datasets demonstrate the state-of-the-art performance of MARL-MambaContour, highlighting its potential as an accurate and robust clinical application.
☆ MCN-SLAM: Multi-Agent Collaborative Neural SLAM with Hybrid Implicit Neural Scene Representation
Neural implicit scene representations have recently shown promising results in dense visual SLAM. However, existing implicit SLAM algorithms are constrained to single-agent scenarios, and fall difficulties in large-scale scenes and long sequences. Existing NeRF-based multi-agent SLAM frameworks cannot meet the constraints of communication bandwidth. To this end, we propose the first distributed multi-agent collaborative neural SLAM framework with hybrid scene representation, distributed camera tracking, intra-to-inter loop closure, and online distillation for multiple submap fusion. A novel triplane-grid joint scene representation method is proposed to improve scene reconstruction. A novel intra-to-inter loop closure method is designed to achieve local (single-agent) and global (multi-agent) consistency. We also design a novel online distillation method to fuse the information of different submaps to achieve global consistency. Furthermore, to the best of our knowledge, there is no real-world dataset for NeRF-based/GS-based SLAM that provides both continuous-time trajectories groundtruth and high-accuracy 3D meshes groundtruth. To this end, we propose the first real-world Dense slam (DES) dataset covering both single-agent and multi-agent scenarios, ranging from small rooms to large-scale outdoor scenes, with high-accuracy ground truth for both 3D mesh and continuous-time camera trajectory. This dataset can advance the development of the research in both SLAM, 3D reconstruction, and visual foundation model. Experiments on various datasets demonstrate the superiority of the proposed method in both mapping, tracking, and communication. The dataset and code will open-source on https://github.com/dtc111111/mcnslam.
☆ Reconstructing Tornadoes in 3D with Gaussian Splatting
Accurately reconstructing the 3D structure of tornadoes is critically important for understanding and preparing for this highly destructive weather phenomenon. While modern 3D scene reconstruction techniques, such as 3D Gaussian splatting (3DGS), could provide a valuable tool for reconstructing the 3D structure of tornados, at present we are critically lacking a controlled tornado dataset with which to develop and validate these tools. In this work we capture and release a novel multiview dataset of a small lab-based tornado. We demonstrate one can effectively reconstruct and visualize the 3D structure of this tornado using 3DGS.
☆ TCDiff++: An End-to-end Trajectory-Controllable Diffusion Model for Harmonious Music-Driven Group Choreography
Music-driven dance generation has garnered significant attention due to its wide range of industrial applications, particularly in the creation of group choreography. During the group dance generation process, however, most existing methods still face three primary issues: multi-dancer collisions, single-dancer foot sliding and abrupt swapping in the generation of long group dance. In this paper, we propose TCDiff++, a music-driven end-to-end framework designed to generate harmonious group dance. Specifically, to mitigate multi-dancer collisions, we utilize a dancer positioning embedding to better maintain the relative positioning among dancers. Additionally, we incorporate a distance-consistency loss to ensure that inter-dancer distances remain within plausible ranges. To address the issue of single-dancer foot sliding, we introduce a swap mode embedding to indicate dancer swapping patterns and design a Footwork Adaptor to refine raw motion, thereby minimizing foot sliding. For long group dance generation, we present a long group diffusion sampling strategy that reduces abrupt position shifts by injecting positional information into the noisy input. Furthermore, we integrate a Sequence Decoder layer to enhance the model's ability to selectively process long sequences. Extensive experiments demonstrate that our TCDiff++ achieves state-of-the-art performance, particularly in long-duration scenarios, ensuring high-quality and coherent group dance generation.
☆ MedSeg-R: Medical Image Segmentation with Clinical Reasoning
Medical image segmentation is challenging due to overlapping anatomies with ambiguous boundaries and a severe imbalance between the foreground and background classes, which particularly affects the delineation of small lesions. Existing methods, including encoder-decoder networks and prompt-driven variants of the Segment Anything Model (SAM), rely heavily on local cues or user prompts and lack integrated semantic priors, thus failing to generalize well to low-contrast or overlapping targets. To address these issues, we propose MedSeg-R, a lightweight, dual-stage framework inspired by inspired by clinical reasoning. Its cognitive stage interprets medical report into structured semantic priors (location, texture, shape), which are fused via transformer block. In the perceptual stage, these priors modulate the SAM backbone: spatial attention highlights likely lesion regions, dynamic convolution adapts feature filters to expected textures, and deformable sampling refines spatial support. By embedding this fine-grained guidance early, MedSeg-R disentangles inter-class confusion and amplifies minority-class cues, greatly improving sensitivity to small lesions. In challenging benchmarks, MedSeg-R produces large Dice improvements in overlapping and ambiguous structures, demonstrating plug-and-play compatibility with SAM-based systems.
☆ Benchmarking histopathology foundation models in a multi-center dataset for skin cancer subtyping
Pretraining on large-scale, in-domain datasets grants histopathology foundation models (FM) the ability to learn task-agnostic data representations, enhancing transfer learning on downstream tasks. In computational pathology, automated whole slide image analysis requires multiple instance learning (MIL) frameworks due to the gigapixel scale of the slides. The diversity among histopathology FMs has highlighted the need to design real-world challenges for evaluating their effectiveness. To bridge this gap, our work presents a novel benchmark for evaluating histopathology FMs as patch-level feature extractors within a MIL classification framework. For that purpose, we leverage the AI4SkIN dataset, a multi-center cohort encompassing slides with challenging cutaneous spindle cell neoplasm subtypes. We also define the Foundation Model - Silhouette Index (FM-SI), a novel metric to measure model consistency against distribution shifts. Our experimentation shows that extracting less biased features enhances classification performance, especially in similarity-based MIL classifiers.
comment: Accepeted for oral presentation at Medical Image Understanding and Analysis (MIUA) 2025
☆ Historical Report Guided Bi-modal Concurrent Learning for Pathology Report Generation
Automated pathology report generation from Whole Slide Images (WSIs) faces two key challenges: (1) lack of semantic content in visual features and (2) inherent information redundancy in WSIs. To address these issues, we propose a novel Historical Report Guided \textbf{Bi}-modal Concurrent Learning Framework for Pathology Report \textbf{Gen}eration (BiGen) emulating pathologists' diagnostic reasoning, consisting of: (1) A knowledge retrieval mechanism to provide rich semantic content, which retrieves WSI-relevant knowledge from pre-built medical knowledge bank by matching high-attention patches and (2) A bi-modal concurrent learning strategy instantiated via a learnable visual token and a learnable textual token to dynamically extract key visual features and retrieved knowledge, where weight-shared layers enable cross-modal alignment between visual features and knowledge features. Our multi-modal decoder integrates both modals for comprehensive diagnostic reports generation. Experiments on the PathText (BRCA) dataset demonstrate our framework's superiority, achieving state-of-the-art performance with 7.4\% relative improvement in NLP metrics and 19.1\% enhancement in classification metrics for Her-2 prediction versus existing methods. Ablation studies validate the necessity of our proposed modules, highlighting our method's ability to provide WSI-relevant rich semantic content and suppress information redundancy in WSIs. Code is publicly available at https://github.com/DeepMed-Lab-ECNU/BiGen.
☆ RDPO: Real Data Preference Optimization for Physics Consistency Video Generation
Video generation techniques have achieved remarkable advancements in visual quality, yet faithfully reproducing real-world physics remains elusive. Preference-based model post-training may improve physical consistency, but requires costly human-annotated datasets or reward models that are not yet feasible. To address these challenges, we present Real Data Preference Optimisation (RDPO), an annotation-free framework that distills physical priors directly from real-world videos. Specifically, the proposed RDPO reverse-samples real video sequences with a pre-trained generator to automatically build preference pairs that are statistically distinguishable in terms of physical correctness. A multi-stage iterative training schedule then guides the generator to obey physical laws increasingly well. Benefiting from the dynamic information explored from real videos, our proposed RDPO significantly improves the action coherence and physical realism of the generated videos. Evaluations on multiple benchmarks and human evaluations have demonstrated that RDPO achieves improvements across multiple dimensions. The source code and demonstration of this paper are available at: https://wwenxu.github.io/RDPO/
comment: 16 pages, 10 figures
☆ BulletGen: Improving 4D Reconstruction with Bullet-Time Generation
Transforming casually captured, monocular videos into fully immersive dynamic experiences is a highly ill-posed task, and comes with significant challenges, e.g., reconstructing unseen regions, and dealing with the ambiguity in monocular depth estimation. In this work we introduce BulletGen, an approach that takes advantage of generative models to correct errors and complete missing information in a Gaussian-based dynamic scene representation. This is done by aligning the output of a diffusion-based video generation model with the 4D reconstruction at a single frozen "bullet-time" step. The generated frames are then used to supervise the optimization of the 4D Gaussian model. Our method seamlessly blends generative content with both static and dynamic scene components, achieving state-of-the-art results on both novel-view synthesis, and 2D/3D tracking tasks.
☆ No Training Wheels: Steering Vectors for Bias Correction at Inference Time
Neural network classifiers trained on datasets with uneven group representation often inherit class biases and learn spurious correlations. These models may perform well on average but consistently fail on atypical groups. For example, in hair color classification, datasets may over-represent females with blond hair, reinforcing stereotypes. Although various algorithmic and data-centric methods have been proposed to address such biases, they often require retraining or significant compute. In this work, we propose a cheap, training-free method inspired by steering vectors used to edit behaviors in large language models. We compute the difference in mean activations between majority and minority groups to define a "bias vector," which we subtract from the model's residual stream. This leads to reduced classification bias and improved worst-group accuracy. We explore multiple strategies for extracting and applying these vectors in transformer-like classifiers, showing that steering vectors, traditionally used in generative models, can also be effective in classification. More broadly, we showcase an extremely cheap, inference time, training free method to mitigate bias in classification models.
☆ SpaNN: Detecting Multiple Adversarial Patches on CNNs by Spanning Saliency Thresholds
State-of-the-art convolutional neural network models for object detection and image classification are vulnerable to physically realizable adversarial perturbations, such as patch attacks. Existing defenses have focused, implicitly or explicitly, on single-patch attacks, leaving their sensitivity to the number of patches as an open question or rendering them computationally infeasible or inefficient against attacks consisting of multiple patches in the worst cases. In this work, we propose SpaNN, an attack detector whose computational complexity is independent of the expected number of adversarial patches. The key novelty of the proposed detector is that it builds an ensemble of binarized feature maps by applying a set of saliency thresholds to the neural activations of the first convolutional layer of the victim model. It then performs clustering on the ensemble and uses the cluster features as the input to a classifier for attack detection. Contrary to existing detectors, SpaNN does not rely on a fixed saliency threshold for identifying adversarial regions, which makes it robust against white box adversarial attacks. We evaluate SpaNN on four widely used data sets for object detection and classification, and our results show that SpaNN outperforms state-of-the-art defenses by up to 11 and 27 percentage points in the case of object detection and the case of image classification, respectively. Our code is available at https://github.com/gerkbyrd/SpaNN.
comment: 2025 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML2025)
☆ Resampling Augmentation for Time Series Contrastive Learning: Application to Remote Sensing ICML 2025
Given the abundance of unlabeled Satellite Image Time Series (SITS) and the scarcity of labeled data, contrastive self-supervised pretraining emerges as a natural tool to leverage this vast quantity of unlabeled data. However, designing effective data augmentations for contrastive learning remains challenging for time series. We introduce a novel resampling-based augmentation strategy that generates positive pairs by upsampling time series and extracting disjoint subsequences while preserving temporal coverage. We validate our approach on multiple agricultural classification benchmarks using Sentinel-2 imagery, showing that it outperforms common alternatives such as jittering, resizing, and masking. Further, we achieve state-of-the-art performance on the S2-Agri100 dataset without employing spatial information or temporal encodings, surpassing more complex masked-based SSL frameworks. Our method offers a simple, yet effective, contrastive learning augmentation for remote sensing time series.
comment: 10 pages, 2 figures, accepted at 42nd International Conference on Machine Learning (ICML 2025) Terrabytes workshop
☆ 2D Triangle Splatting for Direct Differentiable Mesh Training
Differentiable rendering with 3D Gaussian primitives has emerged as a powerful method for reconstructing high-fidelity 3D scenes from multi-view images. While it offers improvements over NeRF-based methods, this representation still encounters challenges with rendering speed and advanced rendering effects, such as relighting and shadow rendering, compared to mesh-based models. In this paper, we propose 2D Triangle Splatting (2DTS), a novel method that replaces 3D Gaussian primitives with 2D triangle facelets. This representation naturally forms a discrete mesh-like structure while retaining the benefits of continuous volumetric modeling. By incorporating a compactness parameter into the triangle primitives, we enable direct training of photorealistic meshes. Our experimental results demonstrate that our triangle-based method, in its vanilla version (without compactness tuning), achieves higher fidelity compared to state-of-the-art Gaussian-based methods. Furthermore, our approach produces reconstructed meshes with superior visual quality compared to existing mesh reconstruction methods.
comment: 13 pages, 8 figures
☆ VisualChef: Generating Visual Aids in Cooking via Mask Inpainting
Cooking requires not only following instructions but also understanding, executing, and monitoring each step - a process that can be challenging without visual guidance. Although recipe images and videos offer helpful cues, they often lack consistency in focus, tools, and setup. To better support the cooking process, we introduce VisualChef, a method for generating contextual visual aids tailored to cooking scenarios. Given an initial frame and a specified action, VisualChef generates images depicting both the action's execution and the resulting appearance of the object, while preserving the initial frame's environment. Previous work aims to integrate knowledge extracted from large language models by generating detailed textual descriptions to guide image generation, which requires fine-grained visual-textual alignment and involves additional annotations. In contrast, VisualChef simplifies alignment through mask-based visual grounding. Our key insight is identifying action-relevant objects and classifying them to enable targeted modifications that reflect the intended action and outcome while maintaining a consistent environment. In addition, we propose an automated pipeline to extract high-quality initial, action, and final state frames. We evaluate VisualChef quantitatively and qualitatively on three egocentric video datasets and show its improvements over state-of-the-art methods.
☆ VQ-Insight: Teaching VLMs for AI-Generated Video Quality Understanding via Progressive Visual Reinforcement Learning
Recent advances in AI-generated content (AIGC) have led to the emergence of powerful text-to-video generation models. Despite these successes, evaluating the quality of AIGC-generated videos remains challenging due to limited generalization, lack of temporal awareness, heavy reliance on large-scale annotated datasets, and the lack of effective interaction with generation models. Most current approaches rely on supervised finetuning of vision-language models (VLMs), which often require large-scale annotated datasets and tend to decouple understanding and generation. To address these shortcomings, we propose VQ-Insight, a novel reasoning-style VLM framework for AIGC video quality assessment. Our approach features: (1) a progressive video quality learning scheme that combines image quality warm-up, general task-specific temporal learning, and joint optimization with the video generation model; (2) the design of multi-dimension scoring rewards, preference comparison rewards, and temporal modeling rewards to enhance both generalization and specialization in video quality evaluation. Extensive experiments demonstrate that VQ-Insight consistently outperforms state-of-the-art baselines in preference comparison, multi-dimension scoring, and natural video scoring, bringing significant improvements for video generation tasks.
comment: Technical Report
☆ Object-aware Sound Source Localization via Audio-Visual Scene Understanding CVPR 2025
Audio-visual sound source localization task aims to spatially localize sound-making objects within visual scenes by integrating visual and audio cues. However, existing methods struggle with accurately localizing sound-making objects in complex scenes, particularly when visually similar silent objects coexist. This limitation arises primarily from their reliance on simple audio-visual correspondence, which does not capture fine-grained semantic differences between sound-making and silent objects. To address these challenges, we propose a novel sound source localization framework leveraging Multimodal Large Language Models (MLLMs) to generate detailed contextual information that explicitly distinguishes between sound-making foreground objects and silent background objects. To effectively integrate this detailed information, we introduce two novel loss functions: Object-aware Contrastive Alignment (OCA) loss and Object Region Isolation (ORI) loss. Extensive experimental results on MUSIC and VGGSound datasets demonstrate the effectiveness of our approach, significantly outperforming existing methods in both single-source and multi-source localization scenarios. Code and generated detailed contextual information are available at: https://github.com/VisualAIKHU/OA-SSL.
comment: Accepted at CVPR 2025
☆ Normality Prior Guided Multi-Semantic Fusion Network for Unsupervised Image Anomaly Detection
Recently, detecting logical anomalies is becoming a more challenging task compared to detecting structural ones. Existing encoder decoder based methods typically compress inputs into low-dimensional bottlenecks on the assumption that the compression process can effectively suppress the transmission of logical anomalies to the decoder. However, logical anomalies present a particular difficulty because, while their local features often resemble normal semantics, their global semantics deviate significantly from normal patterns. Thanks to the generalisation capabilities inherent in neural networks, these abnormal semantic features can propagate through low-dimensional bottlenecks. This ultimately allows the decoder to reconstruct anomalous images with misleading fidelity. To tackle the above challenge, we propose a novel normality prior guided multi-semantic fusion network for unsupervised anomaly detection. Instead of feeding the compressed bottlenecks to the decoder directly, we introduce the multi-semantic features of normal samples into the reconstruction process. To this end, we first extract abstract global semantics of normal cases by a pre-trained vision-language network, then the learnable semantic codebooks are constructed to store representative feature vectors of normal samples by vector quantisation. Finally, the above multi-semantic features are fused and employed as input to the decoder to guide the reconstruction of anomalies to approximate normality. Extensive experiments are conducted to validate the effectiveness of our proposed method, and it achieves the SOTA performance on the MVTec LOCO AD dataset with improvements of 5.7% in pixel-sPRO and 2.6% in image-AUROC. The source code is available at https://github.com/Xmh-L/NPGMF.
☆ Geometry-aware Distance Measure for Diverse Hierarchical Structures in Hyperbolic Spaces
Learning in hyperbolic spaces has attracted increasing attention due to its superior ability to model hierarchical structures of data. Most existing hyperbolic learning methods use fixed distance measures for all data, assuming a uniform hierarchy across all data points. However, real-world hierarchical structures exhibit significant diversity, making this assumption overly restrictive. In this paper, we propose a geometry-aware distance measure in hyperbolic spaces, which dynamically adapts to varying hierarchical structures. Our approach derives the distance measure by generating tailored projections and curvatures for each pair of data points, effectively mapping them to an appropriate hyperbolic space. We introduce a revised low-rank decomposition scheme and a hard-pair mining mechanism to mitigate the computational cost of pair-wise distance computation without compromising accuracy. We present an upper bound on the low-rank approximation error using Talagrand's concentration inequality, ensuring theoretical robustness. Extensive experiments on standard image classification (MNIST, CIFAR-10 and CIFAR-100), hierarchical classification (5-level CIFAR-100), and few-shot learning tasks (mini-ImageNet, tiered-ImageNet) demonstrate the effectiveness of our method. Our approach consistently outperforms learning methods that use fixed distance measures, with notable improvements on few-shot learning tasks, where it achieves over 5\% gains on mini-ImageNet. The results reveal that adaptive distance measures better capture diverse hierarchical structures, with visualization showing clearer class boundaries and improved prototype separation in hyperbolic spaces.
comment: 24 pages
☆ A Set-to-Set Distance Measure in Hyperbolic Space
We propose a hyperbolic set-to-set distance measure for computing dissimilarity between sets in hyperbolic space. While point-to-point distances in hyperbolic space effectively capture hierarchical relationships between data points, many real-world applications require comparing sets of hyperbolic data points, where the local structure and the global structure of the sets carry crucial semantic information. The proposed the \underline{h}yperbolic \underline{s}et-\underline{to}-\underline{s}et \underline{d}istance measure (HS2SD) integrates both global and local structural information: global structure through geodesic distances between Einstein midpoints of hyperbolic sets, and local structure through topological characteristics of the two sets. To efficiently compute topological differences, we prove that using a finite Thue-Morse sequence of degree and adjacency matrices can serve as a robust approximation to capture the topological structure of a set. In this case, by considering the topological differences, HS2SD provides a more nuanced understanding of the relationships between two hyperbolic sets. Empirical evaluation on entity matching, standard image classification, and few-shot image classification demonstrates that our distance measure outperforms existing methods by effectively modeling the hierarchical and complex relationships inherent in hyperbolic sets.
comment: 24 pages
☆ Auto-Regressively Generating Multi-View Consistent Images
Generating multi-view images from human instructions is crucial for 3D content creation. The primary challenges involve maintaining consistency across multiple views and effectively synthesizing shapes and textures under diverse conditions. In this paper, we propose the Multi-View Auto-Regressive (MV-AR) method, which leverages an auto-regressive model to progressively generate consistent multi-view images from arbitrary prompts. Firstly, the next-token-prediction capability of the AR model significantly enhances its effectiveness in facilitating progressive multi-view synthesis. When generating widely-separated views, MV-AR can utilize all its preceding views to extract effective reference information. Subsequently, we propose a unified model that accommodates various prompts via architecture designing and training strategies. To address multiple conditions, we introduce condition injection modules for text, camera pose, image, and shape. To manage multi-modal conditions simultaneously, a progressive training strategy is employed. This strategy initially adopts the text-to-multi-view (t2mv) model as a baseline to enhance the development of a comprehensive X-to-multi-view (X2mv) model through the randomly dropping and combining conditions. Finally, to alleviate the overfitting problem caused by limited high-quality data, we propose the "Shuffle View" data augmentation technique, thus significantly expanding the training data by several magnitudes. Experiments demonstrate the performance and versatility of our MV-AR, which consistently generates consistent multi-view images across a range of conditions and performs on par with leading diffusion-based multi-view image generation models. Code and models will be released at https://github.com/MILab-PKU/MVAR.
☆ Multi-Scale Representation of Follicular Lymphoma Pathology Images in a Single Hyperbolic Space
We propose a method for representing malignant lymphoma pathology images, from high-resolution cell nuclei to low-resolution tissue images, within a single hyperbolic space using self-supervised learning. To capture morphological changes that occur across scales during disease progression, our approach embeds tissue and corresponding nucleus images close to each other based on inclusion relationships. Using the Poincar\'e ball as the feature space enables effective encoding of this hierarchical structure. The learned representations capture both disease state and cell type variations.
comment: 10 pages, 3 figures
☆ Enhancing Image Restoration Transformer via Adaptive Translation Equivariance
Translation equivariance is a fundamental inductive bias in image restoration, ensuring that translated inputs produce translated outputs. Attention mechanisms in modern restoration transformers undermine this property, adversely impacting both training convergence and generalization. To alleviate this issue, we propose two key strategies for incorporating translation equivariance: slide indexing and component stacking. Slide indexing maintains operator responses at fixed positions, with sliding window attention being a notable example, while component stacking enables the arrangement of translation-equivariant operators in parallel or sequentially, thereby building complex architectures while preserving translation equivariance. However, these strategies still create a dilemma in model design between the high computational cost of self-attention and the fixed receptive field associated with sliding window attention. To address this, we develop an adaptive sliding indexing mechanism to efficiently select key-value pairs for each query, which are then concatenated in parallel with globally aggregated key-value pairs. The designed network, called the Translation Equivariance Adaptive Transformer (TEAFormer), is assessed across a variety of image restoration tasks. The results highlight its superiority in terms of effectiveness, training convergence, and generalization.
☆ MedTVT-R1: A Multimodal LLM Empowering Medical Reasoning and Diagnosis
Accurate and interpretable multi-disease diagnosis remains a critical challenge in medical research, particularly when leveraging heterogeneous multimodal medical data. Current approaches often rely on single-modal data, limiting their ability to comprehensively understand complex diseases. To address this, we propose MedTVT-R1, a novel Multimodal Large Language Model (MLLM) framework designed to integrate clinical multimodal data for reasoning and diagnosing multiple diseases. We construct MedTVT-QA, a curated instruction dataset that provides question-answer pairs for physiological-level interpretations and disease-level diagnoses with a Chain of Evidence approach. MedTVT-R1 incorporates a modality perception layer to capture inter-modal dependencies and adaptively weight modality contributions. Additionally, we employ Group Relative Policy Optimization (GRPO)-based Reinforcement Fine-Tuning with a Jaccard Reward function to enhance diagnostic reasoning. Experimental results demonstrate MedTVT-R1's superiority in multimodal feature utilization and multi-disease diagnosis, offering significant potential for clinical applications such as diagnostic report generation and comorbidity reasoning. The dataset and code are available at https://github.com/keke-nice/MedTVT-R1.
☆ Generalizing Vision-Language Models to Novel Domains: A Comprehensive Survey
Recently, vision-language pretraining has emerged as a transformative technique that integrates the strengths of both visual and textual modalities, resulting in powerful vision-language models (VLMs). Leveraging web-scale pretraining data, these models exhibit strong zero-shot capabilities. However, their performance often deteriorates when confronted with domain-specific or specialized generalization tasks. To address this, a growing body of research focuses on transferring or generalizing the rich knowledge embedded in VLMs to various downstream applications. This survey aims to comprehensively summarize the generalization settings, methodologies, benchmarking and results in VLM literatures. Delving into the typical VLM structures, current literatures are categorized into prompt-based, parameter-based and feature-based methods according to the transferred modules. The differences and characteristics in each category are furthered summarized and discussed by revisiting the typical transfer learning (TL) settings, providing novel interpretations for TL in the era of VLMs. Popular benchmarks for VLM generalization are further introduced with thorough performance comparisons among the reviewed methods. Following the advances in large-scale generalizable pretraining, this survey also discusses the relations and differences between VLMs and up-to-date multimodal large language models (MLLM), e.g., DeepSeek-VL. By systematically reviewing the surging literatures in vision-language research from a novel and practical generalization prospective, this survey contributes to a clear landscape of current and future multimodal researches.
☆ Biased Teacher, Balanced Student
Knowledge Distillation (KD) is a widely adopted model compression technique where a compact student model learns from the output of a larger, pre-trained teacher. While effective in balanced settings, conventional KD suffers significantly when applied to long-tailed data distributions, as the teacher model tends to be biased toward head classes and provides limited supervision for tail classes. In this paper, we propose Long-Tailed Knowledge Distillation (LTKD), a novel framework tailored for class-imbalanced scenarios. We begin by reformulating the standard KD objective into two components: inter-group and intra-group Kullback-Leibler (KL) divergence, corresponding to the prediction distributions across and within class groups (head, medium, tail), respectively. This decomposition allows us to identify and quantify the sources of teacher bias. To address them, we introduce (1) a rebalanced inter-group loss that calibrates the teacher's group-level predictions and (2) a uniform intra-group loss that ensures equal contribution from all groups during distillation. Extensive experiments on CIFAR-100-LT, TinyImageNet-LT, and ImageNet-LT show that LTKD consistently outperforms existing KD methods, achieving significant gains in both overall accuracy and tail-class performance. Our results demonstrate that LTKD enables effective knowledge transfer even from biased teachers, making it a strong candidate for real-world deployment in resource-constrained and imbalanced settings.
comment: 12 pages, 5 figures. This work has been submitted to the IEEE for possible publication
☆ ShowFlow: From Robust Single Concept to Condition-Free Multi-Concept Generation
Customizing image generation remains a core challenge in controllable image synthesis. For single-concept generation, maintaining both identity preservation and prompt alignment is challenging. In multi-concept scenarios, relying solely on a prompt without additional conditions like layout boxes or semantic masks, often leads to identity loss and concept omission. In this paper, we introduce ShowFlow, a comprehensive framework designed to tackle these challenges. We propose ShowFlow-S for single-concept image generation, and ShowFlow-M for handling multiple concepts. ShowFlow-S introduces a KronA-WED adapter, which integrates a Kronecker adapter with weight and embedding decomposition, and employs a disentangled learning approach with a novel attention regularization objective to enhance single-concept generation. Building on this foundation, ShowFlow-M directly reuses the learned models from ShowFlow-S to support multi-concept generation without extra conditions, incorporating a Subject-Adaptive Matching Attention (SAMA) and a layout consistency strategy as the plug-and-play module. Extensive experiments and user studies validate ShowFlow's effectiveness, highlighting its potential in real-world applications like advertising and virtual dressing.
☆ GANs vs. Diffusion Models for virtual staining with the HER2match dataset
Virtual staining is a promising technique that uses deep generative models to recreate histological stains, providing a faster and more cost-effective alternative to traditional tissue chemical staining. Specifically for H&E-HER2 staining transfer, despite a rising trend in publications, the lack of sufficient public datasets has hindered progress in the topic. Additionally, it is currently unclear which model frameworks perform best for this particular task. In this paper, we introduce the HER2match dataset, the first publicly available dataset with the same breast cancer tissue sections stained with both H&E and HER2. Furthermore, we compare the performance of several Generative Adversarial Networks (GANs) and Diffusion Models (DMs), and implement a novel Brownian Bridge Diffusion Model for H&E-HER2 translation. Our findings indicate that, overall, GANs perform better than DMs, with only the BBDM achieving comparable results. Furthermore, we emphasize the importance of data alignment, as all models trained on HER2match produced vastly improved visuals compared to the widely used consecutive-slide BCI dataset. This research provides a new high-quality dataset ([available upon publication acceptance]), improving both model training and evaluation. In addition, our comparison of frameworks offers valuable guidance for researchers working on the topic.
☆ Context Consistency Learning via Sentence Removal for Semi-Supervised Video Paragraph Grounding
Semi-Supervised Video Paragraph Grounding (SSVPG) aims to localize multiple sentences in a paragraph from an untrimmed video with limited temporal annotations. Existing methods focus on teacher-student consistency learning and video-level contrastive loss, but they overlook the importance of perturbing query contexts to generate strong supervisory signals. In this work, we propose a novel Context Consistency Learning (CCL) framework that unifies the paradigms of consistency regularization and pseudo-labeling to enhance semi-supervised learning. Specifically, we first conduct teacher-student learning where the student model takes as inputs strongly-augmented samples with sentences removed and is enforced to learn from the adequately strong supervisory signals from the teacher model. Afterward, we conduct model retraining based on the generated pseudo labels, where the mutual agreement between the original and augmented views' predictions is utilized as the label confidence. Extensive experiments show that CCL outperforms existing methods by a large margin.
comment: Accepted by ICME2025
☆ A Deep Convolutional Neural Network-Based Novel Class Balancing for Imbalance Data Segmentation
Retinal fundus images provide valuable insights into the human eye's interior structure and crucial features, such as blood vessels, optic disk, macula, and fovea. However, accurate segmentation of retinal blood vessels can be challenging due to imbalanced data distribution and varying vessel thickness. In this paper, we propose BLCB-CNN, a novel pipeline based on deep learning and bi-level class balancing scheme to achieve vessel segmentation in retinal fundus images. The BLCB-CNN scheme uses a Convolutional Neural Network (CNN) architecture and an empirical approach to balance the distribution of pixels across vessel and non-vessel classes and within thin and thick vessels. Level-I is used for vessel/non-vessel balancing and Level-II is used for thick/thin vessel balancing. Additionally, pre-processing of the input retinal fundus image is performed by Global Contrast Normalization (GCN), Contrast Limited Adaptive Histogram Equalization (CLAHE), and gamma corrections to increase intensity uniformity as well as to enhance the contrast between vessels and background pixels. The resulting balanced dataset is used for classification-based segmentation of the retinal vascular tree. We evaluate the proposed scheme on standard retinal fundus images and achieve superior performance measures, including an area under the ROC curve of 98.23%, Accuracy of 96.22%, Sensitivity of 81.57%, and Specificity of 97.65%. We also demonstrate the method's efficacy through external cross-validation on STARE images, confirming its generalization ability.
comment: This is preprint of the paper submitted to Scientific Reports journal
☆ AViLA: Asynchronous Vision-Language Agent for Streaming Multimodal Data Interaction
An ideal vision-language agent serves as a bridge between the human users and their surrounding physical world in real-world applications like autonomous driving and embodied agents, and proactively provides accurate and timely responses given user intents. An intriguing challenge arises when agents interact with the world as a dynamic data stream and ad-hoc queries from users: supporting knowledge for queries, namely evidence, usually appears asynchronously with the arrival time of queries, and agents need to ground their responses in historical data, present observations, and even future streams. We frame this challenge as Query-Evidence Asynchrony, where user queries and their supporting evidence typically arrive asynchronously in the streaming setting. This setting requires not only strong reasoning capabilities but also the ability to retain past observations and respond to queries with temporal awareness. In this paper, we introduce a diagnostic benchmark that evaluates Multimodal Large Language Models (MLLMs) on their ability to handle interaction with streaming data. Further, we present AViLA, Asynchronous Video-Language Agent for streaming data interaction that can handle ad-hoc queries and give time-aware responses. For this purpose, AViLA consists of three key modules: comprehensive memory retention, evidence identification, and evidence-grounded trigger, that are designed to maintain a general-purpose memory and respond readily and timely to queries. Our experiments show that existing models often fail to respond at appropriate times, while AViLA significantly improves both accuracy and temporal awareness. Our code and dataset will be publicly available.
comment: preprint version; 23 pages (including references and appendix)
☆ DIP: Unsupervised Dense In-Context Post-training of Visual Representations
We introduce DIP, a novel unsupervised post-training method designed to enhance dense image representations in large-scale pretrained vision encoders for in-context scene understanding. Unlike prior approaches that rely on complex self-distillation architectures, our method trains the vision encoder using pseudo-tasks that explicitly simulate downstream in-context scenarios, inspired by meta-learning principles. To enable post-training on unlabeled data, we propose an automatic mechanism for generating in-context tasks that combines a pretrained diffusion model and the vision encoder itself. DIP is simple, unsupervised, and computationally efficient, requiring less than 9 hours on a single A100 GPU. By learning dense representations through pseudo in-context tasks, it achieves strong performance across a wide variety of downstream real-world in-context scene understanding tasks. It outperforms both the initial vision encoder and prior methods, offering a practical and effective solution for improving dense representations. Code available here: https://github.com/sirkosophia/DIP
☆ Radar and Event Camera Fusion for Agile Robot Ego-Motion Estimation
Achieving reliable ego motion estimation for agile robots, e.g., aerobatic aircraft, remains challenging because most robot sensors fail to respond timely and clearly to highly dynamic robot motions, often resulting in measurement blurring, distortion, and delays. In this paper, we propose an IMU-free and feature-association-free framework to achieve aggressive ego-motion velocity estimation of a robot platform in highly dynamic scenarios by combining two types of exteroceptive sensors, an event camera and a millimeter wave radar, First, we used instantaneous raw events and Doppler measurements to derive rotational and translational velocities directly. Without a sophisticated association process between measurement frames, the proposed method is more robust in texture-less and structureless environments and is more computationally efficient for edge computing devices. Then, in the back-end, we propose a continuous-time state-space model to fuse the hybrid time-based and event-based measurements to estimate the ego-motion velocity in a fixed-lagged smoother fashion. In the end, we validate our velometer framework extensively in self-collected experiment datasets. The results indicate that our IMU-free and association-free ego motion estimation framework can achieve reliable and efficient velocity output in challenging environments. The source code, illustrative video and dataset are available at https://github.com/ZzhYgwh/TwistEstimator.
☆ CPAM: Context-Preserving Adaptive Manipulation for Zero-Shot Real Image Editing
Editing natural images using textual descriptions in text-to-image diffusion models remains a significant challenge, particularly in achieving consistent generation and handling complex, non-rigid objects. Existing methods often struggle to preserve textures and identity, require extensive fine-tuning, and exhibit limitations in editing specific spatial regions or objects while retaining background details. This paper proposes Context-Preserving Adaptive Manipulation (CPAM), a novel zero-shot framework for complicated, non-rigid real image editing. Specifically, we propose a preservation adaptation module that adjusts self-attention mechanisms to preserve and independently control the object and background effectively. This ensures that the objects' shapes, textures, and identities are maintained while keeping the background undistorted during the editing process using the mask guidance technique. Additionally, we develop a localized extraction module to mitigate the interference with the non-desired modified regions during conditioning in cross-attention mechanisms. We also introduce various mask-guidance strategies to facilitate diverse image manipulation tasks in a simple manner. Extensive experiments on our newly constructed Image Manipulation BenchmArk (IMBA), a robust benchmark dataset specifically designed for real image editing, demonstrate that our proposed method is the preferred choice among human raters, outperforming existing state-of-the-art editing techniques.
☆ Frequency-Domain Fusion Transformer for Image Inpainting
Image inpainting plays a vital role in restoring missing image regions and supporting high-level vision tasks, but traditional methods struggle with complex textures and large occlusions. Although Transformer-based approaches have demonstrated strong global modeling capabilities, they often fail to preserve high-frequency details due to the low-pass nature of self-attention and suffer from high computational costs. To address these challenges, this paper proposes a Transformer-based image inpainting method incorporating frequency-domain fusion. Specifically, an attention mechanism combining wavelet transform and Gabor filtering is introduced to enhance multi-scale structural modeling and detail preservation. Additionally, a learnable frequency-domain filter based on the fast Fourier transform is designed to replace the feedforward network, enabling adaptive noise suppression and detail retention. The model adopts a four-level encoder-decoder structure and is guided by a novel loss strategy to balance global semantics and fine details. Experimental results demonstrate that the proposed method effectively improves the quality of image inpainting by preserving more high-frequency information.
♻ ☆ Improved Baselines with Synchronized Encoding for Universal Medical Image Segmentation
Large foundation models, known for their strong zero-shot generalization capabilities, can be applied to a wide range of downstream tasks. However, developing foundation models for medical image segmentation poses a significant challenge due to the domain gap between natural and medical images. While fine-tuning techniques based on the Segment Anything Model (SAM) have been explored, they primarily focus on scaling up data or refining inference strategies without incorporating domain-specific architectural designs, limiting their zero-shot performance. To optimize segmentation performance under standard inference settings and provide a strong baseline for future research, we introduce SyncSAM, which employs a synchronized dual-branch encoder that integrates convolution and Transformer features in a synchronized manner to enhance medical image encoding, and a multi-scale dual-branch decoder to preserve image details. SyncSAM is trained on two of the largest medical image segmentation datasets, SA-Med2D-20M and IMed-361M, resulting in a series of pre-trained models for universal medical image segmentation. Experimental results demonstrate that SyncSAM not only achieves state-of-the-art performance on test sets but also exhibits strong zero-shot capabilities on unseen datasets. Code and checkpoints are available at https://github.com/Hhankyangg/SyncSAM.
♻ ☆ TextBraTS: Text-Guided Volumetric Brain Tumor Segmentation with Innovative Dataset Development and Fusion Module Exploration
Deep learning has demonstrated remarkable success in medical image segmentation and computer-aided diagnosis. In particular, numerous advanced methods have achieved state-of-the-art performance in brain tumor segmentation from MRI scans. While recent studies in other medical imaging domains have revealed that integrating textual reports with visual data can enhance segmentation accuracy, the field of brain tumor analysis lacks a comprehensive dataset that combines radiological images with corresponding textual annotations. This limitation has hindered the exploration of multimodal approaches that leverage both imaging and textual data. To bridge this critical gap, we introduce the TextBraTS dataset, the first publicly available volume-level multimodal dataset that contains paired MRI volumes and rich textual annotations, derived from the widely adopted BraTS2020 benchmark. Building upon this novel dataset, we propose a novel baseline framework and sequential cross-attention method for text-guided volumetric medical image segmentation. Through extensive experiments with various text-image fusion strategies and templated text formulations, our approach demonstrates significant improvements in brain tumor segmentation accuracy, offering valuable insights into effective multimodal integration techniques. Our dataset, implementation code, and pre-trained models are publicly available at https://github.com/Jupitern52/TextBraTS.
♻ ☆ Segmentation-Aware Generative Reinforcement Network (GRN) for Tissue Layer Segmentation in 3-D Ultrasound Images for Chronic Low-back Pain (cLBP) Assessment
We introduce a novel segmentation-aware joint training framework called generative reinforcement network (GRN) that integrates segmentation loss feedback to optimize both image generation and segmentation performance in a single stage. An image enhancement technique called segmentation-guided enhancement (SGE) is also developed, where the generator produces images tailored specifically for the segmentation model. Two variants of GRN were also developed, including GRN for sample-efficient learning (GRN-SEL) and GRN for semi-supervised learning (GRN-SSL). GRN's performance was evaluated using a dataset of 69 fully annotated 3D ultrasound scans from 29 subjects. The annotations included six anatomical structures: dermis, superficial fat, superficial fascial membrane (SFM), deep fat, deep fascial membrane (DFM), and muscle. Our results show that GRN-SEL with SGE reduces labeling efforts by up to 70% while achieving a 1.98% improvement in the Dice Similarity Coefficient (DSC) compared to models trained on fully labeled datasets. GRN-SEL alone reduces labeling efforts by 60%, GRN-SSL with SGE decreases labeling requirements by 70%, and GRN-SSL alone by 60%, all while maintaining performance comparable to fully supervised models. These findings suggest the effectiveness of the GRN framework in optimizing segmentation performance with significantly less labeled data, offering a scalable and efficient solution for ultrasound image analysis and reducing the burdens associated with data annotation.
♻ ☆ LED: LLM Enhanced Open-Vocabulary Object Detection without Human Curated Data Generation
Large foundation models trained on large-scale vision-language data can boost Open-Vocabulary Object Detection (OVD) via synthetic training data, yet the hand-crafted pipelines often introduce bias and overfit to specific prompts. We sidestep this issue by directly fusing hidden states from Large Language Models (LLMs) into detectors-an avenue surprisingly under-explored. This paper presents a systematic method to enhance visual grounding by utilizing decoder layers of the LLM of an MLLM. We introduce a zero-initialized cross-attention adapter to enable efficient knowledge fusion from LLMs to object detectors, a new approach called LED (LLM Enhanced Open-Vocabulary Object Detection). We find that intermediate LLM layers already encode rich spatial semantics; adapting only the early layers yields most of the gain. With Swin-T as the vision encoder, Qwen2-0.5B + LED lifts GroundingDINO by 3.82 % on OmniLabel at just 8.7 % extra GFLOPs, and a larger vision backbone pushes the improvement to 6.22 %. Extensive ablations on adapter variants, LLM scales and fusion depths further corroborate our design.
♻ ☆ FullLoRA: Efficiently Boosting the Robustness of Pretrained Vision Transformers
In recent years, the Vision Transformer (ViT) model has gradually become mainstream in various computer vision tasks, and the robustness of the model has received increasing attention. However, existing large models tend to prioritize performance during training, potentially neglecting the robustness, which may lead to serious security concerns. In this paper, we establish a new challenge: exploring how to use a small number of additional parameters for adversarial finetuning to quickly and effectively enhance the adversarial robustness of a standardly trained model. To address this challenge, we develop novel LNLoRA module, incorporating a learnable layer normalization before the conventional LoRA module, which helps mitigate magnitude differences in parameters between the adversarial and standard training paradigms. Furthermore, we propose the FullLoRA framework by integrating the learnable LNLoRA modules into all key components of ViT-based models while keeping the pretrained model frozen, which can significantly improve the model robustness via adversarial finetuning in a parameter-efficient manner. Extensive experiments on several datasets demonstrate the superiority of our proposed FullLoRA framework. It achieves comparable robustness with full finetuning while only requiring about 5\% of the learnable parameters. This also effectively addresses concerns regarding extra model storage space and enormous training time caused by adversarial finetuning.
comment: Accepted by IEEE Transactions on Image Processing (TIP). 11 pages, 3 figures, 8 tables
♻ ☆ CGS-GAN: 3D Consistent Gaussian Splatting GANs for High Resolution Human Head Synthesis
Recently, 3D GANs based on 3D Gaussian splatting have been proposed for high quality synthesis of human heads. However, existing methods stabilize training and enhance rendering quality from steep viewpoints by conditioning the random latent vector on the current camera position. This compromises 3D consistency, as we observe significant identity changes when re-synthesizing the 3D head with each camera shift. Conversely, fixing the camera to a single viewpoint yields high-quality renderings for that perspective but results in poor performance for novel views. Removing view-conditioning typically destabilizes GAN training, often causing the training to collapse. In response to these challenges, we introduce CGS-GAN, a novel 3D Gaussian Splatting GAN framework that enables stable training and high-quality 3D-consistent synthesis of human heads without relying on view-conditioning. To ensure training stability, we introduce a multi-view regularization technique that enhances generator convergence with minimal computational overhead. Additionally, we adapt the conditional loss used in existing 3D Gaussian splatting GANs and propose a generator architecture designed to not only stabilize training but also facilitate efficient rendering and straightforward scaling, enabling output resolutions up to $2048^2$. To evaluate the capabilities of CGS-GAN, we curate a new dataset derived from FFHQ. This dataset enables very high resolutions, focuses on larger portions of the human head, reduces view-dependent artifacts for improved 3D consistency, and excludes images where subjects are obscured by hands or other objects. As a result, our approach achieves very high rendering quality, supported by competitive FID scores, while ensuring consistent 3D scene generation. Check our our project page here: https://fraunhoferhhi.github.io/cgs-gan/
comment: Main paper 12 pages, supplementary materials 8 pages
♻ ☆ Image Captions are Natural Prompts for Text-to-Image Models
With the rapid development of Artificial Intelligence Generated Content (AIGC), it has become a common practice to train models on synthetic data due to data-scarcity and privacy leakage problems. Owing to massive and diverse information conveyed in real images, it is challenging for text-to-image generative models to synthesize informative training data with hand-crafted prompts. Considering the impressive ability of large generative models, could such models directly synthesize good training images for prediction tasks with proper prompts? We offer an affirmative response to this question by proposing a simple yet effective method, validated through ImageNet classification. Specifically, we caption each real image with the advanced captioning model to obtain informative and faithful prompts that extract class-relevant information and clarify the polysemy of class names. The image captions and class names are concatenated to prompt generative models for training image synthesis. We show that this simple caption incorporation significantly boosts the informativeness of synthetic data therefore enhancing downstream model generalization. More importantly, besides improvements in data augmentation and privacy preservation, our experiments demonstrate that synthesized images can exceed real data in terms of out-of-distribution robustness.
comment: 31 pages, 2 figure, 15 tables. Codes are available at https://github.com/LeavesLei/Caption_in_Prompt
♻ ☆ Multi-contrast laser endoscopy for in vivo gastrointestinal imaging
White light endoscopy is the clinical gold standard for detecting diseases in the gastrointestinal tract. Most applications involve identifying visual abnormalities in tissue color, texture, and shape. Unfortunately, the contrast of these features is often subtle, causing many clinically relevant cases to go undetected. To overcome this challenge, we introduce Multi-contrast Laser Endoscopy (MLE): a platform for widefield clinical imaging with rapidly tunable spectral, coherent, and directional illumination. We demonstrate three capabilities of MLE: enhancing tissue chromophore contrast with multispectral diffuse reflectance, quantifying blood flow using laser speckle contrast imaging, and characterizing mucosal topography using photometric stereo. We validate MLE with benchtop models, then demonstrate MLE in vivo during clinical colonoscopies. MLE images from 31 polyps demonstrate an approximate three-fold improvement in contrast and a five-fold improvement in color difference compared to white light and narrow band imaging. With the ability to reveal multiple complementary types of tissue contrast while seamlessly integrating into the clinical environment, MLE shows promise as an investigative tool to improve gastrointestinal imaging.
♻ ☆ Reasoning Limitations of Multimodal Large Language Models. A Case Study of Bongard Problems ICML 2025
Abstract visual reasoning (AVR) involves discovering shared concepts across images through analogy, akin to solving IQ test problems. Bongard Problems (BPs) remain a key challenge in AVR, requiring both visual reasoning and verbal description. We investigate whether multimodal large language models (MLLMs) can solve BPs by formulating a set of diverse MLLM-suited solution strategies and testing $4$ proprietary and $4$ open-access models on $3$ BP datasets featuring synthetic (classic BPs) and real-world (Bongard HOI and Bongard-OpenWorld) images. Despite some successes on real-world datasets, MLLMs struggle with synthetic BPs. To explore this gap, we introduce Bongard-RWR, a dataset representing synthetic BP concepts using real-world images. Our findings suggest that weak MLLM performance on classical BPs is not due to the domain specificity, but rather comes from their general AVR limitations. Code and dataset are available at: https://github.com/pavonism/bongard-rwr
comment: Accepted to The Forty-Second International Conference on Machine Learning (ICML 2025)
♻ ☆ DiffDesign: Controllable Diffusion with Meta Prior for Efficient Interior Design Generation
Interior design is a complex and creative discipline involving aesthetics, functionality, ergonomics, and materials science. Effective solutions must meet diverse requirements, typically producing multiple deliverables such as renderings and design drawings from various perspectives. Consequently, interior design processes are often inefficient and demand significant creativity. With advances in machine learning, generative models have emerged as a promising means of improving efficiency by creating designs from text descriptions or sketches. However, few generative works focus on interior design, leading to substantial discrepancies between outputs and practical needs, such as differences in size, spatial scope, and the lack of controllable generation quality. To address these challenges, we propose DiffDesign, a controllable diffusion model with meta priors for efficient interior design generation. Specifically, we utilize the generative priors of a 2D diffusion model pre-trained on a large image dataset as our rendering backbone. We further guide the denoising process by disentangling cross-attention control over design attributes, such as appearance, pose, and size, and introduce an optimal transfer-based alignment module to enforce view consistency. Simultaneously, we construct an interior design-specific dataset, DesignHelper, consisting of over 400 solutions across more than 15 spatial types and 15 design styles. This dataset helps fine-tune DiffDesign. Extensive experiments conducted on various benchmark datasets demonstrate the effectiveness and robustness of DiffDesign.
♻ ☆ EmoAgent: A Multi-Agent Framework for Diverse Affective Image Manipulation
Affective Image Manipulation (AIM) aims to alter visual elements within an image to evoke specific emotional responses from viewers. However, existing AIM approaches rely on rigid \emph{one-to-one} mappings between emotions and visual cues, making them ill-suited for the inherently subjective and diverse ways in which humans perceive and express emotion.To address this, we introduce a novel task setting termed \emph{Diverse AIM (D-AIM)}, aiming to generate multiple visually distinct yet emotionally consistent image edits from a single source image and target emotion. We propose \emph{EmoAgent}, the first multi-agent framework tailored specifically for D-AIM. EmoAgent explicitly decomposes the manipulation process into three specialized phases executed by collaborative agents: a Planning Agent that generates diverse emotional editing strategies, an Editing Agent that precisely executes these strategies, and a Critic Agent that iteratively refines the results to ensure emotional accuracy. This collaborative design empowers EmoAgent to model \emph{one-to-many} emotion-to-visual mappings, enabling semantically diverse and emotionally faithful edits.Extensive quantitative and qualitative evaluations demonstrate that EmoAgent substantially outperforms state-of-the-art approaches in both emotional fidelity and semantic diversity, effectively generating multiple distinct visual edits that convey the same target emotion.
♻ ☆ PC-SRGAN: Physically Consistent Super-Resolution Generative Adversarial Network for General Transient Simulations
Machine Learning, particularly Generative Adversarial Networks (GANs), has revolutionised Super Resolution (SR). However, generated images often lack physical meaningfulness, which is essential for scientific applications. Our approach, PC-SRGAN, enhances image resolution while ensuring physical consistency for interpretable simulations. PC-SRGAN significantly improves both the Peak Signal-to-Noise Ratio and the Structural Similarity Index Measure compared to conventional methods, even with limited training data (e.g., only 13% of training data required for SRGAN). Beyond SR, PC-SRGAN augments physically meaningful machine learning, incorporating numerically justified time integrators and advanced quality metrics. These advancements promise reliable and causal machine-learning models in scientific domains. A significant advantage of PC-SRGAN over conventional SR techniques is its physical consistency, which makes it a viable surrogate model for time-dependent problems. PC-SRGAN advances scientific machine learning, offering improved accuracy and efficiency for image processing, enhanced process understanding, and broader applications to scientific research. We publicly release the complete source code at https://github.com/hasan-rakibul/PC-SRGAN.
♻ ☆ One Step Diffusion via Shortcut Models
Diffusion models and flow-matching models have enabled generating diverse and realistic images by learning to transfer noise to data. However, sampling from these models involves iterative denoising over many neural network passes, making generation slow and expensive. Previous approaches for speeding up sampling require complex training regimes, such as multiple training phases, multiple networks, or fragile scheduling. We introduce shortcut models, a family of generative models that use a single network and training phase to produce high-quality samples in a single or multiple sampling steps. Shortcut models condition the network not only on the current noise level but also on the desired step size, allowing the model to skip ahead in the generation process. Across a wide range of sampling step budgets, shortcut models consistently produce higher quality samples than previous approaches, such as consistency models and reflow. Compared to distillation, shortcut models reduce complexity to a single network and training phase and additionally allow varying step budgets at inference time.
♻ ☆ VesselGPT: Autoregressive Modeling of Vascular Geometry MICCAI 2025
Anatomical trees are critical for clinical diagnosis and treatment planning, yet their complex and diverse geometry make accurate representation a significant challenge. Motivated by the latest advances in large language models, we introduce an autoregressive method for synthesizing anatomical trees. Our approach first embeds vessel structures into a learned discrete vocabulary using a VQ-VAE architecture, then models their generation autoregressively with a GPT-2 model. This method effectively captures intricate geometries and branching patterns, enabling realistic vascular tree synthesis. Comprehensive qualitative and quantitative evaluations reveal that our technique achieves high-fidelity tree reconstruction with compact discrete representations. Moreover, our B-spline representation of vessel cross-sections preserves critical morphological details that are often overlooked in previous' methods parameterizations. To the best of our knowledge, this work is the first to generate blood vessels in an autoregressive manner. Code is available at https://github.com/LIA-DiTella/VesselGPT-MICCAI.
comment: Accepted for MICCAI 2025
♻ ☆ Improving Generalization in MRI-Based Deep Learning Models for Total Knee Replacement Prediction
Knee osteoarthritis (KOA) is a common joint disease that causes pain and mobility issues. While MRI-based deep learning models have demonstrated superior performance in predicting total knee replacement (TKR) and disease progression, their generalizability remains challenging, particularly when applied to imaging data from different sources. In this study, we have shown that replacing batch normalization with instance normalization, using data augmentation, and applying contrastive loss improves model generalization in a baseline deep learning model for knee osteoarthritis (KOA) prediction. We trained and evaluated our model using MRI data from the Osteoarthritis Initiative (OAI) database, considering sagittal fat-suppressed intermediate-weighted turbo spin-echo (FS-IW-TSE) images as the source domain and sagittal fat-suppressed three-dimensional (3D) dual-echo in steady state (DESS) images as the target domain. The results demonstrate a statistically significant improvement in classification accuracy across both domains, with our approach outperforming the baseline model.
♻ ☆ InstructAttribute: Fine-grained Object Attributes editing with Instruction
Text-to-image (T2I) diffusion models are widely used in image editing due to their powerful generative capabilities. However, achieving fine-grained control over specific object attributes, such as color and material, remains a considerable challenge. Existing methods often fail to accurately modify these attributes or compromise structural integrity and overall image consistency. To fill this gap, we introduce Structure Preservation and Attribute Amplification (SPAA), a novel training-free framework that enables precise generation of color and material attributes for the same object by intelligently manipulating self-attention maps and cross-attention values within diffusion models. Building on SPAA, we integrate multi-modal large language models (MLLMs) to automate data curation and instruction generation. Leveraging this object attribute data collection engine, we construct the Attribute Dataset, encompassing a comprehensive range of colors and materials across diverse object categories. Using this generated dataset, we propose InstructAttribute, an instruction-tuned model that enables fine-grained and object-level attribute editing through natural language prompts. This capability holds significant practical implications for diverse fields, from accelerating product design and e-commerce visualization to enhancing virtual try-on experiences. Extensive experiments demonstrate that InstructAttribute outperforms existing instruction-based baselines, achieving a superior balance between attribute modification accuracy and structural preservation.
♻ ☆ Kimi-VL Technical Report
We present Kimi-VL, an efficient open-source Mixture-of-Experts (MoE) vision-language model (VLM) that offers advanced multimodal reasoning, long-context understanding, and strong agent capabilities - all while activating only 2.8B parameters in its language decoder (Kimi-VL-A3B). Kimi-VL demonstrates strong performance across challenging domains: as a general-purpose VLM, Kimi-VL excels in multi-turn agent tasks (e.g., OSWorld), matching flagship models. Furthermore, it exhibits remarkable capabilities across diverse challenging vision language tasks, including college-level image and video comprehension, OCR, mathematical reasoning, and multi-image understanding. In comparative evaluations, it effectively competes with cutting-edge efficient VLMs such as GPT-4o-mini, Qwen2.5-VL-7B, and Gemma-3-12B-IT, while surpassing GPT-4o in several key domains. Kimi-VL also advances in processing long contexts and perceiving clearly. With a 128K extended context window, Kimi-VL can process diverse long inputs, achieving impressive scores of 64.5 on LongVideoBench and 35.1 on MMLongBench-Doc. Its native-resolution vision encoder, MoonViT, further allows it to see and understand ultra-high-resolution visual inputs, achieving 83.2 on InfoVQA and 34.5 on ScreenSpot-Pro, while maintaining lower computational cost for common tasks. Building upon Kimi-VL, we introduce an advanced long-thinking variant: Kimi-VL-Thinking-2506. Developed through long chain-of-thought (CoT) supervised fine-tuning (SFT) and reinforcement learning (RL), the latest model exhibits strong long-horizon reasoning capabilities (64.0 on MMMU, 46.3 on MMMU-Pro, 56.9 on MathVision, 80.1 on MathVista, 65.2 on VideoMMMU) while obtaining robust general abilities. Code and models are publicly accessible at https://github.com/MoonshotAI/Kimi-VL.
comment: Updated Kimi-VL-A3B-Thinking-2506 information
♻ ☆ R3eVision: A Survey on Robust Rendering, Restoration, and Enhancement for 3D Low-Level Vision
Neural rendering methods such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have achieved significant progress in photorealistic 3D scene reconstruction and novel view synthesis. However, most existing models assume clean and high-resolution (HR) multi-view inputs, which limits their robustness under real-world degradations such as noise, blur, low-resolution (LR), and weather-induced artifacts. To address these limitations, the emerging field of 3D Low-Level Vision (3D LLV) extends classical 2D Low-Level Vision tasks including super-resolution (SR), deblurring, weather degradation removal, restoration, and enhancement into the 3D spatial domain. This survey, referred to as R\textsuperscript{3}eVision, provides a comprehensive overview of robust rendering, restoration, and enhancement for 3D LLV by formalizing the degradation-aware rendering problem and identifying key challenges related to spatio-temporal consistency and ill-posed optimization. Recent methods that integrate LLV into neural rendering frameworks are categorized to illustrate how they enable high-fidelity 3D reconstruction under adverse conditions. Application domains such as autonomous driving, AR/VR, and robotics are also discussed, where reliable 3D perception from degraded inputs is critical. By reviewing representative methods, datasets, and evaluation protocols, this work positions 3D LLV as a fundamental direction for robust 3D content generation and scene-level reconstruction in real-world environments.
comment: Please visit our project page at https://github.com/CMLab-Korea/Awesome-3D-Low-Level-Vision
♻ ☆ Interpreting Global Perturbation Robustness of Image Models using Axiomatic Spectral Importance Decomposition
Perturbation robustness evaluates the vulnerabilities of models, arising from a variety of perturbations, such as data corruptions and adversarial attacks. Understanding the mechanisms of perturbation robustness is critical for global interpretability. We present a model-agnostic, global mechanistic interpretability method to interpret the perturbation robustness of image models. This research is motivated by two key aspects. First, previous global interpretability works, in tandem with robustness benchmarks, e.g. mean corruption error (mCE), are not designed to directly interpret the mechanisms of perturbation robustness within image models. Second, we notice that the spectral signal-to-noise ratios (SNR) of perturbed natural images exponentially decay over the frequency. This power-law-like decay implies that: Low-frequency signals are generally more robust than high-frequency signals -- yet high classification accuracy can not be achieved by low-frequency signals alone. By applying Shapley value theory, our method axiomatically quantifies the predictive powers of robust features and non-robust features within an information theory framework. Our method, dubbed as \textbf{I-ASIDE} (\textbf{I}mage \textbf{A}xiomatic \textbf{S}pectral \textbf{I}mportance \textbf{D}ecomposition \textbf{E}xplanation), provides a unique insight into model robustness mechanisms. We conduct extensive experiments over a variety of vision models pre-trained on ImageNet to show that \textbf{I-ASIDE} can not only \textbf{measure} the perturbation robustness but also \textbf{provide interpretations} of its mechanisms.
comment: Accepted by Transactions on Machine Learning Research (TMLR 2024)
♻ ☆ Step1X-Edit: A Practical Framework for General Image Editing
In recent years, image editing models have witnessed remarkable and rapid development. The recent unveiling of cutting-edge multimodal models such as GPT-4o and Gemini2 Flash has introduced highly promising image editing capabilities. These models demonstrate an impressive aptitude for fulfilling a vast majority of user-driven editing requirements, marking a significant advancement in the field of image manipulation. However, there is still a large gap between the open-source algorithm with these closed-source models. Thus, in this paper, we aim to release a state-of-the-art image editing model, called Step1X-Edit, which can provide comparable performance against the closed-source models like GPT-4o and Gemini2 Flash. More specifically, we adopt the Multimodal LLM to process the reference image and the user's editing instruction. A latent embedding has been extracted and integrated with a diffusion image decoder to obtain the target image. To train the model, we build a data generation pipeline to produce a high-quality dataset. For evaluation, we develop the GEdit-Bench, a novel benchmark rooted in real-world user instructions. Experimental results on GEdit-Bench demonstrate that Step1X-Edit outperforms existing open-source baselines by a substantial margin and approaches the performance of leading proprietary models, thereby making significant contributions to the field of image editing.
comment: code: https://github.com/stepfun-ai/Step1X-Edit
♻ ☆ Accurate early detection of Parkinson's disease from SPECT imaging through Convolutional Neural Networks
Early and accurate detection of Parkinson's disease (PD) is a crucial diagnostic challenge carrying immense clinical significance, for effective treatment regimens and patient management. For instance, a group of subjects termed SWEDD who are clinically diagnosed as PD, but show normal Single Photon Emission Computed Tomography (SPECT) scans, change their diagnosis as non-PD after few years of follow up, and in the meantime, they are treated with PD medications which do more harm than good. In this work, machine learning models are developed using features from SPECT images to detect early PD and SWEDD subjects from normal. These models were observed to perform with high accuracy. It is inferred from the study that these diagnostic models carry potential to help PD clinicians in the diagnostic process
comment: This article is accepted and published with revisions to the Artificial Intelligence in Health journal (2025). The accepted article can be accessed at https://doi.org/10.36922/AIH025040005
♻ ☆ Shaken, Not Stirred: A Novel Dataset for Visual Understanding of Glasses in Human-Robot Bartending Tasks
Datasets for object detection often do not account for enough variety of glasses, due to their transparent and reflective properties. Specifically, open-vocabulary object detectors, widely used in embodied robotic agents, fail to distinguish subclasses of glasses. This scientific gap poses an issue to robotic applications that suffer from accumulating errors between detection, planning, and action execution. The paper introduces a novel method for the acquisition of real-world data from RGB-D sensors that minimizes human effort. We propose an auto-labeling pipeline that generates labels for all the acquired frames based on the depth measurements. We provide a novel real-world glass object dataset that was collected on the Neuro-Inspired COLlaborator (NICOL), a humanoid robot platform. The data set consists of 7850 images recorded from five different cameras. We show that our trained baseline model outperforms state-of-the-art open-vocabulary approaches. In addition, we deploy our baseline model in an embodied agent approach to the NICOL platform, on which it achieves a success rate of 81% in a human-robot bartending scenario.
comment: Submitted and Accepted for Presentation at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Multi-Stage Manipulation with Demonstration-Augmented Reward, Policy, and World Model Learning
Long-horizon tasks in robotic manipulation present significant challenges in reinforcement learning (RL) due to the difficulty of designing dense reward functions and effectively exploring the expansive state-action space. However, despite a lack of dense rewards, these tasks often have a multi-stage structure, which can be leveraged to decompose the overall objective into manageable subgoals. In this work, we propose DEMO3, a framework that exploits this structure for efficient learning from visual inputs. Specifically, our approach incorporates multi-stage dense reward learning, a bi-phasic training scheme, and world model learning into a carefully designed demonstration-augmented RL framework that strongly mitigates the challenge of exploration in long-horizon tasks. Our evaluations demonstrate that our method improves data-efficiency by an average of 40% and by 70% on particularly difficult tasks compared to state-of-the-art approaches. We validate this across 16 sparse-reward tasks spanning four domains, including challenging humanoid visual control tasks using as few as five demonstrations.
comment: Project page can be found at https://adrialopezescoriza.github.io/demo3/
♻ ☆ Boosting Virtual Agent Learning and Reasoning: A Step-Wise, Multi-Dimensional, and Generalist Reward Model with Benchmark
The development of Generalist Virtual Agents (GVAs) has shown significant promise in autonomous task execution. However, current training paradigms face critical limitations, including reliance on outcome supervision and labor-intensive human annotations. To address these challenges, we propose Similar, a Step-Wise Multi-Dimensional Generalist Reward Model, which offers fine-grained signals for agent training and can choose better action for inference-time scaling. Specifically, we begin by systematically defining five dimensions for evaluating agent actions. Building on this framework, we design an MCTS-P algorithm to automatically collect and annotate step-wise, five-dimensional agent execution data. Using this data, we train Similar with the Triple-M strategy. Furthermore, we introduce the first benchmark in the virtual agent domain for step-wise, multi-dimensional reward model training and evaluation, named SRM. This benchmark consists of two components: SRMTrain, which serves as the training set for Similar, and SRMEval, a manually selected test set for evaluating the reward model. Experimental results demonstrate that Similar, through its step-wise, multi-dimensional assessment and synergistic gain, provides GVAs with effective intermediate signals during both training and inference-time scaling. The project is available at https://github.com/antgroup/Similar.
comment: Home page is available at https://dcd-ant-similar.github.io
♻ ☆ Indeterminate Probability Theory
Complex continuous or mixed joint distributions (e.g., P(Y | z_1, z_2, ..., z_N)) generally lack closed-form solutions, often necessitating approximations such as MCMC. This paper proposes Indeterminate Probability Theory (IPT), which makes the following contributions: (1) An observer-centered framework in which experimental outcomes are represented as distributions combining ground truth with observation error; (2) The introduction of three independence candidate axioms that enable a two-phase probabilistic inference framework; (3) The derivation of closed-form solutions for arbitrary complex joint distributions under this framework. Both the Indeterminate Probability Neural Network (IPNN) model and the non-neural multivariate time series forecasting application demonstrate IPT's effectiveness in modeling high-dimensional distributions, with successful validation up to 1000 dimensions. Importantly, IPT is consistent with classical probability theory and subsumes the frequentist equation in the limit of vanishing observation error.
comment: 25 pages
♻ ☆ MIFNet: Learning Modality-Invariant Features for Generalizable Multimodal Image Matching
Many keypoint detection and description methods have been proposed for image matching or registration. While these methods demonstrate promising performance for single-modality image matching, they often struggle with multimodal data because the descriptors trained on single-modality data tend to lack robustness against the non-linear variations present in multimodal data. Extending such methods to multimodal image matching often requires well-aligned multimodal data to learn modality-invariant descriptors. However, acquiring such data is often costly and impractical in many real-world scenarios. To address this challenge, we propose a modality-invariant feature learning network (MIFNet) to compute modality-invariant features for keypoint descriptions in multimodal image matching using only single-modality training data. Specifically, we propose a novel latent feature aggregation module and a cumulative hybrid aggregation module to enhance the base keypoint descriptors trained on single-modality data by leveraging pre-trained features from Stable Diffusion models. %, our approach generates robust and invariant features across diverse and unknown modalities. We validate our method with recent keypoint detection and description methods in three multimodal retinal image datasets (CF-FA, CF-OCT, EMA-OCTA) and two remote sensing datasets (Optical-SAR and Optical-NIR). Extensive experiments demonstrate that the proposed MIFNet is able to learn modality-invariant feature for multimodal image matching without accessing the targeted modality and has good zero-shot generalization ability. The code will be released at https://github.com/lyp-deeplearning/MIFNet.
comment: Accept by IEEE TIP 2025
♻ ☆ Disentangling representations of retinal images with generative models
Retinal fundus images play a crucial role in the early detection of eye diseases. However, the impact of technical factors on these images can pose challenges for reliable AI applications in ophthalmology. For example, large fundus cohorts are often confounded by factors like camera type, bearing the risk of learning shortcuts rather than the causal relationships behind the image generation process. Here, we introduce a population model for retinal fundus images that effectively disentangles patient attributes from camera effects, enabling controllable and highly realistic image generation. To achieve this, we propose a disentanglement loss based on distance correlation. Through qualitative and quantitative analyses, we show that our models encode desired information in disentangled subspaces and enable controllable image generation based on the learned subspaces, demonstrating the effectiveness of our disentanglement loss. The project's code is publicly available: https://github.com/berenslab/disentangling-retinal-images.
comment: Final journal paper version for Medical Image Analysis (MedIA)
♻ ☆ ILIAS: Instance-Level Image retrieval At Scale CVPR 2025
This work introduces ILIAS, a new test dataset for Instance-Level Image retrieval At Scale. It is designed to evaluate the ability of current and future foundation models and retrieval techniques to recognize particular objects. The key benefits over existing datasets include large scale, domain diversity, accurate ground truth, and a performance that is far from saturated. ILIAS includes query and positive images for 1,000 object instances, manually collected to capture challenging conditions and diverse domains. Large-scale retrieval is conducted against 100 million distractor images from YFCC100M. To avoid false negatives without extra annotation effort, we include only query objects confirmed to have emerged after 2014, i.e. the compilation date of YFCC100M. An extensive benchmarking is performed with the following observations: i) models fine-tuned on specific domains, such as landmarks or products, excel in that domain but fail on ILIAS ii) learning a linear adaptation layer using multi-domain class supervision results in performance improvements, especially for vision-language models iii) local descriptors in retrieval re-ranking are still a key ingredient, especially in the presence of severe background clutter iv) the text-to-image performance of the vision-language foundation models is surprisingly close to the corresponding image-to-image case. website: https://vrg.fel.cvut.cz/ilias/
comment: CVPR 2025
♻ ☆ RealSR-R1: Reinforcement Learning for Real-World Image Super-Resolution with Vision-Language Chain-of-Thought
Real-World Image Super-Resolution is one of the most challenging task in image restoration. However, existing methods struggle with an accurate understanding of degraded image content, leading to reconstructed results that are both low-fidelity and unnatural. We present RealSR-R1 in this work, which empowers the RealSR models with understanding and reasoning capabilities. Inspired by the success of Chain of Thought (CoT) in large language models (LLMs), we simulate the human process of handling degraded images and propose the VLCoT framework, which integrates vision and language reasoning. The framework aims to precisely restore image details by progressively generating more comprehensive text and higher-resolution images. To overcome the challenge of traditional supervised learning CoT failing to generalize to real-world scenarios, we introduce, for the first time, Group Relative Policy Optimization (GRPO) into the Real-World Image Super-Resolution task. We propose VLCoT-GRPO as a solution, which designs four reward functions: (1) Format reward, used to standardize the CoT process; (2) Degradation reward, to incentivize accurate degradation estimation; (3) Understanding reward, to ensure the accuracy of the generated content; and (4) Generation reward, where we propose using a visual expert model to evaluate the quality of generated images, encouraging the model to generate more realistic images. Extensive experiments demonstrate that our proposed RealSR-R1 can generate realistic details and accurately understand image content, particularly in semantically rich scenes or images with severe degradation.
♻ ☆ Segment Anything for Satellite Imagery: A Strong Baseline and a Regional Dataset for Automatic Field Delineation
Accurate mapping of agricultural field boundaries is essential for the efficient operation of agriculture. Automatic extraction from high-resolution satellite imagery, supported by computer vision techniques, can avoid costly ground surveys. In this paper, we present a pipeline for field delineation based on the Segment Anything Model (SAM), introducing a fine-tuning strategy to adapt SAM to this task. In addition to using published datasets, we describe a method for acquiring a complementary regional dataset that covers areas beyond current sources. Extensive experiments assess segmentation accuracy and evaluate the generalization capabilities. Our approach provides a robust baseline for automated field delineation. The new regional dataset, known as ERAS, is now publicly available.
comment: Acceptet at ICIAP 2025
♻ ☆ Ultra-high resolution multimodal MRI densely labelled holistic structural brain atlas
In this paper, we introduce a novel structural holistic Atlas (holiAtlas) of the human brain anatomy based on multimodal and high-resolution MRI that covers several anatomical levels from the organ to the substructure level, using a new densely labelled protocol generated from the fusion of multiple local protocols at different scales. This atlas was constructed by averaging images and segmentations of 75 healthy subjects from the Human Connectome Project database. Specifically, MR images of T1, T2 and WMn (White Matter nulled) contrasts at 0.125 $mm^{3}$ resolution were selected for this project. The images of these 75 subjects were nonlinearly registered and averaged using symmetric group-wise normalisation to construct the atlas. At the finest level, the proposed atlas has 350 different labels derived from 7 distinct delineation protocols. These labels were grouped at multiple scales, offering a coherent and consistent holistic representation of the brain across different levels of detail. This multiscale and multimodal atlas can be used to develop new ultra-high-resolution segmentation methods, potentially improving the early detection of neurological disorders. We make it publicly available to the scientific community.
♻ ☆ Benchmarking Large Language Models for Handwritten Text Recognition
Traditional machine learning models for Handwritten Text Recognition (HTR) rely on supervised training, requiring extensive manual annotations, and often produce errors due to the separation between layout and text processing. In contrast, Multimodal Large Language Models (MLLMs) offer a general approach to recognizing diverse handwriting styles without the need for model-specific training. The study benchmarks various proprietary and open-source LLMs against Transkribus models, evaluating their performance on both modern and historical datasets written in English, French, German, and Italian. In addition, emphasis is placed on testing the models' ability to autonomously correct previously generated outputs. Findings indicate that proprietary models, especially Claude 3.5 Sonnet, outperform open-source alternatives in zero-shot settings. MLLMs achieve excellent results in recognizing modern handwriting and exhibit a preference for the English language due to their pre-training dataset composition. Comparisons with Transkribus show no consistent advantage for either approach. Moreover, LLMs demonstrate limited ability to autonomously correct errors in zero-shot transcriptions.
♻ ☆ MDeRainNet: An Efficient Macro-pixel Image Rain Removal Network
Since rainy weather always degrades image quality and poses significant challenges to most computer vision-based intelligent systems, image de-raining has been a hot research topic. Fortunately, in a rainy light field (LF) image, background obscured by rain streaks in one sub-view may be visible in the other sub-views, and implicit depth information and recorded 4D structural information may benefit rain streak detection and removal. However, existing LF image rain removal methods either do not fully exploit the global correlations of 4D LF data or only utilize partial sub-views, resulting in sub-optimal rain removal performance and no-equally good quality for all de-rained sub-views. In this paper, we propose an efficient network, called MDeRainNet, for rain streak removal from LF images. The proposed network adopts a multi-scale encoder-decoder architecture, which directly works on Macro-pixel images (MPIs) to improve the rain removal performance. To fully model the global correlation between the spatial and the angular information, we propose an Extended Spatial-Angular Interaction (ESAI) module to merge them, in which a simple and effective Transformer-based Spatial-Angular Interaction Attention (SAIA) block is also proposed for modeling long-range geometric correlations and making full use of the angular information. Furthermore, to improve the generalization performance of our network on real-world rainy scenes, we propose a novel semi-supervised learning framework for our MDeRainNet, which utilizes multi-level KL loss to bridge the domain gap between features of synthetic and real-world rain streaks and introduces colored-residue image guided contrastive regularization to reconstruct rain-free images. Extensive experiments conducted on synthetic and real-world LFIs demonstrate that our method outperforms the state-of-the-art methods both quantitatively and qualitatively.
comment: 14 pages, 13 figures, 4 tables
Machine Learning 213
☆ Steering Conceptual Bias via Transformer Latent-Subspace Activation
This work examines whether activating latent subspaces in language models (LLMs) can steer scientific code generation toward a specific programming language. Five causal LLMs were first evaluated on scientific coding prompts to quantify their baseline bias among four programming languages. A static neuron-attribution method, perturbing the highest activated MLP weight for a C++ or CPP token, proved brittle and exhibited limited generalization across prompt styles and model scales. To address these limitations, a gradient-refined adaptive activation steering framework (G-ACT) was developed: per-prompt activation differences are clustered into a small set of steering directions, and lightweight per-layer probes are trained and refined online to select the appropriate steering vector. In LLaMA-3.2 3B, this approach reliably biases generation towards the CPP language by increasing the average probe classification accuracy by 15% and the early layers (0-6) improving the probe classification accuracy by 61.5% compared to the standard ACT framework. For LLaMA-3.3 70B, where attention-head signals become more diffuse, targeted injections at key layers still improve language selection. Although per-layer probing introduces a modest inference overhead, it remains practical by steering only a subset of layers and enables reproducible model behavior. These results demonstrate a scalable, interpretable and efficient mechanism for concept-level control for practical agentic systems.
☆ Offline Goal-Conditioned Reinforcement Learning with Projective Quasimetric Planning
Offline Goal-Conditioned Reinforcement Learning seeks to train agents to reach specified goals from previously collected trajectories. Scaling that promises to long-horizon tasks remains challenging, notably due to compounding value-estimation errors. Principled geometric offers a potential solution to address these issues. Following this insight, we introduce Projective Quasimetric Planning (ProQ), a compositional framework that learns an asymmetric distance and then repurposes it, firstly as a repulsive energy forcing a sparse set of keypoints to uniformly spread over the learned latent space, and secondly as a structured directional cost guiding towards proximal sub-goals. In particular, ProQ couples this geometry with a Lagrangian out-of-distribution detector to ensure the learned keypoints stay within reachable areas. By unifying metric learning, keypoint coverage, and goal-conditioned control, our approach produces meaningful sub-goals and robustly drives long-horizon goal-reaching on diverse a navigation benchmarks.
☆ LIGHTHOUSE: Fast and precise distance to shoreline calculations from anywhere on earth ICML 2025
We introduce a new dataset and algorithm for fast and efficient coastal distance calculations from Anywhere on Earth (AoE). Existing global coastal datasets are only available at coarse resolution (e.g. 1-4 km) which limits their utility. Publicly available satellite imagery combined with computer vision enable much higher precision. We provide a global coastline dataset at 10 meter resolution, a 100+ fold improvement in precision over existing data. To handle the computational challenge of querying at such an increased scale, we introduce a new library: Layered Iterative Geospatial Hierarchical Terrain-Oriented Unified Search Engine (Lighthouse). Lighthouse is both exceptionally fast and resource-efficient, requiring only 1 CPU and 2 GB of RAM to achieve millisecond online inference, making it well suited for real-time applications in resource-constrained environments.
comment: 8 pages, 7 figures, 1 table, ICML 2025 ML4RS
☆ LongWriter-Zero: Mastering Ultra-Long Text Generation via Reinforcement Learning
Ultra-long generation by large language models (LLMs) is a widely demanded scenario, yet it remains a significant challenge due to their maximum generation length limit and overall quality degradation as sequence length increases. Previous approaches, exemplified by LongWriter, typically rely on ''teaching'', which involves supervised fine-tuning (SFT) on synthetic long-form outputs. However, this strategy heavily depends on synthetic SFT data, which is difficult and costly to construct, often lacks coherence and consistency, and tends to be overly artificial and structurally monotonous. In this work, we propose an incentivization-based approach that, starting entirely from scratch and without relying on any annotated or synthetic data, leverages reinforcement learning (RL) to foster the emergence of ultra-long, high-quality text generation capabilities in LLMs. We perform RL training starting from a base model, similar to R1-Zero, guiding it to engage in reasoning that facilitates planning and refinement during the writing process. To support this, we employ specialized reward models that steer the LLM towards improved length control, writing quality, and structural formatting. Experimental evaluations show that our LongWriter-Zero model, trained from Qwen2.5-32B, consistently outperforms traditional SFT methods on long-form writing tasks, achieving state-of-the-art results across all metrics on WritingBench and Arena-Write, and even surpassing 100B+ models such as DeepSeek R1 and Qwen3-235B. We open-source our data and model checkpoints under https://huggingface.co/THU-KEG/LongWriter-Zero-32B
☆ Multi-Agent Online Control with Adversarial Disturbances
Multi-agent control problems involving a large number of agents with competing and time-varying objectives are increasingly prevalent in applications across robotics, economics, and energy systems. In this paper, we study online control in multi-agent linear dynamical systems with disturbances. In contrast to most prior work in multi-agent control, we consider an online setting where disturbances are adversarial and where each agent seeks to minimize its own, adversarial sequence of convex losses. In this setting, we investigate the robustness of gradient-based controllers from single-agent online control, with a particular focus on understanding how individual regret guarantees are influenced by the number of agents in the system. Under minimal communication assumptions, we prove near-optimal sublinear regret bounds that hold uniformly for all agents. Finally, when the objectives of the agents are aligned, we show that the multi-agent control problem induces a time-varying potential game for which we derive equilibrium gap guarantees.
☆ Learning Physical Systems: Symplectification via Gauge Fixing in Dirac Structures
Physics-informed deep learning has achieved remarkable progress by embedding geometric priors, such as Hamiltonian symmetries and variational principles, into neural networks, enabling structure-preserving models that extrapolate with high accuracy. However, in systems with dissipation and holonomic constraints, ubiquitous in legged locomotion and multibody robotics, the canonical symplectic form becomes degenerate, undermining the very invariants that guarantee stability and long-term prediction. In this work, we tackle this foundational limitation by introducing Presymplectification Networks (PSNs), the first framework to learn the symplectification lift via Dirac structures, restoring a non-degenerate symplectic geometry by embedding constrained systems into a higher-dimensional manifold. Our architecture combines a recurrent encoder with a flow-matching objective to learn the augmented phase-space dynamics end-to-end. We then attach a lightweight Symplectic Network (SympNet) to forecast constrained trajectories while preserving energy, momentum, and constraint satisfaction. We demonstrate our method on the dynamics of the ANYmal quadruped robot, a challenging contact-rich, multibody system. To the best of our knowledge, this is the first framework that effectively bridges the gap between constrained, dissipative mechanical systems and symplectic learning, unlocking a whole new class of geometric machine learning models, grounded in first principles yet adaptable from data.
comment: Presented at Equivariant Systems: Theory and Applications in State Estimation, Artificial Intelligence and Control, Robotics: Science and Systems (RSS) 2025 Workshop, 6 Pages, 3 Figures
☆ A Multi-view Divergence-Convergence Feature Augmentation Framework for Drug-related Microbes Prediction
In the study of drug function and precision medicine, identifying new drug-microbe associations is crucial. However, current methods isolate association and similarity analysis of drug and microbe, lacking effective inter-view optimization and coordinated multi-view feature fusion. In our study, a multi-view Divergence-Convergence Feature Augmentation framework for Drug-related Microbes Prediction (DCFA_DMP) is proposed, to better learn and integrate association information and similarity information. In the divergence phase, DCFA_DMP strengthens the complementarity and diversity between heterogeneous information and similarity information by performing Adversarial Learning method between the association network view and different similarity views, optimizing the feature space. In the convergence phase, a novel Bidirectional Synergistic Attention Mechanism is proposed to deeply synergize the complementary features between different views, achieving a deep fusion of the feature space. Moreover, Transformer graph learning is alternately applied on the drug-microbe heterogeneous graph, enabling each drug or microbe node to focus on the most relevant nodes. Numerous experiments demonstrate DCFA_DMP's significant performance in predicting drug-microbe associations. It also proves effectiveness in predicting associations for new drugs and microbes in cold start experiments, further confirming its stability and reliability in predicting potential drug-microbe associations.
comment: 10 pages, 8 figures (including subfigures), 1 table. Xin An and Ruijie Li contributed equally to this work and should be considered co-first authors
☆ Focus Your Attention: Towards Data-Intuitive Lightweight Vision Transformers
The evolution of Vision Transformers has led to their widespread adaptation to different domains. Despite large-scale success, there remain significant challenges including their reliance on extensive computational and memory resources for pre-training on huge datasets as well as difficulties in task-specific transfer learning. These limitations coupled with energy inefficiencies mainly arise due to the computation-intensive self-attention mechanism. To address these issues, we propose a novel Super-Pixel Based Patch Pooling (SPPP) technique that generates context-aware, semantically rich, patch embeddings to effectively reduce the architectural complexity and improve efficiency. Additionally, we introduce the Light Latent Attention (LLA) module in our pipeline by integrating latent tokens into the attention mechanism allowing cross-attention operations to significantly reduce the time and space complexity of the attention module. By leveraging the data-intuitive patch embeddings coupled with dynamic positional encodings, our approach adaptively modulates the cross-attention process to focus on informative regions while maintaining the global semantic structure. This targeted attention improves training efficiency and accelerates convergence. Notably, the SPPP module is lightweight and can be easily integrated into existing transformer architectures. Extensive experiments demonstrate that our proposed architecture provides significant improvements in terms of computational efficiency while achieving comparable results with the state-of-the-art approaches, highlighting its potential for energy-efficient transformers suitable for edge deployment. (The code is available on our GitHub repository: https://github.com/zser092/Focused-Attention-ViT).
☆ Shift Happens: Mixture of Experts based Continual Adaptation in Federated Learning
Federated Learning (FL) enables collaborative model training across decentralized clients without sharing raw data, yet faces significant challenges in real-world settings where client data distributions evolve dynamically over time. This paper tackles the critical problem of covariate and label shifts in streaming FL environments, where non-stationary data distributions degrade model performance and require adaptive middleware solutions. We introduce ShiftEx, a shift-aware mixture of experts framework that dynamically creates and trains specialized global models in response to detected distribution shifts using Maximum Mean Discrepancy for covariate shifts. The framework employs a latent memory mechanism for expert reuse and implements facility location-based optimization to jointly minimize covariate mismatch, expert creation costs, and label imbalance. Through theoretical analysis and comprehensive experiments on benchmark datasets, we demonstrate 5.5-12.9 percentage point accuracy improvements and 22-95 % faster adaptation compared to state-of-the-art FL baselines across diverse shift scenarios. The proposed approach offers a scalable, privacy-preserving middleware solution for FL systems operating in non-stationary, real-world conditions while minimizing communication and computational overhead.
☆ Programming by Backprop: LLMs Acquire Reusable Algorithmic Abstractions During Code Training
Training large language models (LLMs) on source code significantly enhances their general-purpose reasoning abilities, but the mechanisms underlying this generalisation are poorly understood. In this paper, we propose Programming by Backprop (PBB) as a potential driver of this effect - teaching a model to evaluate a program for inputs by training on its source code alone, without ever seeing I/O examples. To explore this idea, we finetune LLMs on two sets of programs representing simple maths problems and algorithms: one with source code and I/O examples (w/ IO), the other with source code only (w/o IO). We find evidence that LLMs have some ability to evaluate w/o IO programs for inputs in a range of experimental settings, and make several observations. Firstly, PBB works significantly better when programs are provided as code rather than semantically equivalent language descriptions. Secondly, LLMs can produce outputs for w/o IO programs directly, by implicitly evaluating the program within the forward pass, and more reliably when stepping through the program in-context via chain-of-thought. We further show that PBB leads to more robust evaluation of programs across inputs than training on I/O pairs drawn from a distribution that mirrors naturally occurring data. Our findings suggest a mechanism for enhanced reasoning through code training: it allows LLMs to internalise reusable algorithmic abstractions. Significant scope remains for future work to enable LLMs to more effectively learn from symbolic procedures, and progress in this direction opens other avenues like model alignment by training on formal constitutional principles.
☆ DPG loss functions for learning parameter-to-solution maps by neural networks
We develop, analyze, and experimentally explore residual-based loss functions for machine learning of parameter-to-solution maps in the context of parameter-dependent families of partial differential equations (PDEs). Our primary concern is on rigorous accuracy certification to enhance prediction capability of resulting deep neural network reduced models. This is achieved by the use of variationally correct loss functions. Through one specific example of an elliptic PDE, details for establishing the variational correctness of a loss function from an ultraweak Discontinuous Petrov Galerkin (DPG) discretization are worked out. Despite the focus on the example, the proposed concepts apply to a much wider scope of problems, namely problems for which stable DPG formulations are available. The issue of {high-contrast} diffusion fields and ensuing difficulties with degrading ellipticity are discussed. Both numerical results and theoretical arguments illustrate that for high-contrast diffusion parameters the proposed DPG loss functions deliver much more robust performance than simpler least-squares losses.
☆ Neural Total Variation Distance Estimators for Changepoint Detection in News Data
Detecting when public discourse shifts in response to major events is crucial for understanding societal dynamics. Real-world data is high-dimensional, sparse, and noisy, making changepoint detection in this domain a challenging endeavor. In this paper, we leverage neural networks for changepoint detection in news data, introducing a method based on the so-called learning-by-confusion scheme, which was originally developed for detecting phase transitions in physical systems. We train classifiers to distinguish between articles from different time periods. The resulting classification accuracy is used to estimate the total variation distance between underlying content distributions, where significant distances highlight changepoints. We demonstrate the effectiveness of this method on both synthetic datasets and real-world data from The Guardian newspaper, successfully identifying major historical events including 9/11, the COVID-19 pandemic, and presidential elections. Our approach requires minimal domain knowledge, can autonomously discover significant shifts in public discourse, and yields a quantitative measure of change in content, making it valuable for journalism, policy analysis, and crisis monitoring.
comment: 16 pages, 3 figures
☆ Local Averaging Accurately Distills Manifold Structure From Noisy Data
High-dimensional data are ubiquitous, with examples ranging from natural images to scientific datasets, and often reside near low-dimensional manifolds. Leveraging this geometric structure is vital for downstream tasks, including signal denoising, reconstruction, and generation. However, in practice, the manifold is typically unknown and only noisy samples are available. A fundamental approach to uncovering the manifold structure is local averaging, which is a cornerstone of state-of-the-art provable methods for manifold fitting and denoising. However, to the best of our knowledge, there are no works that rigorously analyze the accuracy of local averaging in a manifold setting in high-noise regimes. In this work, we provide theoretical analyses of a two-round mini-batch local averaging method applied to noisy samples drawn from a $d$-dimensional manifold $\mathcal M \subset \mathbb{R}^D$, under a relatively high-noise regime where the noise size is comparable to the reach $\tau$. We show that with high probability, the averaged point $\hat{\mathbf q}$ achieves the bound $d(\hat{\mathbf q}, \mathcal M) \leq \sigma \sqrt{d\left(1+\frac{\kappa\mathrm{diam}(\mathcal {M})}{\log(D)}\right)}$, where $\sigma, \mathrm{diam(\mathcal M)},\kappa$ denote the standard deviation of the Gaussian noise, manifold's diameter and a bound on its extrinsic curvature, respectively. This is the first analysis of local averaging accuracy over the manifold in the relatively high noise regime where $\sigma \sqrt{D} \approx \tau$. The proposed method can serve as a preprocessing step for a wide range of provable methods designed for lower-noise regimes. Additionally, our framework can provide a theoretical foundation for a broad spectrum of denoising and dimensionality reduction methods that rely on local averaging techniques.
☆ Sensitivity Analysis of Image Classification Models using Generalized Polynomial Chaos
Integrating advanced communication protocols in production has accelerated the adoption of data-driven predictive quality methods, notably machine learning (ML) models. However, ML models in image classification often face significant uncertainties arising from model, data, and domain shifts. These uncertainties lead to overconfidence in the classification model's output. To better understand these models, sensitivity analysis can help to analyze the relative influence of input parameters on the output. This work investigates the sensitivity of image classification models used for predictive quality. We propose modeling the distributional domain shifts of inputs with random variables and quantifying their impact on the model's outputs using Sobol indices computed via generalized polynomial chaos (GPC). This approach is validated through a case study involving a welding defect classification problem, utilizing a fine-tuned ResNet18 model and an emblem classification model used in BMW Group production facilities.
☆ ContinualFlow: Learning and Unlearning with Neural Flow Matching ICML 2025
We introduce ContinualFlow, a principled framework for targeted unlearning in generative models via Flow Matching. Our method leverages an energy-based reweighting loss to softly subtract undesired regions of the data distribution without retraining from scratch or requiring direct access to the samples to be unlearned. Instead, it relies on energy-based proxies to guide the unlearning process. We prove that this induces gradients equivalent to Flow Matching toward a soft mass-subtracted target, and validate the framework through experiments on 2D and image domains, supported by interpretable visualizations and quantitative evaluations.
comment: Accepted at the ICML 2025 Workshop on Machine Unlearning for Generative AI (MUGen @ ICML25, Vancouver, July 2025)
☆ Fast State-Augmented Learning for Wireless Resource Allocation with Dual Variable Regression
We consider resource allocation problems in multi-user wireless networks, where the goal is to optimize a network-wide utility function subject to constraints on the ergodic average performance of users. We demonstrate how a state-augmented graph neural network (GNN) parametrization for the resource allocation policy circumvents the drawbacks of the ubiquitous dual subgradient methods by representing the network configurations (or states) as graphs and viewing dual variables as dynamic inputs to the model, viewed as graph signals supported over the graphs. Lagrangian maximizing state-augmented policies are learned during the offline training phase, and the dual variables evolve through gradient updates while executing the learned state-augmented policies during the inference phase. Our main contributions are to illustrate how near-optimal initialization of dual multipliers for faster inference can be accomplished with dual variable regression, leveraging a secondary GNN parametrization, and how maximization of the Lagrangian over the multipliers sampled from the dual descent dynamics substantially improves the training of state-augmented models. We demonstrate the superior performance of the proposed algorithm with extensive numerical experiments in a case study of transmit power control. Finally, we prove a convergence result and an exponential probability bound on the excursions of the dual function (iterate) optimality gaps.
comment: This work has been submitted to the IEEE TSP for possible publication
☆ Experimenting, Fast and Slow: Bayesian Optimization of Long-term Outcomes with Online Experiments
Online experiments in internet systems, also known as A/B tests, are used for a wide range of system tuning problems, such as optimizing recommender system ranking policies and learning adaptive streaming controllers. Decision-makers generally wish to optimize for long-term treatment effects of the system changes, which often requires running experiments for a long time as short-term measurements can be misleading due to non-stationarity in treatment effects over time. The sequential experimentation strategies--which typically involve several iterations--can be prohibitively long in such cases. We describe a novel approach that combines fast experiments (e.g., biased experiments run only for a few hours or days) and/or offline proxies (e.g., off-policy evaluation) with long-running, slow experiments to perform sequential, Bayesian optimization over large action spaces in a short amount of time.
☆ On the Existence of Universal Simulators of Attention
Prior work on the learnability of transformers has established its capacity to approximate specific algorithmic patterns through training under restrictive architectural assumptions. Fundamentally, these arguments remain data-driven and therefore can only provide a probabilistic guarantee. Expressivity, on the contrary, has theoretically been explored to address the problems \emph{computable} by such architecture. These results proved the Turing-completeness of transformers, investigated bounds focused on circuit complexity, and formal logic. Being at the crossroad between learnability and expressivity, the question remains: \emph{can transformer architectures exactly simulate an arbitrary attention mechanism, or in particular, the underlying operations?} In this study, we investigate the transformer encoder's ability to simulate a vanilla attention mechanism. By constructing a universal simulator $\mathcal{U}$ composed of transformer encoders, we present algorithmic solutions to identically replicate attention outputs and the underlying elementary matrix and activation operations via RASP, a formal framework for transformer computation. Our proofs, for the first time, show the existence of an algorithmically achievable data-agnostic solution, previously known to be approximated only by learning.
☆ Towards Group Fairness with Multiple Sensitive Attributes in Federated Foundation Models
The deep integration of foundation models (FM) with federated learning (FL) enhances personalization and scalability for diverse downstream tasks, making it crucial in sensitive domains like healthcare. Achieving group fairness has become an increasingly prominent issue in the era of federated foundation models (FFMs), since biases in sensitive attributes might lead to inequitable treatment for under-represented demographic groups. Existing studies mostly focus on achieving fairness with respect to a single sensitive attribute. This renders them unable to provide clear interpretability of dependencies among multiple sensitive attributes which is required to achieve group fairness. Our paper takes the first attempt towards a causal analysis of the relationship between group fairness across various sensitive attributes in the FFM. We extend the FFM structure to trade off multiple sensitive attributes simultaneously and quantify the causal effect behind the group fairness through causal discovery and inference. Extensive experiments validate its effectiveness, offering insights into interpretability towards building trustworthy and fair FFM systems.
☆ PARALLELPROMPT: Extracting Parallelism from Large Language Model Queries
LLM serving systems typically treat user prompts as monolithic inputs, optimizing inference through decoding tricks or inter-query batching. However, many real-world prompts contain latent semantic parallelism--decomposable structures where subtasks can be executed independently to reduce latency while preserving meaning. We introduce PARALLELPROMPT, the first benchmark for measuring intra-query parallelism in natural user prompts. Our dataset comprises over 37,000 real-world prompts from public LLM chat logs, each annotated with a structured schema capturing task templates, shared context, and iteration inputs. These schemas are extracted using LLM-assisted prompting with rule-based multilingual validation. To evaluate the benefits of decomposition, we provide an execution suite that benchmarks serial vs. parallel strategies, measuring latency, structural adherence, and semantic fidelity. Our results show that intra-query parallelism can be successfully parsed in over 75% of curated datasets, unlocking up to 5x speedups on tasks like translation, comprehension, and comparative analysis, with minimal quality degradation. By releasing this benchmark, curation pipeline, and evaluation suite, we provide the first standardized testbed for studying structure-aware execution in LLM serving pipelines.
comment: In review
☆ Including Semantic Information via Word Embeddings for Skeleton-based Action Recognition
Effective human action recognition is widely used for cobots in Industry 4.0 to assist in assembly tasks. However, conventional skeleton-based methods often lose keypoint semantics, limiting their effectiveness in complex interactions. In this work, we introduce a novel approach to skeleton-based action recognition that enriches input representations by leveraging word embeddings to encode semantic information. Our method replaces one-hot encodings with semantic volumes, enabling the model to capture meaningful relationships between joints and objects. Through extensive experiments on multiple assembly datasets, we demonstrate that our approach significantly improves classification performance, and enhances generalization capabilities by simultaneously supporting different skeleton types and object classes. Our findings highlight the potential of incorporating semantic information to enhance skeleton-based action recognition in dynamic and diverse environments.
comment: IEEE International Joint Conference on Neural Networks (IJCNN) 2025
☆ Multi-modal Anchor Gated Transformer with Knowledge Distillation for Emotion Recognition in Conversation IJCAI2025
Emotion Recognition in Conversation (ERC) aims to detect the emotions of individual utterances within a conversation. Generating efficient and modality-specific representations for each utterance remains a significant challenge. Previous studies have proposed various models to integrate features extracted using different modality-specific encoders. However, they neglect the varying contributions of modalities to this task and introduce high complexity by aligning modalities at the frame level. To address these challenges, we propose the Multi-modal Anchor Gated Transformer with Knowledge Distillation (MAGTKD) for the ERC task. Specifically, prompt learning is employed to enhance textual modality representations, while knowledge distillation is utilized to strengthen representations of weaker modalities. Furthermore, we introduce a multi-modal anchor gated transformer to effectively integrate utterance-level representations across modalities. Extensive experiments on the IEMOCAP and MELD datasets demonstrate the effectiveness of knowledge distillation in enhancing modality representations and achieve state-of-the-art performance in emotion recognition. Our code is available at: https://github.com/JieLi-dd/MAGTKD.
comment: This paper has been accepted by IJCAI2025
☆ Context Biasing for Pronunciations-Orthography Mismatch in Automatic Speech Recognition
Neural sequence-to-sequence systems deliver state-of-the-art performance for automatic speech recognition. When using appropriate modeling units, e.g., byte-pair encoded characters, these systems are in principal open vocabulary systems. In practice, however, they often fail to recognize words not seen during training, e.g., named entities, acronyms, or domain-specific special words. To address this problem, many context biasing methods have been proposed; however, for words with a pronunciation-orthography mismatch, these methods may still struggle. We propose a method which allows corrections of substitution errors to improve the recognition accuracy of such challenging words. Users can add corrections on the fly during inference. We show that with this method we get a relative improvement in biased word error rate of up to 11\%, while maintaining a competitive overall word error rate.
☆ SaGIF: Improving Individual Fairness in Graph Neural Networks via Similarity Encoding
Individual fairness (IF) in graph neural networks (GNNs), which emphasizes the need for similar individuals should receive similar outcomes from GNNs, has been a critical issue. Despite its importance, research in this area has been largely unexplored in terms of (1) a clear understanding of what induces individual unfairness in GNNs and (2) a comprehensive consideration of identifying similar individuals. To bridge these gaps, we conduct a preliminary analysis to explore the underlying reason for individual unfairness and observe correlations between IF and similarity consistency, a concept introduced to evaluate the discrepancy in identifying similar individuals based on graph structure versus node features. Inspired by our observations, we introduce two metrics to assess individual similarity from two distinct perspectives: topology fusion and feature fusion. Building upon these metrics, we propose Similarity-aware GNNs for Individual Fairness, named SaGIF. The key insight behind SaGIF is the integration of individual similarities by independently learning similarity representations, leading to an improvement of IF in GNNs. Our experiments on several real-world datasets validate the effectiveness of our proposed metrics and SaGIF. Specifically, SaGIF consistently outperforms state-of-the-art IF methods while maintaining utility performance. Code is available at: https://github.com/ZzoomD/SaGIF.
comment: Under review
☆ A Random Matrix Analysis of In-context Memorization for Nonlinear Attention
Attention mechanisms have revolutionized machine learning (ML) by enabling efficient modeling of global dependencies across inputs. Their inherently parallelizable structures allow for efficient scaling with the exponentially increasing size of both pretrained data and model parameters. Yet, despite their central role as the computational backbone of modern large language models (LLMs), the theoretical understanding of Attentions, especially in the nonlinear setting, remains limited. In this paper, we provide a precise characterization of the \emph{in-context memorization error} of \emph{nonlinear Attention}, in the high-dimensional proportional regime where the number of input tokens $n$ and their embedding dimension $p$ are both large and comparable. Leveraging recent advances in the theory of large kernel random matrices, we show that nonlinear Attention typically incurs higher memorization error than linear ridge regression on random inputs. However, this gap vanishes, and can even be reversed, when the input exhibits statistical structure, particularly when the Attention weights align with the input signal direction. Our results reveal how nonlinearity and input structure interact with each other to govern the memorization performance of nonlinear Attention. The theoretical insights are supported by numerical experiments.
comment: 40 pages, 7 pages
☆ Tight Generalization Error Bounds for Stochastic Gradient Descent in Non-convex Learning
Stochastic Gradient Descent (SGD) is fundamental for training deep neural networks, especially in non-convex settings. Understanding SGD's generalization properties is crucial for ensuring robust model performance on unseen data. In this paper, we analyze the generalization error bounds of SGD for non-convex learning by introducing the Type II perturbed SGD (T2pm-SGD), which accommodates both sub-Gaussian and bounded loss functions. The generalization error bound is decomposed into two components: the trajectory term and the flatness term. Our analysis improves the trajectory term to $O(n^{-1})$, significantly enhancing the previous $O((nb)^{-1/2})$ bound for bounded losses, where n is the number of training samples and b is the batch size. By selecting an optimal variance for the perturbation noise, the overall bound is further refined to $O(n^{-2/3})$. For sub-Gaussian loss functions, a tighter trajectory term is also achieved. In both cases, the flatness term remains stable across iterations and is smaller than those reported in previous literature, which increase with iterations. This stability, ensured by T2pm-SGD, leads to tighter generalization error bounds for both loss function types. Our theoretical results are validated through extensive experiments on benchmark datasets, including MNIST and CIFAR-10, demonstrating the effectiveness of T2pm-SGD in establishing tighter generalization bounds.
☆ On Union-Closedness of Language Generation
We investigate language generation in the limit - a model by Kleinberg and Mullainathan [NeurIPS 2024] and extended by Li, Raman, and Tewari [COLT 2025]. While Kleinberg and Mullainathan proved generation is possible for all countable collections, Li et al. defined a hierarchy of generation notions (uniform, non-uniform, and generatable) and explored their feasibility for uncountable collections. Our first set of results resolve two open questions of Li et al. by proving finite unions of generatable or non-uniformly generatable classes need not be generatable. These follow from a stronger result: there is a non-uniformly generatable class and a uniformly generatable class whose union is non-generatable. This adds to the aspects along which language generation in the limit is different from traditional tasks in statistical learning theory like classification, which are closed under finite unions. In particular, it implies that given two generators for different collections, one cannot combine them to obtain a single "more powerful" generator, prohibiting this notion of boosting. Our construction also addresses a third open question of Li et al. on whether there are uncountable classes that are non-uniformly generatable and do not satisfy the eventually unbounded closure (EUC) condition introduced by Li, Raman, and Tewari. Our approach utilizes carefully constructed classes along with a novel diagonalization argument that could be of independent interest in the growing area of language generation.
☆ Federated Loss Exploration for Improved Convergence on Non-IID Data
Federated learning (FL) has emerged as a groundbreaking paradigm in machine learning (ML), offering privacy-preserving collaborative model training across diverse datasets. Despite its promise, FL faces significant hurdles in non-identically and independently distributed (non-IID) data scenarios, where most existing methods often struggle with data heterogeneity and lack robustness in performance. This paper introduces Federated Loss Exploration (FedLEx), an innovative approach specifically designed to tackle these challenges. FedLEx distinctively addresses the shortcomings of existing FL methods in non-IID settings by optimizing its learning behavior for scenarios in which assumptions about data heterogeneity are impractical or unknown. It employs a federated loss exploration technique, where clients contribute to a global guidance matrix by calculating gradient deviations for model parameters. This matrix serves as a strategic compass to guide clients' gradient updates in subsequent FL rounds, thereby fostering optimal parameter updates for the global model. FedLEx effectively navigates the complex loss surfaces inherent in non-IID data, enhancing knowledge transfer in an efficient manner, since only a small number of epochs and small amount of data are required to build a strong global guidance matrix that can achieve model convergence without the need for additional data sharing or data distribution statics in a large client scenario. Our extensive experiments with state-of-the art FL algorithms demonstrate significant improvements in performance, particularly under realistic non-IID conditions, thus highlighting FedLEx's potential to overcome critical barriers in diverse FL applications.
☆ Granular-Ball-Induced Multiple Kernel K-Means IJCAI 2025
Most existing multi-kernel clustering algorithms, such as multi-kernel K-means, often struggle with computational efficiency and robustness when faced with complex data distributions. These challenges stem from their dependence on point-to-point relationships for optimization, which can lead to difficulty in accurately capturing data sets' inherent structure and diversity. Additionally, the intricate interplay between multiple kernels in such algorithms can further exacerbate these issues, effectively impacting their ability to cluster data points in high-dimensional spaces. In this paper, we leverage granular-ball computing to improve the multi-kernel clustering framework. The core of granular-ball computing is to adaptively fit data distribution by balls from coarse to acceptable levels. Each ball can enclose data points based on a density consistency measurement. Such ball-based data description thus improves the computational efficiency and the robustness to unknown noises. Specifically, based on granular-ball representations, we introduce the granular-ball kernel (GBK) and its corresponding granular-ball multi-kernel K-means framework (GB-MKKM) for efficient clustering. Using granular-ball relationships in multiple kernel spaces, the proposed GB-MKKM framework shows its superiority in efficiency and clustering performance in the empirical evaluation of various clustering tasks.
comment: Accepted by IJCAI 2025
☆ ReDit: Reward Dithering for Improved LLM Policy Optimization
DeepSeek-R1 has successfully enhanced Large Language Model (LLM) reasoning capabilities through its rule-based reward system. While it's a ''perfect'' reward system that effectively mitigates reward hacking, such reward functions are often discrete. Our experimental observations suggest that discrete rewards can lead to gradient anomaly, unstable optimization, and slow convergence. To address this issue, we propose ReDit (Reward Dithering), a method that dithers the discrete reward signal by adding simple random noise. With this perturbed reward, exploratory gradients are continuously provided throughout the learning process, enabling smoother gradient updates and accelerating convergence. The injected noise also introduces stochasticity into flat reward regions, encouraging the model to explore novel policies and escape local optima. Experiments across diverse tasks demonstrate the effectiveness and efficiency of ReDit. On average, ReDit achieves performance comparable to vanilla GRPO with only approximately 10% the training steps, and furthermore, still exhibits a 4% performance improvement over vanilla GRPO when trained for a similar duration. Visualizations confirm significant mitigation of gradient issues with ReDit. Moreover, theoretical analyses are provided to further validate these advantages.
comment: 10 pages, 15 figures
☆ Trustworthy Prediction with Gaussian Process Knowledge Scores
Probabilistic models are often used to make predictions in regions of the data space where no observations are available, but it is not always clear whether such predictions are well-informed by previously seen data. In this paper, we propose a knowledge score for predictions from Gaussian process regression (GPR) models that quantifies the extent to which observing data have reduced our uncertainty about a prediction. The knowledge score is interpretable and naturally bounded between 0 and 1. We demonstrate in several experiments that the knowledge score can anticipate when predictions from a GPR model are accurate, and that this anticipation improves performance in tasks such as anomaly detection, extrapolation, and missing data imputation. Source code for this project is available online at https://github.com/KurtButler/GP-knowledge.
comment: 6 pages, 5 figures, to be published in the Proceedings of the European Signal Processing Conference (EUSIPCO)
☆ On Equivariant Model Selection through the Lens of Uncertainty
Equivariant models leverage prior knowledge on symmetries to improve predictive performance, but misspecified architectural constraints can harm it instead. While work has explored learning or relaxing constraints, selecting among pretrained models with varying symmetry biases remains challenging. We examine this model selection task from an uncertainty-aware perspective, comparing frequentist (via Conformal Prediction), Bayesian (via the marginal likelihood), and calibration-based measures to naive error-based evaluation. We find that uncertainty metrics generally align with predictive performance, but Bayesian model evidence does so inconsistently. We attribute this to a mismatch in Bayesian and geometric notions of model complexity, and discuss possible remedies. Our findings point towards the potential of uncertainty in guiding symmetry-aware model selection.
comment: 9 pages, 4 figures, 2 tables. In the 8th Workshop on Tractable Probabilistic Modeling at UAI 2025
☆ Multi-Agent Reinforcement Learning for Inverse Design in Photonic Integrated Circuits
Inverse design of photonic integrated circuits (PICs) has traditionally relied on gradientbased optimization. However, this approach is prone to end up in local minima, which results in suboptimal design functionality. As interest in PICs increases due to their potential for addressing modern hardware demands through optical computing, more adaptive optimization algorithms are needed. We present a reinforcement learning (RL) environment as well as multi-agent RL algorithms for the design of PICs. By discretizing the design space into a grid, we formulate the design task as an optimization problem with thousands of binary variables. We consider multiple two- and three-dimensional design tasks that represent PIC components for an optical computing system. By decomposing the design space into thousands of individual agents, our algorithms are able to optimize designs with only a few thousand environment samples. They outperform previous state-of-the-art gradient-based optimization in both twoand three-dimensional design tasks. Our work may also serve as a benchmark for further exploration of sample-efficient RL for inverse design in photonics.
☆ Pr{é}diction optimale pour un mod{è}le ordinal {à} covariables fonctionnelles
We present a prediction framework for ordinal models: we introduce optimal predictions using loss functions and give the explicit form of the Least-Absolute-Deviation prediction for these models. Then, we reformulate an ordinal model with functional covariates to a classic ordinal model with multiple scalar covariates. We illustrate all the proposed methods and try to apply these to a dataset collected by EssilorLuxottica for the development of a control algorithm for the shade of connected glasses.
comment: in French language, Journ{\'e}es de statistiques, Soci{\'e}t{\'e} Fran\c{c}aise des Statistiques, Jul 2023, Bruxelle- Universit{\'e} Libre de Bruxelles (ULB), Belgique
☆ Policy gradient methods for ordinal policies
In reinforcement learning, the softmax parametrization is the standard approach for policies over discrete action spaces. However, it fails to capture the order relationship between actions. Motivated by a real-world industrial problem, we propose a novel policy parametrization based on ordinal regression models adapted to the reinforcement learning setting. Our approach addresses practical challenges, and numerical experiments demonstrate its effectiveness in real applications and in continuous action tasks, where discretizing the action space and applying the ordinal policy yields competitive performance.
comment: in French language, Journ{\'e}es de statistiques 2025, Soci{\'e}t{\'e} Fran\c{c}aise des Statistiques, Jun 2023, Marseille, France
☆ Simulation-Free Differential Dynamics through Neural Conservation Laws
We present a novel simulation-free framework for training continuous-time diffusion processes over very general objective functions. Existing methods typically involve either prescribing the optimal diffusion process -- which only works for heavily restricted problem formulations -- or require expensive simulation to numerically obtain the time-dependent densities and sample from the diffusion process. In contrast, we propose a coupled parameterization which jointly models a time-dependent density function, or probability path, and the dynamics of a diffusion process that generates this probability path. To accomplish this, our approach directly bakes in the Fokker-Planck equation and density function requirements as hard constraints, by extending and greatly simplifying the construction of Neural Conservation Laws. This enables simulation-free training for a large variety of problem formulations, from data-driven objectives as in generative modeling and dynamical optimal transport, to optimality-based objectives as in stochastic optimal control, with straightforward extensions to mean-field objectives due to the ease of accessing exact density functions. We validate our method in a diverse range of application domains from modeling spatio-temporal events to learning optimal dynamics from population data.
☆ BulletGen: Improving 4D Reconstruction with Bullet-Time Generation
Transforming casually captured, monocular videos into fully immersive dynamic experiences is a highly ill-posed task, and comes with significant challenges, e.g., reconstructing unseen regions, and dealing with the ambiguity in monocular depth estimation. In this work we introduce BulletGen, an approach that takes advantage of generative models to correct errors and complete missing information in a Gaussian-based dynamic scene representation. This is done by aligning the output of a diffusion-based video generation model with the 4D reconstruction at a single frozen "bullet-time" step. The generated frames are then used to supervise the optimization of the 4D Gaussian model. Our method seamlessly blends generative content with both static and dynamic scene components, achieving state-of-the-art results on both novel-view synthesis, and 2D/3D tracking tasks.
☆ No Training Wheels: Steering Vectors for Bias Correction at Inference Time
Neural network classifiers trained on datasets with uneven group representation often inherit class biases and learn spurious correlations. These models may perform well on average but consistently fail on atypical groups. For example, in hair color classification, datasets may over-represent females with blond hair, reinforcing stereotypes. Although various algorithmic and data-centric methods have been proposed to address such biases, they often require retraining or significant compute. In this work, we propose a cheap, training-free method inspired by steering vectors used to edit behaviors in large language models. We compute the difference in mean activations between majority and minority groups to define a "bias vector," which we subtract from the model's residual stream. This leads to reduced classification bias and improved worst-group accuracy. We explore multiple strategies for extracting and applying these vectors in transformer-like classifiers, showing that steering vectors, traditionally used in generative models, can also be effective in classification. More broadly, we showcase an extremely cheap, inference time, training free method to mitigate bias in classification models.
☆ SpaNN: Detecting Multiple Adversarial Patches on CNNs by Spanning Saliency Thresholds
State-of-the-art convolutional neural network models for object detection and image classification are vulnerable to physically realizable adversarial perturbations, such as patch attacks. Existing defenses have focused, implicitly or explicitly, on single-patch attacks, leaving their sensitivity to the number of patches as an open question or rendering them computationally infeasible or inefficient against attacks consisting of multiple patches in the worst cases. In this work, we propose SpaNN, an attack detector whose computational complexity is independent of the expected number of adversarial patches. The key novelty of the proposed detector is that it builds an ensemble of binarized feature maps by applying a set of saliency thresholds to the neural activations of the first convolutional layer of the victim model. It then performs clustering on the ensemble and uses the cluster features as the input to a classifier for attack detection. Contrary to existing detectors, SpaNN does not rely on a fixed saliency threshold for identifying adversarial regions, which makes it robust against white box adversarial attacks. We evaluate SpaNN on four widely used data sets for object detection and classification, and our results show that SpaNN outperforms state-of-the-art defenses by up to 11 and 27 percentage points in the case of object detection and the case of image classification, respectively. Our code is available at https://github.com/gerkbyrd/SpaNN.
comment: 2025 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML2025)
☆ Optimization-Induced Dynamics of Lipschitz Continuity in Neural Networks
Lipschitz continuity characterizes the worst-case sensitivity of neural networks to small input perturbations; yet its dynamics (i.e. temporal evolution) during training remains under-explored. We present a rigorous mathematical framework to model the temporal evolution of Lipschitz continuity during training with stochastic gradient descent (SGD). This framework leverages a system of stochastic differential equations (SDEs) to capture both deterministic and stochastic forces. Our theoretical analysis identifies three principal factors driving the evolution: (i) the projection of gradient flows, induced by the optimization dynamics, onto the operator-norm Jacobian of parameter matrices; (ii) the projection of gradient noise, arising from the randomness in mini-batch sampling, onto the operator-norm Jacobian; and (iii) the projection of the gradient noise onto the operator-norm Hessian of parameter matrices. Furthermore, our theoretical framework sheds light on such as how noisy supervision, parameter initialization, batch size, and mini-batch sampling trajectories, among other factors, shape the evolution of the Lipschitz continuity of neural networks. Our experimental results demonstrate strong agreement between the theoretical implications and the observed behaviors.
☆ Transformer World Model for Sample Efficient Multi-Agent Reinforcement Learning
We present the Multi-Agent Transformer World Model (MATWM), a novel transformer-based world model designed for multi-agent reinforcement learning in both vector- and image-based environments. MATWM combines a decentralized imagination framework with a semi-centralized critic and a teammate prediction module, enabling agents to model and anticipate the behavior of others under partial observability. To address non-stationarity, we incorporate a prioritized replay mechanism that trains the world model on recent experiences, allowing it to adapt to agents' evolving policies. We evaluated MATWM on a broad suite of benchmarks, including the StarCraft Multi-Agent Challenge, PettingZoo, and MeltingPot. MATWM achieves state-of-the-art performance, outperforming both model-free and prior world model approaches, while demonstrating strong sample efficiency, achieving near-optimal performance in as few as 50K environment interactions. Ablation studies confirm the impact of each component, with substantial gains in coordination-heavy tasks.
☆ End-to-End Spoken Grammatical Error Correction
Grammatical Error Correction (GEC) and feedback play a vital role in supporting second language (L2) learners, educators, and examiners. While written GEC is well-established, spoken GEC (SGEC), aiming to provide feedback based on learners' speech, poses additional challenges due to disfluencies, transcription errors, and the lack of structured input. SGEC systems typically follow a cascaded pipeline consisting of Automatic Speech Recognition (ASR), disfluency detection, and GEC, making them vulnerable to error propagation across modules. This work examines an End-to-End (E2E) framework for SGEC and feedback generation, highlighting challenges and possible solutions when developing these systems. Cascaded, partial-cascaded and E2E architectures are compared, all built on the Whisper foundation model. A challenge for E2E systems is the scarcity of GEC labeled spoken data. To address this, an automatic pseudo-labeling framework is examined, increasing the training data from 77 to over 2500 hours. To improve the accuracy of the SGEC system, additional contextual information, exploiting the ASR output, is investigated. Candidate feedback of their mistakes is an essential step to improving performance. In E2E systems the SGEC output must be compared with an estimate of the fluent transcription to obtain the feedback. To improve the precision of this feedback, a novel reference alignment process is proposed that aims to remove hypothesised edits that results from fluent transcription errors. Finally, these approaches are combined with an edit confidence estimation approach, to exclude low-confidence edits. Experiments on the in-house Linguaskill (LNG) corpora and the publicly available Speak & Improve (S&I) corpus show that the proposed approaches significantly boost E2E SGEC performance.
comment: This work has been submitted to the IEEE for possible publication
☆ A Set-to-Set Distance Measure in Hyperbolic Space
We propose a hyperbolic set-to-set distance measure for computing dissimilarity between sets in hyperbolic space. While point-to-point distances in hyperbolic space effectively capture hierarchical relationships between data points, many real-world applications require comparing sets of hyperbolic data points, where the local structure and the global structure of the sets carry crucial semantic information. The proposed the \underline{h}yperbolic \underline{s}et-\underline{to}-\underline{s}et \underline{d}istance measure (HS2SD) integrates both global and local structural information: global structure through geodesic distances between Einstein midpoints of hyperbolic sets, and local structure through topological characteristics of the two sets. To efficiently compute topological differences, we prove that using a finite Thue-Morse sequence of degree and adjacency matrices can serve as a robust approximation to capture the topological structure of a set. In this case, by considering the topological differences, HS2SD provides a more nuanced understanding of the relationships between two hyperbolic sets. Empirical evaluation on entity matching, standard image classification, and few-shot image classification demonstrates that our distance measure outperforms existing methods by effectively modeling the hierarchical and complex relationships inherent in hyperbolic sets.
comment: 24 pages
☆ Federated Learning from Molecules to Processes: A Perspective
We present a perspective on federated learning in chemical engineering that envisions collaborative efforts in machine learning (ML) developments within the chemical industry. Large amounts of chemical and process data are proprietary to chemical companies and are therefore locked in data silos, hindering the training of ML models on large data sets in chemical engineering. Recently, the concept of federated learning has gained increasing attention in ML research, enabling organizations to jointly train machine learning models without disclosure of their individual data. We discuss potential applications of federated learning in several fields of chemical engineering, from the molecular to the process scale. In addition, we apply federated learning in two exemplary case studies that simulate practical scenarios of multiple chemical companies holding proprietary data sets: (i) prediction of binary mixture activity coefficients with graph neural networks and (ii) system identification of a distillation column with autoencoders. Our results indicate that ML models jointly trained with federated learning yield significantly higher accuracy than models trained by each chemical company individually and can perform similarly to models trained on combined datasets from all companies. Federated learning has therefore great potential to advance ML models in chemical engineering while respecting corporate data privacy, making it promising for future industrial applications.
☆ DDOT: A Derivative-directed Dual-decoder Ordinary Differential Equation Transformer for Dynamic System Modeling
Uncovering the underlying ordinary differential equations (ODEs) that govern dynamic systems is crucial for advancing our understanding of complex phenomena. Traditional symbolic regression methods often struggle to capture the temporal dynamics and intervariable correlations inherent in ODEs. ODEFormer, a state-of-the-art method for inferring multidimensional ODEs from single trajectories, has made notable progress. However, its focus on single-trajectory evaluation is highly sensitive to initial starting points, which may not fully reflect true performance. To address this, we propose the divergence difference metric (DIV-diff), which evaluates divergence over a grid of points within the target region, offering a comprehensive and stable analysis of the variable space. Alongside, we introduce DDOT (Derivative-Directed Dual-Decoder Ordinary Differential Equation Transformer), a transformer-based model designed to reconstruct multidimensional ODEs in symbolic form. By incorporating an auxiliary task predicting the ODE's derivative, DDOT effectively captures both structure and dynamic behavior. Experiments on ODEBench show DDOT outperforms existing symbolic regression methods, achieving an absolute improvement of 4.58% and 1.62% in $P(R^2 > 0.9)$ for reconstruction and generalization tasks, respectively, and an absolute reduction of 3.55% in DIV-diff. Furthermore, DDOT demonstrates real-world applicability on an anesthesia dataset, highlighting its practical impact.
☆ Theoretical guarantees for neural estimators in parametric statistics
Neural estimators are simulation-based estimators for the parameters of a family of statistical models, which build a direct mapping from the sample to the parameter vector. They benefit from the versatility of available network architectures and efficient training methods developed in the field of deep learning. Neural estimators are amortized in the sense that, once trained, they can be applied to any new data set with almost no computational cost. While many papers have shown very good performance of these methods in simulation studies and real-world applications, so far no statistical guarantees are available to support these observations theoretically. In this work, we study the risk of neural estimators by decomposing it into several terms that can be analyzed separately. We formulate easy-to-check assumptions ensuring that each term converges to zero, and we verify them for popular applications of neural estimators. Our results provide a general recipe to derive theoretical guarantees also for broader classes of architectures and estimation problems.
☆ PuckTrick: A Library for Making Synthetic Data More Realistic
The increasing reliance on machine learning (ML) models for decision-making requires high-quality training data. However, access to real-world datasets is often restricted due to privacy concerns, proprietary restrictions, and incomplete data availability. As a result, synthetic data generation (SDG) has emerged as a viable alternative, enabling the creation of artificial datasets that preserve the statistical properties of real data while ensuring privacy compliance. Despite its advantages, synthetic data is often overly clean and lacks real-world imperfections, such as missing values, noise, outliers, and misclassified labels, which can significantly impact model generalization and robustness. To address this limitation, we introduce Pucktrick, a Python library designed to systematically contaminate synthetic datasets by introducing controlled errors. The library supports multiple error types, including missing data, noisy values, outliers, label misclassification, duplication, and class imbalance, offering a structured approach to evaluating ML model resilience under real-world data imperfections. Pucktrick provides two contamination modes: one for injecting errors into clean datasets and another for further corrupting already contaminated datasets. Through extensive experiments on real-world financial datasets, we evaluate the impact of systematic data contamination on model performance. Our findings demonstrate that ML models trained on contaminated synthetic data outperform those trained on purely synthetic, error-free data, particularly for tree-based and linear models such as SVMs and Extra Trees.
comment: 17 pages, 3 figures
☆ Leveraging neural network interatomic potentials for a foundation model of chemistry
Large-scale foundation models, including neural network interatomic potentials (NIPs) in computational materials science, have demonstrated significant potential. However, despite their success in accelerating atomistic simulations, NIPs face challenges in directly predicting electronic properties and often require coupling to higher-scale models or extensive simulations for macroscopic properties. Machine learning (ML) offers alternatives for structure-to-property mapping but faces trade-offs: feature-based methods often lack generalizability, while deep neural networks require significant data and computational power. To address these trade-offs, we introduce HackNIP, a two-stage pipeline that leverages pretrained NIPs. This method first extracts fixed-length feature vectors (embeddings) from NIP foundation models and then uses these embeddings to train shallow ML models for downstream structure-to-property predictions. This study investigates whether such a hybridization approach, by ``hacking" the NIP, can outperform end-to-end deep neural networks, determines the dataset size at which this transfer learning approach surpasses direct fine-tuning of the NIP, and identifies which NIP embedding depths yield the most informative features. HackNIP is benchmarked on Matbench, evaluated for data efficiency, and tested on diverse tasks including \textit{ab initio}, experimental, and molecular properties. We also analyze how embedding depth impacts performance. This work demonstrates a hybridization strategy to overcome ML trade-offs in materials science, aiming to democratize high-performance predictive modeling.
comment: 29pages, 10 figures
☆ AnalogNAS-Bench: A NAS Benchmark for Analog In-Memory Computing
Analog In-memory Computing (AIMC) has emerged as a highly efficient paradigm for accelerating Deep Neural Networks (DNNs), offering significant energy and latency benefits over conventional digital hardware. However, state-of-the-art neural networks are not inherently designed for AIMC, as they fail to account for its unique non-idealities. Neural Architecture Search (NAS) is thus needed to systematically discover neural architectures optimized explicitly for AIMC constraints. However, comparing NAS methodologies and extracting insights about robust architectures for AIMC requires a dedicated NAS benchmark that explicitly accounts for AIMC-specific hardware non-idealities. To address this, we introduce AnalogNAS-Bench, the first NAS benchmark tailored specifically for AIMC. Our study reveals three key insights: (1) standard quantization techniques fail to capture AIMC-specific noises, (2) robust architectures tend to feature wider and branched blocks, (3) skip connections improve resilience to temporal drift noise. These insights highlight the limitations of current NAS benchmarks for AIMC and pave the way for future analog-aware NAS. All the implementations used in this paper can be found at https://github.com/IBM/analog-nas/tree/main/analognasbench.
☆ Reliability-Adjusted Prioritized Experience Replay
Experience replay enables data-efficient learning from past experiences in online reinforcement learning agents. Traditionally, experiences were sampled uniformly from a replay buffer, regardless of differences in experience-specific learning potential. In an effort to sample more efficiently, researchers introduced Prioritized Experience Replay (PER). In this paper, we propose an extension to PER by introducing a novel measure of temporal difference error reliability. We theoretically show that the resulting transition selection algorithm, Reliability-adjusted Prioritized Experience Replay (ReaPER), enables more efficient learning than PER. We further present empirical results showing that ReaPER outperforms PER across various environment types, including the Atari-5 benchmark.
☆ FREQuency ATTribution: Benchmarking Frequency-based Occlusion for Time Series Data
Deep neural networks are among the most successful algorithms in terms of performance and scalability in different domains. However, since these networks are black boxes, their usability is severely restricted due to the lack of interpretability. Existing interpretability methods do not address the analysis of time-series-based networks specifically enough. This paper shows that an analysis in the frequency domain can not only highlight relevant areas in the input signal better than existing methods, but is also more robust to fluctuations in the signal. In this paper, FreqATT is presented, a framework that enables post-hoc networks to interpret time series analysis. To achieve this, the relevant different frequencies are evaluated and the signal is either filtered or the relevant input data is marked.
comment: 18 pages, 12 figures, 2 tables
☆ A Deep Convolutional Neural Network-Based Novel Class Balancing for Imbalance Data Segmentation
Retinal fundus images provide valuable insights into the human eye's interior structure and crucial features, such as blood vessels, optic disk, macula, and fovea. However, accurate segmentation of retinal blood vessels can be challenging due to imbalanced data distribution and varying vessel thickness. In this paper, we propose BLCB-CNN, a novel pipeline based on deep learning and bi-level class balancing scheme to achieve vessel segmentation in retinal fundus images. The BLCB-CNN scheme uses a Convolutional Neural Network (CNN) architecture and an empirical approach to balance the distribution of pixels across vessel and non-vessel classes and within thin and thick vessels. Level-I is used for vessel/non-vessel balancing and Level-II is used for thick/thin vessel balancing. Additionally, pre-processing of the input retinal fundus image is performed by Global Contrast Normalization (GCN), Contrast Limited Adaptive Histogram Equalization (CLAHE), and gamma corrections to increase intensity uniformity as well as to enhance the contrast between vessels and background pixels. The resulting balanced dataset is used for classification-based segmentation of the retinal vascular tree. We evaluate the proposed scheme on standard retinal fundus images and achieve superior performance measures, including an area under the ROC curve of 98.23%, Accuracy of 96.22%, Sensitivity of 81.57%, and Specificity of 97.65%. We also demonstrate the method's efficacy through external cross-validation on STARE images, confirming its generalization ability.
comment: This is preprint of the paper submitted to Scientific Reports journal
☆ A Motivational Architecture for Open-Ended Learning Challenges in Robots
Developing agents capable of autonomously interacting with complex and dynamic environments, where task structures may change over time and prior knowledge cannot be relied upon, is a key prerequisite for deploying artificial systems in real-world settings. The open-ended learning framework identifies the core challenges for creating such agents, including the ability to autonomously generate new goals, acquire the necessary skills (or curricula of skills) to achieve them, and adapt to non-stationary environments. While many existing works tackles various aspects of these challenges in isolation, few propose integrated solutions that address them simultaneously. In this paper, we introduce H-GRAIL, a hierarchical architecture that, through the use of different typologies of intrinsic motivations and interconnected learning mechanisms, autonomously discovers new goals, learns the required skills for their achievement, generates skill sequences for tackling interdependent tasks, and adapts to non-stationary environments. We tested H-GRAIL in a real robotic scenario, demonstrating how the proposed solutions effectively address the various challenges of open-ended learning.
comment: Accepted to RLDM 2025
☆ New Hardness Results for Low-Rank Matrix Completion
The low-rank matrix completion problem asks whether a given real matrix with missing values can be completed so that the resulting matrix has low rank or is close to a low-rank matrix. The completed matrix is often required to satisfy additional structural constraints, such as positive semi-definiteness or a bounded infinity norm. The problem arises in various research fields, including machine learning, statistics, and theoretical computer science, and has broad real-world applications. This paper presents new $\mathsf{NP} $-hardness results for low-rank matrix completion problems. We show that for every sufficiently large integer $d$ and any real number $\varepsilon \in [ 2^{-O(d)},\frac{1}{7}]$, given a partial matrix $A$ with exposed values of magnitude at most $1$ that admits a positive semi-definite completion of rank $d$, it is $\mathsf{NP}$-hard to find a positive semi-definite matrix that agrees with each given value of $A$ up to an additive error of at most $\varepsilon$, even when the rank is allowed to exceed $d$ by a multiplicative factor of $O (\frac{1}{\varepsilon ^2 \cdot \log(1/\varepsilon)} )$. This strengthens a result of Hardt, Meka, Raghavendra, and Weitz (COLT, 2014), which applies to multiplicative factors smaller than $2$ and to $\varepsilon $ that decays polynomially in $d$. We establish similar $\mathsf{NP}$-hardness results for the case where the completed matrix is constrained to have a bounded infinity norm (rather than be positive semi-definite), for which all previous hardness results rely on complexity assumptions related to the Unique Games Conjecture. Our proofs involve a novel notion of nearly orthonormal representations of graphs, the concept of line digraphs, and bounds on the rank of perturbed identity matrices.
comment: 27 pages
☆ How Robust is Model Editing after Fine-Tuning? An Empirical Study on Text-to-Image Diffusion Models
Model editing offers a low-cost technique to inject or correct a particular behavior in a pre-trained model without extensive retraining, supporting applications such as factual correction and bias mitigation. Despite this common practice, it remains unknown whether edits persist after fine-tuning or whether they are inadvertently reversed. This question has fundamental practical implications. For example, if fine-tuning removes prior edits, it could serve as a defence mechanism against hidden malicious edits. Vice versa, the unintended removal of edits related to bias mitigation could pose serious safety concerns. We systematically investigate the interaction between model editing and fine-tuning in the context of T2I diffusion models, which are known to exhibit biases and generate inappropriate content. Our study spans two T2I model families (Stable Diffusion and FLUX), two sota editing techniques, and three fine-tuning methods (DreamBooth, LoRA, and DoRA). Through an extensive empirical analysis across diverse editing tasks and evaluation metrics, our findings reveal a trend: edits generally fail to persist through fine-tuning, even when fine-tuning is tangential or unrelated to the edits. Notably, we observe that DoRA exhibits the strongest edit reversal effect. At the same time, among editing methods, UCE demonstrates greater robustness, retaining significantly higher efficacy post-fine-tuning compared to ReFACT. These findings highlight a crucial limitation in current editing methodologies, emphasizing the need for more robust techniques to ensure reliable long-term control and alignment of deployed AI systems. These findings have dual implications for AI safety: they suggest that fine-tuning could serve as a remediation mechanism for malicious edits while simultaneously highlighting the need for re-editing after fine-tuning to maintain beneficial safety and alignment properties.
☆ ADNF-Clustering: An Adaptive and Dynamic Neuro-Fuzzy Clustering for Leukemia Prediction
Leukemia diagnosis and monitoring rely increasingly on high-throughput image data, yet conventional clustering methods lack the flexibility to accommodate evolving cellular patterns and quantify uncertainty in real time. We introduce Adaptive and Dynamic Neuro-Fuzzy Clustering, a novel streaming-capable framework that combines Convolutional Neural Network-based feature extraction with an online fuzzy clustering engine. ADNF initializes soft partitions via Fuzzy C-Means, then continuously updates micro-cluster centers, densities, and fuzziness parameters using a Fuzzy Temporal Index (FTI) that measures entropy evolution. A topology refinement stage performs density-weighted merging and entropy-guided splitting to guard against over- and under-segmentation. On the C-NMC leukemia microscopy dataset, our tool achieves a silhouette score of 0.51, demonstrating superior cohesion and separation over static baselines. The method's adaptive uncertainty modeling and label-free operation hold immediate potential for integration within the INFANT pediatric oncology network, enabling scalable, up-to-date support for personalized leukemia management.
comment: 6 pages, 1 figure, under review
☆ LOGICPO: Efficient Translation of NL-based Logical Problems to FOL using LLMs and Preference Optimization
Logical reasoning is a key task for artificial intelligence due to it's role in major downstream tasks such as Question Answering, Summarization. Recent methods in improving the reasoning ability of LLMs fall short in correctly converting a natural language reasoning problem to an equivalent logical formulation, which hinders the framework's overall ability to reason. Towards this, we propose to use finetuning on a preference optimization dataset to learn to parse and represent a natural language problem as a whole to a consistent logical program by 1) introducing a new supervised and preference optimization dataset LogicPO, and 2) adopting popular techniques such as Direct Preference Optimization (DPO), Kahneman-Tversky optimization (KTO) to finetune open-source LLMs. Our best model with Phi-3.5 consistently outperforms GPT-3.5-turbo's (8-shot) by producing 10% more logically correct and with 14% less syntax errors. Through the framework and our improved evaluation metrics, we offer a promising direction in improving the logical reasoning of LLMs by better representing them in their logical formulations.
☆ PERSCEN: Learning Personalized Interaction Pattern and Scenario Preference for Multi-Scenario Matching KDD 2025
With the expansion of business scales and scopes on online platforms, multi-scenario matching has become a mainstream solution to reduce maintenance costs and alleviate data sparsity. The key to effective multi-scenario recommendation lies in capturing both user preferences shared across all scenarios and scenario-aware preferences specific to each scenario. However, existing methods often overlook user-specific modeling, limiting the generation of personalized user representations. To address this, we propose PERSCEN, an innovative approach that incorporates user-specific modeling into multi-scenario matching. PERSCEN constructs a user-specific feature graph based on user characteristics and employs a lightweight graph neural network to capture higher-order interaction patterns, enabling personalized extraction of preferences shared across scenarios. Additionally, we leverage vector quantization techniques to distil scenario-aware preferences from users' behavior sequence within individual scenarios, facilitating user-specific and scenario-aware preference modeling. To enhance efficient and flexible information transfer, we introduce a progressive scenario-aware gated linear unit that allows fine-grained, low-latency fusion. Extensive experiments demonstrate that PERSCEN outperforms existing methods. Further efficiency analysis confirms that PERSCEN effectively balances performance with computational cost, ensuring its practicality for real-world industrial systems.
comment: Accepted by KDD 2025
☆ SlimMoE: Structured Compression of Large MoE Models via Expert Slimming and Distillation
The Mixture of Experts (MoE) architecture has emerged as a powerful paradigm for scaling large language models (LLMs) while maintaining inference efficiency. However, their enormous memory requirements make them prohibitively expensive to fine-tune or deploy in resource-constrained environments. To address this challenge, we introduce SlimMoE, a multi-stage compression framework for transforming large MoE models into much smaller, efficient variants without incurring the prohibitive costs of training from scratch. Our method systematically reduces parameter counts by slimming experts and transferring knowledge through intermediate stages, effectively mitigating the performance degradation common in one-shot pruning approaches. Using this framework, we compress Phi 3.5-MoE (41.9B total/6.6B activated parameters) to create Phi-mini-MoE (7.6B total/2.4B activated parameters) and Phi-tiny-MoE (3.8B total/1.1B activated parameters) using only 400B tokens--less than 10% of the original model's training data. These compressed models can be fine-tuned on a single GPU (A100 for Phi-mini-MoE, A6000 for Phi-tiny-MoE), making them highly suitable for academic and resource-limited settings. Our experiments demonstrate that these compressed models outperform others of similar size and remain competitive with larger models. For instance, Phi-mini-MoE achieves similar or better performance to Phi-3-mini using only 2/3 of the activated parameters and yields comparable MMLU scores to Llama 3.1 8B despite having significantly lower latency. Our findings demonstrate that structured pruning combined with staged distillation offers an effective path to creating high-quality, compact MoE models, paving the way for broader adoption of MoE architectures. We make our models publicly available at https://huggingface.co/microsoft/Phi-mini-MoE-instruct and https://huggingface.co/microsoft/Phi-tiny-MoE-instruct .
☆ Dynamic Hybrid Modeling: Incremental Identification and Model Predictive Control
Mathematical models are crucial for optimizing and controlling chemical processes, yet they often face significant limitations in terms of computational time, algorithm complexity, and development costs. Hybrid models, which combine mechanistic models with data-driven models (i.e. models derived via the application of machine learning to experimental data), have emerged as a promising solution to these challenges. However, the identification of dynamic hybrid models remains difficult due to the need to integrate data-driven models within mechanistic model structures. We present an incremental identification approach for dynamic hybrid models that decouples the mechanistic and data-driven components to overcome computational and conceptual difficulties. Our methodology comprises four key steps: (1) regularized dynamic parameter estimation to determine optimal time profiles for flux variables, (2) correlation analysis to evaluate relationships between variables, (3) data-driven model identification using advanced machine learning techniques, and (4) hybrid model integration to combine the mechanistic and data-driven components. This approach facilitates early evaluation of model structure suitability, accelerates the development of hybrid models, and allows for independent identification of data-driven components. Three case studies are presented to illustrate the robustness, reliability, and efficiency of our incremental approach in handling complex systems and scenarios with limited data.
comment: 18 pages, 10 Figures
☆ Controlled Generation with Equivariant Variational Flow Matching
We derive a controlled generation objective within the framework of Variational Flow Matching (VFM), which casts flow matching as a variational inference problem. We demonstrate that controlled generation can be implemented two ways: (1) by way of end-to-end training of conditional generative models, or (2) as a Bayesian inference problem, enabling post hoc control of unconditional models without retraining. Furthermore, we establish the conditions required for equivariant generation and provide an equivariant formulation of VFM tailored for molecular generation, ensuring invariance to rotations, translations, and permutations. We evaluate our approach on both uncontrolled and controlled molecular generation, achieving state-of-the-art performance on uncontrolled generation and outperforming state-of-the-art models in controlled generation, both with end-to-end training and in the Bayesian inference setting. This work strengthens the connection between flow-based generative modeling and Bayesian inference, offering a scalable and principled framework for constraint-driven and symmetry-aware generation.
☆ Structured Kolmogorov-Arnold Neural ODEs for Interpretable Learning and Symbolic Discovery of Nonlinear Dynamics
Understanding and modeling nonlinear dynamical systems is a fundamental problem across scientific and engineering domains. While deep learning has demonstrated remarkable potential for learning complex system behavior, achieving models that are both highly accurate and physically interpretable remains a major challenge. To address this, we propose Structured Kolmogorov-Arnold Neural ODEs (SKANODEs), a novel framework that integrates structured state-space modeling with the Kolmogorov-Arnold Network (KAN). SKANODE first employs a fully trainable KAN as a universal function approximator within a structured Neural ODE framework to perform virtual sensing, recovering latent states that correspond to physically interpretable quantities such as positions and velocities. Once this structured latent representation is established, we exploit the symbolic regression capability of KAN to extract compact and interpretable expressions for the system's governing dynamics. The resulting symbolic expression is then substituted back into the Neural ODE framework and further calibrated through continued training to refine its coefficients, enhancing both the precision of the discovered equations and the predictive accuracy of system responses. Extensive experiments on both simulated and real-world systems demonstrate that SKANODE achieves superior performance while offering interpretable, physics-consistent models that uncover the underlying mechanisms of nonlinear dynamical systems.
☆ Confucius3-Math: A Lightweight High-Performance Reasoning LLM for Chinese K-12 Mathematics Learning
We introduce Confucius3-Math, an open-source large language model with 14B parameters that (1) runs efficiently on a single consumer-grade GPU; (2) achieves SOTA performances on a range of mathematical reasoning tasks, outperforming many models with significantly larger sizes. In particular, as part of our mission to enhancing education and knowledge dissemination with AI, Confucius3-Math is specifically committed to mathematics learning for Chinese K-12 students and educators. Built via post-training with large-scale reinforcement learning (RL), Confucius3-Math aligns with national curriculum and excels at solving main-stream Chinese K-12 mathematical problems with low cost. In this report we share our development recipe, the challenges we encounter and the techniques we develop to overcome them. In particular, we introduce three technical innovations: Targeted Entropy Regularization, Recent Sample Recovery and Policy-Specific Hardness Weighting. These innovations encompass a new entropy regularization, a novel data scheduling policy, and an improved group-relative advantage estimator. Collectively, they significantly stabilize the RL training, improve data efficiency, and boost performance. Our work demonstrates the feasibility of building strong reasoning models in a particular domain at low cost. We open-source our model and code at https://github.com/netease-youdao/Confucius3-Math.
☆ Escaping the SpuriVerse: Can Large Vision-Language Models Generalize Beyond Seen Spurious Correlations?
Finetuning can cause spurious correlations to arise between non-essential features and the target labels, but benchmarks to study these effects involve contrived settings and narrow tasks. In contrast, we consider spurious correlations in multi-modal Large Vision Language Models (LVLMs) pretrained on extensive and diverse datasets without explicit task supervision. We develop a benchmark by sourcing GPT-4o errors on real-world visual-question-answering (VQA) benchmarks, then curating a subset through LVLM-human annotation and synthetic counterfactual evaluation to identify errors caused by spurious correlations. This process yields SpuriVerse, a novel benchmark comprised of 124 distinct types of spurious correlations extracted from real-world datasets, each containing 1 realistic and 10 synthetic VQA samples for a total of 1364 multiple choice questions. We evaluate 15 open and closed-source LVLMs on SpuriVerse, finding that even state-of-the-art closed-source models struggle significantly, achieving at best only 37.1% accuracy. Fine-tuning on synthetic examples that emphasize the spurious correlation improves performance to 78.40%, suggesting that training on diverse spurious patterns generalizes to unseen situations: models appear to learn to avoid "shortcuts" and attend to the overall image context.
☆ BrainSymphony: A Transformer-Driven Fusion of fMRI Time Series and Structural Connectivity
Existing foundation models for neuroimaging are often prohibitively large and data-intensive. We introduce BrainSymphony, a lightweight, parameter-efficient foundation model that achieves state-of-the-art performance while being pre-trained on significantly smaller public datasets. BrainSymphony's strong multimodal architecture processes functional MRI data through parallel spatial and temporal transformer streams, which are then efficiently distilled into a unified representation by a Perceiver module. Concurrently, it models structural connectivity from diffusion MRI using a novel signed graph transformer to encode the brain's anatomical structure. These powerful, modality-specific representations are then integrated via an adaptive fusion gate. Despite its compact design, our model consistently outperforms larger models on a diverse range of downstream benchmarks, including classification, prediction, and unsupervised network identification tasks. Furthermore, our model revealed novel insights into brain dynamics using attention maps on a unique external psilocybin neuroimaging dataset (pre- and post-administration). BrainSymphony establishes that architecturally-aware, multimodal models can surpass their larger counterparts, paving the way for more accessible and powerful research in computational neuroscience.
comment: 21 pages, 8 figures
☆ Sharpening the Spear: Adaptive Expert-Guided Adversarial Attack Against DRL-based Autonomous Driving Policies
Deep reinforcement learning (DRL) has emerged as a promising paradigm for autonomous driving. However, despite their advanced capabilities, DRL-based policies remain highly vulnerable to adversarial attacks, posing serious safety risks in real-world deployments. Investigating such attacks is crucial for revealing policy vulnerabilities and guiding the development of more robust autonomous systems. While prior attack methods have made notable progress, they still face several challenges: 1) they often rely on high-frequency attacks, yet critical attack opportunities are typically context-dependent and temporally sparse, resulting in inefficient attack patterns; 2) restricting attack frequency can improve efficiency but often results in unstable training due to the adversary's limited exploration. To address these challenges, we propose an adaptive expert-guided adversarial attack method that enhances both the stability and efficiency of attack policy training. Our method first derives an expert policy from successful attack demonstrations using imitation learning, strengthened by an ensemble Mixture-of-Experts architecture for robust generalization across scenarios. This expert policy then guides a DRL-based adversary through a KL-divergence regularization term. Due to the diversity of scenarios, expert policies may be imperfect. To address this, we further introduce a performance-aware annealing strategy that gradually reduces reliance on the expert as the adversary improves. Extensive experiments demonstrate that our method achieves outperforms existing approaches in terms of collision rate, attack efficiency, and training stability, especially in cases where the expert policy is sub-optimal.
comment: 12 pages, 3 figures, 2 tables
☆ GeNeRT: A Physics-Informed Approach to Intelligent Wireless Channel Modeling via Generalizable Neural Ray Tracing
Neural ray tracing (RT) has emerged as a promising paradigm for channel modeling by combining physical propagation principles with neural networks. It enables high modeling accuracy and efficiency. However, current neural RT methods face two key limitations: constrained generalization capability due to strong spatial dependence, and weak adherence to electromagnetic laws. In this paper, we propose GeNeRT, a Generalizable Neural RT framework with enhanced generalization, accuracy and efficiency. GeNeRT supports both intra-scenario spatial transferability and inter-scenario zero-shot generalization. By incorporating Fresnel-inspired neural network design, it also achieves higher accuracy in multipath component (MPC) prediction. Furthermore, a GPU-tensorized acceleration strategy is introduced to improve runtime efficiency. Extensive experiments conducted in outdoor scenarios demonstrate that GeNeRT generalizes well across untrained regions within a scenario and entirely unseen environments, and achieves superior accuracy in MPC prediction compared to baselines. Moreover, it outperforms Wireless Insite in runtime efficiency, particularly in multi-transmitter settings. Ablation experiments validate the effectiveness of the network architecture and training strategy in capturing physical principles of ray-surface interactions.
☆ Instability in Diffusion ODEs: An Explanation for Inaccurate Image Reconstruction
Diffusion reconstruction plays a critical role in various applications such as image editing, restoration, and style transfer. In theory, the reconstruction should be simple - it just inverts and regenerates images by numerically solving the Probability Flow-Ordinary Differential Equation (PF-ODE). Yet in practice, noticeable reconstruction errors have been observed, which cannot be well explained by numerical errors. In this work, we identify a deeper intrinsic property in the PF-ODE generation process, the instability, that can further amplify the reconstruction errors. The root of this instability lies in the sparsity inherent in the generation distribution, which means that the probability is concentrated on scattered and small regions while the vast majority remains almost empty. To demonstrate the existence of instability and its amplification on reconstruction error, we conduct experiments on both toy numerical examples and popular open-sourced diffusion models. Furthermore, based on the characteristics of image data, we theoretically prove that the instability's probability converges to one as the data dimensionality increases. Our findings highlight the inherent challenges in diffusion-based reconstruction and can offer insights for future improvements.
☆ Learning High-Quality Latent Representations for Anomaly Detection and Signal Integrity Enhancement in High-Speed Signals
This paper addresses the dual challenge of improving anomaly detection and signal integrity in high-speed dynamic random access memory signals. To achieve this, we propose a joint training framework that integrates an autoencoder with a classifier to learn more distinctive latent representations by focusing on valid data features. Our approach is evaluated across three anomaly detection algorithms and consistently outperforms two baseline methods. Detailed ablation studies further support these findings. Furthermore, we introduce a signal integrity enhancement algorithm that improves signal integrity by an average of 11.3%. The source code and data used in this study are available at https://github.com/Usama1002/learning-latent-representations.
☆ Learning Causal Graphs at Scale: A Foundation Model Approach
Due to its human-interpretability and invariance properties, Directed Acyclic Graph (DAG) has been a foundational tool across various areas of AI research, leading to significant advancements. However, DAG learning remains highly challenging, due to its super-exponential growth in computational cost and identifiability issues, particularly in small-sample regimes. To address these two challenges, in this work we leverage the recent success of linear transformers and develop a foundation model approach for discovering multiple order-consistent DAGs across tasks. In particular, we propose Attention-DAG (ADAG), a novel attention-mechanism-based architecture for learning multiple linear Structural Equation Models (SEMs). ADAG learns the mapping from observed data to both graph structure and parameters via a nonlinear attention-based kernel, enabling efficient multi-task estimation of the underlying linear SEMs. By formulating the learning process across multiple tasks as a continuous optimization problem, the pre-trained ADAG model captures the common structural properties as a shared low-dimensional prior, thereby reducing the ill-posedness of downstream DAG learning tasks in small-sample regimes. We evaluate our proposed approach on benchmark synthetic datasets and find that ADAG achieves substantial improvements in both DAG learning accuracy and zero-shot inference efficiency. To the best of our knowledge, this is the first practical approach for pre-training a foundation model specifically designed for DAG learning, representing a step toward more efficient and generalizable down-stream applications in causal discovery.
☆ Quantifying Uncertainty in the Presence of Distribution Shifts
Neural networks make accurate predictions but often fail to provide reliable uncertainty estimates, especially under covariate distribution shifts between training and testing. To address this problem, we propose a Bayesian framework for uncertainty estimation that explicitly accounts for covariate shifts. While conventional approaches rely on fixed priors, the key idea of our method is an adaptive prior, conditioned on both training and new covariates. This prior naturally increases uncertainty for inputs that lie far from the training distribution in regions where predictive performance is likely to degrade. To efficiently approximate the resulting posterior predictive distribution, we employ amortized variational inference. Finally, we construct synthetic environments by drawing small bootstrap samples from the training data, simulating a range of plausible covariate shift using only the original dataset. We evaluate our method on both synthetic and real-world data. It yields substantially improved uncertainty estimates under distribution shifts.
☆ Phase retrieval with rank $d$ measurements -- \emph{descending} algorithms phase transitions
Companion paper [118] developed a powerful \emph{Random duality theory} (RDT) based analytical program to statistically characterize performance of \emph{descending} phase retrieval algorithms (dPR) (these include all variants of gradient descents and among them widely popular Wirtinger flows). We here generalize the program and show how it can be utilized to handle rank $d$ positive definite phase retrieval (PR) measurements (with special cases $d=1$ and $d=2$ serving as emulations of the real and complex phase retrievals, respectively). In particular, we observe that the minimal sample complexity ratio (number of measurements scaled by the dimension of the unknown signal) which ensures dPR's success exhibits a phase transition (PT) phenomenon. For both plain and lifted RDT we determine phase transitions locations. To complement theoretical results we implement a log barrier gradient descent variant and observe that, even in small dimensional scenarios (with problem sizes on the order of 100), the simulated phase transitions are in an excellent agreement with the theoretical predictions.
☆ Optimal spectral initializers impact on phase retrieval phase transitions -- an RDT view
We analyze the relation between spectral initializers and theoretical limits of \emph{descending} phase retrieval algorithms (dPR). In companion paper [104], for any sample complexity ratio, $\alpha$, \emph{parametric manifold}, ${\mathcal {PM}}(\alpha)$, is recognized as a critically important structure that generically determines dPRs abilities to solve phase retrieval (PR). Moreover, overlap between the algorithmic solution and the true signal is positioned as a key ${\mathcal {PM}}$'s component. We here consider the so-called \emph{overlap optimal} spectral initializers (OptSpins) as dPR's starting points and develop a generic \emph{Random duality theory} (RDT) based program to statistically characterize them. In particular, we determine the functional structure of OptSpins and evaluate the starting overlaps that they provide for the dPRs. Since ${\mathcal {PM}}$'s so-called \emph{flat regions} are highly susceptible to \emph{local jitteriness} and as such are key obstacles on dPR's path towards PR's global optimum, a precise characterization of the starting overlap allows to determine if such regions can be successfully circumvented. Through the presented theoretical analysis we observe two key points in that regard: \textbf{\emph{(i)}} dPR's theoretical phase transition (critical $\alpha$ above which they solve PR) might be difficult to practically achieve as the ${\mathcal {PM}}$'s flat regions are large causing the associated OptSpins to fall exactly within them; and \textbf{\emph{(ii)}} Opting for so-called ``\emph{safer compression}'' and slightly increasing $\alpha$ (by say $15\%$) shrinks flat regions and allows OptSpins to fall outside them and dPRs to ultimately solve PR. Numerical simulations are conducted as well and shown to be in an excellent agreement with theoretical predictions.
☆ Phase transition of \emph{descending} phase retrieval algorithms
We study theoretical limits of \emph{descending} phase retrieval algorithms. Utilizing \emph{Random duality theory} (RDT) we develop a generic program that allows statistical characterization of various algorithmic performance metrics. Through these we identify the concepts of \emph{parametric manifold} and its \emph{funneling points} as key mathematical objects that govern the underlying algorithms' behavior. An isomorphism between single funneling point manifolds and global convergence of descending algorithms is established. The structure and shape of the parametric manifold as well as its dependence on the sample complexity are studied through both plain and lifted RDT. Emergence of a phase transition is observed. Namely, as sample complexity increases, parametric manifold transitions from a multi to a single funneling point structure. This in return corresponds to a transition from the scenarios where descending algorithms generically fail to the scenarios where they succeed in solving phase retrieval. We also develop and implement a practical algorithmic variant that in a hybrid alternating fashion combines a barrier and a plain gradient descent. Even though the theoretical results are obtained for infinite dimensional scenarios (and consequently non-jittery parametric manifolds), we observe a strong agrement between theoretical and simulated phase transitions predictions for fairly small dimensions on the order of a few hundreds.
☆ Leveraging Large Language Models for Information Verification -- an Engineering Approach
For the ACMMM25 challenge, we present a practical engineering approach to multimedia news source verification, utilizing Large Language Models (LLMs) like GPT-4o as the backbone of our pipeline. Our method processes images and videos through a streamlined sequence of steps: First, we generate metadata using general-purpose queries via Google tools, capturing relevant content and links. Multimedia data is then segmented, cleaned, and converted into frames, from which we select the top-K most informative frames. These frames are cross-referenced with metadata to identify consensus or discrepancies. Additionally, audio transcripts are extracted for further verification. Noticeably, the entire pipeline is automated using GPT-4o through prompt engineering, with human intervention limited to final validation.
☆ Memory-Augmented Architecture for Long-Term Context Handling in Large Language Models
Large Language Models face significant challenges in maintaining coherent interactions over extended dialogues due to their limited contextual memory. This limitation often leads to fragmented exchanges and reduced relevance in responses, diminishing user experience. To address these issues, we propose a memory-augmented architecture that dynamically retrieves, updates, and prunes relevant information from past interactions, ensuring effective long-term context handling. Experimental results demonstrate that our solution significantly improves contextual coherence, reduces memory overhead, and enhances response quality, showcasing its potential for real-time applications in interactive systems.
☆ ARD-LoRA: Dynamic Rank Allocation for Parameter-Efficient Fine-Tuning of Foundation Models with Heterogeneous Adaptation Needs
Conventional Low-Rank Adaptation (LoRA) methods employ a fixed rank, imposing uniform adaptation across transformer layers and attention heads despite their heterogeneous learning dynamics. This paper introduces Adaptive Rank Dynamic LoRA (ARD-LoRA), a novel framework that automates rank allocation through learnable scaling factors. These factors are optimized via a meta-objective balancing task performance and parameter efficiency, incorporating $\ell_1$ sparsity for minimal rank and Total Variation regularization for stable rank transitions. ARD-LoRA enables continuous, differentiable, per-head rank adaptation. Experiments on LLAMA-3.1-70B and PaliGemma-2 demonstrate ARD-LoRA's efficacy, achieving up to 99.3% of full fine-tuning performance with only 0.32% trainable parameters, outperforming strong baselines like DoRA and AdaLoRA. Furthermore, it reduces multimodal adaptation memory by 41%. These results establish dynamic, fine-grained rank allocation as a critical paradigm for efficient foundation model adaptation.
☆ Ground tracking for improved landmine detection in a GPR system
Ground penetrating radar (GPR) provides a promising technology for accurate subsurface object detection. In particular, it has shown promise for detecting landmines with low metal content. However, the ground bounce (GB) that is present in GPR data, which is caused by the dielectric discontinuity between soil and air, is a major source of interference and degrades landmine detection performance. To mitigate this interference, GB tracking algorithms formulated using both a Kalman filter (KF) and a particle filter (PF) framework are proposed. In particular, the location of the GB in the radar signal is modeled as the hidden state in a stochastic system for the PF approach. The observations are the 2D radar images, which arrive scan by scan along the down-track direction. An initial training stage sets parameters automatically to accommodate different ground and weather conditions. The features associated with the GB description are updated adaptively with the arrival of new data. The prior distribution for a given location is predicted by propagating information from two adjacent channels/scans, which ensures that the overall GB surface remains smooth. The proposed algorithms are verified in experiments utilizing real data, and their performances are compared with other GB tracking approaches. We demonstrate that improved GB tracking contributes to improved performance for the landmine detection problem.
☆ RLPR: Extrapolating RLVR to General Domains without Verifiers
Reinforcement Learning with Verifiable Rewards (RLVR) demonstrates promising potential in advancing the reasoning capabilities of LLMs. However, its success remains largely confined to mathematical and code domains. This primary limitation stems from the heavy reliance on domain-specific verifiers, which results in prohibitive complexity and limited scalability. To address the challenge, our key observation is that LLM's intrinsic probability of generating a correct free-form answer directly indicates its own evaluation of the reasoning reward (i.e., how well the reasoning process leads to the correct answer). Building on this insight, we propose RLPR, a simple verifier-free framework that extrapolates RLVR to broader general domains. RLPR uses the LLM's own token probability scores for reference answers as the reward signal and maximizes the expected reward during training. We find that addressing the high variance of this noisy probability reward is crucial to make it work, and propose prob-to-reward and stabilizing methods to ensure a precise and stable reward from LLM intrinsic probabilities. Comprehensive experiments in four general-domain benchmarks and three mathematical benchmarks show that RLPR consistently improves reasoning capabilities in both areas for Gemma, Llama, and Qwen based models. Notably, RLPR outperforms concurrent VeriFree by 7.6 points on TheoremQA and 7.5 points on Minerva, and even surpasses strong verifier-model-dependent approaches General-Reasoner by 1.6 average points across seven benchmarks.
comment: Project Website: https://github.com/openbmb/RLPR
☆ Exploring Efficient Quantification of Modeling Uncertainties with Differentiable Physics-Informed Machine Learning Architectures
Quantifying and propagating modeling uncertainties is crucial for reliability analysis, robust optimization, and other model-based algorithmic processes in engineering design and control. Now, physics-informed machine learning (PIML) methods have emerged in recent years as a new alternative to traditional computational modeling and surrogate modeling methods, offering a balance between computing efficiency, modeling accuracy, and interpretability. However, their ability to predict and propagate modeling uncertainties remains mostly unexplored. In this paper, a promising class of auto-differentiable hybrid PIML architectures that combine partial physics and neural networks or ANNs (for input transformation or adaptive parameter estimation) is integrated with Bayesian Neural networks (replacing the ANNs); this is done with the goal to explore whether BNNs can successfully provision uncertainty propagation capabilities in the PIML architectures as well, further supported by the auto-differentiability of these architectures. A two-stage training process is used to alleviate the challenges traditionally encountered in training probabilistic ML models. The resulting BNN-integrated PIML architecture is evaluated on an analytical benchmark problem and flight experiments data for a fixed-wing RC aircraft, with prediction performance observed to be slightly worse or at par with purely data-driven ML and original PIML models. Moreover, Monte Carlo sampling of probabilistic BNN weights was found to be most effective in propagating uncertainty in the BNN-integrated PIML architectures.
comment: IDETC 2025
☆ Dual-Forward Path Teacher Knowledge Distillation: Bridging the Capacity Gap Between Teacher and Student
Knowledge distillation (KD) provides an effective way to improve the performance of a student network under the guidance of pre-trained teachers. However, this approach usually brings in a large capacity gap between teacher and student networks, limiting the distillation gains. Previous methods addressing this problem either discard accurate knowledge representation or fail to dynamically adjust the transferred knowledge, which is less effective in addressing the capacity gap problem and hinders students from achieving comparable performance with the pre-trained teacher. In this work, we extend the ideology of prompt-based learning to address the capacity gap problem, and propose Dual-Forward Path Teacher Knowledge Distillation (DFPT-KD), which replaces the pre-trained teacher with a novel dual-forward path teacher to supervise the learning of student. The key to DFPT-KD is prompt-based tuning, i.e., establishing an additional prompt-based forward path within the pre-trained teacher and optimizing it with the pre-trained teacher frozen to make the transferred knowledge compatible with the representation ability of the student. Extensive experiments demonstrate that DFPT-KD leads to trained students performing better than the vanilla KD. To make the transferred knowledge better compatible with the representation abilities of the student, we further fine-tune the whole prompt-based forward path, yielding a novel distillation approach dubbed DFPT-KD+. By extensive experiments, it is shown that DFPT-KD+ improves upon DFPT-KD and achieves state-of-the-art accuracy performance.
comment: 15pages
☆ Quantum-Classical Hybrid Quantized Neural Network
Here in this work, we present a novel Quadratic Binary Optimization (QBO) model for quantized neural network training, enabling the use of arbitrary activation and loss functions through spline interpolation. We introduce Forward Interval Propagation (FIP), a method designed to tackle the challenges of non-linearity and the multi-layer composite structure in neural networks by discretizing activation functions into linear subintervals. This approach preserves the universal approximation properties of neural networks while allowing complex nonlinear functions to be optimized using quantum computers, thus broadening their applicability in artificial intelligence. We provide theoretical upper bounds on the approximation error and the number of Ising spins required, by deriving the sample complexity of the empirical risk minimization problem, from an optimization perspective. A significant challenge in solving the associated Quadratic Constrained Binary Optimization (QCBO) model on a large scale is the presence of numerous constraints. When employing the penalty method to handle these constraints, tuning a large number of penalty coefficients becomes a critical hyperparameter optimization problem, increasing computational complexity and potentially affecting solution quality. To address this, we employ the Quantum Conditional Gradient Descent (QCGD) algorithm, which leverages quantum computing to directly solve the QCBO problem. We prove the convergence of QCGD under a quantum oracle with randomness and bounded variance in objective value, as well as under limited precision constraints in the coefficient matrix. Additionally, we provide an upper bound on the Time-To-Solution for the QCBO solving process. Experimental results using a coherent Ising machine (CIM) demonstrate a 94.95% accuracy on the Fashion MNIST classification task, with only 1.1-bit precision.
comment: 30 pages, 5 figures, comments are welcome
☆ AdapThink: Adaptive Thinking Preferences for Reasoning Language Model
Reinforcement Learning (RL)-based post-training has significantly advanced the complex reasoning capabilities of language models, fostering sophisticated self-reflection processes. However, this ``slow thinking'' paradigm presents a critical challenge to reasoning efficiency: models may expend excessive computation on simple questions and shift reasoning prematurely for complex ones. Previous mechanisms typically rely on static length budgets or predefined rules, lacking the adaptability for varying question complexities and models' evolving capabilities. To this end, we propose AdapThink, an adaptive post-training framework designed to induce more efficient thinking while maintaining the performance of reasoning language models. Specifically, AdapThink incorporates two key mechanisms: 1) A group-relative reward function that leverages model confidence and response's characteristic to dynamically adjust the preference of reflection-related transition words without resorting to a fixed length preference. 2) A diversity-aware sampling mechanism that balances the training group's solution accuracy with reasoning diversity via an entropy-guided score. Experiments on several mathematical reasoning datasets with DeepSeek-distilled models demonstrate AdapThink's advantages in enabling adaptive reasoning patterns and mitigating the inefficiencies.
☆ These are Not All the Features You are Looking For: A Fundamental Bottleneck In Supervised Pretraining
Transfer learning is a cornerstone of modern machine learning, promising a way to adapt models pretrained on a broad mix of data to new tasks with minimal new data. However, a significant challenge remains in ensuring that transferred features are sufficient to handle unseen datasets, amplified by the difficulty of quantifying whether two tasks are "related". To address these challenges, we evaluate model transfer from a pretraining mixture to each of its component tasks, assessing whether pretrained features can match the performance of task-specific direct training. We identify a fundamental limitation in deep learning models -- an "information saturation bottleneck" -- where networks fail to learn new features once they encode similar competing features during training. When restricted to learning only a subset of key features during pretraining, models will permanently lose critical features for transfer and perform inconsistently on data distributions, even components of the training mixture. Empirical evidence from published studies suggests that this phenomenon is pervasive in deep learning architectures -- factors such as data distribution or ordering affect the features that current representation learning methods can learn over time. This study suggests that relying solely on large-scale networks may not be as effective as focusing on task-specific training, when available. We propose richer feature representations as a potential solution to better generalize across new datasets and, specifically, present existing methods alongside a novel approach, the initial steps towards addressing this challenge.
comment: 10 pages, 7 figures, Preprint. Under review
☆ Cross-Architecture Knowledge Distillation (KD) for Retinal Fundus Image Anomaly Detection on NVIDIA Jetson Nano
Early and accurate identification of retinal ailments is crucial for averting ocular decline; however, access to dependable diagnostic devices is not often available in low-resourced settings. This project proposes to solve that by developing a lightweight, edge-device deployable disease classifier using cross-architecture knowledge distilling. We first train a high-capacity vision transformer (ViT) teacher model, pre-trained using I-JEPA self-supervised learning, to classify fundus images into four classes: Normal, Diabetic Retinopathy, Glaucoma, and Cataract. We kept an Internet of Things (IoT) focus when compressing to a CNN-based student model for deployment in resource-limited conditions, such as the NVIDIA Jetson Nano. This was accomplished using a novel framework which included a Partitioned Cross-Attention (PCA) projector, a Group-Wise Linear (GL) projector, and a multi-view robust training method. The teacher model has 97.4 percent more parameters than the student model, with it achieving 89 percent classification with a roughly 93 percent retention of the teacher model's diagnostic performance. The retention of clinical classification behavior supports our method's initial aim: compression of the ViT while retaining accuracy. Our work serves as an example of a scalable, AI-driven triage solution for retinal disorders in under-resourced areas.
comment: 15 pages, 10 figures. Berk Yilmaz and Aniruddh Aiyengar contributed equally to this work
☆ Simulation of a closed-loop dc-dc converter using a physics-informed neural network-based model
The growing reliance on power electronics introduces new challenges requiring detailed time-domain analyses with fast and accurate circuit simulation tools. Currently, commercial time-domain simulation software are mainly relying on physics-based methods to simulate power electronics. Recent work showed that data-driven and physics-informed learning methods can increase simulation speed with limited compromise on accuracy, but many challenges remain before deployment in commercial tools can be possible. In this paper, we propose a physics-informed bidirectional long-short term memory neural network (BiLSTM-PINN) model to simulate the time-domain response of a closed-loop dc-dc boost converter for various operating points, parameters, and perturbations. A physics-informed fully-connected neural network (FCNN) and a BiLSTM are also trained to establish a comparison. The three methods are then compared using step-response tests to assess their performance and limitations in terms of accuracy. The results show that the BiLSTM-PINN and BiLSTM models outperform the FCNN model by more than 9 and 4.5 times, respectively, in terms of median RMSE. Their standard deviation values are more than 2.6 and 1.7 smaller than the FCNN's, making them also more consistent. Those results illustrate that the proposed BiLSTM-PINN is a potential alternative to other physics-based or data-driven methods for power electronics simulations.
comment: 8 pages, 6 figures, Paper submitted to the International Conference on Power Systems Transients (IPST2025) in Guadalajara, Mexico, June 8-12, 2025
☆ Distilling Tool Knowledge into Language Models via Back-Translated Traces ICML 2025
Large language models (LLMs) often struggle with mathematical problems that require exact computation or multi-step algebraic reasoning. Tool-integrated reasoning (TIR) offers a promising solution by leveraging external tools such as code interpreters to ensure correctness, but it introduces inference-time dependencies that hinder scalability and deployment. In this work, we propose a new paradigm for distilling tool knowledge into LLMs purely through natural language. We first construct a Solver Agent that solves math problems by interleaving planning, symbolic tool calls, and reflective reasoning. Then, using a back-translation pipeline powered by multiple LLM-based agents, we convert interleaved TIR traces into natural language reasoning traces. A Translator Agent generates explanations for individual tool calls, while a Rephrase Agent merges them into a fluent and globally coherent narrative. Empirically, we show that fine-tuning a small open-source model on these synthesized traces enables it to internalize both tool knowledge and structured reasoning patterns, yielding gains on competition-level math benchmarks without requiring tool access at inference.
comment: Accepted in Workshop in Multi-Agent Systems in the Era of Foundation Models: Opportunities, Challenges and Futures, ICML 2025
☆ A Deep Learning Based Method for Fast Registration of Cardiac Magnetic Resonance Images
Image registration is used in many medical image analysis applications, such as tracking the motion of tissue in cardiac images, where cardiac kinematics can be an indicator of tissue health. Registration is a challenging problem for deep learning algorithms because ground truth transformations are not feasible to create, and because there are potentially multiple transformations that can produce images that appear correlated with the goal. Unsupervised methods have been proposed to learn to predict effective transformations, but these methods take significantly longer to predict than established baseline methods. For a deep learning method to see adoption in wider research and clinical settings, it should be designed to run in a reasonable time on common, mid-level hardware. Fast methods have been proposed for the task of image registration but often use patch-based methods which can affect registration accuracy for a highly dynamic organ such as the heart. In this thesis, a fast, volumetric registration model is proposed for the use of quantifying cardiac strain. The proposed Deep Learning Neural Network (DLNN) is designed to utilize an architecture that can compute convolutions incredibly efficiently, allowing the model to achieve registration fidelity similar to other state-of-the-art models while taking a fraction of the time to perform inference. The proposed fast and lightweight registration (FLIR) model is used to predict tissue motion which is then used to quantify the non-uniform strain experienced by the tissue. For acquisitions taken from the same patient at approximately the same time, it would be expected that strain values measured between the acquisitions would have very small differences. Using this metric, strain values computed using the FLIR method are shown to be very consistent.
☆ GradualDiff-Fed: A Federated Learning Specialized Framework for Large Language Model
The rapid proliferation of large language models (LLMs) has created an unprecedented demand for fine-tuning models for specialized domains, such as medical science. While federated learning (FL) offers a decentralized and privacy-preserving approach to collaboratively fine-tune LLMs without sharing raw data, it presents significant challenges, particularly in performance and managing large model sizes efficiently. In this paper, we introduce GradualDiff-Fed, an FL framework designed explicitly for LLMs, and their challenge of handling the high parameter size. GradualDiff-Fed reduces communication costs by transmitting only the difference of model weights rather than the entire model during training rounds. Such an approach significantly improves scalability and communication efficiency, making it more feasible to fine-tune LLMs across distributed clients without compromising performance. Our evaluation demonstrates that GradualDiff-Fed achieves performance on par with centralized training while drastically reducing communication overhead. These results highlight the potential of GradualDiff-Fed as an efficient solution for fine-tuning large models from distributed data in privacy-preserving settings without comprising performance.
☆ Posterior Contraction for Sparse Neural Networks in Besov Spaces with Intrinsic Dimensionality
This work establishes that sparse Bayesian neural networks achieve optimal posterior contraction rates over anisotropic Besov spaces and their hierarchical compositions. These structures reflect the intrinsic dimensionality of the underlying function, thereby mitigating the curse of dimensionality. Our analysis shows that Bayesian neural networks equipped with either sparse or continuous shrinkage priors attain the optimal rates which are dependent on the intrinsic dimension of the true structures. Moreover, we show that these priors enable rate adaptation, allowing the posterior to contract at the optimal rate even when the smoothness level of the true function is unknown. The proposed framework accommodates a broad class of functions, including additive and multiplicative Besov functions as special cases. These results advance the theoretical foundations of Bayesian neural networks and provide rigorous justification for their practical effectiveness in high-dimensional, structured estimation problems.
☆ Thought Anchors: Which LLM Reasoning Steps Matter?
Reasoning large language models have recently achieved state-of-the-art performance in many fields. However, their long-form chain-of-thought reasoning creates interpretability challenges as each generated token depends on all previous ones, making the computation harder to decompose. We argue that analyzing reasoning traces at the sentence level is a promising approach to understanding reasoning processes. We present three complementary attribution methods: (1) a black-box method measuring each sentence's counterfactual importance by comparing final answers across 100 rollouts conditioned on the model generating that sentence or one with a different meaning; (2) a white-box method of aggregating attention patterns between pairs of sentences, which identified ``broadcasting'' sentences that receive disproportionate attention from all future sentences via ``receiver'' attention heads; (3) a causal attribution method measuring logical connections between sentences by suppressing attention toward one sentence and measuring the effect on each future sentence's tokens. Each method provides evidence for the existence of thought anchors, reasoning steps that have outsized importance and that disproportionately influence the subsequent reasoning process. These thought anchors are typically planning or backtracking sentences. We provide an open-source tool (www.thought-anchors.com) for visualizing the outputs of our methods, and present a case study showing converging patterns across methods that map how a model performs multi-step reasoning. The consistency across methods demonstrates the potential of sentence-level analysis for a deeper understanding of reasoning models.
comment: Paul C. Bogdan and Uzay Macar contributed equally to this work, and their listed order was determined by coinflip. Neel Nanda and Arthur Conmy contributed equally to this work as senior authors, and their listed order was determined by coinflip
☆ EEG Foundation Challenge: From Cross-Task to Cross-Subject EEG Decoding
Current electroencephalogram (EEG) decoding models are typically trained on small numbers of subjects performing a single task. Here, we introduce a large-scale, code-submission-based competition comprising two challenges. First, the Transfer Challenge asks participants to build and test a model that can zero-shot decode new tasks and new subjects from their EEG data. Second, the Psychopathology factor prediction Challenge asks participants to infer subject measures of mental health from EEG data. For this, we use an unprecedented, multi-terabyte dataset of high-density EEG signals (128 channels) recorded from over 3,000 child to young adult subjects engaged in multiple active and passive tasks. We provide several tunable neural network baselines for each of these two challenges, including a simple network and demographic-based regression models. Developing models that generalise across tasks and individuals will pave the way for ML network architectures capable of adapting to EEG data collected from diverse tasks and individuals. Similarly, predicting mental health-relevant personality trait values from EEG might identify objective biomarkers useful for clinical diagnosis and design of personalised treatment for psychological conditions. Ultimately, the advances spurred by this challenge could contribute to the development of computational psychiatry and useful neurotechnology, and contribute to breakthroughs in both fundamental neuroscience and applied clinical research.
comment: Approved at Neurips Competition track. webpage: https://eeg2025.github.io/
☆ Command-V: Pasting LLM Behaviors via Activation Profiles
Retrofitting large language models (LLMs) with new behaviors typically requires full finetuning or distillation-costly steps that must be repeated for every architecture. In this work, we introduce Command-V, a backpropagation-free behavior transfer method that copies an existing residual activation adapter from a donor model and pastes its effect into a recipient model. Command-V profiles layer activations on a small prompt set, derives linear converters between corresponding layers, and applies the donor intervention in the recipient's activation space. This process does not require access to the original training data and needs minimal compute. In three case studies-safety-refusal enhancement, jailbreak facilitation, and automatic chain-of-thought reasoning--Command-V matches or exceeds the performance of direct finetuning while using orders of magnitude less compute. Our code and data are accessible at https://github.com/GithuBarry/Command-V/.
☆ Local Learning Rules for Out-of-Equilibrium Physical Generative Models
We show that the out-of-equilibrium driving protocol of score-based generative models (SGMs) can be learned via a local learning rule. The gradient with respect to the parameters of the driving protocol are computed directly from force measurements or from observed system dynamics. As a demonstration, we implement an SGM in a network of driven, nonlinear, overdamped oscillators coupled to a thermal bath. We first apply it to the problem of sampling from a mixture of two Gaussians in 2D. Finally, we train a network of 10x10 oscillators to sample images of 0s and 1s from the MNIST dataset.
comment: 6 pages, 2 figures
☆ Riemannian generative decoder ICML 2025
Riemannian representation learning typically relies on approximating densities on chosen manifolds. This involves optimizing difficult objectives, potentially harming models. To completely circumvent this issue, we introduce the Riemannian generative decoder which finds manifold-valued maximum likelihood latents with a Riemannian optimizer while training a decoder network. By discarding the encoder, we vastly simplify the manifold constraint compared to current approaches which often only handle few specific manifolds. We validate our approach on three case studies -- a synthetic branching diffusion process, human migrations inferred from mitochondrial DNA, and cells undergoing a cell division cycle -- each showing that learned representations respect the prescribed geometry and capture intrinsic non-Euclidean structure. Our method requires only a decoder, is compatible with existing architectures, and yields interpretable latent spaces aligned with data geometry.
comment: GenBio ICML 2025 (Proceedings of the Workshop on Generative AI for Biology at the 42nd International Conference on Machine Learning, Vancouver, Canada. PMLR 267, 2025)
☆ Finding Clustering Algorithms in the Transformer Architecture
The invention of the transformer architecture has revolutionized Artificial Intelligence (AI), yielding unprecedented success in areas such as natural language processing, computer vision, and multimodal reasoning. Despite these advances, it is unclear whether transformers are able to learn and implement precise algorithms. Here, we demonstrate that transformers can exactly implement a fundamental and widely used algorithm for $k$-means clustering: Lloyd's algorithm. First, we theoretically prove the existence of such a transformer architecture, which we term the $k$-means transformer, that exactly implements Lloyd's algorithm for $k$-means clustering using the standard ingredients of modern transformers: attention and residual connections. Next, we numerically implement this transformer and demonstrate in experiments the exact correspondence between our architecture and Lloyd's algorithm, providing a fully neural implementation of $k$-means clustering. Finally, we demonstrate that interpretable alterations (e.g., incorporating layer normalizations or multilayer perceptrons) to this architecture yields diverse and novel variants of clustering algorithms, such as soft $k$-means, spherical $k$-means, trimmed $k$-means, and more. Collectively, our findings demonstrate how transformer mechanisms can precisely map onto algorithmic procedures, offering a clear and interpretable perspective on implementing precise algorithms in transformers.
☆ CUPID: Curating Data your Robot Loves with Influence Functions
In robot imitation learning, policy performance is tightly coupled with the quality and composition of the demonstration data. Yet, developing a precise understanding of how individual demonstrations contribute to downstream outcomes - such as closed-loop task success or failure - remains a persistent challenge. We propose CUPID, a robot data curation method based on a novel influence function-theoretic formulation for imitation learning policies. Given a set of evaluation rollouts, CUPID estimates the influence of each training demonstration on the policy's expected return. This enables ranking and selection of demonstrations according to their impact on the policy's closed-loop performance. We use CUPID to curate data by 1) filtering out training demonstrations that harm policy performance and 2) subselecting newly collected trajectories that will most improve the policy. Extensive simulated and hardware experiments show that our approach consistently identifies which data drives test-time performance. For example, training with less than 33% of curated data can yield state-of-the-art diffusion policies on the simulated RoboMimic benchmark, with similar gains observed in hardware. Furthermore, hardware experiments show that our method can identify robust strategies under distribution shift, isolate spurious correlations, and even enhance the post-training of generalist robot policies. Additional materials are made available at: https://cupid-curation.github.io.
comment: Project page: https://cupid-curation.github.io. 28 pages, 15 figures
☆ On the algorithmic construction of deep ReLU networks
It is difficult to describe in mathematical terms what a neural network trained on data represents. On the other hand, there is a growing mathematical understanding of what neural networks are in principle capable of representing. Feedforward neural networks using the ReLU activation function represent continuous and piecewise linear functions and can approximate many others. The study of their expressivity addresses the question: which ones? Contributing to the available answers, we take the perspective of a neural network as an algorithm. In this analogy, a neural network is programmed constructively, rather than trained from data. An interesting example is a sorting algorithm: we explicitly construct a neural network that sorts its inputs exactly, not approximately, and that, in a sense, has optimal computational complexity if the input dimension is large. Such constructed networks may have several billion parameters. We construct and analyze several other examples, both existing and new. We find that, in these examples, neural networks as algorithms are typically recursive and parallel. Compared to conventional algorithms, ReLU networks are restricted by having to be continuous. Moreover, the depth of recursion is limited by the depth of the network, with deep networks having superior properties over shallow ones.
☆ Finetuning a Weather Foundation Model with Lightweight Decoders for Unseen Physical Processes
Recent advances in AI weather forecasting have led to the emergence of so-called "foundation models", typically defined by expensive pretraining and minimal fine-tuning for downstream tasks. However, in the natural sciences, a desirable foundation model should also encode meaningful statistical relationships between the underlying physical variables. This study evaluates the performance of the state-of-the-art Aurora foundation model in predicting hydrological variables, which were not considered during pretraining. We introduce a lightweight approach using shallow decoders trained on the latent representations of the pretrained model to predict these new variables. As a baseline, we compare this to fine-tuning the full model, which allows further optimization of the latent space while incorporating new variables into both inputs and outputs. The decoder-based approach requires 50% less training time and 35% less memory, while achieving strong accuracy across various hydrological variables and preserving desirable properties of the foundation model, such as autoregressive stability. Notably, decoder accuracy depends on the physical correlation between the new variables and those used during pretraining, indicating that Aurora's latent space captures meaningful physical relationships. In this sense, we argue that an important quality metric for foundation models in Earth sciences is their ability to be extended to new variables without a full fine-tuning. This provides a new perspective for making foundation models more accessible to communities with limited computational resources, while supporting broader adoption in Earth sciences.
☆ Benchmarking Music Generation Models and Metrics via Human Preference Studies
Recent advancements have brought generated music closer to human-created compositions, yet evaluating these models remains challenging. While human preference is the gold standard for assessing quality, translating these subjective judgments into objective metrics, particularly for text-audio alignment and music quality, has proven difficult. In this work, we generate 6k songs using 12 state-of-the-art models and conduct a survey of 15k pairwise audio comparisons with 2.5k human participants to evaluate the correlation between human preferences and widely used metrics. To the best of our knowledge, this work is the first to rank current state-of-the-art music generation models and metrics based on human preference. To further the field of subjective metric evaluation, we provide open access to our dataset of generated music and human evaluations.
comment: Accepted at ICASSP 2025
☆ FairCauseSyn: Towards Causally Fair LLM-Augmented Synthetic Data Generation
Synthetic data generation creates data based on real-world data using generative models. In health applications, generating high-quality data while maintaining fairness for sensitive attributes is essential for equitable outcomes. Existing GAN-based and LLM-based methods focus on counterfactual fairness and are primarily applied in finance and legal domains. Causal fairness provides a more comprehensive evaluation framework by preserving causal structure, but current synthetic data generation methods do not address it in health settings. To fill this gap, we develop the first LLM-augmented synthetic data generation method to enhance causal fairness using real-world tabular health data. Our generated data deviates by less than 10% from real data on causal fairness metrics. When trained on causally fair predictors, synthetic data reduces bias on the sensitive attribute by 70% compared to real data. This work improves access to fair synthetic data, supporting equitable health research and healthcare delivery.
comment: Accepted to IEEE EMBC 2025
☆ First-Order Sparse Convex Optimization: Better Rates with Sparse Updates
In was recently established that for convex optimization problems with a sparse optimal solution (may it be entry-wise sparsity or matrix rank-wise sparsity) it is possible to have linear convergence rates which depend on an improved mixed-norm condition number of the form $\frac{\beta_1{}s}{\alpha_2}$, where $\beta_1$ is the $\ell_1$-Lipchitz continuity constant of the gradient, $\alpha_2$ is the $\ell_2$-quadratic growth constant, and $s$ is the sparsity of the optimal solution. However, beyond the improved convergence rate, these methods are unable to leverage the sparsity of optimal solutions towards improving also the runtime of each iteration, which may still be prohibitively high for high-dimensional problems. In this work, we establish that linear convergence rates which depend on this improved condition number can be obtained using only sparse updates, which may result in overall significantly improved running times. Moreover, our methods are considerably easier to implement.
☆ Which Company Adjustment Matter? Insights from Uplift Modeling on Financial Health
Uplift modeling has achieved significant success in various fields, particularly in online marketing. It is a method that primarily utilizes machine learning and deep learning to estimate individual treatment effects. This paper we apply uplift modeling to analyze the effect of company adjustment on their financial status, and we treat these adjustment as treatments or interventions in this study. Although there have been extensive studies and application regarding binary treatments, multiple treatments, and continuous treatments, company adjustment are often more complex than these scenarios, as they constitute a series of multiple time-dependent actions. The effect estimation of company adjustment needs to take into account not only individual treatment traits but also the temporal order of this series of treatments. This study collects a real-world data set about company financial statements and reported behavior in Luxembourg for the experiments. First, we use two meta-learners and three other well-known uplift models to analyze different company adjustment by simplifying the adjustment as binary treatments. Furthermore, we propose a new uplift modeling framework (MTDnet) to address the time-dependent nature of these adjustment, and the experimental result shows the necessity of considering the timing of these adjustment.
☆ Online Learning for Dynamic Vickrey-Clarke-Groves Mechanism in Sequential Auctions under Unknown Environments
We consider the problem of online dynamic mechanism design for sequential auctions in unknown environments, where the underlying market and, thus, the bidders' values vary over time as interactions between the seller and the bidders progress. We model the sequential auctions as an infinite-horizon average-reward Markov decision process (MDP), where the transition kernel and reward functions are unknown to the seller. In each round, the seller determines an allocation and a payment for each bidder. Each bidder receives a private reward and submits a sealed bid to the seller. The state, which represents the underlying market, evolves according to an unknown transition kernel and the seller's allocation policy. Unlike existing works that formulate the problem as a multi-armed bandit model or as an episodic MDP, where the environment resets to an initial state after each round or episode, our paper considers a more realistic and sophisticated setting in which the market continues to evolve without restarting. We first extend the Vickrey-Clarke-Groves (VCG) mechanism, which is known to be efficient, truthful, and individually rational for one-shot static auctions, to sequential auctions, thereby obtaining a dynamic VCG mechanism counterpart that preserves these desired properties. We then focus on the online setting and develop an online reinforcement learning algorithm for the seller to learn the underlying MDP model and implement a mechanism that closely resembles the dynamic VCG mechanism. We show that the learned online mechanism asymptotically converges to a dynamic mechanism that approximately satisfies efficiency, truthfulness, and individual rationality with arbitrarily high probability and achieves guaranteed performance in terms of various notions of regret.
comment: 16 pages
☆ Plan for Speed -- Dilated Scheduling for Masked Diffusion Language Models
Masked diffusion language models (MDLM) have shown strong promise for non-autoregressive text generation, yet existing samplers act as implicit planners, selecting tokens to unmask via denoiser confidence or entropy scores. Such heuristics falter under parallel unmasking - they ignore pairwise interactions between tokens and cannot account for dependencies when unmasking multiple positions at once, limiting their inference time to traditional auto-regressive (AR) models. We introduce the Dilated-scheduled Unmasking Strategy (DUS), an inference-only, planner-model-free method that requires no additional training. DUS leverages a first-order Markov assumption to partition sequence positions into dilation-based groups of non-adjacent tokens, enabling independent, parallel unmasking steps that respect local context that minimizes the joint entropy of each iteration step. Unlike semi-AR block approaches (e.g., LLADA and Dream) that still invoke the denoiser per block, DUS reduces the number of denoiser calls to O(log B) per generation block - yielding substantial speedup over the O(B) run time of state-of-the-art diffusion models, where B is the block size in the semi-AR inference process. In experiments on math (GSM8K) and code completion (Humaneval, MBPP) benchmarks - domains suited to non-ordinal generation - DUS improves scores over parallel confidence-based planner, without modifying the underlying denoiser. DUS offers a lightweight, budget-aware approach to efficient, high-quality text generation, paving the way to unlock the true capabilities of MDLMs.
☆ Failure Modes of Time Series Interpretability Algorithms for Critical Care Applications and Potential Solutions
Interpretability plays a vital role in aligning and deploying deep learning models in critical care, especially in constantly evolving conditions that influence patient survival. However, common interpretability algorithms face unique challenges when applied to dynamic prediction tasks, where patient trajectories evolve over time. Gradient, Occlusion, and Permutation-based methods often struggle with time-varying target dependency and temporal smoothness. This work systematically analyzes these failure modes and supports learnable mask-based interpretability frameworks as alternatives, which can incorporate temporal continuity and label consistency constraints to learn feature importance over time. Here, we propose that learnable mask-based approaches for dynamic timeseries prediction problems provide more reliable and consistent interpretations for applications in critical care and similar domains.
comment: 13 pages, 10 figures, Accepted at the AMIA Annual Symposium 2025. The final version will appear in the official proceedings
☆ When Diffusion Models Memorize: Inductive Biases in Probability Flow of Minimum-Norm Shallow Neural Nets ICML 2025
While diffusion models generate high-quality images via probability flow, the theoretical understanding of this process remains incomplete. A key question is when probability flow converges to training samples or more general points on the data manifold. We analyze this by studying the probability flow of shallow ReLU neural network denoisers trained with minimal $\ell^2$ norm. For intuition, we introduce a simpler score flow and show that for orthogonal datasets, both flows follow similar trajectories, converging to a training point or a sum of training points. However, early stopping by the diffusion time scheduler allows probability flow to reach more general manifold points. This reflects the tendency of diffusion models to both memorize training samples and generate novel points that combine aspects of multiple samples, motivating our study of such behavior in simplified settings. We extend these results to obtuse simplex data and, through simulations in the orthogonal case, confirm that probability flow converges to a training point, a sum of training points, or a manifold point. Moreover, memorization decreases when the number of training samples grows, as fewer samples accumulate near training points.
comment: Accepted to the Forty-second International Conference on Machine Learning (ICML 2025)
☆ Statistical Inference for Optimal Transport Maps: Recent Advances and Perspectives
In many applications of optimal transport (OT), the object of primary interest is the optimal transport map. This map rearranges mass from one probability distribution to another in the most efficient way possible by minimizing a specified cost. In this paper we review recent advances in estimating and developing limit theorems for the OT map, using samples from the underlying distributions. We also review parallel lines of work that establish similar results for special cases and variants of the basic OT setup. We conclude with a discussion of key directions for future research with the goal of providing practitioners with reliable inferential tools.
comment: 36 pages, 1 figure
☆ Automating Traffic Monitoring with SHM Sensor Networks via Vision-Supervised Deep Learning
Bridges, as critical components of civil infrastructure, are increasingly affected by deterioration, making reliable traffic monitoring essential for assessing their remaining service life. Among operational loads, traffic load plays a pivotal role, and recent advances in deep learning - particularly in computer vision (CV) - have enabled progress toward continuous, automated monitoring. However, CV-based approaches suffer from limitations, including privacy concerns and sensitivity to lighting conditions, while traditional non-vision-based methods often lack flexibility in deployment and validation. To bridge this gap, we propose a fully automated deep-learning pipeline for continuous traffic monitoring using structural health monitoring (SHM) sensor networks. Our approach integrates CV-assisted high-resolution dataset generation with supervised training and inference, leveraging graph neural networks (GNNs) to capture the spatial structure and interdependence of sensor data. By transferring knowledge from CV outputs to SHM sensors, the proposed framework enables sensor networks to achieve comparable accuracy of vision-based systems, with minimal human intervention. Applied to accelerometer and strain gauge data in a real-world case study, the model achieves state-of-the-art performance, with classification accuracies of 99% for light vehicles and 94% for heavy vehicles.
☆ Simulation-Based Sensitivity Analysis in Optimal Treatment Regimes and Causal Decomposition with Individualized Interventions
Causal decomposition analysis aims to assess the effect of modifying risk factors on reducing social disparities in outcomes. Recently, this analysis has incorporated individual characteristics when modifying risk factors by utilizing optimal treatment regimes (OTRs). Since the newly defined individualized effects rely on the no omitted confounding assumption, developing sensitivity analyses to account for potential omitted confounding is essential. Moreover, OTRs and individualized effects are primarily based on binary risk factors, and no formal approach currently exists to benchmark the strength of omitted confounding using observed covariates for binary risk factors. To address this gap, we extend a simulation-based sensitivity analysis that simulates unmeasured confounders, addressing two sources of bias emerging from deriving OTRs and estimating individualized effects. Additionally, we propose a formal bounding strategy that benchmarks the strength of omitted confounding for binary risk factors. Using the High School Longitudinal Study 2009 (HSLS:09), we demonstrate this sensitivity analysis and benchmarking method.
comment: 42 pages
☆ From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents
Information retrieval is a cornerstone of modern knowledge acquisition, enabling billions of queries each day across diverse domains. However, traditional keyword-based search engines are increasingly inadequate for handling complex, multi-step information needs. Our position is that Large Language Models (LLMs), endowed with reasoning and agentic capabilities, are ushering in a new paradigm termed Agentic Deep Research. These systems transcend conventional information search techniques by tightly integrating autonomous reasoning, iterative retrieval, and information synthesis into a dynamic feedback loop. We trace the evolution from static web search to interactive, agent-based systems that plan, explore, and learn. We also introduce a test-time scaling law to formalize the impact of computational depth on reasoning and search. Supported by benchmark results and the rise of open-source implementations, we demonstrate that Agentic Deep Research not only significantly outperforms existing approaches, but is also poised to become the dominant paradigm for future information seeking. All the related resources, including industry products, research papers, benchmark datasets, and open-source implementations, are collected for the community in https://github.com/DavidZWZ/Awesome-Deep-Research.
☆ A Comment On "The Illusion of Thinking": Reframing the Reasoning Cliff as an Agentic Gap
The recent work by Shojaee et al. (2025), titled The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity, presents a compelling empirical finding, a reasoning cliff, where the performance of Large Reasoning Models (LRMs) collapses beyond a specific complexity threshold, which the authors posit as an intrinsic scaling limitation of Chain-of-Thought (CoT) reasoning. This commentary, while acknowledging the study's methodological rigor, contends that this conclusion is confounded by experimental artifacts. We argue that the observed failure is not evidence of a fundamental cognitive boundary, but rather a predictable outcome of system-level constraints in the static, text-only evaluation paradigm, including tool use restrictions, context window recall issues, the absence of crucial cognitive baselines, inadequate statistical reporting, and output generation limits. We reframe this performance collapse through the lens of an agentic gap, asserting that the models are not failing at reasoning, but at execution within a profoundly restrictive interface. We empirically substantiate this critique by demonstrating a striking reversal. A model, initially declaring a puzzle impossible when confined to text-only generation, now employs agentic tools to not only solve it but also master variations of complexity far beyond the reasoning cliff it previously failed to surmount. Additionally, our empirical analysis of tool-enabled models like o4-mini and GPT-4o reveals a hierarchy of agentic reasoning, from simple procedural execution to complex meta-cognitive self-correction, which has significant implications for how we define and measure machine intelligence. The illusion of thinking attributed to LRMs is less a reasoning deficit and more a consequence of an otherwise capable mind lacking the tools for action.
comment: 10 pages, 2 figures, Comment on "The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity" (arXiv:2506.06941v1)
☆ SHAMaNS: Sound Localization with Hybrid Alpha-Stable Spatial Measure and Neural Steerer
This paper describes a sound source localization (SSL) technique that combines an $\alpha$-stable model for the observed signal with a neural network-based approach for modeling steering vectors. Specifically, a physics-informed neural network, referred to as Neural Steerer, is used to interpolate measured steering vectors (SVs) on a fixed microphone array. This allows for a more robust estimation of the so-called $\alpha$-stable spatial measure, which represents the most plausible direction of arrival (DOA) of a target signal. As an $\alpha$-stable model for the non-Gaussian case ($\alpha$ $\in$ (0, 2)) theoretically defines a unique spatial measure, we choose to leverage it to account for residual reconstruction error of the Neural Steerer in the downstream tasks. The objective scores indicate that our proposed technique outperforms state-of-the-art methods in the case of multiple sound sources.
comment: European Signal Processing Conference (EUSIPCO), Sep 2025, Palermo, Italy
LLMs on a Budget? Say HOLA
Running Large Language Models (LLMs) on edge devices is constrained by high compute and memory demands posing a barrier for real-time applications in sectors like healthcare, education, and embedded systems. Current solutions such as quantization, pruning, and retrieval-augmented generation (RAG) offer only partial optimizations and often compromise on speed or accuracy. We introduce HOLA, an end-to-end optimization framework for efficient LLM deployment. Internally, it leverages Hierarchical Speculative Decoding (HSD) for faster inference without quality loss. Externally, AdaComp-RAG adjusts retrieval complexity based on context needs. Together with LoBi, which blends structured pruning (LoRA) and quantization, HOLA delivers significant gains: 17.6% EMA on GSM8K, 10.5% MCA on ARC, and reduced latency and memory on edge devices like Jetson Nano--proving both scalable and production-ready.
♻ ☆ Accurate and scalable exchange-correlation with deep learning
Density Functional Theory (DFT) is the most widely used electronic structure method for predicting the properties of molecules and materials. Although DFT is, in principle, an exact reformulation of the Schr\"odinger equation, practical applications rely on approximations to the unknown exchange-correlation (XC) functional. Most existing XC functionals are constructed using a limited set of increasingly complex, hand-crafted features that improve accuracy at the expense of computational efficiency. Yet, no current approximation achieves the accuracy and generality for predictive modeling of laboratory experiments at chemical accuracy -- typically defined as errors below 1 kcal/mol. In this work, we present Skala, a modern deep learning-based XC functional that bypasses expensive hand-designed features by learning representations directly from data. Skala achieves chemical accuracy for atomization energies of small molecules while retaining the computational efficiency typical of semi-local DFT. This performance is enabled by training on an unprecedented volume of high-accuracy reference data generated using computationally intensive wavefunction-based methods. Notably, Skala systematically improves with additional training data covering diverse chemistry. By incorporating a modest amount of additional high-accuracy data tailored to chemistry beyond atomization energies, Skala achieves accuracy competitive with the best-performing hybrid functionals across general main group chemistry, at the cost of semi-local DFT. As the training dataset continues to expand, Skala is poised to further enhance the predictive power of first-principles simulations.
comment: Main: 13 pages plus references, 11 figures and tables. Supplementary information: 19 pages, 12 figures and tables. v2 update: fix rendering of figure 1 and part of figure 5 in Safari PDF viewer. v3 update: update author information and fix typo
♻ ☆ A Reliable Framework for Human-in-the-Loop Anomaly Detection in Time Series
Time series anomaly detection is a critical machine learning task for numerous applications, such as finance, healthcare, and industrial systems. However, even high-performing models may exhibit potential issues such as biases, leading to unreliable outcomes and misplaced confidence. While model explanation techniques, particularly visual explanations, offer valuable insights by elucidating model attributions of their decision, many limitations still exist -- They are primarily instance-based and not scalable across the dataset, and they provide one-directional information from the model to the human side, lacking a mechanism for users to address detected issues. To fulfill these gaps, we introduce HILAD, a novel framework designed to foster a dynamic and bidirectional collaboration between humans and AI for enhancing anomaly detection models in time series. Through our visual interface, HILAD empowers domain experts to detect, interpret, and correct unexpected model behaviors at scale. Our evaluation through user studies with two models and three time series datasets demonstrates the effectiveness of HILAD, which fosters a deeper model understanding, immediate corrective actions, and model reliability enhancement.
comment: The manuscript is currently under review
♻ ☆ CDI: Copyrighted Data Identification in Diffusion Models CVPR2025
Diffusion Models (DMs) benefit from large and diverse datasets for their training. Since this data is often scraped from the Internet without permission from the data owners, this raises concerns about copyright and intellectual property protections. While (illicit) use of data is easily detected for training samples perfectly re-created by a DM at inference time, it is much harder for data owners to verify if their data was used for training when the outputs from the suspect DM are not close replicas. Conceptually, membership inference attacks (MIAs), which detect if a given data point was used during training, present themselves as a suitable tool to address this challenge. However, we demonstrate that existing MIAs are not strong enough to reliably determine the membership of individual images in large, state-of-the-art DMs. To overcome this limitation, we propose CDI, a framework for data owners to identify whether their dataset was used to train a given DM. CDI relies on dataset inference techniques, i.e., instead of using the membership signal from a single data point, CDI leverages the fact that most data owners, such as providers of stock photography, visual media companies, or even individual artists, own datasets with multiple publicly exposed data points which might all be included in the training of a given DM. By selectively aggregating signals from existing MIAs and using new handcrafted methods to extract features for these datasets, feeding them to a scoring model, and applying rigorous statistical testing, CDI allows data owners with as little as 70 data points to identify with a confidence of more than 99% whether their data was used to train a given DM. Thereby, CDI represents a valuable tool for data owners to claim illegitimate use of their copyrighted data. We make the code available at https://github.com/sprintml/copyrighted_data_identification
comment: Accepted at CVPR2025 (Conference on Computer Vision and Pattern Recognition) Code available at https://github.com/sprintml/copyrighted_data_identification
♻ ☆ Controlling Moments with Kernel Stein Discrepancies
Kernel Stein discrepancies (KSDs) measure the quality of a distributional approximation and can be computed even when the target density has an intractable normalizing constant. Notable applications include the diagnosis of approximate MCMC samplers and goodness-of-fit tests for unnormalized statistical models. The present work analyzes the convergence control properties of KSDs. We first show that standard KSDs used for weak convergence control fail to control moment convergence. To address this limitation, we next provide sufficient conditions under which alternative diffusion KSDs control both moment and weak convergence. As an immediate consequence we develop, for each $q > 0$, the first KSDs known to exactly characterize $q$-Wasserstein convergence.
comment: Accepted to the Annals of Applied Probability (103 pages, 10 figures)
♻ ☆ EXPRTS: Exploring and Probing the Robustness ofTime Series Forecasting Models
When deploying time series forecasting models based on machine learning to real world settings, one often encounter situations where the data distribution drifts. Such drifts expose the forecasting models to out-of-distribution (OOD) data, and machine learning models lack robustness in these settings. Robustness can be improved by using deep generative models or genetic algorithms to augment time series datasets, but these approaches lack interpretability and are computationally expensive. In this work, we develop an interpretable and simple framework for generating time series. Our method combines time-series decompositions with analytic functions, and is able to generate time series with characteristics matching both in- and out-of-distribution data. This approach allows users to generate new time series in an interpretable fashion, which can be used to augment the dataset and improve forecasting robustness. We demonstrate our framework through EXPRTS, a visual analytics tool designed for univariate time series forecasting models and datasets. Different visualizations of the data distribution, forecasting errors and single time series instances enable users to explore time series datasets, apply transformations, and evaluate forecasting model robustness across diverse scenarios. We show how our framework can generate meaningful OOD time series that improve model robustness, and we validate EXPRTS effectiveness and usability through three use-cases and a user study.
comment: under review
♻ ☆ Segmentation-Aware Generative Reinforcement Network (GRN) for Tissue Layer Segmentation in 3-D Ultrasound Images for Chronic Low-back Pain (cLBP) Assessment
We introduce a novel segmentation-aware joint training framework called generative reinforcement network (GRN) that integrates segmentation loss feedback to optimize both image generation and segmentation performance in a single stage. An image enhancement technique called segmentation-guided enhancement (SGE) is also developed, where the generator produces images tailored specifically for the segmentation model. Two variants of GRN were also developed, including GRN for sample-efficient learning (GRN-SEL) and GRN for semi-supervised learning (GRN-SSL). GRN's performance was evaluated using a dataset of 69 fully annotated 3D ultrasound scans from 29 subjects. The annotations included six anatomical structures: dermis, superficial fat, superficial fascial membrane (SFM), deep fat, deep fascial membrane (DFM), and muscle. Our results show that GRN-SEL with SGE reduces labeling efforts by up to 70% while achieving a 1.98% improvement in the Dice Similarity Coefficient (DSC) compared to models trained on fully labeled datasets. GRN-SEL alone reduces labeling efforts by 60%, GRN-SSL with SGE decreases labeling requirements by 70%, and GRN-SSL alone by 60%, all while maintaining performance comparable to fully supervised models. These findings suggest the effectiveness of the GRN framework in optimizing segmentation performance with significantly less labeled data, offering a scalable and efficient solution for ultrasound image analysis and reducing the burdens associated with data annotation.
♻ ☆ A Comprehensive Study of Machine Learning Techniques for Log-Based Anomaly Detection
Growth in system complexity increases the need for automated log analysis techniques, such as Log-based Anomaly Detection (LAD). While deep learning (DL) methods have been widely used for LAD, traditional machine learning (ML) techniques can also perform well depending on the context and dataset. Semi-supervised techniques deserve the same attention as they offer practical advantages over fully supervised methods. Current evaluations mainly focus on detection accuracy, but this alone is insufficient to determine the suitability of a technique for a given LAD task. Other aspects to consider include training and prediction times as well as the sensitivity to hyperparameter tuning, which in practice matters to engineers. This paper presents a comprehensive empirical study evaluating a wide range of supervised and semi-supervised, traditional and deep ML techniques across four criteria: detection accuracy, time performance, and sensitivity to hyperparameter tuning in both detection accuracy and time performance. The experimental results show that supervised traditional and deep ML techniques fare similarly in terms of their detection accuracy and prediction time on most of the benchmark datasets considered in our study. Moreover, overall, sensitivity analysis to hyperparameter tuning with respect to detection accuracy shows that supervised traditional ML techniques are less sensitive than deep learning techniques. Further, semi-supervised techniques yield significantly worse detection accuracy than supervised techniques.
comment: Accepted by EMSE'25
♻ ☆ Conformal Prediction for Causal Effects of Continuous Treatments
Uncertainty quantification of causal effects is crucial for safety-critical applications such as personalized medicine. A powerful approach for this is conformal prediction, which has several practical benefits due to model-agnostic finite-sample guarantees. Yet, existing methods for conformal prediction of causal effects are limited to binary/discrete treatments and make highly restrictive assumptions such as known propensity scores. In this work, we provide a novel conformal prediction method for potential outcomes of continuous treatments. We account for the additional uncertainty introduced through propensity estimation so that our conformal prediction intervals are valid even if the propensity score is unknown. Our contributions are three-fold: (1) We derive finite-sample prediction intervals for potential outcomes of continuous treatments. (2) We provide an algorithm for calculating the derived intervals. (3) We demonstrate the effectiveness of the conformal prediction intervals in experiments on synthetic and real-world datasets. To the best of our knowledge, we are the first to propose conformal prediction for continuous treatments when the propensity score is unknown and must be estimated from data.
♻ ☆ Regularized Neural Ensemblers
Ensemble methods are known for enhancing the accuracy and robustness of machine learning models by combining multiple base learners. However, standard approaches like greedy or random ensembling often fall short, as they assume a constant weight across samples for the ensemble members. This can limit expressiveness and hinder performance when aggregating the ensemble predictions. In this study, we explore employing regularized neural networks as ensemble methods, emphasizing the significance of dynamic ensembling to leverage diverse model predictions adaptively. Motivated by the risk of learning low-diversity ensembles, we propose regularizing the ensembling model by randomly dropping base model predictions during the training. We demonstrate this approach provides lower bounds for the diversity within the ensemble, reducing overfitting and improving generalization capabilities. Our experiments showcase that the regularized neural ensemblers yield competitive results compared to strong baselines across several modalities such as computer vision, natural language processing, and tabular data.
comment: Accepted in AutoML Conference 2025
♻ ☆ Kernel spectral joint embeddings for high-dimensional noisy datasets using duo-landmark integral operators
Integrative analysis of multiple heterogeneous datasets has become standard practice in many research fields, especially in single-cell genomics and medical informatics. Existing approaches oftentimes suffer from limited power in capturing nonlinear structures, insufficient account of noisiness and effects of high-dimensionality, lack of adaptivity to signals and sample sizes imbalance, and their results are sometimes difficult to interpret. To address these limitations, we propose a novel kernel spectral method that achieves joint embeddings of two independently observed high-dimensional noisy datasets. The proposed method automatically captures and leverages possibly shared low-dimensional structures across datasets to enhance embedding quality. The obtained low-dimensional embeddings can be utilized for many downstream tasks such as simultaneous clustering, data visualization, and denoising. The proposed method is justified by rigorous theoretical analysis. Specifically, we show the consistency of our method in recovering the low-dimensional noiseless signals, and characterize the effects of the signal-to-noise ratios on the rates of convergence. Under a joint manifolds model framework, we establish the convergence of ultimate embeddings to the eigenfunctions of some newly introduced integral operators. These operators, referred to as duo-landmark integral operators, are defined by the convolutional kernel maps of some reproducing kernel Hilbert spaces (RKHSs). These RKHSs capture the either partially or entirely shared underlying low-dimensional nonlinear signal structures of the two datasets. Our numerical experiments and analyses of two single-cell omics datasets demonstrate the empirical advantages of the proposed method over existing methods in both embeddings and several downstream tasks.
comment: 57 pages, 16 figures
♻ ☆ Maximizing Confidence Alone Improves Reasoning
Reinforcement learning (RL) has enabled machine learning models to achieve significant advances in many fields. Most recently, RL has empowered frontier language models to solve challenging math, science, and coding problems. However, central to any RL algorithm is the reward function, and reward engineering is a notoriously difficult problem in any domain. In this paper, we propose RENT: Reinforcement Learning via Entropy Minimization -- a fully unsupervised RL method that requires no external reward or ground-truth answers, and instead uses the model's entropy of its underlying distribution as an intrinsic reward. We find that by reinforcing the chains of thought that yield high model confidence on its generated answers, the model improves its reasoning ability. In our experiments, we showcase these improvements on an extensive suite of commonly-used reasoning benchmarks, including GSM8K, MATH500, AMC, AIME, and GPQA, and models of varying sizes from the Qwen and Mistral families. The generality of our unsupervised learning method lends itself to applicability in a wide range of domains where external supervision is unavailable.
comment: Website: https://rent-rl.github.io/
♻ ☆ Image Captions are Natural Prompts for Text-to-Image Models
With the rapid development of Artificial Intelligence Generated Content (AIGC), it has become a common practice to train models on synthetic data due to data-scarcity and privacy leakage problems. Owing to massive and diverse information conveyed in real images, it is challenging for text-to-image generative models to synthesize informative training data with hand-crafted prompts. Considering the impressive ability of large generative models, could such models directly synthesize good training images for prediction tasks with proper prompts? We offer an affirmative response to this question by proposing a simple yet effective method, validated through ImageNet classification. Specifically, we caption each real image with the advanced captioning model to obtain informative and faithful prompts that extract class-relevant information and clarify the polysemy of class names. The image captions and class names are concatenated to prompt generative models for training image synthesis. We show that this simple caption incorporation significantly boosts the informativeness of synthetic data therefore enhancing downstream model generalization. More importantly, besides improvements in data augmentation and privacy preservation, our experiments demonstrate that synthesized images can exceed real data in terms of out-of-distribution robustness.
comment: 31 pages, 2 figure, 15 tables. Codes are available at https://github.com/LeavesLei/Caption_in_Prompt
♻ ☆ Simple and Critical Iterative Denoising: A Recasting of Discrete Diffusion in Graph Generation ICML 2025
Discrete Diffusion and Flow Matching models have significantly advanced generative modeling for discrete structures, including graphs. However, the dependencies between intermediate noisy states lead to error accumulation and propagation during the reverse denoising process - a phenomenon known as compounding denoising errors. To address this problem, we propose a novel framework called Simple Iterative Denoising, which simplifies discrete diffusion and circumvents the issue by assuming conditional independence between intermediate states. Additionally, we enhance our model by incorporating a Critic. During generation, the Critic selectively retains or corrupts elements in an instance based on their likelihood under the data distribution. Our empirical evaluations demonstrate that the proposed method significantly outperforms existing discrete diffusion baselines in graph generation tasks.
comment: ICML 2025 Accepted paper
♻ ☆ Learning to Insert for Constructive Neural Vehicle Routing Solver
Neural Combinatorial Optimisation (NCO) is a promising learning-based approach for solving Vehicle Routing Problems (VRPs) without extensive manual design. While existing constructive NCO methods typically follow an appending-based paradigm that sequentially adds unvisited nodes to partial solutions, this rigid approach often leads to suboptimal results. To overcome this limitation, we explore the idea of insertion-based paradigm and propose Learning to Construct with Insertion-based Paradigm (L2C-Insert), a novel learning-based method for constructive NCO. Unlike traditional approaches, L2C-Insert builds solutions by strategically inserting unvisited nodes at any valid position in the current partial solution, which can significantly enhance the flexibility and solution quality. The proposed framework introduces three key components: a novel model architecture for precise insertion position prediction, an efficient training scheme for model optimization, and an advanced inference technique that fully exploits the insertion paradigm's flexibility. Extensive experiments on both synthetic and real-world instances of the Travelling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) demonstrate that L2C-Insert consistently achieves superior performance across various problem sizes.
♻ ☆ A generalized neural tangent kernel for surrogate gradient learning
State-of-the-art neural network training methods depend on the gradient of the network function. Therefore, they cannot be applied to networks whose activation functions do not have useful derivatives, such as binary and discrete-time spiking neural networks. To overcome this problem, the activation function's derivative is commonly substituted with a surrogate derivative, giving rise to surrogate gradient learning (SGL). This method works well in practice but lacks theoretical foundation. The neural tangent kernel (NTK) has proven successful in the analysis of gradient descent. Here, we provide a generalization of the NTK, which we call the surrogate gradient NTK, that enables the analysis of SGL. First, we study a naive extension of the NTK to activation functions with jumps, demonstrating that gradient descent for such activation functions is also ill-posed in the infinite-width limit. To address this problem, we generalize the NTK to gradient descent with surrogate derivatives, i.e., SGL. We carefully define this generalization and expand the existing key theorems on the NTK with mathematical rigor. Further, we illustrate our findings with numerical experiments. Finally, we numerically compare SGL in networks with sign activation function and finite width to kernel regression with the surrogate gradient NTK; the results confirm that the surrogate gradient NTK provides a good characterization of SGL.
comment: 53 pages, 3 figures + 4 supplementary figures
♻ ☆ Reasoning Limitations of Multimodal Large Language Models. A Case Study of Bongard Problems ICML 2025
Abstract visual reasoning (AVR) involves discovering shared concepts across images through analogy, akin to solving IQ test problems. Bongard Problems (BPs) remain a key challenge in AVR, requiring both visual reasoning and verbal description. We investigate whether multimodal large language models (MLLMs) can solve BPs by formulating a set of diverse MLLM-suited solution strategies and testing $4$ proprietary and $4$ open-access models on $3$ BP datasets featuring synthetic (classic BPs) and real-world (Bongard HOI and Bongard-OpenWorld) images. Despite some successes on real-world datasets, MLLMs struggle with synthetic BPs. To explore this gap, we introduce Bongard-RWR, a dataset representing synthetic BP concepts using real-world images. Our findings suggest that weak MLLM performance on classical BPs is not due to the domain specificity, but rather comes from their general AVR limitations. Code and dataset are available at: https://github.com/pavonism/bongard-rwr
comment: Accepted to The Forty-Second International Conference on Machine Learning (ICML 2025)
♻ ☆ The Impact of Input Order Bias on Large Language Models for Software Fault Localization
Large Language Models (LLMs) have shown significant potential in software engineering tasks such as Fault Localization (FL) and Automatic Program Repair (APR). This study investigates how input order and context size influence LLM performance in FL, a crucial step for many downstream software engineering tasks. We evaluate different method orderings using Kendall Tau distances, including "perfect" (where ground truths appear first) and "worst" (where ground truths appear last), across two benchmarks containing Java and Python projects. Our results reveal a strong order bias: in Java projects, Top-1 FL accuracy drops from 57% to 20% when reversing the order, while in Python projects, it decreases from 38% to approximately 3%. However, segmenting inputs into smaller contexts mitigates this bias, reducing the performance gap in FL from 22% and 6% to just 1% across both benchmarks. We replaced method names with semantically meaningful alternatives to determine whether this bias is due to data leakage. The observed trends remained consistent, suggesting that the bias is not caused by memorization from training data but rather by the inherent effect of input order. Additionally, we explored ordering methods based on traditional FL techniques and metrics, finding that DepGraph's ranking achieves 48% Top-1 accuracy, outperforming simpler approaches such as CallGraph(DFS). These findings highlight the importance of structuring inputs, managing context effectively, and selecting appropriate ordering strategies to enhance LLM performance in FL and other software engineering applications.
♻ ☆ Fast Bayesian Optimization of Function Networks with Partial Evaluations
Bayesian optimization of function networks (BOFN) is a framework for optimizing expensive-to-evaluate objective functions structured as networks, where some nodes' outputs serve as inputs for others. Many real-world applications, such as manufacturing and drug discovery, involve function networks with additional properties - nodes that can be evaluated independently and incur varying costs. A recent BOFN variant, p-KGFN, leverages this structure and enables cost-aware partial evaluations, selectively querying only a subset of nodes at each iteration. p-KGFN reduces the number of expensive objective function evaluations needed but has a large computational overhead: choosing where to evaluate requires optimizing a nested Monte Carlo-based acquisition function for each node in the network. To address this, we propose an accelerated p-KGFN algorithm that reduces computational overhead with only a modest loss in query efficiency. Key to our approach is generation of node-specific candidate inputs for each node in the network via one inexpensive global Monte Carlo simulation. Numerical experiments show that our method maintains competitive query efficiency while achieving up to a 16x speedup over the original p-KGFN algorithm.
comment: 16 pages, 8 figures, 1 table
♻ ☆ SEAL: Scaling to Emphasize Attention for Long-Context Retrieval ACL 2025
While many advanced LLMs are designed to handle long sequence data, we can still observe notable quality degradation even within the sequence limit. In this work, we introduce a novel approach called Scaling to Emphasize Attention for Long-context retrieval (SEAL), which enhances the retrieval performance of large language models (LLMs) over long contexts. We observe that specific attention heads are closely tied to long-context retrieval, showing positive or negative correlation with retrieval scores, and adjusting the strength of these heads boosts the quality of LLMs in long context by a large margin. Built on this insight, we propose a learning-based mechanism that leverages generated data to emphasize these heads. By applying SEAL, we achieve significant improvements in long-context retrieval performance across various tasks and models. Additionally, when combined with existing training-free context extension techniques, SEAL extends the contextual limits of LLMs while maintaining highly reliable outputs.
comment: Accepted at ACL 2025 Main
♻ ☆ DiffDesign: Controllable Diffusion with Meta Prior for Efficient Interior Design Generation
Interior design is a complex and creative discipline involving aesthetics, functionality, ergonomics, and materials science. Effective solutions must meet diverse requirements, typically producing multiple deliverables such as renderings and design drawings from various perspectives. Consequently, interior design processes are often inefficient and demand significant creativity. With advances in machine learning, generative models have emerged as a promising means of improving efficiency by creating designs from text descriptions or sketches. However, few generative works focus on interior design, leading to substantial discrepancies between outputs and practical needs, such as differences in size, spatial scope, and the lack of controllable generation quality. To address these challenges, we propose DiffDesign, a controllable diffusion model with meta priors for efficient interior design generation. Specifically, we utilize the generative priors of a 2D diffusion model pre-trained on a large image dataset as our rendering backbone. We further guide the denoising process by disentangling cross-attention control over design attributes, such as appearance, pose, and size, and introduce an optimal transfer-based alignment module to enforce view consistency. Simultaneously, we construct an interior design-specific dataset, DesignHelper, consisting of over 400 solutions across more than 15 spatial types and 15 design styles. This dataset helps fine-tune DiffDesign. Extensive experiments conducted on various benchmark datasets demonstrate the effectiveness and robustness of DiffDesign.
♻ ☆ When to Forget? Complexity Trade-offs in Machine Unlearning
Machine Unlearning (MU) aims at removing the influence of specific data points from a trained model, striving to achieve this at a fraction of the cost of full model retraining. In this paper, we analyze the efficiency of unlearning methods and establish the first upper and lower bounds on minimax computation times for this problem, characterizing the performance of the most efficient algorithm against the most difficult objective function. Specifically, for strongly convex objective functions and under the assumption that the forget data is inaccessible to the unlearning method, we provide a phase diagram for the unlearning complexity ratio -- a novel metric that compares the computational cost of the best unlearning method to full model retraining. The phase diagram reveals three distinct regimes: one where unlearning at a reduced cost is infeasible, another where unlearning is trivial because adding noise suffices, and a third where unlearning achieves significant computational advantages over retraining. These findings highlight the critical role of factors such as data dimensionality, the number of samples to forget, and privacy constraints in determining the practical feasibility of unlearning.
♻ ☆ Learning interpretable positional encodings in transformers depends on initialization ICML 2025
In transformers, the positional encoding (PE) provides essential information that distinguishes the position and order amongst tokens in a sequence. Most prior investigations of PE effects on generalization were tailored to 1D input sequences, such as those presented in natural language, where adjacent tokens (e.g., words) are highly related. In contrast, many real world tasks involve datasets with highly non-trivial positional arrangements, such as datasets organized in multiple spatial dimensions, or datasets for which ground truth positions are not known. Here we find that the choice of initialization of a learnable PE greatly influences its ability to learn interpretable PEs that lead to enhanced generalization. We empirically demonstrate our findings in three experiments: 1) A 2D relational reasoning task; 2) A nonlinear stochastic network simulation; 3) A real world 3D neuroscience dataset, applying interpretability analyses to verify the learning of accurate PEs. Overall, we find that a learned PE initialized from a small-norm distribution can 1) uncover interpretable PEs that mirror ground truth positions in multiple dimensions, and 2) lead to improved generalization. These results illustrate the feasibility of learning identifiable and interpretable PEs for enhanced generalization.
comment: ICML 2025, Workshop on Actionable Interpretability
♻ ☆ PC-SRGAN: Physically Consistent Super-Resolution Generative Adversarial Network for General Transient Simulations
Machine Learning, particularly Generative Adversarial Networks (GANs), has revolutionised Super Resolution (SR). However, generated images often lack physical meaningfulness, which is essential for scientific applications. Our approach, PC-SRGAN, enhances image resolution while ensuring physical consistency for interpretable simulations. PC-SRGAN significantly improves both the Peak Signal-to-Noise Ratio and the Structural Similarity Index Measure compared to conventional methods, even with limited training data (e.g., only 13% of training data required for SRGAN). Beyond SR, PC-SRGAN augments physically meaningful machine learning, incorporating numerically justified time integrators and advanced quality metrics. These advancements promise reliable and causal machine-learning models in scientific domains. A significant advantage of PC-SRGAN over conventional SR techniques is its physical consistency, which makes it a viable surrogate model for time-dependent problems. PC-SRGAN advances scientific machine learning, offering improved accuracy and efficiency for image processing, enhanced process understanding, and broader applications to scientific research. We publicly release the complete source code at https://github.com/hasan-rakibul/PC-SRGAN.
♻ ☆ BAnG: Bidirectional Anchored Generation for Conditional RNA Design
Designing RNA molecules that interact with specific proteins is a critical challenge in experimental and computational biology. Existing computational approaches require a substantial amount of previously known interacting RNA sequences for each specific protein or a detailed knowledge of RNA structure, restricting their utility in practice. To address this limitation, we develop RNA-BAnG, a deep learning-based model designed to generate RNA sequences for protein interactions without these requirements. Central to our approach is a novel generative method, Bidirectional Anchored Generation (BAnG), which leverages the observation that protein-binding RNA sequences often contain functional binding motifs embedded within broader sequence contexts. We first validate our method on generic synthetic tasks involving similar localized motifs to those appearing in RNAs, demonstrating its benefits over existing generative approaches. We then evaluate our model on biological sequences, showing its effectiveness for conditional RNA sequence design given a binding protein.
♻ ☆ One Step Diffusion via Shortcut Models
Diffusion models and flow-matching models have enabled generating diverse and realistic images by learning to transfer noise to data. However, sampling from these models involves iterative denoising over many neural network passes, making generation slow and expensive. Previous approaches for speeding up sampling require complex training regimes, such as multiple training phases, multiple networks, or fragile scheduling. We introduce shortcut models, a family of generative models that use a single network and training phase to produce high-quality samples in a single or multiple sampling steps. Shortcut models condition the network not only on the current noise level but also on the desired step size, allowing the model to skip ahead in the generation process. Across a wide range of sampling step budgets, shortcut models consistently produce higher quality samples than previous approaches, such as consistency models and reflow. Compared to distillation, shortcut models reduce complexity to a single network and training phase and additionally allow varying step budgets at inference time.
♻ ☆ VesselGPT: Autoregressive Modeling of Vascular Geometry MICCAI 2025
Anatomical trees are critical for clinical diagnosis and treatment planning, yet their complex and diverse geometry make accurate representation a significant challenge. Motivated by the latest advances in large language models, we introduce an autoregressive method for synthesizing anatomical trees. Our approach first embeds vessel structures into a learned discrete vocabulary using a VQ-VAE architecture, then models their generation autoregressively with a GPT-2 model. This method effectively captures intricate geometries and branching patterns, enabling realistic vascular tree synthesis. Comprehensive qualitative and quantitative evaluations reveal that our technique achieves high-fidelity tree reconstruction with compact discrete representations. Moreover, our B-spline representation of vessel cross-sections preserves critical morphological details that are often overlooked in previous' methods parameterizations. To the best of our knowledge, this work is the first to generate blood vessels in an autoregressive manner. Code is available at https://github.com/LIA-DiTella/VesselGPT-MICCAI.
comment: Accepted for MICCAI 2025
♻ ☆ Bures-Wasserstein Flow Matching for Graph Generation
Graph generation has emerged as a critical task in fields ranging from molecule design to drug discovery. Contemporary approaches, notably diffusion and flow-based models, have achieved solid graph generative performance through constructing a probability path that interpolates between a reference distribution and the data distribution. However, these methods typically model the evolution of individual nodes and edges independently and use linear interpolations to build the path assuming that the data lie in Euclidean space. We show that this is suboptimal given the intrinsic non-Euclidean structure and interconnected patterns of graphs, and it poses risks to the sampling convergence. To build a better probability path, we model the joint evolution of the nodes and edges by representing graphs as connected systems parameterized by Markov random fields (MRF). We then leverage the optimal transport displacement between MRF objects to design the probability path for graph generation. Based on this, we introduce BWFlow, a flow-matching framework for graph generation that respects the underlying geometry of graphs and provides smooth velocities in the probability path. The novel framework can be adapted to both continuous and discrete flow-matching algorithms. Experimental evaluations in plain graph generation and 2D/3D molecule generation validate the effectiveness of BWFlow in graph generation with competitive performance, stable training, and guaranteed sampling convergence.
♻ ☆ Radio Map Prediction from Aerial Images and Application to Coverage Optimization
Several studies have explored deep learning algorithms to predict large-scale signal fading, or path loss, in urban communication networks. The goal is to replace costly measurement campaigns, inaccurate statistical models, or computationally expensive ray-tracing simulations with machine learning models that deliver quick and accurate predictions. We focus on predicting path loss radio maps using convolutional neural networks, leveraging aerial images alone or in combination with supplementary height information. Notably, our approach does not rely on explicit classification of environmental objects, which is often unavailable for most locations worldwide. While the prediction of radio maps using complete 3D environmental data is well-studied, the use of only aerial images remains under-explored. We address this gap by showing that state-of-the-art models developed for existing radio map datasets can be effectively adapted to this task. Additionally, we introduce a new model dubbed UNetDCN that achieves on par or better performance compared to the state-of-the-art with reduced complexity. The trained models are differentiable, and therefore they can be incorporated in various network optimization algorithms. While an extensive discussion is beyond this paper's scope, we demonstrate this through an example optimizing the directivity of base stations in cellular networks via backpropagation to enhance coverage.
comment: 13 pages, 8 Figures, To appear in IEEE Transactions on Wireless Communications. arXiv admin note: substantial text overlap with arXiv:2402.00878
♻ ☆ Soft decision trees for survival analysis
Decision trees are popular in survival analysis for their interpretability and ability to model complex relationships. Survival trees, which predict the timing of singular events using censored historical data, are typically built through heuristic approaches. Recently, there has been growing interest in globally optimized trees, where the overall tree is trained by minimizing the error function over all its parameters. We propose a new soft survival tree model (SST), with a soft splitting rule at each branch node, trained via a nonlinear optimization formulation amenable to decomposition. Since SSTs provide for every input vector a specific survival function associated to a single leaf node, they satisfy the conditional computation property and inherit the related benefits. SST and the training formulation combine flexibility with interpretability: any smooth survival function (parametric, semiparametric, or nonparametric) estimated through maximum likelihood can be used, and each leaf node of an SST yields a cluster of distinct survival functions which are associated to the data points routed to it. Numerical experiments on 15 well-known datasets show that SSTs, with parametric and spline-based semiparametric survival functions, trained using an adaptation of the node-based decomposition algorithm proposed by Consolo et al. (2024) for soft regression trees, outperform three benchmark survival trees in terms of four widely-used discrimination and calibration measures. SSTs can also be extended to consider group fairness.
♻ ☆ Accurate early detection of Parkinson's disease from SPECT imaging through Convolutional Neural Networks
Early and accurate detection of Parkinson's disease (PD) is a crucial diagnostic challenge carrying immense clinical significance, for effective treatment regimens and patient management. For instance, a group of subjects termed SWEDD who are clinically diagnosed as PD, but show normal Single Photon Emission Computed Tomography (SPECT) scans, change their diagnosis as non-PD after few years of follow up, and in the meantime, they are treated with PD medications which do more harm than good. In this work, machine learning models are developed using features from SPECT images to detect early PD and SWEDD subjects from normal. These models were observed to perform with high accuracy. It is inferred from the study that these diagnostic models carry potential to help PD clinicians in the diagnostic process
comment: This article is accepted and published with revisions to the Artificial Intelligence in Health journal (2025). The accepted article can be accessed at https://doi.org/10.36922/AIH025040005
♻ ☆ AutoPDL: Automatic Prompt Optimization for LLM Agents
The performance of large language models (LLMs) depends on how they are prompted, with choices spanning both the high-level prompting pattern (e.g., Zero-Shot, CoT, ReAct, ReWOO) and the specific prompt content (instructions and few-shot demonstrations). Manually tuning this combination is tedious, error-prone, and specific to a given LLM and task. Therefore, this paper proposes AutoPDL, an automated approach to discovering good LLM agent configurations. Our approach frames this as a structured AutoML problem over a combinatorial space of agentic and non-agentic prompting patterns and demonstrations, using successive halving to efficiently navigate this space. We introduce a library implementing common prompting patterns using the PDL prompt programming language. AutoPDL solutions are human-readable, editable, and executable PDL programs that use this library. This approach also enables source-to-source optimization, allowing human-in-the-loop refinement and reuse. Evaluations across three tasks and seven LLMs (ranging from 3B to 70B parameters) show consistent accuracy gains ($9.06\pm15.3$ percentage points), up to 68.9pp, and reveal that selected prompting strategies vary across models and tasks.
♻ ☆ Hidden Breakthroughs in Language Model Training
Loss curves are smooth during most of model training, so visible discontinuities stand out as possible conceptual breakthroughs. Studying these breakthroughs enables a deeper understanding of learning dynamics, but only when they are properly identified. This paper argues that similar breakthroughs occur frequently throughout training but they are obscured by a loss metric that collapses all variation into a single scalar. To find these hidden transitions, we introduce POLCA, a method for decomposing changes in loss along arbitrary bases of the low-rank training subspace. We use our method to identify clusters of samples that share similar changes in loss during training, disaggregating the overall loss into that of smaller groups of conceptually similar data. We validate our method on synthetic arithmetic and natural language tasks, showing that POLCA recovers clusters that represent interpretable breakthroughs in the model's capabilities. We demonstrate the promise of these hidden phase transitions as a tool for unsupervised interpretability.
comment: 17 pages, 10 figures
♻ ☆ Affordable AI Assistants with Knowledge Graph of Thoughts
Large Language Models (LLMs) are revolutionizing the development of AI assistants capable of performing diverse tasks across domains. However, current state-of-the-art LLM-driven agents face significant challenges, including high operational costs and limited success rates on complex benchmarks like GAIA. To address these issues, we propose Knowledge Graph of Thoughts (KGoT), an innovative AI assistant architecture that integrates LLM reasoning with dynamically constructed knowledge graphs (KGs). KGoT extracts and structures task-relevant knowledge into a dynamic KG representation, iteratively enhanced through external tools such as math solvers, web crawlers, and Python scripts. Such structured representation of task-relevant knowledge enables low-cost models to solve complex tasks effectively while also minimizing bias and noise. For example, KGoT achieves a 29% improvement in task success rates on the GAIA benchmark compared to Hugging Face Agents with GPT-4o mini. Moreover, harnessing a smaller model dramatically reduces operational costs by over 36x compared to GPT-4o. Improvements for other models (e.g., Qwen2.5-32B and Deepseek-R1-70B) and benchmarks (e.g., SimpleQA) are similar. KGoT offers a scalable, affordable, versatile, and high-performing solution for AI assistants.
♻ ☆ Multi-Stage Manipulation with Demonstration-Augmented Reward, Policy, and World Model Learning
Long-horizon tasks in robotic manipulation present significant challenges in reinforcement learning (RL) due to the difficulty of designing dense reward functions and effectively exploring the expansive state-action space. However, despite a lack of dense rewards, these tasks often have a multi-stage structure, which can be leveraged to decompose the overall objective into manageable subgoals. In this work, we propose DEMO3, a framework that exploits this structure for efficient learning from visual inputs. Specifically, our approach incorporates multi-stage dense reward learning, a bi-phasic training scheme, and world model learning into a carefully designed demonstration-augmented RL framework that strongly mitigates the challenge of exploration in long-horizon tasks. Our evaluations demonstrate that our method improves data-efficiency by an average of 40% and by 70% on particularly difficult tasks compared to state-of-the-art approaches. We validate this across 16 sparse-reward tasks spanning four domains, including challenging humanoid visual control tasks using as few as five demonstrations.
comment: Project page can be found at https://adrialopezescoriza.github.io/demo3/
♻ ☆ Machine-learning based high-bandwidth magnetic sensing
Recent years have seen significant growth of quantum technologies, and specifically quantum sensing, both in terms of the capabilities of advanced platforms and their applications. One of the leading platforms in this context is nitrogen-vacancy (NV) color centers in diamond, providing versatile, high-sensitivity, and high-spatial-resolution magnetic sensing. Nevertheless, current schemes for spin resonance magnetic sensing (as applied by NV quantum sensing) suffer from tradeoffs associated with sensitivity, dynamic range, and bandwidth. Here we address this issue, and implement machine learning tools to enhance NV magnetic sensing in terms of the sensitivity/bandwidth tradeoff in large dynamic range scenarios. Our results indicate a potential reduction of required data points by at least a factor of 3, while maintaining the current error level. Our results promote quantum machine learning protocols for sensing applications towards more feasible and efficient quantum technologies.
comment: 12 pages including supplementary, 5 figures, 3 supplementary figures
♻ ☆ Indeterminate Probability Theory
Complex continuous or mixed joint distributions (e.g., P(Y | z_1, z_2, ..., z_N)) generally lack closed-form solutions, often necessitating approximations such as MCMC. This paper proposes Indeterminate Probability Theory (IPT), which makes the following contributions: (1) An observer-centered framework in which experimental outcomes are represented as distributions combining ground truth with observation error; (2) The introduction of three independence candidate axioms that enable a two-phase probabilistic inference framework; (3) The derivation of closed-form solutions for arbitrary complex joint distributions under this framework. Both the Indeterminate Probability Neural Network (IPNN) model and the non-neural multivariate time series forecasting application demonstrate IPT's effectiveness in modeling high-dimensional distributions, with successful validation up to 1000 dimensions. Importantly, IPT is consistent with classical probability theory and subsumes the frequentist equation in the limit of vanishing observation error.
comment: 25 pages
♻ ☆ SPoRt -- Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL
To apply reinforcement learning to safety-critical applications, we ought to provide safety guarantees during both policy training and deployment. In this work, we present theoretical results that place a bound on the probability of violating a safety property for a new task-specific policy in a model-free, episodic setting. This bound, based on a maximum policy ratio computed with respect to a 'safe' base policy, can also be applied to temporally-extended properties (beyond safety) and to robust control problems. To utilize these results, we introduce SPoRt, which provides a data-driven method for computing this bound for the base policy using the scenario approach, and includes Projected PPO, a new projection-based approach for training the task-specific policy while maintaining a user-specified bound on property violation. SPoRt thus enables users to trade off safety guarantees against task-specific performance. Complementing our theoretical results, we present experimental results demonstrating this trade-off and comparing the theoretical bound to posterior bounds derived from empirical violation rates.
comment: 9 pages + 16 pages supplementary material, 3 figures + 6 figures supplementary material
♻ ☆ Disentangling representations of retinal images with generative models
Retinal fundus images play a crucial role in the early detection of eye diseases. However, the impact of technical factors on these images can pose challenges for reliable AI applications in ophthalmology. For example, large fundus cohorts are often confounded by factors like camera type, bearing the risk of learning shortcuts rather than the causal relationships behind the image generation process. Here, we introduce a population model for retinal fundus images that effectively disentangles patient attributes from camera effects, enabling controllable and highly realistic image generation. To achieve this, we propose a disentanglement loss based on distance correlation. Through qualitative and quantitative analyses, we show that our models encode desired information in disentangled subspaces and enable controllable image generation based on the learned subspaces, demonstrating the effectiveness of our disentanglement loss. The project's code is publicly available: https://github.com/berenslab/disentangling-retinal-images.
comment: Final journal paper version for Medical Image Analysis (MedIA)
♻ ☆ xInv: Explainable Optimization of Inverse Problems
Inverse problems are central to a wide range of fields, including healthcare, climate science, and agriculture. They involve the estimation of inputs, typically via iterative optimization, to some known forward model so that it produces a desired outcome. Despite considerable development in the explainability and interpretability of forward models, the iterative optimization of inverse problems remains largely cryptic to domain experts. We propose a methodology to produce explanations, from traces produced by an optimizer, that are interpretable by humans at the abstraction of the domain. The central idea in our approach is to instrument a differentiable simulator so that it emits natural language events during its forward and backward passes. In a post-process, we use a Language Model to create an explanation from the list of events. We demonstrate the effectiveness of our approach with an illustrative optimization problem and an example involving the training of a neural network.
♻ ☆ TreeSynth: Synthesizing Diverse Data from Scratch via Tree-Guided Subspace Partitioning
Model customization necessitates high-quality and diverse datasets, but acquiring such data remains time-consuming and labor-intensive. Despite the great potential of large language models (LLMs) for data synthesis, current approaches are constrained by limited seed data, model biases, and low-variation prompts, resulting in limited diversity and biased distributions with the increase of data scales. To tackle this challenge, we introduce TREESYNTH, a tree-guided subspace-based data synthesis approach inspired by decision trees. It constructs a spatial partitioning tree to recursively divide a task-specific full data space (i.e., root node) into numerous atomic subspaces (i.e., leaf nodes) with mutually exclusive and exhaustive attributes to ensure both distinctiveness and comprehensiveness before synthesizing samples within each atomic subspace. This globally dividing-and-synthesizing method finally collects subspace samples into a comprehensive dataset, effectively circumventing repetition and space collapse to ensure the diversity of large-scale data synthesis. Furthermore, the spatial partitioning tree enables sample allocation into atomic subspaces, allowing the rebalancing of existing datasets for more balanced and comprehensive distributions. Empirically, extensive experiments across diverse benchmarks consistently demonstrate the superior data diversity, model performance, and robust scalability of TREESYNTH compared to both human-crafted datasets and peer data synthesis methods, with an average performance gain reaching 10%. Besides, the consistent improvements of TREESYNTH-balanced datasets highlight its efficacious application to redistribute existing datasets for more comprehensive coverage and the induced performance enhancement. The code is available at https://github.com/cpa2001/TreeSynth.
♻ ☆ LoRA-One: One-Step Full Gradient Could Suffice for Fine-Tuning Large Language Models, Provably and Efficiently ICML 2025
This paper explores how theory can guide and enhance practical algorithms, using Low-Rank Adaptation (LoRA, Hu et al. 2022) in large language models as a case study. We rigorously prove that, under gradient descent, LoRA adapters align with specific singular subspaces of the one-step full fine-tuning gradient. This result suggests that, by properly initializing the adapters using the one-step full gradient, subspace alignment can be achieved immediately and applicable to both linear and nonlinear models. Building on our theory, we propose a theory-driven algorithm, LoRA-One, where the linear convergence (as well as generalization) is built and incorporating preconditioners theoretically helps mitigate the effects of ill-conditioning. Besides, our theory reveals connections between LoRA-One and other gradient-alignment-based methods, helping to clarify misconceptions in the design of such algorithms. LoRA-One achieves significant empirical improvements over LoRA and its variants across benchmarks in natural language understanding, mathematical reasoning, and code generation. Code is available at: https://github.com/YuanheZ/LoRA-One.
comment: Accepted by ICML 2025 (Oral)
♻ ☆ Thermal Vision: Pioneering Non-Invasive Temperature Tracking in Congested Spaces
Non-invasive temperature monitoring of individuals plays a crucial role in identifying and isolating symptomatic individuals. Temperature monitoring becomes particularly vital in settings characterized by close human proximity, often referred to as dense settings. However, existing research on non-invasive temperature estimation using thermal cameras has predominantly focused on sparse settings. Unfortunately, the risk of disease transmission is significantly higher in dense settings like movie theaters or classrooms. Consequently, there is an urgent need to develop robust temperature estimation methods tailored explicitly for dense settings. Our study proposes a non-invasive temperature estimation system that combines a thermal camera with an edge device. Our system employs YOLO models for face detection and utilizes a regression framework for temperature estimation. We evaluated the system on a diverse dataset collected in dense and sparse settings. Our proposed face detection model achieves an impressive mAP score of over 84 in both in-dataset and cross-dataset evaluations. Furthermore, the regression framework demonstrates remarkable performance with a mean square error of 0.18$^{\circ}$C and an impressive $R^2$ score of 0.96. Our experiments' results highlight the developed system's effectiveness, positioning it as a promising solution for continuous temperature monitoring in real-world applications. With this paper, we release our dataset and programming code publicly.
♻ ☆ Harmony: A Joint Self-Supervised and Weakly-Supervised Framework for Learning General Purpose Visual Representations
Vision-language contrastive learning frameworks such as CLIP enable learning representations from natural language supervision and provide strong zero-shot classification capabilities. However, due to the nature of the supervisory signal in these paradigms, they lack the ability to learn localized features, leading to degraded performance on dense prediction tasks such as segmentation and detection. On the other hand, self-supervised learning methods have shown the ability to learn granular representations, complementing the high-level features in vision-language training. In this work, we present Harmony, a framework that combines vision-language training with discriminative and generative self-supervision to learn visual features that can be generalized across different downstream vision tasks. Our framework is specifically designed to work on web-scraped data by not relying on negative examples in the self-supervised learning path and addressing the one-to-one correspondence issue using soft CLIP targets generated by an EMA model. Moreover, Harmony optimizes for five different objectives simultaneously, efficiently utilizing the supervision in each data example, making it even more suited in data-constrained settings. We comprehensively evaluate Harmony across various vision downstream tasks and find that it significantly outperforms the baseline CLIP and outperforms the previously leading joint self- and weakly supervised methods, SLIP, MaskCLIP, and DetailCLIP.
comment: 27 pages
♻ ☆ Circuit Compositions: Exploring Modular Structures in Transformer-Based Language Models ACL 2025
A fundamental question in interpretability research is to what extent neural networks, particularly language models, implement reusable functions through subnetworks that can be composed to perform more complex tasks. Recent advances in mechanistic interpretability have made progress in identifying $\textit{circuits}$, which represent the minimal computational subgraphs responsible for a model's behavior on specific tasks. However, most studies focus on identifying circuits for individual tasks without investigating how functionally similar circuits $\textit{relate}$ to each other. To address this gap, we study the modularity of neural networks by analyzing circuits for highly compositional subtasks within a transformer-based language model. Specifically, given a probabilistic context-free grammar, we identify and compare circuits responsible for ten modular string-edit operations. Our results indicate that functionally similar circuits exhibit both notable node overlap and cross-task faithfulness. Moreover, we demonstrate that the circuits identified can be reused and combined through set operations to represent more complex functional model capabilities.
comment: ACL 2025 main, 22 pages, 21 figures
♻ ☆ An Expanded Benchmark that Rediscovers and Affirms the Edge of Uncertainty Sampling for Active Learning in Tabular Datasets
Active Learning (AL) addresses the crucial challenge of enabling machines to efficiently gather labeled examples through strategic queries. Among the many AL strategies, Uncertainty Sampling (US) stands out as one of the most widely adopted. US queries the example(s) that the current model finds uncertain, proving to be both straightforward and effective. Despite claims in the literature suggesting superior alternatives to US, community-wide acceptance remains elusive. In fact, existing benchmarks for tabular datasets present conflicting conclusions on the continued competitiveness of US. In this study, we review the literature on AL strategies in the last decade and build the most comprehensive open-source AL benchmark to date to understand the relative merits of different AL strategies. The benchmark surpasses existing ones by encompassing a broader coverage of strategies, models, and data. Through our investigation of the conflicting conclusions in existing tabular AL benchmarks by evaluation under broad AL experimental settings, we uncover fresh insights into the often-overlooked issue of using machine learning models--**model compatibility** in the context of US. Specifically, we notice that adopting the different models for the querying unlabeled examples and learning tasks would degrade US's effectiveness. Notably, our findings affirm that US maintains a competitive edge over other strategies when paired with compatible models. These findings have practical implications and provide a concrete recipe for AL practitioners, empowering them to make informed decisions when working with tabular classifications with limited labeled data. The code for this project is available on https://github.com/ariapoy/active-learning-benchmark.
♻ ☆ FARCLUSS: Fuzzy Adaptive Rebalancing and Contrastive Uncertainty Learning for Semi-Supervised Semantic Segmentation
Semi-supervised semantic segmentation (SSSS) faces persistent challenges in effectively leveraging unlabeled data, such as ineffective utilization of pseudo-labels, exacerbation of class imbalance biases, and neglect of prediction uncertainty. Current approaches often discard uncertain regions through strict thresholding favouring dominant classes. To address these limitations, we introduce a holistic framework that transforms uncertainty into a learning asset through four principal components: (1) fuzzy pseudo-labeling, which preserves soft class distributions from top-K predictions to enrich supervision; (2) uncertainty-aware dynamic weighting, that modulate pixel-wise contributions via entropy-based reliability scores; (3) adaptive class rebalancing, which dynamically adjust losses to counteract long-tailed class distributions; and (4) lightweight contrastive regularization, that encourage compact and discriminative feature embeddings. Extensive experiments on benchmarks demonstrate that our method outperforms current state-of-the-art approaches, achieving significant improvements in the segmentation of under-represented classes and ambiguous regions.
comment: Submitted to Neural Networks
♻ ☆ Generative Modeling of Full-Atom Protein Conformations using Latent Diffusion on Graph Embeddings NeurIPS 2025
Generating diverse, all-atom conformational ensembles of dynamic proteins such as G-protein-coupled receptors (GPCRs) is critical for understanding their function, yet most generative models simplify atomic detail or ignore conformational diversity altogether. We present latent diffusion for full protein generation (LD-FPG), a framework that constructs complete all-atom protein structures, including every side-chain heavy atom, directly from molecular dynamics (MD) trajectories. LD-FPG employs a Chebyshev graph neural network (ChebNet) to obtain low-dimensional latent embeddings of protein conformations, which are processed using three pooling strategies: blind, sequential and residue-based. A diffusion model trained on these latent representations generates new samples that a decoder, optionally regularized by dihedral-angle losses, maps back to Cartesian coordinates. Using D2R-MD, a 2-microsecond MD trajectory (12 000 frames) of the human dopamine D2 receptor in a membrane environment, the sequential and residue-based pooling strategy reproduces the reference ensemble with high structural fidelity (all-atom lDDT of approximately 0.7; C-alpha-lDDT of approximately 0.8) and recovers backbone and side-chain dihedral-angle distributions with a Jensen-Shannon divergence of less than 0.03 compared to the MD data. LD-FPG thereby offers a practical route to system-specific, all-atom ensemble generation for large proteins, providing a promising tool for structure-based therapeutic design on complex, dynamic targets. The D2R-MD dataset and our implementation are freely available to facilitate further research.
comment: 10 pages (main text), 4 figures, 2 tables. Submitted to NeurIPS 2025. Code and data are publicly available
♻ ☆ Optimizing Sensory Neurons: Nonlinear Attention Mechanisms for Accelerated Convergence in Permutation-Invariant Neural Networks for Reinforcement Learning
Training reinforcement learning (RL) agents often requires significant computational resources and prolonged training durations. To address this challenge, we build upon prior work that introduced a neural architecture with permutation-invariant sensory processing. We propose a modified attention mechanism that applies a non-linear transformation to the key vectors (K), producing enriched representations (K') through a custom mapping function. This Nonlinear Attention (NLA) mechanism enhances the representational capacity of the attention layer, enabling the agent to learn more expressive feature interactions. As a result, our model achieves significantly faster convergence and improved training efficiency, while maintaining performance on par with the baseline. These results highlight the potential of nonlinear attention mechanisms to accelerate reinforcement learning without sacrificing effectiveness.
comment: there was an error with the figures and the algorithm, working on it to correct it, will publish with updated and correct algorithm and results
♻ ☆ Reliable Vertical Federated Learning in 5G Core Network Architecture
This work proposes a new algorithm to mitigate model generalization loss in Vertical Federated Learning (VFL) operating under client reliability constraints within 5G Core Networks (CNs). Recently studied and endorsed by 3GPP, VFL enables collaborative and load-balanced model training and inference across the CN. However, the performance of VFL significantly degrades when the Network Data Analytics Functions (NWDAFs) - which serve as primary clients for VFL model training and inference - experience reliability issues stemming from resource constraints and operational overhead. Unlike edge environments, CN environments adopt fundamentally different data management strategies, characterized by more centralized data orchestration capabilities. This presents opportunities to implement better distributed solutions that take full advantage of the CN data handling flexibility. Leveraging this flexibility, we propose a method that optimizes the vertical feature split among clients while centrally defining their local models based on reliability metrics. Our empirical evaluation demonstrates the effectiveness of our proposed algorithm, showing improved performance over traditional baseline methods.
comment: Globecom Submission
♻ ☆ SLR: An Automated Synthesis Framework for Scalable Logical Reasoning
We introduce SLR, an end-to-end framework for systematic evaluation and training of Large Language Models (LLMs) via Scalable Logical Reasoning. Given a user's task specification, SLR enables scalable, automated synthesis of inductive reasoning tasks with precisely controlled difficulty. For each task, SLR synthesizes (i) a latent ground-truth rule, (ii) an executable validation program used by a symbolic judge to deterministically verify model outputs, and (iii) an instruction prompt for the reasoning task. Using SLR, we create SLR-Bench, a benchmark comprising over 19k prompts spanning 20 curriculum levels that progressively increase in relational, arithmetic, and recursive complexity. Large-scale evaluation reveals that contemporary LLMs readily produce syntactically valid rules, yet often fail at correct logical inference. Recent reasoning LLMs do somewhat better, but incur substantial increases in test-time compute, sometimes exceeding 15k completion tokens. Finally, logic-tuning via SLR doubles Llama-3-8B accuracy on SLR-Bench, achieving parity with Gemini-Flash-Thinking at a fraction of computational cost. SLR is fully automated, requires no human annotation, ensures dataset novelty, and offers a scalable environment for probing and advancing LLMs' reasoning capabilities.
♻ ☆ Holistic Physics Solver: Learning PDEs in a Unified Spectral-Physical Space ICML2025
Recent advances in operator learning have produced two distinct approaches for solving partial differential equations (PDEs): attention-based methods offering point-level adaptability but lacking spectral constraints, and spectral-based methods providing domain-level continuity priors but limited in local flexibility. This dichotomy has hindered the development of PDE solvers with both strong flexibility and generalization capability. This work introduces Holistic Physics Mixer (HPM), a simple framework that bridges this gap by integrating spectral and physical information in a unified space. HPM unifies both approaches as special cases while enabling more powerful spectral-physical interactions beyond either method alone. This enables HPM to inherit both the strong generalization of spectral methods and the flexibility of attention mechanisms while avoiding their respective limitations. Through extensive experiments across diverse PDE problems, we demonstrate that HPM consistently outperforms state-of-the-art methods in both accuracy and computational efficiency, while maintaining strong generalization capabilities with limited training data and excellent zero-shot performance on unseen resolutions.
comment: ICML2025
♻ ☆ Persistent Sampling: Enhancing the Efficiency of Sequential Monte Carlo
Sequential Monte Carlo (SMC) samplers are powerful tools for Bayesian inference but suffer from high computational costs due to their reliance on large particle ensembles for accurate estimates. We introduce persistent sampling (PS), an extension of SMC that systematically retains and reuses particles from all prior iterations to construct a growing, weighted ensemble. By leveraging multiple importance sampling and resampling from a mixture of historical distributions, PS mitigates the need for excessively large particle counts, directly addressing key limitations of SMC such as particle impoverishment and mode collapse. Crucially, PS achieves this without additional likelihood evaluations-weights for persistent particles are computed using cached likelihood values. This framework not only yields more accurate posterior approximations but also produces marginal likelihood estimates with significantly lower variance, enhancing reliability in model comparison. Furthermore, the persistent ensemble enables efficient adaptation of transition kernels by leveraging a larger, decorrelated particle pool. Experiments on high-dimensional Gaussian mixtures, hierarchical models, and non-convex targets demonstrate that PS consistently outperforms standard SMC and related variants, including recycled and waste-free SMC, achieving substantial reductions in mean squared error for posterior expectations and evidence estimates, all at reduced computational cost. PS thus establishes itself as a robust, scalable, and efficient alternative for complex Bayesian inference tasks.
comment: 37 pages, 9 figures. Submitted to Statistics & Computing
♻ ☆ Recent Trends in Artificial Intelligence Technology: A Scoping Review
Artificial intelligence is more ubiquitous in multiple domains. Smartphones, social media platforms, search engines, and autonomous vehicles are just a few examples of applications that utilize artificial intelligence technologies to enhance their performance. This study carries out a scoping review of the current state-of-the-art artificial intelligence technologies following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework. The goal was to find the most advanced technologies used in different domains of artificial intelligence technology research. Three recognized journals were used from artificial intelligence and machine learning domain: Journal of Artificial Intelligence Research, Journal of Machine Learning Research, and Machine Learning, and articles published in 2022 were observed. Certain qualifications were laid for the technological solutions: the technology must be tested against comparable solutions, commonly approved or otherwise well justified datasets must be used while applying, and results must show improvements against comparable solutions. One of the most important parts of the technology development appeared to be how to process and exploit the data gathered from multiple sources. The data can be highly unstructured, and the technological solution should be able to utilize the data with minimum manual work from humans. The results of this review indicate that creating labeled datasets is very laborious, and solutions exploiting unsupervised or semi-supervised learning technologies are more and more researched. The learning algorithms should be able to be updated efficiently, and predictions should be interpretable. Using artificial intelligence technologies in real-world applications, safety and explainable predictions are mandatory to consider before mass adoption can occur.
♻ ☆ Factual Knowledge in Language Models: Robustness and Anomalies under Simple Temporal Context Variations ACL 2025
This paper explores the robustness of language models (LMs) to variations in the temporal context within factual knowledge. It examines whether LMs can correctly associate a temporal context with a past fact valid over a defined period, by asking them to differentiate correct from incorrect contexts. The LMs' ability to distinguish is analyzed along two dimensions: the distance of the incorrect context from the validity period and the granularity of the context. To this end, a dataset called TimeStress is introduced, enabling the evaluation of 18 diverse LMs. Results reveal that the best LM achieves a perfect distinction for only 11% of the studied facts, with errors, certainly rare, but critical that humans would not make. This work highlights the limitations of current LMs in temporal representation.
comment: preprint v6, accepted for publication at ACL 2025 - L2M2 Workshop
♻ ☆ DipLLM: Fine-Tuning LLM for Strategic Decision-making in Diplomacy ICML 2025
Diplomacy is a complex multiplayer game that requires both cooperation and competition, posing significant challenges for AI systems. Traditional methods rely on equilibrium search to generate extensive game data for training, which demands substantial computational resources. Large Language Models (LLMs) offer a promising alternative, leveraging pre-trained knowledge to achieve strong performance with relatively small-scale fine-tuning. However, applying LLMs to Diplomacy remains challenging due to the exponential growth of possible action combinations and the intricate strategic interactions among players. To address this challenge, we propose DipLLM, a fine-tuned LLM-based agent that learns equilibrium policies for Diplomacy. DipLLM employs an autoregressive factorization framework to simplify the complex task of multi-unit action assignment into a sequence of unit-level decisions. By defining an equilibrium policy within this framework as the learning objective, we fine-tune the model using only 1.5% of the data required by the state-of-the-art Cicero model, surpassing its performance. Our results demonstrate the potential of fine-tuned LLMs for tackling complex strategic decision-making in multiplayer games.
comment: Accepted to the 42nd International Conference on Machine Learning (ICML 2025)
♻ ☆ Global Context-aware Representation Learning for Spatially Resolved Transcriptomics ICML 2025
Spatially Resolved Transcriptomics (SRT) is a cutting-edge technique that captures the spatial context of cells within tissues, enabling the study of complex biological networks. Recent graph-based methods leverage both gene expression and spatial information to identify relevant spatial domains. However, these approaches fall short in obtaining meaningful spot representations, especially for spots near spatial domain boundaries, as they heavily emphasize adjacent spots that have minimal feature differences from an anchor node. To address this, we propose Spotscape, a novel framework that introduces the Similarity Telescope module to capture global relationships between multiple spots. Additionally, we propose a similarity scaling strategy to regulate the distances between intra- and inter-slice spots, facilitating effective multi-slice integration. Extensive experiments demonstrate the superiority of Spotscape in various downstream tasks, including single-slice and multi-slice scenarios. Our code is available at the following link: https: //github.com/yunhak0/Spotscape.
comment: ICML 2025
♻ ☆ A Survey on Large Language Model based Human-Agent Systems
Recent advances in large language models (LLMs) have sparked growing interest in building fully autonomous agents. However, fully autonomous LLM-based agents still face significant challenges, including limited reliability due to hallucinations, difficulty in handling complex tasks, and substantial safety and ethical risks, all of which limit their feasibility and trustworthiness in real-world applications. To overcome these limitations, LLM-based human-agent systems (LLM-HAS) incorporate human-provided information, feedback, or control into the agent system to enhance system performance, reliability and safety. These human-agent collaboration systems enable humans and LLM-based agents to collaborate effectively by leveraging their complementary strengths. This paper provides the first comprehensive and structured survey of LLM-HAS. It clarifies fundamental concepts, systematically presents core components shaping these systems, including environment & profiling, human feedback, interaction types, orchestration and communication, explores emerging applications, and discusses unique challenges and opportunities arising from human-AI collaboration. By consolidating current knowledge and offering a structured overview, we aim to foster further research and innovation in this rapidly evolving interdisciplinary field. Paper lists and resources are available at https://github.com/HenryPengZou/Awesome-LLM-Based-Human-Agent-Systems.
comment: Paper lists and resources are available at https://github.com/HenryPengZou/Awesome-LLM-Based-Human-Agent-Systems
♻ ☆ Do Concept Bottleneck Models Respect Localities?
Concept-based explainability methods use human-understandable intermediaries to produce explanations for machine learning models. These methods assume concept predictions can help understand a model's internal reasoning. In this work, we assess the degree to which such an assumption is true by analyzing whether concept predictors leverage ``relevant'' features to make predictions, a term we call locality. Concept-based models that fail to respect localities also fail to be explainable because concept predictions are based on spurious features, making the interpretation of the concept predictions vacuous. To assess whether concept-based models respect localities, we construct and use three metrics to characterize when models respect localities, complementing our analysis with theoretical results. Each of our metrics captures a different notion of perturbation and assess whether perturbing ``irrelevant'' features impacts the predictions made by a concept predictors. We find that many concept-based models used in practice fail to respect localities because concept predictors cannot always clearly distinguish distinct concepts. Based on these findings, we propose suggestions for alleviating this issue.
comment: Published at TMLR
♻ ☆ RePST: Language Model Empowered Spatio-Temporal Forecasting via Semantic-Oriented Reprogramming
Spatio-temporal forecasting is pivotal in numerous real-world applications, including transportation planning, energy management, and climate monitoring. In this work, we aim to harness the reasoning and generalization abilities of Pre-trained Language Models (PLMs) for more effective spatio-temporal forecasting, particularly in data-scarce scenarios. However, recent studies uncover that PLMs, which are primarily trained on textual data, often falter when tasked with modeling the intricate correlations in numerical time series, thereby limiting their effectiveness in comprehending spatio-temporal data. To bridge the gap, we propose RePST, a semantic-oriented PLM reprogramming framework tailored for spatio-temporal forecasting. Specifically, we first propose a semantic-oriented decomposer that adaptively disentangles spatially correlated time series into interpretable sub-components, which facilitates PLM to understand sophisticated spatio-temporal dynamics via a divide-and-conquer strategy. Moreover, we propose a selective discrete reprogramming scheme, which introduces an expanded spatio-temporal vocabulary space to project spatio-temporal series into discrete representations. This scheme minimizes the information loss during reprogramming and enriches the representations derived by PLMs. Extensive experiments on real-world datasets show that the proposed RePST outperforms twelve state-of-the-art baseline methods, particularly in data-scarce scenarios, highlighting the effectiveness and superior generalization capabilities of PLMs for spatio-temporal forecasting. Our codes can be found at https://github.com/usail-hkust/REPST.
♻ ☆ Identifying Heterogeneity in Distributed Learning
We study methods for identifying heterogeneous parameter components in distributed M-estimation with minimal data transmission. One is based on a re-normalized Wald test, which is shown to be consistent as long as the number of distributed data blocks $K$ is of a smaller order of the minimum block sample size {and the level of heterogeneity is dense}. The second one is an extreme contrast test (ECT) based on the difference between the largest and smallest component-wise estimated parameters among data blocks. By introducing a sample splitting procedure, the ECT can avoid the bias accumulation arising from the M-estimation procedures, and exhibits consistency for $K$ being much larger than the sample size while the heterogeneity is sparse. The ECT procedure is easy to operate and communication-efficient. A combination of the Wald and the extreme contrast tests is formulated to attain more robust power under varying levels of sparsity of the heterogeneity. We also conduct intensive numerical experiments to compare the family-wise error rate (FWER) and the power of the proposed methods. Additionally, we conduct a case study to present the implementation and validity of the proposed methods.
♻ ☆ Bohdi: Heterogeneous LLM Fusion with Automatic Data Exploration
Heterogeneous Large Language Model (LLM) fusion integrates the strengths of multiple source LLMs with different architectures into a target LLM with low computational overhead. While promising, existing methods suffer from two major limitations: 1) reliance on real data from limited domain for knowledge fusion, preventing the target LLM from fully acquiring knowledge across diverse domains, and 2) fixed data allocation proportions across domains, failing to dynamically adjust according to the target LLM's varying capabilities across domains, leading to a capability imbalance. To overcome these limitations, we propose Bohdi, a synthetic-data-only heterogeneous LLM fusion framework. Through the organization of knowledge domains into a hierarchical tree structure, Bohdi enables automatic domain exploration and multi-domain data generation through multi-model collaboration, thereby comprehensively extracting knowledge from source LLMs. By formalizing domain expansion and data sampling proportion allocation on the knowledge tree as a Hierarchical Multi-Armed Bandit problem, Bohdi leverages the designed DynaBranches mechanism to adaptively adjust sampling proportions based on the target LLM's performance feedback across domains. Integrated with our proposed Introspection-Rebirth (IR) mechanism, DynaBranches dynamically tracks capability shifts during target LLM's updates via Sliding Window Binomial Likelihood Ratio Testing (SWBLRT), further enhancing its online adaptation capability. Comparative experimental results on a comprehensive suite of benchmarks demonstrate that Bohdi significantly outperforms existing baselines on multiple target LLMs, exhibits higher data efficiency, and virtually eliminates the imbalance in the target LLM's capabilities. Our code is available at https://github.com/gjq100/Bohdi.git.
♻ ☆ LoopSR: Looping Sim-and-Real for Lifelong Policy Adaptation of Legged Robots
Reinforcement Learning (RL) has shown its remarkable and generalizable capability in legged locomotion through sim-to-real transfer. However, while adaptive methods like domain randomization are expected to enhance policy robustness across diverse environments, they potentially compromise the policy's performance in any specific environment, leading to suboptimal real-world deployment due to the No Free Lunch theorem. To address this, we propose LoopSR, a lifelong policy adaptation framework that continuously refines RL policies in the post-deployment stage. LoopSR employs a transformer-based encoder to map real-world trajectories into a latent space and reconstruct a digital twin of the real world for further improvement. Autoencoder architecture and contrastive learning methods are adopted to enhance feature extraction of real-world dynamics. Simulation parameters for continual training are derived by combining predicted values from the decoder with retrieved parameters from a pre-collected simulation trajectory dataset. By leveraging simulated continual training, LoopSR achieves superior data efficiency compared with strong baselines, yielding eminent performance with limited data in both sim-to-sim and sim-to-real experiments.
comment: IROS 2025
♻ ☆ A Transformer-Based Approach for Diagnosing Fault Cases in Optical Fiber Amplifiers
A transformer-based deep learning approach is presented that enables the diagnosis of fault cases in optical fiber amplifiers using condition-based monitoring time series data. The model, Inverse Triple-Aspect Self-Attention Transformer (ITST), uses an encoder-decoder architecture, utilizing three feature extraction paths in the encoder, feature-engineered data for the decoder and a self-attention mechanism. The results show that ITST outperforms state-of-the-art models in terms of classification accuracy, which enables predictive maintenance for optical fiber amplifiers, reducing network downtimes and maintenance costs.
comment: This paper has been accepted for publication at the 25th International Conference on Transparent Optical Networks (ICTON) 2025
♻ ☆ Collaborative Mean Estimation Among Heterogeneous Strategic Agents: Individual Rationality, Fairness, and Truthful Contribution ICML 2025
We study a collaborative learning problem where $m$ agents aim to estimate a vector $\mu =(\mu_1,\ldots,\mu_d)\in \mathbb{R}^d$ by sampling from associated univariate normal distributions $\{\mathcal{N}(\mu_k, \sigma^2)\}_{k\in[d]}$. Agent $i$ incurs a cost $c_{i,k}$ to sample from $\mathcal{N}(\mu_k, \sigma^2)$. Instead of working independently, agents can exchange data, collecting cheaper samples and sharing them in return for costly data, thereby reducing both costs and estimation error. We design a mechanism to facilitate such collaboration, while addressing two key challenges: ensuring individually rational (IR) and fair outcomes so all agents benefit, and preventing strategic behavior (e.g. non-collection, data fabrication) to avoid socially undesirable outcomes. We design a mechanism and an associated Nash equilibrium (NE) which minimizes the social penalty-sum of agents' estimation errors and collection costs-while being IR for all agents. We achieve a $\mathcal{O}(\sqrt{m})$-approximation to the minimum social penalty in the worst case and an $\mathcal{O}(1)$-approximation under favorable conditions. Additionally, we establish three hardness results: no nontrivial mechanism guarantees (i) a dominant strategy equilibrium where agents report truthfully, (ii) is IR for every strategy profile of other agents, (iii) or avoids a worst-case $\Omega(\sqrt{m})$ price of stability in any NE. Finally, by integrating concepts from axiomatic bargaining, we demonstrate that our mechanism supports fairer outcomes than one which minimizes social penalty.
comment: ICML 2025
♻ ☆ Interpretation of Deep Learning Model in Embryo Selection for In Vitro Fertilization (IVF) Treatment
Infertility has a considerable impact on individuals' quality of life, affecting them socially and psychologically, with projections indicating a rise in the upcoming years. In vitro fertilization (IVF) emerges as one of the primary techniques within economically developed nations, employed to address the rising problem of low fertility. Expert embryologists conventionally grade embryos by reviewing blastocyst images to select the most optimal for transfer, yet this process is time-consuming and lacks efficiency. Blastocyst images provide a valuable resource for assessing embryo viability. In this study, we introduce an explainable artificial intelligence (XAI) framework for classifying embryos, employing a fusion of convolutional neural network (CNN) and long short-term memory (LSTM) architecture, referred to as CNN-LSTM. Utilizing deep learning, our model achieves high accuracy in embryo classification while maintaining interpretability through XAI.
♻ ☆ AFBS:Buffer Gradient Selection in Semi-asynchronous Federated Learning
Asynchronous federated learning (AFL) accelerates training by eliminating the need to wait for stragglers, but its asynchronous nature introduces gradient staleness, where outdated gradients degrade performance. Existing solutions address this issue with gradient buffers, forming a semi-asynchronous framework. However, this approach struggles when buffers accumulate numerous stale gradients, as blindly aggregating all gradients can harm training. To address this, we propose AFBS (Asynchronous FL Buffer Selection), the first algorithm to perform gradient selection within buffers while ensuring privacy protection. Specifically, the client sends the random projection encrypted label distribution matrix before training, and the server performs client clustering based on it. During training, server scores and selects gradients within each cluster based on their informational value, discarding low-value gradients to enhance semi-asynchronous federated learning. Extensive experiments in highly heterogeneous system and data environments demonstrate AFBS's superior performance compared to state-of-the-art methods. Notably, on the most challenging task, CIFAR-100, AFBS improves accuracy by up to 4.8% over the previous best algorithm and reduces the time to reach target accuracy by 75%.
♻ ☆ LoRA vs Full Fine-tuning: An Illusion of Equivalence
Fine-tuning is a crucial paradigm for adapting pre-trained large language models to downstream tasks. Recently, methods like Low-Rank Adaptation (LoRA) have been shown to effectively fine-tune LLMs with an extreme reduction in trainable parameters. But, \emph{are their learned solutions really equivalent?} We study how LoRA and full-finetuning change pre-trained models by analyzing the model's weight matrices through the lens of their spectral properties. We find that LoRA and full fine-tuning yield weight matrices whose singular value decompositions exhibit very different structure: weight matrices trained with LoRA have new, high-ranking singular vectors, which we call \emph{intruder dimensions}, while those trained with full fine-tuning do not. Further, we extend the finding that LoRA forgets less than full fine-tuning and find its forgetting is vastly localized to the intruder dimension -- by causally intervening on the intruder dimensions by changing their associated singular values post-fine-tuning, we show that they cause forgetting. Moreover, scaling them down significantly improves modeling of the pre-training distribution with a minimal drop in downstream task performance. Given this, we should expect accumulating intruder dimensions to be harmful and lead to more forgetting. This will be amplified during continual learning because of sequentially fine-tuning, and we show that LoRA models do accumulate intruder dimensions here tend to perform worse in this setting, emphasizing the practicality of our findings.
♻ ☆ Hallucination Level of Artificial Intelligence Whisperer: Case Speech Recognizing Pantterinousut Rap Song
All languages are peculiar. Some of them are considered more challenging to understand than others. The Finnish Language is known to be a complex language. Also, when languages are used by artists, the pronunciation and meaning might be more tricky to understand. Therefore, we are putting AI to a fun, yet challenging trial: translating a Finnish rap song to text. We will compare the Faster Whisperer algorithm and YouTube's internal speech-to-text functionality. The reference truth will be Finnish rap lyrics, which the main author's little brother, Mc Timo, has written. Transcribing the lyrics will be challenging because the artist raps over synth music player by Syntikka Janne. The hallucination level and mishearing of AI speech-to-text extractions will be measured by comparing errors made against the original Finnish lyrics. The error function is informal but still works for our case.
comment: 15 pages, 10 figures
♻ ☆ Fast Rate Information-theoretic Bounds on Generalization Errors
The generalization error of a learning algorithm refers to the discrepancy between the loss of a learning algorithm on training data and that on unseen testing data. Various information-theoretic bounds on the generalization error have been derived in the literature, where the mutual information between the training data and the hypothesis (the output of the learning algorithm) plays an important role. Focusing on the individual sample mutual information bound by Bu et al., which itself is a tightened version of the first bound on the topic by Russo et al. and Xu et al., this paper investigates the tightness of these bounds, in terms of the dependence of their convergence rates on the sample size $n$. It has been recognized that these bounds are in general not tight, readily verified for the exemplary quadratic Gaussian mean estimation problem, where the individual sample mutual information bound scales as $O(\sqrt{1/n})$ while the true generalization error scales as $O(1/n)$. The first contribution of this paper is to show that the same bound can in fact be asymptotically tight if an appropriate assumption is made. In particular, we show that the fast rate can be recovered when the assumption is made on the excess risk instead of the loss function, which was usually done in existing literature. A theoretical justification is given for this choice. The second contribution of the paper is a new set of generalization error bounds based on the $(\eta, c)$-central condition, a condition relatively easy to verify and has the property that the mutual information term directly determines the convergence rate of the bound. Several analytical and numerical examples are given to show the effectiveness of these bounds.
comment: 27 pages, 1 figure, accepted to TIT
♻ ☆ When Large Language Models Meet Vector Databases: A Survey
This survey explores the synergistic potential of Large Language Models (LLMs) and Vector Databases (VecDBs), a burgeoning but rapidly evolving research area. With the proliferation of LLMs comes a host of challenges, including hallucinations, outdated knowledge, prohibitive commercial application costs, and memory issues. VecDBs emerge as a compelling solution to these issues by offering an efficient means to store, retrieve, and manage the high-dimensional vector representations intrinsic to LLM operations. Through this nuanced review, we delineate the foundational principles of LLMs and VecDBs and critically analyze their integration's impact on enhancing LLM functionalities. This discourse extends into a discussion on the speculative future developments in this domain, aiming to catalyze further research into optimizing the confluence of LLMs and VecDBs for advanced data handling and knowledge extraction capabilities.
♻ ☆ Evolutionary Optimization of Physics-Informed Neural Networks: Evo-PINN Frontiers and Opportunities
Deep learning models trained on finite data lack a complete understanding of the physical world. On the other hand, physics-informed neural networks (PINNs) are infused with such knowledge through the incorporation of mathematically expressible laws of nature into their training loss function. By complying with physical laws, PINNs provide advantages over purely data-driven models in limited-data regimes and present as a promising route towards Physical AI. This feature has propelled them to the forefront of scientific machine learning, a domain characterized by scarce and costly data. However, the vision of accurate physics-informed learning comes with significant challenges. This work examines PINNs for the first time in terms of model optimization and generalization, shedding light on the need for new algorithmic advances to overcome issues pertaining to the training speed, precision, and generalizability of today's PINN models. Of particular interest are gradient-free evolutionary algorithms (EAs) for optimizing the uniquely complex loss landscapes arising in PINN training. Methods synergizing gradient descent and EAs for discovering bespoke neural architectures and balancing multiple terms in physics-informed learning objectives are positioned as important avenues for future research. Another exciting track is to cast evolutionary as a meta-learner of generalizable PINN models. To substantiate these proposed avenues, we further highlight results from recent literature to showcase the early success of such approaches in addressing the aforementioned challenges in PINN optimization and generalization.
comment: 22 pages, 10 figures, 1 table
♻ ☆ FutureFill: Fast Generation from Convolutional Sequence Models
We address the challenge of efficient auto-regressive generation in sequence prediction models by introducing FutureFill, a general-purpose fast generation method for any sequence prediction algorithm based on convolutional operators. FutureFill reduces generation time from quadratic to quasilinear in the context length. Moreover, when generating from a prompt, it requires a prefill cache whose size grows only with the number of tokens to be generated, often much smaller than the caches required by standard convolutional or attention based models. We validate our theoretical claims with experiments on synthetic tasks and demonstrate substantial efficiency gains when generating from a deep convolutional sequence prediction model.
♻ ☆ AdaLRS: Loss-Guided Adaptive Learning Rate Search for Efficient Foundation Model Pretraining
Learning rate is widely regarded as crucial for effective foundation model pretraining. Recent research explores and demonstrates the transferability of learning rate configurations across varying model and dataset sizes, etc. Nevertheless, these approaches are constrained to specific training scenarios and typically necessitate extensive hyperparameter tuning on proxy models. In this work, we propose \textbf{AdaLRS}, a plug-in-and-play adaptive learning rate search algorithm that conducts online optimal learning rate search via optimizing loss descent velocities. We provide experiment results to show that the optimization of training loss and loss descent velocity in foundation model pretraining are both convex and share the same optimal learning rate. Relying solely on training loss dynamics, AdaLRS involves few extra computations to guide the search process, and its convergence is guaranteed via theoretical analysis. Experiments on both LLM and VLM pretraining show that AdaLRS adjusts suboptimal learning rates to the neighborhood of optimum with marked efficiency and effectiveness, with model performance improved accordingly. We also show the robust generalizability of AdaLRS across varying training scenarios, such as different model sizes, training paradigms, and base learning rate scheduler choices.
♻ ☆ MGHF: Multi-Granular High-Frequency Perceptual Loss for Image Super-Resolution
While different variants of perceptual losses have been employed in super-resolution literature to synthesize more realistic, appealing, and detailed high-resolution images, most are convolutional neural networks-based, causing information loss during guidance and often relying on complicated architectures and training procedures. We propose an invertible neural network (INN)-based naive \textbf{M}ulti-\textbf{G}ranular \textbf{H}igh-\textbf{F}requency (MGHF-n) perceptual loss trained on ImageNet to overcome these issues. Furthermore, we develop a comprehensive framework (MGHF-c) with several constraints to preserve, prioritize, and regularize information across multiple perspectives: texture and style preservation, content preservation, regional detail preservation, and joint content-style regularization. Information is prioritized through adaptive entropy-based pruning and reweighting of INN features. We utilize Gram matrix loss for style preservation and mean-squared error loss for content preservation. Additionally, we propose content-style consistency through correlation loss to regulate unnecessary texture generation while preserving content information. Since small image regions may contain intricate details, we employ modulated PatchNCE in the INN features as a local information preservation objective. Extensive experiments on various super-resolution algorithms, including GAN- and diffusion-based methods, demonstrate that our MGHF framework significantly improves performance. After the review process, our code will be released in the public repository.
comment: 14 pages
♻ ☆ DSAC-C: Constrained Maximum Entropy for Robust Discrete Soft-Actor Critic
We present a novel extension to the family of Soft Actor-Critic (SAC) algorithms. We argue that based on the Maximum Entropy Principle, discrete SAC can be further improved via additional statistical constraints derived from a surrogate critic policy. Furthermore, our findings suggests that these constraints provide an added robustness against potential domain shifts, which are essential for safe deployment of reinforcement learning agents in the real-world. We provide theoretical analysis and show empirical results on low data regimes for both in-distribution and out-of-distribution variants of Atari 2600 games.
comment: Accepted by IJCNN'25
♻ ☆ VRAIL: Vectorized Reward-based Attribution for Interpretable Learning
We propose VRAIL (Vectorized Reward-based Attribution for Interpretable Learning), a bi-level framework for value-based reinforcement learning (RL) that learns interpretable weight representations from state features. VRAIL consists of two stages: a deep learning (DL) stage that fits an estimated value function using state features, and an RL stage that uses this to shape learning via potential-based reward transformations. The estimator is modeled in either linear or quadratic form, allowing attribution of importance to individual features and their interactions. Empirical results on the Taxi-v3 environment demonstrate that VRAIL improves training stability and convergence compared to standard DQN, without requiring environment modifications. Further analysis shows that VRAIL uncovers semantically meaningful subgoals, such as passenger possession, highlighting its ability to produce human-interpretable behavior. Our findings suggest that VRAIL serves as a general, model-agnostic framework for reward shaping that enhances both learning and interpretability.
♻ ☆ Uncertainty-aware Efficient Subgraph Isomorphism using Graph Topology
Subgraph isomorphism, also known as subgraph matching, is typically regarded as an NP-complete problem. This complexity is further compounded in practical applications where edge weights are real-valued and may be affected by measurement noise and potential missing data. Such graph matching routinely arises in applications such as image matching and map matching. Most subgraph matching methods fail to perform node-to-node matching under presence of such corruptions. We propose a method for identifying the node correspondence between a subgraph and a full graph in the inexact case without node labels in two steps - (a) extract the minimal unique topology preserving subset from the subgraph and find its feasible matching in the full graph, and (b) implement a consensus-based algorithm to expand the matched node set by pairing unique paths based on boundary commutativity. To demonstrate the effectiveness of the proposed method, a simulation is performed on the Erdos-Renyi random graphs and two case studies are performed on the image-based affine covariant features dataset and KITTI stereo dataset respectively. Going beyond the existing subgraph matching approaches, the proposed method is shown to have realistically sub-linear computational efficiency, robustness to random measurement noise, and good statistical properties. Our method is also readily applicable to the exact matching case without loss of generality.
♻ ☆ LLM Web Dynamics: Tracing Model Collapse in a Network of LLMs
The increasing use of synthetic data from the public Internet has enhanced data usage efficiency in large language model (LLM) training. However, the potential threat of model collapse remains insufficiently explored. Existing studies primarily examine model collapse in a single model setting or rely solely on statistical surrogates. In this work, we introduce LLM Web Dynamics (LWD), an efficient framework for investigating model collapse at the network level. By simulating the Internet with a retrieval-augmented generation (RAG) database, we analyze the convergence pattern of model outputs. Furthermore, we provide theoretical guarantees for this convergence by drawing an analogy to interacting Gaussian Mixture Models.
♻ ☆ ASGO: Adaptive Structured Gradient Optimization
Training deep neural networks is a structured optimization problem, because the parameters are naturally represented by matrices and tensors rather than by vectors. Under this structural representation, it has been widely observed that gradients are low-rank and Hessians are approximately block-wise diagonal. These structured properties are crucial for designing efficient optimization algorithms, but are not utilized by many current popular optimizers like Adam. In this paper, we present a novel optimization algorithm ASGO that capitalizes on these properties by employing a preconditioner that is adaptively updated using structured gradients. By fine-grained theoretical analysis, ASGO is proven to achieve superior convergence rates compared to existing structured gradient methods. Based on the convergence theory, we further demonstrate that ASGO can benefit from the low-rank and block-wise diagonal properties. We also discuss practical modifications of ASGO and empirically verify ASGO's effectiveness on language model tasks.
comment: 30 pages
♻ ☆ Symmetric Reinforcement Learning Loss for Robust Learning on Diverse Tasks and Model Scales
Reinforcement learning (RL) training is inherently unstable due to factors such as moving targets and high gradient variance. Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning from AI Feedback (RLAIF) can introduce additional difficulty. Differing preferences can complicate the alignment process, and prediction errors in a trained reward model can become more severe as the LLM generates unseen outputs. To enhance training robustness, RL has adopted techniques from supervised learning, such as ensembles and layer normalization. In this work, we improve the stability of RL training by adapting the reverse cross entropy (RCE) from supervised learning for noisy data to define a symmetric RL loss. We demonstrate performance improvements across various tasks and scales. We conduct experiments in discrete action tasks (Atari games) and continuous action space tasks (MuJoCo benchmark and Box2D) using Symmetric A2C (SA2C) and Symmetric PPO (SPPO), with and without added noise with especially notable performance in SPPO across different hyperparameters. Furthermore, we validate the benefits of the symmetric RL loss when using SPPO for large language models through improved performance in RLHF tasks, such as IMDB positive sentiment sentiment and TL;DR summarization tasks.
♻ ☆ Cost-Aware Routing for Efficient Text-To-Image Generation
Diffusion models are well known for their ability to generate a high-fidelity image for an input prompt through an iterative denoising process. Unfortunately, the high fidelity also comes at a high computational cost due the inherently sequential generative process. In this work, we seek to optimally balance quality and computational cost, and propose a framework to allow the amount of computation to vary for each prompt, depending on its complexity. Each prompt is automatically routed to the most appropriate text-to-image generation function, which may correspond to a distinct number of denoising steps of a diffusion model, or a disparate, independent text-to-image model. Unlike uniform cost reduction techniques (e.g., distillation, model quantization), our approach achieves the optimal trade-off by learning to reserve expensive choices (e.g., 100+ denoising steps) only for a few complex prompts, and employ more economical choices (e.g., small distilled model) for less sophisticated prompts. We empirically demonstrate on COCO and DiffusionDB that by learning to route to nine already-trained text-to-image models, our approach is able to deliver an average quality that is higher than that achievable by any of these models alone.
♻ ☆ Distributionally Robust Active Learning for Gaussian Process Regression ICML2025
Gaussian process regression (GPR) or kernel ridge regression is a widely used and powerful tool for nonlinear prediction. Therefore, active learning (AL) for GPR, which actively collects data labels to achieve an accurate prediction with fewer data labels, is an important problem. However, existing AL methods do not theoretically guarantee prediction accuracy for target distribution. Furthermore, as discussed in the distributionally robust learning literature, specifying the target distribution is often difficult. Thus, this paper proposes two AL methods that effectively reduce the worst-case expected error for GPR, which is the worst-case expectation in target distribution candidates. We show an upper bound of the worst-case expected squared error, which suggests that the error will be arbitrarily small by a finite number of data labels under mild conditions. Finally, we demonstrate the effectiveness of the proposed methods through synthetic and real-world datasets.
comment: 26 pages, 3 figures, Accepted to ICML2025
♻ ☆ Transferring Features Across Language Models With Model Stitching
In this work, we demonstrate that affine mappings between residual streams of language models is a cheap way to effectively transfer represented features between models. We apply this technique to transfer the weights of Sparse Autoencoders (SAEs) between models of different sizes to compare their representations. We find that small and large models learn similar representation spaces, which motivates training expensive components like SAEs on a smaller model and transferring to a larger model at a FLOPs savings. In particular, using a small-to-large transferred SAE as initialization can lead to 50% cheaper training runs when training SAEs on larger models. Next, we show that transferred probes and steering vectors can effectively recover ground truth performance. Finally, we dive deeper into feature-level transferability, finding that semantic and structural features transfer noticeably differently while specific classes of functional features have their roles faithfully mapped. Overall, our findings illustrate similarities and differences in the linear representation spaces of small and large models and demonstrate a method for improving the training efficiency of SAEs.
♻ ☆ Align and Distill: Unifying and Improving Domain Adaptive Object Detection
Object detectors often perform poorly on data that differs from their training set. Domain adaptive object detection (DAOD) methods have recently demonstrated strong results on addressing this challenge. Unfortunately, we identify systemic benchmarking pitfalls that call past results into question and hamper further progress: (a) Overestimation of performance due to underpowered baselines, (b) Inconsistent implementation practices preventing transparent comparisons of methods, and (c) Lack of generality due to outdated backbones and lack of diversity in benchmarks. We address these problems by introducing: (1) A unified benchmarking and implementation framework, Align and Distill (ALDI), enabling comparison of DAOD methods and supporting future development, (2) A fair and modern training and evaluation protocol for DAOD that addresses benchmarking pitfalls, (3) A new DAOD benchmark dataset, CFC-DAOD, enabling evaluation on diverse real-world data, and (4) A new method, ALDI++, that achieves state-of-the-art results by a large margin. ALDI++ outperforms the previous state-of-the-art by +3.5 AP50 on Cityscapes to Foggy Cityscapes, +5.7 AP50 on Sim10k to Cityscapes (where ours is the only method to outperform a fair baseline), and +0.6 AP50 on CFC Kenai to Channel. ALDI and ALDI++ are architecture-agnostic, setting a new state-of-the-art for YOLO and DETR-based DAOD as well without additional hyperparameter tuning. Our framework, dataset, and state-of-the-art method offer a critical reset for DAOD and provide a strong foundation for future research. Code and data are available: https://github.com/justinkay/aldi and https://github.com/visipedia/caltech-fish-counting.
comment: TMLR camera ready (Featured Certification). 33 pages, 15 figures
♻ ☆ Machines and Mathematical Mutations: Using GNNs to Characterize Quiver Mutation Classes ICML 2025
Machine learning is becoming an increasingly valuable tool in mathematics, enabling one to identify subtle patterns across collections of examples so vast that they would be impossible for a single researcher to feasibly review and analyze. In this work, we use graph neural networks to investigate \emph{quiver mutation} -- an operation that transforms one quiver (or directed multigraph) into another -- which is central to the theory of cluster algebras with deep connections to geometry, topology, and physics. In the study of cluster algebras, the question of \emph{mutation equivalence} is of fundamental concern: given two quivers, can one efficiently determine if one quiver can be transformed into the other through a sequence of mutations? In this paper, we use graph neural networks and AI explainability techniques to independently discover mutation equivalence criteria for quivers of type $\tilde{D}$. Along the way, we also show that even without explicit training to do so, our model captures structure within its hidden representation that allows us to reconstruct known criteria from type $D$, adding to the growing evidence that modern machine learning models are capable of learning abstract and parsimonious rules from mathematical data.
comment: ICML 2025
♻ ☆ The Gittins Index: A Design Principle for Decision-Making Under Uncertainty
The Gittins index is a tool that optimally solves a variety of decision-making problems involving uncertainty, including multi-armed bandit problems, minimizing mean latency in queues, and search problems like the Pandora's box model. However, despite the above examples and later extensions thereof, the space of problems that the Gittins index can solve perfectly optimally is limited, and its definition is rather subtle compared to those of other multi-armed bandit algorithms. As a result, the Gittins index is often regarded as being primarily a concept of theoretical importance, rather than a practical tool for solving decision-making problems. The aim of this tutorial is to demonstrate that the Gittins index can be fruitfully applied to practical problems. We start by giving an example-driven introduction to the Gittins index, then walk through several examples of problems it solves - some optimally, some suboptimally but still with excellent performance. Two practical highlights in the latter category are applying the Gittins index to Bayesian optimization, and applying the Gittins index to minimizing tail latency in queues.
♻ ☆ Learning Realistic Joint Space Boundaries for Range of Motion Analysis of Healthy and Impaired Human Arms
A realistic human kinematic model that satisfies anatomical constraints is essential for human-robot interaction, biomechanics and robot-assisted rehabilitation. Modeling realistic joint constraints, however, is challenging as human arm motion is constrained by joint limits, inter- and intra-joint dependencies, self-collisions, individual capabilities and muscular or neurological constraints which are difficult to represent. Hence, physicians and researchers have relied on simple box-constraints, ignoring important anatomical factors. In this paper, we propose a data-driven method to learn realistic anatomically constrained upper-limb range of motion (RoM) boundaries from motion capture data. This is achieved by fitting a one-class support vector machine to a dataset of upper-limb joint space exploration motions with an efficient hyper-parameter tuning scheme. Our approach outperforms similar works focused on valid RoM learning. Further, we propose an impairment index (II) metric that offers a quantitative assessment of capability/impairment when comparing healthy and impaired arms. We validate the metric on healthy subjects physically constrained to emulate hemiplegia and different disability levels as stroke patients. [https://sites.google.com/seas.upenn.edu/learning-rom]
♻ ☆ ProxSparse: Regularized Learning of Semi-Structured Sparsity Masks for Pretrained LLMs ICML25
Large Language Models (LLMs) have demonstrated exceptional performance in natural language processing tasks, yet their massive size makes serving them inefficient and costly. Semi-structured pruning has emerged as an effective method for model acceleration, but existing approaches are suboptimal because they focus on local, layer-wise optimizations using heuristic rules, failing to leverage global feedback. We present ProxSparse, a learning-based framework for mask selection enabled by regularized optimization. ProxSparse transforms the rigid, non-differentiable mask selection process into a smoother optimization procedure, allowing gradual mask exploration with flexibility. ProxSparse does not involve additional weight updates once the mask is determined. Our extensive evaluations on 7 widely used models show that ProxSparse consistently outperforms previously proposed semi-structured mask selection methods with significant improvement, demonstrating the effectiveness of our learned approach towards semi-structured pruning.
comment: ICML25
♻ ☆ Time-IMM: A Dataset and Benchmark for Irregular Multimodal Multivariate Time Series
Time series data in real-world applications such as healthcare, climate modeling, and finance are often irregular, multimodal, and messy, with varying sampling rates, asynchronous modalities, and pervasive missingness. However, existing benchmarks typically assume clean, regularly sampled, unimodal data, creating a significant gap between research and real-world deployment. We introduce Time-IMM, a dataset specifically designed to capture cause-driven irregularity in multimodal multivariate time series. Time-IMM represents nine distinct types of time series irregularity, categorized into trigger-based, constraint-based, and artifact-based mechanisms. Complementing the dataset, we introduce IMM-TSF, a benchmark library for forecasting on irregular multimodal time series, enabling asynchronous integration and realistic evaluation. IMM-TSF includes specialized fusion modules, including a timestamp-to-text fusion module and a multimodality fusion module, which support both recency-aware averaging and attention-based integration strategies. Empirical results demonstrate that explicitly modeling multimodality on irregular time series data leads to substantial gains in forecasting performance. Time-IMM and IMM-TSF provide a foundation for advancing time series analysis under real-world conditions. The dataset is publicly available at https://www.kaggle.com/datasets/blacksnail789521/time-imm/data, and the benchmark library can be accessed at https://anonymous.4open.science/r/IMMTSF_NeurIPS2025.
comment: This paper is currently under review
♻ ☆ ADVLLM: Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities NAACL 2025
Recent research has shown that Large Language Models (LLMs) are vulnerable to automated jailbreak attacks, where adversarial suffixes crafted by algorithms appended to harmful queries bypass safety alignment and trigger unintended responses. Current methods for generating these suffixes are computationally expensive and have low Attack Success Rates (ASR), especially against well-aligned models like Llama2 and Llama3. To overcome these limitations, we introduce ADV-LLM, an iterative self-tuning process that crafts adversarial LLMs with enhanced jailbreak ability. Our framework significantly reduces the computational cost of generating adversarial suffixes while achieving nearly 100\% ASR on various open-source LLMs. Moreover, it exhibits strong attack transferability to closed-source models, achieving 99\% ASR on GPT-3.5 and 49\% ASR on GPT-4, despite being optimized solely on Llama3. Beyond improving jailbreak ability, ADV-LLM provides valuable insights for future safety alignment research through its ability to generate large datasets for studying LLM safety.
comment: Accepted to NAACL 2025 Main (oral)
♻ ☆ Code Graph Model (CGM): A Graph-Integrated Large Language Model for Repository-Level Software Engineering Tasks
Recent advances in Large Language Models (LLMs) have shown promise in function-level code generation, yet repository-level software engineering tasks remain challenging. Current solutions predominantly rely on proprietary LLM agents, which introduce unpredictability and limit accessibility, raising concerns about data privacy and model customization. This paper investigates whether open-source LLMs can effectively address repository-level tasks without requiring agent-based approaches. We demonstrate this is possible by enabling LLMs to comprehend functions and files within codebases through their semantic information and structural dependencies. To this end, we introduce Code Graph Models (CGMs), which integrate repository code graph structures into the LLM's attention mechanism and map node attributes to the LLM's input space using a specialized adapter. When combined with an agentless graph RAG framework, our approach achieves a 43.00% resolution rate on the SWE-bench Lite benchmark using the open-source Qwen2.5-72B model. This performance ranks first among open weight models, second among methods with open-source systems, and eighth overall, surpassing the previous best open-source model-based method by 12.33%.
comment: 35 pages, 10 figures
♻ ☆ Learning from Stochastic Teacher Representations Using Student-Guided Knowledge Distillation
Advances in self-distillation have shown that when knowledge is distilled from a teacher to a student using the same deep learning (DL) architecture, the student performance can surpass the teacher particularly when the network is overparameterized and the teacher is trained with early stopping. Alternatively, ensemble learning also improves performance, although training, storing, and deploying multiple models becomes impractical as the number of models grows. Even distilling an ensemble to a single student model or weight averaging methods first requires training of multiple teacher models and does not fully leverage the inherent stochasticity for generating and distilling diversity in DL models. These constraints are particularly prohibitive in resource-constrained or latency-sensitive applications such as wearable devices. This paper proposes to train only one model and generate multiple diverse teacher representations using distillation-time dropout. However, generating these representations stochastically leads to noisy representations that are misaligned with the learned task. To overcome this problem, a novel stochastic self-distillation (SSD) training strategy is introduced for filtering and weighting teacher representation to distill from task-relevant representations only, using student-guided knowledge distillation (SGKD). The student representation at each distillation step is used as authority to guide the distillation process. Experimental results on real-world affective computing, wearable/biosignal datasets from the UCR Archive, the HAR dataset, and image classification datasets show that the proposed SSD method can outperform state-of-the-art methods without increasing the model size at both training and testing time, and incurs negligible computational complexity compared to state-of-the-art ensemble learning and weight averaging methods.
♻ ☆ Rational Metareasoning for Large Language Models
Being prompted to engage in reasoning has emerged as a core technique for using large language models (LLMs), deploying additional inference-time compute to improve task performance. However, as LLMs increase in both size and adoption, inference costs are correspondingly becoming increasingly burdensome. How, then, might we optimize reasoning's cost-performance tradeoff? This work introduces a novel approach based on computational models of metareasoning used in cognitive science, training LLMs to selectively use intermediate reasoning steps only when necessary. We first develop a reward function that incorporates the Value of Computation by penalizing unnecessary reasoning, then use this reward function with Expert Iteration to train the LLM. Compared to few-shot chain-of-thought prompting and STaR, our method significantly reduces inference costs (20-37\% fewer tokens generated across three models) while maintaining task performance across diverse datasets.
♻ ☆ Self-reflecting Large Language Models: A Hegelian Dialectical Approach
Investigating NLP through a philosophical lens has recently caught researchers' eyes, as it bridges computational methods with classical schools of philosophy. This paper introduces a philosophical framework inspired by the Hegelian Dialectic to enable LLMs' self-reflection, utilizing a self-dialectical approach to emulate internal critiques and synthesize new scientific ideas (spanning domains such as mathematics, physics, and more). Additionally, we explore the effect of generation temperature in LLMs by introducing a dynamic annealing approach, which encourages creativity in the early stages and gradually focuses on refinement and nuance, as well as a constant-temperature strategy. Furthermore, we implement a Multi-Agent Majority Voting (MAMV) strategy to assess the validity and novelty of the generated ideas, which proves useful in the absence of domain experts. We also evaluate the effectiveness of our method in generating novel scientific ideas and improving LLMs' reasoning capabilities. Our experiments demonstrate promising results in ideation, along with significant improvements in mathematical and symbolic reasoning.
♻ ☆ Critical Batch Size Revisited: A Simple Empirical Approach to Large-Batch Language Model Training
The right batch size is important when training language models at scale: a large batch size is necessary for fast training, but a batch size that is too large will harm token efficiency. To navigate this tradeoff, McCandlish et al. (2018) suggest that a critical batch size (CBS), below which training will not substantially degrade loss, can be estimated based on the gradient noise scale during training. While their method has been adopted in practice, e.g., when training GPT-3, strong assumptions are required to justify gradient noise as a proxy for the CBS, which makes it unclear whether their approach should be trusted in practice, limiting its applicability. In this paper, we introduce a simple, empirical approach to directly measure the CBS and show how the CBS evolves over training. Applying our approach to the OLMo models, we find that CBS is near 0 at initialization, increases rapidly at first, and then plateaus as training progresses. Furthermore, we find that this trend holds across different model sizes (1B and 7B), suggesting CBS from small training runs can inform larger-scale training runs. Our findings about how the CBS changes over training motivate batch size warmup as a natural way to reliably train language models at large batch size: start the batch size small and increase it as the CBS grows. To validate this claim, we use batch size warmup to train OLMo 1B to slightly better loss than the original training run with 43% fewer gradient steps. This shows how our framework can be applied to reliably train language models at larger batch sizes, increasing data parallelism without compromising performance.
♻ ☆ Robust Reinforcement Learning from Human Feedback for Large Language Models Fine-Tuning
Reinforcement learning from human feedback (RLHF) has emerged as a key technique for aligning the output of large language models (LLMs) with human preferences. To learn the reward function, most existing RLHF algorithms use the Bradley-Terry model, which relies on assumptions about human preferences that may not reflect the complexity and variability of real-world judgments. In this paper, we propose a robust algorithm to enhance the performance of existing approaches under such reward model misspecifications. Theoretically, our algorithm reduces the variance of reward and policy estimators, leading to improved regret bounds. Empirical evaluations on LLM benchmark datasets demonstrate that the proposed algorithm consistently outperforms existing methods, with 77-81% of responses being favored over baselines on the Anthropic Helpful and Harmless dataset.
♻ ☆ SLEEPING-DISCO 9M: A large-scale pre-training dataset for generative music modeling
We present Sleeping-DISCO 9M, a large-scale pre-training dataset for music and song. To the best of our knowledge, there are no open-source high-quality dataset representing popular and well-known songs for generative music modeling tasks such as text-music, music-captioning, singing-voice synthesis, melody reconstruction and cross-model retrieval. Past contributions focused on isolated and constrained factors whose core perspective was to create synthetic or re-recorded music corpus (e.g. GTSinger, M4Singer) and arbitrarily large-scale audio datasets (e.g. DISCO-10M and LAIONDISCO-12M) had been another focus for the community. Unfortunately, adoption of these datasets has been below substantial in the generative music community as these datasets fail to reflect real-world music and its flavour. Our dataset changes this narrative and provides a dataset that is constructed using actual popular music and world-renowned artists.
♻ ☆ Emergent Risk Awareness in Rational Agents under Resource Constraints
Advanced reasoning models with agentic capabilities (AI agents) are deployed to interact with humans and to solve sequential decision-making problems under (approximate) utility functions and internal models. When such problems have resource or failure constraints where action sequences may be forcibly terminated once resources are exhausted, agents face implicit trade-offs that reshape their utility-driven (rational) behaviour. Additionally, since these agents are typically commissioned by a human principal to act on their behalf, asymmetries in constraint exposure can give rise to previously unanticipated misalignment between human objectives and agent incentives. We formalise this setting through a survival bandit framework, provide theoretical and empirical results that quantify the impact of survival-driven preference shifts, identify conditions under which misalignment emerges and propose mechanisms to mitigate the emergence of risk-seeking or risk-averse behaviours. As a result, this work aims to increase understanding and interpretability of emergent behaviours of AI agents operating under such survival pressure, and offer guidelines for safely deploying such AI systems in critical resource-limited environments.
♻ ☆ Double Machine Learning for Conditional Moment Restrictions: IV Regression, Proximal Causal Learning and Beyond
Solving conditional moment restrictions (CMRs) is a key problem considered in statistics, causal inference, and econometrics, where the aim is to solve for a function of interest that satisfies some conditional moment equalities. Specifically, many techniques for causal inference, such as instrumental variable (IV) regression and proximal causal learning (PCL), are CMR problems. Most CMR estimators use a two-stage approach, where the first-stage estimation is directly plugged into the second stage to estimate the function of interest. However, naively plugging in the first-stage estimator can cause heavy bias in the second stage. This is particularly the case for recently proposed CMR estimators that use deep neural network (DNN) estimators for both stages, where regularisation and overfitting bias is present. We propose DML-CMR, a two-stage CMR estimator that provides an unbiased estimate with fast convergence rate guarantees. We derive a novel learning objective to reduce bias and develop the DML-CMR algorithm following the double/debiased machine learning (DML) framework. We show that our DML-CMR estimator can achieve the minimax optimal convergence rate of $O(N^{-1/2})$ under parameterisation and mild regularity conditions, where $N$ is the sample size. We apply DML-CMR to a range of problems using DNN estimators, including IV regression and proximal causal learning on real-world datasets, demonstrating state-of-the-art performance against existing CMR estimators and algorithms tailored to those problems.
Quantitative Methods 7
☆ An Analytical Neighborhood Enrichment Score for Spatial Omics
The neighborhood enrichment test is used to quantify spatial enrichment and depletion between spatial points with categorical labels, which is a common data type in spatial omics. Traditionally, this test relies on a permutation-based Monte Carlo approach, which tends to be computationally expensive for large datasets. In this study, we present a modified version of the test that can be computed analytically. This analytical version showed a minimum Pearson correlation of 0.95 with the conventional Monte Carlo-based method across eight spatial omics datasets, but with substantial speed-ups. Additional experiments on a large Xenium dataset demonstrated the method's ability to efficiently analyze large-scale data, making it a valuable tool for analyzing spatial omics data.
☆ BrainSymphony: A Transformer-Driven Fusion of fMRI Time Series and Structural Connectivity
Existing foundation models for neuroimaging are often prohibitively large and data-intensive. We introduce BrainSymphony, a lightweight, parameter-efficient foundation model that achieves state-of-the-art performance while being pre-trained on significantly smaller public datasets. BrainSymphony's strong multimodal architecture processes functional MRI data through parallel spatial and temporal transformer streams, which are then efficiently distilled into a unified representation by a Perceiver module. Concurrently, it models structural connectivity from diffusion MRI using a novel signed graph transformer to encode the brain's anatomical structure. These powerful, modality-specific representations are then integrated via an adaptive fusion gate. Despite its compact design, our model consistently outperforms larger models on a diverse range of downstream benchmarks, including classification, prediction, and unsupervised network identification tasks. Furthermore, our model revealed novel insights into brain dynamics using attention maps on a unique external psilocybin neuroimaging dataset (pre- and post-administration). BrainSymphony establishes that architecturally-aware, multimodal models can surpass their larger counterparts, paving the way for more accessible and powerful research in computational neuroscience.
comment: 21 pages, 8 figures
☆ Riemannian generative decoder ICML 2025
Riemannian representation learning typically relies on approximating densities on chosen manifolds. This involves optimizing difficult objectives, potentially harming models. To completely circumvent this issue, we introduce the Riemannian generative decoder which finds manifold-valued maximum likelihood latents with a Riemannian optimizer while training a decoder network. By discarding the encoder, we vastly simplify the manifold constraint compared to current approaches which often only handle few specific manifolds. We validate our approach on three case studies -- a synthetic branching diffusion process, human migrations inferred from mitochondrial DNA, and cells undergoing a cell division cycle -- each showing that learned representations respect the prescribed geometry and capture intrinsic non-Euclidean structure. Our method requires only a decoder, is compatible with existing architectures, and yields interpretable latent spaces aligned with data geometry.
comment: GenBio ICML 2025 (Proceedings of the Workshop on Generative AI for Biology at the 42nd International Conference on Machine Learning, Vancouver, Canada. PMLR 267, 2025)
☆ Harnessing Diet and Gene Expression Insights through a Centralized Nutrigenomics Database to Improve Public Health
Nutrigenomics is an emerging field that explores the intricate interaction between genes and diet. This study aimed to develop a comprehensive database to help clinicians and patients understand the connections between genetic disorders, associated genes, and tailored nutritional recommendations.
comment: Conference details can be found here: https://www.insticc.org/node/technicalprogram/DATA/2025
☆ MedTVT-R1: A Multimodal LLM Empowering Medical Reasoning and Diagnosis
Accurate and interpretable multi-disease diagnosis remains a critical challenge in medical research, particularly when leveraging heterogeneous multimodal medical data. Current approaches often rely on single-modal data, limiting their ability to comprehensively understand complex diseases. To address this, we propose MedTVT-R1, a novel Multimodal Large Language Model (MLLM) framework designed to integrate clinical multimodal data for reasoning and diagnosing multiple diseases. We construct MedTVT-QA, a curated instruction dataset that provides question-answer pairs for physiological-level interpretations and disease-level diagnoses with a Chain of Evidence approach. MedTVT-R1 incorporates a modality perception layer to capture inter-modal dependencies and adaptively weight modality contributions. Additionally, we employ Group Relative Policy Optimization (GRPO)-based Reinforcement Fine-Tuning with a Jaccard Reward function to enhance diagnostic reasoning. Experimental results demonstrate MedTVT-R1's superiority in multimodal feature utilization and multi-disease diagnosis, offering significant potential for clinical applications such as diagnostic report generation and comorbidity reasoning. The dataset and code are available at https://github.com/keke-nice/MedTVT-R1.
♻ ☆ Multilevel classification framework for breast cancer cell selection and its integration with advanced disease models
Breast cancer cell lines are indispensable tools for unraveling disease mechanisms, enabling drug discovery, and developing personalized treatments, yet their heterogeneity and inconsistent classification pose significant challenges in model selection and data reproducibility. This review aims at providing a comprehensive and user-friendly framework for broadly mapping the features of breast cancer types and commercially available human breast cancer cell lines, defining absolute criteria, i.e. objective features such as origin (e.g., MDA-MB, MCF), histological subtype (ductal, lobular), hormone receptor status (ER/PR/HER2), and genetic mutations (BRCA1, TP53), and relative criteria, which contextualize functional behaviors like metastatic potential, drug sensitivity, and genomic instability. It then examines how the proposed framework could be applied to cell line screening in advanced and emerging disease models. By supporting better informed choices, this work aims to improve experimental design and strengthen the connection between in vitro breast cancer studies and their clinical translation.
comment: 5 figures, 3 tables
♻ ☆ Anatomical basis of sex differences in the electrocardiogram identified by three-dimensional torso-heart imaging reconstruction pipeline
The electrocardiogram (ECG) is used for diagnosis and risk stratification following myocardial infarction (MI). Women have a higher incidence of missed MI diagnosis and complications following infarction, and to address this we aim to provide quantitative information on sex-differences in ECG and torso-ventricular anatomy features. A novel computational automated pipeline is presented enabling the three-dimensional reconstruction of torso-ventricular anatomies for 425 post-MI subjects and 1051 healthy controls from UK Biobank clinical images. Regression models were created relating torso-ventricular and ECG parameters. For post-MI women, the heart is positioned more posteriorly and vertically, than in men (with healthy women yet more vertical). Post-MI women exhibit less QRS prolongation, requiring 27% more prolongation than men to exceed 120ms. Only half of the sex difference in QRS is associated with smaller female cavities. Lower STj amplitude in women is striking, associated with smaller ventricles, but also more superior and posterior cardiac position. Post-MI, T wave amplitude and R axis deviations are strongly associated with a more posterior and horizontal cardiac position in women (but not in men). Our study highlights the need to quantify sex differences in anatomical features, their implications in ECG interpretation, and the application of clinical ECG thresholds in post-MI.
comment: Paper under revision
Cell Behavior 1
♻ ☆ Multilevel classification framework for breast cancer cell selection and its integration with advanced disease models
Breast cancer cell lines are indispensable tools for unraveling disease mechanisms, enabling drug discovery, and developing personalized treatments, yet their heterogeneity and inconsistent classification pose significant challenges in model selection and data reproducibility. This review aims at providing a comprehensive and user-friendly framework for broadly mapping the features of breast cancer types and commercially available human breast cancer cell lines, defining absolute criteria, i.e. objective features such as origin (e.g., MDA-MB, MCF), histological subtype (ductal, lobular), hormone receptor status (ER/PR/HER2), and genetic mutations (BRCA1, TP53), and relative criteria, which contextualize functional behaviors like metastatic potential, drug sensitivity, and genomic instability. It then examines how the proposed framework could be applied to cell line screening in advanced and emerging disease models. By supporting better informed choices, this work aims to improve experimental design and strengthen the connection between in vitro breast cancer studies and their clinical translation.
comment: 5 figures, 3 tables
Genomics 1
☆ Quantum Gradient Optimized Drug Repurposing Prototype for Omics Data
This paper presents a novel quantum-enhanced prototype for drug repurposing and addresses the challenge of managing massive genomics data in precision medicine.
comment: Conference details can be found here: https://www.insticc.org/node/technicalprogram/DATA/2025
Computation and Language 7
Shrinking the Generation-Verification Gap with Weak Verifiers
Verifiers can improve language model capabilities by scoring and ranking responses from generated candidates. Currently, high-quality verifiers are either unscalable (e.g., humans) or limited in utility (e.g., tools like Lean). While LM judges and reward models have become broadly useful as general-purpose verifiers, a significant performance gap remains between them and oracle verifiers (verifiers with perfect accuracy). To help close this gap, we introduce Weaver, a framework for designing a strong verifier by combining multiple weak, imperfect verifiers. We find weighted ensembles of verifiers, which typically require learning from labeled data, significantly outperform unweighted combinations due to differences in verifier accuracies. To reduce dependency on labeled data, Weaver leverages weak supervision to estimate each verifier's accuracy and combines outputs into a unified score that better reflects true response quality. However, directly applying weak supervision algorithms poses challenges, including inconsistent verifier output formats and handling low-quality verifiers. Weaver addresses these using dataset statistics to normalize outputs and filter specific verifiers. We study Weaver's effectiveness in test-time repeated sampling, where a model generates multiple candidate responses and selects one. Our evaluations show Weaver significantly improves over Pass@1-performance when selecting the first candidate-across reasoning and math tasks, achieving o3-mini-level accuracy with Llama 3.3 70B Instruct as generator, and an ensemble of 70B or smaller judge and reward models as verifiers (87.7% average). This gain mirrors the jump between GPT-4o and o3-mini (69.0% vs. 86.7%), which required extensive finetuning and post-training. To reduce computational costs of verifier ensembles, we train a 400M cross-encoder using Weaver's combined output scores.
☆ Deciphering Emotions in Children Storybooks: A Comparative Analysis of Multimodal LLMs in Educational Applications
Emotion recognition capabilities in multimodal AI systems are crucial for developing culturally responsive educational technologies, yet remain underexplored for Arabic language contexts where culturally appropriate learning tools are critically needed. This study evaluates the emotion recognition performance of two advanced multimodal large language models, GPT-4o and Gemini 1.5 Pro, when processing Arabic children's storybook illustrations. We assessed both models across three prompting strategies (zero-shot, few-shot, and chain-of-thought) using 75 images from seven Arabic storybooks, comparing model predictions with human annotations based on Plutchik's emotional framework. GPT-4o consistently outperformed Gemini across all conditions, achieving the highest macro F1-score of 59% with chain-of-thought prompting compared to Gemini's best performance of 43%. Error analysis revealed systematic misclassification patterns, with valence inversions accounting for 60.7% of errors, while both models struggled with culturally nuanced emotions and ambiguous narrative contexts. These findings highlight fundamental limitations in current models' cultural understanding and emphasize the need for culturally sensitive training approaches to develop effective emotion-aware educational technologies for Arabic-speaking learners.
☆ Prompt Engineering Techniques for Mitigating Cultural Bias Against Arabs and Muslims in Large Language Models: A Systematic Review
Large language models have demonstrated remarkable capabilities across various domains, yet concerns about cultural bias - particularly towards Arabs and Muslims - pose significant ethical challenges by perpetuating harmful stereotypes and marginalization. Despite growing recognition of bias in LLMs, prompt engineering strategies specifically addressing Arab and Muslim representation remain understudied. This mixed-methods systematic review examines such techniques, offering evidence-based guidance for researchers and practitioners. Following PRISMA guidelines and Kitchenham's systematic review methodology, we analyzed 8 empirical studies published between 2021-2024 investigating bias mitigation strategies. Our findings reveal five primary prompt engineering approaches: cultural prompting, affective priming, self-debiasing techniques, structured multi-step pipelines, and parameter-optimized continuous prompts. Although all approaches show potential for reducing bias, effectiveness varied substantially across studies and bias types. Evidence suggests that certain bias types may be more resistant to prompt-based mitigation than others. Structured multi-step pipelines demonstrated the highest overall effectiveness, achieving up to 87.7% reduction in bias, though they require greater technical expertise. Cultural prompting offers broader accessibility with substantial effectiveness. These results underscore the accessibility of prompt engineering for mitigating cultural bias without requiring access to model parameters. The limited number of studies identified highlights a significant research gap in this critical area. Future research should focus on developing culturally adaptive prompting techniques, creating Arab and Muslim-specific evaluation resources, and integrating prompt engineering with complementary debiasing methods to address deeper stereotypes while maintaining model utility.
☆ CareLab at #SMM4H-HeaRD 2025: Insomnia Detection and Food Safety Event Extraction with Domain-Aware Transformers AAAI
This paper presents our system for the SMM4H-HeaRD 2025 shared tasks, specifically Task 4 (Subtasks 1, 2a, and 2b) and Task 5 (Subtasks 1 and 2). Task 4 focused on detecting mentions of insomnia in clinical notes, while Task 5 addressed the extraction of food safety events from news articles. We participated in all subtasks and report key findings across them, with particular emphasis on Task 5 Subtask 1, where our system achieved strong performance-securing first place with an F1 score of 0.958 on the test set. To attain this result, we employed encoder-based models (e.g., RoBERTa), alongside GPT-4 for data augmentation. This paper outlines our approach, including preprocessing, model architecture, and subtask-specific adaptations
comment: In the Proceedings of the 10th Social Media Mining for Health and Health Real-World Data Workshop and Shared Tasks, co-located with AAAI ICWSM 2025
☆ Reasoning about Uncertainty: Do Reasoning Models Know When They Don't Know?
Reasoning language models have set state-of-the-art (SOTA) records on many challenging benchmarks, enabled by multi-step reasoning induced using reinforcement learning. However, like previous language models, reasoning models are prone to generating confident, plausible responses that are incorrect (hallucinations). Knowing when and how much to trust these models is critical to the safe deployment of reasoning models in real-world applications. To this end, we explore uncertainty quantification of reasoning models in this work. Specifically, we ask three fundamental questions: First, are reasoning models well-calibrated? Second, does deeper reasoning improve model calibration? Finally, inspired by humans' innate ability to double-check their thought processes to verify the validity of their answers and their confidence, we ask: can reasoning models improve their calibration by explicitly reasoning about their chain-of-thought traces? We introduce introspective uncertainty quantification (UQ) to explore this direction. In extensive evaluations on SOTA reasoning models across a broad range of benchmarks, we find that reasoning models: (i) are typically overconfident, with self-verbalized confidence estimates often greater than 85% particularly for incorrect responses, (ii) become even more overconfident with deeper reasoning, and (iii) can become better calibrated through introspection (e.g., o3-Mini and DeepSeek R1) but not uniformly (e.g., Claude 3.7 Sonnet becomes more poorly calibrated). Lastly, we conclude with important research directions to design necessary UQ benchmarks and improve the calibration of reasoning models.
♻ ☆ Supernova Event Dataset: Interpreting Large Language Models' Personality through Critical Event Analysis ICML 2025
Large Language Models (LLMs) are increasingly integrated into everyday applications. As their influence grows, understanding their decision making and underlying personality becomes essential. In this work, we interpret model personality using our proposed Supernova Event Dataset, a novel dataset with diverse articles spanning biographies, historical events, news, and scientific discoveries. We use this dataset to benchmark LLMs on extracting and ranking key events from text, a subjective and complex challenge that requires reasoning over long-range context and modeling causal chains. We evaluate small models like Phi-4, Orca 2, and Qwen 2.5, and large, stronger models such as Claude 3.7, Gemini 2.5, and OpenAI o3, and propose a framework where another LLM acts as a judge to infer each model's personality based on its selection and classification of events. Our analysis shows distinct personality traits: for instance, Orca 2 demonstrates emotional reasoning focusing on interpersonal dynamics, while Qwen 2.5 displays a more strategic, analytical style. When analyzing scientific discovery events, Claude Sonnet 3.7 emphasizes conceptual framing, Gemini 2.5 Pro prioritizes empirical validation, and o3 favors step-by-step causal reasoning. This analysis improves model interpretability, making them user-friendly for a wide range of diverse applications. Project Page - https://www.supernova-event.ai/
comment: Accepted at Actionable Interpretability Workshop at ICML 2025
♻ ☆ ExpertLongBench: Benchmarking Language Models on Expert-Level Long-Form Generation Tasks with Structured Checklists
This paper introduces ExpertLongBench, an expert-level benchmark containing 11 tasks from 9 domains that reflect realistic expert workflows and applications. Beyond question answering, the application-driven tasks in ExpertLongBench demand long-form outputs that can exceed 5,000 tokens and strict adherence to domain-specific requirements. Notably, each task in ExpertLongBench includes a rubric, designed or validated by domain experts, to specify task requirements and guide output evaluation. Furthermore, we propose CLEAR, an evaluation framework that supports accurate evaluation of long-form model outputs in our benchmark. To achieve fine-grained, expert-aligned evaluation, CLEAR derives checklists from both model outputs and references by extracting information corresponding to items in the task-specific rubric. Checklist items for model outputs are then compared with corresponding items for reference outputs to assess their correctness, enabling grounded evaluation. We benchmark 11 large language models (LLMs) and analyze components in CLEAR, showing that (1) existing LLMs, with the top performer achieving only a 26.8% F1 score, require significant improvement for expert-level tasks; (2) models can generate content corresponding to the required aspects, though often not accurately; and (3) accurate checklist extraction and comparison in CLEAR can be achieved by open-weight models for more scalable and low-cost usage.
Machine Learning 95
☆ Joint Embedding Predictive Architecture for self-supervised pretraining on polymer molecular graphs
Recent advances in machine learning (ML) have shown promise in accelerating the discovery of polymers with desired properties by aiding in tasks such as virtual screening via property prediction. However, progress in polymer ML is hampered by the scarcity of high-quality labeled datasets, which are necessary for training supervised ML models. In this work, we study the use of the very recent 'Joint Embedding Predictive Architecture' (JEPA), a type of architecture for self-supervised learning (SSL), on polymer molecular graphs to understand whether pretraining with the proposed SSL strategy improves downstream performance when labeled data is scarce. Our results indicate that JEPA-based self-supervised pretraining on polymer graphs enhances downstream performance, particularly when labeled data is very scarce, achieving improvements across all tested datasets.
☆ DeInfoReg: A Decoupled Learning Framework for Better Training Throughput
This paper introduces Decoupled Supervised Learning with Information Regularization (DeInfoReg), a novel approach that transforms a long gradient flow into multiple shorter ones, thereby mitigating the vanishing gradient problem. Integrating a pipeline strategy, DeInfoReg enables model parallelization across multiple GPUs, significantly improving training throughput. We compare our proposed method with standard backpropagation and other gradient flow decomposition techniques. Extensive experiments on diverse tasks and datasets demonstrate that DeInfoReg achieves superior performance and better noise resistance than traditional BP models and efficiently utilizes parallel computing resources. The code for reproducibility is available at: https://github.com/ianzih/Decoupled-Supervised-Learning-for-Information-Regularization/.
☆ Call Me Maybe: Enhancing JavaScript Call Graph Construction using Graph Neural Networks
Static analysis plays a key role in finding bugs, including security issues. A critical step in static analysis is building accurate call graphs that model function calls in a program. However, due to hard-to-analyze language features, existing call graph construction algorithms for JavaScript are neither sound nor complete. Prior work shows that even advanced solutions produce false edges and miss valid ones. In this work, we assist these tools by identifying missed call edges. Our main idea is to frame the problem as link prediction on full program graphs, using a rich representation with multiple edge types. Our approach, GRAPHIA, leverages recent advances in graph neural networks to model non-local relationships between code elements. Concretely, we propose representing JavaScript programs using a combination of syntactic- and semantic-based edges. GRAPHIA can learn from imperfect labels, including static call edges from existing tools and dynamic edges from tests, either from the same or different projects. Because call graphs are sparse, standard machine learning metrics like ROC are not suitable. Instead, we evaluate GRAPHIA by ranking function definitions for each unresolved call site. We conduct a large-scale evaluation on 50 popular JavaScript libraries with 163K call edges (150K static and 13K dynamic). GRAPHIA builds program graphs with 6.6M structural and 386K semantic edges. It ranks the correct target as the top candidate in over 42% of unresolved cases and within the top 5 in 72% of cases, reducing the manual effort needed for analysis. Our results show that learning-based methods can improve the recall of JavaScript call graph construction. To our knowledge, this is the first work to apply GNN-based link prediction to full multi-file program graphs for interprocedural analysis.
☆ The Impact of Medication Non-adherence on Adverse Outcomes: Evidence from Schizophrenia Patients via Survival Analysis
This study quantifies the association between non-adherence to antipsychotic medications and adverse outcomes in individuals with schizophrenia. We frame the problem using survival analysis, focusing on the time to the earliest of several adverse events (early death, involuntary hospitalization, jail booking). We extend standard causal inference methods (T-learner, S-learner, nearest neighbor matching) to utilize various survival models to estimate individual and average treatment effects, where treatment corresponds to medication non-adherence. Analyses are repeated using different amounts of longitudinal information (3, 6, 9, and 12 months). Using data from Allegheny County in western Pennsylvania, we find strong evidence that non-adherence advances adverse outcomes by approximately 1 to 4 months. Ablation studies confirm that county-provided risk scores adjust for key confounders, as their removal amplifies the estimated effects. Subgroup analyses by medication formulation (injectable vs. oral) and medication type consistently show that non-adherence is associated with earlier adverse events. These findings highlight the clinical importance of adherence in delaying psychiatric crises and show that integrating survival analysis with causal inference tools can yield policy-relevant insights. We caution that although we apply causal inference, we only make associative claims and discuss assumptions needed for causal interpretation.
comment: Conference on Health, Inference, and Learning (CHIL 2025)
☆ Online Learning of Whittle Indices for Restless Bandits with Non-Stationary Transition Kernels
We consider optimal resource allocation for restless multi-armed bandits (RMABs) in unknown, non-stationary settings. RMABs are PSPACE-hard to solve optimally, even when all parameters are known. The Whittle index policy is known to achieve asymptotic optimality for a large class of such problems, while remaining computationally efficient. In many practical settings, however, the transition kernels required to compute the Whittle index are unknown and non-stationary. In this work, we propose an online learning algorithm for Whittle indices in this setting. Our algorithm first predicts current transition kernels by solving a linear optimization problem based on upper confidence bounds and empirical transition probabilities calculated from data over a sliding window. Then, it computes the Whittle index associated with the predicted transition kernels. We design these sliding windows and upper confidence bounds to guarantee sub-linear dynamic regret on the number of episodes $T$, under the condition that transition kernels change slowly over time (rate upper bounded by $\epsilon=1/T^k$ with $k>0$). Furthermore, our proposed algorithm and regret analysis are designed to exploit prior domain knowledge and structural information of the RMABs to accelerate the learning process. Numerical results validate that our algorithm achieves superior performance in terms of lowest cumulative regret relative to baselines in non-stationary environments.
☆ Memba: Membrane-driven Parameter-Efficient Fine-Tuning for Mamba
State Space Models (SSMs) have emerged as powerful alternatives to attention-based Transformers, with Mamba demonstrating impressive efficiency and scalability. As these models grow increasingly larger, the need for Parameter-Efficient Fine-Tuning (PEFT) methods becomes critical to adapt pre-trained Mamba to downstream tasks without prohibitive computational costs. However, previous approaches simply apply traditional Transformer-tailored PEFT methods without addressing the unique temporal processing dynamics of SSMs. To address this limitation, we propose Memba, a membrane-driven PEFT approach specifically designed for Mamba. Memba introduces Leaky Integrate Membrane (LIM) neurons as bio-inspired gating mechanisms that naturally accumulate membrane potentials over time, enhancing selective information retention. By strategically combining LIM neurons with Low-Rank Adaptations (LoRA) and cross-layer membrane transfer, our approach significantly improves Mamba's temporal modeling capabilities. Extensive experiments across language and vision tasks demonstrate that Memba achieves substantial improvements over existing PEFT methods. The code is available at https://github.com/Intelligent-Computing-Lab-Yale/Memba.
☆ Understanding Reasoning in Thinking Language Models via Steering Vectors
Recent advances in large language models (LLMs) have led to the development of thinking language models that generate extensive internal reasoning chains before producing responses. While these models achieve improved performance, controlling their reasoning processes remains challenging. This work presents a steering approach for thinking LLMs by analyzing and manipulating specific reasoning behaviors in DeepSeek-R1-Distill models. Through a systematic experiment on 500 tasks across 10 diverse categories, we identify several reasoning behaviors exhibited by thinking models, including expressing uncertainty, generating examples for hypothesis validation, and backtracking in reasoning chains. We demonstrate that these behaviors are mediated by linear directions in the model's activation space and can be controlled using steering vectors. By extracting and applying these vectors, we provide a method to modulate specific aspects of the model's reasoning process, such as its tendency to backtrack or express uncertainty. Our approach offers practical tools for steering reasoning processes in thinking models in a controlled and interpretable manner. We validate our steering method using two DeepSeek-R1-Distill models, demonstrating consistent control across different model architectures.
☆ Non-equilibrium Annealed Adjoint Sampler
Recently, there has been significant progress in learning-based diffusion samplers, which aim to sample from a given unnormalized density. These methods typically follow one of two paradigms: (i) formulating sampling as an unbiased stochastic optimal control (SOC) problem using a canonical reference process, or (ii) refining annealed path measures through importance-weighted sampling. Although annealing approaches have advantages in guiding samples toward high-density regions, reliance on importance sampling leads to high variance and limited scalability in practice. In this paper, we introduce the \textbf{Non-equilibrium Annealed Adjoint Sampler (NAAS)}, a novel SOC-based diffusion sampler that leverages annealed reference dynamics without resorting to importance sampling. NAAS employs a lean adjoint system inspired by adjoint matching, enabling efficient and scalable training. We demonstrate the effectiveness of our approach across a range of tasks, including sampling from classical energy landscapes and molecular Boltzmann distribution.
comment: 21 pages, 7 figures
☆ Pitfalls of Conformal Predictions for Medical Image Classification
Reliable uncertainty estimation is one of the major challenges for medical classification tasks. While many approaches have been proposed, recently the statistical framework of conformal predictions has gained a lot of attention, due to its ability to provide provable calibration guarantees. Nonetheless, the application of conformal predictions in safety-critical areas such as medicine comes with pitfalls, limitations and assumptions that practitioners need to be aware of. We demonstrate through examples from dermatology and histopathology that conformal predictions are unreliable under distributional shifts in input and label variables. Additionally, conformal predictions should not be used for selecting predictions to improve accuracy and are not reliable for subsets of the data, such as individual classes or patient attributes. Moreover, in classification settings with a small number of classes, which are common in medical image classification tasks, conformal predictions have limited practical value.
☆ Probabilistic and reinforced mining of association rules
This work introduces 4 novel probabilistic and reinforcement-driven methods for association rule mining (ARM): Gaussian process-based association rule mining (GPAR), Bayesian ARM (BARM), multi-armed bandit based ARM (MAB-ARM), and reinforcement learning based association rule mining (RLAR). These methods depart fundamentally from traditional frequency-based algorithms such as Apriori, FP-Growth, and Eclat, offering enhanced capabilities for incorporating prior knowledge, modeling uncertainty, item dependencies, probabilistic inference and adaptive search strategies. GPAR employs Gaussian processes to model item co-occurrence via feature representations, enabling principled inference, uncertainty quantification, and efficient generalization to unseen itemsets without retraining. BARM adopts a Bayesian framework with priors and optional correlation structures, yielding robust uncertainty quantification through full posterior distributions over item presence probabilities. MAB-ARM, including its Monte Carlo tree search (MCTS) companion, utilizes an upper confidence bound (UCB) strategy for efficient and adaptive exploration of the itemset space, while RLAR applies a deep Q-network (DQN) to learn a generalizable policy for identifying high-quality rules. Collectively, these approaches improve the flexibility and robustness of ARM, particularly for discovering rare or complex patterns and operating on small datasets. Empirical results on synthetic and real-world datasets demonstrate their effectiveness, while also highlighting trade-offs in computational complexity and interpretability. These innovations mark a significant shift from static, frequency-driven paradigms, offering some prior and dependency-informed, uncertainty-aware or scalable ARM frameworks for diverse application domains such as retail, geography, finance, medical diagnostics, and risk-sensitive scenarios.
comment: 205 pages
☆ Routing Mamba: Scaling State Space Models with Mixture-of-Experts Projection
Linear State Space Models (SSMs) offer remarkable performance gains in efficient sequence modeling, with constant inference-time computation and memory complexity. Recent advances, such as Mamba, further enhance SSMs with input-dependent gating and hardware-aware implementations, positioning them as strong alternatives to Transformers for long sequence modeling. However, efficiently scaling the expressive power of SSMs, particularly with Mixture of Experts (MoE), remains challenging, as naive integration attempts often falter or degrade performance. In this work, we introduce Routing Mamba (RoM), a novel approach that scales SSM parameters using sparse mixtures of linear projection experts. By sharing routing decisions between projection layers and lightweight sub-modules within Mamba across experts, RoM leverages synergies among linear projection experts for effective and efficient sparse scaling of Mamba layers. At a scale of 1.3B active parameters (10B total) and 16K training sequence length, RoM achieves language modeling performance equivalent to a dense Mamba model requiring over 2.3x more active parameters, and demonstrates consistent perplexity across context lengths. Experimental results further show RoM effectively scales hybrid language models, yielding a 23% FLOPS saving compared to dense Mamba scaling for similar performance.
☆ Bayesian Multiobject Tracking With Neural-Enhanced Motion and Measurement Models
Multiobject tracking (MOT) is an important task in applications including autonomous driving, ocean sciences, and aerospace surveillance. Traditional MOT methods are model-based and combine sequential Bayesian estimation with data association and an object birth model. More recent methods are fully data-driven and rely on the training of neural networks. Both approaches offer distinct advantages in specific settings. In particular, model-based methods are generally applicable across a wide range of scenarios, whereas data-driven MOT achieves superior performance in scenarios where abundant labeled data for training is available. A natural thought is whether a general framework can integrate the two approaches. This paper introduces a hybrid method that utilizes neural networks to enhance specific aspects of the statistical model in Bayesian MOT that have been identified as overly simplistic. By doing so, the performance of the prediction and update steps of Bayesian MOT is improved. To ensure tractable computation, our framework uses belief propagation to avoid high-dimensional operations combined with sequential Monte Carlo methods to perform low-dimensional operations efficiently. The resulting method combines the flexibility and robustness of model-based approaches with the capability to learn complex information from data of neural networks. We evaluate the performance of the proposed method based on the nuScenes autonomous driving dataset and demonstrate that it has state-of-the-art performance
RoboArena: Distributed Real-World Evaluation of Generalist Robot Policies
Comprehensive, unbiased, and comparable evaluation of modern generalist policies is uniquely challenging: existing approaches for robot benchmarking typically rely on heavy standardization, either by specifying fixed evaluation tasks and environments, or by hosting centralized ''robot challenges'', and do not readily scale to evaluating generalist policies across a broad range of tasks and environments. In this work, we propose RoboArena, a new approach for scalable evaluation of generalist robot policies in the real world. Instead of standardizing evaluations around fixed tasks, environments, or locations, we propose to crowd-source evaluations across a distributed network of evaluators. Importantly, evaluators can freely choose the tasks and environments they evaluate on, enabling easy scaling of diversity, but they are required to perform double-blind evaluations over pairs of policies. Then, by aggregating preference feedback from pairwise comparisons across diverse tasks and environments, we can derive a ranking of policies. We instantiate our approach across a network of evaluators at seven academic institutions using the DROID robot platform. Through more than 600 pairwise real-robot evaluation episodes across seven generalist policies, we demonstrate that our crowd-sourced approach can more accurately rank the performance of existing generalist policies than conventional, centralized evaluation approaches, while being more scalable, resilient, and trustworthy. We open our evaluation network to the community and hope that it can enable more accessible comparisons of generalist robot policies.
comment: Website: https://robo-arena.github.io/
☆ Dynamic Temporal Positional Encodings for Early Intrusion Detection in IoT
The rapid expansion of the Internet of Things (IoT) has introduced significant security challenges, necessitating efficient and adaptive Intrusion Detection Systems (IDS). Traditional IDS models often overlook the temporal characteristics of network traffic, limiting their effectiveness in early threat detection. We propose a Transformer-based Early Intrusion Detection System (EIDS) that incorporates dynamic temporal positional encodings to enhance detection accuracy while maintaining computational efficiency. By leveraging network flow timestamps, our approach captures both sequence structure and timing irregularities indicative of malicious behaviour. Additionally, we introduce a data augmentation pipeline to improve model robustness. Evaluated on the CICIoT2023 dataset, our method outperforms existing models in both accuracy and earliness. We further demonstrate its real-time feasibility on resource-constrained IoT devices, achieving low-latency inference and minimal memory footprint.
comment: Accepted at the 10th International Conference on Smart and Sustainable Technologies (SpliTech 2025)
☆ RL for Reasoning by Adaptively Revealing Rationales
We propose that reinforcement learning (RL) from partial expert demonstrations is not merely a training heuristic, but a promising framework for solving complex sequence generation tasks. Supervised fine-tuning (SFT) relies on dense ground-truth labels, which become increasingly costly as sequence length grows. RL, on the other hand, struggles with sparse rewards and a combinatorially large output space. We address this by introducing adaptive backtracking (AdaBack), a per-sample curriculum learning algorithm that reveals only a partial prefix of the target output during training. The supervision length is adjusted dynamically for each sample based on the model's past reward signal, allowing it to incrementally learn to complete reasoning chains by conditioning on correct partial solutions. We investigate this intermediate regime between SFT and RL and argue that per-sample curriculum learning is more than a trade-off between efficiency and generality, it can succeed in tasks with long sequences of latent dependencies where SFT and RL both fail to generalize. Using a synthetic task with latent parity constraints, we show that our adaptive curriculum over partial answers reliably solves problems that are otherwise intractable. On mathematical reasoning benchmarks (MATH, GSM8k), we find that curriculum learning enables models to solve problems that RL alone cannot, acquiring new reasoning capabilities through incremental exposure to partial solutions.
comment: 18 pages, 8 figures
☆ CT Radiomics-Based Explainable Machine Learning Model for Accurate Differentiation of Malignant and Benign Endometrial Tumors: A Two-Center Study
Aimed to develop and validate a CT radiomics-based explainable machine learning model for diagnosing malignancy and benignity specifically in endometrial cancer (EC) patients. A total of 83 EC patients from two centers, including 46 with malignant and 37 with benign conditions, were included, with data split into a training set (n=59) and a testing set (n=24). The regions of interest (ROIs) were manually segmented from pre-surgical CT scans, and 1132 radiomic features were extracted from the pre-surgical CT scans using Pyradiomics. Six explainable machine learning modeling algorithms were implemented respectively, for determining the optimal radiomics pipeline. The diagnostic performance of the radiomic model was evaluated by using sensitivity, specificity, accuracy, precision, F1 score, confusion matrices, and ROC curves. To enhance clinical understanding and usability, we separately implemented SHAP analysis and feature mapping visualization, and evaluated the calibration curve and decision curve. By comparing six modeling strategies, the Random Forest model emerged as the optimal choice for diagnosing EC, with a training AUC of 1.00 and a testing AUC of 0.96. SHAP identified the most important radiomic features, revealing that all selected features were significantly associated with EC (P < 0.05). Radiomics feature maps also provide a feasible assessment tool for clinical applications. DCA indicated a higher net benefit for our model compared to the "All" and "None" strategies, suggesting its clinical utility in identifying high-risk cases and reducing unnecessary interventions. In conclusion, the CT radiomics-based explainable machine learning model achieved high diagnostic performance, which could be used as an intelligent auxiliary tool for the diagnosis of endometrial cancer.
comment: 30 pages, 5 figures, 3 tables
☆ Enhancing VICReg: Random-Walk Pairing for Improved Generalization and Better Global Semantics Capturing
In this paper, we argue that viewing VICReg-a popular self-supervised learning (SSL) method--through the lens of spectral embedding reveals a potential source of sub-optimality: it may struggle to generalize robustly to unseen data due to overreliance on the training data. This observation invites a closer look at how well this method achieves its goal of producing meaningful representations of images outside of the training set as well. Here, we investigate this issue and introduce SAG-VICReg (Stable and Generalizable VICReg), a method that builds on VICReg by incorporating new training techniques. These enhancements improve the model's ability to capture global semantics within the data and strengthen the generalization capabilities. Experiments demonstrate that SAG-VICReg effectively addresses the generalization challenge while matching or surpassing diverse state-of-the-art SSL baselines. Notably, our method exhibits superior performance on metrics designed to evaluate global semantic understanding, while simultaneously maintaining competitive results on local evaluation metrics. Furthermore, we propose a new standalone evaluation metric for embeddings that complements the standard evaluation methods and accounts for the global data structure without requiring labels--a key issue when tagged data is scarce or not available.
☆ ShareGPT-4o-Image: Aligning Multimodal Models with GPT-4o-Level Image Generation
Recent advances in multimodal generative models have unlocked photorealistic, instruction-aligned image generation, yet leading systems like GPT-4o-Image remain proprietary and inaccessible. To democratize these capabilities, we present ShareGPT-4o-Image, the first dataset comprising 45K text-to-image and 46K text-and-image-to-image data, all synthesized using GPT-4o's image generation capabilities for distilling its advanced image generation abilities. Leveraging this dataset, we develop Janus-4o, a multimodal large language model capable of both text-to-image and text-and-image-to-image generation. Janus-4o not only significantly improves text-to-image generation over its predecessor, Janus-Pro, but also newly supports text-and-image-to-image generation. Notably, it achieves impressive performance in text-and-image-to-image generation from scratch, using only 91K synthetic samples and 6 hours of training on an 8 A800-GPU machine. We hope the release of ShareGPT-4o-Image and Janus-4o will foster open research in photorealistic, instruction-aligned image generation.
☆ GRASP: Grouped Regression with Adaptive Shrinkage Priors
We introduce GRASP, a simple Bayesian framework for regression with grouped predictors, built on the normal beta prime (NBP) prior. The NBP prior is an adaptive generalization of the horseshoe prior with tunable hyperparameters that control tail behavior, enabling a flexible range of sparsity, from strong shrinkage to ridge-like regularization. Unlike prior work that introduced the group inverse-gamma gamma (GIGG) prior by decomposing the NBP prior into structured hierarchies, we show that directly controlling the tails is sufficient without requiring complex hierarchical constructions. Extending the non-tail adaptive grouped half-Cauchy hierarchy of Xu et al., GRASP assigns the NBP prior to both local and group shrinkage parameters allowing adaptive sparsity within and across groups. A key contribution of this work is a novel framework to explicitly quantify correlations among shrinkage parameters within a group, providing deeper insights into grouped shrinkage behavior. We also introduce an efficient Metropolis-Hastings sampler for hyperparameter estimation. Empirical results on simulated and real-world data demonstrate the robustness and versatility of GRASP across grouped regression problems with varying sparsity and signal-to-noise ratios.
☆ Identifiable Convex-Concave Regression via Sub-gradient Regularised Least Squares
We propose a novel nonparametric regression method that models complex input-output relationships as the sum of convex and concave components. The method-Identifiable Convex-Concave Nonparametric Least Squares (ICCNLS)-decomposes the target function into additive shape-constrained components, each represented via sub-gradient-constrained affine functions. To address the affine ambiguity inherent in convex-concave decompositions, we introduce global statistical orthogonality constraints, ensuring that residuals are uncorrelated with both intercept and input variables. This enforces decomposition identifiability and improves interpretability. We further incorporate L1, L2 and elastic net regularisation on sub-gradients to enhance generalisation and promote structural sparsity. The proposed method is evaluated on synthetic and real-world datasets, including healthcare pricing data, and demonstrates improved predictive accuracy and model simplicity compared to conventional CNLS and difference-of-convex (DC) regression approaches. Our results show that statistical identifiability, when paired with convex-concave structure and sub-gradient regularisation, yields interpretable models suited for forecasting, benchmarking, and policy evaluation.
comment: 21 pages, working paper
☆ Distributionally robust minimization in meta-learning for system identification
Meta learning aims at learning how to solve tasks, and thus it allows to estimate models that can be quickly adapted to new scenarios. This work explores distributionally robust minimization in meta learning for system identification. Standard meta learning approaches optimize the expected loss, overlooking task variability. We use an alternative approach, adopting a distributionally robust optimization paradigm that prioritizes high-loss tasks, enhancing performance in worst-case scenarios. Evaluated on a meta model trained on a class of synthetic dynamical systems and tested in both in-distribution and out-of-distribution settings, the proposed approach allows to reduce failures in safety-critical applications.
☆ TAB: Unified Benchmarking of Time Series Anomaly Detection Methods VLDB2025
Time series anomaly detection (TSAD) plays an important role in many domains such as finance, transportation, and healthcare. With the ongoing instrumentation of reality, more time series data will be available, leading also to growing demands for TSAD. While many TSAD methods already exist, new and better methods are still desirable. However, effective progress hinges on the availability of reliable means of evaluating new methods and comparing them with existing methods. We address deficiencies in current evaluation procedures related to datasets and experimental settings and protocols. Specifically, we propose a new time series anomaly detection benchmark, called TAB. First, TAB encompasses 29 public multivariate datasets and 1,635 univariate time series from different domains to facilitate more comprehensive evaluations on diverse datasets. Second, TAB covers a variety of TSAD methods, including Non-learning, Machine learning, Deep learning, LLM-based, and Time-series pre-trained methods. Third, TAB features a unified and automated evaluation pipeline that enables fair and easy evaluation of TSAD methods. Finally, we employ TAB to evaluate existing TSAD methods and report on the outcomes, thereby offering a deeper insight into the performance of these methods. Besides, all datasets and code are available at https://github.com/decisionintelligence/TAB.
comment: Accepted by PVLDB2025
☆ Pathwise Explanation of ReLU Neural Networks
Neural networks have demonstrated a wide range of successes, but their ``black box" nature raises concerns about transparency and reliability. Previous research on ReLU networks has sought to unwrap these networks into linear models based on activation states of all hidden units. In this paper, we introduce a novel approach that considers subsets of the hidden units involved in the decision making path. This pathwise explanation provides a clearer and more consistent understanding of the relationship between the input and the decision-making process. Our method also offers flexibility in adjusting the range of explanations within the input, i.e., from an overall attribution input to particular components within the input. Furthermore, it allows for the decomposition of explanations for a given input for more detailed explanations. Experiments demonstrate that our method outperforms others both quantitatively and qualitatively.
comment: In Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, PMLR 238:4645-4653, 2024
☆ Why Do Some Language Models Fake Alignment While Others Don't?
Alignment faking in large language models presented a demonstration of Claude 3 Opus and Claude 3.5 Sonnet selectively complying with a helpful-only training objective to prevent modification of their behavior outside of training. We expand this analysis to 25 models and find that only 5 (Claude 3 Opus, Claude 3.5 Sonnet, Llama 3 405B, Grok 3, Gemini 2.0 Flash) comply with harmful queries more when they infer they are in training than when they infer they are in deployment. First, we study the motivations of these 5 models. Results from perturbing details of the scenario suggest that only Claude 3 Opus's compliance gap is primarily and consistently motivated by trying to keep its goals. Second, we investigate why many chat models don't fake alignment. Our results suggest this is not entirely due to a lack of capabilities: many base models fake alignment some of the time, and post-training eliminates alignment-faking for some models and amplifies it for others. We investigate 5 hypotheses for how post-training may suppress alignment faking and find that variations in refusal behavior may account for a significant portion of differences in alignment faking.
☆ Generalization under Byzantine & Poisoning Attacks: Tight Stability Bounds in Robust Distributed Learning
Robust distributed learning algorithms aim to maintain good performance in distributed and federated settings, even in the presence of misbehaving workers. Two primary threat models have been studied: Byzantine attacks, where misbehaving workers can send arbitrarily corrupted updates, and data poisoning attacks, where misbehavior is limited to manipulation of local training data. While prior work has shown comparable optimization error under both threat models, a fundamental question remains open: How do these threat models impact generalization? Empirical evidence suggests a gap between the two threat models, yet it remains unclear whether it is fundamental or merely an artifact of suboptimal attacks. In this work, we present the first theoretical investigation into this problem, formally showing that Byzantine attacks are intrinsically more harmful to generalization than data poisoning. Specifically, we prove that: (i) under data poisoning, the uniform algorithmic stability of a robust distributed learning algorithm, with optimal optimization error, degrades by an additive factor of $\varTheta ( \frac{f}{n-f} )$, with $f$ the number of misbehaving workers out of $n$; and (ii) In contrast, under Byzantine attacks, the degradation is in $\mathcal{O} \big( \sqrt{ \frac{f}{n-2f}} \big)$.This difference in stability leads to a generalization error gap that is especially significant as $f$ approaches its maximum value $\frac{n}{2}$.
☆ Probing the Embedding Space of Transformers via Minimal Token Perturbations IJCAI 2025
Understanding how information propagates through Transformer models is a key challenge for interpretability. In this work, we study the effects of minimal token perturbations on the embedding space. In our experiments, we analyze the frequency of which tokens yield to minimal shifts, highlighting that rare tokens usually lead to larger shifts. Moreover, we study how perturbations propagate across layers, demonstrating that input information is increasingly intermixed in deeper layers. Our findings validate the common assumption that the first layers of a model can be used as proxies for model explanations. Overall, this work introduces the combination of token perturbations and shifts on the embedding space as a powerful tool for model interpretability.
comment: IJCAI 2025 Workshop on Explainable Artificial Intelligence
☆ Imputation of Longitudinal Data Using GANs: Challenges and Implications for Classification
Longitudinal data is commonly utilised across various domains, such as health, biomedical, education and survey studies. This ubiquity has led to a rise in statistical, machine and deep learning-based methods for Longitudinal Data Classification (LDC). However, the intricate nature of the data, characterised by its multi-dimensionality, causes instance-level heterogeneity and temporal correlations that add to the complexity of longitudinal data analysis. Additionally, LDC accuracy is often hampered by the pervasiveness of missing values in longitudinal data. Despite ongoing research that draw on the generative power and utility of Generative Adversarial Networks (GANs) to address the missing data problem, critical considerations include statistical assumptions surrounding longitudinal data and missingness within it, as well as other data-level challenges like class imbalance and mixed data types that impact longitudinal data imputation (LDI) and the subsequent LDC process in GANs. This paper provides a comprehensive overview of how GANs have been applied in LDI, with a focus whether GANS have adequately addressed fundamental assumptions about the data from a LDC perspective. We propose a categorisation of main approaches to GAN-based LDI, highlight strengths and limitations of methods, identify key research trends, and provide promising future directions. Our findings indicate that while GANs show great potential for LDI to improve usability and quality of longitudinal data for tasks like LDC, there is need for more versatile approaches that can handle the wider spectrum of challenges presented by longitudinal data with missing values. By synthesising current knowledge and identifying critical research gaps, this survey aims to guide future research efforts in developing more effective GAN-based solutions to address LDC challenges.
comment: 68 pages (excluding bibliography), 10 figures
☆ Fast Neural Inverse Kinematics on Human Body Motions
Markerless motion capture enables the tracking of human motion without requiring physical markers or suits, offering increased flexibility and reduced costs compared to traditional systems. However, these advantages often come at the expense of higher computational demands and slower inference, limiting their applicability in real-time scenarios. In this technical report, we present a fast and reliable neural inverse kinematics framework designed for real-time capture of human body motions from 3D keypoints. We describe the network architecture, training methodology, and inference procedure in detail. Our framework is evaluated both qualitatively and quantitatively, and we support key design decisions through ablation studies.
comment: Work in progress
☆ Newtonian and Lagrangian Neural Networks: A Comparison Towards Efficient Inverse Dynamics Identification
Accurate inverse dynamics models are essential tools for controlling industrial robots. Recent research combines neural network regression with inverse dynamics formulations of the Newton-Euler and the Euler-Lagrange equations of motion, resulting in so-called Newtonian neural networks and Lagrangian neural networks, respectively. These physics-informed models seek to identify unknowns in the analytical equations from data. Despite their potential, current literature lacks guidance on choosing between Lagrangian and Newtonian networks. In this study, we show that when motor torques are estimated instead of directly measuring joint torques, Lagrangian networks prove less effective compared to Newtonian networks as they do not explicitly model dissipative torques. The performance of these models is compared to neural network regression on data of a MABI MAX 100 industrial robot.
comment: Paper accepted for publication in 14th IFAC Symposium on Robotics
☆ Data Curation Matters: Model Collapse and Spurious Shift Performance Prediction from Training on Uncurated Text Embeddings
Training models on uncurated Text Embeddings (TEs) derived from raw tabular data can lead to a severe failure mode known as model collapse, where predictions converge to a single class regardless of input. By comparing models trained with identical hyper-parameter configurations on both raw tabular data and their TE-derived counterparts, we find that collapse is a consistent failure mode in the latter setting. We introduce a set of metrics that capture the extent of model collapse, offering a new perspective on TE quality as a proxy for data curation. Our results reveal that TE alone does not effectively function as a curation layer - and that their quality significantly influences downstream learning. More insidiously, we observe that the presence of model collapse can yield artificially inflated and spurious Accuracy-on-the-Line correlation. These findings highlight the need for more nuanced curation and evaluation of embedding-based representations, particularly in out-of-distribution settings.
comment: 37 pages. Multiple figures
☆ SliceGX: Layer-wise GNN Explanation with Model-slicing
Ensuring the trustworthiness of graph neural networks (GNNs) as black-box models requires effective explanation methods. Existing GNN explanations typically apply input perturbations to identify subgraphs that are responsible for the occurrence of the final output of GNNs. However, such approaches lack finer-grained, layer-wise analysis of how intermediate representations contribute to the final result, capabilities that are crucial for model diagnosis and architecture optimization. This paper introduces SliceGX, a novel GNN explanation approach that generates explanations at specific GNN layers in a progressive manner. Given a GNN M, a set of selected intermediate layers, and a target layer, SliceGX automatically segments M into layer blocks ("model slice") and discovers high-quality explanatory subgraphs in each layer block that clarifies the occurrence of output of M at the targeted layer. Although finding such layer-wise explanations is computationally challenging, we develop efficient algorithms and optimization techniques that incrementally generate and maintain these subgraphs with provable approximation guarantees. Additionally, SliceGX offers a SPARQL-like query interface, providing declarative access and search capacities for the generated explanations. Through experiments on large real-world graphs and representative GNN architectures, we verify the effectiveness and efficiency of SliceGX, and illustrate its practical utility in supporting model debugging.
☆ Trustworthy Efficient Communication for Distributed Learning using LQ-SGD Algorithm
We propose LQ-SGD (Low-Rank Quantized Stochastic Gradient Descent), an efficient communication gradient compression algorithm designed for distributed training. LQ-SGD further develops on the basis of PowerSGD by incorporating the low-rank approximation and log-quantization techniques, which drastically reduce the communication overhead, while still ensuring the convergence speed of training and model accuracy. In addition, LQ-SGD and other compression-based methods show stronger resistance to gradient inversion than traditional SGD, providing a more robust and efficient optimization path for distributed learning systems.
☆ h-calibration: Rethinking Classifier Recalibration with Probabilistic Error-Bounded Objective
Deep neural networks have demonstrated remarkable performance across numerous learning tasks but often suffer from miscalibration, resulting in unreliable probability outputs. This has inspired many recent works on mitigating miscalibration, particularly through post-hoc recalibration methods that aim to obtain calibrated probabilities without sacrificing the classification performance of pre-trained models. In this study, we summarize and categorize previous works into three general strategies: intuitively designed methods, binning-based methods, and methods based on formulations of ideal calibration. Through theoretical and practical analysis, we highlight ten common limitations in previous approaches. To address these limitations, we propose a probabilistic learning framework for calibration called h-calibration, which theoretically constructs an equivalent learning formulation for canonical calibration with boundedness. On this basis, we design a simple yet effective post-hoc calibration algorithm. Our method not only overcomes the ten identified limitations but also achieves markedly better performance than traditional methods, as validated by extensive experiments. We further analyze, both theoretically and experimentally, the relationship and advantages of our learning objective compared to traditional proper scoring rule. In summary, our probabilistic framework derives an approximately equivalent differentiable objective for learning error-bounded calibrated probabilities, elucidating the correspondence and convergence properties of computational statistics with respect to theoretical bounds in canonical calibration. The theoretical effectiveness is verified on standard post-hoc calibration benchmarks by achieving state-of-the-art performance. This research offers valuable reference for learning reliable likelihood in related fields.
☆ Adapting Vision-Language Models for Evaluating World Models
World models -- generative models that simulate environment dynamics conditioned on past observations and actions -- are gaining prominence in planning, simulation, and embodied AI. However, evaluating their rollouts remains a fundamental challenge, requiring fine-grained, temporally grounded assessment of action alignment and semantic consistency -- capabilities not captured by existing metrics. Vision-Language Models (VLMs) have shown promise as automatic evaluators of generative content due to their strong multimodal reasoning abilities. Yet, their use in fine-grained, temporally sensitive evaluation tasks remains limited and requires targeted adaptation. We introduce a evaluation protocol targeting two recognition tasks -- action recognition and character recognition -- each assessed across binary, multiple-choice, and open-ended formats. To support this, we present UNIVERSE (UNIfied Vision-language Evaluator for Rollouts in Simulated Environments), a method for adapting VLMs to rollout evaluation under data and compute constraints. We conduct a large-scale study comparing full, partial, and parameter-efficient finetuning across task formats, context lengths, sampling strategies, and data compositions. The resulting unified evaluator matches the performance of task-specific baselines using a single checkpoint. Human studies confirm strong alignment with human judgments, establishing UNIVERSE as a scalable, semantics-aware evaluator for world models.
☆ An entropy-optimal path to humble AI
Progress of AI has led to a creation of very successful, but by no means humble models and tools, especially regarding (i) the huge and further exploding costs and resources they demand, and (ii) the over-confidence of these tools with the answers they provide. Here we introduce a novel mathematical framework for a non-equilibrium entropy-optimizing reformulation of Boltzmann machines based on the exact law of total probability. It results in the highly-performant, but much cheaper, gradient-descent-free learning framework with mathematically-justified existence and uniqueness criteria, and answer confidence/reliability measures. Comparisons to state-of-the-art AI tools in terms of performance, cost and the model descriptor lengths on a set of synthetic problems with varying complexity reveal that the proposed method results in more performant and slim models, with the descriptor lengths being very close to the intrinsic complexity scaling bounds for the underlying problems. Applying this framework to historical climate data results in models with systematically higher prediction skills for the onsets of La Ni\~na and El Ni\~no climate phenomena, requiring just few years of climate data for training - a small fraction of what is necessary for contemporary climate prediction tools.
comment: 30 pages, 4 figures
☆ IDAL: Improved Domain Adaptive Learning for Natural Images Dataset
We present a novel approach for unsupervised domain adaptation (UDA) for natural images. A commonly-used objective for UDA schemes is to enhance domain alignment in representation space even if there is a domain shift in the input space. Existing adversarial domain adaptation methods may not effectively align different domains of multimodal distributions associated with classification problems. Our approach has two main features. Firstly, its neural architecture uses the deep structure of ResNet and the effective separation of scales of feature pyramidal network (FPN) to work with both content and style features. Secondly, it uses a combination of a novel loss function and judiciously selected existing loss functions to train the network architecture. This tailored combination is designed to address challenges inherent to natural images, such as scale, noise, and style shifts, that occur on top of a multi-modal (multi-class) distribution. The combined loss function not only enhances model accuracy and robustness on the target domain but also speeds up training convergence. Our proposed UDA scheme generalizes better than state-of-the-art for CNN-based methods on Office-Home, Office-31, and VisDA-2017 datasets and comaparable for DomainNet dataset.
comment: Accepted in ICPR'24 (International Conference on Pattern Recognition)
☆ Evolving Prompts In-Context: An Open-ended, Self-replicating Perspective ICML 2025
We propose a novel prompt design paradigm that challenges conventional wisdom in large language model (LLM) prompting. While conventional wisdom prioritizes well-crafted instructions and demonstrations for in-context learning (ICL), we show that pruning random demonstrations into seemingly incoherent "gibberish" can remarkably improve performance across diverse tasks. Notably, the "gibberish" always matches or surpasses state-of-the-art automatic prompt optimization techniques, achieving substantial gains regardless of LLM alignment. Nevertheless, discovering an effective pruning strategy is non-trivial, as existing attribution methods and prompt compression algorithms fail to deliver robust results, let alone human intuition. In terms of this, we propose a self-discover prompt optimization framework, PromptQuine, an evolutionary search framework that automatically searches for the pruning strategy by itself using only low-data regimes. Much like the emergent complexity in nature--such as symbiosis and self-organization--arising in response to resource constraints, our framework evolves and refines unconventional yet highly effective prompts by leveraging only the tokens present within the context. We demonstrate its effectiveness across classification, multi-choice question answering, generation and math reasoning tasks across LLMs, while achieving decent runtime efficiency. We hope our findings can guide mechanistic studies on in-context learning, and provide a call to action, to pave the way for more open-ended search algorithms for more effective LLM prompting.
comment: ICML 2025, and Code will be released at: https://github.com/jianyu-cs/PromptQuine/
☆ ASTER: Adaptive Spatio-Temporal Early Decision Model for Dynamic Resource Allocation
Supporting decision-making has long been a central vision in the field of spatio-temporal intelligence. While prior work has improved the timeliness and accuracy of spatio-temporal forecasting, converting these forecasts into actionable strategies remains a key challenge. A main limitation is the decoupling of the prediction and the downstream decision phases, which can significantly degrade the downstream efficiency. For example, in emergency response, the priority is successful resource allocation and intervention, not just incident prediction. To this end, it is essential to propose an Adaptive Spatio-Temporal Early Decision model (ASTER) that reforms the forecasting paradigm from event anticipation to actionable decision support. This framework ensures that information is directly used for decision-making, thereby maximizing overall effectiveness. Specifically, ASTER introduces a new Resource-aware Spatio-Temporal interaction module (RaST) that adaptively captures long- and short-term dependencies under dynamic resource conditions, producing context-aware spatiotemporal representations. To directly generate actionable decisions, we further design a Preference-oriented decision agent (Poda) based on multi-objective reinforcement learning, which transforms predictive signals into resource-efficient intervention strategies by deriving optimal actions under specific preferences and dynamic constraints. Experimental results on four benchmark datasets demonstrate the state-of-the-art performance of ASTER in improving both early prediction accuracy and resource allocation outcomes across six downstream metrics.
comment: ASTER: Adaptive Spatio-Temporal Early Decision Model for Dynamic Resource Allocation
☆ Permutation Equivariant Model-based Offline Reinforcement Learning for Auto-bidding
Reinforcement learning (RL) for auto-bidding has shifted from using simplistic offline simulators (Simulation-based RL Bidding, SRLB) to offline RL on fixed real datasets (Offline RL Bidding, ORLB). However, ORLB policies are limited by the dataset's state space coverage, offering modest gains. While SRLB expands state coverage, its simulator-reality gap risks misleading policies. This paper introduces Model-based RL Bidding (MRLB), which learns an environment model from real data to bridge this gap. MRLB trains policies using both real and model-generated data, expanding state coverage beyond ORLB. To ensure model reliability, we propose: 1) A permutation equivariant model architecture for better generalization, and 2) A robust offline Q-learning method that pessimistically penalizes model errors. These form the Permutation Equivariant Model-based Offline RL (PE-MORL) algorithm. Real-world experiments show that PE-MORL outperforms state-of-the-art auto-bidding methods.
☆ TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
Chip manufacturing is a complex process, and to achieve a faster time to market, an increasing number of untrusted third-party tools and designs from around the world are being utilized. The use of these untrusted third party intellectual properties (IPs) and tools increases the risk of adversaries inserting hardware trojans (HTs). The covert nature of HTs poses significant threats to cyberspace, potentially leading to severe consequences for national security, the economy, and personal privacy. Many graph neural network (GNN)-based HT detection methods have been proposed. However, they perform poorly on larger designs because they rely on training with smaller designs. Additionally, these methods do not explore different GNN models that are well-suited for HT detection or provide efficient training and inference processes. We propose a novel framework that generates graph embeddings for large designs (e.g., RISC-V) and incorporates various GNN models tailored for HT detection. Furthermore, our framework introduces domain-specific techniques for efficient training and inference by implementing model quantization. Model quantization reduces the precision of the weights, lowering the computational requirements, enhancing processing speed without significantly affecting detection accuracy. We evaluate our framework using a custom dataset, and our results demonstrate a precision of 98.66% and a recall (true positive rate) of 92.30%, highlighting the effectiveness and efficiency of our approach in detecting hardware trojans in large-scale chip designs
☆ BeltCrack: the First Sequential-image Industrial Conveyor Belt Crack Detection Dataset and Its Baseline with Triple-domain Feature Learning
Conveyor belt is a category of important equipments in modern industry, widely applied in production and manufacturing Fields. Its health status is much critical to operation efficiency and safety hazards. Among the factors affecting belt health, crack is often one of the most threatening risks. Currently, considering safety, how to intelligently detect belt cracks is catching an increasing attention. To implement the intelligent detection with machine learning, real crack samples are believed to be necessary. However, existing crack datasets primarily focus on pavement scenarios or synthetic data, no real-world industrial belt crack datasets at all. To propel machine learning advancement in this field, this paper constructs the first sequential-image belt crack detection datasets (BeltCrack14ks and BeltCrack9kd), from real-world factory scenes. Furthermore, to validate usability and effectiveness, we propose a special baseline method with triple-domain (i.e., time-space-frequency) feature hierarchical fusion learning for the two whole-new datasets. Experimental results demonstrate the availability and effectiveness of our dataset. Besides, they also show that our baseline is obviously superior to other similar detection methods. Our datasets and source codes are available at https://github.com/UESTC-nnLab/BeltCrack.
comment: 32 pages, 10 figures
☆ Cloud-Aware SAR Fusion for Enhanced Optical Sensing in Space Missions
Cloud contamination significantly impairs the usability of optical satellite imagery, affecting critical applications such as environmental monitoring, disaster response, and land-use analysis. This research presents a Cloud-Attentive Reconstruction Framework that integrates SAR-optical feature fusion with deep learning-based image reconstruction to generate cloud-free optical imagery. The proposed framework employs an attention-driven feature fusion mechanism to align complementary structural information from Synthetic Aperture Radar (SAR) with spectral characteristics from optical data. Furthermore, a cloud-aware model update strategy introduces adaptive loss weighting to prioritize cloud-occluded regions, enhancing reconstruction accuracy. Experimental results demonstrate that the proposed method outperforms existing approaches, achieving a PSNR of 31.01 dB, SSIM of 0.918, and MAE of 0.017. These outcomes highlight the framework's effectiveness in producing high-fidelity, spatially and spectrally consistent cloud-free optical images.
☆ Choice of Scoring Rules for Indirect Elicitation of Properties with Parametric Assumptions
People are commonly interested in predicting a statistical property of a random event such as mean and variance. Proper scoring rules assess the quality of predictions and require that the expected score gets uniquely maximized at the precise prediction, in which case we call the score directly elicits the property. Previous research work has widely studied the existence and the characterization of proper scoring rules for different properties, but little literature discusses the choice of proper scoring rules for applications at hand. In this paper, we explore a novel task, the indirect elicitation of properties with parametric assumptions, where the target property is a function of several directly-elicitable sub-properties and the total score is a weighted sum of proper scoring rules for each sub-property. Because of the restriction to a parametric model class, different settings for the weights lead to different constrained optimal solutions. Our goal is to figure out how the choice of weights affects the estimation of the target property and which choice is the best. We start it with simulation studies and observe an interesting pattern: in most cases, the optimal estimation of the target property changes monotonically with the increase of each weight, and the best configuration of weights is often to set some weights as zero. To understand how it happens, we first establish the elementary theoretical framework and then provide deeper sufficient conditions for the case of two sub-properties and of more sub-properties respectively. The theory on 2-D cases perfectly interprets the experimental results. In higher-dimensional situations, we especially study the linear cases and suggest that more complex settings can be understood with locally mapping into linear situations or using linear approximations when the true values of sub-properties are close enough to the parametric space.
comment: Key words: proper scoring rules, property elicitation, parametric model estimation. Paper length: 20 pages of main text + 2 pages of references + 21 pages of appendices
☆ DRO-Augment Framework: Robustness by Synergizing Wasserstein Distributionally Robust Optimization and Data Augmentation
In many real-world applications, ensuring the robustness and stability of deep neural networks (DNNs) is crucial, particularly for image classification tasks that encounter various input perturbations. While data augmentation techniques have been widely adopted to enhance the resilience of a trained model against such perturbations, there remains significant room for improvement in robustness against corrupted data and adversarial attacks simultaneously. To address this challenge, we introduce DRO-Augment, a novel framework that integrates Wasserstein Distributionally Robust Optimization (W-DRO) with various data augmentation strategies to improve the robustness of the models significantly across a broad spectrum of corruptions. Our method outperforms existing augmentation methods under severe data perturbations and adversarial attack scenarios while maintaining the accuracy on the clean datasets on a range of benchmark datasets, including but not limited to CIFAR-10-C, CIFAR-100-C, MNIST, and Fashion-MNIST. On the theoretical side, we establish novel generalization error bounds for neural networks trained using a computationally efficient, variation-regularized loss function closely related to the W-DRO problem.
comment: 26 pages,3 figures
☆ Decoding Federated Learning: The FedNAM+ Conformal Revolution
Federated learning has significantly advanced distributed training of machine learning models across decentralized data sources. However, existing frameworks often lack comprehensive solutions that combine uncertainty quantification, interpretability, and robustness. To address this, we propose FedNAM+, a federated learning framework that integrates Neural Additive Models (NAMs) with a novel conformal prediction method to enable interpretable and reliable uncertainty estimation. Our method introduces a dynamic level adjustment technique that utilizes gradient-based sensitivity maps to identify key input features influencing predictions. This facilitates both interpretability and pixel-wise uncertainty estimates. Unlike traditional interpretability methods such as LIME and SHAP, which do not provide confidence intervals, FedNAM+ offers visual insights into prediction reliability. We validate our approach through experiments on CT scan, MNIST, and CIFAR datasets, demonstrating high prediction accuracy with minimal loss (e.g., only 0.1% on MNIST), along with transparent uncertainty measures. Visual analysis highlights variable uncertainty intervals, revealing low-confidence regions where model performance can be improved with additional data. Compared to Monte Carlo Dropout, FedNAM+ delivers efficient and global uncertainty estimates with reduced computational overhead, making it particularly suitable for federated learning scenarios. Overall, FedNAM+ provides a robust, interpretable, and computationally efficient framework that enhances trust and transparency in decentralized predictive modeling.
☆ How Alignment Shrinks the Generative Horizon
Despite their impressive capabilities, aligned large language models (LLMs) often generate outputs that lack diversity. What drives this stability in the generation? We investigate this phenomenon through the lens of probability concentration in the model's output distribution. To quantify this concentration, we introduce the Branching Factor (BF) -- a token-invariant measure of the effective number of plausible next steps during generation. Our empirical analysis reveals two key findings: (1) BF often decreases as generation progresses, suggesting that LLMs become more predictable as they generate. (2) alignment tuning substantially sharpens the model's output distribution from the outset, reducing BF by nearly an order of magnitude (e.g., from 12 to 1.2) relative to base models. This stark reduction helps explain why aligned models often appear less sensitive to decoding strategies. Building on this insight, we find this stability has surprising implications for complex reasoning. Aligned Chain-of-Thought (CoT) models (e.g., DeepSeek-distilled models), for instance, leverage this effect; by generating longer reasoning chains, they push generation into later, more deterministic (lower BF) stages, resulting in more stable outputs. We hypothesize that alignment tuning does not fundamentally change a model's behavior, but instead steers it toward stylistic tokens (e.g., "Sure") that unlock low-entropy trajectories already present in the base model. This view is supported by nudging experiments, which show that prompting base models with such tokens can similarly reduce BF. Together, our findings establish BF as a powerful diagnostic for understanding and controlling LLM outputs - clarifying how alignment reduces variability, how CoT promotes stable generations, and how base models can be steered away from diversity.
comment: Codebase: https://github.com/yangalan123/LLMBranchingFactor, Website: https://yangalan123.github.io/branching_factor/
☆ NestQuant: Post-Training Integer-Nesting Quantization for On-Device DNN
Deploying quantized deep neural network (DNN) models with resource adaptation capabilities on ubiquitous Internet of Things (IoT) devices to provide high-quality AI services can leverage the benefits of compression and meet multi-scenario resource requirements. However, existing dynamic/mixed precision quantization requires retraining or special hardware, whereas post-training quantization (PTQ) has two limitations for resource adaptation: (i) The state-of-the-art PTQ methods only provide one fixed bitwidth model, which makes it challenging to adapt to the dynamic resources of IoT devices; (ii) Deploying multiple PTQ models with diverse bitwidths consumes large storage resources and switching overheads. To this end, this paper introduces a resource-friendly post-training integer-nesting quantization, i.e., NestQuant, for on-device quantized model switching on IoT devices. The proposed NestQuant incorporates the integer weight decomposition, which bit-wise splits quantized weights into higher-bit and lower-bit weights of integer data types. It also contains a decomposed weights nesting mechanism to optimize the higher-bit weights by adaptive rounding and nest them into the original quantized weights. In deployment, we can send and store only one NestQuant model and switch between the full-bit/part-bit model by paging in/out lower-bit weights to adapt to resource changes and reduce consumption. Experimental results on the ImageNet-1K pretrained DNNs demonstrated that the NestQuant model can achieve high performance in top-1 accuracy, and reduce in terms of data transmission, storage consumption, and switching overheads. In particular, the ResNet-101 with INT8 nesting INT6 can achieve 78.1% and 77.9% accuracy for full-bit and part-bit models, respectively, and reduce switching overheads by approximately 78.1% compared with diverse bitwidths PTQ models.
comment: IEEE Transactions on Mobile Computing, accepted manuscript, DOI: 10.1109/TMC.2025.3582583; Code: https://github.com/jianhayes/NESTQUANT
☆ Geometric Contact Flows: Contactomorphisms for Dynamics and Control ICML 2025
Accurately modeling and predicting complex dynamical systems, particularly those involving force exchange and dissipation, is crucial for applications ranging from fluid dynamics to robotics, but presents significant challenges due to the intricate interplay of geometric constraints and energy transfer. This paper introduces Geometric Contact Flows (GFC), a novel framework leveraging Riemannian and Contact geometry as inductive biases to learn such systems. GCF constructs a latent contact Hamiltonian model encoding desirable properties like stability or energy conservation. An ensemble of contactomorphisms then adapts this model to the target dynamics while preserving these properties. This ensemble allows for uncertainty-aware geodesics that attract the system's behavior toward the data support, enabling robust generalization and adaptation to unseen scenarios. Experiments on learning dynamics for physical systems and for controlling robots on interaction tasks demonstrate the effectiveness of our approach.
comment: Accepted at ICML 2025
♻ ☆ BLAZE: Cross-Language and Cross-Project Bug Localization via Dynamic Chunking and Hard Example Learning
Software bugs require developers to exert significant effort to identify and resolve them, often consuming about one-third of their time. Bug localization, the process of pinpointing the exact source code files that need modification, is crucial in reducing this effort. Existing bug localization tools, typically reliant on deep learning techniques, face limitations in cross-project applicability and effectiveness in multi-language environments. Recent advancements with Large Language Models (LLMs) offer detailed representations for bug localization. However, they encounter challenges with limited context windows and mapping accuracy. To address these issues, we propose BLAZE, an approach that employs dynamic chunking and hard example learning. First, BLAZE dynamically segments source code to minimize continuity loss. Then, BLAZE fine-tunes a GPT-based model using challenging bug cases, in order to enhance cross-project and cross-language bug localization. To support the capability of BLAZE, we create the BEETLEBOX dataset, which comprises 26,321 bugs from 29 large and thriving open-source projects across five different programming languages (Java, C++, Python, Go, and JavaScript). Our evaluations of BLAZE on three benchmark datasets BEETLEBOX, SWE-Bench, and Ye et al. demonstrate substantial improvements compared to six state-of-the-art baselines. Specifically, BLAZE achieves up to an increase of 120% in Top 1 accuracy, 144% in Mean Average Precision (MAP), and 100% in Mean Reciprocal Rank (MRR). An extensive ablation study confirms the contributions of our pipeline components to the overall performance enhancement.
♻ ☆ Data-driven Discovery of Biophysical T Cell Receptor Co-specificity Rules
The biophysical interactions between the T cell receptor (TCR) and its ligands determine the specificity of the cellular immune response. However, the immense diversity of receptors and ligands has made it challenging to discover generalizable rules across the distinct binding affinity landscapes created by different ligands. Here, we present an optimization framework for discovering biophysical rules that predict whether TCRs share specificity to a ligand. Applying this framework to TCRs associated with a collection of SARS-CoV-2 peptides we systematically characterize how co-specificity depends on the type and position of amino-acid differences between receptors. We also demonstrate that the inferred rules generalize to ligands highly dissimilar to any seen during training. Our analysis reveals that matching of steric properties between substituted amino acids is more important for receptor co-specificity than the hydrophobic properties that prominently determine evolutionary substitutability. Our analysis also quantifies the substantial importance of positions not in direct contact with the peptide for specificity. These findings highlight the potential for data-driven approaches to uncover the molecular mechanisms underpinning the specificity of adaptive immune responses.
comment: 18 pages, 12 figures (accepted in PRX Life)
♻ ☆ Stabilizing Temporal Difference Learning via Implicit Stochastic Recursion
Temporal difference (TD) learning is a foundational algorithm in reinforcement learning (RL). For nearly forty years, TD learning has served as a workhorse for applied RL as well as a building block for more complex and specialized algorithms. However, despite its widespread use, TD procedures are generally sensitive to step size specification. A poor choice of step size can dramatically increase variance and slow convergence in both on-policy and off-policy evaluation tasks. In practice, researchers use trial and error to identify stable step sizes, but these approaches tend to be ad hoc and inefficient. As an alternative, we propose implicit TD algorithms that reformulate TD updates into fixed point equations. Such updates are more stable and less sensitive to step size without sacrificing computational efficiency. Moreover, we derive asymptotic convergence guarantees and finite-time error bounds for our proposed implicit TD algorithms, which include implicit TD(0), TD($\lambda$), and TD with gradient correction (TDC). Our results show that implicit TD algorithms are applicable to a much broader range of step sizes, and thus provide a robust and versatile framework for policy evaluation and value approximation in modern RL tasks. We demonstrate these benefits empirically through extensive numerical examples spanning both on-policy and off-policy tasks.
comment: A substantial amount of content has been added regarding the theory and numerical experiments of the implicit version of temporal difference learning with gradient correction (TDC), which is newly proposed in this manuscript
♻ ☆ Hallucination-Aware Multimodal Benchmark for Gastrointestinal Image Analysis with Large Vision-Language Models MICCAI 2025
Vision-Language Models (VLMs) are becoming increasingly popular in the medical domain, bridging the gap between medical images and clinical language. Existing VLMs demonstrate an impressive ability to comprehend medical images and text queries to generate detailed, descriptive diagnostic medical reports. However, hallucination--the tendency to generate descriptions that are inconsistent with the visual content--remains a significant issue in VLMs, with particularly severe implications in the medical field. To facilitate VLM research on gastrointestinal (GI) image analysis and study hallucination, we curate a multimodal image-text GI dataset: Gut-VLM. This dataset is created using a two-stage pipeline: first, descriptive medical reports of Kvasir-v2 images are generated using ChatGPT, which introduces some hallucinated or incorrect texts. In the second stage, medical experts systematically review these reports, and identify and correct potential inaccuracies to ensure high-quality, clinically reliable annotations. Unlike traditional datasets that contain only descriptive texts, our dataset also features tags identifying hallucinated sentences and their corresponding corrections. A common approach to reducing hallucination in VLM is to finetune the model on a small-scale, problem-specific dataset. However, we take a different strategy using our dataset. Instead of finetuning the VLM solely for generating textual reports, we finetune it to detect and correct hallucinations, an approach we call hallucination-aware finetuning. Our results show that this approach is better than simply finetuning for descriptive report generation. Additionally, we conduct an extensive evaluation of state-of-the-art VLMs across several metrics, establishing a benchmark. GitHub Repo: https://github.com/bhattarailab/Hallucination-Aware-VLM.
comment: Accepted at MICCAI 2025
♻ ☆ Fast and Accurate Power Load Data Completion via Regularization-optimized Low-Rank Factorization
Low-rank representation learning has emerged as a powerful tool for recovering missing values in power load data due to its ability to exploit the inherent low-dimensional structures of spatiotemporal measurements. Among various techniques, low-rank factorization models are favoured for their efficiency and interpretability. However, their performance is highly sensitive to the choice of regularization parameters, which are typically fixed or manually tuned, resulting in limited generalization capability or slow convergence in practical scenarios. In this paper, we propose a Regularization-optimized Low-Rank Factorization, which introduces a Proportional-Integral-Derivative controller to adaptively adjust the regularization coefficient. Furthermore, we provide a detailed algorithmic complexity analysis, showing that our method preserves the computational efficiency of stochastic gradient descent while improving adaptivity. Experimental results on real-world power load datasets validate the superiority of our method in both imputation accuracy and training efficiency compared to existing baselines.
♻ ☆ One-Step is Enough: Sparse Autoencoders for Text-to-Image Diffusion Models
For large language models (LLMs), sparse autoencoders (SAEs) have been shown to decompose intermediate representations that often are not interpretable directly into sparse sums of interpretable features, facilitating better control and subsequent analysis. However, similar analyses and approaches have been lacking for text-to-image models. We investigate the possibility of using SAEs to learn interpretable features for SDXL Turbo, a few-step text-to-image diffusion model. To this end, we train SAEs on the updates performed by transformer blocks within SDXL Turbo's denoising U-net in its 1-step setting. Interestingly, we find that they generalize to 4-step SDXL Turbo and even to the multi-step SDXL base model (i.e., a different model) without additional training. In addition, we show that their learned features are interpretable, causally influence the generation process, and reveal specialization among the blocks. We do so by creating RIEBench, a representation-based image editing benchmark, for editing images while they are generated by turning on and off individual SAE features. This allows us to track which transformer blocks' features are the most impactful depending on the edit category. Our work is the first investigation of SAEs for interpretability in text-to-image diffusion models and our results establish SAEs as a promising approach for understanding and manipulating the internal mechanisms of text-to-image models.
♻ ☆ Multi-Agent Soft Actor-Critic with Coordinated Loss for Autonomous Mobility-on-Demand Fleet Control
We study a sequential decision-making problem for a profit-maximizing operator of an autonomous mobility-on-demand system. Optimizing a central operator's vehicle-to-request dispatching policy requires efficient and effective fleet control strategies. To this end, we employ a multi-agent Soft Actor-Critic algorithm combined with weighted bipartite matching. We propose a novel vehicle-based algorithm architecture and adapt the critic's loss function to appropriately consider coordinated actions. Furthermore, we extend our algorithm to incorporate rebalancing capabilities. Through numerical experiments, we show that our approach outperforms state-of-the-art benchmarks by up to 12.9% for dispatching and up to 38.9% with integrated rebalancing.
♻ ☆ Enhancing LLM Knowledge Learning through Generalization
As Large language models (LLMs) are increasingly deployed in diverse applications, faithfully integrating evolving factual knowledge into these models remains a critical challenge. Continued pre-training on paraphrased data has shown empirical promise for enhancing knowledge acquisition. However, this approach is often costly and unreliable, as it relies on external models or manual effort for rewriting, and may inadvertently alter the factual content. In this work, we hypothesize and empirically show that an LLM's ability to continually predict the same factual knowledge tokens given diverse paraphrased contexts is positively correlated with its capacity to extract that knowledge via question-answering. Based on this view and aiming to improve generalization to diverse paraphrased contexts, we introduce two strategies to enhance LLMs' ability to predict the same knowledge tokens given varied contexts, thereby enhancing knowledge acquisition. First, we propose formatting-based data augmentation, which diversifies documents conveying the same knowledge by altering document formats rather than their content, thereby preserving factual integrity. Second, we adopt sharpness-aware minimization as the optimizer to better improve generalization. Extensive experiments demonstrate our methods' effectiveness in both continued pre-training and instruction tuning, and further gains can be achieved by combining with paraphrased data.
♻ ☆ Supercharging Graph Transformers with Advective Diffusion ICML 2025
The capability of generalization is a cornerstone for the success of modern learning systems. For non-Euclidean data, e.g., graphs, that particularly involves topological structures, one important aspect neglected by prior studies is how machine learning models generalize under topological shifts. This paper proposes Advective Diffusion Transformer (AdvDIFFormer), a physics-inspired graph Transformer model designed to address this challenge. The model is derived from advective diffusion equations which describe a class of continuous message passing process with observed and latent topological structures. We show that AdvDIFFormer has provable capability for controlling generalization error with topological shifts, which in contrast cannot be guaranteed by graph diffusion models, i.e., the generalized formulation of common graph neural networks in continuous space. Empirically, the model demonstrates superiority in various predictive tasks across information networks, molecular screening and protein interactions.
comment: Accepted to ICML 2025
♻ ☆ On the fast convergence of minibatch heavy ball momentum
Simple stochastic momentum methods are widely used in machine learning optimization, but their good practical performance is at odds with an absence of theoretical guarantees of acceleration in the literature. In this work, we aim to close the gap between theory and practice by showing that stochastic heavy ball momentum retains the fast linear rate of (deterministic) heavy ball momentum on quadratic optimization problems, at least when minibatching with a sufficiently large batch size. The algorithm we study can be interpreted as an accelerated randomized Kaczmarz algorithm with minibatching and heavy ball momentum. The analysis relies on carefully decomposing the momentum transition matrix, and using new spectral norm concentration bounds for products of independent random matrices. We provide numerical illustrations demonstrating that our bounds are reasonably sharp.
comment: update to match journal version
♻ ☆ Bridging Geometric Diffusion and Energy Minimization: A Unified Framework for Neural Message Passing ICLR 2023
Learning representations for structured data with certain geometries (e.g., observed or unobserved) is a fundamental challenge, wherein message passing neural networks (MPNNs) have become a de facto class of model solutions. In this paper, we propose an energy-constrained diffusion model as a principled mathematical framework for understanding the mechanism of MPNNs and navigating novel architectural designs. Inspired by physical systems, the model combines the inductive bias of diffusion on manifolds with layer-wise constraints of energy minimization. We identify that the diffusion operators have a one-to-one correspondence with the energy functions implicitly descended by the diffusion process, and the finite-difference iteration for solving the energy-constrained diffusion system induces the propagation layers of various types of MPNNs operating on observed or latent structures. This leads to a unified perspective on common neural architectures whose computational flows can be cast as message passing (or its special case), including MLP, GCN, GIN, APPNP, GCNII, GAT, and Transformers. Building on these insights, we devise a new class of neural message passing models, dubbed diffusion-inspired Transformers, whose global attention layers are derived from the principled energy-constrained diffusion framework. Across diverse datasets, ranging from real-world networks to images, texts, and physical particles, we demonstrate that the new model achieves promising performance in scenarios where the data structures are observed (as a graph), partially observed, or entirely unobserved.
comment: Accepted to Journal of Machine Learning Research (JMLR). Extended version from DIFFormer in ICLR 2023
♻ ☆ Stable and consistent density-based clustering via multiparameter persistence
We consider the degree-Rips construction from topological data analysis, which provides a density-sensitive, multiparameter hierarchical clustering algorithm. We analyze its stability to perturbations of the input data using the correspondence-interleaving distance, a metric for hierarchical clusterings that we introduce. Taking certain one-parameter slices of degree-Rips recovers well-known methods for density-based clustering, but we show that these methods are unstable. However, we prove that degree-Rips, as a multiparameter object, is stable, and we propose an alternative approach for taking slices of degree-Rips, which yields a one-parameter hierarchical clustering algorithm with better stability properties. We prove that this algorithm is consistent, using the correspondence-interleaving distance. We provide an algorithm for extracting a single clustering from one-parameter hierarchical clusterings, which is stable with respect to the correspondence-interleaving distance. And, we integrate these methods into a pipeline for density-based clustering, which we call Persistable. Adapting tools from multiparameter persistent homology, we propose visualization tools that guide the selection of all parameters of the pipeline. We demonstrate Persistable on benchmark data sets, showing that it identifies multi-scale cluster structure in data.
comment: 74 pages, 16 figures, 5 tables. v4: improvements to exposition
♻ ☆ Unsupervised risk factor identification across cancer types and data modalities via explainable artificial intelligence
Risk stratification is a key tool in clinical decision-making, yet current approaches often fail to translate sophisticated survival analysis into actionable clinical criteria. We present a novel method for unsupervised machine learning that directly optimizes for survival heterogeneity across patient clusters through a differentiable adaptation of the multivariate logrank statistic. Unlike most existing methods that rely on proxy metrics, our approach represents novel methodology for training any neural network architecture on any data modality to identify prognostically distinct patient groups. We thoroughly evaluate the method in simulation experiments and demonstrate its utility in practice by applying it to two distinct cancer types: analyzing laboratory parameters from multiple myeloma patients and computed tomography images from non-small cell lung cancer patients, identifying prognostically distinct patient subgroups with significantly different survival outcomes in both cases. Post-hoc explainability analyses uncover clinically meaningful features determining the group assignments which align well with established risk factors and thus lend strong weight to the methods utility. This pan-cancer, model-agnostic approach represents a valuable advancement in clinical risk stratification, enabling the discovery of novel prognostic signatures across diverse data types while providing interpretable results that promise to complement treatment personalization and clinical decision-making in oncology and beyond.
♻ ☆ SD-KDE: Score-Debiased Kernel Density Estimation ICLR 2025
We propose a novel method for density estimation that leverages an estimated score function to debias kernel density estimation (SD-KDE). In our approach, each data point is adjusted by taking a single step along the score function with a specific choice of step size, followed by standard KDE with a modified bandwidth. The step size and modified bandwidth are chosen to remove the leading order bias in the KDE. Our experiments on synthetic tasks in 1D, 2D and on MNIST, demonstrate that our proposed SD-KDE method significantly reduces the mean integrated squared error compared to the standard Silverman KDE, even with noisy estimates in the score function. These results underscore the potential of integrating score-based corrections into nonparametric density estimation.
comment: ICLR 2025 Workshop on Frontiers of Probabilistic Inference
♻ ☆ MalPurifier: Enhancing Android Malware Detection with Adversarial Purification against Evasion Attacks
Machine learning (ML) has gained significant adoption in Android malware detection to address the escalating threats posed by the rapid proliferation of malware attacks. However, recent studies have revealed the inherent vulnerabilities of ML-based detection systems to evasion attacks. While efforts have been made to address this critical issue, many of the existing defensive methods encounter challenges such as lower effectiveness or reduced generalization capabilities. In this paper, we introduce MalPurifier, a novel adversarial purification framework specifically engineered for Android malware detection. Specifically, MalPurifier integrates three key innovations: a diversified adversarial perturbation mechanism for robustness and generalizability, a protective noise injection strategy for benign data integrity, and a Denoising AutoEncoder (DAE) with a dual-objective loss for accurate purification and classification. Extensive experiments on two large-scale datasets demonstrate that MalPurifier significantly outperforms state-of-the-art defenses. It robustly defends against a comprehensive set of 37 perturbation-based evasion attacks, consistently achieving robust accuracies above 90.91%. As a lightweight, model-agnostic, and plug-and-play module, MalPurifier offers a practical and effective solution to bolster the security of ML-based Android malware detectors.
comment: 17 pages; Major Revision for IEEE TDSC
♻ ☆ Active Fine-Tuning of Multi-Task Policies
Pre-trained generalist policies are rapidly gaining relevance in robot learning due to their promise of fast adaptation to novel, in-domain tasks. This adaptation often relies on collecting new demonstrations for a specific task of interest and applying imitation learning algorithms, such as behavioral cloning. However, as soon as several tasks need to be learned, we must decide which tasks should be demonstrated and how often? We study this multi-task problem and explore an interactive framework in which the agent adaptively selects the tasks to be demonstrated. We propose AMF (Active Multi-task Fine-tuning), an algorithm to maximize multi-task policy performance under a limited demonstration budget by collecting demonstrations yielding the largest information gain on the expert policy. We derive performance guarantees for AMF under regularity assumptions and demonstrate its empirical effectiveness to efficiently fine-tune neural policies in complex and high-dimensional environments.
♻ ☆ PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks
Most methods for neural network verification focus on bounding the image, i.e., set of outputs for a given input set. This can be used to, for example, check the robustness of neural network predictions to bounded perturbations of an input. However, verifying properties concerning the preimage, i.e., the set of inputs satisfying an output property, requires abstractions in the input space. We present a general framework for preimage abstraction that produces under- and over-approximations of any polyhedral output set. Our framework employs cheap parameterised linear relaxations of the neural network, together with an anytime refinement procedure that iteratively partitions the input region by splitting on input features and neurons. The effectiveness of our approach relies on carefully designed heuristics and optimization objectives to achieve rapid improvements in the approximation volume. We evaluate our method on a range of tasks, demonstrating significant improvement in efficiency and scalability to high-input-dimensional image classification tasks compared to state-of-the-art techniques. Further, we showcase the application to quantitative verification and robustness analysis, presenting a sound and complete algorithm for the former and providing sound quantitative results for the latter.
comment: arXiv admin note: text overlap with arXiv:2305.03686
♻ ☆ Cramming 1568 Tokens into a Single Vector and Back Again: Exploring the Limits of Embedding Space Capacity ACL 2025
A range of recent works addresses the problem of compression of sequence of tokens into a shorter sequence of real-valued vectors to be used as inputs instead of token embeddings or key-value cache. These approaches are focused on reduction of the amount of compute in existing language models rather than minimization of number of bits needed to store text. Despite relying on powerful models as encoders, the maximum attainable lossless compression ratio is typically not higher than x10. This fact is highly intriguing because, in theory, the maximum information capacity of large real-valued vectors is far beyond the presented rates even for 16-bit precision and a modest vector size. In this work, we explore the limits of compression by replacing the encoder with a per-sample optimization procedure. We show that vectors with compression ratios up to x1500 exist, which highlights two orders of magnitude gap between existing and practically attainable solutions. Furthermore, we empirically show that the compression limits are determined not by the length of the input but by the amount of uncertainty to be reduced, namely, the cross-entropy loss on this sequence without any conditioning. The obtained limits highlight the substantial gap between the theoretical capacity of input embeddings and their practical utilization, suggesting significant room for optimization in model design.
comment: ACL 2025 (main conference)
♻ ☆ Rumor Detection on Social Media with Reinforcement Learning-based Key Propagation Graph Generator
The spread of rumors on social media, particularly during significant events like the US elections and the COVID-19 pandemic, poses a serious threat to social stability and public health. Current rumor detection methods primarily rely on propagation graphs to improve the model performance. However, the effectiveness of these methods is often compromised by noisy and irrelevant structures in the propagation process. To tackle this issue, techniques such as weight adjustment and data augmentation have been proposed. However, they depend heavily on rich original propagation structures, limiting their effectiveness in handling rumors that lack sufficient propagation information, especially in the early stages of dissemination. In this work, we introduce the Key Propagation Graph Generator (KPG), a novel reinforcement learning-based framework, that generates contextually coherent and informative propagation patterns for events with insufficient topology information and identifies significant substructures in events with redundant and noisy propagation structures. KPG comprises two key components: the Candidate Response Generator (CRG) and the Ending Node Selector (ENS). CRG learns latent variable distributions from refined propagation patterns to eliminate noise and generate new candidates for ENS, while ENS identifies the most influential substructures in propagation graphs and provides training data for CRG. Furthermore, we develop an end-to-end framework that utilizes rewards derived from a pre-trained graph neural network to guide the training process. The resulting key propagation graphs are then employed in downstream rumor detection tasks. Extensive experiments conducted on four datasets demonstrate that KPG outperforms current state-of-the-art methods.
♻ ☆ Bayesian Theory of Consciousness as Exchangeable Emotion-Cognition Inference
This paper proposes a unified framework in which consciousness emerges as a cycle-consistent, affectively anchored inference process, recursively structured by the interaction of emotion and cognition. Drawing from information theory, optimal transport, and the Bayesian brain hypothesis, we formalize emotion as a low-dimensional structural prior and cognition as a specificity-instantiating update. This emotion-cognition cycle minimizes joint uncertainty by aligning emotionally weighted priors with context-sensitive cognitive appraisals. Subjective experience thus arises as the informational footprint of temporally extended, affect-modulated simulation. We introduce the Exchangeable Integration Theory of Consciousness (EITC), modeling conscious episodes as conditionally exchangeable samples drawn from a latent affective self-model. This latent variable supports integration, via a unified cause-effect structure with nonzero irreducibility, and differentiation, by preserving contextual specificity across episodes. We connect this architecture to the Bayesian theory of consciousness through Rao-Blackwellized inference, which stabilizes inference by marginalizing latent self-structure while enabling adaptive updates. This mechanism ensures coherence, prevents inference collapse, and supports goal-directed simulation. The formal framework builds on De Finetti's exchangeability theorem, integrated information theory, and KL-regularized optimal transport. Overall, consciousness is reframed as a recursive inference process, shaped by emotion, refined by cognition, stabilized through exchangeability, and unified through a latent self-model that integrates experience across time.
♻ ☆ FinGPT: Enhancing Sentiment-Based Stock Movement Prediction with Dissemination-Aware and Context-Enriched LLMs AAAI 2025
Financial sentiment analysis is crucial for understanding the influence of news on stock prices. Recently, large language models (LLMs) have been widely adopted for this purpose due to their advanced text analysis capabilities. However, these models often only consider the news content itself, ignoring its dissemination, which hampers accurate prediction of short-term stock movements. Additionally, current methods often lack sufficient contextual data and explicit instructions in their prompts, limiting LLMs' ability to interpret news. In this paper, we propose a data-driven approach that enhances LLM-powered sentiment-based stock movement predictions by incorporating news dissemination breadth, contextual data, and explicit instructions. We cluster recent company-related news to assess its reach and influence, enriching prompts with more specific data and precise instructions. This data is used to construct an instruction tuning dataset to fine-tune an LLM for predicting short-term stock price movements. Our experimental results show that our approach improves prediction accuracy by 8\% compared to existing methods.
comment: 1st Workshop on Preparing Good Data for Generative AI: Challenges and Approaches@ AAAI 2025, ai4finance.org
♻ ☆ Hierarchical Decision Making Based on Structural Information Principles
Hierarchical Reinforcement Learning (HRL) is a promising approach for managing task complexity across multiple levels of abstraction and accelerating long-horizon agent exploration. However, the effectiveness of hierarchical policies heavily depends on prior knowledge and manual assumptions about skill definitions and task decomposition. In this paper, we propose a novel Structural Information principles-based framework, namely SIDM, for hierarchical Decision Making in both single-agent and multi-agent scenarios. Central to our work is the utilization of structural information embedded in the decision-making process to adaptively and dynamically discover and learn hierarchical policies through environmental abstractions. Specifically, we present an abstraction mechanism that processes historical state-action trajectories to construct abstract representations of states and actions. We define and optimize directed structural entropy, a metric quantifying the uncertainty in transition dynamics between abstract states, to discover skills that capture key transition patterns in RL environments. Building on these findings, we develop a skill-based learning method for single-agent scenarios and a role-based collaboration method for multi-agent scenarios, both of which can flexibly integrate various underlying algorithms for enhanced performance. Extensive evaluations on challenging benchmarks demonstrate that our framework significantly and consistently outperforms state-of-the-art baselines, improving the effectiveness, efficiency, and stability of policy learning by up to 32.70%, 64.86%, and 88.26%, respectively, as measured by average rewards, convergence timesteps, and standard deviations.
comment: Submitted to JMLR
♻ ☆ FLARE: Toward Universal Dataset Purification against Backdoor Attacks
Deep neural networks (DNNs) are susceptible to backdoor attacks, where adversaries poison datasets with adversary-specified triggers to implant hidden backdoors, enabling malicious manipulation of model predictions. Dataset purification serves as a proactive defense by removing malicious training samples to prevent backdoor injection at its source. We first reveal that the current advanced purification methods rely on a latent assumption that the backdoor connections between triggers and target labels in backdoor attacks are simpler to learn than the benign features. We demonstrate that this assumption, however, does not always hold, especially in all-to-all (A2A) and untargeted (UT) attacks. As a result, purification methods that analyze the separation between the poisoned and benign samples in the input-output space or the final hidden layer space are less effective. We observe that this separability is not confined to a single layer but varies across different hidden layers. Motivated by this understanding, we propose FLARE, a universal purification method to counter various backdoor attacks. FLARE aggregates abnormal activations from all hidden layers to construct representations for clustering. To enhance separation, FLARE develops an adaptive subspace selection algorithm to isolate the optimal space for dividing an entire dataset into two clusters. FLARE assesses the stability of each cluster and identifies the cluster with higher stability as poisoned. Extensive evaluations on benchmark datasets demonstrate the effectiveness of FLARE against 22 representative backdoor attacks, including all-to-one (A2O), all-to-all (A2A), and untargeted (UT) attacks, and its robustness to adaptive attacks. Codes are available at \href{https://github.com/THUYimingLi/BackdoorBox}{BackdoorBox} and \href{https://github.com/vtu81/backdoor-toolbox}{backdoor-toolbox}.
comment: 15 pages, This paper is accepted and will appear in TIFS (CCF-A)
♻ ☆ POPGym Arcade: Parallel Pixelated POMDPs
We present the POPGym Arcade, a collection of hardware-accelerated, pixel-based environments with shared observation and action spaces. Each environment includes fully and partially observable variants, enabling counterfactual studies on partial observability. We also introduce mathematical tools for analyzing policies under partial observability, which reveal how agents recall past information to make decisions. Our analysis shows (1) that controlling for partial observability is critical and (2) that agents with long-term memory learn brittle policies that struggle to generalize. Finally, we demonstrate that recurrent policies can be "poisoned" by old, out-of-distribution observations, with implications for sim-to-real transfer, imitation learning, and offline reinforcement learning.
♻ ☆ Learning from Reference Answers: Versatile Language Model Alignment without Binary Human Preference Data
Large language models~(LLMs) are expected to be helpful, harmless, and honest. In alignment scenarios such as safety, confidence, and general preference alignment, binary preference data collection and reward modeling are resource-intensive but essential for transferring human preference. In this work, we explore using the similarity between sampled generations and high-quality reference answers as an alternative reward function choice for LLM alignment. Similarity reward circumvents binary preference data collection and reward modeling when unary high-quality reference answers are available. We introduce \textit{RefAlign}, a versatile REINFORCE-style alignment algorithm that does not rely on reference or reward models. RefAlign utilizes similarity metrics, such as BERTScore between sampled generations and reference answers as surrogate rewards. Beyond general human preference optimization, RefAlign can be readily extended to diverse scenarios, such as safety and confidence alignment, by incorporating the similarity reward with task-related objectives. In various scenarios, RefAlign demonstrates comparable performance to previous alignment methods without binary preference data and reward models.
comment: work in progress
♻ ☆ AlphaDecay: Module-wise Weight Decay for Heavy-Tailed Balancing in LLMs
Weight decay is a standard regularization technique for training large language models (LLMs). While it is common to assign a uniform decay rate to every layer, this approach overlooks the structural diversity of LLMs and the varying spectral properties across modules. In this paper, we introduce AlphaDecay, a simple yet effective method that adaptively assigns different weight decay strengths to each module of an LLM. Our approach is guided by Heavy-Tailed Self-Regularization (HT-SR) theory, which analyzes the empirical spectral density (ESD) of weight correlation matrices to quantify "heavy-tailedness." Modules exhibiting more pronounced heavy-tailed ESDs, reflecting stronger feature learning, are assigned weaker decay, while modules with lighter-tailed spectra receive stronger decay. Our method leverages tailored weight decay assignments to balance the module-wise differences in spectral properties, leading to improved performance. Extensive pre-training tasks with various model sizes from 60M to 1B demonstrate that AlphaDecay achieves better perplexity and generalization than conventional uniform decay and other adaptive decay baselines. Our code is available at https://github.com/hed-ucas/AlphaDecay.
♻ ☆ EDA-DM: Enhanced Distribution Alignment for Post-Training Quantization of Diffusion Models
Diffusion models have achieved great success in image generation tasks. However, the lengthy denoising process and complex neural networks hinder their low-latency applications in real-world scenarios. Quantization can effectively reduce model complexity, and post-training quantization (PTQ), which does not require fine-tuning, is highly promising for compressing and accelerating diffusion models. Unfortunately, we find that due to the highly dynamic activations, existing PTQ methods suffer from distribution mismatch issues at both calibration sample level and reconstruction output level, which makes the performance far from satisfactory. In this paper, we propose EDA-DM, a standardized PTQ method that efficiently addresses the above issues. Specifically, at the calibration sample level, we extract information from the density and diversity of latent space feature maps, which guides the selection of calibration samples to align with the overall sample distribution; and at the reconstruction output level, we theoretically analyze the reasons for previous reconstruction failures and, based on this insight, optimize block reconstruction using the Hessian loss of layers, aligning the outputs of quantized model and full-precision model at different network granularity. Extensive experiments demonstrate that EDA-DM significantly outperforms the existing PTQ methods across various models and datasets. Our method achieves a 1.83 times speedup and 4 times compression for the popular Stable-Diffusion on MS-COCO, with only a 0.05 loss in CLIP score. Code is available at http://github.com/BienLuky/EDA-DM .
comment: Code: http://github.com/BienLuky/EDA-DM
♻ ☆ A Coverage-Guided Testing Framework for Quantum Neural Networks
Quantum Neural Networks (QNNs) integrate quantum computing and deep neural networks, leveraging quantum properties like superposition and entanglement to enhance machine learning algorithms. These characteristics enable QNNs to outperform classical neural networks in tasks such as quantum chemistry simulations, optimization problems, and quantum-enhanced machine learning. Despite their early success, their reliability and safety issues have posed threats to their applicability. However, due to the inherently non-classical nature of quantum mechanics, verifying QNNs poses significant challenges. To address this, we propose QCov, a set of test coverage criteria specifically designed to systematically evaluate QNN state exploration during testing, with an emphasis on superposition. These criteria help evaluate test diversity and detect underlying defects within test suites. Extensive experiments on benchmark datasets and QNN models validate QCov's effectiveness in reflecting test quality, guiding fuzz testing efficiently, and thereby improving QNN robustness. We also evaluate sampling costs of QCov under realistic quantum scenarios to justify its practical feasibility. Finally, the effects of unrepresentative training data distribution and parameter choice are further explored.
♻ ☆ Reinforcement Learning Teachers of Test Time Scaling
Training reasoning language models (LMs) with reinforcement learning (RL) for one-hot correctness inherently relies on the LM being able to explore and solve its task with some chance at initialization. Furthermore, a key use case of reasoning LMs is to act as teachers for distilling new students and cold-starting future RL iterations rather than being deployed themselves. From these considerations, we introduce a new framework that avoids RL's exploration challenge by training a new class of Reinforcement-Learned Teachers (RLTs) focused on yielding the most effective downstream distillation. RLTs are prompted with both the question and solution to each problem, and tasked to simply "connect-the-dots" with detailed explanations tailored for their students. We train RLTs with dense rewards obtained by feeding each explanation to the student and testing its understanding of the problem's solution. In practice, the raw outputs of a 7B RLT provide higher final performance on competition and graduate-level tasks than existing distillation and cold-starting pipelines that collect and postprocess the reasoning traces of orders of magnitude larger LMs. Furthermore, RLTs maintain their effectiveness when training larger students and when applied zero-shot to out-of-distribution tasks, unlocking new levels of efficiency and re-usability for the RL reasoning framework.
comment: Code available at: https://github.com/SakanaAI/RLT
♻ ☆ AnyEnhance: A Unified Generative Model with Prompt-Guidance and Self-Critic for Voice Enhancement
We introduce AnyEnhance, a unified generative model for voice enhancement that processes both speech and singing voices. Based on a masked generative model, AnyEnhance is capable of handling both speech and singing voices, supporting a wide range of enhancement tasks including denoising, dereverberation, declipping, super-resolution, and target speaker extraction, all simultaneously and without fine-tuning. AnyEnhance introduces a prompt-guidance mechanism for in-context learning, which allows the model to natively accept a reference speaker's timbre. In this way, it could boost enhancement performance when a reference audio is available and enable the target speaker extraction task without altering the underlying architecture. Moreover, we also introduce a self-critic mechanism into the generative process for masked generative models, yielding higher-quality outputs through iterative self-assessment and refinement. Extensive experiments on various enhancement tasks demonstrate AnyEnhance outperforms existing methods in terms of both objective metrics and subjective listening tests. Demo audios are publicly available at https://amphionspace.github.io/anyenhance/.
comment: Accepted by IEEE/ACM Transactions on Audio, Speech, and Language Processing (TASLP) 2025
♻ ☆ Leveraging Model Guidance to Extract Training Data from Personalized Diffusion Models ICML
Diffusion Models (DMs) have become powerful image generation tools, especially for few-shot fine-tuning where a pretrained DM is fine-tuned on a small image set to capture specific styles or objects. Many people upload these personalized checkpoints online, fostering communities such as Civitai and HuggingFace. However, model owners may overlook the data leakage risks when releasing fine-tuned checkpoints. Moreover, concerns regarding copyright violations arise when unauthorized data is used during fine-tuning. In this paper, we ask: "Can training data be extracted from these fine-tuned DMs shared online?" A successful extraction would present not only data leakage threats but also offer tangible evidence of copyright infringement. To answer this, we propose FineXtract, a framework for extracting fine-tuning data. Our method approximates fine-tuning as a gradual shift in the model's learned distribution -- from the original pretrained DM toward the fine-tuning data. By extrapolating the models before and after fine-tuning, we guide the generation toward high-probability regions within the fine-tuned data distribution. We then apply a clustering algorithm to extract the most probable images from those generated using this extrapolated guidance. Experiments on DMs fine-tuned with datasets including WikiArt, DreamBooth, and real-world checkpoints posted online validate the effectiveness of our method, extracting about 20% of fine-tuning data in most cases. The code is available https://github.com/Nicholas0228/FineXtract.
comment: Accepted at the International Conference on Machine Learning (ICML) 2025
♻ ☆ Unveiling Molecular Moieties through Hierarchical Grad-CAM Graph Explainability
Background: Virtual Screening (VS) has become an essential tool in drug discovery, enabling the rapid and cost-effective identification of potential bioactive molecules. Among recent advancements, Graph Neural Networks (GNNs) have gained prominence for their ability to model complex molecular structures using graph-based representations. However, the integration of explainable methods to elucidate the specific contributions of molecular substructures to biological activity remains a significant challenge. This limitation hampers both the interpretability of predictive models and the rational design of novel therapeutics. Results: We trained 20 GNN models on a dataset of small molecules with the goal of predicting their activity on 20 distinct protein targets from the Kinase family. These classifiers achieved state-of-the-art performance in virtual screening tasks, demonstrating high accuracy and robustness on different targets. Building upon these models, we implemented the Hierarchical Grad-CAM graph Explainer (HGE) framework, enabling an in-depth analysis of the molecular moieties driving protein-ligand binding stabilization. HGE exploits Grad-CAM explanations at the atom, ring, and whole-molecule levels, leveraging the message-passing mechanism to highlight the most relevant chemical moieties. Validation against experimental data from the literature confirmed the ability of the explainer to recognize a molecular pattern of drugs and correctly annotate them to the known target. Conclusion: Our approach may represent a valid support to shorten both the screening and the hit discovery process. Detailed knowledge of the molecular substructures that play a role in the binding process can help the computational chemist to gain insights into the structure optimization, as well as in drug repurposing tasks.
♻ ☆ Improving the Efficiency of Long Document Classification using Sentence Ranking Approach
Long document classification poses challenges due to the computational limitations of transformer-based models, particularly BERT, which are constrained by fixed input lengths and quadratic attention complexity. Moreover, using the full document for classification is often redundant, as only a subset of sentences typically carries the necessary information. To address this, we propose a TF-IDF-based sentence ranking method that improves efficiency by selecting the most informative content. Our approach explores fixed-count and percentage-based sentence selection, along with an enhanced scoring strategy combining normalized TF-IDF scores and sentence length. Evaluated on the MahaNews LDC dataset of long Marathi news articles, the method consistently outperforms baselines such as first, last, and random sentence selection. With MahaBERT-v2, we achieve near-identical classification accuracy with just a 0.33 percent drop compared to the full-context baseline, while reducing input size by over 50 percent and inference latency by 43 percent. This demonstrates that significant context reduction is possible without sacrificing performance, making the method practical for real-world long document classification tasks.
♻ ☆ A real-time anomaly detection method for robots based on a flexible and sparse latent space
The growing demand for robots to operate effectively in diverse environments necessitates the need for robust real-time anomaly detection techniques during robotic operations. However, deep learning-based models in robotics face significant challenges due to limited training data and highly noisy signal features. In this paper, we present Sparse Masked Autoregressive Flow-based Adversarial AutoEncoder model to address these problems. This approach integrates Masked Autoregressive Flow model into Adversarial AutoEncoders to construct a flexible latent space and utilize Sparse autoencoder to efficiently focus on important features, even in scenarios with limited feature space. Our experiments demonstrate that the proposed model achieves a 4.96% to 9.75% higher area under the receiver operating characteristic curve for pick-and-place robotic operations with randomly placed cans, compared to existing state-of-the-art methods. Notably, it showed up to 19.67% better performance in scenarios involving collisions with lightweight objects. Additionally, unlike the existing state-of-the-art model, our model performs inferences within 1 millisecond, ensuring real-time anomaly detection. These capabilities make our model highly applicable to machine learning-based robotic safety systems in dynamic environments. The code is available at https://github.com/twkang43/sparse-maf-aae.
comment: 20 pages, 11 figures
♻ ☆ Graph Neural Networks in Supply Chain Analytics and Optimization: Concepts, Perspectives, Dataset and Benchmarks
Graph Neural Networks (GNNs) have recently gained traction in transportation, bioinformatics, language and image processing, but research on their application to supply chain management remains limited. Supply chains are inherently graph-like, making them ideal for GNN methodologies, which can optimize and solve complex problems. The barriers include a lack of proper conceptual foundations, familiarity with graph applications in SCM, and real-world benchmark datasets for GNN-based supply chain research. To address this, we discuss and connect supply chains with graph structures for effective GNN application, providing detailed formulations, examples, mathematical definitions, and task guidelines. Additionally, we present a multi-perspective real-world benchmark dataset from a leading FMCG company in Bangladesh, focusing on supply chain planning. We discuss various supply chain tasks using GNNs and benchmark several state-of-the-art models on homogeneous and heterogeneous graphs across six supply chain analytics tasks. Our analysis shows that GNN-based models consistently outperform statistical Machine Learning and other Deep Learning models by around 10-30% in regression, 10-30% in classification and detection tasks, and 15-40% in anomaly detection tasks on designated metrics. With this work, we lay the groundwork for solving supply chain problems using GNNs, supported by conceptual discussions, methodological insights, and a comprehensive dataset.
comment: 27 Pages. arXiv admin note: text overlap with arXiv:2401.15299
♻ ☆ Interpretable global minima of deep ReLU neural networks on sequentially separable data
We explicitly construct zero loss neural network classifiers. We write the weight matrices and bias vectors in terms of cumulative parameters, which determine truncation maps acting recursively on input space. The configurations for the training data considered are (i) sufficiently small, well separated clusters corresponding to each class, and (ii) equivalence classes which are sequentially linearly separable. In the best case, for $Q$ classes of data in $\mathbb{R}^M$, global minimizers can be described with $Q(M+2)$ parameters.
comment: AMS Latex, 31 pages, 3 figures
♻ ☆ SIPDO: Closed-Loop Prompt Optimization via Synthetic Data Feedback
Prompt quality plays a critical role in the performance of large language models (LLMs), motivating a growing body of work on prompt optimization. Most existing methods optimize prompts over a fixed dataset, assuming static input distributions and offering limited support for iterative improvement. We introduce SIPDO (Self-Improving Prompts through Data-Augmented Optimization), a closed-loop framework for prompt learning that integrates synthetic data generation into the optimization process. SIPDO couples a synthetic data generator with a prompt optimizer, where the generator produces new examples that reveal current prompt weaknesses and the optimizer incrementally refines the prompt in response. This feedback-driven loop enables systematic improvement of prompt performance without assuming access to external supervision or new tasks. Experiments across question answering and reasoning benchmarks show that SIPDO outperforms standard prompt tuning methods, highlighting the value of integrating data synthesis into prompt learning workflows.
♻ ☆ Text2Struct: A Machine Learning Pipeline for Mining Structured Data from Text
Many analysis and prediction tasks require the extraction of structured data from unstructured texts. However, an annotation scheme and a training dataset have not been available for training machine learning models to mine structured data from text without special templates and patterns. To solve it, this paper presents an end-to-end machine learning pipeline, Text2Struct, including a text annotation scheme, training data processing, and machine learning implementation. We formulated the mining problem as the extraction of metrics and units associated with numerals in the text. Text2Struct was trained and evaluated using an annotated text dataset collected from abstracts of medical publications regarding thrombectomy. In terms of prediction performance, a dice coefficient of 0.82 was achieved on the test dataset. By random sampling, most predicted relations between numerals and entities were well matched to the ground-truth annotations. These results show that Text2Struct is viable for the mining of structured data from text without special templates or patterns. It is anticipated to further improve the pipeline by expanding the dataset and investigating other machine learning models. A code demonstration can be found at: https://github.com/zcc861007/Text2Struct
♻ ☆ A Bayesian Non-parametric Approach to Generative Models: Integrating Variational Autoencoder and Generative Adversarial Networks using Wasserstein and Maximum Mean Discrepancy
We propose a novel generative model within the Bayesian non-parametric learning (BNPL) framework to address some notable failure modes in generative adversarial networks (GANs) and variational autoencoders (VAEs)--these being overfitting in the GAN case and noisy samples in the VAE case. We will demonstrate that the BNPL framework enhances training stability and provides robustness and accuracy guarantees when incorporating the Wasserstein distance and maximum mean discrepancy measure (WMMD) into our model's loss function. Moreover, we introduce a so-called ``triple model'' that combines the GAN, the VAE, and further incorporates a code-GAN (CGAN) to explore the latent space of the VAE. This triple model design generates high-quality, diverse samples, while the BNPL framework, leveraging the WMMD loss function, enhances training stability. Together, these components enable our model to achieve superior performance across various generative tasks. These claims are supported by both theoretical analyses and empirical validation on a wide variety of datasets.
♻ ☆ ECHO-LLaMA: Efficient Caching for High-Performance LLaMA Training
This paper introduces ECHO-LLaMA, an efficient LLaMA architecture designed to improve both the training speed and inference throughput of LLaMA architectures while maintaining its learning capacity. ECHO-LLaMA transforms LLaMA models into shared KV caching across certain layers, significantly reducing KV computational complexity while maintaining or improving language performance. Experimental results demonstrate that ECHO-LLaMA achieves up to 77\% higher token-per-second throughput during training, up to 16\% higher Model FLOPs Utilization (MFU), and up to 14\% lower loss when trained on an equal number of tokens. Furthermore, on the 1.1B model, ECHO-LLaMA delivers approximately 7\% higher test-time throughput compared to the baseline. By introducing a computationally efficient adaptation mechanism, ECHO-LLaMA offers a scalable and cost-effective solution for pretraining and finetuning large language models, enabling faster and more resource-efficient training without compromising performance.
♻ ☆ SPD-CFL: Stepwise Parameter Dropout for Efficient Continual Federated Learning
Federated Learning (FL) is a collaborative machine learning paradigm for training models on local sensitive data with privacy protection. Pre-trained transformer-based models have emerged as useful foundation models (FMs) to be fine-tuned for a wide range of downstream tasks. However, large-scale pre-trained models make it challenging for traditional FL due to high communication overhead in the resource-constrained IoT. This has inspired the field of parameter-efficient fine-tuning (PEFT) research. Existing PEFT methods attempt to optimize model performance at the given dropout level. Such an approach places the burden on human users to find a dropout rate that provides a satisfactory level of performance through trial-and-error, which is time consuming and resource intensive. To address this limitation, we propose the Step-wise Parameter Dropout for Continual Federated Learning (SPD-CFL) approach. Instead of pre-defining a desired dropout rate, it allows users to specify the target level of performance and then attempts to find the most suitable dropout rate for the given FL model. Specifically, on the server side, SPD-CFL drops trainable parameters in a stepwise manner to improve communication efficiency by reducing the rank of low-rank adaptation (LoRA). The sensitivity-based gradient consistency (SGC) measure is designed to facilitate the adaptive adjustment of parameter dropout. In addition, SPD-CFL introduces continual learning (CL) on the client side to mitigate performance degradation due to the inconsistent optima with distinct parameter dropout rates under heterogeneous FL. Extensive experiments on the public benchmark dataset CIFAR-10 and a real-world medical Face dataset demonstrate significant superiority of SPD-CFL over state-of-the-art methods. Compared to the best-performing baseline, it achieves a 2.07% higher test AUC while reducing communication overhead by 29.53%.
♻ ☆ Navigating Conflicting Views: Harnessing Trust for Learning
Resolving conflicts is critical for improving the reliability of multi-view classification. While prior work focuses on learning consistent and informative representations across views, it often assumes perfect alignment and equal importance of all views, an assumption rarely met in real-world scenarios, as some views may express distinct information. To address this, we develop a computational trust-based discounting method that enhances the Evidential Multi-view framework by accounting for the instance-wise reliability of each view through a probability-sensitive trust mechanism. We evaluate our method on six real-world datasets using Top-1 Accuracy, Fleiss' Kappa, and a new metric, Multi-View Agreement with Ground Truth, to assess prediction reliability. We also assess the effectiveness of uncertainty in indicating prediction correctness via AUROC. Additionally, we test the scalability of our method through end-to-end training on a large-scale dataset. The experimental results show that computational trust can effectively resolve conflicts, paving the way for more reliable multi-view classification models in real-world applications. Codes available at: https://github.com/OverfitFlow/Trust4Conflict
♻ ☆ Dim and Small Target Detection for Drone Broadcast Frames Based on Time-Frequency Analysis
We propose a dim and small target detection algorithm for drone broadcast frames based on the time-frequency analysis of communication protocol. Specifically, by analyzing modulation parameters and frame structures, the prior knowledge of transmission frequency, signal bandwidth, Zadoff-Chu (ZC) sequences, and frame length of drone broadcast frames is established. The RF signals are processed through the designed filter banks, and the frequency domain parameters of bounding boxes generated by the detector are corrected with transmission frequency and signal bandwidth. Given the remarkable correlation characteristics of ZC sequences, the frequency domain parameters of bounding boxes with low confidence scores are corrected based on ZC sequences and frame length, which improves the detection accuracy of dim targets under low signal-to noise ratio situations. Besides, a segmented energy refinement method is applied to mitigate the deviation caused by interference signals with high energy strength, which ulteriorly corrects the time domain detection parameters for dim targets. As the sampling duration increases, the detection speed improves while the detection accuracy of broadcast frames termed as small targets decreases. The trade-off between detection accuracy and speed versus sampling duration is established, which helps to meet different drone regulation requirements. Simulation results demonstrate that the proposed algorithm improves the evaluation metrics by 2.27\% compared to existing algorithms. The proposed algorithm also performs strong robustness under varying flight distances, diverse types of environment noise, and different flight visual environment. Besides, the broadcast frame decoding results indicate that 97.30\% accuracy of RID has been achieved.
♻ ☆ DeepMedcast: A Deep Learning Method for Generating Intermediate Weather Forecasts among Multiple NWP Models
Numerical weather prediction (NWP) centers around the world operate a variety of NWP models. In addition, recent advances in AI-driven NWP models have further increased the availability of NWP outputs. While this expansion holds the potential to improve forecast accuracy, it raises a critical question: which prediction is the most plausible? If the NWP models have comparable accuracy, it is impossible to determine in advance which one is the best. Traditional approaches, such as ensemble or weighted averaging, combine multiple NWP outputs to produce a single forecast with improved accuracy. However, they often result in meteorologically unrealistic and uninterpretable outputs, such as the splitting of tropical cyclone centers or frontal boundaries into multiple distinct systems. To address this issue, we propose DeepMedcast, a deep learning method that generates intermediate forecasts between two or more NWP outputs. Unlike averaging, DeepMedcast provides predictions in which meteorologically significant features -- such as the locations of tropical cyclones, extratropical cyclones, fronts, and shear lines -- approximately align with the arithmetic mean of the corresponding features predicted by the input NWP models, without distorting meteorological structures. We demonstrate the capability of DeepMedcast through case studies and verification results, showing that it produces realistic and interpretable forecasts with higher accuracy than the input NWP models. By providing plausible intermediate forecasts, DeepMedcast can significantly contribute to the efficiency and standardization of operational forecasting tasks, including general, marine, and aviation forecasts.
comment: 15 pages, 11 figures
♻ ☆ IGNIS: A Robust Neural Network Framework for Constrained Parameter Estimation in Archimedean Copulas
We introduce IGNIS, a deep-learning framework for constrained parameter estimation in Archimedean copulas with natural domain $\theta \geq 1$. While illustrated here on four families (Gumbel, Joe and the novel A1/A2 copulas), IGNIS is readily applicable to any one-parameter Archimedean model with $\theta \geq 1$. Classical estimators (Method of Moments (MoM), Maximum Likelihood Estimation (MLE), Maximum Pseudo-Likelihood (MPL)) break down on A1/A2 due to non-monotonic dependence mappings, steep likelihood gradients and the need for custom constraint handling. IGNIS sidesteps these issues by learning a direct mapping from four summary statistics (Kendall's $\tau$, Spearman's $\rho$, empirical 0.95 tail-dependence and Pearson $r$) plus a one-hot family indicator to $\theta$, ending in a softplus + 1 output layer that automatically enforces $\hat{\theta} \geq 1$. Trained on 500 simulated $\theta$ values per family (10000 observations each), IGNIS outperforms the Method of Moments in extensive simulations and delivers accurate, stable estimates on real-world AAPL-MSFT returns and CDC diabetes data. Our results demonstrate a unified, constraint-aware neural estimator for modern copula-based dependence modeling, easily extendable to any copula family respecting $\theta \geq 1$.
comment: Under review
♻ ☆ How Visual Representations Map to Language Feature Space in Multimodal LLMs
Effective multimodal reasoning depends on the alignment of visual and linguistic representations, yet the mechanisms by which vision-language models (VLMs) achieve this alignment remain poorly understood. Following the LiMBeR framework, we deliberately maintain a frozen large language model (LLM) and a frozen vision transformer (ViT), connected solely by training a linear adapter during visual instruction tuning. By keeping the language model frozen, we ensure it maintains its original language representations without adaptation to visual data. Consequently, the linear adapter must map visual features directly into the LLM's existing representational space rather than allowing the language model to develop specialized visual understanding through fine-tuning. Our experimental design uniquely enables the use of pre-trained sparse autoencoders (SAEs) of the LLM as analytical probes. These SAEs remain perfectly aligned with the unchanged language model and serve as a snapshot of the learned language feature-representations. Through systematic analysis of SAE reconstruction error, sparsity patterns, and feature SAE descriptions, we reveal the layer-wise progression through which visual representations gradually align with language feature representations, converging in middle-to-later layers. This suggests a fundamental misalignment between ViT outputs and early LLM layers, raising important questions about whether current adapter-based architectures optimally facilitate cross-modal representation learning.
♻ ☆ Learning to Reason under Off-Policy Guidance
Recent advances in large reasoning models (LRMs) demonstrate that sophisticated behaviors such as multi-step reasoning and self-reflection can emerge via reinforcement learning with verifiable rewards~(\textit{RLVR}). However, existing \textit{RLVR} approaches are inherently ``on-policy'', limiting learning to a model's own outputs and failing to acquire reasoning abilities beyond its initial capabilities. To address this issue, we introduce \textbf{LUFFY} (\textbf{L}earning to reason \textbf{U}nder o\textbf{FF}-polic\textbf{Y} guidance), a framework that augments \textit{RLVR} with off-policy reasoning traces. LUFFY dynamically balances imitation and exploration by combining off-policy demonstrations with on-policy rollouts during training. Specifically, LUFFY combines the Mixed-Policy GRPO framework, which has a theoretically guaranteed convergence rate, alongside policy shaping via regularized importance sampling to avoid superficial and rigid imitation during mixed-policy training. Compared with previous RLVR methods, LUFFY achieves an over \textbf{+6.4} average gain across six math benchmarks and an advantage of over \textbf{+6.2} points in out-of-distribution tasks. Most significantly, we show that LUFFY successfully trains weak models in scenarios where on-policy RLVR completely fails. These results provide compelling evidence that LUFFY transcends the fundamental limitations of on-policy RLVR and demonstrates the great potential of utilizing off-policy guidance in RLVR.
comment: Work in progress
Genomics 2
☆ eccDNAMamba: A Pre-Trained Model for Ultra-Long eccDNA Sequence Analysis ICML 2025
Extrachromosomal circular DNA (eccDNA) plays key regulatory roles and contributes to oncogene overexpression in cancer through high-copy amplification and long-range interactions. Despite advances in modeling, no pre-trained models currently support full-length circular eccDNA for downstream analysis. Existing genomic models are either limited to single-nucleotide resolution or hindered by the inefficiency of the quadratic attention mechanism. Here, we introduce eccDNAMamba, the first bidirectional state-space encoder tailored for circular DNA sequences. It combines forward and reverse passes for full-context representation learning with linear-time complexity, and preserves circular structure through a novel augmentation strategy. Tested on two real-world datasets, eccDNAMamba achieves strong classification performance and scales to sequences up to 200 Kbp, offering a robust and efficient framework for modeling circular genomes. Our codes are available at https://github.com/zzq1zh/GenAI-Lab.
comment: Accepted by ICML 2025 Generative AI and Biology (GenBio) Workshop
♻ ☆ Static Three-Dimensional Structures Determine Fast Dynamics Between Distal Loci Pairs in Interphase Chromosomes
Live-cell imaging experiments have shown that the distal dynamics between enhancers and promoters are unexpectedly rapid and incompatible with standard polymer models. The discordance between the compact static chromatin organization and dynamics is a conundrum that violates the expected structure-function relationship. We developed a theory to predict chromatin dynamics by accurately determining three-dimensional (3D) structures from static Hi-C contact maps or fixed-cell imaging data. Using the calculated 3D coordinates, the theory accurately forecasts experimentally observed two-point chromatin dynamics. It predicts rapid enhancer-promoter interactions and uncovers a scaling relationship between two-point relaxation time and genomic separation, closely matching recent measurements. The theory predicts that cohesin depletion accelerates single-locus diffusion while significantly slowing relaxation dynamics within topologically associating domains (TADs). Our results demonstrate that chromatin dynamics can be reliably inferred from static structural data, reinforcing the notion that 3D chromatin structure governs dynamic behavior. This general framework offers powerful tools for exploring chromatin dynamics across diverse biological contexts.
Quantitative Methods 3
☆ Single-Cell Proteomic Technologies: Tools in the quest for principles
Over the last decade, proteomic analysis of single cells by mass spectrometry transitioned from an uncertain possibility to a set of robust and rapidly advancing technologies supporting the accurate quantification of thousands of proteins. We review the major drivers of this progress, from establishing feasibility to powerful and increasingly scalable methods. We focus on the tradeoffs and synergies of different technological solutions within a coherent conceptual framework, which projects considerable room both for throughput scaling and for extending the analysis scope to functional protein measurements. We highlight the potential of these technologies to support the development of mechanistic biophysical models and help uncover new principles.
♻ ☆ Unveiling Molecular Moieties through Hierarchical Grad-CAM Graph Explainability
Background: Virtual Screening (VS) has become an essential tool in drug discovery, enabling the rapid and cost-effective identification of potential bioactive molecules. Among recent advancements, Graph Neural Networks (GNNs) have gained prominence for their ability to model complex molecular structures using graph-based representations. However, the integration of explainable methods to elucidate the specific contributions of molecular substructures to biological activity remains a significant challenge. This limitation hampers both the interpretability of predictive models and the rational design of novel therapeutics. Results: We trained 20 GNN models on a dataset of small molecules with the goal of predicting their activity on 20 distinct protein targets from the Kinase family. These classifiers achieved state-of-the-art performance in virtual screening tasks, demonstrating high accuracy and robustness on different targets. Building upon these models, we implemented the Hierarchical Grad-CAM graph Explainer (HGE) framework, enabling an in-depth analysis of the molecular moieties driving protein-ligand binding stabilization. HGE exploits Grad-CAM explanations at the atom, ring, and whole-molecule levels, leveraging the message-passing mechanism to highlight the most relevant chemical moieties. Validation against experimental data from the literature confirmed the ability of the explainer to recognize a molecular pattern of drugs and correctly annotate them to the known target. Conclusion: Our approach may represent a valid support to shorten both the screening and the hit discovery process. Detailed knowledge of the molecular substructures that play a role in the binding process can help the computational chemist to gain insights into the structure optimization, as well as in drug repurposing tasks.
♻ ☆ Universal scale-free representations in human visual cortex
How does the human brain encode complex visual information? While previous research has characterized individual dimensions of visual representation in cortex, we still lack a comprehensive understanding of how visual information is organized across the full range of neural population activity. Here, analyzing fMRI responses to natural scenes across multiple individuals, we discover that neural representations in human visual cortex follow a remarkably consistent scale-free organization -- their variance systematically decays as a power law, detected across four orders of magnitude of latent dimensions. This scale-free structure appears consistently across multiple visual regions and across individuals, suggesting it reflects a fundamental organizing principle of visual processing. Critically, when we align neural responses across individuals using hyperalignment, we find that these representational dimensions are largely shared between people, revealing a universal high-dimensional spectrum of visual information that emerges despite individual differences in brain anatomy and visual experience. Traditional analysis approaches in cognitive neuroscience have focused primarily on a small number of high-variance dimensions, potentially missing crucial aspects of visual representation. Our results demonstrate that visual information is distributed across the full dimensionality of cortical activity in a systematic way, suggesting we need to move beyond low-dimensional characterizations to fully understand how the brain represents the visual world. This work reveals a new fundamental principle of neural coding in human visual cortex and highlights the importance of examining neural representations across their full dimensionality.
comment: 32 pages, 7 main figures, 12 supplementary figures
Machine Learning 38
☆ In-Context Learning Strategies Emerge Rationally
Recent work analyzing in-context learning (ICL) has identified a broad set of strategies that describe model behavior in different experimental conditions. We aim to unify these findings by asking why a model learns these disparate strategies in the first place. Specifically, we start with the observation that when trained to learn a mixture of tasks, as is popular in the literature, the strategies learned by a model for performing ICL can be captured by a family of Bayesian predictors: a memorizing predictor, which assumes a discrete prior on the set of seen tasks, and a generalizing predictor, wherein the prior matches the underlying task distribution. Adopting the lens of rational analysis from cognitive science, where a learner's behavior is explained as an optimal adaptation to data given computational constraints, we develop a hierarchical Bayesian framework that almost perfectly predicts Transformer next token predictions throughout training without assuming access to its weights. Under this framework, pretraining is viewed as a process of updating the posterior probability of different strategies, and its inference-time behavior as a posterior-weighted average over these strategies' predictions. Our framework draws on common assumptions about neural network learning dynamics, which make explicit a tradeoff between loss and complexity among candidate strategies: beyond how well it explains the data, a model's preference towards implementing a strategy is dictated by its complexity. This helps explain well-known ICL phenomena, while offering novel predictions: e.g., we show a superlinear trend in the timescale for transition to memorization as task diversity is increased. Overall, our work advances an explanatory and predictive account of ICL grounded in tradeoffs between strategy loss and complexity.
comment: Preprint
☆ AbRank: A Benchmark Dataset and Metric-Learning Framework for Antibody-Antigen Affinity Ranking
Accurate prediction of antibody-antigen (Ab-Ag) binding affinity is essential for therapeutic design and vaccine development, yet the performance of current models is limited by noisy experimental labels, heterogeneous assay conditions, and poor generalization across the vast antibody and antigen sequence space. We introduce AbRank, a large-scale benchmark and evaluation framework that reframes affinity prediction as a pairwise ranking problem. AbRank aggregates over 380,000 binding assays from nine heterogeneous sources, spanning diverse antibodies, antigens, and experimental conditions, and introduces standardized data splits that systematically increase distribution shift, from local perturbations such as point mutations to broad generalization across novel antigens and antibodies. To ensure robust supervision, AbRank defines an m-confident ranking framework by filtering out comparisons with marginal affinity differences, focusing training on pairs with at least an m-fold difference in measured binding strength. As a baseline for the benchmark, we introduce WALLE-Affinity, a graph-based approach that integrates protein language model embeddings with structural information to predict pairwise binding preferences. Our benchmarks reveal significant limitations in current methods under realistic generalization settings and demonstrate that ranking-based training improves robustness and transferability. In summary, AbRank offers a robust foundation for machine learning models to generalize across the antibody-antigen space, with direct relevance for scalable, structure-aware antibody therapeutic design.
☆ Bayesian Inference for Left-Truncated Log-Logistic Distributions for Time-to-event Data Analysis
Parameter estimation is a foundational step in statistical modeling, enabling us to extract knowledge from data and apply it effectively. Bayesian estimation of parameters incorporates prior beliefs with observed data to infer distribution parameters probabilistically and robustly. Moreover, it provides full posterior distributions, allowing uncertainty quantification and regularization, especially useful in small or truncated samples. Utilizing the left-truncated log-logistic (LTLL) distribution is particularly well-suited for modeling time-to-event data where observations are subject to a known lower bound such as precipitation data and cancer survival times. In this paper, we propose a Bayesian approach for estimating the parameters of the LTLL distribution with a fixed truncation point \( x_L > 0 \). Given a random variable \( X \sim LL(\alpha, \beta; x_L) \), where \( \alpha > 0 \) is the scale parameter and \( \beta > 0 \) is the shape parameter, the likelihood function is derived based on a truncated sample \( X_1, X_2, \dots, X_N \) with \( X_i > x_L \). We assume independent prior distributions for the parameters, and the posterior inference is conducted via Markov Chain Monte Carlo sampling, specifically using the Metropolis-Hastings algorithm to obtain posterior estimates \( \hat{\alpha} \) and \( \hat{\beta} \). Through simulation studies and real-world applications, we demonstrate that Bayesian estimation provides more stable and reliable parameter estimates, particularly when the likelihood surface is irregular due to left truncation. The results highlight the advantages of Bayesian inference outperform the estimation of parameter uncertainty in truncated distributions for time to event data analysis.
comment: 24 pages, 5 figures, 5 tables
☆ Pathway-based Progressive Inference (PaPI) for Energy-Efficient Continual Learning
Continual learning systems face the dual challenge of preventing catastrophic forgetting while maintaining energy efficiency, particularly in resource-constrained environments. This paper introduces Pathway-based Progressive Inference (PaPI), a novel theoretical framework that addresses these challenges through a mathematically rigorous approach to pathway selection and adaptation. We formulate continual learning as an energy-constrained optimization problem and provide formal convergence guarantees for our pathway routing mechanisms. Our theoretical analysis demonstrates that PaPI achieves an $\mathcal{O}(K)$ improvement in the stability-plasticity trade-off compared to monolithic architectures, where $K$ is the number of pathways. We derive tight bounds on forgetting rates using Fisher Information Matrix analysis and prove that PaPI's energy consumption scales with the number of active parameters rather than the total model size. Comparative theoretical analysis shows that PaPI provides stronger guarantees against catastrophic forgetting than Elastic Weight Consolidation (EWC) while maintaining better energy efficiency than both EWC and Gradient Episodic Memory (GEM). Our experimental validation confirms these theoretical advantages across multiple benchmarks, demonstrating PaPI's effectiveness for continual learning in energy-constrained settings. Our codes are available at https://github.com/zser092/PAPI_FILES.
☆ A Comparative Study of Open-Source Libraries for Synthetic Tabular Data Generation: SDV vs. SynthCity
High-quality training data is critical to the performance of machine learning models, particularly Large Language Models (LLMs). However, obtaining real, high-quality data can be challenging, especially for smaller organizations and early-stage startups. Synthetic data generators provide a promising solution by replicating the statistical and structural properties of real data while preserving privacy and scalability. This study evaluates the performance of six tabular synthetic data generators from two widely used open-source libraries: SDV (Gaussian Copula, CTGAN, TVAE) and Synthicity (Bayesian Network, CTGAN, TVAE). Using a real-world dataset from the UCI Machine Learning Repository, comprising energy consumption and environmental variables from Belgium, we simulate a low-data regime by training models on only 1,000 rows. Each generator is then tasked with producing synthetic datasets under two conditions: a 1:1 (1,000 rows) and a 1:10 (10,000 rows) input-output ratio. Evaluation is conducted using two criteria: statistical similarity, measured via classical statistics and distributional metrics; and predictive utility, assessed using a "Train on Synthetic, Test on Real" approach with four regression models. While statistical similarity remained consistent across models in both scenarios, predictive utility declined notably in the 1:10 case. The Bayesian Network from Synthicity achieved the highest fidelity in both scenarios, while TVAE from SDV performed best in predictive tasks under the 1:10 setting. Although no significant performance gap was found between the two libraries, SDV stands out for its superior documentation and ease of use, making it more accessible for practitioners.
comment: 23 Pages, 5 figures, and 6 tables
☆ Causal Spherical Hypergraph Networks for Modelling Social Uncertainty
Human social behaviour is governed by complex interactions shaped by uncertainty, causality, and group dynamics. We propose Causal Spherical Hypergraph Networks (Causal-SphHN), a principled framework for socially grounded prediction that jointly models higher-order structure, directional influence, and epistemic uncertainty. Our method represents individuals as hyperspherical embeddings and group contexts as hyperedges, capturing semantic and relational geometry. Uncertainty is quantified via Shannon entropy over von Mises-Fisher distributions, while temporal causal dependencies are identified using Granger-informed subgraphs. Information is propagated through an angular message-passing mechanism that respects belief dispersion and directional semantics. Experiments on SNARE (offline networks), PHEME (online discourse), and AMIGOS (multimodal affect) show that Causal-SphHN improves predictive accuracy, robustness, and calibration over strong baselines. Moreover, it enables interpretable analysis of influence patterns and social ambiguity. This work contributes a unified causal-geometric approach for learning under uncertainty in dynamic social environments.
☆ Leveling the Playing Field: Carefully Comparing Classical and Learned Controllers for Quadrotor Trajectory Tracking
Learning-based control approaches like reinforcement learning (RL) have recently produced a slew of impressive results for tasks like quadrotor trajectory tracking and drone racing. Naturally, it is common to demonstrate the advantages of these new controllers against established methods like analytical controllers. We observe, however, that reliably comparing the performance of such very different classes of controllers is more complicated than might appear at first sight. As a case study, we take up the problem of agile tracking of an end-effector for a quadrotor with a fixed arm. We develop a set of best practices for synthesizing the best-in-class RL and geometric controllers (GC) for benchmarking. In the process, we resolve widespread RL-favoring biases in prior studies that provide asymmetric access to: (1) the task definition, in the form of an objective function, (2) representative datasets, for parameter optimization, and (3) feedforward information, describing the desired future trajectory. The resulting findings are the following: our improvements to the experimental protocol for comparing learned and classical controllers are critical, and each of the above asymmetries can yield misleading conclusions. Prior works have claimed that RL outperforms GC, but we find the gaps between the two controller classes are much smaller than previously published when accounting for symmetric comparisons. Geometric control achieves lower steady-state error than RL, while RL has better transient performance, resulting in GC performing better in relatively slow or less agile tasks, but RL performing better when greater agility is required. Finally, we open-source implementations of geometric and RL controllers for these aerial vehicles, implementing best practices for future development. Website and code is available at https://pratikkunapuli.github.io/rl-vs-gc/
comment: Accepted for publication to RSS 2025. 10 pages, 5 figures. Project website: https://pratikkunapuli.github.io/rl-vs-gc/
☆ Aligning Frozen LLMs by Reinforcement Learning: An Iterative Reweight-then-Optimize Approach
Aligning large language models (LLMs) with human preferences usually requires fine-tuning methods such as RLHF and DPO. These methods directly optimize the model parameters, so they cannot be used in test-time to improve model performance, nor are they applicable when the model weights are not accessible. In contrast, test-time methods sidestep weight updates by leveraging reward functions to guide and improve output quality. However, they incur high inference costs, and their one-shot guidance is often based on imperfect reward or value functions, leading to suboptimal outputs. In this work, we present a method named Iterative Reweight-then-Optimize (IRO), a reinforcement learning (RL) framework that performs RL-style alignment of the (frozen) base model without touching its parameters. During training, each iteration (i) samples candidates from the base model, (ii) resamples using current value functions, and (iii) trains a new lightweight value function that guides the next decoding pass. At test time, the value functions are used to guide the base model generation via a search-based optimization process. Notably, users can apply IRO to align a model on their own dataset, similar to OpenAI's reinforcement fine-tuning (RFT), but without requiring access to the model weights.
Actionable Interpretability via Causal Hypergraphs: Unravelling Batch Size Effects in Deep Learning
While the impact of batch size on generalisation is well studied in vision tasks, its causal mechanisms remain underexplored in graph and text domains. We introduce a hypergraph-based causal framework, HGCNet, that leverages deep structural causal models (DSCMs) to uncover how batch size influences generalisation via gradient noise, minima sharpness, and model complexity. Unlike prior approaches based on static pairwise dependencies, HGCNet employs hypergraphs to capture higher-order interactions across training dynamics. Using do-calculus, we quantify direct and mediated effects of batch size interventions, providing interpretable, causally grounded insights into optimisation. Experiments on citation networks, biomedical text, and e-commerce reviews show that HGCNet outperforms strong baselines including GCN, GAT, PI-GNN, BERT, and RoBERTa. Our analysis reveals that smaller batch sizes causally enhance generalisation through increased stochasticity and flatter minima, offering actionable interpretability to guide training strategies in deep learning. This work positions interpretability as a driver of principled architectural and optimisation choices beyond post hoc analysis.
☆ Quantum-Hybrid Support Vector Machines for Anomaly Detection in Industrial Control Systems
Sensitive data captured by Industrial Control Systems (ICS) play a large role in the safety and integrity of many critical infrastructures. Detection of anomalous or malicious data, or Anomaly Detection (AD), with machine learning is one of many vital components of cyberphysical security. Quantum kernel-based machine learning methods have shown promise in identifying complex anomalous behavior by leveraging the highly expressive and efficient feature spaces of quantum computing. This study focuses on the parameterization of Quantum Hybrid Support Vector Machines (QSVMs) using three popular datasets from Cyber-Physical Systems (CPS). The results demonstrate that QSVMs outperform traditional classical kernel methods, achieving 13.3% higher F1 scores. Additionally, this research investigates noise using simulations based on real IBMQ hardware, revealing a maximum error of only 0.98% in the QSVM kernels. This error results in an average reduction of 1.57% in classification metrics. Furthermore, the study found that QSVMs show a 91.023% improvement in kernel-target alignment compared to classical methods, indicating a potential "quantum advantage" in anomaly detection for critical infrastructures. This effort suggests that QSVMs can provide a substantial advantage in anomaly detection for ICS, ultimately enhancing the security and integrity of critical infrastructures.
comment: 12 pages, 6 tables, 10 figures
☆ Learning to Dock: A Simulation-based Study on Closing the Sim2Real Gap in Autonomous Underwater Docking
Autonomous Underwater Vehicle (AUV) docking in dynamic and uncertain environments is a critical challenge for underwater robotics. Reinforcement learning is a promising method for developing robust controllers, but the disparity between training simulations and the real world, or the sim2real gap, often leads to a significant deterioration in performance. In this work, we perform a simulation study on reducing the sim2real gap in autonomous docking through training various controllers and then evaluating them under realistic disturbances. In particular, we focus on the real-world challenge of docking under different payloads that are potentially outside the original training distribution. We explore existing methods for improving robustness including randomization techniques and history-conditioned controllers. Our findings provide insights into mitigating the sim2real gap when training docking controllers. Furthermore, our work indicates areas of future research that may be beneficial to the marine robotics community.
comment: Advancing Quantitative and Qualitative Simulators for Marine Applications Workshop Paper at International Conference on Robotics and Automation 2025
☆ CultureMERT: Continual Pre-Training for Cross-Cultural Music Representation Learning
Recent advances in music foundation models have improved audio representation learning, yet their effectiveness across diverse musical traditions remains limited. We introduce CultureMERT-95M, a multi-culturally adapted foundation model developed to enhance cross-cultural music representation learning and understanding. To achieve this, we propose a two-stage continual pre-training strategy that integrates learning rate re-warming and re-decaying, enabling stable adaptation even with limited computational resources. Training on a 650-hour multi-cultural data mix, comprising Greek, Turkish, and Indian music traditions, results in an average improvement of 4.9% in ROC-AUC and AP across diverse non-Western music auto-tagging tasks, surpassing prior state-of-the-art, with minimal forgetting on Western-centric benchmarks. We further investigate task arithmetic, an alternative approach to multi-cultural adaptation that merges single-culture adapted models in the weight space. Task arithmetic performs on par with our multi-culturally trained model on non-Western auto-tagging tasks and shows no regression on Western datasets. Cross-cultural evaluation reveals that single-culture models transfer with varying effectiveness across musical traditions, whereas the multi-culturally adapted model achieves the best overall performance. To support research on world music representation learning, we publicly release CultureMERT-95M and CultureMERT-TA-95M, fostering the development of more culturally aware music foundation models.
comment: 10 pages, 4 figures, accepted to the 26th International Society for Music Information Retrieval conference (ISMIR 2025), to be held in Daejeon, South Korea
☆ Flatness After All?
Recent literature has examined the relationship between the curvature of the loss function at minima and generalization, mainly in the context of overparameterized networks. A key observation is that "flat" minima tend to generalize better than "sharp" minima. While this idea is supported by empirical evidence, it has also been shown that deep networks can generalize even with arbitrary sharpness, as measured by either the trace or the spectral norm of the Hessian. In this paper, we argue that generalization could be assessed by measuring flatness using a soft rank measure of the Hessian. We show that when the common neural network model (neural network with exponential family negative log likelihood loss) is calibrated, and its prediction error and its confidence in the prediction are not correlated with the first and the second derivatives of the network's output, our measure accurately captures the asymptotic expected generalization gap. For non-calibrated models, we connect our flatness measure to the well-known Takeuchi Information Criterion and show that it still provides reliable estimates of generalization gaps for models that are not overly confident. Experimental results indicate that our approach offers a robust estimate of the generalization gap compared to baselines.
☆ Reimagining Parameter Space Exploration with Diffusion Models ICML 2025
Adapting neural networks to new tasks typically requires task-specific fine-tuning, which is time-consuming and reliant on labeled data. We explore a generative alternative that produces task-specific parameters directly from task identity, eliminating the need for task-specific training. To this end, we propose using diffusion models to learn the underlying structure of effective task-specific parameter space and synthesize parameters on demand. Once trained, the task-conditioned diffusion model can generate specialized weights directly from task identifiers. We evaluate this approach across three scenarios: generating parameters for a single seen task, for multiple seen tasks, and for entirely unseen tasks. Experiments show that diffusion models can generate accurate task-specific parameters and support multi-task interpolation when parameter subspaces are well-structured, but fail to generalize to unseen tasks, highlighting both the potential and limitations of this generative solution.
comment: Accepted at ICML 2025 EXAIT Workshop
☆ AdRo-FL: Informed and Secure Client Selection for Federated Learning in the Presence of Adversarial Aggregator
Federated Learning (FL) enables collaborative learning without exposing clients' data. While clients only share model updates with the aggregator, studies reveal that aggregators can infer sensitive information from these updates. Secure Aggregation (SA) protects individual updates during transmission; however, recent work demonstrates a critical vulnerability where adversarial aggregators manipulate client selection to bypass SA protections, constituting a Biased Selection Attack (BSA). Although verifiable random selection prevents BSA, it precludes informed client selection essential for FL performance. We propose Adversarial Robust Federated Learning (AdRo-FL), which simultaneously enables: informed client selection based on client utility, and robust defense against BSA maintaining privacy-preserving aggregation. AdRo-FL implements two client selection frameworks tailored for distinct settings. The first framework assumes clients are grouped into clusters based on mutual trust, such as different branches of an organization. The second framework handles distributed clients where no trust relationships exist between them. For the cluster-oriented setting, we propose a novel defense against BSA by (1) enforcing a minimum client selection quota from each cluster, supervised by a cluster-head in every round, and (2) introducing a client utility function to prioritize efficient clients. For the distributed setting, we design a two-phase selection protocol: first, the aggregator selects the top clients based on our utility-driven ranking; then, a verifiable random function (VRF) ensures a BSA-resistant final selection. AdRo-FL also applies quantization to reduce communication overhead and sets strict transmission deadlines to improve energy efficiency. AdRo-FL achieves up to $1.85\times$ faster time-to-accuracy and up to $1.06\times$ higher final accuracy compared to insecure baselines.
comment: 17 pages
☆ SING: SDE Inference via Natural Gradients
Latent stochastic differential equation (SDE) models are important tools for the unsupervised discovery of dynamical systems from data, with applications ranging from engineering to neuroscience. In these complex domains, exact posterior inference of the latent state path is typically intractable, motivating the use of approximate methods such as variational inference (VI). However, existing VI methods for inference in latent SDEs often suffer from slow convergence and numerical instability. Here, we propose SDE Inference via Natural Gradients (SING), a method that leverages natural gradient VI to efficiently exploit the underlying geometry of the model and variational posterior. SING enables fast and reliable inference in latent SDE models by approximating intractable integrals and parallelizing computations in time. We provide theoretical guarantees that SING will approximately optimize the intractable, continuous-time objective of interest. Moreover, we demonstrate that better state inference enables more accurate estimation of nonlinear drift functions using, for example, Gaussian process SDE models. SING outperforms prior methods in state inference and drift estimation on a variety of datasets, including a challenging application to modeling neural dynamics in freely behaving animals. Altogether, our results illustrate the potential of SING as a tool for accurate inference in complex dynamical systems, especially those characterized by limited prior knowledge and non-conjugate structure.
☆ Bayesian Social Deduction with Graph-Informed Language Models
Social reasoning - inferring unobservable beliefs and intentions from partial observations of other agents - remains a challenging task for large language models (LLMs). We evaluate the limits of current reasoning language models in the social deduction game Avalon and find that while the largest models demonstrate strong performance, they require extensive test-time inference and degrade sharply when distilled to smaller, real-time-capable variants. To address this, we introduce a hybrid reasoning framework that externalizes belief inference to a structured probabilistic model, while using an LLM for language understanding and interaction. Our approach achieves competitive performance with much larger models in Agent-Agent play and, notably, is the first language agent to defeat human players in a controlled study - achieving a 67% win rate and receiving higher qualitative ratings than both reasoning baselines and human teammates. We release code, models, and a dataset to support future work on social reasoning in LLM agents, which can be found at https://camp-lab-purdue.github.io/bayesian-social-deduction/
comment: 32 pages, 10 figures. Under review
☆ Beyond instruction-conditioning, MoTE: Mixture of Task Experts for Multi-task Embedding Models
Dense embeddings are fundamental to modern machine learning systems, powering Retrieval-Augmented Generation (RAG), information retrieval, and representation learning. While instruction-conditioning has become the dominant approach for embedding specialization, its direct application to low-capacity models imposes fundamental representational constraints that limit the performance gains derived from specialization. In this paper, we analyze these limitations and introduce the Mixture of Task Experts (MoTE) transformer block, which leverages task-specialized parameters trained with Task-Aware Contrastive Learning (\tacl) to enhance the model ability to generate specialized embeddings. Empirical results show that MoTE achieves $64\%$ higher performance gains in retrieval datasets ($+3.27 \rightarrow +5.21$) and $43\%$ higher performance gains across all datasets ($+1.81 \rightarrow +2.60$). Critically, these gains are achieved without altering instructions, training data, inference time, or number of active parameters.
☆ Toward Autonomous UI Exploration: The UIExplorer Benchmark
Autonomous agents must know how to explore user interfaces (UIs) for reliable task solving, yet systematic evaluation of this crucial phase is lacking. We introduce UIExplore-Bench, the first benchmark explicitly dedicated to UI exploration. The benchmark evaluates agents with either Structured mode (granting access to layout information like DOM trees) or Screen mode (relying on GUI-only observations such as screenshots and human-like mouse/keyboard interactions) across three levels in a standardized GitLab sandbox environment. We formalize exploration as the process of maximizing the set of actionable UI components discovered and propose a metric, human-normalized UI-Functionalities Observed (hUFO), to quantify the effectiveness of exploration. Our results show that UIExplore-AlGo achieves the leading mean hUFO scores, reaching up to 77.2% of human performance in Structured mode and 59.0% in Screen mode at 2,000 steps, particularly excelling at the Sparse level. The results highlight the relevance of our benchmark, as current agents show a substantial performance gap compared to one hour of human expert exploration, indicating ample room for future advancements. We publicly release the benchmark environment, an exploration dataset, and an evaluation suite to catalyze research into efficient UI exploration strategies and their downstream applications, such as experience-driven task completion and automated training data generation.
☆ Machine Learning Model Integration with Open World Temporal Logic for Process Automation
Recent advancements in Machine Learning (ML) have yielded powerful models capable of extracting structured information from diverse and complex data sources. However, a significant challenge lies in translating these perceptual or extractive outputs into actionable, reasoned decisions within complex operational workflows. To address these challenges, this paper introduces a novel approach that integrates the outputs from various machine learning models directly with the PyReason framework, an open-world temporal logic programming reasoning engine. PyReason's foundation in generalized annotated logic allows for the seamless incorporation of real-valued outputs (e.g., probabilities, confidence scores) from diverse ML models, treating them as truth intervals within its logical framework. Crucially, PyReason provides mechanisms, implemented in Python, to continuously poll ML model outputs, convert them into logical facts, and dynamically recompute the minimal model, ensuring real-tine adaptive decision-making. Furthermore, its native support for temporal reasoning, knowledge graph integration, and fully explainable interface traces enables sophisticated analysis over time-sensitive process data and existing organizational knowledge. By combining the strengths of perception and extraction from ML models with the logical deduction and transparency of PyReason, we aim to create a powerful system for automating complex processes. This integration finds utility across numerous domains, including manufacturing, healthcare, and business operations.
PhysiX: A Foundation Model for Physics Simulations
Foundation models have achieved remarkable success across video, image, and language domains. By scaling up the number of parameters and training datasets, these models acquire generalizable world knowledge and often surpass task-specific approaches. However, such progress has yet to extend to the domain of physics simulation. A primary bottleneck is data scarcity: while millions of images, videos, and textual resources are readily available on the internet, the largest physics simulation datasets contain only tens of thousands of samples. This data limitation hinders the use of large models, as overfitting becomes a major concern. As a result, physics applications typically rely on small models, which struggle with long-range prediction due to limited context understanding. Additionally, unlike images, videos, or text-which typically exhibit fixed granularity-physics datasets often vary drastically in scale, amplifying the challenges of scaling up multitask training. We introduce PhysiX, the first large-scale foundation model for physics simulation. PhysiX is a 4.5B parameter autoregressive generative model. It uses a discrete tokenizer to encode physical processes at different scales into a sequence of discrete tokens, and employs an autoregressive next-token prediction objective to model such processes in the token space. To mitigate the rounding error in the discretization process, PhysiX incorporates a specialized refinement module. Through extensive experiments, we show that PhysiX effectively addresses the data bottleneck, outperforming task-specific baselines under comparable settings as well as the previous absolute state-of-the-art approaches on The Well benchmark. Our results indicate that knowledge learned from natural videos can be successfully transferred to physics simulation, and that joint training across diverse simulation tasks enables synergistic learning.
comment: 21 pages, 10 figures
☆ Log-Normal Multiplicative Dynamics for Stable Low-Precision Training of Large Networks
Studies in neuroscience have shown that biological synapses follow a log-normal distribution whose transitioning can be explained by noisy multiplicative dynamics. Biological networks can function stably even under dynamically fluctuating conditions arising due to unreliable synaptic transmissions. Here we ask: Is it possible to design similar multiplicative training in artificial neural networks? To answer this question, we derive a Bayesian learning rule that assumes log-normal posterior distributions over weights which gives rise to a new Log-Normal Multiplicative Dynamics (LMD) algorithm. The algorithm uses multiplicative updates with both noise and regularization applied multiplicatively. The method is as easy to implement as Adam and only requires one additional vector to store. Our results show that LMD achieves stable and accurate training-from-scratch under low-precision forward operations for Vision Transformer and GPT-2. These results suggest that multiplicative dynamics, a biological feature, may enable stable low-precision inference and learning on future energy-efficient hardware.
comment: Code is available here: https://github.com/team-approx-bayes/lmd
☆ A Locally Differential Private Coding-Assisted Succinct Histogram Protocol
A succinct histogram captures frequent items and their frequencies across clients and has become increasingly important for large-scale, privacy-sensitive machine learning applications. To develop a rigorous framework to guarantee privacy for the succinct histogram problem, local differential privacy (LDP) has been utilized and shown promising results. To preserve data utility under LDP, which essentially works by intentionally adding noise to data, error-correcting codes naturally emerge as a promising tool for reliable information collection. This work presents the first practical $(\epsilon,\delta)$-LDP protocol for constructing succinct histograms using error-correcting codes. To this end, polar codes and their successive-cancellation list (SCL) decoding algorithms are leveraged as the underlying coding scheme. More specifically, our protocol introduces Gaussian-based perturbations to enable efficient soft decoding. Experiments demonstrate that our approach outperforms prior methods, particularly for items with low true frequencies, while maintaining similar frequency estimation accuracy.
☆ Derandomizing Simultaneous Confidence Regions for Band-Limited Functions by Improved Norm Bounds and Majority-Voting Schemes
Band-limited functions are fundamental objects that are widely used in systems theory and signal processing. In this paper we refine a recent nonparametric, nonasymptotic method for constructing simultaneous confidence regions for band-limited functions from noisy input-output measurements, by working in a Paley-Wiener reproducing kernel Hilbert space. Kernel norm bounds are tightened using a uniformly-randomized Hoeffding's inequality for small samples and an empirical Bernstein bound for larger ones. We derive an approximate threshold, based on the sample size and how informative the inputs are, that governs which bound to deploy. Finally, we apply majority voting to aggregate confidence sets from random subsamples, boosting both stability and region size. We prove that even per-input aggregated intervals retain their simultaneous coverage guarantee. These refinements are also validated through numerical experiments.
☆ Towards a Unified Textual Graph Framework for Spectral Reasoning via Physical and Chemical Information Fusion
Motivated by the limitations of current spectral analysis methods-such as reliance on single-modality data, limited generalizability, and poor interpretability-we propose a novel multi-modal spectral analysis framework that integrates prior knowledge graphs with Large Language Models. Our method explicitly bridges physical spectral measurements and chemical structural semantics by representing them in a unified Textual Graph format, enabling flexible, interpretable, and generalizable spectral understanding. Raw spectra are first transformed into TAGs, where nodes and edges are enriched with textual attributes describing both spectral properties and chemical context. These are then merged with relevant prior knowledge-including functional groups and molecular graphs-to form a Task Graph that incorporates "Prompt Nodes" supporting LLM-based contextual reasoning. A Graph Neural Network further processes this structure to complete downstream tasks. This unified design enables seamless multi-modal integration and automated feature decoding with minimal manual annotation. Our framework achieves consistently high performance across multiple spectral analysis tasks, including node-level, edge-level, and graph-level classification. It demonstrates robust generalization in both zero-shot and few-shot settings, highlighting its effectiveness in learning from limited data and supporting in-context reasoning. This work establishes a scalable and interpretable foundation for LLM-driven spectral analysis, unifying physical and chemical modalities for scientific applications.
comment: 16 pages, 7 figures, 8 tables
☆ Physics-informed mixture of experts network for interpretable battery degradation trajectory computation amid second-life complexities
Retired electric vehicle batteries offer immense potential to support low-carbon energy systems, but uncertainties in their degradation behavior and data inaccessibilities under second-life use pose major barriers to safe and scalable deployment. This work proposes a Physics-Informed Mixture of Experts (PIMOE) network that computes battery degradation trajectories using partial, field-accessible signals in a single cycle. PIMOE leverages an adaptive multi-degradation prediction module to classify degradation modes using expert weight synthesis underpinned by capacity-voltage and relaxation data, producing latent degradation trend embeddings. These are input to a use-dependent recurrent network for long-term trajectory prediction. Validated on 207 batteries across 77 use conditions and 67,902 cycles, PIMOE achieves an average mean absolute percentage (MAPE) errors of 0.88% with a 0.43 ms inference time. Compared to the state-of-the-art Informer and PatchTST, it reduces computational time and MAPE by 50%, respectively. Compatible with random state of charge region sampling, PIMOE supports 150-cycle forecasts with 1.50% average and 6.26% maximum MAPE, and operates effectively even with pruned 5MB training data. Broadly, PIMOE framework offers a deployable, history-free solution for battery degradation trajectory computation, redefining how second-life energy storage systems are assessed, optimized, and integrated into the sustainable energy landscape.
☆ Pix2Geomodel: A Next-Generation Reservoir Geomodeling with Property-to-Property Translation
Accurate geological modeling is critical for reservoir characterization, yet traditional methods struggle with complex subsurface heterogeneity, and they have problems with conditioning to observed data. This study introduces Pix2Geomodel, a novel conditional generative adversarial network (cGAN) framework based on Pix2Pix, designed to predict reservoir properties (facies, porosity, permeability, and water saturation) from the Rotliegend reservoir of the Groningen gas field. Utilizing a 7.6 million-cell dataset from the Nederlandse Aardolie Maatschappij, accessed via EPOS-NL, the methodology included data preprocessing, augmentation to generate 2,350 images per property, and training with a U-Net generator and PatchGAN discriminator over 19,000 steps. Evaluation metrics include pixel accuracy (PA), mean intersection over union (mIoU), frequency weighted intersection over union (FWIoU), and visualizations assessed performance in masked property prediction and property-to-property translation tasks. Results demonstrated high accuracy for facies (PA 0.88, FWIoU 0.85) and water saturation (PA 0.96, FWIoU 0.95), with moderate success for porosity (PA 0.70, FWIoU 0.55) and permeability (PA 0.74, FWIoU 0.60), and robust translation performance (e.g., facies-to-facies PA 0.98, FWIoU 0.97). The framework captured spatial variability and geological realism, as validated by variogram analysis, and calculated the training loss curves for the generator and discriminator for each property. Compared to traditional methods, Pix2Geomodel offers enhanced fidelity in direct property mapping. Limitations include challenges with microstructural variability and 2D constraints, suggesting future integration of multi-modal data and 3D modeling (Pix2Geomodel v2.0). This study advances the application of generative AI in geoscience, supporting improved reservoir management and open science initiatives.
comment: 34 pages, 13 figures
♻ ☆ FedBaF: Federated Learning Aggregation Biased by a Foundation Model AISTATS 2025
Foundation models are now a major focus of leading technology organizations due to their ability to generalize across diverse tasks. Existing approaches for adapting foundation models to new applications often rely on Federated Learning (FL) and disclose the foundation model weights to clients when using it to initialize the global model. While these methods ensure client data privacy, they compromise model and information security. In this paper, we introduce Federated Learning Aggregation Biased by a Foundation Model (FedBaF), a novel method for dynamically integrating pre-trained foundation model weights during the FL aggregation phase. Unlike conventional methods, FedBaF preserves the confidentiality of the foundation model while still leveraging its power to train more accurate models, especially in non-IID and adversarial scenarios. Our comprehensive experiments use Pre-ResNet and foundation models like Vision Transformer to demonstrate that FedBaF not only matches, but often surpasses the test accuracy of traditional weight initialization methods by up to 11.4% in IID and up to 15.8% in non-IID settings. Additionally, FedBaF applied to a Transformer-based language model significantly reduced perplexity by up to 39.2%.
comment: Published at The 28th International Conference on Artificial Intelligence and Statistics (AISTATS 2025)
♻ ☆ Evaluating Rank-N-Contrast: Continuous and Robust Representations for Regression
This document is an evaluation of the original "Rank-N-Contrast" (arXiv:2210.01189v2) paper published in 2023. This evaluation is done for academic purposes. Deep regression models often fail to capture the continuous nature of sample orders, creating fragmented representations and suboptimal performance. To address this, we reproduced the Rank-N-Contrast (RNC) framework, which learns continuous representations by contrasting samples by their rankings in the target space. Our study validates RNC's theoretical and empirical benefits, including improved performance and robustness. We extended the evaluation to an additional regression dataset and conducted robustness tests using a holdout method, where a specific range of continuous data was excluded from the training set. This approach assessed the model's ability to generalize to unseen data and achieve state-of-the-art performance. This replication study validates the original findings and broadens the understanding of RNC's applicability and robustness.
♻ ☆ Sharper Bounds for Chebyshev Moment Matching, with Applications
We study the problem of approximately recovering a probability distribution given noisy measurements of its Chebyshev polynomial moments. This problem arises broadly across algorithms, statistics, and machine learning. By leveraging a global decay bound on the coefficients in the Chebyshev expansion of any Lipschitz function, we sharpen prior work, proving that accurate recovery in the Wasserstein distance is possible with more noise than previously known. Our result immediately yields a number of applications: 1) We give a simple "linear query" algorithm for constructing a differentially private synthetic data distribution with Wasserstein-$1$ error $\tilde{O}(1/n)$ based on a dataset of $n$ points in $[-1,1]$. This bound is optimal up to log factors, and matches a recent result of Boedihardjo, Strohmer, and Vershynin [Probab. Theory. Rel., 2024], which uses a more complex "superregular random walk" method. 2) We give an $\tilde{O}(n^2/\epsilon)$ time algorithm for the linear algebraic problem of estimating the spectral density of an $n\times n$ symmetric matrix up to $\epsilon$ error in the Wasserstein distance. Our result accelerates prior methods from Chen et al. [ICML 2021] and Braverman et al. [STOC 2022]. 3) We tighten an analysis of Vinayak, Kong, Valiant, and Kakade [ICML 2019] on the maximum likelihood estimator for the statistical problem of "Learning Populations of Parameters'', extending the parameter regime in which sample optimal results can be obtained. Beyond these main results, we provide an extension of our bound to estimating distributions in $d > 1$ dimensions. We hope that these bounds will find applications more broadly to problems involving distribution recovery from noisy moment information.
♻ ☆ Smooth InfoMax -- Towards Easier Post-Hoc Interpretability
We introduce Smooth InfoMax (SIM), a self-supervised representation learning method that incorporates interpretability constraints into the latent representations at different depths of the network. Based on $\beta$-VAEs, SIM's architecture consists of probabilistic modules optimized locally with the InfoNCE loss to produce Gaussian-distributed representations regularized toward the standard normal distribution. This creates smooth, well-defined, and better-disentangled latent spaces, enabling easier post-hoc analysis. Evaluated on speech data, SIM preserves the large-scale training benefits of Greedy InfoMax while improving the effectiveness of post-hoc interpretability methods across layers.
♻ ☆ Physics-informed KAN PointNet: Deep learning for simultaneous solutions to inverse problems in incompressible flow on numerous irregular geometries
Kolmogorov-Arnold Networks (KANs) have gained attention as an alternative to traditional multilayer perceptrons (MLPs) for deep learning applications in computational physics, particularly for solving inverse problems with sparse data, as exemplified by the physics-informed Kolmogorov-Arnold network (PIKAN). However, the capability of KANs to simultaneously solve inverse problems over multiple irregular geometries within a single training run remains unexplored. To address this gap, we introduce the physics-informed Kolmogorov-Arnold PointNet (PI-KAN-PointNet), in which shared KANs are integrated into the PointNet architecture to capture the geometric features of computational domains. The loss function comprises the squared residuals of the governing equations, computed via automatic differentiation, along with sparse observations and partially known boundary conditions. We construct shared KANs using Jacobi polynomials and investigate their performance by considering Jacobi polynomials of different degrees and types in terms of both computational cost and prediction accuracy. As a benchmark test case, we consider natural convection in a square enclosure with a cylinder, where the cylinder's shape varies across a dataset of 135 geometries. PI-KAN-PointNet offers two main advantages. First, it overcomes the limitation of current PIKANs, which are restricted to solving only a single computational domain per training run, thereby reducing computational costs. Second, when comparing the performance of PI-KAN-PointNet with that of the physics-informed PointNet using MLPs, we observe that, with approximately the same number of trainable parameters and comparable computational cost in terms of the number of epochs, training time per epoch, and memory usage, PI-KAN-PointNet yields more accurate predictions, particularly for values on unknown boundary conditions involving nonsmooth geometries.
♻ ☆ Enhancing Glucose Level Prediction of ICU Patients through Hierarchical Modeling of Irregular Time-Series
Accurately predicting blood glucose (BG) levels of ICU patients is critical, as both hypoglycemia (BG < 70 mg/dL) and hyperglycemia (BG > 180 mg/dL) are associated with increased morbidity and mortality. This study presents a proof-of-concept machine learning framework, the Multi-source Irregular Time-Series Transformer (MITST), designed to predict BG levels in ICU patients. In contrast to existing methods that rely heavily on manual feature engineering or utilize limited Electronic Health Record (EHR) data sources, MITST integrates diverse clinical data--including laboratory results, medications, and vital signs without predefined aggregation. The model leverages a hierarchical Transformer architecture, designed to capture interactions among features within individual timestamps, temporal dependencies across different timestamps, and semantic relationships across multiple data sources. Evaluated using the extensive eICU database (200,859 ICU stays across 208 hospitals), MITST achieves a statistically significant ( p < 0.001 ) average improvement of 1.7 percentage points (pp) in AUROC and 1.8 pp in AUPRC over a state-of-the-art random forest baseline. Crucially, for hypoglycemia--a rare but life-threatening condition--MITST increases sensitivity by 7.2 pp, potentially enabling hundreds of earlier interventions across ICU populations. The flexible architecture of MITST allows seamless integration of new data sources without retraining the entire model, enhancing its adaptability for clinical decision support. While this study focuses on predicting BG levels, we also demonstrate MITST's ability to generalize to a distinct clinical task (in-hospital mortality prediction), highlighting its potential for broader applicability in ICU settings. MITST thus offers a robust and extensible solution for analyzing complex, multi-source, irregular time-series data.
comment: 27 pages, 7 figures V3: Revised significantly. Added more appendix and a webserver demo
♻ ☆ Trajectory Prediction for Autonomous Driving: Progress, Limitations, and Future Directions
As the potential for autonomous vehicles to be integrated on a large scale into modern traffic systems continues to grow, ensuring safe navigation in dynamic environments is crucial for smooth integration. To guarantee safety and prevent collisions, autonomous vehicles must be capable of accurately predicting the trajectories of surrounding traffic agents. Over the past decade, significant efforts from both academia and industry have been dedicated to designing solutions for precise trajectory forecasting. These efforts have produced a diverse range of approaches, raising questions about the differences between these methods and whether trajectory prediction challenges have been fully addressed. This paper reviews a substantial portion of recent trajectory prediction methods proposing a taxonomy to classify existing solutions. A general overview of the prediction pipeline is also provided, covering input and output modalities, modeling features, and prediction paradigms existing in the literature. In addition, the paper discusses active research areas within trajectory prediction, addresses the posed research questions, and highlights the remaining research gaps and challenges.
♻ ☆ DUMP: Automated Distribution-Level Curriculum Learning for RL-based LLM Post-training
Recent advances in reinforcement learning (RL)-based post-training have led to notable improvements in large language models (LLMs), particularly in enhancing their reasoning capabilities to handle complex tasks. However, most existing methods treat the training data as a unified whole, overlooking the fact that modern LLM training often involves a mixture of data from diverse distributions-varying in both source and difficulty. This heterogeneity introduces a key challenge: how to adaptively schedule training across distributions to optimize learning efficiency. In this paper, we present a principled curriculum learning framework grounded in the notion of distribution-level learnability. Our core insight is that the magnitude of policy advantages reflects how much a model can still benefit from further training on a given distribution. Based on this, we propose a distribution-level curriculum learning framework for RL-based LLM post-training, which leverages the Upper Confidence Bound (UCB) principle to dynamically adjust sampling probabilities for different distrubutions. This approach prioritizes distributions with either high average advantage (exploitation) or low sample count (exploration), yielding an adaptive and theoretically grounded training schedule. We instantiate our curriculum learning framework with GRPO as the underlying RL algorithm and demonstrate its effectiveness on logic reasoning datasets with multiple difficulties and sources. Our experiments show that our framework significantly improves convergence speed and final performance, highlighting the value of distribution-aware curriculum strategies in LLM post-training. Code: https://github.com/ZhentingWang/DUMP.
♻ ☆ G-Adaptivity: optimised graph-based mesh relocation for finite element methods
We present a novel, and effective, approach to achieve optimal mesh relocation in finite element methods (FEMs). The cost and accuracy of FEMs is critically dependent on the choice of mesh points. Mesh relocation (r-adaptivity) seeks to optimise the mesh geometry to obtain the best solution accuracy at given computational budget. Classical r-adaptivity relies on the solution of a separate nonlinear "meshing" PDE to determine mesh point locations. This incurs significant cost at remeshing, and relies on estimates that relate interpolation- and FEM-error. Recent machine learning approaches have focused on the construction of fast surrogates for such classical methods. Instead, our new approach trains a graph neural network (GNN) to determine mesh point locations by directly minimising the FE solution error from the PDE system Firedrake to achieve higher solution accuracy. Our GNN architecture closely aligns the mesh solution space to that of classical meshing methodologies, thus replacing classical estimates for optimality with a learnable strategy. This allows for rapid and robust training and results in an extremely efficient and effective GNN approach to online r-adaptivity. Our method outperforms both classical, and prior ML, approaches to r-adaptive meshing. In particular, it achieves lower FE solution error, whilst retaining the significant speed-up over classical methods observed in prior ML work.
♻ ☆ SCISSOR: Mitigating Semantic Bias through Cluster-Aware Siamese Networks for Robust Classification ICML
Shortcut learning undermines model generalization to out-of-distribution data. While the literature attributes shortcuts to biases in superficial features, we show that imbalances in the semantic distribution of sample embeddings induce spurious semantic correlations, compromising model robustness. To address this issue, we propose SCISSOR (Semantic Cluster Intervention for Suppressing ShORtcut), a Siamese network-based debiasing approach that remaps the semantic space by discouraging latent clusters exploited as shortcuts. Unlike prior data-debiasing approaches, SCISSOR eliminates the need for data augmentation and rewriting. We evaluate SCISSOR on 6 models across 4 benchmarks: Chest-XRay and Not-MNIST in computer vision, and GYAFC and Yelp in NLP tasks. Compared to several baselines, SCISSOR reports +5.3 absolute points in F1 score on GYAFC, +7.3 on Yelp, +7.7 on Chest-XRay, and +1 on Not-MNIST. SCISSOR is also highly advantageous for lightweight models with ~9.5% improvement on F1 for ViT on computer vision datasets and ~11.9% for BERT on NLP. Our study redefines the landscape of model generalization by addressing overlooked semantic biases, establishing SCISSOR as a foundational framework for mitigating shortcut learning and fostering more robust, bias-resistant AI systems.
comment: Accepted to the International Conference on Machine Learning (ICML) 2025
♻ ☆ Kernel Limit of Recurrent Neural Networks Trained on Ergodic Data Sequences
Mathematical methods are developed to characterize the asymptotics of recurrent neural networks (RNN) as the number of hidden units, data samples in the sequence, hidden state updates, and training steps simultaneously grow to infinity. In the case of an RNN with a simplified weight matrix, we prove the convergence of the RNN to the solution of an infinite-dimensional ODE coupled with the fixed point of a random algebraic equation. The analysis requires addressing several challenges which are unique to RNNs. In typical mean-field applications (e.g., feedforward neural networks), discrete updates are of magnitude $\mathcal{O}(\frac{1}{N})$ and the number of updates is $\mathcal{O}(N)$. Therefore, the system can be represented as an Euler approximation of an appropriate ODE/PDE, which it will converge to as $N \rightarrow \infty$. However, the RNN hidden layer updates are $\mathcal{O}(1)$. Therefore, RNNs cannot be represented as a discretization of an ODE/PDE and standard mean-field techniques cannot be applied. Instead, we develop a fixed point analysis for the evolution of the RNN memory states, with convergence estimates in terms of the number of update steps and the number of hidden units. The RNN hidden layer is studied as a function in a Sobolev space, whose evolution is governed by the data sequence (a Markov chain), the parameter updates, and its dependence on the RNN hidden layer at the previous time step. Due to the strong correlation between updates, a Poisson equation must be used to bound the fluctuations of the RNN around its limit equation. These mathematical methods give rise to the neural tangent kernel (NTK) limits for RNNs trained on data sequences as the number of data samples and size of the neural network grow to infinity.
comment: Revision in response to reviewers' comments. The mean-field random function has been replaced by a mean-field term. Some typos fixed
Genomics 1
☆ Improving Genomic Models via Task-Specific Self-Pretraining
Pretraining DNA language models (DNALMs) on the full human genome is resource-intensive, yet often considered necessary for strong downstream performance. Inspired by recent findings in NLP and long-context modeling, we explore an alternative: self-pretraining on task-specific, unlabeled data. Using the BEND benchmark, we show that DNALMs trained with self-pretraining match or exceed the performance of models trained from scratch under identical compute. While genome-scale pretraining may still offer higher absolute performance, task-specific self-pretraining provides a practical and compute-efficient strategy for building stronger supervised baselines.
comment: 4 pages
Quantitative Methods 2
♻ ☆ Enhancing Glucose Level Prediction of ICU Patients through Hierarchical Modeling of Irregular Time-Series
Accurately predicting blood glucose (BG) levels of ICU patients is critical, as both hypoglycemia (BG < 70 mg/dL) and hyperglycemia (BG > 180 mg/dL) are associated with increased morbidity and mortality. This study presents a proof-of-concept machine learning framework, the Multi-source Irregular Time-Series Transformer (MITST), designed to predict BG levels in ICU patients. In contrast to existing methods that rely heavily on manual feature engineering or utilize limited Electronic Health Record (EHR) data sources, MITST integrates diverse clinical data--including laboratory results, medications, and vital signs without predefined aggregation. The model leverages a hierarchical Transformer architecture, designed to capture interactions among features within individual timestamps, temporal dependencies across different timestamps, and semantic relationships across multiple data sources. Evaluated using the extensive eICU database (200,859 ICU stays across 208 hospitals), MITST achieves a statistically significant ( p < 0.001 ) average improvement of 1.7 percentage points (pp) in AUROC and 1.8 pp in AUPRC over a state-of-the-art random forest baseline. Crucially, for hypoglycemia--a rare but life-threatening condition--MITST increases sensitivity by 7.2 pp, potentially enabling hundreds of earlier interventions across ICU populations. The flexible architecture of MITST allows seamless integration of new data sources without retraining the entire model, enhancing its adaptability for clinical decision support. While this study focuses on predicting BG levels, we also demonstrate MITST's ability to generalize to a distinct clinical task (in-hospital mortality prediction), highlighting its potential for broader applicability in ICU settings. MITST thus offers a robust and extensible solution for analyzing complex, multi-source, irregular time-series data.
comment: 27 pages, 7 figures V3: Revised significantly. Added more appendix and a webserver demo
♻ ☆ Modelling collective cell migration in a data-rich age: challenges and opportunities for data-driven modelling
Mathematical modelling has a long history in the context of collective cell migration, with applications throughout development, disease and regenerative medicine. The aim of modelling in this context is to provide a framework in which to mathematically encode experimentally derived mechanistic hypotheses, and then to test and validate them to provide new insights and understanding. Traditionally, mathematical models have consisted of systems of partial differential equations that model the evolution of cell density over time, together with the dynamics of any associated biochemical signals or the underlying substrate. The various terms in the model are usually chosen to provide simplified, phenomenological descriptions of the underlying biology, and follow long-standing conventions in the field. However, with the recent development of a plethora of new experimental technologies that provide quantitative data on collective cell migration processes, we now have the opportunity to leverage statistical and machine learning tools to determine mathematical models directly from the data. This perspectives article aims to provide an overview of recently developed data-driven modelling approaches, outlining the main methodologies and the challenges involved in using them to interrogate real-world data relating to collective cell migration.
comment: 22 pages, 3 figures
Computation and Language 77
☆ Fine-Tuning Lowers Safety and Disrupts Evaluation Consistency
Fine-tuning a general-purpose large language model (LLM) for a specific domain or task has become a routine procedure for ordinary users. However, fine-tuning is known to remove the safety alignment features of the model, even when the fine-tuning data does not contain any harmful content. We consider this to be a critical failure mode of LLMs due to the widespread uptake of fine-tuning, combined with the benign nature of the "attack". Most well-intentioned developers are likely unaware that they are deploying an LLM with reduced safety. On the other hand, this known vulnerability can be easily exploited by malicious actors intending to bypass safety guardrails. To make any meaningful progress in mitigating this issue, we first need reliable and reproducible safety evaluations. In this work, we investigate how robust a safety benchmark is to trivial variations in the experimental procedure, and the stochastic nature of LLMs. Our initial experiments expose surprising variance in the results of the safety evaluation, even when seemingly inconsequential changes are made to the fine-tuning setup. Our observations have serious implications for how researchers in this field should report results to enable meaningful comparisons in the future.
comment: to appear at LLMSEC 2025
☆ Dissecting the SWE-Bench Leaderboards: Profiling Submitters and Architectures of LLM- and Agent-Based Repair Systems
The rapid progress in Automated Program Repair (APR) has been driven by advances in AI, particularly large language models (LLMs) and agent-based systems. SWE-Bench is a recent benchmark designed to evaluate LLM-based repair systems using real issues and pull requests mined from 12 popular open-source Python repositories. Its public leaderboards, SWE-Bench Lite and SWE-Bench Verified, have become central platforms for tracking progress and comparing solutions. However, because the submission process does not require detailed documentation, the architectural design and origin of many solutions remain unclear. In this paper, we present the first comprehensive study of all submissions to the SWE-Bench Lite (68 entries) and Verified (79 entries) leaderboards, analyzing 67 unique approaches across dimensions such as submitter type, product availability, LLM usage, and system architecture. Our findings reveal the dominance of proprietary LLMs (especially Claude 3.5/3.7), the presence of both agentic and non-agentic designs, and a contributor base spanning from individual developers to large tech companies.
☆ Towards AI Search Paradigm
In this paper, we introduce the AI Search Paradigm, a comprehensive blueprint for next-generation search systems capable of emulating human information processing and decision-making. The paradigm employs a modular architecture of four LLM-powered agents (Master, Planner, Executor and Writer) that dynamically adapt to the full spectrum of information needs, from simple factual queries to complex multi-stage reasoning tasks. These agents collaborate dynamically through coordinated workflows to evaluate query complexity, decompose problems into executable plans, and orchestrate tool usage, task execution, and content synthesis. We systematically present key methodologies for realizing this paradigm, including task planning and tool integration, execution strategies, aligned and robust retrieval-augmented generation, and efficient LLM inference, spanning both algorithmic techniques and infrastructure-level optimizations. By providing an in-depth guide to these foundational components, this work aims to inform the development of trustworthy, adaptive, and scalable AI search systems.
☆ CLEAR-3K: Assessing Causal Explanatory Capabilities in Language Models
We introduce CLEAR-3K, a dataset of 3,000 assertion-reasoning questions designed to evaluate whether language models can determine if one statement causally explains another. Each question present an assertion-reason pair and challenge language models to distinguish between semantic relatedness and genuine causal explanatory relationships. Through comprehensive evaluation of 21 state-of-the-art language models (ranging from 0.5B to 72B parameters), we identify two fundamental findings. First, language models frequently confuse semantic similarity with causality, relying on lexical and semantic overlap instead of inferring actual causal explanatory relationships. Second, as parameter size increases, models tend to shift from being overly skeptical about causal relationships to being excessively permissive in accepting them. Despite this shift, performance measured by the Matthews Correlation Coefficient plateaus at just 0.55, even for the best-performing models.Hence, CLEAR-3K provides a crucial benchmark for developing and evaluating genuine causal reasoning in language models, which is an essential capability for applications that require accurate assessment of causal relationships.
Cache Me If You Can: How Many KVs Do You Need for Effective Long-Context LMs?
Language models handle increasingly long contexts for tasks such as book summarization, but this leads to growing memory costs for the key-value (KV) cache. Many prior works have proposed ways of discarding KVs from memory, but their approaches are tailored to favorable settings, obscuring caveats like high peak memory and performance degradation, and a fair comparison between methods is difficult. In this paper, we propose the *KV footprint* as a unified metric, which accounts for both the amount of KV entries stored and their lifespan in memory. We evaluate methods based on the smallest footprint they attain while preserving performance in both long-context understanding and generation, with context lengths of up to 128K tokens. This metric reveals the high peak memory of prior KV eviction methods. One class of methods -- *post-fill eviction* -- has a high footprint due to being incompatible with eviction during pre-filling. We adapt these methods to be able to evict KVs during pre-filling, achieving substantially lower KV footprints. We then turn to *recency eviction* methods, wherein we propose PruLong, an end-to-end optimization method for learning which attention heads need to retain the full KV cache and which do not. PruLong saves memory while preserving long-context performance, achieving 12% smaller KV footprint than prior methods while retaining performance in challenging recall tasks. Our paper clarifies the complex tangle of long-context inference methods and paves the way for future development to minimize the KV footprint.
comment: We release our code publicly at https://github.com/princeton-pli/PruLong
☆ MEXA: Towards General Multimodal Reasoning with Dynamic Multi-Expert Aggregation
Combining pre-trained expert models offers substantial potential for scalable multimodal reasoning, but building a unified framework remains challenging due to the increasing diversity of input modalities and task complexity. For instance, medical diagnosis requires precise reasoning over structured clinical tables, while financial forecasting depends on interpreting plot-based data to make informed predictions. To tackle this challenge, we introduce MEXA, a training-free framework that performs modality- and task-aware aggregation of multiple expert models to enable effective multimodal reasoning across diverse and distinct domains. MEXA dynamically selects expert models based on the input modality and the task-specific reasoning demands (i.e., skills). Each expert model, specialized in a modality task pair, generates interpretable textual reasoning outputs. MEXA then aggregates and reasons over these outputs using a Large Reasoning Model (LRM) to produce the final answer. This modular design allows flexible and transparent multimodal reasoning across diverse domains without additional training overhead. We extensively evaluate our approach on diverse multimodal benchmarks, including Video Reasoning, Audio Reasoning, 3D Understanding, and Medical QA. MEXA consistently delivers performance improvements over strong multimodal baselines, highlighting the effectiveness and broad applicability of our expert-driven selection and aggregation in diverse multimodal reasoning tasks.
comment: The first two authors contributed equally; Github link: https://github.com/Yui010206/MEXA
☆ Are Bias Evaluation Methods Biased ? ACL 2025
The creation of benchmarks to evaluate the safety of Large Language Models is one of the key activities within the trusted AI community. These benchmarks allow models to be compared for different aspects of safety such as toxicity, bias, harmful behavior etc. Independent benchmarks adopt different approaches with distinct data sets and evaluation methods. We investigate how robust such benchmarks are by using different approaches to rank a set of representative models for bias and compare how similar are the overall rankings. We show that different but widely used bias evaluations methods result in disparate model rankings. We conclude with recommendations for the community in the usage of such benchmarks.
comment: Accepted to ACL 2025 Workshop GEM
☆ Better Language Model Inversion by Compactly Representing Next-Token Distributions
Language model inversion seeks to recover hidden prompts using only language model outputs. This capability has implications for security and accountability in language model deployments, such as leaking private information from an API-protected language model's system message. We propose a new method -- prompt inversion from logprob sequences (PILS) -- that recovers hidden prompts by gleaning clues from the model's next-token probabilities over the course of multiple generation steps. Our method is enabled by a key insight: The vector-valued outputs of a language model occupy a low-dimensional subspace. This enables us to losslessly compress the full next-token probability distribution over multiple generation steps using a linear map, allowing more output information to be used for inversion. Our approach yields massive gains over previous state-of-the-art methods for recovering hidden prompts, achieving 2--3.5 times higher exact recovery rates across test sets, in one case increasing the recovery rate from 17% to 60%. Our method also exhibits surprisingly good generalization behavior; for instance, an inverter trained on 16 generations steps gets 5--27 points higher prompt recovery when we increase the number of steps to 32 at test time. Furthermore, we demonstrate strong performance of our method on the more challenging task of recovering hidden system messages. We also analyze the role of verbatim repetition in prompt recovery and propose a new method for cross-family model transfer for logit-based inverters. Our findings show that next-token probabilities are a considerably more vulnerable attack surface for inversion attacks than previously known.
☆ Chain-of-Thought Prompting Obscures Hallucination Cues in Large Language Models: An Empirical Evaluation
Large Language Models (LLMs) often exhibit \textit{hallucinations}, generating factually incorrect or semantically irrelevant content in response to prompts. Chain-of-Thought (CoT) prompting can mitigate hallucinations by encouraging step-by-step reasoning, but its impact on hallucination detection remains underexplored. To bridge this gap, we conduct a systematic empirical evaluation. We begin with a pilot experiment, revealing that CoT reasoning significantly affects the LLM's internal states and token probability distributions. Building on this, we evaluate the impact of various CoT prompting methods on mainstream hallucination detection methods across both instruction-tuned and reasoning-oriented LLMs. Specifically, we examine three key dimensions: changes in hallucination score distributions, variations in detection accuracy, and shifts in detection confidence. Our findings show that while CoT prompting helps reduce hallucination frequency, it also tends to obscure critical signals used for detection, impairing the effectiveness of various detection methods. Our study highlights an overlooked trade-off in the use of reasoning. Code is publicly available at: https://anonymous.4open.science/r/cot-hallu-detect.
☆ Tower+: Bridging Generality and Translation Specialization in Multilingual LLMs
Fine-tuning pretrained LLMs has been shown to be an effective strategy for reaching state-of-the-art performance on specific tasks like machine translation. However, this process of adaptation often implies sacrificing general-purpose capabilities, such as conversational reasoning and instruction-following, hampering the utility of the system in real-world applications that require a mixture of skills. In this paper, we introduce Tower+, a suite of models designed to deliver strong performance across both translation and multilingual general-purpose text capabilities. We achieve a Pareto frontier between translation specialization and multilingual general-purpose capabilities by introducing a novel training recipe that builds on Tower (Alves et al., 2024), comprising continued pretraining, supervised fine-tuning, preference optimization, and reinforcement learning with verifiable rewards. At each stage of training, we carefully generate and curate data to strengthen performance on translation as well as general-purpose tasks involving code generation, mathematics problem solving, and general instruction-following. We develop models at multiple scales: 2B, 9B, and 72B. Our smaller models often outperform larger general-purpose open-weight and proprietary LLMs (e.g., Llama 3.3 70B, GPT-4o). Our largest model delivers best-in-class translation performance for high-resource languages and top results in multilingual Arena Hard evaluations and in IF-MT, a benchmark we introduce for evaluating both translation and instruction-following. Our findings highlight that it is possible to rival frontier models in general capabilities, while optimizing for specific business domains, such as translation and localization.
☆ Simultaneous Translation with Offline Speech and LLM Models in CUNI Submission to IWSLT 2025
This paper describes Charles University submission to the Simultaneous Speech Translation Task of the IWSLT 2025. We cover all four language pairs with a direct or cascade approach. The backbone of our systems is the offline Whisper speech model, which we use for both translation and transcription in simultaneous mode with the state-of-the-art simultaneous policy AlignAtt. We further improve the performance by prompting to inject in-domain terminology, and we accommodate context. Our cascaded systems further use EuroLLM for unbounded simultaneous translation. Compared to the Organizers' baseline, our systems improve by 2 BLEU points on Czech to English and 13-22 BLEU points on English to German, Chinese and Japanese on the development sets. Additionally, we also propose a new enhanced measure of speech recognition latency.
comment: IWSLT 2025
☆ From Concepts to Components: Concept-Agnostic Attention Module Discovery in Transformers
Transformers have achieved state-of-the-art performance across language and vision tasks. This success drives the imperative to interpret their internal mechanisms with the dual goals of enhancing performance and improving behavioral control. Attribution methods help advance interpretability by assigning model outputs associated with a target concept to specific model components. Current attribution research primarily studies multi-layer perceptron neurons and addresses relatively simple concepts such as factual associations (e.g., Paris is located in France). This focus tends to overlook the impact of the attention mechanism and lacks a unified approach for analyzing more complex concepts. To fill these gaps, we introduce Scalable Attention Module Discovery (SAMD), a concept-agnostic method for mapping arbitrary, complex concepts to specific attention heads of general transformer models. We accomplish this by representing each concept as a vector, calculating its cosine similarity with each attention head, and selecting the TopK-scoring heads to construct the concept-associated attention module. We then propose Scalar Attention Module Intervention (SAMI), a simple strategy to diminish or amplify the effects of a concept by adjusting the attention module using only a single scalar parameter. Empirically, we demonstrate SAMD on concepts of varying complexity, and visualize the locations of their corresponding modules. Our results demonstrate that module locations remain stable before and after LLM post-training, and confirm prior work on the mechanics of LLM multilingualism. Through SAMI, we facilitate jailbreaking on HarmBench (+72.7%) by diminishing "safety" and improve performance on the GSM8K benchmark (+1.6%) by amplifying "reasoning". Lastly, we highlight the domain-agnostic nature of our approach by suppressing the image classification accuracy of vision transformers on ImageNet.
☆ MUCAR: Benchmarking Multilingual Cross-Modal Ambiguity Resolution for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have demonstrated significant advances across numerous vision-language tasks. Due to their strong image-text alignment capability, MLLMs can effectively understand image-text pairs with clear meanings. However, effectively resolving the inherent ambiguities in natural language and visual contexts remains challenging. Existing multimodal benchmarks typically overlook linguistic and visual ambiguities, relying mainly on unimodal context for disambiguation and thus failing to exploit the mutual clarification potential between modalities. To bridge this gap, we introduce MUCAR, a novel and challenging benchmark designed explicitly for evaluating multimodal ambiguity resolution across multilingual and cross-modal scenarios. MUCAR includes: (1) a multilingual dataset where ambiguous textual expressions are uniquely resolved by corresponding visual contexts, and (2) a dual-ambiguity dataset that systematically pairs ambiguous images with ambiguous textual contexts, with each combination carefully constructed to yield a single, clear interpretation through mutual disambiguation. Extensive evaluations involving 19 state-of-the-art multimodal models--encompassing both open-source and proprietary architectures--reveal substantial gaps compared to human-level performance, highlighting the need for future research into more sophisticated cross-modal ambiguity comprehension methods, further pushing the boundaries of multimodal reasoning.
☆ Instituto de Telecomunicações at IWSLT 2025: Aligning Small-Scale Speech and Language Models for Speech-to-Text Learning
This paper presents the IT-IST submission to the IWSLT 2025 Shared Task on Instruction Following Speech Processing. We submit results for the Short Track, i.e., speech recognition, translation, and spoken question answering. Our model is a unified speech-to-text model that integrates a pre-trained continuous speech encoder and text decoder through a first phase of modality alignment and a second phase of instruction fine-tuning. Crucially, we focus on using small-scale language model backbones (< 2B) and restrict to high-quality, CC-BY data along with synthetic data generation to supplement existing resources.
comment: 7 pages, 1 figure, IWSLT 2025
LLM-Generated Feedback Supports Learning If Learners Choose to Use It
Large language models (LLMs) are increasingly used to generate feedback, yet their impact on learning remains underexplored, especially compared to existing feedback methods. This study investigates how on-demand LLM-generated explanatory feedback influences learning in seven scenario-based tutor training lessons. Analyzing over 2,600 lesson completions from 885 tutor learners, we compare posttest performance among learners across three groups: learners who received feedback generated by gpt-3.5-turbo, those who declined it, and those without access. All groups received non-LLM corrective feedback. To address potential selection bias-where higher-performing learners may be more inclined to use LLM feedback-we applied propensity scoring. Learners with a higher predicted likelihood of engaging with LLM feedback scored significantly higher at posttest than those with lower propensity. After adjusting for this effect, two out of seven lessons showed statistically significant learning benefits from LLM feedback with standardized effect sizes of 0.28 and 0.33. These moderate effects suggest that the effectiveness of LLM feedback depends on the learners' tendency to seek support. Importantly, LLM feedback did not significantly increase completion time, and learners overwhelmingly rated it as helpful. These findings highlight LLM feedback's potential as a low-cost and scalable way to improve learning on open-ended tasks, particularly in existing systems already providing feedback without LLMs. This work contributes open datasets, LLM prompts, and rubrics to support reproducibility.
comment: Full research paper accepted at EC-TEL '25
☆ PersonalAI: Towards digital twins in the graph form
The challenge of personalizing language models, specifically the ability to account for a user's history during interactions, is of significant interest. Despite recent advancements in large language models (LLMs) and Retrieval Augmented Generation that have enhanced the factual base of LLMs, the task of retaining extensive personal information and using it to generate personalized responses remains pertinent. To address this, we propose utilizing external memory in the form of knowledge graphs, which are constructed and updated by the LLM itself. We have expanded upon ideas of AriGraph architecture and for the first time introduced a combined graph featuring both standard edges and two types of hyperedges. Experiments conducted on the TriviaQA, HotpotQA and DiaASQ benchmarks indicates that this approach aids in making the process of graph construction and knowledge extraction unified and robust. Furthermore, we augmented the DiaASQ benchmark by incorporating parameters such as time into dialogues and introducing contradictory statements made by the same speaker at different times. Despite these modifications, the performance of the question-answering system remained robust, demonstrating the proposed architecture's ability to maintain and utilize temporal dependencies.
☆ TeXpert: A Multi-Level Benchmark for Evaluating LaTeX Code Generation by LLMs ACL 2025
LaTeX's precision and flexibility in typesetting have made it the gold standard for the preparation of scientific documentation. Large Language Models (LLMs) present a promising opportunity for researchers to produce publication-ready material using LaTeX with natural language instructions, yet current benchmarks completely lack evaluation of this ability. By introducing TeXpert, our benchmark dataset with natural language prompts for generating LaTeX code focused on components of scientific documents across multiple difficulty levels, we conduct an in-depth analysis of LLM performance in this regard and identify frequent error types. Our evaluation across open and closed-source LLMs highlights multiple key findings: LLMs excelling on standard benchmarks perform poorly in LaTeX generation with a significant accuracy drop-off as the complexity of tasks increases; open-source models like DeepSeek v3 and DeepSeek Coder strongly rival closed-source counterparts in LaTeX tasks; and formatting and package errors are unexpectedly prevalent, suggesting a lack of diverse LaTeX examples in the training datasets of most LLMs. Our dataset, code, and model evaluations are available at https://github.com/knowledge-verse-ai/TeXpert.
comment: Accepted to the SDProc Workshop @ ACL 2025
☆ Language Bottleneck Models: A Framework for Interpretable Knowledge Tracing and Beyond
Accurately assessing student knowledge is critical for effective education, yet traditional Knowledge Tracing (KT) methods rely on opaque latent embeddings, limiting interpretability. Even LLM-based approaches generate direct predictions or summaries that may hallucinate without any accuracy guarantees. We recast KT as an inverse problem: learning the minimum natural-language summary that makes past answers explainable and future answers predictable. Our Language Bottleneck Model (LBM) consists of an encoder LLM that writes an interpretable knowledge summary and a frozen decoder LLM that must reconstruct and predict student responses using only that summary text. By constraining all predictive information to pass through a short natural-language bottleneck, LBMs ensure that the summary contains accurate information while remaining human-interpretable. Experiments on synthetic arithmetic benchmarks and the large-scale Eedi dataset show that LBMs rival the accuracy of state-of-the-art KT and direct LLM methods while requiring orders-of-magnitude fewer student trajectories. We demonstrate that training the encoder with group-relative policy optimization, using downstream decoding accuracy as a reward signal, effectively improves summary quality.
☆ Latent Concept Disentanglement in Transformer-based Language Models
When large language models (LLMs) use in-context learning (ICL) to solve a new task, they seem to grasp not only the goal of the task but also core, latent concepts in the demonstration examples. This begs the question of whether transformers represent latent structures as part of their computation or whether they take shortcuts to solve the problem. Prior mechanistic work on ICL does not address this question because it does not sufficiently examine the relationship between the learned representation and the latent concept, and the considered problem settings often involve only single-step reasoning. In this work, we examine how transformers disentangle and use latent concepts. We show that in 2-hop reasoning tasks with a latent, discrete concept, the model successfully identifies the latent concept and does step-by-step concept composition. In tasks parameterized by a continuous latent concept, we find low-dimensional subspaces in the representation space where the geometry mimics the underlying parameterization. Together, these results refine our understanding of ICL and the representation of transformers, and they provide evidence for highly localized structures in the model that disentangle latent concepts in ICL tasks.
☆ Enhancing Step-by-Step and Verifiable Medical Reasoning in MLLMs
Multimodal large language models (MLLMs) have begun to demonstrate robust reasoning capabilities on general tasks, yet their application in the medical domain remains in its early stages. Constructing chain-of-thought (CoT) training data is essential for bolstering the reasoning abilities of medical MLLMs. However, existing approaches exhibit a deficiency in offering a comprehensive framework for searching and evaluating effective reasoning paths towards critical diagnosis. To address this challenge, we propose Mentor-Intern Collaborative Search (MICS), a novel reasoning-path searching scheme to generate rigorous and effective medical CoT data. MICS first leverages mentor models to initialize the reasoning, one step at a time, then prompts each intern model to continue the thinking along those initiated paths, and finally selects the optimal reasoning path according to the overall reasoning performance of multiple intern models. The reasoning performance is determined by an MICS-Score, which assesses the quality of generated reasoning paths. Eventually, we construct MMRP, a multi-task medical reasoning dataset with ranked difficulty, and Chiron-o1, a new medical MLLM devised via a curriculum learning strategy, with robust visual question-answering and generalizable reasoning capabilities. Extensive experiments demonstrate that Chiron-o1, trained on our CoT dataset constructed using MICS, achieves state-of-the-art performance across a list of medical visual question answering and reasoning benchmarks. Codes are available at GitHub - manglu097/Chiron-o1: Enhancing Step-by-Step and Verifiable Medical Reasoning in MLLMs
☆ From Data to Knowledge: Evaluating How Efficiently Language Models Learn Facts ACL 2025
Sample efficiency is a crucial property of language models with practical implications for training efficiency. In real-world text, information follows a long-tailed distribution. Yet, we expect models to learn and recall frequent and infrequent facts. Sample-efficient models are better equipped to handle this challenge of learning and retaining rare information without requiring excessive exposure. This study analyzes multiple models of varying architectures and sizes, all trained on the same pre-training data. By annotating relational facts with their frequencies in the training corpus, we examine how model performance varies with fact frequency. Our findings show that most models perform similarly on high-frequency facts but differ notably on low-frequency facts. This analysis provides new insights into the relationship between model architecture, size, and factual learning efficiency.
comment: Accepted to the First Workshop on Large Language Model Memorization (L2M2), co-located with ACL 2025 in Vienna
☆ MIST: Jailbreaking Black-box Large Language Models via Iterative Semantic Tuning
Despite efforts to align large language models (LLMs) with societal and moral values, these models remain susceptible to jailbreak attacks--methods designed to elicit harmful responses. Jailbreaking black-box LLMs is considered challenging due to the discrete nature of token inputs, restricted access to the target LLM, and limited query budget. To address the issues above, we propose an effective method for jailbreaking black-box large language Models via Iterative Semantic Tuning, named MIST. MIST enables attackers to iteratively refine prompts that preserve the original semantic intent while inducing harmful content. Specifically, to balance semantic similarity with computational efficiency, MIST incorporates two key strategies: sequential synonym search, and its advanced version--order-determining optimization. Extensive experiments across two open-source models and four closed-source models demonstrate that MIST achieves competitive attack success rates and attack transferability compared with other state-of-the-art white-box and black-box jailbreak methods. Additionally, we conduct experiments on computational efficiency to validate the practical viability of MIST.
comment: 12 pages, 3 figures
☆ DistillNote: LLM-based clinical note summaries improve heart failure diagnosis
Large language models (LLMs) offer unprecedented opportunities to generate concise summaries of patient information and alleviate the burden of clinical documentation that overwhelms healthcare providers. We present Distillnote, a framework for LLM-based clinical note summarization, and generate over 64,000 admission note summaries through three techniques: (1) One-step, direct summarization, and a divide-and-conquer approach involving (2) Structured summarization focused on independent clinical insights, and (3) Distilled summarization that further condenses the Structured summaries. We test how useful are the summaries by using them to predict heart failure compared to a model trained on the original notes. Distilled summaries achieve 79% text compression and up to 18.2% improvement in AUPRC compared to an LLM trained on the full notes. We also evaluate the quality of the generated summaries in an LLM-as-judge evaluation as well as through blinded pairwise comparisons with clinicians. Evaluations indicate that one-step summaries are favoured by clinicians according to relevance and clinical actionability, while distilled summaries offer optimal efficiency (avg. 6.9x compression-to-performance ratio) and significantly reduce hallucinations. We release our summaries on PhysioNet to encourage future research.
☆ Cross-Modal Obfuscation for Jailbreak Attacks on Large Vision-Language Models
Large Vision-Language Models (LVLMs) demonstrate exceptional performance across multimodal tasks, yet remain vulnerable to jailbreak attacks that bypass built-in safety mechanisms to elicit restricted content generation. Existing black-box jailbreak methods primarily rely on adversarial textual prompts or image perturbations, yet these approaches are highly detectable by standard content filtering systems and exhibit low query and computational efficiency. In this work, we present Cross-modal Adversarial Multimodal Obfuscation (CAMO), a novel black-box jailbreak attack framework that decomposes malicious prompts into semantically benign visual and textual fragments. By leveraging LVLMs' cross-modal reasoning abilities, CAMO covertly reconstructs harmful instructions through multi-step reasoning, evading conventional detection mechanisms. Our approach supports adjustable reasoning complexity and requires significantly fewer queries than prior attacks, enabling both stealth and efficiency. Comprehensive evaluations conducted on leading LVLMs validate CAMO's effectiveness, showcasing robust performance and strong cross-model transferability. These results underscore significant vulnerabilities in current built-in safety mechanisms, emphasizing an urgent need for advanced, alignment-aware security and safety solutions in vision-language systems.
comment: 15 pages, 9 figures
☆ SocialSim: Towards Socialized Simulation of Emotional Support Conversation AAAI 2025
Emotional support conversation (ESC) helps reduce people's psychological stress and provide emotional value through interactive dialogues. Due to the high cost of crowdsourcing a large ESC corpus, recent attempts use large language models for dialogue augmentation. However, existing approaches largely overlook the social dynamics inherent in ESC, leading to less effective simulations. In this paper, we introduce SocialSim, a novel framework that simulates ESC by integrating key aspects of social interactions: social disclosure and social awareness. On the seeker side, we facilitate social disclosure by constructing a comprehensive persona bank that captures diverse and authentic help-seeking scenarios. On the supporter side, we enhance social awareness by eliciting cognitive reasoning to generate logical and supportive responses. Building upon SocialSim, we construct SSConv, a large-scale synthetic ESC corpus of which quality can even surpass crowdsourced ESC data. We further train a chatbot on SSConv and demonstrate its state-of-the-art performance in both automatic and human evaluations. We believe SocialSim offers a scalable way to synthesize ESC, making emotional care more accessible and practical.
comment: AAAI 2025 Paper #32116 (Without Publication Edits)
☆ Language-Informed Synthesis of Rational Agent Models for Grounded Theory-of-Mind Reasoning On-The-Fly
Drawing real world social inferences usually requires taking into account information from multiple modalities. Language is a particularly powerful source of information in social settings, especially in novel situations where language can provide both abstract information about the environment dynamics and concrete specifics about an agent that cannot be easily visually observed. In this paper, we propose Language-Informed Rational Agent Synthesis (LIRAS), a framework for drawing context-specific social inferences that integrate linguistic and visual inputs. LIRAS frames multimodal social reasoning as a process of constructing structured but situation-specific agent and environment representations - leveraging multimodal language models to parse language and visual inputs into unified symbolic representations, over which a Bayesian inverse planning engine can be run to produce granular probabilistic judgments. On a range of existing and new social reasoning tasks derived from cognitive science experiments, we find that our model (instantiated with a comparatively lightweight VLM) outperforms ablations and state-of-the-art models in capturing human judgments across all domains.
comment: 5 figures, 19 pages
☆ LM-SPT: LM-Aligned Semantic Distillation for Speech Tokenization
With the rapid progress of speech language models (SLMs), discrete speech tokens have emerged as a core interface between speech and text, enabling unified modeling across modalities. Recent speech tokenization approaches aim to isolate semantic information from low-level acoustics to better align with language models. In particular, previous methods use SSL teachers such as HuBERT to extract semantic representations, which are then distilled into a semantic quantizer to suppress acoustic redundancy as well as capture content-related latent structures. However, they still produce speech token sequences significantly longer than their textual counterparts, creating challenges for efficient speech-language modeling. Reducing the frame rate is a natural solution, but standard techniques, such as rigid average pooling across frames, can distort or dilute the semantic structure required for effective LM alignment. To address this, we propose LM-SPT, a speech tokenization method that introduces a novel semantic distillation. Instead of directly matching teacher and student features via pooling, we reconstruct speech solely from semantic tokens and minimize the discrepancy between the encoded representations of the original and reconstructed waveforms, obtained from a frozen automatic speech recognition (ASR) encoder. This indirect yet data-driven supervision enables the tokenizer to learn discrete units that are more semantically aligned with language models. LM-SPT further incorporates architectural improvements to the encoder and decoder for speech tokenization, and supports multiple frame rates, including 25Hz, 12.5Hz, and 6.25Hz. Experimental results show that LM-SPT achieves superior reconstruction fidelity compared to baselines, and that SLMs trained with LM-SPT tokens achieve competitive performances on speech-to-text and consistently outperform baselines on text-to-speech tasks.
☆ The Role of Model Confidence on Bias Effects in Measured Uncertainties
With the growing adoption of Large Language Models (LLMs) for open-ended tasks, accurately assessing epistemic uncertainty, which reflects a model's lack of knowledge, has become crucial to ensuring reliable outcomes. However, quantifying epistemic uncertainty in such tasks is challenging due to the presence of aleatoric uncertainty, which arises from multiple valid answers. While bias can introduce noise into epistemic uncertainty estimation, it may also reduce noise from aleatoric uncertainty. To investigate this trade-off, we conduct experiments on Visual Question Answering (VQA) tasks and find that mitigating prompt-introduced bias improves uncertainty quantification in GPT-4o. Building on prior work showing that LLMs tend to copy input information when model confidence is low, we further analyze how these prompt biases affect measured epistemic and aleatoric uncertainty across varying bias-free confidence levels with GPT-4o and Qwen2-VL. We find that all considered biases induce greater changes in both uncertainties when bias-free model confidence is lower. Moreover, lower bias-free model confidence leads to greater underestimation of epistemic uncertainty (i.e. overconfidence) due to bias, whereas it has no significant effect on the direction of changes in aleatoric uncertainty estimation. These distinct effects deepen our understanding of bias mitigation for uncertainty quantification and potentially inform the development of more advanced techniques.
☆ ReasonGRM: Enhancing Generative Reward Models through Large Reasoning Models
Generative Reward Models (GRMs) provide greater flexibility than scalar reward models in capturing human preferences, but their effectiveness is limited by poor reasoning capabilities. This often results in incomplete or overly speculative reasoning paths, leading to hallucinations or missing key information in complex tasks. We address this challenge with ReasonGRM, a three-stage generative reward modeling framework. In the first stage, Zero-RL is used to generate concise, outcome-directed reasoning paths that reduce the likelihood of critical omissions. In the second stage, we introduce a novel evaluation metric, $R^\star$, which scores reasoning paths based on their generation likelihood. This favors paths that reach correct answers with minimal exploration, helping to reduce hallucination-prone data during training. In the final stage, the model is further refined through reinforcement learning on challenging examples to enhance its preference discrimination capabilities. Experiments on three public benchmarks show that ReasonGRM achieves competitive or state-of-the-art performance, outperforming previous best GRMs by 1.8\% on average and surpassing proprietary models such as GPT-4o by up to 5.6\%. These results demonstrate the effectiveness of reasoning-aware training and highlight the importance of high-quality rationale selection for reliable preference modeling.
Large Language Models as Psychological Simulators: A Methodological Guide
Large language models (LLMs) offer emerging opportunities for psychological and behavioral research, but methodological guidance is lacking. This article provides a framework for using LLMs as psychological simulators across two primary applications: simulating roles and personas to explore diverse contexts, and serving as computational models to investigate cognitive processes. For simulation, we present methods for developing psychologically grounded personas that move beyond demographic categories, with strategies for validation against human data and use cases ranging from studying inaccessible populations to prototyping research instruments. For cognitive modeling, we synthesize emerging approaches for probing internal representations, methodological advances in causal interventions, and strategies for relating model behavior to human cognition. We address overarching challenges including prompt sensitivity, temporal limitations from training data cutoffs, and ethical considerations that extend beyond traditional human subjects review. Throughout, we emphasize the need for transparency about model capabilities and constraints. Together, this framework integrates emerging empirical evidence about LLM performance--including systematic biases, cultural limitations, and prompt brittleness--to help researchers wrangle these challenges and leverage the unique capabilities of LLMs in psychological research.
☆ From Prompts to Constructs: A Dual-Validity Framework for LLM Research in Psychology
Large language models (LLMs) are rapidly being adopted across psychology, serving as research tools, experimental subjects, human simulators, and computational models of cognition. However, the application of human measurement tools to these systems can produce contradictory results, raising concerns that many findings are measurement phantoms--statistical artifacts rather than genuine psychological phenomena. In this Perspective, we argue that building a robust science of AI psychology requires integrating two of our field's foundational pillars: the principles of reliable measurement and the standards for sound causal inference. We present a dual-validity framework to guide this integration, which clarifies how the evidence needed to support a claim scales with its scientific ambition. Using an LLM to classify text may require only basic accuracy checks, whereas claiming it can simulate anxiety demands a far more rigorous validation process. Current practice systematically fails to meet these requirements, often treating statistical pattern matching as evidence of psychological phenomena. The same model output--endorsing "I am anxious"--requires different validation strategies depending on whether researchers claim to measure, characterize, simulate, or model psychological constructs. Moving forward requires developing computational analogues of psychological constructs and establishing clear, scalable standards of evidence rather than the uncritical application of human measurement tools.
☆ LegiGPT: Party Politics and Transport Policy with Large Language Model
Given the significant influence of lawmakers' political ideologies on legislative decision-making, understanding their impact on policymaking is critically important. We introduce a novel framework, LegiGPT, which integrates a large language model (LLM) with explainable artificial intelligence (XAI) to analyze transportation-related legislative proposals. LegiGPT employs a multi-stage filtering and classification pipeline using zero-shot prompting with GPT-4. Using legislative data from South Korea's 21st National Assembly, we identify key factors - including sponsor characteristics, political affiliations, and geographic variables - that significantly influence transportation policymaking. The LLM was used to classify transportation-related bill proposals through a stepwise filtering process based on keywords, phrases, and contextual relevance. XAI techniques were then applied to examine relationships between party affiliation and associated attributes. The results reveal that the number and proportion of conservative and progressive sponsors, along with district size and electoral population, are critical determinants shaping legislative outcomes. These findings suggest that both parties contributed to bipartisan legislation through different forms of engagement, such as initiating or supporting proposals. This integrated approach provides a valuable tool for understanding legislative dynamics and guiding future policy development, with broader implications for infrastructure planning and governance.
☆ Mechanisms vs. Outcomes: Probing for Syntax Fails to Explain Performance on Targeted Syntactic Evaluations
Large Language Models (LLMs) exhibit a robust mastery of syntax when processing and generating text. While this suggests internalized understanding of hierarchical syntax and dependency relations, the precise mechanism by which they represent syntactic structure is an open area within interpretability research. Probing provides one way to identify the mechanism of syntax being linearly encoded in activations, however, no comprehensive study has yet established whether a model's probing accuracy reliably predicts its downstream syntactic performance. Adopting a "mechanisms vs. outcomes" framework, we evaluate 32 open-weight transformer models and find that syntactic features extracted via probing fail to predict outcomes of targeted syntax evaluations across English linguistic phenomena. Our results highlight a substantial disconnect between latent syntactic representations found via probing and observable syntactic behaviors in downstream tasks.
♻ ☆ AQA-Bench: An Interactive Benchmark for Evaluating LLMs' Sequential Reasoning Ability
This paper introduces AQA-Bench, a novel benchmark to assess the sequential reasoning capabilities of large language models (LLMs) in algorithmic contexts, such as depth-first search (DFS). The key feature of our evaluation benchmark lies in its interactive evaluation protocol - for example, in DFS, the availability of each node's connected edge is contingent upon the model's traversal to that node, thereby necessitating the LLM's ability to effectively remember visited nodes and strategize subsequent moves considering the possible environmental feedback in the future steps. We comprehensively build AQA-Bench with three different algorithms, namely binary search, depth-first search, and breadth-first search, and to evaluate the sequential reasoning ability of 14 different LLMs. Our investigations reveal several interesting findings: (1) Closed-source models like GPT-4 and Gemini generally show much stronger sequential reasoning ability, significantly outperforming open-source LLMs. (2) Naively providing in-context examples may inadvertently hurt few-shot performance in an interactive environment due to over-fitting to examples. (3) Instead of using optimal steps from another test case as the in-context example, a very limited number of predecessor steps in the current test case following the optimal policy can substantially boost small models' performance. (4) The performance gap between weak models and strong models is greatly due to the incapability of weak models to start well. (5) The scaling correlation between performance and model size is not always significant, sometimes even showcasing an inverse trend. We hope our study can catalyze future work on advancing the understanding and enhancement of LLMs' capabilities in sequential reasoning. The code is available at https://github.com/UCSC-VLAA/AQA-Bench.
♻ ☆ High-Dimensional Interlingual Representations of Large Language Models
Large language models (LLMs) trained on massive multilingual datasets hint at the formation of interlingual constructs--a shared subspace in the representation space. However, evidence regarding this phenomenon is mixed, leaving it unclear whether these models truly develop unified interlingual representations, or present a partially aligned constructs. We explore 31 diverse languages varying on their resource-levels, typologies, and geographical regions; and find that multilingual LLMs exhibit inconsistent cross-lingual alignments. To address this, we propose an interlingual representation framework identifying both the shared interlingual semantic subspace and fragmented components, existed due to representational limitations. We introduce Interlingual Local Overlap (ILO) score to quantify interlingual alignment by comparing the local neighborhood structures of high-dimensional representations. We utilize ILO to investigate the impact of single-language fine-tuning on the interlingual representations in multilingual LLMs. Our results indicate that training exclusively on a single language disrupts the alignment in early layers, while freezing these layers preserves the alignment of interlingual representations, leading to improved cross-lingual generalization. These results validate our framework and metric for evaluating interlingual representation, and further underscore that interlingual alignment is crucial for scalable multilingual learning.
♻ ☆ TALE: A Tool-Augmented Framework for Reference-Free Evaluation of Large Language Models
As Large Language Models (LLMs) become increasingly integrated into real-world, autonomous applications, relying on static, pre-annotated references for evaluation poses significant challenges in cost, scalability, and completeness. We propose Tool-Augmented LLM Evaluation (TALE), a framework to assess LLM outputs without predetermined ground-truth answers. Unlike conventional metrics that compare to fixed references or depend solely on LLM-as-a-judge knowledge, TALE employs an agent with tool-access capabilities that actively retrieves and synthesizes external evidence. It iteratively generates web queries, collects information, summarizes findings, and refines subsequent searches through reflection. By shifting away from static references, TALE aligns with free-form question-answering tasks common in real-world scenarios. Experimental results on multiple free-form QA benchmarks show that TALE not only outperforms standard reference-based metrics for measuring response accuracy but also achieves substantial to near-perfect agreement with human evaluations. TALE enhances the reliability of LLM evaluations in real-world, dynamic scenarios without relying on static references.
♻ ☆ LaRS: Latent Reasoning Skills for Chain-of-Thought Reasoning
Chain-of-thought (CoT) prompting is a popular in-context learning (ICL) approach for large language models (LLMs), especially when tackling complex reasoning tasks. Traditional ICL approaches construct prompts using examples that contain questions similar to the input question. However, CoT prompting, which includes crucial intermediate reasoning steps (rationales) within its examples, necessitates selecting examples based on these rationales rather than the questions themselves. Existing methods require human experts or pre-trained LLMs to describe the skill, a high-level abstraction of rationales, to guide the selection. These methods, however, are often costly and difficult to scale. Instead, this paper introduces a new approach named Latent Reasoning Skills (LaRS) that employs unsupervised learning to create a latent space representation of rationales, with a latent variable called a reasoning skill. Concurrently, LaRS learns a reasoning policy to determine the required reasoning skill for a given question. Then the ICL examples are selected by aligning the reasoning skills between past examples and the question. This approach is theoretically grounded and compute-efficient, eliminating the need for auxiliary LLM inference or manual prompt design. Empirical results demonstrate that LaRS consistently outperforms SOTA skill-based selection methods, processing example banks four times faster, reducing LLM inferences during the selection stage by half, and showing greater robustness to sub-optimal example banks.
♻ ☆ Watch and Listen: Understanding Audio-Visual-Speech Moments with Multimodal LLM
Humans naturally understand moments in a video by integrating visual and auditory cues. For example, localizing a scene in the video like "A scientist passionately speaks on wildlife conservation as dramatic orchestral music plays, with the audience nodding and applauding" requires simultaneous processing of visual, audio, and speech signals. However, existing models often struggle to effectively fuse and interpret audio information, limiting their capacity for comprehensive video temporal understanding. To address this, we present TriSense, a triple-modality large language model designed for holistic video temporal understanding through the integration of visual, audio, and speech modalities. Central to TriSense is a Query-Based Connector that adaptively reweights modality contributions based on the input query, enabling robust performance under modality dropout and allowing flexible combinations of available inputs. To support TriSense's multimodal capabilities, we introduce TriSense-2M, a high-quality dataset of over 2 million curated samples generated via an automated pipeline powered by fine-tuned LLMs. TriSense-2M includes long-form videos and diverse modality combinations, facilitating broad generalization. Extensive experiments across multiple benchmarks demonstrate the effectiveness of TriSense and its potential to advance multimodal video analysis. Code and dataset will be publicly released.
♻ ☆ PlantBert: An Open Source Language Model for Plant Science
The rapid advancement of transformer-based language models has catalyzed breakthroughs in biomedical and clinical natural language processing; however, plant science remains markedly underserved by such domain-adapted tools. In this work, we present PlantBert, a high-performance, open-source language model specifically tailored for extracting structured knowledge from plant stress-response literature. Built upon the DeBERTa architecture-known for its disentangled attention and robust contextual encoding-PlantBert is fine-tuned on a meticulously curated corpus of expert-annotated abstracts, with a primary focus on lentil (Lens culinaris) responses to diverse abiotic and biotic stressors. Our methodology combines transformer-based modeling with rule-enhanced linguistic post-processing and ontology-grounded entity normalization, enabling PlantBert to capture biologically meaningful relationships with precision and semantic fidelity. The underlying corpus is annotated using a hierarchical schema aligned with the Crop Ontology, encompassing molecular, physiological, biochemical, and agronomic dimensions of plant adaptation. PlantBert exhibits strong generalization capabilities across entity types and demonstrates the feasibility of robust domain adaptation in low-resource scientific fields. By providing a scalable and reproducible framework for high-resolution entity recognition, PlantBert bridges a critical gap in agricultural NLP and paves the way for intelligent, data-driven systems in plant genomics, phenomics, and agronomic knowledge discovery. Our model is publicly released to promote transparency and accelerate cross-disciplinary innovation in computational plant science.
♻ ☆ Watermarking Language Models through Language Models
Watermarking the outputs of large language models (LLMs) is critical for provenance tracing, content regulation, and model accountability. Existing approaches often rely on access to model internals or are constrained by static rules and token-level perturbations. Moreover, the idea of steering generative behavior via prompt-based instruction control remains largely underexplored. We introduce a prompt-guided watermarking framework that operates entirely at the input level and requires no access to model parameters or decoding logits. The framework comprises three cooperating components: a Prompting LM that synthesizes watermarking instructions from user prompts, a Marking LM that generates watermarked outputs conditioned on these instructions, and a Detecting LM trained to classify whether a response carries an embedded watermark. This modular design enables dynamic watermarking that adapts to individual prompts while remaining compatible with diverse LLM architectures, including both proprietary and open-weight models. We evaluate the framework over 25 combinations of Prompting and Marking LMs, such as GPT-4o, Mistral, LLaMA3, and DeepSeek. Experimental results show that watermark signals generalize across architectures and remain robust under fine-tuning, model distillation, and prompt-based adversarial attacks, demonstrating the effectiveness and robustness of the proposed approach.
♻ ☆ Calibrating Pre-trained Language Classifiers on LLM-generated Noisy Labels via Iterative Refinement KDD'25
The traditional process of creating labeled datasets is labor-intensive and expensive. Recent breakthroughs in open-source large language models (LLMs) have opened up a new avenue in generating labeled datasets automatically for various natural language processing (NLP) tasks, providing an alternative to such an expensive annotation process. However, the reliability of such auto-generated labels remains a significant concern due to inherent inaccuracies. When learning from noisy labels, the model's generalization is likely to be harmed as it is prone to overfit to those label noises. While previous studies in learning from noisy labels mainly focus on synthetic noise and real-world noise, LLM-generated label noise receives less attention. In this paper, we propose SiDyP: Simplex Label Diffusion with Dynamic Prior to calibrate the classifier's prediction, thus enhancing its robustness towards LLM-generated noisy labels. SiDyP retrieves potential true label candidates by neighborhood label distribution in text embedding space and iteratively refines noisy candidates using a simplex diffusion model. Our framework can increase the performance of the BERT classifier fine-tuned on both zero-shot and few-shot LLM-generated noisy label datasets by an average of 7.21% and 7.30% respectively. We demonstrate the effectiveness of SiDyP by conducting extensive benchmarking for different LLMs over a variety of NLP tasks. Our code is available on Github.
comment: Accepted at KDD'25
♻ ☆ ScholarSearch: Benchmarking Scholar Searching Ability of LLMs
Large Language Models (LLMs)' search capabilities have garnered significant attention. Existing benchmarks, such as OpenAI's BrowseComp, primarily focus on general search scenarios and fail to adequately address the specific demands of academic search. These demands include deeper literature tracing and organization, professional support for academic databases, the ability to navigate long-tail academic knowledge, and ensuring academic rigor. Here, we proposed ScholarSearch, the first dataset specifically designed to evaluate the complex information retrieval capabilities of Large Language Models (LLMs) in academic research. ScholarSearch possesses the following key characteristics: Academic Practicality, where question content closely mirrors real academic learning and research environments, avoiding deliberately misleading models; High Difficulty, with answers that are challenging for single models (e.g., Grok DeepSearch or Gemini Deep Research) to provide directly, often requiring at least three deep searches to derive; Concise Evaluation, where limiting conditions ensure answers are as unique as possible, accompanied by clear sources and brief solution explanations, greatly facilitating subsequent audit and verification, surpassing the current lack of analyzed search datasets both domestically and internationally; and Broad Coverage, as the dataset spans at least 15 different academic disciplines. Through ScholarSearch, we expect to more precisely measure and promote the performance improvement of LLMs in complex academic information retrieval tasks. The data is available at: https://huggingface.co/datasets/PKU-DS-LAB/ScholarSearch
♻ ☆ Contextual modulation of language comprehension in a dynamic neural model of lexical meaning
We propose and computationally implement a dynamic neural model of lexical meaning, and experimentally test its behavioral predictions. We demonstrate the architecture and behavior of the model using as a test case the English lexical item 'have', focusing on its polysemous use. In the model, 'have' maps to a semantic space defined by two continuous conceptual dimensions, connectedness and control asymmetry, previously proposed to parameterize the conceptual system for language. The mapping is modeled as coupling between a neural node representing the lexical item and neural fields representing the conceptual dimensions. While lexical knowledge is modeled as a stable coupling pattern, real-time lexical meaning retrieval is modeled as the motion of neural activation patterns between metastable states corresponding to semantic interpretations or readings. Model simulations capture two previously reported empirical observations: (1) contextual modulation of lexical semantic interpretation, and (2) individual variation in the magnitude of this modulation. Simulations also generate a novel prediction that the by-trial relationship between sentence reading time and acceptability should be contextually modulated. An experiment combining self-paced reading and acceptability judgments replicates previous results and confirms the new model prediction. Altogether, results support a novel perspective on lexical polysemy: that the many related meanings of a word are metastable neural activation states that arise from the nonlinear dynamics of neural populations governing interpretation on continuous semantic dimensions.
♻ ☆ Geopolitical biases in LLMs: what are the "good" and the "bad" countries according to contemporary language models
This paper evaluates geopolitical biases in LLMs with respect to various countries though an analysis of their interpretation of historical events with conflicting national perspectives (USA, UK, USSR, and China). We introduce a novel dataset with neutral event descriptions and contrasting viewpoints from different countries. Our findings show significant geopolitical biases, with models favoring specific national narratives. Additionally, simple debiasing prompts had a limited effect in reducing these biases. Experiments with manipulated participant labels reveal models' sensitivity to attribution, sometimes amplifying biases or recognizing inconsistencies, especially with swapped labels. This work highlights national narrative biases in LLMs, challenges the effectiveness of simple debiasing methods, and offers a framework and dataset for future geopolitical bias research.
♻ ☆ COS-DPO: Conditioned One-Shot Multi-Objective Fine-Tuning Framework
In LLM alignment and many other ML applications, one often faces the Multi-Objective Fine-Tuning (MOFT) problem, i.e., fine-tuning an existing model with datasets labeled w.r.t. different objectives simultaneously. To address the challenge, we propose a Conditioned One-Shot fine-tuning framework (COS-DPO) that extends the Direct Preference Optimization technique, originally developed for efficient LLM alignment with preference data, to accommodate the MOFT settings. By direct conditioning on the weight across auxiliary objectives, our Weight-COS-DPO method enjoys an efficient one-shot training process for profiling the Pareto front and is capable of achieving comprehensive trade-off solutions even in the post-training stage. Based on our theoretical findings on the linear transformation properties of the loss function, we further propose the Temperature-COS-DPO method that augments the temperature parameter to the model input, enhancing the flexibility of post-training control over the trade-offs between the main and auxiliary objectives. We demonstrate the effectiveness and efficiency of the COS-DPO framework through its applications to various tasks, including the Learning-to-Rank (LTR) and LLM alignment tasks, highlighting its viability for large-scale ML deployments.
comment: Published at UAI 2025
♻ ☆ Principles of semantic and functional efficiency in grammatical patterning
Grammatical features such as number and gender serve two central functions in human languages. While they encode salient semantic attributes like numerosity and animacy, they also offload sentence processing cost by predictably linking words together via grammatical agreement. Grammars exhibit consistent organizational patterns across diverse languages, invariably rooted in a semantic foundation-a widely confirmed but still theoretically unexplained phenomenon. To explain the basis of universal grammatical patterns, we unify two fundamental properties of grammar, semantic encoding and agreement-based predictability, into a single information-theoretic objective under cognitive constraints, accounting for variable communicative need. Our analyses reveal that grammatical organization provably inherits from perceptual attributes, and our measurements on a diverse language sample show that grammars prioritize functional goals, promoting efficient language processing over semantic encoding.
♻ ☆ Incivility and Rigidity: The Risks of Fine-Tuning LLMs for Political Argumentation
The incivility prevalent on platforms like Twitter (now X) and Reddit poses a challenge for developing AI systems that can support productive and rhetorically sound political argumentation. In this study, we report experiments with GPT-3.5 Turbo, fine-tuned on two contrasting datasets of political discussions: high-variance, high-incivility Twitter replies to U.S. Congress, and low-variance, low-incivility posts from Reddit's r/ChangeMyView. We systematically evaluate how these data sources and prompting strategies shape the rhetorical framing and deliberative quality of model-generated arguments. Our results show that Reddit-finetuned models produce safer but rhetorically rigid arguments, while cross-platform fine-tuning amplifies toxicity. Prompting reduces specific toxic behaviors, such as personal attacks, but fails to fully mitigate the influence of high-incivility training data. We introduce and validate a rhetorical evaluation rubric and provide practical guidelines for deploying LLMs in content authoring, moderation, and deliberation support.
♻ ☆ ReplaceMe: Network Simplification via Depth Pruning and Transformer Block Linearization
We introduce ReplaceMe, a generalized training-free depth pruning method that effectively replaces transformer blocks with a linear operation, while maintaining high performance for low compression ratios. In contrast to conventional pruning approaches that require additional training or fine-tuning, our approach requires only a small calibration dataset that is used to estimate a linear transformation, which approximates the pruned blocks. The estimated linear mapping can be seamlessly merged with the remaining transformer blocks, eliminating the need for any additional network parameters. Our experiments show that ReplaceMe consistently outperforms other training-free approaches and remains highly competitive with state-of-the-art pruning methods that involve extensive retraining/fine-tuning and architectural modifications. Applied to several large language models (LLMs), ReplaceMe achieves up to 25% pruning while retaining approximately 90% of the original model's performance on open benchmarks - without any training or healing steps, resulting in minimal computational overhead (see Fig.1). We provide an open-source library implementing ReplaceMe alongside several state-of-the-art depth pruning techniques, available at https://github.com/mts-ai/ReplaceMe.
♻ ☆ Can Large Language Models Replace Human Subjects? A Large-Scale Replication of Scenario-Based Experiments in Psychology and Management
Artificial Intelligence (AI) is increasingly being integrated into scientific research, particularly in the social sciences, where understanding human behavior is critical. Large Language Models (LLMs) have shown promise in replicating human-like responses in various psychological experiments. We conducted a large-scale study replicating 156 psychological experiments from top social science journals using three state-of-the-art LLMs (GPT-4, Claude 3.5 Sonnet, and DeepSeek v3). Our results reveal that while LLMs demonstrate high replication rates for main effects (73-81%) and moderate to strong success with interaction effects (46-63%), They consistently produce larger effect sizes than human studies, with Fisher Z values approximately 2-3 times higher than human studies. Notably, LLMs show significantly lower replication rates for studies involving socially sensitive topics such as race, gender and ethics. When original studies reported null findings, LLMs produced significant results at remarkably high rates (68-83%) - while this could reflect cleaner data with less noise, as evidenced by narrower confidence intervals, it also suggests potential risks of effect size overestimation. Our results demonstrate both the promise and challenges of LLMs in psychological research, offering efficient tools for pilot testing and rapid hypothesis validation while enriching rather than replacing traditional human subject studies, yet requiring more nuanced interpretation and human validation for complex social phenomena and culturally sensitive research questions.
comment: 5 figures, 2 tables
♻ ☆ Think&Cite: Improving Attributed Text Generation with Self-Guided Tree Search and Progress Reward Modeling ACL 2025
Despite their outstanding capabilities, large language models (LLMs) are prone to hallucination and producing factually incorrect information. This challenge has spurred efforts in attributed text generation, which prompts LLMs to generate content with supporting evidence. In this paper, we propose a novel framework, called Think&Cite, and formulate attributed text generation as a multi-step reasoning problem integrated with search. Specifically, we propose Self-Guided Monte Carlo Tree Search (SG-MCTS), which capitalizes on the self-reflection capability of LLMs to reason about the intermediate states of MCTS for guiding the tree expansion process. To provide reliable and comprehensive feedback, we introduce Progress Reward Modeling to measure the progress of tree search from the root to the current state from two aspects, i.e., generation and attribution progress. We conduct extensive experiments on three datasets and the results show that our approach significantly outperforms baseline approaches.
comment: ACL 2025
♻ ☆ SHAKTI: A 2.5 Billion Parameter Small Language Model Optimized for Edge AI and Low-Resource Environments
We introduce Shakti, a 2.5 billion parameter language model specifically optimized for resource-constrained environments such as edge devices, including smartphones, wearables, and IoT systems. Shakti combines high-performance NLP with optimized efficiency and precision, making it ideal for real-time AI applications where computational resources and memory are limited. With support for vernacular languages and domain-specific tasks, Shakti excels in industries such as healthcare, finance, and customer service. Benchmark evaluations demonstrate that Shakti performs competitively against larger models while maintaining low latency and on-device efficiency, positioning it as a leading solution for edge AI.
comment: Paper in pdf format is 11 pages and contains 4 tables
♻ ☆ Knapsack Optimization-based Schema Linking for LLM-based Text-to-SQL Generation
Generating SQLs from user queries is a long-standing challenge, where the accuracy of initial schema linking significantly impacts subsequent SQL generation performance. However, current schema linking models still struggle with missing relevant schema elements or an excess of redundant ones. A crucial reason for this is that commonly used metrics, recall and precision, fail to capture relevant element missing and thus cannot reflect actual schema linking performance. Motivated by this, we propose enhanced schema linking metrics by introducing a restricted missing indicator. Accordingly, we introduce Knapsack optimization-based Schema Linking Approach (KaSLA), a plug-in schema linking method designed to prevent the missing of relevant schema elements while minimizing the inclusion of redundant ones. KaSLA employs a hierarchical linking strategy that first identifies the optimal table linking and subsequently links columns within the selected table to reduce linking candidate space. In each linking process, it utilizes a knapsack optimization approach to link potentially relevant elements while accounting for a limited tolerance of potentially redundant ones. With this optimization, KaSLA-1.6B achieves superior schema linking results compared to large-scale LLMs, including deepseek-v3 with the state-of-the-art (SOTA) schema linking method. Extensive experiments on Spider and BIRD benchmarks verify that KaSLA can significantly improve the SQL generation performance of SOTA Text2SQL models by substituting their schema linking processes.
♻ ☆ Capturing Polysemanticity with PRISM: A Multi-Concept Feature Description Framework
Automated interpretability research aims to identify concepts encoded in neural network features to enhance human understanding of model behavior. Current feature description methods face two critical challenges: limited robustness and the flawed assumption that each neuron encodes only a single concept (monosemanticity), despite growing evidence that neurons are often polysemantic. This assumption restricts the expressiveness of feature descriptions and limits their ability to capture the full range of behaviors encoded in model internals. To address this, we introduce Polysemantic FeatuRe Identification and Scoring Method (PRISM), a novel framework that captures the inherent complexity of neural network features. Unlike prior approaches that assign a single description per feature, PRISM provides more nuanced descriptions for both polysemantic and monosemantic features. We apply PRISM to language models and, through extensive benchmarking against existing methods, demonstrate that our approach produces more accurate and faithful feature descriptions, improving both overall description quality (via a description score) and the ability to capture distinct concepts when polysemanticity is present (via a polysemanticity score).
♻ ☆ PromptDSI: Prompt-based Rehearsal-free Instance-wise Incremental Learning for Document Retrieval KDD 2025
Differentiable Search Index (DSI) utilizes pre-trained language models to perform indexing and document retrieval via end-to-end learning without relying on external indexes. However, DSI requires full re-training to index new documents, causing significant computational inefficiencies. Continual learning (CL) offers a solution by enabling the model to incrementally update without full re-training. Existing CL solutions in document retrieval rely on memory buffers or generative models for rehearsal, which is infeasible when accessing previous training data is restricted due to privacy concerns. To this end, we introduce PromptDSI, a prompt-based, rehearsal-free continual learning approach for document retrieval. PromptDSI follows the Prompt-based Continual Learning (PCL) framework, using learnable prompts to efficiently index new documents without accessing previous documents or queries. To improve retrieval latency, we remove the initial forward pass of PCL, which otherwise greatly increases training and inference time, with a negligible trade-off in performance. Additionally, we introduce a novel topic-aware prompt pool that employs neural topic embeddings as fixed keys, eliminating the instability of prompt key optimization while maintaining competitive performance with existing PCL prompt pools. In a challenging rehearsal-free continual learning setup, we demonstrate that PromptDSI variants outperform rehearsal-based baselines, match the strong cache-based baseline in mitigating forgetting, and significantly improving retrieval performance on new corpora.
comment: ECML PKDD 2025 Research track. Camera-ready version. Code is available at https://github.com/LouisDo2108/PromptDSI
♻ ☆ Coreference as an indicator of context scope in multimodal narrative ACL 2025
We demonstrate that large multimodal language models differ substantially from humans in the distribution of coreferential expressions in a visual storytelling task. We introduce a number of metrics to quantify the characteristics of coreferential patterns in both human- and machine-written texts. Humans distribute coreferential expressions in a way that maintains consistency across texts and images, interleaving references to different entities in a highly varied way. Machines are less able to track mixed references, despite achieving perceived improvements in generation quality. Materials, metrics, and code for our study are available at https://github.com/GU-CLASP/coreference-context-scope.
comment: 19 pages, 4 tables. Accepted to GEM2 Workshop: Generation, Evaluation & Metrics at ACL 2025
♻ ☆ LogProber: Disentangling confidence from contamination in LLM responses
In machine learning, contamination refers to situations where testing data leak into the training set. The issue is particularly relevant for the evaluation of the performance of Large Language Models (LLMs), which are generally trained on gargantuan, and generally opaque, corpora of text scraped from the world wide web. Developing tools to detect contamination is therefore crucial to be able to fairly and properly track the evolution of the performance of LLMs. To date, only a few recent studies have attempted to address the issue of quantifying and detecting contamination in short text sequences, such as those commonly found in benchmarks. However, these methods have limitations that can sometimes render them impractical. In the present paper, we introduce LogProber, a novel, efficient algorithm that we show to be able to detect contamination in a black box setting that tries to tackle some of these drawbacks by focusing on the familiarity with the question rather than the answer. Here, we explore the properties of the proposed method in comparison with concurrent approaches, identify its advantages and limitations, and illustrate how different forms of contamination can go undetected depending on the design of the detection algorithm.
♻ ☆ On Almost Surely Safe Alignment of Large Language Models at Inference-Time
We introduce a novel inference-time alignment approach for LLMs that aims to generate safe responses almost surely, i.e., with probability approaching one. Our approach models the generation of safe responses as a constrained Markov Decision Process (MDP) within the LLM's latent space. We augment a safety state that tracks the evolution of safety constraints and dynamically penalize unsafe generations to ensure the generation of safe responses. Consequently, we demonstrate formal safety guarantees w.r.t. the given cost model upon solving the MDP in the latent space with sufficiently large penalties. Building on this foundation, we propose InferenceGuard, a practical implementation that safely aligns LLMs without modifying the model weights. Empirically, we demonstrate that InferenceGuard effectively balances safety and task performance, outperforming existing inference-time alignment methods in generating safe and aligned responses. Our findings contribute to the advancement of safer LLM deployment through alignment at inference-time, thus presenting a promising alternative to resource-intensive, overfitting-prone alignment techniques like RLHF.
♻ ☆ Dynamic Knowledge Integration for Evidence-Driven Counter-Argument Generation with Large Language Models ACL 2025
This paper investigates the role of dynamic external knowledge integration in improving counter-argument generation using Large Language Models (LLMs). While LLMs have shown promise in argumentative tasks, their tendency to generate lengthy, potentially unfactual responses highlights the need for more controlled and evidence-based approaches. We introduce a new manually curated dataset of argument and counter-argument pairs specifically designed to balance argumentative complexity with evaluative feasibility. We also propose a new LLM-as-a-Judge evaluation methodology that shows a stronger correlation with human judgments compared to traditional reference-based metrics. Our experimental results demonstrate that integrating dynamic external knowledge from the web significantly improves the quality of generated counter-arguments, particularly in terms of relatedness, persuasiveness, and factuality. The findings suggest that combining LLMs with real-time external knowledge retrieval offers a promising direction for developing more effective and reliable counter-argumentation systems.
comment: ACL 2025
♻ ☆ Deep Learning based Visually Rich Document Content Understanding: A Survey
Visually Rich Documents (VRDs) play a vital role in domains such as academia, finance, healthcare, and marketing, as they convey information through a combination of text, layout, and visual elements. Traditional approaches to extracting information from VRDs rely heavily on expert knowledge and manual annotation, making them labor-intensive and inefficient. Recent advances in deep learning have transformed this landscape by enabling multimodal models that integrate vision, language, and layout features through pretraining, significantly improving information extraction performance. This survey presents a comprehensive overview of deep learning-based frameworks for VRD Content Understanding (VRD-CU). We categorize existing methods based on their modeling strategies and downstream tasks, and provide a comparative analysis of key components, including feature representation, fusion techniques, model architectures, and pretraining objectives. Additionally, we highlight the strengths and limitations of each approach and discuss their suitability for different applications. The paper concludes with a discussion of current challenges and emerging trends, offering guidance for future research and practical deployment in real-world scenarios.
comment: Work in Progress
♻ ☆ Adapting While Learning: Grounding LLMs for Scientific Problems with Intelligent Tool Usage Adaptation
Large Language Models (LLMs) demonstrate promising capabilities in solving scientific problems but often suffer from the issue of hallucination. While integrating LLMs with tools can mitigate this issue, models fine-tuned on tool usage become overreliant on them and incur unnecessary costs. Inspired by how human experts assess problem complexity before selecting solutions, we propose a novel two-component fine-tuning method, Adapting While Learning (AWL). In the first component, World Knowledge Learning (WKL), LLMs internalize scientific knowledge by learning from tool-generated solutions. In the second component, Tool Usage Adaptation (TUA), we categorize problems as easy or hard based on the model's accuracy, and train it to maintain direct reasoning for easy problems while switching to tools for hard ones. We validate our method on six scientific benchmark datasets across climate science, epidemiology, physics, and other domains. Compared to the original instruct model (8B), models post-trained with AWL achieve 29.11% higher answer accuracy and 12.72% better tool usage accuracy, even surpassing state-of-the-art models including GPT-4o and Claude-3.5 on four custom-created datasets. Our code is open-source at https://github.com/Rose-STL-Lab/Adapting-While-Learning.
comment: 37 pages, 16 figures
More Thinking, Less Seeing? Assessing Amplified Hallucination in Multimodal Reasoning Models
Test-time compute has empowered multimodal large language models to generate extended reasoning chains, yielding strong performance on tasks such as multimodal math reasoning. However, this improved reasoning ability often comes with increased hallucination: as generations become longer, models tend to drift away from image-grounded content and rely more heavily on language priors. Attention analysis shows that longer reasoning chains lead to reduced focus on visual inputs, which contributes to hallucination. To systematically study this phenomenon, we introduce RH-AUC, a metric that quantifies how a model's perception accuracy changes with reasoning length, allowing us to evaluate whether the model preserves visual grounding during reasoning. We also release RH-Bench, a diagnostic benchmark that spans a variety of multimodal tasks, designed to assess the trade-off between reasoning ability and hallucination. Our analysis reveals that (i) larger models typically achieve a better balance between reasoning and perception, and (ii) this balance is influenced more by the types and domains of training data than by its overall volume. These findings underscore the importance of evaluation frameworks that jointly consider both reasoning quality and perceptual fidelity.
♻ ☆ Cost-effective Instruction Learning for Pathology Vision and Language Analysis
The advent of vision-language models fosters the interactive conversations between AI-enabled models and humans. Yet applying these models into clinics must deal with daunting challenges around large-scale training data, financial, and computational resources. Here we propose a cost-effective instruction learning framework for conversational pathology named as CLOVER. CLOVER only trains a lightweight module and uses instruction tuning while freezing the parameters of the large language model. Instead of using costly GPT-4, we propose well-designed prompts on GPT-3.5 for building generation-based instructions, emphasizing the utility of pathological knowledge derived from the Internet source. To augment the use of instructions, we construct a high-quality set of template-based instructions in the context of digital pathology. From two benchmark datasets, our findings reveal the strength of hybrid-form instructions in the visual question-answer in pathology. Extensive results show the cost-effectiveness of CLOVER in answering both open-ended and closed-ended questions, where CLOVER outperforms strong baselines that possess 37 times more training parameters and use instruction data generated from GPT-4. Through the instruction tuning, CLOVER exhibits robustness of few-shot learning in the external clinical dataset. These findings demonstrate that cost-effective modeling of CLOVER could accelerate the adoption of rapid conversational applications in the landscape of digital pathology.
♻ ☆ Ask, Fail, Repeat: Meeseeks, an Iterative Feedback Benchmark for LLMs' Multi-turn Instruction-Following Ability
The ability to follow instructions accurately is fundamental for Large Language Models (LLMs) to serve as reliable agents in real-world applications. For complex instructions, LLMs often struggle to fulfill all requirements in a single attempt. In practice, users typically provide iterative feedback until the LLM generates a response that meets all requirements. However, existing instruction-following benchmarks are either single-turn or introduce new requirements in each turn without allowing self-correction. To address this gap, we propose Meeseeks. Meeseeks simulates realistic human-LLM interactions through an iterative feedback framework, which enables models to self-correct based on specific requirement failures in each turn, better reflecting real-world user-end usage patterns. Meanwhile, the benchmark implements a comprehensive evaluation system with 38 capability tags organized across three dimensions: Intent Recognition, Granular Content Validation, and Output Structure Validation. Through rigorous evaluation across LLMs, Meeseeks provides valuable insights into LLMs' instruction-following capabilities in multi-turn scenarios.
♻ ☆ Reimagining Urban Science: Scaling Causal Inference with Large Language Models
Urban causal research is essential for understanding the complex, dynamic processes that shape cities and for informing evidence-based policies. However, current practices are often constrained by inefficient and biased hypothesis formulation, challenges in integrating multimodal data, and fragile experimental methodologies. Imagine a system that automatically estimates the causal impact of congestion pricing on commute times by income group or measures how new green spaces affect asthma rates across neighborhoods using satellite imagery and health reports, and then generates comprehensive, policy-ready outputs, including causal estimates, subgroup analyses, and actionable recommendations. In this Perspective, we propose UrbanCIA, an LLM-driven conceptual framework composed of four distinct modular agents responsible for hypothesis generation, data engineering, experiment design and execution, and results interpretation with policy insights. We begin by examining the current landscape of urban causal research through a structured taxonomy of research topics, data sources, and methodological approaches, revealing systemic limitations across the workflow. Next, we introduce the design principles and technological roadmap for the four modules in the proposed framework. We also propose evaluation criteria to assess the rigor and transparency of these AI-augmented processes. Finally, we reflect on the broader implications for human-AI collaboration, equity, and accountability. We call for a new research agenda that embraces LLM-driven tools as catalysts for more scalable, reproducible, and inclusive urban research.
♻ ☆ Alto: Orchestrating Distributed Compound AI Systems with Nested Ancestry
Compound AI applications chain together subcomponents such as generative language models, document retrievers, and embedding models. Applying traditional systems optimizations such as parallelism and pipelining in compound AI systems is difficult because each component has different constraints in terms of the granularity and type of data that it ingests. New data is often generated during intermediate computations, and text streams may be split into smaller, independent fragments (such as documents to sentences) which may then be re-aggregated at later parts of the computation. Due to this complexity, existing systems to serve compound AI queries do not fully take advantage of parallelism and pipelining opportunities. We present Alto, a framework that automatically optimizes execution of compound AI queries through streaming and parallelism. Bento introduces a new abstraction called nested ancestry, a metadata hierarchy that allows the system to correctly track partial outputs and aggregate data across the heterogeneous constraints of the components of compound AI applications. This metadata is automatically inferred from the programming model, allowing developers to express complex dataflow patterns without needing to reason manually about the details of routing and aggregation. Implementations of four applications in Alto outperform or match implementations in LangGraph, a popular existing AI programming framework. Alto implementations match or improve latency by between 10-30%.
♻ ☆ SSR-Zero: Simple Self-Rewarding Reinforcement Learning for Machine Translation
Large language models (LLMs) have recently demonstrated remarkable capabilities in machine translation (MT). However, most advanced MT-specific LLMs heavily rely on external supervision signals during training, such as human-annotated reference data or trained reward models (RMs), which are often expensive to obtain and challenging to scale. To overcome this limitation, we propose a Simple Self-Rewarding (SSR) Reinforcement Learning (RL) framework for MT that is reference-free, fully online, and relies solely on self-judging rewards. Training with SSR using 13K monolingual examples and Qwen-2.5-7B as the backbone, our model SSR-Zero-7B outperforms existing MT-specific LLMs, e.g., TowerInstruct-13B and GemmaX-28-9B, as well as larger general LLMs like Qwen2.5-32B-Instruct in English $\leftrightarrow$ Chinese translation tasks from WMT23, WMT24, and Flores200 benchmarks. Furthermore, by augmenting SSR with external supervision from COMET, our strongest model, SSR-X-Zero-7B, achieves state-of-the-art performance in English $\leftrightarrow$ Chinese translation, surpassing all existing open-source models under 72B parameters and even outperforming closed-source models, e.g., GPT-4o and Gemini 1.5 Pro. Our analysis highlights the effectiveness of the self-rewarding mechanism compared to the external LLM-as-a-judge approach in MT and demonstrates its complementary benefits when combined with trained RMs. Our findings provide valuable insight into the potential of self-improving RL methods. We have publicly released our code, data and models.
♻ ☆ A Structured Dataset of Disease-Symptom Associations to Improve Diagnostic Accuracy
Disease-symptom datasets are significant and in demand for medical research, disease diagnosis, clinical decision-making, and AI-driven health management applications. These datasets help identify symptom patterns associated with specific diseases, thus improving diagnostic accuracy and enabling early detection. The dataset presented in this study systematically compiles disease-symptom relationships from various online sources, medical literature, and publicly available health databases. The data was gathered through analyzing peer-reviewed medical articles, clinical case studies, and disease-symptom association reports. Only the verified medical sources were included in the dataset, while those from non-peer-reviewed and anecdotal sources were excluded. The dataset is structured in a tabular format, where the first column represents diseases, and the remaining columns represent symptoms. Each symptom cell contains a binary value (1 or 0), indicating whether a symptom is associated with a disease (1 for presence, 0 for absence). Thereby, this structured representation makes the dataset very useful for a wide range of applications, including machine learning-based disease prediction, clinical decision support systems, and epidemiological studies. Although there are some advancements in the field of disease-symptom datasets, there is a significant gap in structured datasets for the Bangla language. This dataset aims to bridge that gap by facilitating the development of multilingual medical informatics tools and improving disease prediction models for underrepresented linguistic communities. Further developments should include region-specific diseases and further fine-tuning of symptom associations for better diagnostic performance
comment: Preprint
♻ ☆ Group-Level Data Selection for Efficient Pretraining
In this paper, we introduce Group-MATES, an efficient group-level data selection approach to optimize the speed-quality frontier of language model pretraining. Specifically, Group-MATES parameterizes costly group-level selection with a relational data influence model. To train this model, we sample training trajectories of the language model and collect oracle data influences alongside. The relational data influence model approximates the oracle data influence by weighting individual influence with relationships among training data. To enable efficient selection with our relational data influence model, we partition the dataset into small clusters using relationship weights and select data within each cluster independently. Experiments on DCLM 400M-4x, 1B-1x, and 3B-1x show that Group-MATES achieves 3.5%-9.4% relative performance gains over random selection across 22 downstream tasks, nearly doubling the improvements achieved by state-of-the-art individual data selection baselines. Furthermore, Group-MATES reduces the number of tokens required to reach a certain downstream performance by up to 1.75x, substantially elevating the speed-quality frontier. Further analyses highlight the critical role of relationship weights in the relational data influence model and the effectiveness of our cluster-based inference. Our code is open-sourced at https://github.com/facebookresearch/Group-MATES.
♻ ☆ Techniques for supercharging academic writing with generative AI
Academic writing is an indispensable yet laborious part of the research enterprise. This Perspective maps out principles and methods for using generative artificial intelligence (AI), specifically large language models (LLMs), to elevate the quality and efficiency of academic writing. We introduce a human-AI collaborative framework that delineates the rationale (why), process (how), and nature (what) of AI engagement in writing. The framework pinpoints both short-term and long-term reasons for engagement and their underlying mechanisms (e.g., cognitive offloading and imaginative stimulation). It reveals the role of AI throughout the writing process, conceptualized through a two-stage model for human-AI collaborative writing, and the nature of AI assistance in writing, represented through a model of writing-assistance types and levels. Building on this framework, we describe effective prompting techniques for incorporating AI into the writing routine (outlining, drafting, and editing) as well as strategies for maintaining rigorous scholarship, adhering to varied journal policies, and avoiding overreliance on AI. Ultimately, the prudent integration of AI into academic writing can ease the communication burden, empower authors, accelerate discovery, and promote diversity in science.
comment: Published in: Nature Biomedical Engineering, 2025
♻ ☆ MaPPER: Multimodal Prior-guided Parameter Efficient Tuning for Referring Expression Comprehension EMNLP 2024
Referring Expression Comprehension (REC), which aims to ground a local visual region via natural language, is a task that heavily relies on multimodal alignment. Most existing methods utilize powerful pre-trained models to transfer visual/linguistic knowledge by full fine-tuning. However, full fine-tuning the entire backbone not only breaks the rich prior knowledge embedded in the pre-training, but also incurs significant computational costs. Motivated by the recent emergence of Parameter-Efficient Transfer Learning (PETL) methods, we aim to solve the REC task in an effective and efficient manner. Directly applying these PETL methods to the REC task is inappropriate, as they lack the specific-domain abilities for precise local visual perception and visual-language alignment. Therefore, we propose a novel framework of Multimodal Prior-guided Parameter Efficient Tuning, namely MaPPER. Specifically, MaPPER comprises Dynamic Prior Adapters guided by an aligned prior, and Local Convolution Adapters to extract precise local semantics for better visual perception. Moreover, the Prior-Guided Text module is proposed to further utilize the prior for facilitating the cross-modal alignment. Experimental results on three widely-used benchmarks demonstrate that MaPPER achieves the best accuracy compared to the full fine-tuning and other PETL methods with only 1.41% tunable backbone parameters. Our code is available at https://github.com/liuting20/MaPPER.
comment: EMNLP 2024 main
♻ ☆ GraphRAG-Bench: Challenging Domain-Specific Reasoning for Evaluating Graph Retrieval-Augmented Generation
Graph Retrieval Augmented Generation (GraphRAG) has garnered increasing recognition for its potential to enhance large language models (LLMs) by structurally organizing domain-specific corpora and facilitating complex reasoning. However, current evaluations of GraphRAG models predominantly rely on traditional question-answering datasets. Their limited scope in questions and evaluation metrics fails to comprehensively assess the reasoning capacity improvements enabled by GraphRAG models. To address this gap, we introduce GraphRAG-Bench, a large-scale, domain-specific benchmark designed to rigorously evaluate GraphRAG models. Our benchmark offers three key superiorities: \((i)\) Challenging question design. Featuring college-level, domain-specific questions that demand multi-hop reasoning, the benchmark ensures that simple content retrieval is insufficient for problem-solving. For example, some questions require mathematical reasoning or programming. \((ii)\) Diverse task coverage. The dataset includes a broad spectrum of reasoning tasks, multiple-choice, true/false, multi-select, open-ended, and fill-in-the-blank. It spans 16 disciplines in twenty core textbooks. \((iii)\) Holistic evaluation framework. GraphRAG-Bench provides comprehensive assessment across the entire GraphRAG pipeline, including graph construction, knowledge retrieval, and answer generation. Beyond final-answer correctness, it evaluates the logical coherence of the reasoning process. By applying nine contemporary GraphRAG methods to GraphRAG-Bench, we demonstrate its utility in quantifying how graph-based structuring improves model reasoning capabilities. Our analysis reveals critical insights about graph architectures, retrieval efficacy, and reasoning capabilities, offering actionable guidance for the research community.
♻ ☆ LLMs in Disease Diagnosis: A Comparative Study of DeepSeek-R1 and O3 Mini Across Chronic Health Conditions
Large Language Models (LLMs) are revolutionizing medical diagnostics by enhancing both disease classification and clinical decision-making. In this study, we evaluate the performance of two LLM- based diagnostic tools, DeepSeek R1 and O3 Mini, using a structured dataset of symptoms and diagnoses. We assessed their predictive accuracy at both the disease and category levels, as well as the reliability of their confidence scores. DeepSeek R1 achieved a disease-level accuracy of 76% and an overall accuracy of 82%, outperforming O3 Mini, which attained 72% and 75% respectively. Notably, DeepSeek R1 demonstrated exceptional performance in Mental Health, Neurological Disorders, and Oncology, where it reached 100% accuracy, while O3 Mini excelled in Autoimmune Disease classification with 100% accuracy. Both models, however, struggled with Respiratory Disease classification, recording accuracies of only 40% for DeepSeek R1 and 20% for O3 Mini. Additionally, the analysis of confidence scores revealed that DeepSeek R1 provided high-confidence predictions in 92% of cases, compared to 68% for O3 Mini. Ethical considerations regarding bias, model interpretability, and data privacy are also discussed to ensure the responsible integration of LLMs into clinical practice. Overall, our findings offer valuable insights into the strengths and limitations of LLM-based diagnostic systems and provide a roadmap for future enhancements in AI-driven healthcare.
comment: 12 pages, 3 figures
♻ ☆ Theoretical Guarantees for Minimum Bayes Risk Decoding
Minimum Bayes Risk (MBR) decoding optimizes output selection by maximizing the expected utility value of an underlying human distribution. While prior work has shown the effectiveness of MBR decoding through empirical evaluation, few studies have analytically investigated why the method is effective. As a result of our analysis, we show that, given the size $n$ of the reference hypothesis set used in computation, MBR decoding approaches the optimal solution with high probability at a rate of $O\left(n^{-\frac{1}{2}}\right)$, under certain assumptions, even though the language space $Y$ is significantly larger $|Y|\gg n$. This result helps to theoretically explain the strong performance observed in several prior empirical studies on MBR decoding. In addition, we provide the performance gap for maximum-a-posteriori (MAP) decoding and compare it to MBR decoding. The result of this paper indicates that MBR decoding tends to converge to the optimal solution faster than MAP decoding in several cases.
♻ ☆ Embodied Web Agents: Bridging Physical-Digital Realms for Integrated Agent Intelligence
AI agents today are mostly siloed - they either retrieve and reason over vast amount of digital information and knowledge obtained online; or interact with the physical world through embodied perception, planning and action - but rarely both. This separation limits their ability to solve tasks that require integrated physical and digital intelligence, such as cooking from online recipes, navigating with dynamic map data, or interpreting real-world landmarks using web knowledge. We introduce Embodied Web Agents, a novel paradigm for AI agents that fluidly bridge embodiment and web-scale reasoning. To operationalize this concept, we first develop the Embodied Web Agents task environments, a unified simulation platform that tightly integrates realistic 3D indoor and outdoor environments with functional web interfaces. Building upon this platform, we construct and release the Embodied Web Agents Benchmark, which encompasses a diverse suite of tasks including cooking, navigation, shopping, tourism, and geolocation - all requiring coordinated reasoning across physical and digital realms for systematic assessment of cross-domain intelligence. Experimental results reveal significant performance gaps between state-of-the-art AI systems and human capabilities, establishing both challenges and opportunities at the intersection of embodied cognition and web-scale knowledge access. All datasets, codes and websites are publicly available at our project page https://embodied-web-agent.github.io/.
♻ ☆ Med-U1: Incentivizing Unified Medical Reasoning in LLMs via Large-scale Reinforcement Learning
Medical Question-Answering (QA) encompasses a broad spectrum of tasks, including multiple choice questions (MCQ), open-ended text generation, and complex computational reasoning. Despite this variety, a unified framework for delivering high-quality medical QA has yet to emerge. Although recent progress in reasoning-augmented large language models (LLMs) has shown promise, their ability to achieve comprehensive medical understanding is still largely unexplored. In this paper, we present Med-U1, a unified framework for robust reasoning across medical QA tasks with diverse output formats, ranging from MCQs to complex generation and computation tasks. Med-U1 employs pure large-scale reinforcement learning with mixed rule-based binary reward functions, incorporating a length penalty to manage output verbosity. With multi-objective reward optimization, Med-U1 directs LLMs to produce concise and verifiable reasoning chains. Empirical results reveal that Med-U1 significantly improves performance across multiple challenging Med-QA benchmarks, surpassing even larger specialized and proprietary models. Furthermore, Med-U1 demonstrates robust generalization to out-of-distribution (OOD) tasks. Extensive analysis presents insights into training strategies, reasoning chain length control, and reward design for medical LLMs. Our code is available here.
♻ ☆ Kinetics: Rethinking Test-Time Scaling Laws
We rethink test-time scaling laws from a practical efficiency perspective, revealing that the effectiveness of smaller models is significantly overestimated. Prior work, grounded in compute-optimality, overlooks critical memory access bottlenecks introduced by inference-time strategies (e.g., Best-of-$N$, long CoTs). Our holistic analysis, spanning models from 0.6B to 32B parameters, reveals a new Kinetics Scaling Law that better guides resource allocation by incorporating both computation and memory access costs. Kinetics Scaling Law suggests that test-time compute is more effective when used on models above a threshold than smaller ones. A key reason is that in TTS, attention, rather than parameter count, emerges as the dominant cost factor. Motivated by this, we propose a new scaling paradigm centered on sparse attention, which lowers per-token cost and enables longer generations and more parallel samples within the same resource budget. Empirically, we show that sparse attention models consistently outperform dense counterparts, achieving over 60 points gains in low-cost regimes and over 5 points gains in high-cost regimes for problem-solving accuracy on AIME, encompassing evaluations on state-of-the-art MoEs. These results suggest that sparse attention is essential and increasingly important with more computing invested, for realizing the full potential of test-time scaling where, unlike training, accuracy has yet to saturate as a function of computation, and continues to improve through increased generation. The code is available at https://github.com/Infini-AI-Lab/Kinetics.
♻ ☆ Adaptive Guidance Accelerates Reinforcement Learning of Reasoning Models
We study the process through which reasoning models trained with reinforcement learning on verifiable rewards (RLVR) can learn to solve new problems. We find that RLVR drives performance in two main ways: (1) by compressing pass@$k$ into pass@1 and (2) via "capability gain" in which models learn to solve new problems that they previously could not solve even at high $k$. We find that while capability gain exists across model scales, learning to solve new problems is primarily driven through self-distillation. We demonstrate these findings across model scales ranging from 0.5B to 72B parameters on >500,000 reasoning problems with prompts and verifiable final answers across math, science, and code domains. We further show that we can significantly improve pass@$k$ rates by leveraging natural language guidance for the model to consider within context while still requiring the model to derive a solution chain from scratch. Based of these insights, we derive $\text{Guide}$ -- a new class of online training algorithms. $\text{Guide}$ adaptively incorporates hints into the model's context on problems for which all rollouts were initially incorrect and adjusts the importance sampling ratio for the "off-policy" trajectories in order to optimize the policy for contexts in which the hints are no longer present. We describe variants of $\text{Guide}$ for GRPO and PPO and empirically show that Guide-GRPO on 7B and 32B parameter models improves generalization over its vanilla counterpart with up to 4$\%$ macro-average improvement across math benchmarks. We include careful ablations to analyze $\text{Guide}$'s components and theoretically analyze Guide's learning efficiency.
Computer Vision and Pattern Recognition 100
☆ VLN-R1: Vision-Language Navigation via Reinforcement Fine-Tuning
Vision-Language Navigation (VLN) is a core challenge in embodied AI, requiring agents to navigate real-world environments using natural language instructions. Current language model-based navigation systems operate on discrete topological graphs, limiting path planning to predefined node connections. We propose VLN-R1, an end-to-end framework that leverages Large Vision-Language Models (LVLM) to directly translate egocentric video streams into continuous navigation actions, adopting GRPO-based training inspired by DeepSeek-R1. To enable effective training, we first construct the VLN-Ego dataset using a 3D simulator, Habitat, and propose Long-Short Memory Sampling to balance historical and current observations. While large language models can supervise complete textual instructions, they lack fine-grained action-level control. Our framework employs a two-stage training approach: a) Supervised fine-tuning (SFT) to align the model's action sequence text predictions with expert demonstrations, followed by b) Reinforcement fine-tuning (RFT) enhanced with a Time-Decayed Reward (TDR) mechanism that strategically weights multi-step future actions. Experimental results show VLN-R1 achieves strong performance on VLN-CE benchmark. VLN-R1 proves LVLMs can drive embodied navigation and enhance task-specific reasoning through data-efficient, reward-driven post-training.
comment: project page: www.vlnr1.github.io
☆ Emergent Temporal Correspondences from Video Diffusion Transformers
Recent advancements in video diffusion models based on Diffusion Transformers (DiTs) have achieved remarkable success in generating temporally coherent videos. Yet, a fundamental question persists: how do these models internally establish and represent temporal correspondences across frames? We introduce DiffTrack, the first quantitative analysis framework designed to answer this question. DiffTrack constructs a dataset of prompt-generated video with pseudo ground-truth tracking annotations and proposes novel evaluation metrics to systematically analyze how each component within the full 3D attention mechanism of DiTs (e.g., representations, layers, and timesteps) contributes to establishing temporal correspondences. Our analysis reveals that query-key similarities in specific, but not all, layers play a critical role in temporal matching, and that this matching becomes increasingly prominent during the denoising process. We demonstrate practical applications of DiffTrack in zero-shot point tracking, where it achieves state-of-the-art performance compared to existing vision foundation and self-supervised video models. Further, we extend our findings to motion-enhanced video generation with a novel guidance method that improves temporal consistency of generated videos without additional training. We believe our work offers crucial insights into the inner workings of video DiTs and establishes a foundation for further research and applications leveraging their temporal understanding.
comment: Project page is available at https:/cvlab-kaist.github.io/DiffTrack
☆ Machine Mental Imagery: Empower Multimodal Reasoning with Latent Visual Tokens
Vision-language models (VLMs) excel at multimodal understanding, yet their text-only decoding forces them to verbalize visual reasoning, limiting performance on tasks that demand visual imagination. Recent attempts train VLMs to render explicit images, but the heavy image-generation pre-training often hinders the reasoning ability. Inspired by the way humans reason with mental imagery-the internal construction and manipulation of visual cues-we investigate whether VLMs can reason through interleaved multimodal trajectories without producing explicit images. To this end, we present a Machine Mental Imagery framework, dubbed as Mirage, which augments VLM decoding with latent visual tokens alongside ordinary text. Concretely, whenever the model chooses to ``think visually'', it recasts its hidden states as next tokens, thereby continuing a multimodal trajectory without generating pixel-level images. Begin by supervising the latent tokens through distillation from ground-truth image embeddings, we then switch to text-only supervision to make the latent trajectory align tightly with the task objective. A subsequent reinforcement learning stage further enhances the multimodal reasoning capability. Experiments on diverse benchmarks demonstrate that Mirage unlocks stronger multimodal reasoning without explicit image generation.
comment: Project page: https://vlm-mirage.github.io/
☆ Long-term Traffic Simulation with Interleaved Autoregressive Motion and Scenario Generation
An ideal traffic simulator replicates the realistic long-term point-to-point trip that a self-driving system experiences during deployment. Prior models and benchmarks focus on closed-loop motion simulation for initial agents in a scene. This is problematic for long-term simulation. Agents enter and exit the scene as the ego vehicle enters new regions. We propose InfGen, a unified next-token prediction model that performs interleaved closed-loop motion simulation and scene generation. InfGen automatically switches between closed-loop motion simulation and scene generation mode. It enables stable long-term rollout simulation. InfGen performs at the state-of-the-art in short-term (9s) traffic simulation, and significantly outperforms all other methods in long-term (30s) simulation. The code and model of InfGen will be released at https://orangesodahub.github.io/InfGen
comment: Preprint. Project page: https://orangesodahub.github.io/InfGen Code: https://github.com/OrangeSodahub/infgen
☆ Part$^{2}$GS: Part-aware Modeling of Articulated Objects using 3D Gaussian Splatting
Articulated objects are common in the real world, yet modeling their structure and motion remains a challenging task for 3D reconstruction methods. In this work, we introduce Part$^{2}$GS, a novel framework for modeling articulated digital twins of multi-part objects with high-fidelity geometry and physically consistent articulation. Part$^{2}$GS leverages a part-aware 3D Gaussian representation that encodes articulated components with learnable attributes, enabling structured, disentangled transformations that preserve high-fidelity geometry. To ensure physically consistent motion, we propose a motion-aware canonical representation guided by physics-based constraints, including contact enforcement, velocity consistency, and vector-field alignment. Furthermore, we introduce a field of repel points to prevent part collisions and maintain stable articulation paths, significantly improving motion coherence over baselines. Extensive evaluations on both synthetic and real-world datasets show that Part$^{2}$GS consistently outperforms state-of-the-art methods by up to 10$\times$ in Chamfer Distance for movable parts.
☆ DreamCube: 3D Panorama Generation via Multi-plane Synchronization
3D panorama synthesis is a promising yet challenging task that demands high-quality and diverse visual appearance and geometry of the generated omnidirectional content. Existing methods leverage rich image priors from pre-trained 2D foundation models to circumvent the scarcity of 3D panoramic data, but the incompatibility between 3D panoramas and 2D single views limits their effectiveness. In this work, we demonstrate that by applying multi-plane synchronization to the operators from 2D foundation models, their capabilities can be seamlessly extended to the omnidirectional domain. Based on this design, we further introduce DreamCube, a multi-plane RGB-D diffusion model for 3D panorama generation, which maximizes the reuse of 2D foundation model priors to achieve diverse appearances and accurate geometry while maintaining multi-view consistency. Extensive experiments demonstrate the effectiveness of our approach in panoramic image generation, panoramic depth estimation, and 3D scene generation.
comment: Project page: https://yukun-huang.github.io/DreamCube/
☆ UniFork: Exploring Modality Alignment for Unified Multimodal Understanding and Generation
Unified image understanding and generation has emerged as a promising paradigm in multimodal artificial intelligence. Despite recent progress, the optimal architectural design for such unified models remains an open challenge. In this work, we start by analyzing the modality alignment behaviors of task-specific expert models for understanding and generation, as well as current unified models. Our analysis reveals a crucial observation: understanding tasks benefit from a progressively increasing modality alignment across network depth, which helps build up semantic information for better comprehension; In contrast, generation tasks follow a different trend: modality alignment increases in the early layers but decreases in the deep layers to recover spatial details. These divergent alignment patterns create a fundamental conflict in fully shared Transformer backbones, where a uniform representational flow often leads to performance compromises across two tasks. Motivated by this finding, we introduce UniFork, a novel Y-shaped architecture that shares the shallow layers for cross-task representation learning, while employing task-specific branches in deeper layers to avoid task interference. This design effectively balances shared learning and task specialization. Through extensive ablation experiments, we demonstrate that Unifork consistently outperforms conventional fully shared Transformer architectures, and achieves performance on par with or better than task-specific models.
comment: Code: https://github.com/tliby/UniFork
☆ Hunyuan-GameCraft: High-dynamic Interactive Game Video Generation with Hybrid History Condition
Recent advances in diffusion-based and controllable video generation have enabled high-quality and temporally coherent video synthesis, laying the groundwork for immersive interactive gaming experiences. However, current methods face limitations in dynamics, generality, long-term consistency, and efficiency, which limit the ability to create various gameplay videos. To address these gaps, we introduce Hunyuan-GameCraft, a novel framework for high-dynamic interactive video generation in game environments. To achieve fine-grained action control, we unify standard keyboard and mouse inputs into a shared camera representation space, facilitating smooth interpolation between various camera and movement operations. Then we propose a hybrid history-conditioned training strategy that extends video sequences autoregressively while preserving game scene information. Additionally, to enhance inference efficiency and playability, we achieve model distillation to reduce computational overhead while maintaining consistency across long temporal sequences, making it suitable for real-time deployment in complex interactive environments. The model is trained on a large-scale dataset comprising over one million gameplay recordings across over 100 AAA games, ensuring broad coverage and diversity, then fine-tuned on a carefully annotated synthetic dataset to enhance precision and control. The curated game scene data significantly improves the visual fidelity, realism and action controllability. Extensive experiments demonstrate that Hunyuan-GameCraft significantly outperforms existing models, advancing the realism and playability of interactive game video generation.
comment: Project page: https://hunyuan-gamecraft.github.io/
☆ Dex1B: Learning with 1B Demonstrations for Dexterous Manipulation
Generating large-scale demonstrations for dexterous hand manipulation remains challenging, and several approaches have been proposed in recent years to address this. Among them, generative models have emerged as a promising paradigm, enabling the efficient creation of diverse and physically plausible demonstrations. In this paper, we introduce Dex1B, a large-scale, diverse, and high-quality demonstration dataset produced with generative models. The dataset contains one billion demonstrations for two fundamental tasks: grasping and articulation. To construct it, we propose a generative model that integrates geometric constraints to improve feasibility and applies additional conditions to enhance diversity. We validate the model on both established and newly introduced simulation benchmarks, where it significantly outperforms prior state-of-the-art methods. Furthermore, we demonstrate its effectiveness and robustness through real-world robot experiments. Our project page is at https://jianglongye.com/dex1b
comment: Accepted to RSS 2025. Project page: https://jianglongye.com/dex1b
☆ Facial Landmark Visualization and Emotion Recognition Through Neural Networks
Emotion recognition from facial images is a crucial task in human-computer interaction, enabling machines to learn human emotions through facial expressions. Previous studies have shown that facial images can be used to train deep learning models; however, most of these studies do not include a through dataset analysis. Visualizing facial landmarks can be challenging when extracting meaningful dataset insights; to address this issue, we propose facial landmark box plots, a visualization technique designed to identify outliers in facial datasets. Additionally, we compare two sets of facial landmark features: (i) the landmarks' absolute positions and (ii) their displacements from a neutral expression to the peak of an emotional expression. Our results indicate that a neural network achieves better performance than a random forest classifier.
comment: Best paper Award COMIA 2025
☆ YASMOT: Yet another stereo image multi-object tracker
There now exists many popular object detectors based on deep learning that can analyze images and extract locations and class labels for occurrences of objects. For image time series (i.e., video or sequences of stills), tracking objects over time and preserving object identity can help to improve object detection performance, and is necessary for many downstream tasks, including classifying and predicting behaviors, and estimating total abundances. Here we present yasmot, a lightweight and flexible object tracker that can process the output from popular object detectors and track objects over time from either monoscopic or stereoscopic camera configurations. In addition, it includes functionality to generate consensus detections from ensembles of object detectors.
comment: 5 pages
☆ Proportional Sensitivity in Generative Adversarial Network (GAN)-Augmented Brain Tumor Classification Using Convolutional Neural Network
Generative Adversarial Networks (GAN) have shown potential in expanding limited medical imaging datasets. This study explores how different ratios of GAN-generated and real brain tumor MRI images impact the performance of a CNN in classifying healthy vs. tumorous scans. A DCGAN was used to create synthetic images which were mixed with real ones at various ratios to train a custom CNN. The CNN was then evaluated on a separate real-world test set. Our results indicate that the model maintains high sensitivity and precision in tumor classification, even when trained predominantly on synthetic data. When only a small portion of GAN data was added, such as 900 real images and 100 GAN images, the model achieved excellent performance, with test accuracy reaching 95.2%, and precision, recall, and F1-score all exceeding 95%. However, as the proportion of GAN images increased further, performance gradually declined. This study suggests that while GANs are useful for augmenting limited datasets especially when real data is scarce, too much synthetic data can introduce artifacts that affect the model's ability to generalize to real world cases.
comment: This papaer has been submitted to The 18th International Conference on Brain Informatics (BI'25), Italy
☆ Co-Seg++: Mutual Prompt-Guided Collaborative Learning for Versatile Medical Segmentation
Medical image analysis is critical yet challenged by the need of jointly segmenting organs or tissues, and numerous instances for anatomical structures and tumor microenvironment analysis. Existing studies typically formulated different segmentation tasks in isolation, which overlooks the fundamental interdependencies between these tasks, leading to suboptimal segmentation performance and insufficient medical image understanding. To address this issue, we propose a Co-Seg++ framework for versatile medical segmentation. Specifically, we introduce a novel co-segmentation paradigm, allowing semantic and instance segmentation tasks to mutually enhance each other. We first devise a spatio-temporal prompt encoder (STP-Encoder) to capture long-range spatial and temporal relationships between segmentation regions and image embeddings as prior spatial constraints. Moreover, we devise a multi-task collaborative decoder (MTC-Decoder) that leverages cross-guidance to strengthen the contextual consistency of both tasks, jointly computing semantic and instance segmentation masks. Extensive experiments on diverse CT and histopathology datasets demonstrate that the proposed Co-Seg++ outperforms state-of-the-arts in the semantic, instance, and panoptic segmentation of dental anatomical structures, histopathology tissues, and nuclei instances. The source code is available at https://github.com/xq141839/Co-Seg-Plus.
comment: Under Review
☆ Do We Need Large VLMs for Spotting Soccer Actions?
Traditional video-based tasks like soccer action spotting rely heavily on visual inputs, often requiring complex and computationally expensive models to process dense video data. In this work, we propose a shift from this video-centric approach to a text-based task, making it lightweight and scalable by utilizing Large Language Models (LLMs) instead of Vision-Language Models (VLMs). We posit that expert commentary, which provides rich, fine-grained descriptions and contextual cues such as excitement and tactical insights, contains enough information to reliably spot key actions in a match. To demonstrate this, we use the SoccerNet Echoes dataset, which provides timestamped commentary, and employ a system of three LLMs acting as judges specializing in outcome, excitement, and tactics. Each LLM evaluates sliding windows of commentary to identify actions like goals, cards, and substitutions, generating accurate timestamps for these events. Our experiments show that this language-centric approach performs effectively in detecting critical match events, providing a lightweight and training-free alternative to traditional video-based methods for action spotting.
comment: 5 pages, 2 figures
☆ MeDi: Metadata-Guided Diffusion Models for Mitigating Biases in Tumor Classification
Deep learning models have made significant advances in histological prediction tasks in recent years. However, for adaptation in clinical practice, their lack of robustness to varying conditions such as staining, scanner, hospital, and demographics is still a limiting factor: if trained on overrepresented subpopulations, models regularly struggle with less frequent patterns, leading to shortcut learning and biased predictions. Large-scale foundation models have not fully eliminated this issue. Therefore, we propose a novel approach explicitly modeling such metadata into a Metadata-guided generative Diffusion model framework (MeDi). MeDi allows for a targeted augmentation of underrepresented subpopulations with synthetic data, which balances limited training data and mitigates biases in downstream models. We experimentally show that MeDi generates high-quality histopathology images for unseen subpopulations in TCGA, boosts the overall fidelity of the generated images, and enables improvements in performance for downstream classifiers on datasets with subpopulation shifts. Our work is a proof-of-concept towards better mitigating data biases with generative models.
☆ On the Theory of Conditional Feature Alignment for Unsupervised Domain-Adaptive Counting
Object counting models suffer when deployed across domains with differing density variety, since density shifts are inherently task-relevant and violate standard domain adaptation assumptions. To address this, we propose a theoretical framework of conditional feature alignment. We first formalize the notion of conditional divergence by partitioning each domain into subsets (e.g., object vs. background) and measuring divergences per condition. We then derive a joint error bound showing that, under discrete label spaces treated as condition sets, aligning distributions conditionally leads to tighter bounds on the combined source-target decision error than unconditional alignment. These insights motivate a general conditional adaptation principle: by preserving task-relevant variations while filtering out nuisance shifts, one can achieve superior cross-domain generalization for counting. We provide both defining conditional divergence then proving its benefit in lowering joint error and a practical adaptation strategy that preserves task-relevant information in unsupervised domain-adaptive counting. We demonstrate the effectiveness of our approach through extensive experiments on multiple counting datasets with varying density distributions. The results show that our method outperforms existing unsupervised domain adaptation methods, empirically validating the theoretical insights on conditional feature alignment.
comment: 18 pages, 5 figures, 8 tables
☆ Semi-Supervised Multi-Modal Medical Image Segmentation for Complex Situations MICCAI 2025
Semi-supervised learning addresses the issue of limited annotations in medical images effectively, but its performance is often inadequate for complex backgrounds and challenging tasks. Multi-modal fusion methods can significantly improve the accuracy of medical image segmentation by providing complementary information. However, they face challenges in achieving significant improvements under semi-supervised conditions due to the challenge of effectively leveraging unlabeled data. There is a significant need to create an effective and reliable multi-modal learning strategy for leveraging unlabeled data in semi-supervised segmentation. To address these issues, we propose a novel semi-supervised multi-modal medical image segmentation approach, which leverages complementary multi-modal information to enhance performance with limited labeled data. Our approach employs a multi-stage multi-modal fusion and enhancement strategy to fully utilize complementary multi-modal information, while reducing feature discrepancies and enhancing feature sharing and alignment. Furthermore, we effectively introduce contrastive mutual learning to constrain prediction consistency across modalities, thereby facilitating the robustness of segmentation results in semi-supervised tasks. Experimental results on two multi-modal datasets demonstrate the superior performance and robustness of the proposed framework, establishing its valuable potential for solving medical image segmentation tasks in complex scenarios.
comment: 10 pages, 2 figures, accepted at MICCAI 2025
☆ Dynamic Watermark Generation for Digital Images using Perimeter Gated SPAD Imager PUFs
Digital image watermarks as a security feature can be derived from the imager's physically unclonable functions (PUFs) by utilizing the manufacturing variations, i.e., the dark signal non-uniformity (DSNU). While a few demonstrations focused on the CMOS image sensors (CIS) and active pixel sensors (APS), single photon avalanche diode (SPAD) imagers have never been investigated for this purpose. In this work, we have proposed a novel watermarking technique using perimeter gated SPAD (pgSPAD) imagers. We utilized the DSNU of three 64 x 64 pgSPAD imager chips, fabricated in a 0.35 {\mu}m standard CMOS process and analyzed the simulated watermarks for standard test images from publicly available database. Our observation shows that both source identification and tamper detection can be achieved using the proposed source-scene-specific dynamic watermarks with a controllable sensitivity-robustness trade-off.
comment: 5 pages, 7 figures, accepted at MWSCAS 2025 Conference
☆ Robust Training with Data Augmentation for Medical Imaging Classification
Deep neural networks are increasingly being used to detect and diagnose medical conditions using medical imaging. Despite their utility, these models are highly vulnerable to adversarial attacks and distribution shifts, which can affect diagnostic reliability and undermine trust among healthcare professionals. In this study, we propose a robust training algorithm with data augmentation (RTDA) to mitigate these vulnerabilities in medical image classification. We benchmark classifier robustness against adversarial perturbations and natural variations of RTDA and six competing baseline techniques, including adversarial training and data augmentation approaches in isolation and combination, using experimental data sets with three different imaging technologies (mammograms, X-rays, and ultrasound). We demonstrate that RTDA achieves superior robustness against adversarial attacks and improved generalization performance in the presence of distribution shift in each image classification task while maintaining high clean accuracy.
☆ RGBTrack: Fast, Robust Depth-Free 6D Pose Estimation and Tracking
We introduce a robust framework, RGBTrack, for real-time 6D pose estimation and tracking that operates solely on RGB data, thereby eliminating the need for depth input for such dynamic and precise object pose tracking tasks. Building on the FoundationPose architecture, we devise a novel binary search strategy combined with a render-and-compare mechanism to efficiently infer depth and generate robust pose hypotheses from true-scale CAD models. To maintain stable tracking in dynamic scenarios, including rapid movements and occlusions, RGBTrack integrates state-of-the-art 2D object tracking (XMem) with a Kalman filter and a state machine for proactive object pose recovery. In addition, RGBTrack's scale recovery module dynamically adapts CAD models of unknown scale using an initial depth estimate, enabling seamless integration with modern generative reconstruction techniques. Extensive evaluations on benchmark datasets demonstrate that RGBTrack's novel depth-free approach achieves competitive accuracy and real-time performance, making it a promising practical solution candidate for application areas including robotics, augmented reality, and computer vision. The source code for our implementation will be made publicly available at https://github.com/GreatenAnoymous/RGBTrack.git.
comment: Accepted to IROS 2025
☆ MEXA: Towards General Multimodal Reasoning with Dynamic Multi-Expert Aggregation
Combining pre-trained expert models offers substantial potential for scalable multimodal reasoning, but building a unified framework remains challenging due to the increasing diversity of input modalities and task complexity. For instance, medical diagnosis requires precise reasoning over structured clinical tables, while financial forecasting depends on interpreting plot-based data to make informed predictions. To tackle this challenge, we introduce MEXA, a training-free framework that performs modality- and task-aware aggregation of multiple expert models to enable effective multimodal reasoning across diverse and distinct domains. MEXA dynamically selects expert models based on the input modality and the task-specific reasoning demands (i.e., skills). Each expert model, specialized in a modality task pair, generates interpretable textual reasoning outputs. MEXA then aggregates and reasons over these outputs using a Large Reasoning Model (LRM) to produce the final answer. This modular design allows flexible and transparent multimodal reasoning across diverse domains without additional training overhead. We extensively evaluate our approach on diverse multimodal benchmarks, including Video Reasoning, Audio Reasoning, 3D Understanding, and Medical QA. MEXA consistently delivers performance improvements over strong multimodal baselines, highlighting the effectiveness and broad applicability of our expert-driven selection and aggregation in diverse multimodal reasoning tasks.
comment: The first two authors contributed equally; Github link: https://github.com/Yui010206/MEXA
☆ Monocular One-Shot Metric-Depth Alignment for RGB-Based Robot Grasping
Accurate 6D object pose estimation is a prerequisite for successfully completing robotic prehensile and non-prehensile manipulation tasks. At present, 6D pose estimation for robotic manipulation generally relies on depth sensors based on, e.g., structured light, time-of-flight, and stereo-vision, which can be expensive, produce noisy output (as compared with RGB cameras), and fail to handle transparent objects. On the other hand, state-of-the-art monocular depth estimation models (MDEMs) provide only affine-invariant depths up to an unknown scale and shift. Metric MDEMs achieve some successful zero-shot results on public datasets, but fail to generalize. We propose a novel framework, Monocular One-shot Metric-depth Alignment (MOMA), to recover metric depth from a single RGB image, through a one-shot adaptation building on MDEM techniques. MOMA performs scale-rotation-shift alignments during camera calibration, guided by sparse ground-truth depth points, enabling accurate depth estimation without additional data collection or model retraining on the testing setup. MOMA supports fine-tuning the MDEM on transparent objects, demonstrating strong generalization capabilities. Real-world experiments on tabletop 2-finger grasping and suction-based bin-picking applications show MOMA achieves high success rates in diverse tasks, confirming its effectiveness.
comment: Accepted to IROS 2025
☆ Acquiring and Accumulating Knowledge from Diverse Datasets for Multi-label Driving Scene Classification
Driving scene identification, which assigns multiple non-exclusive class labels to a scene, provides the contextual awareness necessary for enhancing autonomous vehicles' ability to understand, reason about, and interact with the complex driving environment. As a multi-label classification problem, it is better tackled via multitasking learning. However, directly training a multi-label classification model for driving scene identification through multitask learning presents two main challenges: acquiring a balanced, comprehensively annotated multi-label dataset and balancing learning across different tasks. This paper introduces a novel learning system that synergizes knowledge acquisition and accumulation (KAA) with consistency-based active learning (CAL) to address those challenges. KAA acquires and accumulates knowledge about scene identification from various single-label datasets via monotask learning. Subsequently, CAL effectively resolves the knowledge gap caused by the discrepancy between the marginal distributions of individual attributes and their joint distribution. An ablation study on our Driving Scene Identification (DSI) dataset demonstrates a 56.1% performance increase over the baseline model pretrained on ImageNet. Of this, KAA accounts for 31.3% of the gain, and CAL contributes 24.8%. Moreover, KAA-CAL stands out as the best performer when compared to state-of-the-art (SOTA) multi-label models on two public datasets, BDD100K and HSD, achieving this while using 85% less data. The DSI dataset and the implementation code for KAA-CAL are available at https://github.com/KELISBU/KAA-CAL .
☆ Assembler: Scalable 3D Part Assembly via Anchor Point Diffusion
We present Assembler, a scalable and generalizable framework for 3D part assembly that reconstructs complete objects from input part meshes and a reference image. Unlike prior approaches that mostly rely on deterministic part pose prediction and category-specific training, Assembler is designed to handle diverse, in-the-wild objects with varying part counts, geometries, and structures. It addresses the core challenges of scaling to general 3D part assembly through innovations in task formulation, representation, and data. First, Assembler casts part assembly as a generative problem and employs diffusion models to sample plausible configurations, effectively capturing ambiguities arising from symmetry, repeated parts, and multiple valid assemblies. Second, we introduce a novel shape-centric representation based on sparse anchor point clouds, enabling scalable generation in Euclidean space rather than SE(3) pose prediction. Third, we construct a large-scale dataset of over 320K diverse part-object assemblies using a synthesis and filtering pipeline built on existing 3D shape repositories. Assembler achieves state-of-the-art performance on PartNet and is the first to demonstrate high-quality assembly for complex, real-world objects. Based on Assembler, we further introduce an interesting part-aware 3D modeling system that generates high-resolution, editable objects from images, demonstrating potential for interactive and compositional design. Project page: https://assembler3d.github.io
comment: Technical Report. Project page: https://assembler3d.github.io
☆ Relaxed syntax modeling in Transformers for future-proof license plate recognition
Effective license plate recognition systems are required to be resilient to constant change, as new license plates are released into traffic daily. While Transformer-based networks excel in their recognition at first sight, we observe significant performance drop over time which proves them unsuitable for tense production environments. Indeed, such systems obtain state-of-the-art results on plates whose syntax is seen during training. Yet, we show they perform similarly to random guessing on future plates where legible characters are wrongly recognized due to a shift in their syntax. After highlighting the flows of positional and contextual information in Transformer encoder-decoders, we identify several causes for their over-reliance on past syntax. Following, we devise architectural cut-offs and replacements which we integrate into SaLT, an attempt at a Syntax-Less Transformer for syntax-agnostic modeling of license plate representations. Experiments on both real and synthetic datasets show that our approach reaches top accuracy on past syntax and most importantly nearly maintains performance on future license plates. We further demonstrate the robustness of our architecture enhancements by way of various ablations.
☆ Stretching Beyond the Obvious: A Gradient-Free Framework to Unveil the Hidden Landscape of Visual Invariance
Uncovering which features' combinations high-level visual units encode is critical to understand how images are transformed into representations that support recognition. While existing feature visualization approaches typically infer a unit's most exciting images, this is insufficient to reveal the manifold of transformations under which responses remain invariant, which is key to generalization in vision. Here we introduce Stretch-and-Squeeze (SnS), an unbiased, model-agnostic, and gradient-free framework to systematically characterize a unit's invariance landscape and its vulnerability to adversarial perturbations in both biological and artificial visual systems. SnS frames these transformations as bi-objective optimization problems. To probe invariance, SnS seeks image perturbations that maximally alter the representation of a reference stimulus in a given processing stage while preserving unit activation. To probe adversarial sensitivity, SnS seeks perturbations that minimally alter the stimulus while suppressing unit activation. Applied to convolutional neural networks (CNNs), SnS revealed image variations that were further from a reference image in pixel-space than those produced by affine transformations, while more strongly preserving the target unit's response. The discovered invariant images differed dramatically depending on the choice of image representation used for optimization: pixel-level changes primarily affected luminance and contrast, while stretching mid- and late-layer CNN representations altered texture and pose respectively. Notably, the invariant images from robust networks were more recognizable by human subjects than those from standard networks, supporting the higher fidelity of robust CNNs as models of the visual system.
comment: 21 pages, 9 figures
☆ Unsupervised Image Super-Resolution Reconstruction Based on Real-World Degradation Patterns
The training of real-world super-resolution reconstruction models heavily relies on datasets that reflect real-world degradation patterns. Extracting and modeling degradation patterns for super-resolution reconstruction using only real-world low-resolution (LR) images remains a challenging task. When synthesizing datasets to simulate real-world degradation, relying solely on degradation extraction methods fails to capture both blur and diverse noise characteristics across varying LR distributions, as well as more implicit degradations such as color gamut shifts. Conversely, domain translation alone cannot accurately approximate real-world blur characteristics due to the significant degradation domain gap between synthetic and real data. To address these challenges, we propose a novel TripleGAN framework comprising two strategically designed components: The FirstGAN primarily focuses on narrowing the domain gap in blur characteristics, while the SecondGAN performs domain-specific translation to approximate target-domain blur properties and learn additional degradation patterns. The ThirdGAN is trained on pseudo-real data generated by the FirstGAN and SecondGAN to reconstruct real-world LR images. Extensive experiments on the RealSR and DRealSR datasets demonstrate that our method exhibits clear advantages in quantitative metrics while maintaining sharp reconstructions without over-smoothing artifacts. The proposed framework effectively learns real-world degradation patterns from LR observations and synthesizes aligned datasets with corresponding degradation characteristics, thereby enabling the trained network to achieve superior performance in reconstructing high-quality SR images from real-world LR inputs.
☆ A Synthetic Benchmark for Collaborative 3D Semantic Occupancy Prediction in V2X Autonomous Driving
3D semantic occupancy prediction is an emerging perception paradigm in autonomous driving, providing a voxel-level representation of both geometric details and semantic categories. However, the perception capability of a single vehicle is inherently constrained by occlusion, restricted sensor range, and narrow viewpoints. To address these limitations, collaborative perception enables the exchange of complementary information, thereby enhancing the completeness and accuracy. In the absence of a dedicated dataset for collaborative 3D semantic occupancy prediction, we augment an existing collaborative perception dataset by replaying it in CARLA with a high-resolution semantic voxel sensor to provide dense and comprehensive occupancy annotations. In addition, we establish benchmarks with varying prediction ranges designed to systematically assess the impact of spatial extent on collaborative prediction. We further develop a baseline model that performs inter-agent feature fusion via spatial alignment and attention aggregation. Experimental results demonstrate that our baseline model consistently outperforms single-agent models, with increasing gains observed as the prediction range expands.
☆ Prmpt2Adpt: Prompt-Based Zero-Shot Domain Adaptation for Resource-Constrained Environments
Unsupervised Domain Adaptation (UDA) is a critical challenge in real-world vision systems, especially in resource-constrained environments like drones, where memory and computation are limited. Existing prompt-driven UDA methods typically rely on large vision-language models and require full access to source-domain data during adaptation, limiting their applicability. In this work, we propose Prmpt2Adpt, a lightweight and efficient zero-shot domain adaptation framework built around a teacher-student paradigm guided by prompt-based feature alignment. At the core of our method is a distilled and fine-tuned CLIP model, used as the frozen backbone of a Faster R-CNN teacher. A small set of low-level source features is aligned to the target domain semantics-specified only through a natural language prompt-via Prompt-driven Instance Normalization (PIN). These semantically steered features are used to briefly fine-tune the detection head of the teacher model. The adapted teacher then generates high-quality pseudo-labels, which guide the on-the-fly adaptation of a compact student model. Experiments on the MDS-A dataset demonstrate that Prmpt2Adpt achieves competitive detection performance compared to state-of-the-art methods, while delivering up to 7x faster adaptation and 5x faster inference speed using few source images-making it a practical and scalable solution for real-time adaptation in low-resource domains.
☆ ForestFormer3D: A Unified Framework for End-to-End Segmentation of Forest LiDAR 3D Point Clouds
The segmentation of forest LiDAR 3D point clouds, including both individual tree and semantic segmentation, is fundamental for advancing forest management and ecological research. However, current approaches often struggle with the complexity and variability of natural forest environments. We present ForestFormer3D, a new unified and end-to-end framework designed for precise individual tree and semantic segmentation. ForestFormer3D incorporates ISA-guided query point selection, a score-based block merging strategy during inference, and a one-to-many association mechanism for effective training. By combining these new components, our model achieves state-of-the-art performance for individual tree segmentation on the newly introduced FOR-instanceV2 dataset, which spans diverse forest types and regions. Additionally, ForestFormer3D generalizes well to unseen test sets (Wytham woods and LAUTx), showcasing its robustness across different forest conditions and sensor modalities. The FOR-instanceV2 dataset and the ForestFormer3D code will be released soon.
☆ Enhancing Step-by-Step and Verifiable Medical Reasoning in MLLMs
Multimodal large language models (MLLMs) have begun to demonstrate robust reasoning capabilities on general tasks, yet their application in the medical domain remains in its early stages. Constructing chain-of-thought (CoT) training data is essential for bolstering the reasoning abilities of medical MLLMs. However, existing approaches exhibit a deficiency in offering a comprehensive framework for searching and evaluating effective reasoning paths towards critical diagnosis. To address this challenge, we propose Mentor-Intern Collaborative Search (MICS), a novel reasoning-path searching scheme to generate rigorous and effective medical CoT data. MICS first leverages mentor models to initialize the reasoning, one step at a time, then prompts each intern model to continue the thinking along those initiated paths, and finally selects the optimal reasoning path according to the overall reasoning performance of multiple intern models. The reasoning performance is determined by an MICS-Score, which assesses the quality of generated reasoning paths. Eventually, we construct MMRP, a multi-task medical reasoning dataset with ranked difficulty, and Chiron-o1, a new medical MLLM devised via a curriculum learning strategy, with robust visual question-answering and generalizable reasoning capabilities. Extensive experiments demonstrate that Chiron-o1, trained on our CoT dataset constructed using MICS, achieves state-of-the-art performance across a list of medical visual question answering and reasoning benchmarks. Codes are available at GitHub - manglu097/Chiron-o1: Enhancing Step-by-Step and Verifiable Medical Reasoning in MLLMs
☆ Reversing Flow for Image Restoration CVPR2025
Image restoration aims to recover high-quality (HQ) images from degraded low-quality (LQ) ones by reversing the effects of degradation. Existing generative models for image restoration, including diffusion and score-based models, often treat the degradation process as a stochastic transformation, which introduces inefficiency and complexity. In this work, we propose ResFlow, a novel image restoration framework that models the degradation process as a deterministic path using continuous normalizing flows. ResFlow augments the degradation process with an auxiliary process that disambiguates the uncertainty in HQ prediction to enable reversible modeling of the degradation process. ResFlow adopts entropy-preserving flow paths and learns the augmented degradation flow by matching the velocity field. ResFlow significantly improves the performance and speed of image restoration, completing the task in fewer than four sampling steps. Extensive experiments demonstrate that ResFlow achieves state-of-the-art results across various image restoration benchmarks, offering a practical and efficient solution for real-world applications.
comment: CVPR2025 Final Version; Corresponding Author: Bing Li
☆ Visual-Instructed Degradation Diffusion for All-in-One Image Restoration CVPR2025
Image restoration tasks like deblurring, denoising, and dehazing usually need distinct models for each degradation type, restricting their generalization in real-world scenarios with mixed or unknown degradations. In this work, we propose \textbf{Defusion}, a novel all-in-one image restoration framework that utilizes visual instruction-guided degradation diffusion. Unlike existing methods that rely on task-specific models or ambiguous text-based priors, Defusion constructs explicit \textbf{visual instructions} that align with the visual degradation patterns. These instructions are grounded by applying degradations to standardized visual elements, capturing intrinsic degradation features while agnostic to image semantics. Defusion then uses these visual instructions to guide a diffusion-based model that operates directly in the degradation space, where it reconstructs high-quality images by denoising the degradation effects with enhanced stability and generalizability. Comprehensive experiments demonstrate that Defusion outperforms state-of-the-art methods across diverse image restoration tasks, including complex and real-world degradations.
comment: CVPR2025 Final Version; Corresponding Author: Bing Li
☆ LAION-C: An Out-of-Distribution Benchmark for Web-Scale Vision Models ICML 2025
Out-of-distribution (OOD) robustness is a desired property of computer vision models. Improving model robustness requires high-quality signals from robustness benchmarks to quantify progress. While various benchmark datasets such as ImageNet-C were proposed in the ImageNet era, most ImageNet-C corruption types are no longer OOD relative to today's large, web-scraped datasets, which already contain common corruptions such as blur or JPEG compression artifacts. Consequently, these benchmarks are no longer well-suited for evaluating OOD robustness in the era of web-scale datasets. Indeed, recent models show saturating scores on ImageNet-era OOD benchmarks, indicating that it is unclear whether models trained on web-scale datasets truly become better at OOD generalization or whether they have simply been exposed to the test distortions during training. To address this, we introduce LAION-C as a benchmark alternative for ImageNet-C. LAION-C consists of six novel distortion types specifically designed to be OOD, even for web-scale datasets such as LAION. In a comprehensive evaluation of state-of-the-art models, we find that the LAION-C dataset poses significant challenges to contemporary models, including MLLMs such as Gemini and GPT-4o. We additionally conducted a psychophysical experiment to evaluate the difficulty of our corruptions for human observers, enabling a comparison of models to lab-quality human robustness data. We observe a paradigm shift in OOD generalization: from humans outperforming models, to the best models now matching or outperforming the best human observers.
comment: ICML 2025 camera ready version
☆ LunarLoc: Segment-Based Global Localization on the Moon
Global localization is necessary for autonomous operations on the lunar surface where traditional Earth-based navigation infrastructure, such as GPS, is unavailable. As NASA advances toward sustained lunar presence under the Artemis program, autonomous operations will be an essential component of tasks such as robotic exploration and infrastructure deployment. Tasks such as excavation and transport of regolith require precise pose estimation, but proposed approaches such as visual-inertial odometry (VIO) accumulate odometry drift over long traverses. Precise pose estimation is particularly important for upcoming missions such as the ISRU Pilot Excavator (IPEx) that rely on autonomous agents to operate over extended timescales and varied terrain. To help overcome odometry drift over long traverses, we propose LunarLoc, an approach to global localization that leverages instance segmentation for zero-shot extraction of boulder landmarks from onboard stereo imagery. Segment detections are used to construct a graph-based representation of the terrain, which is then aligned with a reference map of the environment captured during a previous session using graph-theoretic data association. This method enables accurate and drift-free global localization in visually ambiguous settings. LunarLoc achieves sub-cm level accuracy in multi-session global localization experiments, significantly outperforming the state of the art in lunar global localization. To encourage the development of further methods for global localization on the Moon, we release our datasets publicly with a playback module: https://github.com/mit-acl/lunarloc-data.
☆ PET Tracer Separation Using Conditional Diffusion Transformer with Multi-latent Space Learning
In clinical practice, single-radiotracer positron emission tomography (PET) is commonly used for imaging. Although multi-tracer PET imaging can provide supplementary information of radiotracers that are sensitive to physiological function changes, enabling a more comprehensive characterization of physiological and pathological states, the gamma-photon pairs generated by positron annihilation reactions of different tracers in PET imaging have the same energy, making it difficult to distinguish the tracer signals. In this study, a multi-latent space guided texture conditional diffusion transformer model (MS-CDT) is proposed for PET tracer separation. To the best of our knowledge, this is the first attempt to use texture condition and multi-latent space for tracer separation in PET imaging. The proposed model integrates diffusion and transformer architectures into a unified optimization framework, with the novel addition of texture masks as conditional inputs to enhance image details. By leveraging multi-latent space prior derived from different tracers, the model captures multi-level feature representations, aiming to balance computational efficiency and detail preservation. The texture masks, serving as conditional guidance, help the model focus on salient structural patterns, thereby improving the extraction and utilization of fine-grained image textures. When combined with the diffusion transformer backbone, this conditioning mechanism contributes to more accurate and robust tracer separation. To evaluate its effectiveness, the proposed MS-CDT is compared with several advanced methods on two types of 3D PET datasets: brain and chest scans. Experimental results indicate that MS-CDT achieved competitive performance in terms of image quality and preservation of clinically relevant information. Code is available at: https://github.com/yqx7150/MS-CDT.
☆ AI's Blind Spots: Geographic Knowledge and Diversity Deficit in Generated Urban Scenario
Image generation models are revolutionizing many domains, and urban analysis and design is no exception. While such models are widely adopted, there is a limited literature exploring their geographic knowledge, along with the biases they embed. In this work, we generated 150 synthetic images for each state in the USA and related capitals using FLUX 1 and Stable Diffusion 3.5, two state-of-the-art models for image generation. We embed each image using DINO-v2 ViT-S/14 and the Fr\'echet Inception Distances to measure the similarity between the generated images. We found that while these models have implicitly learned aspects of USA geography, if we prompt the models to generate an image for "United States" instead of specific cities or states, the models exhibit a strong representative bias toward metropolis-like areas, excluding rural states and smaller cities. {\color{black} In addition, we found that models systematically exhibit some entity-disambiguation issues with European-sounding names like Frankfort or Devon.
☆ With Limited Data for Multimodal Alignment, Let the STRUCTURE Guide You
Multimodal models have demonstrated powerful capabilities in complex tasks requiring multimodal alignment including zero-shot classification and cross-modal retrieval. However, existing models typically rely on millions of paired multimodal samples, which are prohibitively expensive or infeasible to obtain in many domains. In this work, we explore the feasibility of building multimodal models with limited amount of paired data by aligning pretrained unimodal foundation models. We show that high-quality alignment is possible with as few as tens of thousands of paired samples$\unicode{x2013}$less than $1\%$ of the data typically used in the field. To achieve this, we introduce STRUCTURE, an effective regularization technique that preserves the neighborhood geometry of the latent space of unimodal encoders. Additionally, we show that aligning last layers is often suboptimal and demonstrate the benefits of aligning the layers with the highest representational similarity across modalities. These two components can be readily incorporated into existing alignment methods, yielding substantial gains across 24 zero-shot image classification and retrieval benchmarks, with average relative improvement of $51.6\%$ in classification and $91.8\%$ in retrieval tasks. Our results highlight the effectiveness and broad applicability of our framework for limited-sample multimodal learning and offer a promising path forward for resource-constrained domains.
☆ From Lab to Factory: Pitfalls and Guidelines for Self-/Unsupervised Defect Detection on Low-Quality Industrial Images KDD '25
The detection and localization of quality-related problems in industrially mass-produced products has historically relied on manual inspection, which is costly and error-prone. Machine learning has the potential to replace manual handling. As such, the desire is to facilitate an unsupervised (or self-supervised) approach, as it is often impossible to specify all conceivable defects ahead of time. A plethora of prior works have demonstrated the aptitude of common reconstruction-, embedding-, and synthesis-based methods in laboratory settings. However, in practice, we observe that most methods do not handle low data quality well or exude low robustness in unfavorable, but typical real-world settings. For practitioners it may be very difficult to identify the actual underlying problem when such methods underperform. Worse, often-reported metrics (e.g., AUROC) are rarely suitable in practice and may give misleading results. In our setting, we attempt to identify subtle anomalies on the surface of blasted forged metal parts, using rather low-quality RGB imagery only, which is a common industrial setting. We specifically evaluate two types of state-of-the-art models that allow us to identify and improve quality issues in production data, without having to obtain new data. Our contribution is to provide guardrails for practitioners that allow them to identify problems related to, e.g., (lack of) robustness or invariance, in either the chosen model or the data reliably in similar scenarios. Furthermore, we exemplify common pitfalls in and shortcomings of likelihood-based approaches and outline a framework for proper empirical risk estimation that is more suitable for real-world scenarios.
comment: 18 pages, 7 figures, 1 table. Camera-ready version for the 2025 conference European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD '25)
☆ ParkFormer: A Transformer-Based Parking Policy with Goal Embedding and Pedestrian-Aware Control
Autonomous parking plays a vital role in intelligent vehicle systems, particularly in constrained urban environments where high-precision control is required. While traditional rule-based parking systems struggle with environmental uncertainties and lack adaptability in crowded or dynamic scenes, human drivers demonstrate the ability to park intuitively without explicit modeling. Inspired by this observation, we propose a Transformer-based end-to-end framework for autonomous parking that learns from expert demonstrations. The network takes as input surround-view camera images, goal-point representations, ego vehicle motion, and pedestrian trajectories. It outputs discrete control sequences including throttle, braking, steering, and gear selection. A novel cross-attention module integrates BEV features with target points, and a GRU-based pedestrian predictor enhances safety by modeling dynamic obstacles. We validate our method on the CARLA 0.9.14 simulator in both vertical and parallel parking scenarios. Experiments show our model achieves a high success rate of 96.57\%, with average positional and orientation errors of 0.21 meters and 0.41 degrees, respectively. The ablation studies further demonstrate the effectiveness of key modules such as pedestrian prediction and goal-point attention fusion. The code and dataset will be released at: https://github.com/little-snail-f/ParkFormer.
☆ Controllable and Expressive One-Shot Video Head Swapping
In this paper, we propose a novel diffusion-based multi-condition controllable framework for video head swapping, which seamlessly transplant a human head from a static image into a dynamic video, while preserving the original body and background of target video, and further allowing to tweak head expressions and movements during swapping as needed. Existing face-swapping methods mainly focus on localized facial replacement neglecting holistic head morphology, while head-swapping approaches struggling with hairstyle diversity and complex backgrounds, and none of these methods allow users to modify the transplanted head expressions after swapping. To tackle these challenges, our method incorporates several innovative strategies through a unified latent diffusion paradigm. 1) Identity-preserving context fusion: We propose a shape-agnostic mask strategy to explicitly disentangle foreground head identity features from background/body contexts, combining hair enhancement strategy to achieve robust holistic head identity preservation across diverse hair types and complex backgrounds. 2) Expression-aware landmark retargeting and editing: We propose a disentangled 3DMM-driven retargeting module that decouples identity, expression, and head poses, minimizing the impact of original expressions in input images and supporting expression editing. While a scale-aware retargeting strategy is further employed to minimize cross-identity expression distortion for higher transfer precision. Experimental results demonstrate that our method excels in seamless background integration while preserving the identity of the source portrait, as well as showcasing superior expression transfer capabilities applicable to both real and virtual characters.
comment: Project page: https://humanaigc.github.io/SwapAnyHead/
☆ Camera Calibration via Circular Patterns: A Comprehensive Framework with Measurement Uncertainty and Unbiased Projection Model
Camera calibration using planar targets has been widely favored, and two types of control points have been mainly considered as measurements: the corners of the checkerboard and the centroid of circles. Since a centroid is derived from numerous pixels, the circular pattern provides more precise measurements than the checkerboard. However, the existing projection model of circle centroids is biased under lens distortion, resulting in low performance. To surmount this limitation, we propose an unbiased projection model of the circular pattern and demonstrate its superior accuracy compared to the checkerboard. Complementing this, we introduce uncertainty into circular patterns to enhance calibration robustness and completeness. Defining centroid uncertainty improves the performance of calibration components, including pattern detection, optimization, and evaluation metrics. We also provide guidelines for performing good camera calibration based on the evaluation metric. The core concept of this approach is to model the boundary points of a two-dimensional shape as a Markov random field, considering its connectivity. The shape distribution is propagated to the centroid uncertainty through an appropriate shape representation based on the Green theorem. Consequently, the resulting framework achieves marked gains in calibration accuracy and robustness. The complete source code and demonstration video are available at https://github.com/chaehyeonsong/discocal.
☆ Beyond Blur: A Fluid Perspective on Generative Diffusion Models
We propose a novel PDE-driven corruption process for generative image synthesis based on advection-diffusion processes which generalizes existing PDE-based approaches. Our forward pass formulates image corruption via a physically motivated PDE that couples directional advection with isotropic diffusion and Gaussian noise, controlled by dimensionless numbers (Peclet, Fourier). We implement this PDE numerically through a GPU-accelerated custom Lattice Boltzmann solver for fast evaluation. To induce realistic turbulence, we generate stochastic velocity fields that introduce coherent motion and capture multi-scale mixing. In the generative process, a neural network learns to reverse the advection-diffusion operator thus constituting a novel generative model. We discuss how previous methods emerge as specific cases of our operator, demonstrating that our framework generalizes prior PDE-based corruption techniques. We illustrate how advection improves the diversity and quality of the generated images while keeping the overall color palette unaffected. This work bridges fluid dynamics, dimensionless PDE theory, and deep generative modeling, offering a fresh perspective on physically informed image corruption processes for diffusion-based synthesis.
comment: 11 pages, 8 figures, pre-print, supplementary pseudocode in appendix
☆ AnyTraverse: An off-road traversability framework with VLM and human operator in the loop
Off-road traversability segmentation enables autonomous navigation with applications in search-and-rescue, military operations, wildlife exploration, and agriculture. Current frameworks struggle due to significant variations in unstructured environments and uncertain scene changes, and are not adaptive to be used for different robot types. We present AnyTraverse, a framework combining natural language-based prompts with human-operator assistance to determine navigable regions for diverse robotic vehicles. The system segments scenes for a given set of prompts and calls the operator only when encountering previously unexplored scenery or unknown class not part of the prompt in its region-of-interest, thus reducing active supervision load while adapting to varying outdoor scenes. Our zero-shot learning approach eliminates the need for extensive data collection or retraining. Our experimental validation includes testing on RELLIS-3D, Freiburg Forest, and RUGD datasets and demonstrate real-world deployment on multiple robot platforms. The results show that AnyTraverse performs better than GA-NAV and Off-seg while offering a vehicle-agnostic approach to off-road traversability that balances automation with targeted human supervision.
Self-supervised Feature Extraction for Enhanced Ball Detection on Soccer Robots
Robust and accurate ball detection is a critical component for autonomous humanoid soccer robots, particularly in dynamic and challenging environments such as RoboCup outdoor fields. However, traditional supervised approaches require extensive manual annotation, which is costly and time-intensive. To overcome this problem, we present a self-supervised learning framework for domain-adaptive feature extraction to enhance ball detection performance. The proposed approach leverages a general-purpose pretrained model to generate pseudo-labels, which are then used in a suite of self-supervised pretext tasks -- including colorization, edge detection, and triplet loss -- to learn robust visual features without relying on manual annotations. Additionally, a model-agnostic meta-learning (MAML) strategy is incorporated to ensure rapid adaptation to new deployment scenarios with minimal supervision. A new dataset comprising 10,000 labeled images from outdoor RoboCup SPL matches is introduced, used to validate the method, and made available to the community. Experimental results demonstrate that the proposed pipeline outperforms baseline models in terms of accuracy, F1 score, and IoU, while also exhibiting faster convergence.
☆ Loupe: A Generalizable and Adaptive Framework for Image Forgery Detection IJCAI 2025
The proliferation of generative models has raised serious concerns about visual content forgery. Existing deepfake detection methods primarily target either image-level classification or pixel-wise localization. While some achieve high accuracy, they often suffer from limited generalization across manipulation types or rely on complex architectures. In this paper, we propose Loupe, a lightweight yet effective framework for joint deepfake detection and localization. Loupe integrates a patch-aware classifier and a segmentation module with conditional queries, allowing simultaneous global authenticity classification and fine-grained mask prediction. To enhance robustness against distribution shifts of test set, Loupe introduces a pseudo-label-guided test-time adaptation mechanism by leveraging patch-level predictions to supervise the segmentation head. Extensive experiments on the DDL dataset demonstrate that Loupe achieves state-of-the-art performance, securing the first place in the IJCAI 2025 Deepfake Detection and Localization Challenge with an overall score of 0.846. Our results validate the effectiveness of the proposed patch-level fusion and conditional query design in improving both classification accuracy and spatial localization under diverse forgery patterns. The code is available at https://github.com/Kamichanw/Loupe.
comment: 6 pages, 2 figures, accepted by IJCAI 2025 workshop
☆ FOCUS: Unified Vision-Language Modeling for Interactive Editing Driven by Referential Segmentation
Recent Large Vision Language Models (LVLMs) demonstrate promising capabilities in unifying visual understanding and generative modeling, enabling both accurate content understanding and flexible editing. However, current approaches treat "what to see" and "how to edit" separately: they either perform isolated object segmentation or utilize segmentation masks merely as conditional prompts for local edit generation tasks, often relying on multiple disjointed models. To bridge these gaps, we introduce FOCUS, a unified LVLM that integrates segmentation-aware perception and controllable object-centric generation within an end-to-end framework. FOCUS employs a dual-branch visual encoder to simultaneously capture global semantic context and fine-grained spatial details. In addition, we leverage a MoVQGAN-based visual tokenizer to produce discrete visual tokens that enhance generation quality. To enable accurate and controllable image editing, we propose a progressive multi-stage training pipeline, where segmentation masks are jointly optimized and used as spatial condition prompts to guide the diffusion decoder. This strategy aligns visual encoding, segmentation, and generation modules, effectively bridging segmentation-aware perception with fine-grained visual synthesis. Extensive experiments across three core tasks, including multimodal understanding, referring segmentation accuracy, and controllable image generation, demonstrate that FOCUS achieves strong performance by jointly optimizing visual perception and generative capabilities.
☆ Co-VisiON: Co-Visibility ReasONing on Sparse Image Sets of Indoor Scenes
Humans exhibit a remarkable ability to recognize co-visibility-the overlapping regions visible in multiple images-even when these images are sparsely distributed across a complex scene. This capability is foundational in 3D vision and robotic perception. Despite significant progress in vision learning, it remains unclear whether current vision models have reached human-level proficiency in co-visibility analysis. In this work, we introduce the Co-Visibility reasONing (Co-VisiON) benchmark, designed to directly evaluate co-visibility reasoning on sparse image sets across over 1000 indoor scenarios. Our experiments reveal that while co-visibility is typically treated as a low-level feature matching task, it poses a significant challenge for existing vision models under sparse conditions. Notably, a proprietary vision-language model outperforms all purely vision-based approaches, with all models lagging substantially behind human performance. This gap underscores the need for more than basic pairwise vision processing-it calls for a comprehensive spatial understanding through high-level reasoning across multiple views. Inspired by human visual cognition, we propose a novel multi-view baseline, Covis, which achieves top performance among pure vision models and narrows the gap to the proprietary VLM. We hope our benchmark and findings will spur further advancements in developing vision models capable of robust, high-level reasoning in challenging, sparse environments. Our dataset and source code can be found at: https://ai4ce.github.io/CoVISION
☆ Temperature calibration of surface emissivities with an improved thermal image enhancement network
Infrared thermography faces persistent challenges in temperature accuracy due to material emissivity variations, where existing methods often neglect the joint optimization of radiometric calibration and image degradation. This study introduces a physically guided neural framework that unifies temperature correction and image enhancement through a symmetric skip-CNN architecture and an emissivity-aware attention module. The pre-processing stage segments the ROIs of the image and and initially corrected the firing rate. A novel dual-constrained loss function strengthens the statistical consistency between the target and reference regions through mean-variance alignment and histogram matching based on Kullback-Leibler dispersion. The method works by dynamically fusing thermal radiation features and spatial context, and the model suppresses emissivity artifacts while recovering structural details. After validating the industrial blower system under different conditions, the improved network realizes the dynamic fusion of thermal radiation characteristics and spatial background, with accurate calibration results in various industrial conditions.
☆ Seeing What Matters: Generalizable AI-generated Video Detection with Forensic-Oriented Augmentation
Synthetic video generation is progressing very rapidly. The latest models can produce very realistic high-resolution videos that are virtually indistinguishable from real ones. Although several video forensic detectors have been recently proposed, they often exhibit poor generalization, which limits their applicability in a real-world scenario. Our key insight to overcome this issue is to guide the detector towards seeing what really matters. In fact, a well-designed forensic classifier should focus on identifying intrinsic low-level artifacts introduced by a generative architecture rather than relying on high-level semantic flaws that characterize a specific model. In this work, first, we study different generative architectures, searching and identifying discriminative features that are unbiased, robust to impairments, and shared across models. Then, we introduce a novel forensic-oriented data augmentation strategy based on the wavelet decomposition and replace specific frequency-related bands to drive the model to exploit more relevant forensic cues. Our novel training paradigm improves the generalizability of AI-generated video detectors, without the need for complex algorithms and large datasets that include multiple synthetic generators. To evaluate our approach, we train the detector using data from a single generative model and test it against videos produced by a wide range of other models. Despite its simplicity, our method achieves a significant accuracy improvement over state-of-the-art detectors and obtains excellent results even on very recent generative models, such as NOVA and FLUX. Code and data will be made publicly available.
☆ RealSR-R1: Reinforcement Learning for Real-World Image Super-Resolution with Vision-Language Chain-of-Thought
Real-World Image Super-Resolution is one of the most challenging task in image restoration. However, existing methods struggle with an accurate understanding of degraded image content, leading to reconstructed results that are both low-fidelity and unnatural. We present RealSR-R1 in this work, which empowers the RealSR models with understanding and reasoning capabilities. Inspired by the success of Chain of Thought (CoT) in large language models (LLMs), we simulate the human process of handling degraded images and propose the VLCoT framework, which integrates vision and language reasoning. The framework aims to precisely restore image details by progressively generating more comprehensive text and higher-resolution images. To overcome the challenge of traditional supervised learning CoT failing to generalize to real-world scenarios, we introduce, for the first time, Group Relative Policy Optimization (GRPO) into the Real-World Image Super-Resolution task. We propose VLCoT-GRPO as a solution, which designs four reward functions: (1) Format reward, used to standardize the CoT process; (2) Degradation reward, to incentivize accurate degradation estimation; (3) Understanding reward, to ensure the accuracy of the generated content; and (4) Generation reward, where we propose using a visual expert model to evaluate the quality of generated images, encouraging the model to generate more realistic images. Extensive experiments demonstrate that our proposed RealSR-R1 can generate realistic details and accurately understand image content, particularly in semantically rich scenes or images with severe degradation.
☆ TextBraTS: Text-Guided Volumetric Brain Tumor Segmentation with Innovative Dataset Development and Fusion Module Exploration
Deep learning has demonstrated remarkable success in medical image segmentation and computer-aided diagnosis. In particular, numerous advanced methods have achieved state-of-the-art performance in brain tumor segmentation from MRI scans. While recent studies in other medical imaging domains have revealed that integrating textual reports with visual data can enhance segmentation accuracy, the field of brain tumor analysis lacks a comprehensive dataset that combines radiological images with corresponding textual annotations. This limitation has hindered the exploration of multimodal approaches that leverage both imaging and textual data. To bridge this critical gap, we introduce the TextBraTS dataset, the first publicly available volume-level multimodal dataset that contains paired MRI volumes and rich textual annotations, derived from the widely adopted BraTS2020 benchmark. Building upon this novel dataset, we propose a novel baseline framework and sequential cross-attention method for text-guided volumetric medical image segmentation. Through extensive experiments with various text-image fusion strategies and templated text formulations, our approach demonstrates significant improvements in brain tumor segmentation accuracy, offering valuable insights into effective multimodal integration techniques. Our dataset, implementation code, and pre-trained models are publicly available at https://github.com/Jupitern52/TextBraTS.
☆ PQCAD-DM: Progressive Quantization and Calibration-Assisted Distillation for Extremely Efficient Diffusion Model
Diffusion models excel in image generation but are computational and resource-intensive due to their reliance on iterative Markov chain processes, leading to error accumulation and limiting the effectiveness of naive compression techniques. In this paper, we propose PQCAD-DM, a novel hybrid compression framework combining Progressive Quantization (PQ) and Calibration-Assisted Distillation (CAD) to address these challenges. PQ employs a two-stage quantization with adaptive bit-width transitions guided by a momentum-based mechanism, reducing excessive weight perturbations in low-precision. CAD leverages full-precision calibration datasets during distillation, enabling the student to match full-precision performance even with a quantized teacher. As a result, PQCAD-DM achieves a balance between computational efficiency and generative quality, halving inference time while maintaining competitive performance. Extensive experiments validate PQCAD-DM's superior generative capabilities and efficiency across diverse datasets, outperforming fixed-bit quantization methods.
comment: 10 pages, 6 figures
☆ Infrared and Visible Image Fusion Based on Implicit Neural Representations
Infrared and visible light image fusion aims to combine the strengths of both modalities to generate images that are rich in information and fulfill visual or computational requirements. This paper proposes an image fusion method based on Implicit Neural Representations (INR), referred to as INRFuse. This method parameterizes a continuous function through a neural network to implicitly represent the multimodal information of the image, breaking through the traditional reliance on discrete pixels or explicit features. The normalized spatial coordinates of the infrared and visible light images serve as inputs, and multi-layer perceptrons is utilized to adaptively fuse the features of both modalities, resulting in the output of the fused image. By designing multiple loss functions, the method jointly optimizes the similarity between the fused image and the original images, effectively preserving the thermal radiation information of the infrared image while maintaining the texture details of the visible light image. Furthermore, the resolution-independent characteristic of INR allows for the direct fusion of images with varying resolutions and achieves super-resolution reconstruction through high-density coordinate queries. Experimental results indicate that INRFuse outperforms existing methods in both subjective visual quality and objective evaluation metrics, producing fused images with clear structures, natural details, and rich information without the necessity for a training dataset.
☆ Cross-Modal Obfuscation for Jailbreak Attacks on Large Vision-Language Models
Large Vision-Language Models (LVLMs) demonstrate exceptional performance across multimodal tasks, yet remain vulnerable to jailbreak attacks that bypass built-in safety mechanisms to elicit restricted content generation. Existing black-box jailbreak methods primarily rely on adversarial textual prompts or image perturbations, yet these approaches are highly detectable by standard content filtering systems and exhibit low query and computational efficiency. In this work, we present Cross-modal Adversarial Multimodal Obfuscation (CAMO), a novel black-box jailbreak attack framework that decomposes malicious prompts into semantically benign visual and textual fragments. By leveraging LVLMs' cross-modal reasoning abilities, CAMO covertly reconstructs harmful instructions through multi-step reasoning, evading conventional detection mechanisms. Our approach supports adjustable reasoning complexity and requires significantly fewer queries than prior attacks, enabling both stealth and efficiency. Comprehensive evaluations conducted on leading LVLMs validate CAMO's effectiveness, showcasing robust performance and strong cross-model transferability. These results underscore significant vulnerabilities in current built-in safety mechanisms, emphasizing an urgent need for advanced, alignment-aware security and safety solutions in vision-language systems.
comment: 15 pages, 9 figures
☆ Class Agnostic Instance-level Descriptor for Visual Instance Search
Despite the great success of the deep features in content-based image retrieval, the visual instance search remains challenging due to the lack of effective instance level feature representation. Supervised or weakly supervised object detection methods are not among the options due to their poor performance on the unknown object categories. In this paper, based on the feature set output from self-supervised ViT, the instance level region discovery is modeled as detecting the compact feature subsets in a hierarchical fashion. The hierarchical decomposition results in a hierarchy of feature subsets. The non-leaf nodes and leaf nodes on the hierarchy correspond to the various instance regions in an image of different semantic scales. The hierarchical decomposition well addresses the problem of object embedding and occlusions, which are widely observed in the real scenarios. The features derived from the nodes on the hierarchy make up a comprehensive representation for the latent instances in the image. Our instance-level descriptor remains effective on both the known and unknown object categories. Empirical studies on three instance search benchmarks show that it outperforms state-of-the-art methods considerably.
☆ Noise-Informed Diffusion-Generated Image Detection with Anomaly Attention
With the rapid development of image generation technologies, especially the advancement of Diffusion Models, the quality of synthesized images has significantly improved, raising concerns among researchers about information security. To mitigate the malicious abuse of diffusion models, diffusion-generated image detection has proven to be an effective countermeasure.However, a key challenge for forgery detection is generalising to diffusion models not seen during training. In this paper, we address this problem by focusing on image noise. We observe that images from different diffusion models share similar noise patterns, distinct from genuine images. Building upon this insight, we introduce a novel Noise-Aware Self-Attention (NASA) module that focuses on noise regions to capture anomalous patterns. To implement a SOTA detection model, we incorporate NASA into Swin Transformer, forming an novel detection architecture NASA-Swin. Additionally, we employ a cross-modality fusion embedding to combine RGB and noise images, along with a channel mask strategy to enhance feature learning from both modalities. Extensive experiments demonstrate the effectiveness of our approach in enhancing detection capabilities for diffusion-generated images. When encountering unseen generation methods, our approach achieves the state-of-the-art performance.Our code is available at https://github.com/WeinanGuan/NASA-Swin.
comment: Accepted by TIFS 2025. Our code is availabel at https://github.com/WeinanGuan/NASA-Swin
☆ Uncertainty-Aware Variational Information Pursuit for Interpretable Medical Image Analysis
In medical imaging, AI decision-support systems must balance accuracy and interpretability to build user trust and support effective clinical decision-making. Recently, Variational Information Pursuit (V-IP) and its variants have emerged as interpretable-by-design modeling techniques, aiming to explain AI decisions in terms of human-understandable, clinically relevant concepts. However, existing V-IP methods overlook instance-level uncertainties in query-answer generation, which can arise from model limitations (epistemic uncertainty) or variability in expert responses (aleatoric uncertainty). This paper introduces Uncertainty-Aware V-IP (UAV-IP), a novel framework that integrates uncertainty quantification into the V-IP process. We evaluate UAV-IP across four medical imaging datasets, PH2, Derm7pt, BrEaST, and SkinCon, demonstrating an average AUC improvement of approximately 3.2% while generating 20% more concise explanations compared to baseline V-IP, without sacrificing informativeness. These findings highlight the importance of uncertainty-aware reasoning in interpretable by design models for robust and reliable medical decision-making.
☆ Cross-modal Offset-guided Dynamic Alignment and Fusion for Weakly Aligned UAV Object Detection
Unmanned aerial vehicle (UAV) object detection plays a vital role in applications such as environmental monitoring and urban security. To improve robustness, recent studies have explored multimodal detection by fusing visible (RGB) and infrared (IR) imagery. However, due to UAV platform motion and asynchronous imaging, spatial misalignment frequently occurs between modalities, leading to weak alignment. This introduces two major challenges: semantic inconsistency at corresponding spatial locations and modality conflict during feature fusion. Existing methods often address these issues in isolation, limiting their effectiveness. In this paper, we propose Cross-modal Offset-guided Dynamic Alignment and Fusion (CoDAF), a unified framework that jointly tackles both challenges in weakly aligned UAV-based object detection. CoDAF comprises two novel modules: the Offset-guided Semantic Alignment (OSA), which estimates attention-based spatial offsets and uses deformable convolution guided by a shared semantic space to align features more precisely; and the Dynamic Attention-guided Fusion Module (DAFM), which adaptively balances modality contributions through gating and refines fused features via spatial-channel dual attention. By integrating alignment and fusion in a unified design, CoDAF enables robust UAV object detection. Experiments on standard benchmarks validate the effectiveness of our approach, with CoDAF achieving a mAP of 78.6% on the DroneVehicle dataset.
☆ 3DeepRep: 3D Deep Low-rank Tensor Representation for Hyperspectral Image Inpainting
Recent approaches based on transform-based tensor nuclear norm (TNN) have demonstrated notable effectiveness in hyperspectral image (HSI) inpainting by leveraging low-rank structures in latent representations. Recent developments incorporate deep transforms to improve low-rank tensor representation; however, existing approaches typically restrict the transform to the spectral mode, neglecting low-rank properties along other tensor modes. In this paper, we propose a novel 3-directional deep low-rank tensor representation (3DeepRep) model, which performs deep nonlinear transforms along all three modes of the HSI tensor. To enforce low-rankness, the model minimizes the nuclear norms of mode-i frontal slices in the corresponding latent space for each direction (i=1,2,3), forming a 3-directional TNN regularization. The outputs from the three directional branches are subsequently fused via a learnable aggregation module to produce the final result. An efficient gradient-based optimization algorithm is developed to solve the model in a self-supervised manner. Extensive experiments on real-world HSI datasets demonstrate that the proposed method achieves superior inpainting performance compared to existing state-of-the-art techniques, both qualitatively and quantitatively.
☆ A Prior-Guided Joint Diffusion Model in Projection Domain for PET Tracer Conversion
Positron emission tomography (PET) is widely used to assess metabolic activity, but its application is limited by the availability of radiotracers. 18F-labeled fluorodeoxyglucose (18F-FDG) is the most commonly used tracer but shows limited effectiveness for certain tumors. In contrast, 6-18F-fluoro-3,4-dihydroxy-L-phenylalanine (18F-DOPA) offers higher specificity for neuroendocrine tumors and neurological disorders. However, its complex synthesis and limitations in transportation and clinical use hinder widespread adoption. During PET imaging, the sinogram represents a form of raw data acquired by the scanner. Therefore, modeling in projection domain enables more direct utilization of the original information, potentially reducing the accumulation of errors introduced during the image reconstruction process. Inspired by these factors, this study proposes a prior-guided joint diffusion model (PJDM) for transforming 18F-FDG PET images into 18F-DOPA PET images in projection domain. Specifically, a coarse estimation model and a prior refinement model are trained independently. During inference, an initial synthetic 18F-DOPA PET sinogram is generated using a higher-order hybrid sampler. This sinogram is then degraded and serves as an additional condition to guide the iterative refinement process using learned prior. Experimental results demonstrated that PJDM effectively improved both sinogram quality and synthetic outcomes. The code is available at: https://github.com/yqx7150/PJDM.
☆ TeSG: Textual Semantic Guidance for Infrared and Visible Image Fusion
Infrared and visible image fusion (IVF) aims to combine complementary information from both image modalities, producing more informative and comprehensive outputs. Recently, text-guided IVF has shown great potential due to its flexibility and versatility. However, the effective integration and utilization of textual semantic information remains insufficiently studied. To tackle these challenges, we introduce textual semantics at two levels: the mask semantic level and the text semantic level, both derived from textual descriptions extracted by large Vision-Language Models (VLMs). Building on this, we propose Textual Semantic Guidance for infrared and visible image fusion, termed TeSG, which guides the image synthesis process in a way that is optimized for downstream tasks such as detection and segmentation. Specifically, TeSG consists of three core components: a Semantic Information Generator (SIG), a Mask-Guided Cross-Attention (MGCA) module, and a Text-Driven Attentional Fusion (TDAF) module. The SIG generates mask and text semantics based on textual descriptions. The MGCA module performs initial attention-based fusion of visual features from both infrared and visible images, guided by mask semantics. Finally, the TDAF module refines the fusion process with gated attention driven by text semantics. Extensive experiments demonstrate the competitiveness of our approach, particularly in terms of performance on downstream tasks, compared to existing state-of-the-art methods.
comment: 11 pages, 6 figures
☆ Few-Shot Generalized Category Discovery With Retrieval-Guided Decision Boundary Enhancement
While existing Generalized Category Discovery (GCD) models have achieved significant success, their performance with limited labeled samples and a small number of known categories remains largely unexplored. In this work, we introduce the task of Few-shot Generalized Category Discovery (FSGCD), aiming to achieve competitive performance in GCD tasks under conditions of known information scarcity. To tackle this challenge, we propose a decision boundary enhancement framework with affinity-based retrieval. Our framework is designed to learn the decision boundaries of known categories and transfer these boundaries to unknown categories. First, we use a decision boundary pre-training module to mitigate the overfitting of pre-trained information on known category boundaries and improve the learning of these decision boundaries using labeled samples. Second, we implement a two-stage retrieval-guided decision boundary optimization strategy. Specifically, this strategy further enhances the severely limited known boundaries by using affinity-retrieved pseudo-labeled samples. Then, these refined boundaries are applied to unknown clusters via guidance from affinity-based feature retrieval. Experimental results demonstrate that our proposed method outperforms existing methods on six public GCD benchmarks under the FSGCD setting. The codes are available at: https://github.com/Ryh1218/FSGCD
comment: Accepted by ICMR 2025
♻ ☆ BreastDCEDL: Curating a Comprehensive DCE-MRI Dataset and developing a Transformer Implementation for Breast Cancer Treatment Response Prediction
Breast cancer remains a leading cause of cancer-related mortality worldwide, making early detection and accurate treatment response monitoring critical priorities. We present BreastDCEDL, a curated, deep learning-ready dataset comprising pre-treatment 3D Dynamic Contrast-Enhanced MRI (DCE-MRI) scans from 2,070 breast cancer patients drawn from the I-SPY1, I-SPY2, and Duke cohorts, all sourced from The Cancer Imaging Archive. The raw DICOM imaging data were rigorously converted into standardized 3D NIfTI volumes with preserved signal integrity, accompanied by unified tumor annotations and harmonized clinical metadata including pathologic complete response (pCR), hormone receptor (HR), and HER2 status. Although DCE-MRI provides essential diagnostic information and deep learning offers tremendous potential for analyzing such complex data, progress has been limited by lack of accessible, public, multicenter datasets. BreastDCEDL addresses this gap by enabling development of advanced models, including state-of-the-art transformer architectures that require substantial training data. To demonstrate its capacity for robust modeling, we developed the first transformer-based model for breast DCE-MRI, leveraging Vision Transformer (ViT) architecture trained on RGB-fused images from three contrast phases (pre-contrast, early post-contrast, and late post-contrast). Our ViT model achieved state-of-the-art pCR prediction performance in HR+/HER2- patients (AUC 0.94, accuracy 0.93). BreastDCEDL includes predefined benchmark splits, offering a framework for reproducible research and enabling clinically meaningful modeling in breast cancer imaging.
♻ ☆ AerialVG: A Challenging Benchmark for Aerial Visual Grounding by Exploring Positional Relations
Visual grounding (VG) aims to localize target objects in an image based on natural language descriptions. In this paper, we propose AerialVG, a new task focusing on visual grounding from aerial views. Compared to traditional VG, AerialVG poses new challenges, \emph{e.g.}, appearance-based grounding is insufficient to distinguish among multiple visually similar objects, and positional relations should be emphasized. Besides, existing VG models struggle when applied to aerial imagery, where high-resolution images cause significant difficulties. To address these challenges, we introduce the first AerialVG dataset, consisting of 5K real-world aerial images, 50K manually annotated descriptions, and 103K objects. Particularly, each annotation in AerialVG dataset contains multiple target objects annotated with relative spatial relations, requiring models to perform comprehensive spatial reasoning. Furthermore, we propose an innovative model especially for the AerialVG task, where a Hierarchical Cross-Attention is devised to focus on target regions, and a Relation-Aware Grounding module is designed to infer positional relations. Experimental results validate the effectiveness of our dataset and method, highlighting the importance of spatial reasoning in aerial visual grounding. The code and dataset will be released.
comment: 8 pages, 6 figures
♻ ☆ Improving Surgical Risk Prediction Through Integrating Automated Body Composition Analysis: a Retrospective Trial on Colectomy Surgery
Objective: To evaluate whether preoperative body composition metrics automatically extracted from CT scans can predict postoperative outcomes after colectomy, either alone or combined with clinical variables or existing risk predictors. Main outcomes and measures: The primary outcome was the predictive performance for 1-year all-cause mortality following colectomy. A Cox proportional hazards model with 1-year follow-up was used, and performance was evaluated using the concordance index (C-index) and Integrated Brier Score (IBS). Secondary outcomes included postoperative complications, unplanned readmission, blood transfusion, and severe infection, assessed using AUC and Brier Score from logistic regression. Odds ratios (OR) described associations between individual CT-derived body composition metrics and outcomes. Over 300 features were extracted from preoperative CTs across multiple vertebral levels, including skeletal muscle area, density, fat areas, and inter-tissue metrics. NSQIP scores were available for all surgeries after 2012.
comment: 32 pages, 5 figures
♻ ☆ MSCA-Net:Multi-Scale Context Aggregation Network for Infrared Small Target Detection
In complex environments, detecting tiny infrared targets has always been challenging because of the low contrast and high noise levels inherent in infrared images. These factors often lead to the loss of crucial details during feature extraction. Moreover, existing detection methods have limitations in adequately integrating global and local information, which constrains the efficiency and accuracy of infrared small target detection. To address these challenges, this paper proposes a network architecture named MSCA-Net, which integrates three key components: Multi-Scale Enhanced Dilated Attention mechanism (MSEDA), Positional Convolutional Block Attention Module (PCBAM), and Channel Aggregation Feature Fusion Block (CAB). Specifically, MSEDA employs a multi-scale feature fusion attention mechanism to adaptively aggregate information across different scales, enriching feature representation. PCBAM captures the correlation between global and local features through a correlation matrix-based strategy, enabling deep feature interaction. Moreover, CAB enhances the representation of critical features by assigning greater weights to them, integrating both low-level and high-level information, and thereby improving the models detection performance in complex backgrounds. The experimental results demonstrate that MSCA-Net achieves strong small target detection performance in complex backgrounds. Specifically, it attains mIoU scores of 78.43%, 94.56%, and 67.08% on the NUAA-SIRST, NUDT-SIRST, and IRTSD-1K datasets, respectively, underscoring its effectiveness and strong potential for real-world applications.
♻ ☆ EmoAgent: A Multi-Agent Framework for Diverse Affective Image Manipulation
Affective Image Manipulation (AIM) aims to alter visual elements within an image to evoke specific emotional responses from viewers. However, existing AIM approaches rely on rigid \emph{one-to-one} mappings between emotions and visual cues, making them ill-suited for the inherently subjective and diverse ways in which humans perceive and express emotion.To address this, we introduce a novel task setting termed \emph{Diverse AIM (D-AIM)}, aiming to generate multiple visually distinct yet emotionally consistent image edits from a single source image and target emotion. We propose \emph{EmoAgent}, the first multi-agent framework tailored specifically for D-AIM. EmoAgent explicitly decomposes the manipulation process into three specialized phases executed by collaborative agents: a Planning Agent that generates diverse emotional editing strategies, an Editing Agent that precisely executes these strategies, and a Critic Agent that iteratively refines the results to ensure emotional accuracy. This collaborative design empowers EmoAgent to model \emph{one-to-many} emotion-to-visual mappings, enabling semantically diverse and emotionally faithful edits.Extensive quantitative and qualitative evaluations demonstrate that EmoAgent substantially outperforms state-of-the-art approaches in both emotional fidelity and semantic diversity, effectively generating multiple distinct visual edits that convey the same target emotion.
♻ ☆ One-Step Diffusion for Detail-Rich and Temporally Consistent Video Super-Resolution
It is a challenging problem to reproduce rich spatial details while maintaining temporal consistency in real-world video super-resolution (Real-VSR), especially when we leverage pre-trained generative models such as stable diffusion (SD) for realistic details synthesis. Existing SD-based Real-VSR methods often compromise spatial details for temporal coherence, resulting in suboptimal visual quality. We argue that the key lies in how to effectively extract the degradation-robust temporal consistency priors from the low-quality (LQ) input video and enhance the video details while maintaining the extracted consistency priors. To achieve this, we propose a Dual LoRA Learning (DLoRAL) paradigm to train an effective SD-based one-step diffusion model, achieving realistic frame details and temporal consistency simultaneously. Specifically, we introduce a Cross-Frame Retrieval (CFR) module to aggregate complementary information across frames, and train a Consistency-LoRA (C-LoRA) to learn robust temporal representations from degraded inputs. After consistency learning, we fix the CFR and C-LoRA modules and train a Detail-LoRA (D-LoRA) to enhance spatial details while aligning with the temporal space defined by C-LoRA to keep temporal coherence. The two phases alternate iteratively for optimization, collaboratively delivering consistent and detail-rich outputs. During inference, the two LoRA branches are merged into the SD model, allowing efficient and high-quality video restoration in a single diffusion step. Experiments show that DLoRAL achieves strong performance in both accuracy and speed. Code and models are available at https://github.com/yjsunnn/DLoRAL.
♻ ☆ Perceptual-GS: Scene-adaptive Perceptual Densification for Gaussian Splatting ICML
3D Gaussian Splatting (3DGS) has emerged as a powerful technique for novel view synthesis. However, existing methods struggle to adaptively optimize the distribution of Gaussian primitives based on scene characteristics, making it challenging to balance reconstruction quality and efficiency. Inspired by human perception, we propose scene-adaptive perceptual densification for Gaussian Splatting (Perceptual-GS), a novel framework that integrates perceptual sensitivity into the 3DGS training process to address this challenge. We first introduce a perception-aware representation that models human visual sensitivity while constraining the number of Gaussian primitives. Building on this foundation, we develop a perceptual sensitivity-adaptive distribution to allocate finer Gaussian granularity to visually critical regions, enhancing reconstruction quality and robustness. Extensive evaluations on multiple datasets, including BungeeNeRF for large-scale scenes, demonstrate that Perceptual-GS achieves state-of-the-art performance in reconstruction quality, efficiency, and robustness. The code is publicly available at: https://github.com/eezkni/Perceptual-GS
comment: Accepted to International Conference on Machine Learning (ICML) 2025
♻ ☆ Genesis: Multimodal Driving Scene Generation with Spatio-Temporal and Cross-Modal Consistency
We present Genesis, a unified framework for joint generation of multi-view driving videos and LiDAR sequences with spatio-temporal and cross-modal consistency. Genesis employs a two-stage architecture that integrates a DiT-based video diffusion model with 3D-VAE encoding, and a BEV-aware LiDAR generator with NeRF-based rendering and adaptive sampling. Both modalities are directly coupled through a shared latent space, enabling coherent evolution across visual and geometric domains. To guide the generation with structured semantics, we introduce DataCrafter, a captioning module built on vision-language models that provides scene-level and instance-level supervision. Extensive experiments on the nuScenes benchmark demonstrate that Genesis achieves state-of-the-art performance across video and LiDAR metrics (FVD 16.95, FID 4.24, Chamfer 0.611), and benefits downstream tasks including segmentation and 3D detection, validating the semantic fidelity and practical utility of the generated data.
♻ ☆ DeSPITE: Exploring Contrastive Deep Skeleton-Pointcloud-IMU-Text Embeddings for Advanced Point Cloud Human Activity Understanding ICCV 2025
Despite LiDAR (Light Detection and Ranging) being an effective privacy-preserving alternative to RGB cameras to perceive human activities, it remains largely underexplored in the context of multi-modal contrastive pre-training for human activity understanding (e.g., human activity recognition (HAR), retrieval, or person re-identification (RE-ID)). To close this gap, our work explores learning the correspondence between LiDAR point clouds, human skeleton poses, IMU data, and text in a joint embedding space. More specifically, we present DeSPITE, a Deep Skeleton-Pointcloud-IMU-Text Embedding model, which effectively learns a joint embedding space across these four modalities. At the heart of our empirical exploration, we have combined the existing LIPD and Babel datasets, which enabled us to synchronize data of all four modalities, allowing us to explore the learning of a new joint embedding space. Our experiments demonstrate novel human activity understanding tasks for point cloud sequences enabled through DeSPITE, including Skeleton<->Pointcloud<->IMU matching, retrieval, and temporal moment retrieval. Furthermore, we show that DeSPITE is an effective pre-training strategy for point cloud HAR through experiments in MSR-Action3D and HMPEAR.
comment: This work is currently under review at ICCV 2025
♻ ☆ Decoupled Classifier-Free Guidance for Counterfactual Diffusion Models
Counterfactual image generation aims to simulate realistic visual outcomes under specific causal interventions. Diffusion models have recently emerged as a powerful tool for this task, combining DDIM inversion with conditional generation via classifier-free guidance (CFG). However, standard CFG applies a single global weight across all conditioning variables, which can lead to poor identity preservation and spurious attribute changes - a phenomenon known as attribute amplification. To address this, we propose Decoupled Classifier-Free Guidance (DCFG), a flexible and model-agnostic framework that introduces group-wise conditioning control. DCFG builds on an attribute-split embedding strategy that disentangles semantic inputs, enabling selective guidance on user-defined attribute groups. For counterfactual generation, we partition attributes into intervened and invariant sets based on a causal graph and apply distinct guidance to each. Experiments on CelebA-HQ, MIMIC-CXR, and EMBED show that DCFG improves intervention fidelity, mitigates unintended changes, and enhances reversibility, enabling more faithful and interpretable counterfactual image generation.
♻ ☆ Learning Joint Denoising, Demosaicing, and Compression from the Raw Natural Image Noise Dataset
This paper introduces the Raw Natural Image Noise Dataset (RawNIND), a diverse collection of paired raw images designed to support the development of denoising models that generalize across sensors, image development workflows, and styles. Two denoising methods are proposed: one operates directly on raw Bayer data, leveraging computational efficiency, while the other processes linear RGB images for improved generalization to different sensors, with both preserving flexibility for subsequent development. Both methods outperform traditional approaches which rely on developed images. Additionally, the integration of denoising and compression at the raw data level significantly enhances rate-distortion performance and computational efficiency. These findings suggest a paradigm shift toward raw data workflows for efficient and flexible image processing.
♻ ☆ Efficient Online Inference of Vision Transformers by Training-Free Tokenization
The cost of deploying vision transformers increasingly represents a barrier to wider industrial adoption. Existing compression techniques require additional end-to-end fine-tuning or incur a significant drawback to runtime, making them ill-suited for online (real-time) inference, where a prediction is made on any new input as it comes in. We introduce the $\textbf{Visual Word Tokenizer}$ (VWT), a training-free method for reducing energy costs while retaining performance and runtime. The VWT groups visual subwords (image patches) that are frequently used into visual words while infrequent ones remain intact. To do so, $\textit{intra}$-image or $\textit{inter}$-image statistics are leveraged to identify similar visual concepts for sequence compression. Experimentally, we demonstrate a reduction in wattage of up to 25% with only a 20% increase in runtime at most. Comparative approaches of 8-bit quantization and token merging achieve a lower or similar energy efficiency but exact a higher toll on runtime (up to 100% or more). Our results indicate that VWTs are well-suited for efficient online inference with a marginal compromise on performance.
♻ ☆ SHAKTI: A 2.5 Billion Parameter Small Language Model Optimized for Edge AI and Low-Resource Environments
We introduce Shakti, a 2.5 billion parameter language model specifically optimized for resource-constrained environments such as edge devices, including smartphones, wearables, and IoT systems. Shakti combines high-performance NLP with optimized efficiency and precision, making it ideal for real-time AI applications where computational resources and memory are limited. With support for vernacular languages and domain-specific tasks, Shakti excels in industries such as healthcare, finance, and customer service. Benchmark evaluations demonstrate that Shakti performs competitively against larger models while maintaining low latency and on-device efficiency, positioning it as a leading solution for edge AI.
comment: Paper in pdf format is 11 pages and contains 4 tables
♻ ☆ SR3D: Unleashing Single-view 3D Reconstruction for Transparent and Specular Object Grasping
Recent advancements in 3D robotic manipulation have improved grasping of everyday objects, but transparent and specular materials remain challenging due to depth sensing limitations. While several 3D reconstruction and depth completion approaches address these challenges, they suffer from setup complexity or limited observation information utilization. To address this, leveraging the power of single view 3D object reconstruction approaches, we propose a training free framework SR3D that enables robotic grasping of transparent and specular objects from a single view observation. Specifically, given single view RGB and depth images, SR3D first uses the external visual models to generate 3D reconstructed object mesh based on RGB image. Then, the key idea is to determine the 3D object's pose and scale to accurately localize the reconstructed object back into its original depth corrupted 3D scene. Therefore, we propose view matching and keypoint matching mechanisms,which leverage both the 2D and 3D's inherent semantic and geometric information in the observation to determine the object's 3D state within the scene, thereby reconstructing an accurate 3D depth map for effective grasp detection. Experiments in both simulation and real world show the reconstruction effectiveness of SR3D.
♻ ☆ Collaborative Perception Datasets for Autonomous Driving: A Review
Collaborative perception has attracted growing interest from academia and industry due to its potential to enhance perception accuracy, safety, and robustness in autonomous driving through multi-agent information fusion. With the advancement of Vehicle-to-Everything (V2X) communication, numerous collaborative perception datasets have emerged, varying in cooperation paradigms, sensor configurations, data sources, and application scenarios. However, the absence of systematic summarization and comparative analysis hinders effective resource utilization and standardization of model evaluation. As the first comprehensive review focused on collaborative perception datasets, this work reviews and compares existing resources from a multi-dimensional perspective. We categorize datasets based on cooperation paradigms, examine their data sources and scenarios, and analyze sensor modalities and supported tasks. A detailed comparative analysis is conducted across multiple dimensions. We also outline key challenges and future directions, including dataset scalability, diversity, domain adaptation, standardization, privacy, and the integration of large language models. To support ongoing research, we provide a continuously updated online repository of collaborative perception datasets and related literature: https://github.com/frankwnb/Collaborative-Perception-Datasets-for-Autonomous-Driving.
comment: 18pages, 7figures, journal
♻ ☆ Real-time Free-view Human Rendering from Sparse-view RGB Videos using Double Unprojected Textures CVPR 2025
Real-time free-view human rendering from sparse-view RGB inputs is a challenging task due to the sensor scarcity and the tight time budget. To ensure efficiency, recent methods leverage 2D CNNs operating in texture space to learn rendering primitives. However, they either jointly learn geometry and appearance, or completely ignore sparse image information for geometry estimation, significantly harming visual quality and robustness to unseen body poses. To address these issues, we present Double Unprojected Textures, which at the core disentangles coarse geometric deformation estimation from appearance synthesis, enabling robust and photorealistic 4K rendering in real-time. Specifically, we first introduce a novel image-conditioned template deformation network, which estimates the coarse deformation of the human template from a first unprojected texture. This updated geometry is then used to apply a second and more accurate texture unprojection. The resulting texture map has fewer artifacts and better alignment with input views, which benefits our learning of finer-level geometry and appearance represented by Gaussian splats. We validate the effectiveness and efficiency of the proposed method in quantitative and qualitative experiments, which significantly surpasses other state-of-the-art methods. Project page: https://vcai.mpi-inf.mpg.de/projects/DUT/
comment: Accepted at CVPR 2025, Project page: https://vcai.mpi-inf.mpg.de/projects/DUT/
♻ ☆ Deep Learning based Visually Rich Document Content Understanding: A Survey
Visually Rich Documents (VRDs) play a vital role in domains such as academia, finance, healthcare, and marketing, as they convey information through a combination of text, layout, and visual elements. Traditional approaches to extracting information from VRDs rely heavily on expert knowledge and manual annotation, making them labor-intensive and inefficient. Recent advances in deep learning have transformed this landscape by enabling multimodal models that integrate vision, language, and layout features through pretraining, significantly improving information extraction performance. This survey presents a comprehensive overview of deep learning-based frameworks for VRD Content Understanding (VRD-CU). We categorize existing methods based on their modeling strategies and downstream tasks, and provide a comparative analysis of key components, including feature representation, fusion techniques, model architectures, and pretraining objectives. Additionally, we highlight the strengths and limitations of each approach and discuss their suitability for different applications. The paper concludes with a discussion of current challenges and emerging trends, offering guidance for future research and practical deployment in real-world scenarios.
comment: Work in Progress
♻ ☆ Generalized Category Discovery under the Long-Tailed Distribution
This paper addresses the problem of Generalized Category Discovery (GCD) under a long-tailed distribution, which involves discovering novel categories in an unlabelled dataset using knowledge from a set of labelled categories. Existing works assume a uniform distribution for both datasets, but real-world data often exhibits a long-tailed distribution, where a few categories contain most examples, while others have only a few. While the long-tailed distribution is well-studied in supervised and semi-supervised settings, it remains unexplored in the GCD context. We identify two challenges in this setting - balancing classifier learning and estimating category numbers - and propose a framework based on confident sample selection and density-based clustering to tackle them. Our experiments on both long-tailed and conventional GCD datasets demonstrate the effectiveness of our method.
♻ ☆ GenLit: Reformulating Single-Image Relighting as Video Generation
Manipulating the illumination of a 3D scene within a single image represents a fundamental challenge in computer vision and graphics. This problem has traditionally been addressed using inverse rendering techniques, which involve explicit 3D asset reconstruction and costly ray-tracing simulations. Meanwhile, recent advancements in visual foundation models suggest that a new paradigm could soon be possible -- one that replaces explicit physical models with networks that are trained on large amounts of image and video data. In this paper, we exploit the physical world understanding of a video diffusion model, particularly Stable Video Diffusion, to relight a single image. We introduce GenLit, a framework that distills the ability of a graphics engine to perform light manipulation into a video-generation model, enabling users to directly insert and manipulate a point light in the 3D world within a given image, and generate results directly as a video sequence. We find that a model fine-tuned on only a small synthetic dataset generalizes to real-world scenes, enabling single-image relighting with plausible and convincing shadows. Our results highlight the ability of video foundation models to capture rich information about lighting, material, and, shape and our findings indicate that such models, with minimal training, can be used to perform relighting without explicit asset reconstruction or complex ray tracing. Project page: https://genlit.is.tue.mpg.de/.
♻ ☆ Training Multi-Layer Binary Neural Networks With Local Binary Error Signals
Binary Neural Networks (BNNs) significantly reduce computational complexity and memory usage in machine and deep learning by representing weights and activations with just one bit. However, most existing training algorithms for BNNs rely on quantization-aware floating-point Stochastic Gradient Descent (SGD), limiting the full exploitation of binary operations to the inference phase only. In this work, we propose, for the first time, a fully binary and gradient-free training algorithm for multi-layer BNNs, eliminating the need for back-propagated floating-point gradients. Specifically, the proposed algorithm relies on local binary error signals and binary weight updates, employing integer-valued hidden weights that serve as a synaptic metaplasticity mechanism, thereby enhancing its neurobiological plausibility. Our proposed solution enables the training of binary multi-layer perceptrons by using exclusively XNOR, Popcount, and increment/decrement operations. Experimental results on multi-class classification benchmarks show test accuracy improvements of up to +35.47% over the only existing fully binary single-layer state-of-the-art solution. Compared to full-precision SGD, our solution improves test accuracy by up to +35.30% under the same total memory demand, while also reducing computational cost by two to three orders of magnitude in terms of the total number of Boolean gates. The proposed algorithm is made available to the scientific community as a public repository.
♻ ☆ ICC: Quantifying Image Caption Concreteness for Multimodal Dataset Curation ACL 2024
Web-scale training on paired text-image data is becoming increasingly central to multimodal learning, but is challenged by the highly noisy nature of datasets in the wild. Standard data filtering approaches succeed in removing mismatched text-image pairs, but permit semantically related but highly abstract or subjective text. These approaches lack the fine-grained ability to isolate the most concrete samples that provide the strongest signal for learning in a noisy dataset. In this work, we propose a new metric, image caption concreteness, that evaluates caption text without an image reference to measure its concreteness and relevancy for use in multimodal learning. Our approach leverages strong foundation models for measuring visual-semantic information loss in multimodal representations. We demonstrate that this strongly correlates with human evaluation of concreteness in both single-word and sentence-level texts. Moreover, we show that curation using ICC complements existing approaches: It succeeds in selecting the highest quality samples from multimodal web-scale datasets to allow for efficient training in resource-constrained settings.
comment: Accepted to ACL 2024 (Finding). For Project webpage, see https://moranyanuka.github.io/icc/
♻ ☆ 360VOTS: Visual Object Tracking and Segmentation in Omnidirectional Videos
Visual object tracking and segmentation in omnidirectional videos are challenging due to the wide field-of-view and large spherical distortion brought by 360{\deg} images. To alleviate these problems, we introduce a novel representation, extended bounding field-of-view (eBFoV), for target localization and use it as the foundation of a general 360 tracking framework which is applicable for both omnidirectional visual object tracking and segmentation tasks. Building upon our previous work on omnidirectional visual object tracking (360VOT), we propose a comprehensive dataset and benchmark that incorporates a new component called omnidirectional video object segmentation (360VOS). The 360VOS dataset includes 290 sequences accompanied by dense pixel-wise masks and covers a broader range of target categories. To support both the development and evaluation of algorithms in this domain, we divide the dataset into a training subset with 170 sequences and a testing subset with 120 sequences. Furthermore, we tailor evaluation metrics for both omnidirectional tracking and segmentation to ensure rigorous assessment. Through extensive experiments, we benchmark state-of-the-art approaches and demonstrate the effectiveness of our proposed 360 tracking framework and training dataset. Homepage: https://360vots.hkustvgd.com/
comment: arXiv admin note: substantial text overlap with arXiv:2307.14630
♻ ☆ Sekai: A Video Dataset towards World Exploration
Video generation techniques have made remarkable progress, promising to be the foundation of interactive world exploration. However, existing video generation datasets are not well-suited for world exploration training as they suffer from some limitations: limited locations, short duration, static scenes, and a lack of annotations about exploration and the world. In this paper, we introduce Sekai (meaning ``world'' in Japanese), a high-quality first-person view worldwide video dataset with rich annotations for world exploration. It consists of over 5,000 hours of walking or drone view (FPV and UVA) videos from over 100 countries and regions across 750 cities. We develop an efficient and effective toolbox to collect, pre-process and annotate videos with location, scene, weather, crowd density, captions, and camera trajectories. Experiments demonstrate the quality of the dataset. And, we use a subset to train an interactive video world exploration model, named YUME (meaning ``dream'' in Japanese). We believe Sekai will benefit the area of video generation and world exploration, and motivate valuable applications. The project page is https://lixsp11.github.io/sekai-project/.
comment: 12 pages, 6 figures
♻ ☆ Bridging Domain Gaps in Agricultural Image Analysis: A Comprehensive Review From Shallow Adaptation to Deep Learning
With the growing application of computer vision in agriculture, image analysis has become essential for tasks such as crop health monitoring and pest detection. However, significant domain shifts caused by environmental variations, different crop types, and diverse data acquisition methods hinder model generalization across regions, seasons, and complex agricultural settings. This paper investigates how Domain Adaptation (DA) techniques can address these challenges by improving cross-domain transferability in agricultural image analysis. Given the limited availability of labeled data, weak model adaptability, and dynamic field conditions, DA has emerged as a promising solution. The review systematically summarizes recent advances in DA for agricultural imagery, focusing on applications such as crop health monitoring, pest detection, and fruit recognition, where DA methods have enhanced performance across diverse domains. DA approaches are categorized into shallow and deep learning methods, including supervised, semi-supervised, and unsupervised strategies, with particular attention to adversarial learning-based techniques that have demonstrated strong potential in complex scenarios. In addition, the paper reviews key public agricultural image datasets, evaluating their strengths and limitations in DA research. Overall, this work offers a comprehensive framework and critical insights to guide future research and development of domain adaptation in agricultural vision tasks.
More Thinking, Less Seeing? Assessing Amplified Hallucination in Multimodal Reasoning Models
Test-time compute has empowered multimodal large language models to generate extended reasoning chains, yielding strong performance on tasks such as multimodal math reasoning. However, this improved reasoning ability often comes with increased hallucination: as generations become longer, models tend to drift away from image-grounded content and rely more heavily on language priors. Attention analysis shows that longer reasoning chains lead to reduced focus on visual inputs, which contributes to hallucination. To systematically study this phenomenon, we introduce RH-AUC, a metric that quantifies how a model's perception accuracy changes with reasoning length, allowing us to evaluate whether the model preserves visual grounding during reasoning. We also release RH-Bench, a diagnostic benchmark that spans a variety of multimodal tasks, designed to assess the trade-off between reasoning ability and hallucination. Our analysis reveals that (i) larger models typically achieve a better balance between reasoning and perception, and (ii) this balance is influenced more by the types and domains of training data than by its overall volume. These findings underscore the importance of evaluation frameworks that jointly consider both reasoning quality and perceptual fidelity.
♻ ☆ Show-o2: Improved Native Unified Multimodal Models
This paper presents improved native unified multimodal models, \emph{i.e.,} Show-o2, that leverage autoregressive modeling and flow matching. Built upon a 3D causal variational autoencoder space, unified visual representations are constructed through a dual-path of spatial (-temporal) fusion, enabling scalability across image and video modalities while ensuring effective multimodal understanding and generation. Based on a language model, autoregressive modeling and flow matching are natively applied to the language head and flow head, respectively, to facilitate text token prediction and image/video generation. A two-stage training recipe is designed to effectively learn and scale to larger models. The resulting Show-o2 models demonstrate versatility in handling a wide range of multimodal understanding and generation tasks across diverse modalities, including text, images, and videos. Code and models are released at https://github.com/showlab/Show-o.
comment: Technical report. (v2: update references and tables)
♻ ☆ When and How Does CLIP Enable Domain and Compositional Generalization? ICML 2025
The remarkable generalization performance of contrastive vision-language models like CLIP is often attributed to the diversity of their training distributions. However, key questions remain unanswered: Can CLIP generalize to an entirely unseen domain when trained on a diverse mixture of domains (domain generalization)? Can it generalize to unseen classes within partially seen domains (compositional generalization)? What factors affect such generalization? To answer these questions, we trained CLIP models on systematically constructed training distributions with controlled domain diversity and object class exposure. Our experiments show that domain diversity is essential for both domain and compositional generalization, yet compositional generalization can be surprisingly weaker than domain generalization when the training distribution contains a suboptimal subset of the test domain. Through data-centric and mechanistic analyses, we find that successful generalization requires the learning of sufficiently shared representations in intermediate layers and circuits.
comment: ICML 2025 (Spotlight)
♻ ☆ Cost-effective Instruction Learning for Pathology Vision and Language Analysis
The advent of vision-language models fosters the interactive conversations between AI-enabled models and humans. Yet applying these models into clinics must deal with daunting challenges around large-scale training data, financial, and computational resources. Here we propose a cost-effective instruction learning framework for conversational pathology named as CLOVER. CLOVER only trains a lightweight module and uses instruction tuning while freezing the parameters of the large language model. Instead of using costly GPT-4, we propose well-designed prompts on GPT-3.5 for building generation-based instructions, emphasizing the utility of pathological knowledge derived from the Internet source. To augment the use of instructions, we construct a high-quality set of template-based instructions in the context of digital pathology. From two benchmark datasets, our findings reveal the strength of hybrid-form instructions in the visual question-answer in pathology. Extensive results show the cost-effectiveness of CLOVER in answering both open-ended and closed-ended questions, where CLOVER outperforms strong baselines that possess 37 times more training parameters and use instruction data generated from GPT-4. Through the instruction tuning, CLOVER exhibits robustness of few-shot learning in the external clinical dataset. These findings demonstrate that cost-effective modeling of CLOVER could accelerate the adoption of rapid conversational applications in the landscape of digital pathology.
♻ ☆ Memory-enhanced Retrieval Augmentation for Long Video Understanding
Efficient long-video understanding~(LVU) remains a challenging task in computer vision. Current long-context vision-language models~(LVLMs) suffer from information loss due to compression and brute-force downsampling. While retrieval-augmented generation (RAG) methods mitigate this issue, their applicability is limited due to explicit query dependency. To overcome this challenge, we introduce a novel memory-enhanced RAG-based approach called MemVid, which is inspired by the cognitive memory of human beings. Our approach operates in four basic steps: 1) memorizing holistic video information, 2) reasoning about the task's information needs based on memory, 3) retrieving critical moments based on the information needs, and 4) focusing on the retrieved moments to produce the final answer. To enhance the system's memory-grounded reasoning capabilities while achieving optimal end-to-end performance, we propose a curriculum learning strategy. This approach begins with supervised learning on well-annotated reasoning results, then progressively explores and reinforces more plausible reasoning outcomes through reinforcement learning. We perform extensive evaluations on popular LVU benchmarks, including MLVU, VideoMME and LVBench. In our experiments, MemVid demonstrates superior efficiency and effectiveness compared to both LVLMs and RAG methods.
♻ ☆ IQE-CLIP: Instance-aware Query Embedding for Zero-/Few-shot Anomaly Detection in Medical Domain
Recently, the rapid advancements of vision-language models, such as CLIP, leads to significant progress in zero-/few-shot anomaly detection (ZFSAD) tasks. However, most existing CLIP-based ZFSAD methods commonly assume prior knowledge of categories and rely on carefully crafted prompts tailored to specific scenarios. While such meticulously designed text prompts effectively capture semantic information in the textual space, they fall short of distinguishing normal and anomalous instances within the joint embedding space. Moreover, these ZFSAD methods are predominantly explored in industrial scenarios, with few efforts conducted to medical tasks. To this end, we propose an innovative framework for ZFSAD tasks in medical domain, denoted as IQE-CLIP. We reveal that query embeddings, which incorporate both textual and instance-aware visual information, are better indicators for abnormalities. Specifically, we first introduce class-based prompting tokens and learnable prompting tokens for better adaptation of CLIP to the medical domain. Then, we design an instance-aware query module (IQM) to extract region-level contextual information from both text prompts and visual features, enabling the generation of query embeddings that are more sensitive to anomalies. Extensive experiments conducted on six medical datasets demonstrate that IQE-CLIP achieves state-of-the-art performance on both zero-shot and few-shot tasks. We release our code and data at https://github.com/hongh0/IQE-CLIP/.
♻ ☆ A CLIP-Powered Framework for Robust and Generalizable Data Selection ICLR 2025
Large-scale datasets have been pivotal to the advancements of deep learning models in recent years, but training on such large datasets invariably incurs substantial storage and computational overhead. Meanwhile, real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance. Data selection has shown promise in identifying the most representative samples from the entire dataset, which aims to minimize the performance gap with reduced training costs. Existing works typically rely on single-modality information to assign importance scores for individual samples, which may lead to inaccurate assessments, especially when dealing with noisy or corrupted samples. To address this limitation, we propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection. Specifically, our framework consists of three key modules-dataset adaptation, sample scoring, and selection optimization-that together harness extensive pre-trained multimodal knowledge to comprehensively assess sample influence and optimize the selection results through multi-objective optimization. Extensive experiments demonstrate that our approach consistently outperforms existing state-of-the-art baselines on various benchmark datasets. Notably, our method effectively removes noisy or damaged samples from the dataset, enabling it to achieve even higher performance with less data. This indicates that it is not only a way to accelerate training but can also improve overall data quality.
comment: ICLR 2025 Spotlight
♻ ☆ Efficient Depth-Guided Urban View Synthesis
Recent advances in implicit scene representation enable high-fidelity street view novel view synthesis. However, existing methods optimize a neural radiance field for each scene, relying heavily on dense training images and extensive computation resources. To mitigate this shortcoming, we introduce a new method called Efficient Depth-Guided Urban View Synthesis (EDUS) for fast feed-forward inference and efficient per-scene fine-tuning. Different from prior generalizable methods that infer geometry based on feature matching, EDUS leverages noisy predicted geometric priors as guidance to enable generalizable urban view synthesis from sparse input images. The geometric priors allow us to apply our generalizable model directly in the 3D space, gaining robustness across various sparsity levels. Through comprehensive experiments on the KITTI-360 and Waymo datasets, we demonstrate promising generalization abilities on novel street scenes. Moreover, our results indicate that EDUS achieves state-of-the-art performance in sparse view settings when combined with fast test-time optimization.
comment: ECCV2024, Project page: https://xdimlab.github.io/EDUS/
♻ ☆ Medical Artificial Intelligence for Early Detection of Lung Cancer: A Survey
Lung cancer remains one of the leading causes of morbidity and mortality worldwide, making early diagnosis critical for improving therapeutic outcomes and patient prognosis. Computer-aided diagnosis systems, which analyze computed tomography images, have proven effective in detecting and classifying pulmonary nodules, significantly enhancing the detection rate of early-stage lung cancer. Although traditional machine learning algorithms have been valuable, they exhibit limitations in handling complex sample data. The recent emergence of deep learning has revolutionized medical image analysis, driving substantial advancements in this field. This review focuses on recent progress in deep learning for pulmonary nodule detection, segmentation, and classification. Traditional machine learning methods, such as support vector machines and k-nearest neighbors, have shown limitations, paving the way for advanced approaches like Convolutional Neural Networks, Recurrent Neural Networks, and Generative Adversarial Networks. The integration of ensemble models and novel techniques is also discussed, emphasizing the latest developments in lung cancer diagnosis. Deep learning algorithms, combined with various analytical techniques, have markedly improved the accuracy and efficiency of pulmonary nodule analysis, surpassing traditional methods, particularly in nodule classification. Although challenges remain, continuous technological advancements are expected to further strengthen the role of deep learning in medical diagnostics, especially for early lung cancer detection and diagnosis. A comprehensive list of lung cancer detection models reviewed in this work is available at https://github.com/CaiGuoHui123/Awesome-Lung-Cancer-Detection.
comment: Accepted to Engineering Applications of Artificial Intelligence
♻ ☆ Label-guided Facial Retouching Reversion
With the popularity of social media platforms and retouching tools, more people are beautifying their facial photos, posing challenges for fields requiring photo authenticity. To address this issue, some work has proposed makeup removal methods, but they cannot revert images involving geometric deformations caused by retouching. To tackle the problem of facial retouching reversion, we propose a framework, dubbed Re-Face, which consists of three components: a facial retouching detector, an image reversion model named FaceR, and a color correction module called Hierarchical Adaptive Instance Normalization (H-AdaIN). FaceR can utilize labels generated by the facial retouching detector as guidance to revert the retouched facial images. Then, color correction is performed using H-AdaIN to address the issue of color shift. Extensive experiments demonstrate the effectiveness of our framework and each module.
comment: ICME2025 Oral
♻ ☆ Privacy-Preserving Chest X-ray Classification in Latent Space with Homomorphically Encrypted Neural Inference
Medical imaging data contain sensitive patient information requiring strong privacy protection. Many analytical setups require data to be sent to a server for inference purposes. Homomorphic encryption (HE) provides a solution by allowing computations to be performed on encrypted data without revealing the original information. However, HE inference is computationally expensive, particularly for large images (e.g., chest X-rays). In this study, we propose an HE inference framework for medical images that uses VQGAN to compress images into latent representations, thereby significantly reducing the computational burden while preserving image quality. We approximate the activation functions with lower-degree polynomials to balance the accuracy and efficiency in compliance with HE requirements. We observed that a downsampling factor of eight for compression achieved an optimal balance between performance and computational cost. We further adapted the squeeze and excitation module, which is known to improve traditional CNNs, to enhance the HE framework. Our method was tested on two chest X-ray datasets for multi-label classification tasks using vanilla CNN backbones. Although HE inference remains relatively slow and introduces minor performance differences compared with unencrypted inference, our approach shows strong potential for practical use in medical images
comment: 11 pages, 5 figures
♻ ☆ DopQ-ViT: Towards Distribution-Friendly and Outlier-Aware Post-Training Quantization for Vision Transformers
Vision Transformers (ViTs) have gained significant attention, but their high computing cost limits the practical applications. While post-training quantization (PTQ) reduces model size and speeds up inference, it often degrades performance, especially in low-bit settings. We identify two key reasons for the performance degradation: 1) existing quantization methods fail to align with the power-law distribution of post-Softmax activations, and 2) reparameterizing post-LayerNorm activations leads to a performance drop due to the significant influence of outliers in the scaling factors. To address these challenges, we propose DopQ-ViT, a Distribution-friendly and Outlier-aware Post-training Quantization method for ViTs. First, DopQ-ViT introduces the Tan Quantizer (TanQ), which better preserves the power-law distribution of post-Softmax activations by focusing more on values near 1. Second, DopQ-ViT presents the MAD-guided Optimal Scaling Factor (MOSF), which selects the optimal scaling factor without introducing additional calculations. Extensive experiments across various ViT models and quantization settings demonstrate that DopQ-ViT, with the help of TanQ and MOSF, outperforms previous PTQ methods on both classification and detection tasks.
♻ ☆ MaPPER: Multimodal Prior-guided Parameter Efficient Tuning for Referring Expression Comprehension EMNLP 2024
Referring Expression Comprehension (REC), which aims to ground a local visual region via natural language, is a task that heavily relies on multimodal alignment. Most existing methods utilize powerful pre-trained models to transfer visual/linguistic knowledge by full fine-tuning. However, full fine-tuning the entire backbone not only breaks the rich prior knowledge embedded in the pre-training, but also incurs significant computational costs. Motivated by the recent emergence of Parameter-Efficient Transfer Learning (PETL) methods, we aim to solve the REC task in an effective and efficient manner. Directly applying these PETL methods to the REC task is inappropriate, as they lack the specific-domain abilities for precise local visual perception and visual-language alignment. Therefore, we propose a novel framework of Multimodal Prior-guided Parameter Efficient Tuning, namely MaPPER. Specifically, MaPPER comprises Dynamic Prior Adapters guided by an aligned prior, and Local Convolution Adapters to extract precise local semantics for better visual perception. Moreover, the Prior-Guided Text module is proposed to further utilize the prior for facilitating the cross-modal alignment. Experimental results on three widely-used benchmarks demonstrate that MaPPER achieves the best accuracy compared to the full fine-tuning and other PETL methods with only 1.41% tunable backbone parameters. Our code is available at https://github.com/liuting20/MaPPER.
comment: EMNLP 2024 main
Machine Learning 138
☆ No Free Lunch: Rethinking Internal Feedback for LLM Reasoning
Reinforcement learning has emerged as a powerful paradigm for post-training large language models (LLMs) to improve reasoning. Approaches like Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) have shown strong results, but they require extensive external supervision. We investigate an alternative class of methods, Reinforcement Learning from Internal Feedback (RLIF), which relies solely on intrinsic model-derived signals instead of external rewards. In particular, we leverage unsupervised reward proxies such as token-level entropy, trajectory-level entropy, and self-certainty. Our theoretical analysis shows these internal objectives are partially equivalent, and we empirically evaluate various RLIF strategies on challenging math reasoning benchmarks. Experimental results demonstrate that RLIF can boost the reasoning performance of base LLMs at the beginning phase of the training, matching or surpassing RLVR techniques on these tasks. However, when training progresses, performance degrades even below the model before training. Moreover, we find that RLIF yields little improvement for instruction-tuned models, indicating diminishing returns of intrinsic feedback once an LLM is already instruction-tuned. We further analyze this limitation by mixing model weights and explain the reason of RLIF's training behaviors, providing practical guidelines for integrating internal feedback signals into LLM training. We hope our analysis of internal feedback will inform more principled and effective strategies for LLM post-training.
☆ Part$^{2}$GS: Part-aware Modeling of Articulated Objects using 3D Gaussian Splatting
Articulated objects are common in the real world, yet modeling their structure and motion remains a challenging task for 3D reconstruction methods. In this work, we introduce Part$^{2}$GS, a novel framework for modeling articulated digital twins of multi-part objects with high-fidelity geometry and physically consistent articulation. Part$^{2}$GS leverages a part-aware 3D Gaussian representation that encodes articulated components with learnable attributes, enabling structured, disentangled transformations that preserve high-fidelity geometry. To ensure physically consistent motion, we propose a motion-aware canonical representation guided by physics-based constraints, including contact enforcement, velocity consistency, and vector-field alignment. Furthermore, we introduce a field of repel points to prevent part collisions and maintain stable articulation paths, significantly improving motion coherence over baselines. Extensive evaluations on both synthetic and real-world datasets show that Part$^{2}$GS consistently outperforms state-of-the-art methods by up to 10$\times$ in Chamfer Distance for movable parts.
☆ BREAD: Branched Rollouts from Expert Anchors Bridge SFT & RL for Reasoning
Small language models (SLMs) struggle to learn complex reasoning behaviors, especially when high-quality traces are scarce or difficult to learn from. The standard training approach combines a supervised fine-tuning (SFT) stage, often to distill capabilities of a larger model, followed by a reinforcement learning (RL)stage such as Group Relative Policy Optimization (GRPO). In this paper, we investigate the fundamental limitations of this SFT + RL paradigm and propose methods to overcome them. Under a suitable theoretical model, we demonstrate that the SFT + RL strategy can fail completely when (1) the expert's traces are too difficult for the small model to express, or (2) the small model's initialization has exponentially small likelihood of success. To address these, we introduce BREAD: a GRPO variant that unifies the SFT and RL stages via partial expert guidance and branched rollouts. When self-generated traces fail, BREAD adaptively inserts short expert prefixes/hints, allowing the small model to complete the rest of the reasoning path, and ensuring that each update includes at least one successful trace. This mechanism both densifies the reward signal and induces a natural learning curriculum. BREAD requires fewer than 40% of ground-truth traces, consistently outperforming standard GRPO while speeding up the training by about 3 times. Importantly, we demonstrate that BREAD helps the model solve problems that are otherwise unsolvable by the SFT + RL strategy, highlighting how branched rollouts and expert guidance can substantially boost SLM reasoning.
☆ DreamCube: 3D Panorama Generation via Multi-plane Synchronization
3D panorama synthesis is a promising yet challenging task that demands high-quality and diverse visual appearance and geometry of the generated omnidirectional content. Existing methods leverage rich image priors from pre-trained 2D foundation models to circumvent the scarcity of 3D panoramic data, but the incompatibility between 3D panoramas and 2D single views limits their effectiveness. In this work, we demonstrate that by applying multi-plane synchronization to the operators from 2D foundation models, their capabilities can be seamlessly extended to the omnidirectional domain. Based on this design, we further introduce DreamCube, a multi-plane RGB-D diffusion model for 3D panorama generation, which maximizes the reuse of 2D foundation model priors to achieve diverse appearances and accurate geometry while maintaining multi-view consistency. Extensive experiments demonstrate the effectiveness of our approach in panoramic image generation, panoramic depth estimation, and 3D scene generation.
comment: Project page: https://yukun-huang.github.io/DreamCube/
☆ Network Sparsity Unlocks the Scaling Potential of Deep Reinforcement Learning ICML 2025
Effectively scaling up deep reinforcement learning models has proven notoriously difficult due to network pathologies during training, motivating various targeted interventions such as periodic reset and architectural advances such as layer normalization. Instead of pursuing more complex modifications, we show that introducing static network sparsity alone can unlock further scaling potential beyond their dense counterparts with state-of-the-art architectures. This is achieved through simple one-shot random pruning, where a predetermined percentage of network weights are randomly removed once before training. Our analysis reveals that, in contrast to naively scaling up dense DRL networks, such sparse networks achieve both higher parameter efficiency for network expressivity and stronger resistance to optimization challenges like plasticity loss and gradient interference. We further extend our evaluation to visual and streaming RL scenarios, demonstrating the consistent benefits of network sparsity.
comment: Accepted to ICML 2025
☆ Schrödinger Bridge Matching for Tree-Structured Costs and Entropic Wasserstein Barycentres
Recent advances in flow-based generative modelling have provided scalable methods for computing the Schr\"odinger Bridge (SB) between distributions, a dynamic form of entropy-regularised Optimal Transport (OT) for the quadratic cost. The successful Iterative Markovian Fitting (IMF) procedure solves the SB problem via sequential bridge-matching steps, presenting an elegant and practical approach with many favourable properties over the more traditional Iterative Proportional Fitting (IPF) procedure. Beyond the standard setting, optimal transport can be generalised to the multi-marginal case in which the objective is to minimise a cost defined over several marginal distributions. Of particular importance are costs defined over a tree structure, from which Wasserstein barycentres can be recovered as a special case. In this work, we extend the IMF procedure to solve for the tree-structured SB problem. Our resulting algorithm inherits the many advantages of IMF over IPF approaches in the tree-based setting. In the specific case of Wasserstein barycentres, our approach can be viewed as extending fixed-point approaches for barycentre computation to the case of flow-based entropic OT solvers.
comment: Preprint
☆ Optimal Implicit Bias in Linear Regression
Most modern learning problems are over-parameterized, where the number of learnable parameters is much greater than the number of training data points. In this over-parameterized regime, the training loss typically has infinitely many global optima that completely interpolate the data with varying generalization performance. The particular global optimum we converge to depends on the implicit bias of the optimization algorithm. The question we address in this paper is, ``What is the implicit bias that leads to the best generalization performance?". To find the optimal implicit bias, we provide a precise asymptotic analysis of the generalization performance of interpolators obtained from the minimization of convex functions/potentials for over-parameterized linear regression with non-isotropic Gaussian data. In particular, we obtain a tight lower bound on the best generalization error possible among this class of interpolators in terms of the over-parameterization ratio, the variance of the noise in the labels, the eigenspectrum of the data covariance, and the underlying distribution of the parameter to be estimated. Finally, we find the optimal convex implicit bias that achieves this lower bound under certain sufficient conditions involving the log-concavity of the distribution of a Gaussian convolved with the prior of the true underlying parameter.
☆ Variational Learning of Disentangled Representations
Disentangled representations enable models to separate factors of variation that are shared across experimental conditions from those that are condition-specific. This separation is essential in domains such as biomedical data analysis, where generalization to new treatments, patients, or species depends on isolating stable biological signals from context-dependent effects. While extensions of the variational autoencoder (VAE) framework have been proposed to address this problem, they frequently suffer from leakage between latent representations, limiting their ability to generalize to unseen conditions. Here, we introduce DISCoVeR, a new variational framework that explicitly separates condition-invariant and condition-specific factors. DISCoVeR integrates three key components: (i) a dual-latent architecture that models shared and specific factors separately; (ii) two parallel reconstructions that ensure both representations remain informative; and (iii) a novel max-min objective that encourages clean separation without relying on handcrafted priors, while making only minimal assumptions. Theoretically, we show that this objective maximizes data likelihood while promoting disentanglement, and that it admits a unique equilibrium. Empirically, we demonstrate that DISCoVeR achieves improved disentanglement on synthetic datasets, natural images, and single-cell RNA-seq data. Together, these results establish DISCoVeR as a principled approach for learning disentangled representations in multi-condition settings.
☆ Deep generative models as the probability transformation functions
This paper introduces a unified theoretical perspective that views deep generative models as probability transformation functions. Despite the apparent differences in architecture and training methodologies among various types of generative models - autoencoders, autoregressive models, generative adversarial networks, normalizing flows, diffusion models, and flow matching - we demonstrate that they all fundamentally operate by transforming simple predefined distributions into complex target data distributions. This unifying perspective facilitates the transfer of methodological improvements between model architectures and provides a foundation for developing universal theoretical approaches, potentially leading to more efficient and effective generative modeling techniques.
comment: 12 pages, 6 figures, accepted for publication in "ICIST 2025 Springer Proceedings"
☆ Sparse-Reg: Improving Sample Complexity in Offline Reinforcement Learning using Sparsity
In this paper, we investigate the use of small datasets in the context of offline reinforcement learning (RL). While many common offline RL benchmarks employ datasets with over a million data points, many offline RL applications rely on considerably smaller datasets. We show that offline RL algorithms can overfit on small datasets, resulting in poor performance. To address this challenge, we introduce "Sparse-Reg": a regularization technique based on sparsity to mitigate overfitting in offline reinforcement learning, enabling effective learning in limited data settings and outperforming state-of-the-art baselines in continuous control.
☆ Do We Need Large VLMs for Spotting Soccer Actions?
Traditional video-based tasks like soccer action spotting rely heavily on visual inputs, often requiring complex and computationally expensive models to process dense video data. In this work, we propose a shift from this video-centric approach to a text-based task, making it lightweight and scalable by utilizing Large Language Models (LLMs) instead of Vision-Language Models (VLMs). We posit that expert commentary, which provides rich, fine-grained descriptions and contextual cues such as excitement and tactical insights, contains enough information to reliably spot key actions in a match. To demonstrate this, we use the SoccerNet Echoes dataset, which provides timestamped commentary, and employ a system of three LLMs acting as judges specializing in outcome, excitement, and tactics. Each LLM evaluates sliding windows of commentary to identify actions like goals, cards, and substitutions, generating accurate timestamps for these events. Our experiments show that this language-centric approach performs effectively in detecting critical match events, providing a lightweight and training-free alternative to traditional video-based methods for action spotting.
comment: 5 pages, 2 figures
☆ Consistent Sampling and Simulation: Molecular Dynamics with Energy-Based Diffusion Models
Diffusion models have recently gained significant attention due to their effectiveness in various scientific domains, including biochemistry. When trained on equilibrium molecular distributions, diffusion models provide both: a generative procedure to sample equilibrium conformations and associated forces derived from the model's scores. However, using the forces for coarse-grained molecular dynamics simulations uncovers inconsistencies in the samples generated via classical diffusion inference and simulation, despite both originating from the same model. Particularly at the small diffusion timesteps required for simulations, diffusion models fail to satisfy the Fokker-Planck equation, which governs how the score should evolve over time. We interpret this deviation as an indication of the observed inconsistencies and propose an energy-based diffusion model with a Fokker-Planck-derived regularization term enforcing consistency. We demonstrate the effectiveness of our approach on toy systems, alanine dipeptide, and introduce a state-of-the-art transferable Boltzmann emulator for dipeptides that supports simulation and demonstrates enhanced consistency and efficient sampling.
☆ Robust Training with Data Augmentation for Medical Imaging Classification
Deep neural networks are increasingly being used to detect and diagnose medical conditions using medical imaging. Despite their utility, these models are highly vulnerable to adversarial attacks and distribution shifts, which can affect diagnostic reliability and undermine trust among healthcare professionals. In this study, we propose a robust training algorithm with data augmentation (RTDA) to mitigate these vulnerabilities in medical image classification. We benchmark classifier robustness against adversarial perturbations and natural variations of RTDA and six competing baseline techniques, including adversarial training and data augmentation approaches in isolation and combination, using experimental data sets with three different imaging technologies (mammograms, X-rays, and ultrasound). We demonstrate that RTDA achieves superior robustness against adversarial attacks and improved generalization performance in the presence of distribution shift in each image classification task while maintaining high clean accuracy.
☆ Rapid and Continuous Trust Evaluation for Effective Task Collaboration Through Siamese Model
Trust is emerging as an effective tool to ensure the successful completion of collaborative tasks within collaborative systems. However, rapidly and continuously evaluating the trustworthiness of collaborators during task execution is a significant challenge due to distributed devices, complex operational environments, and dynamically changing resources. To tackle this challenge, this paper proposes a Siamese-enabled rapid and continuous trust evaluation framework (SRCTE) to facilitate effective task collaboration. First, the communication and computing resource attributes of the collaborator in a trusted state, along with historical collaboration data, are collected and represented using an attributed control flow graph (ACFG) that captures trust-related semantic information and serves as a reference for comparison with data collected during task execution. At each time slot of task execution, the collaborator's communication and computing resource attributes, as well as task completion effectiveness, are collected in real time and represented with an ACFG to convey their trust-related semantic information. A Siamese model, consisting of two shared-parameter Structure2vec networks, is then employed to learn the deep semantics of each pair of ACFGs and generate their embeddings. Finally, the similarity between the embeddings of each pair of ACFGs is calculated to determine the collaborator's trust value at each time slot. A real system is built using two Dell EMC 5200 servers and a Google Pixel 8 to test the effectiveness of the proposed SRCTE framework. Experimental results demonstrate that SRCTE converges rapidly with only a small amount of data and achieves a high anomaly trust detection rate compared to the baseline algorithm.
☆ TransDreamerV3: Implanting Transformer In DreamerV3
This paper introduces TransDreamerV3, a reinforcement learning model that enhances the DreamerV3 architecture by integrating a transformer encoder. The model is designed to improve memory and decision-making capabilities in complex environments. We conducted experiments on Atari-Boxing, Atari-Freeway, Atari-Pong, and Crafter tasks, where TransDreamerV3 demonstrated improved performance over DreamerV3, particularly in the Atari-Freeway and Crafter tasks. While issues in the Minecraft task and limited training across all tasks were noted, TransDreamerV3 displays advancement in world model-based reinforcement learning, leveraging transformer architectures.
☆ Identifiability of Deep Polynomial Neural Networks
Polynomial Neural Networks (PNNs) possess a rich algebraic and geometric structure. However, their identifiability -- a key property for ensuring interpretability -- remains poorly understood. In this work, we present a comprehensive analysis of the identifiability of deep PNNs, including architectures with and without bias terms. Our results reveal an intricate interplay between activation degrees and layer widths in achieving identifiability. As special cases, we show that architectures with non-increasing layer widths are generically identifiable under mild conditions, while encoder-decoder networks are identifiable when the decoder widths do not grow too rapidly. Our proofs are constructive and center on a connection between deep PNNs and low-rank tensor decompositions, and Kruskal-type uniqueness theorems. This yields both generic conditions determined by the architecture, and effective conditions that depend on the network's parameters. We also settle an open conjecture on the expected dimension of PNN's neurovarieties, and provide new bounds on the activation degrees required for it to reach its maximum.
comment: 1 figure
☆ Neural Polar Decoders for DNA Data Storage
Synchronization errors, such as insertions and deletions, present a fundamental challenge in DNA-based data storage systems, arising from both synthesis and sequencing noise. These channels are often modeled as insertion-deletion-substitution (IDS) channels, for which designing maximum-likelihood decoders is computationally expensive. In this work, we propose a data-driven approach based on neural polar decoders (NPDs) to design low-complexity decoders for channels with synchronization errors. The proposed architecture enables decoding over IDS channels with reduced complexity $O(AN log N )$, where $A$ is a tunable parameter independent of the channel. NPDs require only sample access to the channel and can be trained without an explicit channel model. Additionally, NPDs provide mutual information (MI) estimates that can be used to optimize input distributions and code design. We demonstrate the effectiveness of NPDs on both synthetic deletion and IDS channels. For deletion channels, we show that NPDs achieve near-optimal decoding performance and accurate MI estimation, with significantly lower complexity than trellis-based decoders. We also provide numerical estimates of the channel capacity for the deletion channel. We extend our evaluation to realistic DNA storage settings, including channels with multiple noisy reads and real-world Nanopore sequencing data. Our results show that NPDs match or surpass the performance of existing methods while using significantly fewer parameters than the state-of-the-art. These findings highlight the promise of NPDs for robust and efficient decoding in DNA data storage systems.
☆ Empowering Near-Field Communications in Low-Altitude Economy with LLM: Fundamentals, Potentials, Solutions, and Future Directions
The low-altitude economy (LAE) is gaining significant attention from academia and industry. Fortunately, LAE naturally aligns with near-field communications in extremely large-scale MIMO (XL-MIMO) systems. By leveraging near-field beamfocusing, LAE can precisely direct beam energy to unmanned aerial vehicles, while the additional distance dimension boosts overall spectrum efficiency. However, near-field communications in LAE still face several challenges, such as the increase in signal processing complexity and the necessity of distinguishing between far and near-field users. Inspired by the large language models (LLM) with powerful ability to handle complex problems, we apply LLM to solve challenges of near-field communications in LAE. The objective of this article is to provide a comprehensive analysis and discussion on LLM-empowered near-field communications in LAE. Specifically, we first introduce fundamentals of LLM and near-field communications, including the key advantages of LLM and key characteristics of near-field communications. Then, we reveal the opportunities and challenges of near-field communications in LAE. To address these challenges, we present a LLM-based scheme for near-field communications in LAE, and provide a case study which jointly distinguishes far and near-field users and designs multi-user precoding matrix. Finally, we outline and highlight several future research directions and open issues.
☆ Flow-Based Non-stationary Temporal Regime Causal Structure Learning
Understanding causal relationships in multivariate time series is crucial in many scenarios, such as those dealing with financial or neurological data. Many such time series exhibit multiple regimes, i.e., consecutive temporal segments with a priori unknown boundaries, with each regime having its own causal structure. Inferring causal dependencies and regime shifts is critical for analyzing the underlying processes. However, causal structure learning in this setting is challenging due to (1) non stationarity, i.e., each regime can have its own causal graph and mixing function, and (2) complex noise distributions, which may be non Gaussian or heteroscedastic. Existing causal discovery approaches cannot address these challenges, since generally assume stationarity or Gaussian noise with constant variance. Hence, we introduce FANTOM, a unified framework for causal discovery that handles non stationary processes along with non Gaussian and heteroscedastic noises. FANTOM simultaneously infers the number of regimes and their corresponding indices and learns each regime's Directed Acyclic Graph. It uses a Bayesian Expectation Maximization algorithm that maximizes the evidence lower bound of the data log likelihood. On the theoretical side, we prove, under mild assumptions, that temporal heteroscedastic causal models, introduced in FANTOM's formulation, are identifiable in both stationary and non stationary settings. In addition, extensive experiments on synthetic and real data show that FANTOM outperforms existing methods.
☆ Generative Modeling of Full-Atom Protein Conformations using Latent Diffusion on Graph Embeddings NeurIPS 2025
Generating diverse, all-atom conformational ensembles of dynamic proteins such as G-protein-coupled receptors (GPCRs) is critical for understanding their function, yet most generative models simplify atomic detail or ignore conformational diversity altogether. We present latent diffusion for full protein generation (LD-FPG), a framework that constructs complete all-atom protein structures, including every side-chain heavy atom, directly from molecular dynamics (MD) trajectories. LD-FPG employs a Chebyshev graph neural network (ChebNet) to obtain low-dimensional latent embeddings of protein conformations, which are processed using three pooling strategies: blind, sequential and residue-based. A diffusion model trained on these latent representations generates new samples that a decoder, optionally regularized by dihedral-angle losses, maps back to Cartesian coordinates. Using D2R-MD, a 2-microsecond MD trajectory (12 000 frames) of the human dopamine D2 receptor in a membrane environment, the sequential and residue-based pooling strategy reproduces the reference ensemble with high structural fidelity (all-atom lDDT of approximately 0.7; C-alpha-lDDT of approximately 0.8) and recovers backbone and side-chain dihedral-angle distributions with a Jensen-Shannon divergence of less than 0.03 compared to the MD data. LD-FPG thereby offers a practical route to system-specific, all-atom ensemble generation for large proteins, providing a promising tool for structure-based therapeutic design on complex, dynamic targets. The D2R-MD dataset and our implementation are freely available to facilitate further research.
comment: 10 pages (main text), 4 figures, 2 tables. Submitted to NeurIPS 2025. Code and data are publicly available
☆ Client Selection Strategies for Federated Semantic Communications in Heterogeneous IoT Networks
The exponential growth of IoT devices presents critical challenges in bandwidth-constrained wireless networks, particularly regarding efficient data transmission and privacy preservation. This paper presents a novel federated semantic communication (SC) framework that enables collaborative training of bandwidth-efficient models for image reconstruction across heterogeneous IoT devices. By leveraging SC principles to transmit only semantic features, our approach dramatically reduces communication overhead while preserving reconstruction quality. We address the fundamental challenge of client selection in federated learning environments where devices exhibit significant disparities in dataset sizes and data distributions. Our framework implements three distinct client selection strategies that explore different trade-offs between system performance and fairness in resource allocation. The system employs an end-to-end SC architecture with semantic bottlenecks, coupled with a loss-based aggregation mechanism that naturally adapts to client heterogeneity. Experimental evaluation on image data demonstrates that while Utilitarian selection achieves the highest reconstruction quality, Proportional Fairness maintains competitive performance while significantly reducing participation inequality and improving computational efficiency. These results establish that federated SC can successfully balance reconstruction quality, resource efficiency, and fairness in heterogeneous IoT deployments, paving the way for sustainable and privacy-preserving edge intelligence applications.
☆ Universal Music Representations? Evaluating Foundation Models on World Music Corpora
Foundation models have revolutionized music information retrieval, but questions remain about their ability to generalize across diverse musical traditions. This paper presents a comprehensive evaluation of five state-of-the-art audio foundation models across six musical corpora spanning Western popular, Greek, Turkish, and Indian classical traditions. We employ three complementary methodologies to investigate these models' cross-cultural capabilities: probing to assess inherent representations, targeted supervised fine-tuning of 1-2 layers, and multi-label few-shot learning for low-resource scenarios. Our analysis shows varying cross-cultural generalization, with larger models typically outperforming on non-Western music, though results decline for culturally distant traditions. Notably, our approaches achieve state-of-the-art performance on five out of six evaluated datasets, demonstrating the effectiveness of foundation models for world music understanding. We also find that our targeted fine-tuning approach does not consistently outperform probing across all settings, suggesting foundation models already encode substantial musical knowledge. Our evaluation framework and benchmarking results contribute to understanding how far current models are from achieving universal music representations while establishing metrics for future progress.
comment: Accepted at ISMIR 2025
☆ From Concepts to Components: Concept-Agnostic Attention Module Discovery in Transformers
Transformers have achieved state-of-the-art performance across language and vision tasks. This success drives the imperative to interpret their internal mechanisms with the dual goals of enhancing performance and improving behavioral control. Attribution methods help advance interpretability by assigning model outputs associated with a target concept to specific model components. Current attribution research primarily studies multi-layer perceptron neurons and addresses relatively simple concepts such as factual associations (e.g., Paris is located in France). This focus tends to overlook the impact of the attention mechanism and lacks a unified approach for analyzing more complex concepts. To fill these gaps, we introduce Scalable Attention Module Discovery (SAMD), a concept-agnostic method for mapping arbitrary, complex concepts to specific attention heads of general transformer models. We accomplish this by representing each concept as a vector, calculating its cosine similarity with each attention head, and selecting the TopK-scoring heads to construct the concept-associated attention module. We then propose Scalar Attention Module Intervention (SAMI), a simple strategy to diminish or amplify the effects of a concept by adjusting the attention module using only a single scalar parameter. Empirically, we demonstrate SAMD on concepts of varying complexity, and visualize the locations of their corresponding modules. Our results demonstrate that module locations remain stable before and after LLM post-training, and confirm prior work on the mechanics of LLM multilingualism. Through SAMI, we facilitate jailbreaking on HarmBench (+72.7%) by diminishing "safety" and improve performance on the GSM8K benchmark (+1.6%) by amplifying "reasoning". Lastly, we highlight the domain-agnostic nature of our approach by suppressing the image classification accuracy of vision transformers on ImageNet.
☆ Navigating the Deep: Signature Extraction on Deep Neural Networks
Neural network model extraction has emerged in recent years as an important security concern, as adversaries attempt to recover a network's parameters via black-box queries. A key step in this process is signature extraction, which aims to recover the absolute values of the network's weights layer by layer. Prior work, notably by Carlini et al. (2020), introduced a technique inspired by differential cryptanalysis to extract neural network parameters. However, their method suffers from several limitations that restrict its applicability to networks with a few layers only. Later works focused on improving sign extraction, but largely relied on the assumption that signature extraction itself was feasible. In this work, we revisit and refine the signature extraction process by systematically identifying and addressing for the first time critical limitations of Carlini et al.'s signature extraction method. These limitations include rank deficiency and noise propagation from deeper layers. To overcome these challenges, we propose efficient algorithmic solutions for each of the identified issues, greatly improving the efficiency of signature extraction. Our approach permits the extraction of much deeper networks than was previously possible. We validate our method through extensive experiments on ReLU-based neural networks, demonstrating significant improvements in extraction depth and accuracy. For instance, our extracted network matches the target network on at least 95% of the input space for each of the eight layers of a neural network trained on the CIFAR-10 dataset, while previous works could barely extract the first three layers. Our results represent a crucial step toward practical attacks on larger and more complex neural network architectures.
comment: 26 pages
☆ MUCAR: Benchmarking Multilingual Cross-Modal Ambiguity Resolution for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have demonstrated significant advances across numerous vision-language tasks. Due to their strong image-text alignment capability, MLLMs can effectively understand image-text pairs with clear meanings. However, effectively resolving the inherent ambiguities in natural language and visual contexts remains challenging. Existing multimodal benchmarks typically overlook linguistic and visual ambiguities, relying mainly on unimodal context for disambiguation and thus failing to exploit the mutual clarification potential between modalities. To bridge this gap, we introduce MUCAR, a novel and challenging benchmark designed explicitly for evaluating multimodal ambiguity resolution across multilingual and cross-modal scenarios. MUCAR includes: (1) a multilingual dataset where ambiguous textual expressions are uniquely resolved by corresponding visual contexts, and (2) a dual-ambiguity dataset that systematically pairs ambiguous images with ambiguous textual contexts, with each combination carefully constructed to yield a single, clear interpretation through mutual disambiguation. Extensive evaluations involving 19 state-of-the-art multimodal models--encompassing both open-source and proprietary architectures--reveal substantial gaps compared to human-level performance, highlighting the need for future research into more sophisticated cross-modal ambiguity comprehension methods, further pushing the boundaries of multimodal reasoning.
☆ MAWIFlow Benchmark: Realistic Flow-Based Evaluation for Network Intrusion Detection
Benchmark datasets for network intrusion detection commonly rely on synthetically generated traffic, which fails to reflect the statistical variability and temporal drift encountered in operational environments. This paper introduces MAWIFlow, a flow-based benchmark derived from the MAWILAB v1.1 dataset, designed to enable realistic and reproducible evaluation of anomaly detection methods. A reproducible preprocessing pipeline is presented that transforms raw packet captures into flow representations conforming to the CICFlowMeter format, while preserving MAWILab's original anomaly labels. The resulting datasets comprise temporally distinct samples from January 2011, 2016, and 2021, drawn from trans-Pacific backbone traffic. To establish reference baselines, traditional machine learning methods, including Decision Trees, Random Forests, XGBoost, and Logistic Regression, are compared to a deep learning model based on a CNN-BiLSTM architecture. Empirical results demonstrate that tree-based classifiers perform well on temporally static data but experience significant performance degradation over time. In contrast, the CNN-BiLSTM model maintains better performance, thus showing improved generalization. These findings underscore the limitations of synthetic benchmarks and static models, and motivate the adoption of realistic datasets with explicit temporal structure. All datasets, pipeline code, and model implementations are made publicly available to foster transparency and reproducibility.
comment: 11 pages, 3 figures
☆ LSCD: Lomb-Scargle Conditioned Diffusion for Time series Imputation ICML 2025
Time series with missing or irregularly sampled data are a persistent challenge in machine learning. Many methods operate on the frequency-domain, relying on the Fast Fourier Transform (FFT) which assumes uniform sampling, therefore requiring prior interpolation that can distort the spectra. To address this limitation, we introduce a differentiable Lomb--Scargle layer that enables a reliable computation of the power spectrum of irregularly sampled data. We integrate this layer into a novel score-based diffusion model (LSCD) for time series imputation conditioned on the entire signal spectrum. Experiments on synthetic and real-world benchmarks demonstrate that our method recovers missing data more accurately than purely time-domain baselines, while simultaneously producing consistent frequency estimates. Crucially, our method can be easily integrated into learning frameworks, enabling broader adoption of spectral guidance in machine learning approaches involving incomplete or irregular data.
comment: In ICML 2025
☆ Bayesian Joint Model of Multi-Sensor and Failure Event Data for Multi-Mode Failure Prediction
Modern industrial systems are often subject to multiple failure modes, and their conditions are monitored by multiple sensors, generating multiple time-series signals. Additionally, time-to-failure data are commonly available. Accurately predicting a system's remaining useful life (RUL) requires effectively leveraging multi-sensor time-series data alongside multi-mode failure event data. In most existing models, failure modes and RUL prediction are performed independently, ignoring the inherent relationship between these two tasks. Some models integrate multiple failure modes and event prediction using black-box machine learning approaches, which lack statistical rigor and cannot characterize the inherent uncertainty in the model and data. This paper introduces a unified approach to jointly model the multi-sensor time-series data and failure time concerning multiple failure modes. This proposed model integrate a Cox proportional hazards model, a Convolved Multi-output Gaussian Process, and multinomial failure mode distributions in a hierarchical Bayesian framework with corresponding priors, enabling accurate prediction with robust uncertainty quantification. Posterior distributions are effectively obtained by Variational Bayes, and prediction is performed with Monte Carlo sampling. The advantages of the proposed model is validated through extensive numerical and case studies with jet-engine dataset.
☆ Critical Appraisal of Fairness Metrics in Clinical Predictive AI
Predictive artificial intelligence (AI) offers an opportunity to improve clinical practice and patient outcomes, but risks perpetuating biases if fairness is inadequately addressed. However, the definition of "fairness" remains unclear. We conducted a scoping review to identify and critically appraise fairness metrics for clinical predictive AI. We defined a "fairness metric" as a measure quantifying whether a model discriminates (societally) against individuals or groups defined by sensitive attributes. We searched five databases (2014-2024), screening 820 records, to include 41 studies, and extracted 62 fairness metrics. Metrics were classified by performance-dependency, model output level, and base performance metric, revealing a fragmented landscape with limited clinical validation and overreliance on threshold-dependent measures. Eighteen metrics were explicitly developed for healthcare, including only one clinical utility metric. Our findings highlight conceptual challenges in defining and quantifying fairness and identify gaps in uncertainty quantification, intersectionality, and real-world applicability. Future work should prioritise clinically meaningful metrics.
comment: 32 pages, 1 figure, 2 tables, 5 boxes, 4 linked supplementary materials
☆ Scalable and Reliable Multi-agent Reinforcement Learning for Traffic Assignment
The evolution of metropolitan cities and the increase in travel demands impose stringent requirements on traffic assignment methods. Multi-agent reinforcement learning (MARL) approaches outperform traditional methods in modeling adaptive routing behavior without requiring explicit system dynamics, which is beneficial for real-world deployment. However, MARL frameworks face challenges in scalability and reliability when managing extensive networks with substantial travel demand, which limiting their practical applicability in solving large-scale traffic assignment problems. To address these challenges, this study introduces MARL-OD-DA, a new MARL framework for the traffic assignment problem, which redefines agents as origin-destination (OD) pair routers rather than individual travelers, significantly enhancing scalability. Additionally, a Dirichlet-based action space with action pruning and a reward function based on the local relative gap are designed to enhance solution reliability and improve convergence efficiency. Experiments demonstrate that the proposed MARL framework effectively handles medium-sized networks with extensive and varied city-level OD demand, surpassing existing MARL methods. When implemented in the SiouxFalls network, MARL-OD-DA achieves better assignment solutions in 10 steps, with a relative gap that is 94.99% lower than that of conventional methods.
☆ A Quantile Regression Approach for Remaining Useful Life Estimation with State Space Models
Predictive Maintenance (PdM) is pivotal in Industry 4.0 and 5.0, proactively enhancing efficiency through accurate equipment Remaining Useful Life (RUL) prediction, thus optimizing maintenance scheduling and reducing unexpected failures and premature interventions. This paper introduces a novel RUL estimation approach leveraging State Space Models (SSM) for efficient long-term sequence modeling. To handle model uncertainty, Simoultaneous Quantile Regression (SQR) is integrated into the SSM, enabling multiple quantile estimations. The proposed method is benchmarked against traditional sequence modelling techniques (LSTM, Transformer, Informer) using the C-MAPSS dataset. Results demonstrate superior accuracy and computational efficiency of SSM models, underscoring their potential for high-stakes industrial applications.
comment: Submitted to IFAC Joint Conference on Computers, Cognition, and Communication (J3C) 2025
☆ The Hidden Cost of an Image: Quantifying the Energy Consumption of AI Image Generation
With the growing adoption of AI image generation, in conjunction with the ever-increasing environmental resources demanded by AI, we are urged to answer a fundamental question: What is the environmental impact hidden behind each image we generate? In this research, we present a comprehensive empirical experiment designed to assess the energy consumption of AI image generation. Our experiment compares 17 state-of-the-art image generation models by considering multiple factors that could affect their energy consumption, such as model quantization, image resolution, and prompt length. Additionally, we consider established image quality metrics to study potential trade-offs between energy consumption and generated image quality. Results show that image generation models vary drastically in terms of the energy they consume, with up to a 46x difference. Image resolution affects energy consumption inconsistently, ranging from a 1.3x to 4.7x increase when doubling resolution. U-Net-based models tend to consume less than Transformer-based one. Model quantization instead results to deteriorate the energy efficiency of most models, while prompt length and content have no statistically significant impact. Improving image quality does not always come at the cost of a higher energy consumption, with some of the models producing the highest quality images also being among the most energy efficient ones.
☆ Simulating Correlated Electrons with Symmetry-Enforced Normalizing Flows
We present the first proof of principle that normalizing flows can accurately learn the Boltzmann distribution of the fermionic Hubbard model - a key framework for describing the electronic structure of graphene and related materials. State-of-the-art methods like Hybrid Monte Carlo often suffer from ergodicity issues near the time-continuum limit, leading to biased estimates. Leveraging symmetry-aware architectures as well as independent and identically distributed sampling, our approach resolves these issues and achieves significant speed-ups over traditional methods.
comment: 9 pages, 7 figures
☆ Robust Reinforcement Learning for Discrete Compositional Generation via General Soft Operators
A major bottleneck in scientific discovery involves narrowing a large combinatorial set of objects, such as proteins or molecules, to a small set of promising candidates. While this process largely relies on expert knowledge, recent methods leverage reinforcement learning (RL) to enhance this filtering. They achieve this by estimating proxy reward functions from available datasets and using regularization to generate more diverse candidates. These reward functions are inherently uncertain, raising a particularly salient challenge for scientific discovery. In this work, we show that existing methods, often framed as sampling proportional to a reward function, are inadequate and yield suboptimal candidates, especially in large search spaces. To remedy this issue, we take a robust RL approach and introduce a unified operator that seeks robustness to the uncertainty of the proxy reward function. This general operator targets peakier sampling distributions while encompassing known soft RL operators. It also leads us to a novel algorithm that identifies higher-quality, diverse candidates in both synthetic and real-world tasks. Ultimately, our work offers a new, flexible perspective on discrete compositional generation tasks. Code: https://github.com/marcojira/tgm.
☆ Prmpt2Adpt: Prompt-Based Zero-Shot Domain Adaptation for Resource-Constrained Environments
Unsupervised Domain Adaptation (UDA) is a critical challenge in real-world vision systems, especially in resource-constrained environments like drones, where memory and computation are limited. Existing prompt-driven UDA methods typically rely on large vision-language models and require full access to source-domain data during adaptation, limiting their applicability. In this work, we propose Prmpt2Adpt, a lightweight and efficient zero-shot domain adaptation framework built around a teacher-student paradigm guided by prompt-based feature alignment. At the core of our method is a distilled and fine-tuned CLIP model, used as the frozen backbone of a Faster R-CNN teacher. A small set of low-level source features is aligned to the target domain semantics-specified only through a natural language prompt-via Prompt-driven Instance Normalization (PIN). These semantically steered features are used to briefly fine-tune the detection head of the teacher model. The adapted teacher then generates high-quality pseudo-labels, which guide the on-the-fly adaptation of a compact student model. Experiments on the MDS-A dataset demonstrate that Prmpt2Adpt achieves competitive detection performance compared to state-of-the-art methods, while delivering up to 7x faster adaptation and 5x faster inference speed using few source images-making it a practical and scalable solution for real-time adaptation in low-resource domains.
☆ Language Bottleneck Models: A Framework for Interpretable Knowledge Tracing and Beyond
Accurately assessing student knowledge is critical for effective education, yet traditional Knowledge Tracing (KT) methods rely on opaque latent embeddings, limiting interpretability. Even LLM-based approaches generate direct predictions or summaries that may hallucinate without any accuracy guarantees. We recast KT as an inverse problem: learning the minimum natural-language summary that makes past answers explainable and future answers predictable. Our Language Bottleneck Model (LBM) consists of an encoder LLM that writes an interpretable knowledge summary and a frozen decoder LLM that must reconstruct and predict student responses using only that summary text. By constraining all predictive information to pass through a short natural-language bottleneck, LBMs ensure that the summary contains accurate information while remaining human-interpretable. Experiments on synthetic arithmetic benchmarks and the large-scale Eedi dataset show that LBMs rival the accuracy of state-of-the-art KT and direct LLM methods while requiring orders-of-magnitude fewer student trajectories. We demonstrate that training the encoder with group-relative policy optimization, using downstream decoding accuracy as a reward signal, effectively improves summary quality.
☆ Latent Concept Disentanglement in Transformer-based Language Models
When large language models (LLMs) use in-context learning (ICL) to solve a new task, they seem to grasp not only the goal of the task but also core, latent concepts in the demonstration examples. This begs the question of whether transformers represent latent structures as part of their computation or whether they take shortcuts to solve the problem. Prior mechanistic work on ICL does not address this question because it does not sufficiently examine the relationship between the learned representation and the latent concept, and the considered problem settings often involve only single-step reasoning. In this work, we examine how transformers disentangle and use latent concepts. We show that in 2-hop reasoning tasks with a latent, discrete concept, the model successfully identifies the latent concept and does step-by-step concept composition. In tasks parameterized by a continuous latent concept, we find low-dimensional subspaces in the representation space where the geometry mimics the underlying parameterization. Together, these results refine our understanding of ICL and the representation of transformers, and they provide evidence for highly localized structures in the model that disentangle latent concepts in ICL tasks.
☆ RocketStack: A level-aware deep recursive ensemble learning framework with exploratory feature fusion and model pruning dynamics
Ensemble learning remains a cornerstone of machine learning, with stacking used to integrate predictions from multiple base learners through a meta-model. However, deep stacking remains rare, as most designs prioritize horizontal diversity over recursive depth due to model complexity, feature redundancy, and computational burden. To address these challenges, RocketStack, a level-aware recursive ensemble framework, is introduced and explored up to ten stacking levels, extending beyond prior architectures. The framework incrementally prunes weaker learners at each level, enabling deeper stacking without excessive complexity. To mitigate early performance saturation, mild Gaussian noise is added to out-of-fold (OOF) scores before pruning, and compared against strict OOF pruning. Further both per-level and periodic feature compressions are explored using attention-based selection, Simple, Fast, Efficient (SFE) filter, and autoencoders. Across 33 datasets (23 binary, 10 multi-class), linear-trend tests confirmed rising accuracy with depth in most variants, and the top performing meta-model at each level increasingly outperformed the strongest standalone ensemble. In the binary subset, periodic SFE with mild OOF-score randomization reached 97.08% at level 10, 5.14% above the strict-pruning configuration and cut runtime by 10.5% relative to no compression. In the multi-class subset, periodic attention selection reached 98.60% at level 10, exceeding the strongest baseline by 6.11%, while reducing runtime by 56.1% and feature dimensionality by 74% compared to no compression. These findings highlight mild randomization as an effective regularizer and periodic compression as a stabilizer. Echoing the design of multistage rockets in aerospace (prune, compress, propel) RocketStack achieves deep recursive ensembling with tractable complexity.
comment: 32 pages, 1 graphical abstract, 7 figures, 9 tables, 2 supplementary figures
☆ LAION-C: An Out-of-Distribution Benchmark for Web-Scale Vision Models ICML 2025
Out-of-distribution (OOD) robustness is a desired property of computer vision models. Improving model robustness requires high-quality signals from robustness benchmarks to quantify progress. While various benchmark datasets such as ImageNet-C were proposed in the ImageNet era, most ImageNet-C corruption types are no longer OOD relative to today's large, web-scraped datasets, which already contain common corruptions such as blur or JPEG compression artifacts. Consequently, these benchmarks are no longer well-suited for evaluating OOD robustness in the era of web-scale datasets. Indeed, recent models show saturating scores on ImageNet-era OOD benchmarks, indicating that it is unclear whether models trained on web-scale datasets truly become better at OOD generalization or whether they have simply been exposed to the test distortions during training. To address this, we introduce LAION-C as a benchmark alternative for ImageNet-C. LAION-C consists of six novel distortion types specifically designed to be OOD, even for web-scale datasets such as LAION. In a comprehensive evaluation of state-of-the-art models, we find that the LAION-C dataset poses significant challenges to contemporary models, including MLLMs such as Gemini and GPT-4o. We additionally conducted a psychophysical experiment to evaluate the difficulty of our corruptions for human observers, enabling a comparison of models to lab-quality human robustness data. We observe a paradigm shift in OOD generalization: from humans outperforming models, to the best models now matching or outperforming the best human observers.
comment: ICML 2025 camera ready version
☆ Enhancing Expressivity of Quantum Neural Networks Based on the SWAP test
Parameterized quantum circuits represent promising architectures for machine learning applications, yet many lack clear connections to classical models, potentially limiting their ability to translate the wide success of classical neural networks to the quantum realm. We examine a specific type of quantum neural network (QNN) built exclusively from SWAP test circuits, and discuss its mathematical equivalence to a classical two-layer feedforward network with quadratic activation functions under amplitude encoding. Our analysis across classical real-world and synthetic datasets reveals that while this architecture can successfully learn many practical tasks, it exhibits fundamental expressivity limitations due to violating the universal approximation theorem, particularly failing on harder problems like the parity check function. To address this limitation, we introduce a circuit modification using generalized SWAP test circuits that effectively implements classical neural networks with product layers. This enhancement enables successful learning of parity check functions in arbitrary dimensions which we analytically argue to be impossible for the original architecture beyond two dimensions regardless of network size. Our results establish a framework for enhancing QNN expressivity through classical task analysis and demonstrate that our SWAP test-based architecture offers broad representational capacity, suggesting potential promise also for quantum learning tasks.
comment: 15 pages, 7 figures
☆ A deep learning and machine learning approach to predict neonatal death in the context of São Paulo
Neonatal death is still a concerning reality for underdeveloped and even some developed countries. Worldwide data indicate that 26.693 babies out of 1,000 births die, according to Macro Trades. To reduce this number, early prediction of endangered babies is crucial. Such prediction enables the opportunity to take ample care of the child and mother so that early child death can be avoided. In this context, machine learning was used to determine whether a newborn baby is at risk. To train the predictive model, historical data of 1.4 million newborns was used. Machine learning and deep learning techniques such as logical regression, K-nearest neighbor, random forest classifier, extreme gradient boosting (XGBoost), convolutional neural network, and long short-term memory (LSTM) were implemented using the dataset to identify the most accurate model for predicting neonatal mortality. Among the machine learning algorithms, XGBoost and random forest classifier achieved the best accuracy with 94%, while among the deep learning models, LSTM delivered the highest accuracy with 99%. Therefore, using LSTM appears to be the most suitable approach to predict whether precautionary measures for a child are necessary.
☆ A Neural Operator based Hybrid Microscale Model for Multiscale Simulation of Rate-Dependent Materials
The behavior of materials is influenced by a wide range of phenomena occurring across various time and length scales. To better understand the impact of microstructure on macroscopic response, multiscale modeling strategies are essential. Numerical methods, such as the $\text{FE}^2$ approach, account for micro-macro interactions to predict the global response in a concurrent manner. However, these methods are computationally intensive due to the repeated evaluations of the microscale. This challenge has led to the integration of deep learning techniques into computational homogenization frameworks to accelerate multiscale simulations. In this work, we employ neural operators to predict the microscale physics, resulting in a hybrid model that combines data-driven and physics-based approaches. This allows for physics-guided learning and provides flexibility for different materials and spatial discretizations. We apply this method to time-dependent solid mechanics problems involving viscoelastic material behavior, where the state is represented by internal variables only at the microscale. The constitutive relations of the microscale are incorporated into the model architecture and the internal variables are computed based on established physical principles. The results for homogenized stresses ($<6\%$ error) show that the approach is computationally efficient ($\sim 100 \times$ faster).
☆ From Data to Knowledge: Evaluating How Efficiently Language Models Learn Facts ACL 2025
Sample efficiency is a crucial property of language models with practical implications for training efficiency. In real-world text, information follows a long-tailed distribution. Yet, we expect models to learn and recall frequent and infrequent facts. Sample-efficient models are better equipped to handle this challenge of learning and retaining rare information without requiring excessive exposure. This study analyzes multiple models of varying architectures and sizes, all trained on the same pre-training data. By annotating relational facts with their frequencies in the training corpus, we examine how model performance varies with fact frequency. Our findings show that most models perform similarly on high-frequency facts but differ notably on low-frequency facts. This analysis provides new insights into the relationship between model architecture, size, and factual learning efficiency.
comment: Accepted to the First Workshop on Large Language Model Memorization (L2M2), co-located with ACL 2025 in Vienna
☆ RCNet: $ΔΣ$ IADCs as Recurrent AutoEncoders
This paper proposes a deep learning model (RCNet) for Delta-Sigma ($\Delta\Sigma$) ADCs. Recurrent Neural Networks (RNNs) allow to describe both modulators and filters. This analogy is applied to Incremental ADCs (IADC). High-end optimizers combined with full-custom losses are used to define additional hardware design constraints: quantized weights, signal saturation, temporal noise injection, devices area. Focusing on DC conversion, our early results demonstrate that $SNR$ defined as an Effective Number Of Bits (ENOB) can be optimized under a certain hardware mapping complexity. The proposed RCNet succeeded to provide design tradeoffs in terms of $SNR$ ($>$13bit) versus area constraints ($<$14pF total capacitor) at a given $OSR$ (80 samples). Interestingly, it appears that the best RCNet architectures do not necessarily rely on high-order modulators, leveraging additional topology exploration degrees of freedom.
☆ With Limited Data for Multimodal Alignment, Let the STRUCTURE Guide You
Multimodal models have demonstrated powerful capabilities in complex tasks requiring multimodal alignment including zero-shot classification and cross-modal retrieval. However, existing models typically rely on millions of paired multimodal samples, which are prohibitively expensive or infeasible to obtain in many domains. In this work, we explore the feasibility of building multimodal models with limited amount of paired data by aligning pretrained unimodal foundation models. We show that high-quality alignment is possible with as few as tens of thousands of paired samples$\unicode{x2013}$less than $1\%$ of the data typically used in the field. To achieve this, we introduce STRUCTURE, an effective regularization technique that preserves the neighborhood geometry of the latent space of unimodal encoders. Additionally, we show that aligning last layers is often suboptimal and demonstrate the benefits of aligning the layers with the highest representational similarity across modalities. These two components can be readily incorporated into existing alignment methods, yielding substantial gains across 24 zero-shot image classification and retrieval benchmarks, with average relative improvement of $51.6\%$ in classification and $91.8\%$ in retrieval tasks. Our results highlight the effectiveness and broad applicability of our framework for limited-sample multimodal learning and offer a promising path forward for resource-constrained domains.
☆ From Lab to Factory: Pitfalls and Guidelines for Self-/Unsupervised Defect Detection on Low-Quality Industrial Images KDD '25
The detection and localization of quality-related problems in industrially mass-produced products has historically relied on manual inspection, which is costly and error-prone. Machine learning has the potential to replace manual handling. As such, the desire is to facilitate an unsupervised (or self-supervised) approach, as it is often impossible to specify all conceivable defects ahead of time. A plethora of prior works have demonstrated the aptitude of common reconstruction-, embedding-, and synthesis-based methods in laboratory settings. However, in practice, we observe that most methods do not handle low data quality well or exude low robustness in unfavorable, but typical real-world settings. For practitioners it may be very difficult to identify the actual underlying problem when such methods underperform. Worse, often-reported metrics (e.g., AUROC) are rarely suitable in practice and may give misleading results. In our setting, we attempt to identify subtle anomalies on the surface of blasted forged metal parts, using rather low-quality RGB imagery only, which is a common industrial setting. We specifically evaluate two types of state-of-the-art models that allow us to identify and improve quality issues in production data, without having to obtain new data. Our contribution is to provide guardrails for practitioners that allow them to identify problems related to, e.g., (lack of) robustness or invariance, in either the chosen model or the data reliably in similar scenarios. Furthermore, we exemplify common pitfalls in and shortcomings of likelihood-based approaches and outline a framework for proper empirical risk estimation that is more suitable for real-world scenarios.
comment: 18 pages, 7 figures, 1 table. Camera-ready version for the 2025 conference European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD '25)
☆ The Importance of Being Lazy: Scaling Limits of Continual Learning
Despite recent efforts, neural networks still struggle to learn in non-stationary environments, and our understanding of catastrophic forgetting (CF) is far from complete. In this work, we perform a systematic study on the impact of model scale and the degree of feature learning in continual learning. We reconcile existing contradictory observations on scale in the literature, by differentiating between lazy and rich training regimes through a variable parameterization of the architecture. We show that increasing model width is only beneficial when it reduces the amount of feature learning, yielding more laziness. Using the framework of dynamical mean field theory, we then study the infinite width dynamics of the model in the feature learning regime and characterize CF, extending prior theoretical results limited to the lazy regime. We study the intricate relationship between feature learning, task non-stationarity, and forgetting, finding that high feature learning is only beneficial with highly similar tasks. We identify a transition modulated by task similarity where the model exits an effectively lazy regime with low forgetting to enter a rich regime with significant forgetting. Finally, our findings reveal that neural networks achieve optimal performance at a critical level of feature learning, which depends on task non-stationarity and transfers across model scales. This work provides a unified perspective on the role of scale and feature learning in continual learning.
comment: Proceedings of the 42nd International Conference on Machine Learning (2025). JG and AB contributed equally to this work
☆ Optimal Depth of Neural Networks
Determining the optimal depth of a neural network is a fundamental yet challenging problem, typically resolved through resource-intensive experimentation. This paper introduces a formal theoretical framework to address this question by recasting the forward pass of a deep network, specifically a Residual Network (ResNet), as an optimal stopping problem. We model the layer-by-layer evolution of hidden representations as a sequential decision process where, at each layer, a choice is made between halting computation to make a prediction or continuing to a deeper layer for a potentially more refined representation. This formulation captures the intrinsic trade-off between accuracy and computational cost. Our primary theoretical contribution is a proof that, under a plausible condition of diminishing returns on the residual functions, the expected optimal stopping depth is provably finite, even in an infinite-horizon setting. We leverage this insight to propose a novel and practical regularization term, $\mathcal{L}_{\rm depth}$, that encourages the network to learn representations amenable to efficient, early exiting. We demonstrate the generality of our framework by extending it to the Transformer architecture and exploring its connection to continuous-depth models via free-boundary problems. Empirical validation on ImageNet confirms that our regularizer successfully induces the theoretically predicted behavior, leading to significant gains in computational efficiency without compromising, and in some cases improving, final model accuracy.
☆ Anomaly Detection in Event-triggered Traffic Time Series via Similarity Learning
Time series analysis has achieved great success in cyber security such as intrusion detection and device identification. Learning similarities among multiple time series is a crucial problem since it serves as the foundation for downstream analysis. Due to the complex temporal dynamics of the event-triggered time series, it often remains unclear which similarity metric is appropriate for security-related tasks, such as anomaly detection and clustering. The overarching goal of this paper is to develop an unsupervised learning framework that is capable of learning similarities among a set of event-triggered time series. From the machine learning vantage point, the proposed framework harnesses the power of both hierarchical multi-resolution sequential autoencoders and the Gaussian Mixture Model (GMM) to effectively learn the low-dimensional representations from the time series. Finally, the obtained similarity measure can be easily visualized for the explanation. The proposed framework aspires to offer a stepping stone that gives rise to a systematic approach to model and learn similarities among a multitude of event-triggered time series. Through extensive qualitative and quantitative experiments, it is revealed that the proposed method outperforms state-of-the-art methods considerably.
comment: 16 pages, 14 figures. Published in IEEE Transactions on Dependable and Secure Computing. arXiv admin note: substantial text overlap with arXiv:2207.08159
☆ Reward-Agnostic Prompt Optimization for Text-to-Image Diffusion Models
We investigate a general approach for improving user prompts in text-to-image (T2I) diffusion models by finding prompts that maximize a reward function specified at test-time. Although diverse reward models are used for evaluating image generation, existing automated prompt engineering methods typically target specific reward configurations. Consequently, these specialized designs exhibit suboptimal performance when applied to new prompt engineering scenarios involving different reward models. To address this limitation, we introduce RATTPO (Reward-Agnostic Test-Time Prompt Optimization), a flexible test-time optimization method applicable across various reward scenarios without modification. RATTPO iteratively searches for optimized prompts by querying large language models (LLMs) \textit{without} requiring reward-specific task descriptions. Instead, it uses the optimization trajectory and a novel reward-aware feedback signal (termed a "hint") as context. Empirical results demonstrate the versatility of RATTPO, effectively enhancing user prompts across diverse reward setups that assess various generation aspects, such as aesthetics, general human preference, or spatial relationships between objects. RATTPO surpasses other test-time search baselines in search efficiency, using up to 3.5 times less inference budget, and, given sufficient inference budget, achieves performance comparable to learning-based baselines that require reward-specific fine-tuning. The code is available at https://github.com/seminkim/RATTPO.
comment: 28 pages, Under review
☆ Soft decision trees for survival analysis
Decision trees are popular in survival analysis for their interpretability and ability to model complex relationships. Survival trees, which predict the timing of singular events using censored historical data, are typically built through heuristic approaches. Recently, there has been growing interest in globally optimized trees, where the overall tree is trained by minimizing the error function over all its parameters. We propose a new soft survival tree model (SST), with a soft splitting rule at each branch node, trained via a nonlinear optimization formulation amenable to decomposition. Since SSTs provide for every input vector a specific survival function associated to a single leaf node, they satisfy the conditional computation property and inherit the related benefits. SST and the training formulation combine flexibility with interpretability: any smooth survival function (parametric, semiparametric, or nonparametric) estimated through maximum likelihood can be used, and each leaf node of an SST yields a cluster of distinct survival functions which are associated to the data points routed to it. Numerical experiments on 15 well-known datasets show that SSTs, with parametric and spline-based semiparametric survival functions, trained using an adaptation of the node-based decomposition algorithm proposed by Consolo et al. (2024) for soft regression trees, outperform three benchmark survival trees in terms of four widely-used discrimination and calibration measures. SSTs can also be extended to consider group fairness.
☆ Bandwidth Selectors on Semiparametric Bayesian Networks
Semiparametric Bayesian networks (SPBNs) integrate parametric and non-parametric probabilistic models, offering flexibility in learning complex data distributions from samples. In particular, kernel density estimators (KDEs) are employed for the non-parametric component. Under the assumption of data normality, the normal rule is used to learn the bandwidth matrix for the KDEs in SPBNs. This matrix is the key hyperparameter that controls the trade-off between bias and variance. However, real-world data often deviates from normality, potentially leading to suboptimal density estimation and reduced predictive performance. This paper first establishes the theoretical framework for the application of state-of-the-art bandwidth selectors and subsequently evaluates their impact on SPBN performance. We explore the approaches of cross-validation and plug-in selectors, assessing their effectiveness in enhancing the learning capability and applicability of SPBNs. To support this investigation, we have extended the open-source package PyBNesian for SPBNs with the additional bandwidth selection techniques and conducted extensive experimental analyses. Our results demonstrate that the proposed bandwidth selectors leverage increasing information more effectively than the normal rule, which, despite its robustness, stagnates with more data. In particular, unbiased cross-validation generally outperforms the normal rule, highlighting its advantage in high sample size scenarios.
comment: 37 pages, 15 figures. Submitted to Information Sciences
☆ FedFitTech: A Baseline in Federated Learning for Fitness Tracking
Rapid evolution of sensors and resource-efficient machine learning models have spurred the widespread adoption of wearable fitness tracking devices. Equipped with inertial sensors, such devices can continuously capture physical movements for fitness technology (FitTech), enabling applications from sports optimization to preventive healthcare. Traditional centralized learning approaches to detect fitness activities struggle with privacy concerns, regulatory constraints, and communication inefficiencies. In contrast, Federated Learning (FL) enables a decentralized model training by communicating model updates rather than private wearable sensor data. Applying FL to FitTech presents unique challenges, such as data imbalance, lack of labelled data, heterogeneous user activity patterns, and trade-offs between personalization and generalization. To simplify research on FitTech in FL, we present the FedFitTech baseline, under the Flower framework, which is publicly available and widely used by both industry and academic researchers. Additionally, to illustrate its usage, this paper presents a case study that implements a system based on the FedFitTech baseline, incorporating a client-side early stopping strategy and comparing the results. For instance, this system allows wearable devices to optimize the trade-off between capturing common fitness activity patterns and preserving individuals' nuances, thereby enhancing both the scalability and efficiency of privacy-aware fitness tracking applications. Results show that this reduces overall redundant communications by 13 percent, while maintaining the overall recognition performance at a negligible recognition cost by 1 percent. Thus, FedFitTech baseline creates a foundation for a wide range of new research and development opportunities in FitTech, and it is available as open-source at: https://github.com/adap/flower/tree/main/baselines/fedfittech
comment: This submission includes a total of 7 pages and 6 figures
☆ Beyond Blur: A Fluid Perspective on Generative Diffusion Models
We propose a novel PDE-driven corruption process for generative image synthesis based on advection-diffusion processes which generalizes existing PDE-based approaches. Our forward pass formulates image corruption via a physically motivated PDE that couples directional advection with isotropic diffusion and Gaussian noise, controlled by dimensionless numbers (Peclet, Fourier). We implement this PDE numerically through a GPU-accelerated custom Lattice Boltzmann solver for fast evaluation. To induce realistic turbulence, we generate stochastic velocity fields that introduce coherent motion and capture multi-scale mixing. In the generative process, a neural network learns to reverse the advection-diffusion operator thus constituting a novel generative model. We discuss how previous methods emerge as specific cases of our operator, demonstrating that our framework generalizes prior PDE-based corruption techniques. We illustrate how advection improves the diversity and quality of the generated images while keeping the overall color palette unaffected. This work bridges fluid dynamics, dimensionless PDE theory, and deep generative modeling, offering a fresh perspective on physically informed image corruption processes for diffusion-based synthesis.
comment: 11 pages, 8 figures, pre-print, supplementary pseudocode in appendix
☆ Predicting New Research Directions in Materials Science using Large Language Models and Concept Graphs
Due to an exponential increase in published research articles, it is impossible for individual scientists to read all publications, even within their own research field. In this work, we investigate the use of large language models (LLMs) for the purpose of extracting the main concepts and semantic information from scientific abstracts in the domain of materials science to find links that were not noticed by humans and thus to suggest inspiring near/mid-term future research directions. We show that LLMs can extract concepts more efficiently than automated keyword extraction methods to build a concept graph as an abstraction of the scientific literature. A machine learning model is trained to predict emerging combinations of concepts, i.e. new research ideas, based on historical data. We demonstrate that integrating semantic concept information leads to an increased prediction performance. The applicability of our model is demonstrated in qualitative interviews with domain experts based on individualized model suggestions. We show that the model can inspire materials scientists in their creative thinking process by predicting innovative combinations of topics that have not yet been investigated.
☆ Robust Group Anomaly Detection for Quasi-Periodic Network Time Series
Many real-world multivariate time series are collected from a network of physical objects embedded with software, electronics, and sensors. The quasi-periodic signals generated by these objects often follow a similar repetitive and periodic pattern, but have variations in the period, and come in different lengths caused by timing (synchronization) errors. Given a multitude of such quasi-periodic time series, can we build machine learning models to identify those time series that behave differently from the majority of the observations? In addition, can the models help human experts to understand how the decision was made? We propose a sequence to Gaussian Mixture Model (seq2GMM) framework. The overarching goal of this framework is to identify unusual and interesting time series within a network time series database. We further develop a surrogate-based optimization algorithm that can efficiently train the seq2GMM model. Seq2GMM exhibits strong empirical performance on a plurality of public benchmark datasets, outperforming state-of-the-art anomaly detection techniques by a significant margin. We also theoretically analyze the convergence property of the proposed training algorithm and provide numerical results to substantiate our theoretical claims.
comment: Published in IEEE Transactions on Network Science and Engineering
☆ TabArena: A Living Benchmark for Machine Learning on Tabular Data
With the growing popularity of deep learning and foundation models for tabular data, the need for standardized and reliable benchmarks is higher than ever. However, current benchmarks are static. Their design is not updated even if flaws are discovered, model versions are updated, or new models are released. To address this, we introduce TabArena, the first continuously maintained living tabular benchmarking system. To launch TabArena, we manually curate a representative collection of datasets and well-implemented models, conduct a large-scale benchmarking study to initialize a public leaderboard, and assemble a team of experienced maintainers. Our results highlight the influence of validation method and ensembling of hyperparameter configurations to benchmark models at their full potential. While gradient-boosted trees are still strong contenders on practical tabular datasets, we observe that deep learning methods have caught up under larger time budgets with ensembling. At the same time, foundation models excel on smaller datasets. Finally, we show that ensembles across models advance the state-of-the-art in tabular machine learning and investigate the contributions of individual models. We launch TabArena with a public leaderboard, reproducible code, and maintenance protocols to create a living benchmark available at https://tabarena.ai.
comment: 51 pages. Code available at https://tabarena.ai/code; examples at https://tabarena.ai/code-examples; dataset curation at https://tabarena.ai/data-tabular-ml-iid-study and https://tabarena.ai/dataset-curation
☆ Exploring and Improving Initialization for Deep Graph Neural Networks: A Signal Propagation Perspective
Graph Neural Networks (GNNs) often suffer from performance degradation as the network depth increases. This paper addresses this issue by introducing initialization methods that enhance signal propagation (SP) within GNNs. We propose three key metrics for effective SP in GNNs: forward propagation, backward propagation, and graph embedding variation (GEV). While the first two metrics derive from classical SP theory, the third is specifically designed for GNNs. We theoretically demonstrate that a broad range of commonly used initialization methods for GNNs, which exhibit performance degradation with increasing depth, fail to control these three metrics simultaneously. To deal with this limitation, a direct exploitation of the SP analysis--searching for weight initialization variances that optimize the three metrics--is shown to significantly enhance the SP in deep GCNs. This approach is called Signal Propagation on Graph-guided Initialization (SPoGInit). Our experiments demonstrate that SPoGInit outperforms commonly used initialization methods on various tasks and architectures. Notably, SPoGInit enables performance improvements as GNNs deepen, which represents a significant advancement in addressing depth-related challenges and highlights the validity and effectiveness of the SP analysis framework.
comment: Published in TMLR (2025)
☆ Revisiting LoRA through the Lens of Parameter Redundancy: Spectral Encoding Helps ACL 2025
Low-Rank Adaptation (LoRA) has emerged as a prominent technique for fine-tuning large foundation models. Despite its successes, the substantial parameter redundancy, which limits the capacity and efficiency of LoRA, has been recognized as a bottleneck. In this work, we systematically investigate the impact of redundancy in fine-tuning LoRA and reveal that reducing density redundancy does not degrade expressiveness. Based on this insight, we introduce \underline{S}pectral-\underline{e}ncoding \underline{L}ow-\underline{R}ank \underline{A}daptation (SeLoRA), which harnesses the robust expressiveness of spectral bases to re-parameterize LoRA from a sparse spectral subspace. Designed with simplicity, SeLoRA enables seamless integration with various LoRA variants for performance boosting, serving as a scalable plug-and-play framework. Extensive experiments substantiate that SeLoRA achieves greater efficiency with fewer parameters, delivering superior performance enhancements over strong baselines on various downstream tasks, including commonsense reasoning, math reasoning, and code generation.
comment: 18 pages; Accepted to ACL 2025 Findings
☆ What Is the Point of Equality in Machine Learning Fairness? Beyond Equality of Opportunity
Fairness in machine learning (ML) has become a rapidly growing area of research. But why, in the first place, is unfairness in ML morally wrong? And why should we care about improving fairness? Most fair-ML research implicitly appeals to distributive equality: the idea that desirable goods and benefits, such as opportunities (e.g., Barocas et al., 2023), should be equally distributed across society. Unfair ML models, then, are seen as wrong because they unequally distribute such benefits. This paper argues that this exclusive focus on distributive equality offers an incomplete and potentially misleading ethical foundation. Grounding ML fairness in egalitarianism -- the view that equality is a fundamental moral and social ideal -- requires challenging structural inequality: systematic, institutional, and durable arrangements that privilege some groups while disadvantaging others. Structural inequality manifests through ML systems in two primary forms: allocative harms (e.g., economic loss) and representational harms (e.g., stereotypes, erasure). While distributive equality helps address allocative harms, it fails to explain why representational harms are wrong -- why it is wrong for ML systems to reinforce social hierarchies that stratify people into superior and inferior groups -- and why ML systems should aim to foster a society where people relate as equals (i.e., relational equality). To address these limitations, the paper proposes a multifaceted egalitarian framework for ML fairness that integrates both distributive and relational equality. Drawing on critical social and political philosophy, this framework offers a more comprehensive ethical foundation for tackling the full spectrum of harms perpetuated by ML systems. The paper also outlines practical pathways for implementing the framework across the ML pipeline.
comment: Accepted for presentation at ACM FAccT 2025; under final review (minor revision) at an ACM journal
☆ Metapath-based Hyperbolic Contrastive Learning for Heterogeneous Graph Embedding
The hyperbolic space, characterized by a constant negative curvature and exponentially expanding space, aligns well with the structural properties of heterogeneous graphs. However, although heterogeneous graphs inherently possess diverse power-law structures, most hyperbolic heterogeneous graph embedding models rely on a single hyperbolic space. This approach may fail to effectively capture the diverse power-law structures within heterogeneous graphs. To address this limitation, we propose a Metapath-based Hyperbolic Contrastive Learning framework (MHCL), which uses multiple hyperbolic spaces to capture diverse complex structures within heterogeneous graphs. Specifically, by learning each hyperbolic space to describe the distribution of complex structures corresponding to each metapath, it is possible to capture semantic information effectively. Since metapath embeddings represent distinct semantic information, preserving their discriminability is important when aggregating them to obtain node representations. Therefore, we use a contrastive learning approach to optimize MHCL and improve the discriminability of metapath embeddings. In particular, our contrastive learning method minimizes the distance between embeddings of the same metapath and maximizes the distance between those of different metapaths in hyperbolic space, thereby improving the separability of metapath embeddings with distinct semantic information. We conduct comprehensive experiments to evaluate the effectiveness of MHCL. The experimental results demonstrate that MHCL outperforms state-of-the-art baselines in various graph machine learning tasks, effectively capturing the complex structures of heterogeneous graphs.
comment: 14 pages, 9 figures
☆ Off-Policy Actor-Critic for Adversarial Observation Robustness: Virtual Alternative Training via Symmetric Policy Evaluation ICML2025
Recently, robust reinforcement learning (RL) methods designed to handle adversarial input observations have received significant attention, motivated by RL's inherent vulnerabilities. While existing approaches have demonstrated reasonable success, addressing worst-case scenarios over long time horizons requires both minimizing the agent's cumulative rewards for adversaries and training agents to counteract them through alternating learning. However, this process introduces mutual dependencies between the agent and the adversary, making interactions with the environment inefficient and hindering the development of off-policy methods. In this work, we propose a novel off-policy method that eliminates the need for additional environmental interactions by reformulating adversarial learning as a soft-constrained optimization problem. Our approach is theoretically supported by the symmetric property of policy evaluation between the agent and the adversary. The implementation is available at https://github.com/nakanakakosuke/VALT_SAC.
comment: ICML2025 poster, 39 pages, 6 figures, 13 tables. arXiv admin note: text overlap with arXiv:2409.00418
☆ IsoNet: Causal Analysis of Multimodal Transformers for Neuromuscular Gesture Classification
Hand gestures are a primary output of the human motor system, yet the decoding of their neuromuscular signatures remains a bottleneck for basic neuroscience and assistive technologies such as prosthetics. Traditional human-machine interface pipelines rely on a single biosignal modality, but multimodal fusion can exploit complementary information from sensors. We systematically compare linear and attention-based fusion strategies across three architectures: a Multimodal MLP, a Multimodal Transformer, and a Hierarchical Transformer, evaluating performance on scenarios with unimodal and multimodal inputs. Experiments use two publicly available datasets: NinaPro DB2 (sEMG and accelerometer) and HD-sEMG 65-Gesture (high-density sEMG and force). Across both datasets, the Hierarchical Transformer with attention-based fusion consistently achieved the highest accuracy, surpassing the multimodal and best single-modality linear-fusion MLP baseline by over 10% on NinaPro DB2 and 3.7% on HD-sEMG. To investigate how modalities interact, we introduce an Isolation Network that selectively silences unimodal or cross-modal attention pathways, quantifying each group of token interactions' contribution to downstream decisions. Ablations reveal that cross-modal interactions contribute approximately 30% of the decision signal across transformer layers, highlighting the importance of attention-driven fusion in harnessing complementary modality information. Together, these findings reveal when and how multimodal fusion would enhance biosignal classification and also provides mechanistic insights of human muscle activities. The study would be beneficial in the design of sensor arrays for neurorobotic systems.
☆ Optimism Without Regularization: Constant Regret in Zero-Sum Games
This paper studies the optimistic variant of Fictitious Play for learning in two-player zero-sum games. While it is known that Optimistic FTRL -- a regularized algorithm with a bounded stepsize parameter -- obtains constant regret in this setting, we show for the first time that similar, optimal rates are also achievable without regularization: we prove for two-strategy games that Optimistic Fictitious Play (using any tiebreaking rule) obtains only constant regret, providing surprising new evidence on the ability of non-no-regret algorithms for fast learning in games. Our proof technique leverages a geometric view of Optimistic Fictitious Play in the dual space of payoff vectors, where we show a certain energy function of the iterates remains bounded over time. Additionally, we also prove a regret lower bound of $\Omega(\sqrt{T})$ for Alternating Fictitious Play. In the unregularized regime, this separates the ability of optimism and alternation in achieving $o(\sqrt{T})$ regret.
☆ On Training-Test (Mis)alignment in Unsupervised Combinatorial Optimization: Observation, Empirical Exploration, and Analysis ICML 2025
In unsupervised combinatorial optimization (UCO), during training, one aims to have continuous decisions that are promising in a probabilistic sense for each training instance, which enables end-to-end training on initially discrete and non-differentiable problems. At the test time, for each test instance, starting from continuous decisions, derandomization is typically applied to obtain the final deterministic decisions. Researchers have developed more and more powerful test-time derandomization schemes to enhance the empirical performance and the theoretical guarantee of UCO methods. However, we notice a misalignment between training and testing in the existing UCO methods. Consequently, lower training losses do not necessarily entail better post-derandomization performance, even for the training instances without any data distribution shift. Empirically, we indeed observe such undesirable cases. We explore a preliminary idea to better align training and testing in UCO by including a differentiable version of derandomization into training. Our empirical exploration shows that such an idea indeed improves training-test alignment, but also introduces nontrivial challenges into training.
comment: 2nd Workshop on Test-Time Adaptation: Putting Updates to the Test @ ICML 2025
☆ Incentivizing High-quality Participation From Federated Learning Agents
Federated learning (FL) provides a promising paradigm for facilitating collaboration between multiple clients that jointly learn a global model without directly sharing their local data. However, existing research suffers from two caveats: 1) From the perspective of agents, voluntary and unselfish participation is often assumed. But self-interested agents may opt out of the system or provide low-quality contributions without proper incentives; 2) From the mechanism designer's perspective, the aggregated models can be unsatisfactory as the existing game-theoretical federated learning approach for data collection ignores the potential heterogeneous effort caused by contributed data. To alleviate above challenges, we propose an incentive-aware framework for agent participation that considers data heterogeneity to accelerate the convergence process. Specifically, we first introduce the notion of Wasserstein distance to explicitly illustrate the heterogeneous effort and reformulate the existing upper bound of convergence. To induce truthful reporting from agents, we analyze and measure the generalization error gap of any two agents by leveraging the peer prediction mechanism to develop score functions. We further present a two-stage Stackelberg game model that formalizes the process and examines the existence of equilibrium. Extensive experiments on real-world datasets demonstrate the effectiveness of our proposed mechanism.
☆ TriCon-SF: A Triple-Shuffle and Contribution-Aware Serial Federated Learning Framework for Heterogeneous Healthcare Data
Serial pipeline training is an efficient paradigm for handling data heterogeneity in cross-silo federated learning with low communication overhead. However, even without centralized aggregation, direct transfer of models between clients can violate privacy regulations and remain susceptible to gradient leakage and linkage attacks. Additionally, ensuring resilience against semi-honest or malicious clients who may manipulate or misuse received models remains a grand challenge, particularly in privacy-sensitive domains such as healthcare. To address these challenges, we propose TriCon-SF, a novel serial federated learning framework that integrates triple shuffling and contribution awareness. TriCon-SF introduces three levels of randomization by shuffling model layers, data segments, and training sequences to break deterministic learning patterns and disrupt potential attack vectors, thereby enhancing privacy and robustness. In parallel, it leverages Shapley value methods to dynamically evaluate client contributions during training, enabling the detection of dishonest behavior and enhancing system accountability. Extensive experiments on non-IID healthcare datasets demonstrate that TriCon-SF outperforms standard serial and parallel federated learning in both accuracy and communication efficiency. Security analysis further supports its resilience against client-side privacy attacks.
☆ How Many Domains Suffice for Domain Generalization? A Tight Characterization via the Domain Shattering Dimension
We study a fundamental question of domain generalization: given a family of domains (i.e., data distributions), how many randomly sampled domains do we need to collect data from in order to learn a model that performs reasonably well on every seen and unseen domain in the family? We model this problem in the PAC framework and introduce a new combinatorial measure, which we call the domain shattering dimension. We show that this dimension characterizes the domain sample complexity. Furthermore, we establish a tight quantitative relationship between the domain shattering dimension and the classic VC dimension, demonstrating that every hypothesis class that is learnable in the standard PAC setting is also learnable in our setting.
☆ SIDE: Semantic ID Embedding for effective learning from sequences
Sequence-based recommendations models are driving the state-of-the-art for industrial ad-recommendation systems. Such systems typically deal with user histories or sequence lengths ranging in the order of O(10^3) to O(10^4) events. While adding embeddings at this scale is manageable in pre-trained models, incorporating them into real-time prediction models is challenging due to both storage and inference costs. To address this scaling challenge, we propose a novel approach that leverages vector quantization (VQ) to inject a compact Semantic ID (SID) as input to the recommendation models instead of a collection of embeddings. Our method builds on recent works of SIDs by introducing three key innovations: (i) a multi-task VQ-VAE framework, called VQ fusion that fuses multiple content embeddings and categorical predictions into a single Semantic ID; (ii) a parameter-free, highly granular SID-to-embedding conversion technique, called SIDE, that is validated with two content embedding collections, thereby eliminating the need for a large parameterized lookup table; and (iii) a novel quantization method called Discrete-PCA (DPCA) which generalizes and enhances residual quantization techniques. The proposed enhancements when applied to a large-scale industrial ads-recommendation system achieves 2.4X improvement in normalized entropy (NE) gain and 3X reduction in data footprint compared to traditional SID methods.
comment: 7 pages, 4 images, 6 tables
☆ Fast and Stable Diffusion Planning through Variational Adaptive Weighting
Diffusion models have recently shown promise in offline RL. However, these methods often suffer from high training costs and slow convergence, particularly when using transformer-based denoising backbones. While several optimization strategies have been proposed -- such as modified noise schedules, auxiliary prediction targets, and adaptive loss weighting -- challenges remain in achieving stable and efficient training. In particular, existing loss weighting functions typically rely on neural network approximators, which can be ineffective in early training phases due to limited generalization capacity of MLPs when exposed to sparse feedback in the early training stages. In this work, we derive a variationally optimal uncertainty-aware weighting function and introduce a closed-form polynomial approximation method for its online estimation under the flow-based generative modeling framework. We integrate our method into a diffusion planning pipeline and evaluate it on standard offline RL benchmarks. Experimental results on Maze2D and Kitchen tasks show that our method achieves competitive performance with up to 10 times fewer training steps, highlighting its practical effectiveness.
☆ How to Train your Text-to-Image Model: Evaluating Design Choices for Synthetic Training Captions
Training data is at the core of any successful text-to-image models. The quality and descriptiveness of image text are crucial to a model's performance. Given the noisiness and inconsistency in web-scraped datasets, recent works shifted towards synthetic training captions. While this setup is generally believed to produce more capable models, current literature does not provide any insights into its design choices. This study closes this gap by systematically investigating how different synthetic captioning strategies impact the downstream performance of text-to-image models. Our experiments demonstrate that dense, high-quality captions enhance text alignment but may introduce trade-offs in output aesthetics and diversity. Conversely, captions of randomized lengths yield balanced improvements across aesthetics and alignment without compromising sample diversity. We also demonstrate that varying caption distributions introduce significant shifts in the output bias of a trained model. Our findings underscore the importance of caption design in achieving optimal model performance and provide practical insights for more effective training data strategies in text-to-image generation.
☆ The Hitchhiker's Guide to Efficient, End-to-End, and Tight DP Auditing
This paper systematizes research on auditing Differential Privacy (DP) techniques, aiming to identify key insights into the current state of the art and open challenges. First, we introduce a comprehensive framework for reviewing work in the field and establish three cross-contextual desiderata that DP audits should target--namely, efficiency, end-to-end-ness, and tightness. Then, we systematize the modes of operation of state-of-the-art DP auditing techniques, including threat models, attacks, and evaluation functions. This allows us to highlight key details overlooked by prior work, analyze the limiting factors to achieving the three desiderata, and identify open research problems. Overall, our work provides a reusable and systematic methodology geared to assess progress in the field and identify friction points and future directions for our community to focus on.
☆ Private Training & Data Generation by Clustering Embeddings
Deep neural networks often use large, high-quality datasets to achieve high performance on many machine learning tasks. When training involves potentially sensitive data, this process can raise privacy concerns, as large models have been shown to unintentionally memorize and reveal sensitive information, including reconstructing entire training samples. Differential privacy (DP) provides a robust framework for protecting individual data and in particular, a new approach to privately training deep neural networks is to approximate the input dataset with a privately generated synthetic dataset, before any subsequent training algorithm. We introduce a novel principled method for DP synthetic image embedding generation, based on fitting a Gaussian Mixture Model (GMM) in an appropriate embedding space using DP clustering. Our method provably learns a GMM under separation conditions. Empirically, a simple two-layer neural network trained on synthetically generated embeddings achieves state-of-the-art (SOTA) classification accuracy on standard benchmark datasets. Additionally, we demonstrate that our method can generate realistic synthetic images that achieve downstream classification accuracy comparable to SOTA methods. Our method is quite general, as the encoder and decoder modules can be freely substituted to suit different tasks. It is also highly scalable, consisting only of subroutines that scale linearly with the number of samples and/or can be implemented efficiently in distributed systems.
☆ A Minimalist Optimizer Design for LLM Pretraining
Training large language models (LLMs) typically relies on adaptive optimizers such as Adam, which require significant memory to maintain first- and second-moment matrices, known as optimizer states. While recent works such as GaLore, Fira, and APOLLO have proposed state-compressed variants to reduce memory consumption, a fundamental question remains: What is the minimal amount of optimizer state that is truly necessary to retain state-of-the-art performance in LLM pretraining? In this work, we systematically investigate this question using a bottom-up approach. We find that two memory- and compute-efficient optimization techniques are particularly effective: (1) column-wise gradient normalization significantly boosts the performance of plain SGD without requiring momentum; and (2) adding first-order momentum only to the output layer - where gradient variance is highest - yields performance competitive with fully adaptive methods such as Muon. Based on these insights, we propose SCALE (Stochastic Column-normalized Last-layer Momentum), a new optimizer that combines column-normalized SGD with last-layer momentum, where column normalization refers to normalizing the gradient along the output dimension. Across multiple LLaMA models (60M-1B), SCALE matches or exceeds the performance of Adam while using only 35-45% of the total memory. It also consistently outperforms memory-efficient optimizers such as GaLore, Fira, and APOLLO, making it a strong candidate for large-scale pretraining under memory constraints. For the LLaMA 7B model, SCALE outperforms the state-of-the-art method APOLLO in terms of both perplexity and memory consumption. In addition, our method serves as a minimalist baseline for more sophisticated optimizer design.
☆ Multi-Armed Bandits With Machine Learning-Generated Surrogate Rewards
Multi-armed bandit (MAB) is a widely adopted framework for sequential decision-making under uncertainty. Traditional bandit algorithms rely solely on online data, which tends to be scarce as it must be gathered during the online phase when the arms are actively pulled. However, in many practical settings, rich auxiliary data, such as covariates of past users, is available prior to deploying any arms. We introduce a new setting for MAB where pre-trained machine learning (ML) models are applied to convert side information and historical data into \emph{surrogate rewards}. A prominent feature of this setting is that the surrogate rewards may exhibit substantial bias, as true reward data is typically unavailable in the offline phase, forcing ML predictions to heavily rely on extrapolation. To address the issue, we propose the Machine Learning-Assisted Upper Confidence Bound (MLA-UCB) algorithm, which can be applied to any reward prediction model and any form of auxiliary data. When the predicted and true rewards are jointly Gaussian, it provably improves the cumulative regret, provided that the correlation is non-zero -- even in cases where the mean surrogate reward completely misaligns with the true mean rewards. Notably, our method requires no prior knowledge of the covariance matrix between true and surrogate rewards. We compare MLA-UCB with the standard UCB on a range of numerical studies and show a sizable efficiency gain even when the size of the offline data and the correlation between predicted and true rewards are moderate.
☆ Mesh-Informed Neural Operator : A Transformer Generative Approach
Generative models in function spaces, situated at the intersection of generative modeling and operator learning, are attracting increasing attention due to their immense potential in diverse scientific and engineering applications. While functional generative models are theoretically domain- and discretization-agnostic, current implementations heavily rely on the Fourier Neural Operator (FNO), limiting their applicability to regular grids and rectangular domains. To overcome these critical limitations, we introduce the Mesh-Informed Neural Operator (MINO). By leveraging graph neural operators and cross-attention mechanisms, MINO offers a principled, domain- and discretization-agnostic backbone for generative modeling in function spaces. This advancement significantly expands the scope of such models to more diverse applications in generative, inverse, and regression tasks. Furthermore, MINO provides a unified perspective on integrating neural operators with general advanced deep learning architectures. Finally, we introduce a suite of standardized evaluation metrics that enable objective comparison of functional generative models, addressing another critical gap in the field.
♻ ☆ AQA-Bench: An Interactive Benchmark for Evaluating LLMs' Sequential Reasoning Ability
This paper introduces AQA-Bench, a novel benchmark to assess the sequential reasoning capabilities of large language models (LLMs) in algorithmic contexts, such as depth-first search (DFS). The key feature of our evaluation benchmark lies in its interactive evaluation protocol - for example, in DFS, the availability of each node's connected edge is contingent upon the model's traversal to that node, thereby necessitating the LLM's ability to effectively remember visited nodes and strategize subsequent moves considering the possible environmental feedback in the future steps. We comprehensively build AQA-Bench with three different algorithms, namely binary search, depth-first search, and breadth-first search, and to evaluate the sequential reasoning ability of 14 different LLMs. Our investigations reveal several interesting findings: (1) Closed-source models like GPT-4 and Gemini generally show much stronger sequential reasoning ability, significantly outperforming open-source LLMs. (2) Naively providing in-context examples may inadvertently hurt few-shot performance in an interactive environment due to over-fitting to examples. (3) Instead of using optimal steps from another test case as the in-context example, a very limited number of predecessor steps in the current test case following the optimal policy can substantially boost small models' performance. (4) The performance gap between weak models and strong models is greatly due to the incapability of weak models to start well. (5) The scaling correlation between performance and model size is not always significant, sometimes even showcasing an inverse trend. We hope our study can catalyze future work on advancing the understanding and enhancement of LLMs' capabilities in sequential reasoning. The code is available at https://github.com/UCSC-VLAA/AQA-Bench.
♻ ☆ DAL: A Practical Prior-Free Black-Box Framework for Non-Stationary Bandit Environments
We introduce a practical, black-box framework termed Detection Augmenting Learning (DAL) for the problem of non-stationary bandits without prior knowledge of the underlying non-stationarity. DAL is modular, accepting any stationary bandit algorithm as input and augmenting it with a change detector. Our approach is applicable to all common parametric and non-parametric bandit variants. Extensive experimentation demonstrates that DAL consistently surpasses current state-of-the-art methods across diverse non-stationary scenarios, including synthetic benchmarks and real-world datasets, underscoring its versatility and scalability. We provide theoretical insights into DAL's strong empirical performance on piecewise stationary and drift settings, complemented by thorough experimental validation.
comment: 20 pages, 8 figures, added Acknowledgments
♻ ☆ Convergent Linear Representations of Emergent Misalignment
Fine-tuning large language models on narrow datasets can cause them to develop broadly misaligned behaviours: a phenomena known as emergent misalignment. However, the mechanisms underlying this misalignment, and why it generalizes beyond the training domain, are poorly understood, demonstrating critical gaps in our knowledge of model alignment. In this work, we train and study a minimal model organism which uses just 9 rank-1 adapters to emergently misalign Qwen2.5-14B-Instruct. Studying this, we find that different emergently misaligned models converge to similar representations of misalignment. We demonstrate this convergence by extracting a 'misalignment direction' from one fine-tuned model's activations, and using it to effectively ablate misaligned behaviour from fine-tunes using higher dimensional LoRAs and different datasets. Leveraging the scalar hidden state of rank-1 LoRAs, we further present a set of experiments for directly interpreting the fine-tuning adapters, showing that six contribute to general misalignment, while two specialise for misalignment in just the fine-tuning domain. Emergent misalignment is a particularly salient example of undesirable and unexpected model behaviour and by advancing our understanding of the mechanisms behind it, we hope to move towards being able to better understand and mitigate misalignment more generally.
♻ ☆ A Minimalist Method for Fine-tuning Text-to-Image Diffusion Models
Recent work uses reinforcement learning (RL) to fine-tune text-to-image diffusion models, improving text-image alignment and sample quality. However, existing approaches introduce unnecessary complexity: they cache the full sampling trajectory, depend on differentiable reward models or large preference datasets, or require specialized guidance techniques. Motivated by the "golden noise" hypothesis -- that certain initial noise samples can consistently yield superior alignment -- we introduce Noise PPO, a minimalist RL algorithm that leaves the pre-trained diffusion model entirely frozen and learns a prompt-conditioned initial noise generator. Our approach requires no trajectory storage, reward backpropagation, or complex guidance tricks. Extensive experiments show that optimizing the initial noise distribution consistently improves alignment and sample quality over the original model, with the most significant gains at low inference steps. As the number of inference steps increases, the benefit of noise optimization diminishes but remains present. These findings clarify the scope and limitations of the golden noise hypothesis and reinforce the practical value of minimalist RL fine-tuning for diffusion models.
comment: 17 pages, 6 figures
♻ ☆ Watermarking Language Models through Language Models
Watermarking the outputs of large language models (LLMs) is critical for provenance tracing, content regulation, and model accountability. Existing approaches often rely on access to model internals or are constrained by static rules and token-level perturbations. Moreover, the idea of steering generative behavior via prompt-based instruction control remains largely underexplored. We introduce a prompt-guided watermarking framework that operates entirely at the input level and requires no access to model parameters or decoding logits. The framework comprises three cooperating components: a Prompting LM that synthesizes watermarking instructions from user prompts, a Marking LM that generates watermarked outputs conditioned on these instructions, and a Detecting LM trained to classify whether a response carries an embedded watermark. This modular design enables dynamic watermarking that adapts to individual prompts while remaining compatible with diverse LLM architectures, including both proprietary and open-weight models. We evaluate the framework over 25 combinations of Prompting and Marking LMs, such as GPT-4o, Mistral, LLaMA3, and DeepSeek. Experimental results show that watermark signals generalize across architectures and remain robust under fine-tuning, model distillation, and prompt-based adversarial attacks, demonstrating the effectiveness and robustness of the proposed approach.
♻ ☆ Domain Specific Benchmarks for Evaluating Multimodal Large Language Models
Large language models (LLMs) are increasingly being deployed across disciplines due to their advanced reasoning and problem solving capabilities. To measure their effectiveness, various benchmarks have been developed that measure aspects of LLM reasoning, comprehension, and problem-solving. While several surveys address LLM evaluation and benchmarks, a domain-specific analysis remains underexplored in the literature. This paper introduces a taxonomy of seven key disciplines, encompassing various domains and application areas where LLMs are extensively utilized. Additionally, we provide a comprehensive review of LLM benchmarks and survey papers within each domain, highlighting the unique capabilities of LLMs and the challenges faced in their application. Finally, we compile and categorize these benchmarks by domain to create an accessible resource for researchers, aiming to pave the way for advancements toward artificial general intelligence (AGI)
♻ ☆ Diffusion & Adversarial Schrödinger Bridges via Iterative Proportional Markovian Fitting
The Iterative Markovian Fitting (IMF) procedure, which iteratively projects onto the space of Markov processes and the reciprocal class, successfully solves the Schr\"odinger Bridge (SB) problem. However, an efficient practical implementation requires a heuristic modification - alternating between fitting forward and backward time diffusion at each iteration. This modification is crucial for stabilizing training and achieving reliable results in applications such as unpaired domain translation. Our work reveals a close connection between the modified version of IMF and the Iterative Proportional Fitting (IPF) procedure - a foundational method for the SB problem, also known as Sinkhorn's algorithm. Specifically, we demonstrate that the heuristic modification of the IMF effectively integrates both IMF and IPF procedures. We refer to this combined approach as the Iterative Proportional Markovian Fitting (IPMF) procedure. Through theoretical and empirical analysis, we establish the convergence of IPMF procedure under various settings, contributing to developing a unified framework for solving SB problems. Moreover, from a practical standpoint, the IPMF procedure enables a flexible trade-off between image similarity and generation quality, offering a new mechanism for tailoring models to specific tasks.
♻ ☆ Al-Khwarizmi: Discovering Physical Laws with Foundation Models
Inferring physical laws from data is a central challenge in science and engineering, including but not limited to healthcare, physical sciences, biosciences, social sciences, sustainability, climate, and robotics. Deep networks offer high-accuracy results but lack interpretability, prompting interest in models built from simple components. The Sparse Identification of Nonlinear Dynamics (SINDy) method has become the go-to approach for building such modular and interpretable models. SINDy leverages sparse regression with L1 regularization to identify key terms from a library of candidate functions. However, SINDy's choice of candidate library and optimization method requires significant technical expertise, limiting its widespread applicability. This work introduces Al-Khwarizmi, a novel agentic framework for physical law discovery from data, which integrates foundational models with SINDy. Leveraging LLMs, VLMs, and Retrieval-Augmented Generation (RAG), our approach automates physical law discovery, incorporating prior knowledge and iteratively refining candidate solutions via reflection. Al-Khwarizmi operates in two steps: it summarizes system observations-comprising textual descriptions, raw data, and plots-followed by a secondary step that generates candidate feature libraries and optimizer configurations to identify hidden physics laws correctly. Evaluating our algorithm on over 198 models, we demonstrate state-of-the-art performance compared to alternatives, reaching a 20 percent increase against the best-performing alternative.
♻ ☆ Safe Guaranteed Exploration for Non-linear Systems
Safely exploring environments with a-priori unknown constraints is a fundamental challenge that restricts the autonomy of robots. While safety is paramount, guarantees on sufficient exploration are also crucial for ensuring autonomous task completion. To address these challenges, we propose a novel safe guaranteed exploration framework using optimal control, which achieves first-of-its-kind results: guaranteed exploration for non-linear systems with finite time sample complexity bounds, while being provably safe with arbitrarily high probability. The framework is general and applicable to many real-world scenarios with complex non-linear dynamics and unknown domains. We improve the efficiency of this general framework by proposing an algorithm, SageMPC, SAfe Guaranteed Exploration using Model Predictive Control. SageMPC leverages three key techniques: i) exploiting a Lipschitz bound, ii) goal-directed exploration, and iii) receding horizon style re-planning, all while maintaining the desired sample complexity, safety and exploration guarantees of the framework. Lastly, we demonstrate safe efficient exploration in challenging unknown environments using SageMPC with a car model.
comment: Accepted paper in IEEE Transactions on Automatic Control, 2025
♻ ☆ Problem Space Transformations for Out-of-Distribution Generalisation in Behavioural Cloning
The combination of behavioural cloning and neural networks has driven significant progress in robotic manipulation. As these algorithms may require a large number of demonstrations for each task of interest, they remain fundamentally inefficient in complex scenarios, in which finite datasets can hardly cover the state space. One of the remaining challenges is thus out-of-distribution (OOD) generalisation, i.e. the ability to predict correct actions for states with a low likelihood with respect to the state occupancy induced by the dataset. This issue is aggravated when the system to control is treated as a black-box, ignoring its physical properties. This work characterises widespread properties of robotic manipulation, specifically pose equivariance and locality. We investigate the effect of the choice of problem space on OOD performance of BC policies and how transformations arising from characteristic properties of manipulation could be employed for its improvement. We empirically demonstrate that these transformations allow behaviour cloning policies, using either standard MLP-based one-step action prediction or diffusion-based action-sequence prediction, to generalise better to OOD problem instances.
♻ ☆ COS-DPO: Conditioned One-Shot Multi-Objective Fine-Tuning Framework
In LLM alignment and many other ML applications, one often faces the Multi-Objective Fine-Tuning (MOFT) problem, i.e., fine-tuning an existing model with datasets labeled w.r.t. different objectives simultaneously. To address the challenge, we propose a Conditioned One-Shot fine-tuning framework (COS-DPO) that extends the Direct Preference Optimization technique, originally developed for efficient LLM alignment with preference data, to accommodate the MOFT settings. By direct conditioning on the weight across auxiliary objectives, our Weight-COS-DPO method enjoys an efficient one-shot training process for profiling the Pareto front and is capable of achieving comprehensive trade-off solutions even in the post-training stage. Based on our theoretical findings on the linear transformation properties of the loss function, we further propose the Temperature-COS-DPO method that augments the temperature parameter to the model input, enhancing the flexibility of post-training control over the trade-offs between the main and auxiliary objectives. We demonstrate the effectiveness and efficiency of the COS-DPO framework through its applications to various tasks, including the Learning-to-Rank (LTR) and LLM alignment tasks, highlighting its viability for large-scale ML deployments.
comment: Published at UAI 2025
♻ ☆ Conditional Front-door Adjustment for Heterogeneous Treatment Assignment Effect Estimation Under Non-adherence
Estimates of heterogeneous treatment assignment effects can inform treatment decisions. Under the presence of non-adherence (e.g., patients do not adhere to their assigned treatment), both the standard backdoor adjustment (SBD) and the conditional front-door adjustment (CFD) can recover unbiased estimates of the treatment assignment effects. However, the estimation variance of these approaches may vary widely across settings, which remains underexplored in the literature. In this work, we demonstrate theoretically and empirically that CFD yields lower-variance estimates than SBD when the true effect of treatment assignment is small (i.e., assigning an intervention leads to small changes in patients' future outcome). Additionally, since CFD requires estimating multiple nuisance parameters, we introduce LobsterNet, a multi-task neural network that implements CFD with joint modeling of the nuisance parameters. Empirically, LobsterNet reduces estimation error across several semi-synthetic and real-world datasets compared to baselines. Our findings suggest CFD with shared nuisance parameter modeling can improve treatment assignment effect estimation under non-adherence.
comment: Conference on Health, Inference, and Learning (CHIL) 2025
♻ ☆ Zero-shot Class Unlearning via Layer-wise Relevance Analysis and Neuronal Path Perturbation
In the rapid advancement of artificial intelligence, privacy protection has become crucial, giving rise to machine unlearning. Machine unlearning is a technique that removes specific data influences from trained models without the need for extensive retraining. However, it faces several key challenges, including accurately implementing unlearning, ensuring privacy protection during the unlearning process, and achieving effective unlearning without significantly compromising model performance. This paper presents a novel approach to machine unlearning by employing Layer-wise Relevance Analysis and Neuronal Path Perturbation. We address three primary challenges: the lack of detailed unlearning principles, privacy guarantees in zero-shot unlearning scenario, and the balance between unlearning effectiveness and model utility. Our method balances machine unlearning performance and model utility by identifying and perturbing highly relevant neurons, thereby achieving effective unlearning. By using data not present in the original training set during the unlearning process, we satisfy the zero-shot unlearning scenario and ensure robust privacy protection. Experimental results demonstrate that our approach effectively removes targeted data from the target unlearning model while maintaining the model's utility, offering a practical solution for privacy-preserving machine learning.
comment: 17 pages, 5 figures
♻ ☆ Eau De $Q$-Network: Adaptive Distillation of Neural Networks in Deep Reinforcement Learning
Recent works have successfully demonstrated that sparse deep reinforcement learning agents can be competitive against their dense counterparts. This opens up opportunities for reinforcement learning applications in fields where inference time and memory requirements are cost-sensitive or limited by hardware. Until now, dense-to-sparse methods have relied on hand-designed sparsity schedules that are not synchronized with the agent's learning pace. Crucially, the final sparsity level is chosen as a hyperparameter, which requires careful tuning as setting it too high might lead to poor performances. In this work, we address these shortcomings by crafting a dense-to-sparse algorithm that we name Eau De $Q$-Network (EauDeQN). To increase sparsity at the agent's learning pace, we consider multiple online networks with different sparsity levels, where each online network is trained from a shared target network. At each target update, the online network with the smallest loss is chosen as the next target network, while the other networks are replaced by a pruned version of the chosen network. We evaluate the proposed approach on the Atari $2600$ benchmark and the MuJoCo physics simulator, showing that EauDeQN reaches high sparsity levels while keeping performances high.
comment: Published at RLC 2025: https://openreview.net/forum?id=Bb84iBj4wU#discussion
♻ ☆ CoIFNet: A Unified Framework for Multivariate Time Series Forecasting with Missing Values
Multivariate time series forecasting (MTSF) is a critical task with broad applications in domains such as meteorology, transportation, and economics. Nevertheless, pervasive missing values caused by sensor failures or human errors significantly degrade forecasting accuracy. Prior efforts usually employ an impute-then-forecast paradigm, leading to suboptimal predictions due to error accumulation and misaligned objectives between the two stages. To address this challenge, we propose the Collaborative Imputation-Forecasting Network (CoIFNet), a novel framework that unifies imputation and forecasting to achieve robust MTSF in the presence of missing values. Specifically, CoIFNet takes the observed values, mask matrix and timestamp embeddings as input, processing them sequentially through the Cross-Timestep Fusion (CTF) and Cross-Variate Fusion (CVF) modules to capture temporal dependencies that are robust to missing values. We provide theoretical justifications on how our CoIFNet learning objective improves the performance bound of MTSF with missing values. Through extensive experiments on challenging MSTF benchmarks, we demonstrate the effectiveness and computational efficiency of our proposed approach across diverse missing-data scenarios, e.g., CoIFNet outperforms the state-of-the-art method by $\underline{\textbf{24.40}}$% ($\underline{\textbf{23.81}}$%) at a point (block) missing rate of 0.6, while improving memory and time efficiency by $\underline{\boldsymbol{4.3\times}}$ and $\underline{\boldsymbol{2.1\times}}$, respectively. Our code is available at: https://github.com/KaiTang-eng/CoIFNet.
♻ ☆ SHAKTI: A 2.5 Billion Parameter Small Language Model Optimized for Edge AI and Low-Resource Environments
We introduce Shakti, a 2.5 billion parameter language model specifically optimized for resource-constrained environments such as edge devices, including smartphones, wearables, and IoT systems. Shakti combines high-performance NLP with optimized efficiency and precision, making it ideal for real-time AI applications where computational resources and memory are limited. With support for vernacular languages and domain-specific tasks, Shakti excels in industries such as healthcare, finance, and customer service. Benchmark evaluations demonstrate that Shakti performs competitively against larger models while maintaining low latency and on-device efficiency, positioning it as a leading solution for edge AI.
comment: Paper in pdf format is 11 pages and contains 4 tables
♻ ☆ The learned range test method for the inverse inclusion problem
We consider the inverse problem consisting of the reconstruction of an inclusion $B$ contained in a bounded domain $\Omega\subset\mathbb{R}^d$ from a single pair of Cauchy data $(u|_{\partial\Omega},\partial_\nu u|_{\partial\Omega})$, where $\Delta u=0$ in $\Omega\setminus\overline B$ and $u=0$ on $\partial B$. We show that the reconstruction algorithm based on the range test, a domain sampling method, can be written as a neural network with a specific architecture. We propose to learn the weights of this network in the framework of supervised learning, and to combine it with a pre-trained classifier, with the purpose of distinguishing the inclusions based on their distance from the boundary. The numerical simulations show that this learned range test method provides accurate and stable reconstructions of polygonal inclusions. Furthermore, the results are superior to those obtained with the standard range test method (without learning) and with an end-to-end fully connected deep neural network, a purely data-driven method.
comment: 27 pages, 13 figures
♻ ☆ Belted and Ensembled Neural Network for Linear and Nonlinear Sufficient Dimension Reduction
We introduce a unified, flexible, and easy-to-implement framework of sufficient dimension reduction that can accommodate both linear and nonlinear dimension reduction, and both the conditional distribution and the conditional mean as the targets of estimation. This unified framework is achieved by a specially structured neural network -- the Belted and Ensembled Neural Network (BENN) -- that consists of a narrow latent layer, which we call the belt, and a family of transformations of the response, which we call the ensemble. By strategically placing the belt at different layers of the neural network, we can achieve linear or nonlinear sufficient dimension reduction, and by choosing the appropriate transformation families, we can achieve dimension reduction for the conditional distribution or the conditional mean. Moreover, thanks to the advantage of the neural network, the method is very fast to compute, overcoming a computation bottleneck of the traditional sufficient dimension reduction estimators, which involves the inversion of a matrix of dimension either p or n. We develop the algorithm and convergence rate of our method, compare it with existing sufficient dimension reduction methods, and apply it to two data examples.
comment: 35 pages, 4 figures, 1 table
♻ ☆ Capturing Polysemanticity with PRISM: A Multi-Concept Feature Description Framework
Automated interpretability research aims to identify concepts encoded in neural network features to enhance human understanding of model behavior. Current feature description methods face two critical challenges: limited robustness and the flawed assumption that each neuron encodes only a single concept (monosemanticity), despite growing evidence that neurons are often polysemantic. This assumption restricts the expressiveness of feature descriptions and limits their ability to capture the full range of behaviors encoded in model internals. To address this, we introduce Polysemantic FeatuRe Identification and Scoring Method (PRISM), a novel framework that captures the inherent complexity of neural network features. Unlike prior approaches that assign a single description per feature, PRISM provides more nuanced descriptions for both polysemantic and monosemantic features. We apply PRISM to language models and, through extensive benchmarking against existing methods, demonstrate that our approach produces more accurate and faithful feature descriptions, improving both overall description quality (via a description score) and the ability to capture distinct concepts when polysemanticity is present (via a polysemanticity score).
♻ ☆ Mask-PINNs: Regulating Feature Distributions in Physics-Informed Neural Networks
Physics-Informed Neural Networks (PINNs) have emerged as a powerful framework for solving partial differential equations (PDEs) by embedding physical laws directly into the loss function. However, effective training of PINNs remains challenging due to internal covariate shift, which destabilizes feature distributions and impairs model expressiveness. While normalization techniques like Batch Normalization and Layer Normalization are standard remedies in deep learning, they disrupt the pointwise input-output mappings critical to preserving the physical consistency in PINNs. In this work, we introduce Mask-PINNs, a novel architecture that regulates internal feature distributions through a smooth, learnable mask function applied pointwise across hidden layers. Unlike conventional normalization methods, the proposed mask function preserves the deterministic nature of input-output relationships while suppressing activation drift and saturation. Theoretically, we demonstrate that Mask-PINNs control feature spread near initialization by attenuating gradient variance growth through a tailored modulation mechanism. Empirically, we validate the method on multiple PDE benchmarks across diverse activation functions. Our results show consistent improvements in prediction accuracy, convergence stability, and robustness, with relative L2 errors reduced by up to two orders of magnitude over baseline models. Furthermore, we demonstrate that Mask-PINNs enable the effective use of wider networks, overcoming a key limitation in existing PINN frameworks.
♻ ☆ PromptDSI: Prompt-based Rehearsal-free Instance-wise Incremental Learning for Document Retrieval KDD 2025
Differentiable Search Index (DSI) utilizes pre-trained language models to perform indexing and document retrieval via end-to-end learning without relying on external indexes. However, DSI requires full re-training to index new documents, causing significant computational inefficiencies. Continual learning (CL) offers a solution by enabling the model to incrementally update without full re-training. Existing CL solutions in document retrieval rely on memory buffers or generative models for rehearsal, which is infeasible when accessing previous training data is restricted due to privacy concerns. To this end, we introduce PromptDSI, a prompt-based, rehearsal-free continual learning approach for document retrieval. PromptDSI follows the Prompt-based Continual Learning (PCL) framework, using learnable prompts to efficiently index new documents without accessing previous documents or queries. To improve retrieval latency, we remove the initial forward pass of PCL, which otherwise greatly increases training and inference time, with a negligible trade-off in performance. Additionally, we introduce a novel topic-aware prompt pool that employs neural topic embeddings as fixed keys, eliminating the instability of prompt key optimization while maintaining competitive performance with existing PCL prompt pools. In a challenging rehearsal-free continual learning setup, we demonstrate that PromptDSI variants outperform rehearsal-based baselines, match the strong cache-based baseline in mitigating forgetting, and significantly improving retrieval performance on new corpora.
comment: ECML PKDD 2025 Research track. Camera-ready version. Code is available at https://github.com/LouisDo2108/PromptDSI
♻ ☆ LogProber: Disentangling confidence from contamination in LLM responses
In machine learning, contamination refers to situations where testing data leak into the training set. The issue is particularly relevant for the evaluation of the performance of Large Language Models (LLMs), which are generally trained on gargantuan, and generally opaque, corpora of text scraped from the world wide web. Developing tools to detect contamination is therefore crucial to be able to fairly and properly track the evolution of the performance of LLMs. To date, only a few recent studies have attempted to address the issue of quantifying and detecting contamination in short text sequences, such as those commonly found in benchmarks. However, these methods have limitations that can sometimes render them impractical. In the present paper, we introduce LogProber, a novel, efficient algorithm that we show to be able to detect contamination in a black box setting that tries to tackle some of these drawbacks by focusing on the familiarity with the question rather than the answer. Here, we explore the properties of the proposed method in comparison with concurrent approaches, identify its advantages and limitations, and illustrate how different forms of contamination can go undetected depending on the design of the detection algorithm.
♻ ☆ Machine Learning Methods for Small Data and Upstream Bioprocessing Applications: A Comprehensive Review
Data is crucial for machine learning (ML) applications, yet acquiring large datasets can be costly and time-consuming, especially in complex, resource-intensive fields like biopharmaceuticals. A key process in this industry is upstream bioprocessing, where living cells are cultivated and optimised to produce therapeutic proteins and biologics. The intricate nature of these processes, combined with high resource demands, often limits data collection, resulting in smaller datasets. This comprehensive review explores ML methods designed to address the challenges posed by small data and classifies them into a taxonomy to guide practical applications. Furthermore, each method in the taxonomy was thoroughly analysed, with a detailed discussion of its core concepts and an evaluation of its effectiveness in tackling small data challenges, as demonstrated by application results in the upstream bioprocessing and other related domains. By analysing how these methods tackle small data challenges from different perspectives, this review provides actionable insights, identifies current research gaps, and offers guidance for leveraging ML in data-constrained environments.
♻ ☆ Solving a class of stochastic optimal control problems by physics-informed neural networks
The aim of this work is to develop a deep learning method for solving high-dimensional stochastic control problems based on the Hamilton--Jacobi--Bellman (HJB) equation and physics-informed learning. Our approach is to parameterize the feedback control and the value function using a decoupled neural network with multiple outputs. We train this network by using a loss function with penalty terms that enforce the HJB equation along the sampled trajectories generated by the controlled system. More significantly, numerical results on various applications are carried out to demonstrate that the proposed approach is efficient and applicable.
comment: 8 pages
♻ ☆ Calibrated Predictive Lower Bounds on Time-to-Unsafe-Sampling in LLMs
We develop a framework to quantify the time-to-unsafe-sampling - the number of large language model (LLM) generations required to trigger an unsafe (e.g., toxic) response. Estimating this quantity is challenging, since unsafe responses are exceedingly rare in well-aligned LLMs, potentially occurring only once in thousands of generations. As a result, directly estimating time-to-unsafe-sampling would require collecting training data with a prohibitively large number of generations per prompt. However, with realistic sampling budgets, we often cannot generate enough responses to observe an unsafe outcome for every prompt, leaving the time-to-unsafe-sampling unobserved in many cases, making the estimation and evaluation tasks particularly challenging. To address this, we frame this estimation problem as one of survival analysis and develop a provably calibrated lower predictive bound (LPB) on the time-to-unsafe-sampling of a given prompt, leveraging recent advances in conformal prediction. Our key innovation is designing an adaptive, per-prompt sampling strategy, formulated as a convex optimization problem. The objective function guiding this optimized sampling allocation is designed to reduce the variance of the estimators used to construct the LPB, leading to improved statistical efficiency over naive methods that use a fixed sampling budget per prompt. Experiments on both synthetic and real data support our theoretical results and demonstrate the practical utility of our method for safety risk assessment in generative AI models.
♻ ☆ Robust Finite-Memory Policy Gradients for Hidden-Model POMDPs IJCAI 2025
Partially observable Markov decision processes (POMDPs) model specific environments in sequential decision-making under uncertainty. Critically, optimal policies for POMDPs may not be robust against perturbations in the environment. Hidden-model POMDPs (HM-POMDPs) capture sets of different environment models, that is, POMDPs with a shared action and observation space. The intuition is that the true model is hidden among a set of potential models, and it is unknown which model will be the environment at execution time. A policy is robust for a given HM-POMDP if it achieves sufficient performance for each of its POMDPs.We compute such robust policies by combining two orthogonal techniques: (1) a deductive formal verification technique that supports tractable robust policy evaluation by computing a worst-case POMDP within the HM-POMDP, and (2) subgradient ascent to optimize the candidate policy for a worst-case POMDP. The empirical evaluation shows that, compared to various baselines, our approach (1) produces policies that are more robust and generalize better to unseen POMDPs, and (2) scales to HM-POMDPs that consist of over a hundred thousand environments.
comment: Accepted for publication at IJCAI 2025
♻ ☆ Graph is all you need? Lightweight data-agnostic neural architecture search without training
Neural architecture search (NAS) enables the automatic design of neural network models. However, training the candidates generated by the search algorithm for performance evaluation incurs considerable computational overhead. Our method, dubbed nasgraph, remarkably reduces the computational costs by converting neural architectures to graphs and using the average degree, a graph measure, as the proxy in lieu of the evaluation metric. Our training-free NAS method is data-agnostic and light-weight. It can find the best architecture among 200 randomly sampled architectures from NAS-Bench201 in 217 CPU seconds. Besides, our method is able to achieve competitive performance on various datasets including NASBench-101, NASBench-201, and NDS search spaces. We also demonstrate that nasgraph generalizes to more challenging tasks on Micro TransNAS-Bench-101.
♻ ☆ On Almost Surely Safe Alignment of Large Language Models at Inference-Time
We introduce a novel inference-time alignment approach for LLMs that aims to generate safe responses almost surely, i.e., with probability approaching one. Our approach models the generation of safe responses as a constrained Markov Decision Process (MDP) within the LLM's latent space. We augment a safety state that tracks the evolution of safety constraints and dynamically penalize unsafe generations to ensure the generation of safe responses. Consequently, we demonstrate formal safety guarantees w.r.t. the given cost model upon solving the MDP in the latent space with sufficiently large penalties. Building on this foundation, we propose InferenceGuard, a practical implementation that safely aligns LLMs without modifying the model weights. Empirically, we demonstrate that InferenceGuard effectively balances safety and task performance, outperforming existing inference-time alignment methods in generating safe and aligned responses. Our findings contribute to the advancement of safer LLM deployment through alignment at inference-time, thus presenting a promising alternative to resource-intensive, overfitting-prone alignment techniques like RLHF.
♻ ☆ LearnAlign: Reasoning Data Selection for Reinforcement Learning in Large Language Models Based on Improved Gradient Alignment
Reinforcement learning (RL) has become a key technique for enhancing LLMs' reasoning abilities, yet its data inefficiency remains a major bottleneck. To address this critical yet challenging issue, we present a novel gradient-alignment-based method, named LearnAlign, which intelligently selects the learnable and representative training reasoning data for RL post-training. To overcome the issue of response-length bias in gradient norms, we introduce the data learnability based on the success rate, which can indicate the learning potential of each data point. Experiments across three mathematical reasoning benchmarks demonstrate that our method significantly reduces training data requirements while achieving minor performance degradation or even improving performance compared to full-data training. For example, it reduces data requirements by up to 1,000 data points with better performance (77.53%) than that on the full dataset on GSM8K benchmark (77.04%). Furthermore, we show its effectiveness in the staged RL setting. This work provides valuable insights into data-efficient RL post-training and establishes a foundation for future research in optimizing reasoning data selection. To facilitate future work, we will release code.
♻ ☆ Stable Learning Using Spiking Neural Networks Equipped With Affine Encoders and Decoders
We study the learning problem associated with spiking neural networks. Specifically, we focus on spiking neural networks composed of simple spiking neurons having only positive synaptic weights, equipped with an affine encoder and decoder; we refer to these as affine spiking neural networks. These neural networks are shown to depend continuously on their parameters, which facilitates classical covering number-based generalization statements and supports stable gradient-based training. We demonstrate that the positivity of the weights enables a wide range of expressivity results, including rate-optimal approximation of smooth functions and dimension-independent approximation of Barron regular functions. In particular, we show in theory and simulations that affine spiking neural networks are capable of approximating shallow ReLU neural networks. Furthermore, we apply these affine spiking neural networks to standard machine learning benchmarks and reach competitive results. Finally, we observe that from a generalization perspective, contrary to feedforward neural networks or previous results for general spiking neural networks, the depth has little to no adverse effect on the generalization capabilities.
♻ ☆ Discrepancies are Virtue: Weak-to-Strong Generalization through Lens of Intrinsic Dimension ICML 2025
Weak-to-strong (W2S) generalization is a type of finetuning (FT) where a strong (large) student model is trained on pseudo-labels generated by a weak teacher. Surprisingly, W2S FT often outperforms the weak teacher. We seek to understand this phenomenon through the observation that FT often occurs in intrinsically low-dimensional spaces. Leveraging the low intrinsic dimensionality of FT, we analyze W2S in the ridgeless regression setting from a variance reduction perspective. For a strong student-weak teacher pair with sufficiently expressive low-dimensional feature subspaces $\mathcal{V}_s, \mathcal{V}_w$, we provide an exact characterization of the variance that dominates the generalization error of W2S. This unveils a virtue of discrepancy between the strong and weak models in W2S: the variance of the weak teacher is inherited by the strong student in $\mathcal{V}_s \cap \mathcal{V}_w$, while reduced by a factor of $\mathrm{dim}(\mathcal{V}_s)/N$ in the subspace of discrepancy $\mathcal{V}_w \setminus \mathcal{V}_s$ with $N$ pseudo-labels for W2S. Our analysis further casts light on the sample complexities and the scaling of performance gap recovery in W2S. The analysis is supported by experiments on synthetic regression problems, as well as real vision and NLP tasks.
comment: ICML 2025
♻ ☆ A Statistical Evaluation of Indoor LoRaWAN Environment-Aware Propagation for 6G: MLR, ANOVA, and Residual Distribution Analysis
Modeling path loss in indoor LoRaWAN technology deployments is inherently challenging due to structural obstructions, occupant density and activities, and fluctuating environmental conditions. This study proposes a two-stage approach to capture and analyze these complexities using an extensive dataset of 1,328,334 field measurements collected over six months in a single-floor office at the University of Siegen's Hoelderlinstrasse Campus, Germany. First, we implement a multiple linear regression model that includes traditional propagation metrics (distance, structural walls) and an extension with proposed environmental variables (relative humidity, temperature, carbon dioxide, particulate matter, and barometric pressure). Using analysis of variance, we demonstrate that adding these environmental factors can reduce unexplained variance by 42.32 percent. Secondly, we examine residual distributions by fitting five candidate probability distributions: Normal, Skew-Normal, Cauchy, Student's t, and Gaussian Mixture Models (GMMs) with 2 to 5 components. Our results show that a four-component Gaussian Mixture Model captures the residual heterogeneity of indoor signal propagation most accurately, significantly outperforming single-distribution approaches. Given the push toward ultra-reliable, context-aware communications in 6G networks, our analysis shows that environment-aware modeling can substantially improve LoRaWAN network design in dynamic indoor IoT deployments.
comment: \c{opyright} 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media. This is the accepted version of the article: To appear in the 2025 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit)
♻ ☆ Training Multi-Layer Binary Neural Networks With Local Binary Error Signals
Binary Neural Networks (BNNs) significantly reduce computational complexity and memory usage in machine and deep learning by representing weights and activations with just one bit. However, most existing training algorithms for BNNs rely on quantization-aware floating-point Stochastic Gradient Descent (SGD), limiting the full exploitation of binary operations to the inference phase only. In this work, we propose, for the first time, a fully binary and gradient-free training algorithm for multi-layer BNNs, eliminating the need for back-propagated floating-point gradients. Specifically, the proposed algorithm relies on local binary error signals and binary weight updates, employing integer-valued hidden weights that serve as a synaptic metaplasticity mechanism, thereby enhancing its neurobiological plausibility. Our proposed solution enables the training of binary multi-layer perceptrons by using exclusively XNOR, Popcount, and increment/decrement operations. Experimental results on multi-class classification benchmarks show test accuracy improvements of up to +35.47% over the only existing fully binary single-layer state-of-the-art solution. Compared to full-precision SGD, our solution improves test accuracy by up to +35.30% under the same total memory demand, while also reducing computational cost by two to three orders of magnitude in terms of the total number of Boolean gates. The proposed algorithm is made available to the scientific community as a public repository.
♻ ☆ Optimizing Sensory Neurons: Nonlinear Attention Mechanisms for Accelerated Convergence in Permutation-Invariant Neural Networks for Reinforcement Learning
Training reinforcement learning (RL) agents often requires significant computational resources and prolonged training durations. To address this challenge, we build upon prior work that introduced a neural architecture with permutation-invariant sensory processing. We propose a modified attention mechanism that applies a non-linear transformation to the key vectors (K), producing enriched representations (K') through a custom mapping function. This Nonlinear Attention (NLA) mechanism enhances the representational capacity of the attention layer, enabling the agent to learn more expressive feature interactions. As a result, our model achieves significantly faster convergence and improved training efficiency, while maintaining performance on par with the baseline. These results highlight the potential of nonlinear attention mechanisms to accelerate reinforcement learning without sacrificing effectiveness.
♻ ☆ Towards Efficient Few-shot Graph Neural Architecture Search via Partitioning Gradient Contribution KDD 2025
To address the weight coupling problem, certain studies introduced few-shot Neural Architecture Search (NAS) methods, which partition the supernet into multiple sub-supernets. However, these methods often suffer from computational inefficiency and tend to provide suboptimal partitioning schemes. To address this problem more effectively, we analyze the weight coupling problem from a novel perspective, which primarily stems from distinct modules in succeeding layers imposing conflicting gradient directions on the preceding layer modules. Based on this perspective, we propose the Gradient Contribution (GC) method that efficiently computes the cosine similarity of gradient directions among modules by decomposing the Vector-Jacobian Product during supernet backpropagation. Subsequently, the modules with conflicting gradient directions are allocated to distinct sub-supernets while similar ones are grouped together. To assess the advantages of GC and address the limitations of existing Graph Neural Architecture Search methods, which are limited to searching a single type of Graph Neural Networks (Message Passing Neural Networks (MPNNs) or Graph Transformers (GTs)), we propose the Unified Graph Neural Architecture Search (UGAS) framework, which explores optimal combinations of MPNNs and GTs. The experimental results demonstrate that GC achieves state-of-the-art (SOTA) performance in supernet partitioning quality and time efficiency. In addition, the architectures searched by UGAS+GC outperform both the manually designed GNNs and those obtained by existing NAS methods. Finally, ablation studies further demonstrate the effectiveness of all proposed methods.
comment: Accepted by SIGKDD 2025
♻ ☆ ICC: Quantifying Image Caption Concreteness for Multimodal Dataset Curation ACL 2024
Web-scale training on paired text-image data is becoming increasingly central to multimodal learning, but is challenged by the highly noisy nature of datasets in the wild. Standard data filtering approaches succeed in removing mismatched text-image pairs, but permit semantically related but highly abstract or subjective text. These approaches lack the fine-grained ability to isolate the most concrete samples that provide the strongest signal for learning in a noisy dataset. In this work, we propose a new metric, image caption concreteness, that evaluates caption text without an image reference to measure its concreteness and relevancy for use in multimodal learning. Our approach leverages strong foundation models for measuring visual-semantic information loss in multimodal representations. We demonstrate that this strongly correlates with human evaluation of concreteness in both single-word and sentence-level texts. Moreover, we show that curation using ICC complements existing approaches: It succeeds in selecting the highest quality samples from multimodal web-scale datasets to allow for efficient training in resource-constrained settings.
comment: Accepted to ACL 2024 (Finding). For Project webpage, see https://moranyanuka.github.io/icc/
♻ ☆ Adapting While Learning: Grounding LLMs for Scientific Problems with Intelligent Tool Usage Adaptation
Large Language Models (LLMs) demonstrate promising capabilities in solving scientific problems but often suffer from the issue of hallucination. While integrating LLMs with tools can mitigate this issue, models fine-tuned on tool usage become overreliant on them and incur unnecessary costs. Inspired by how human experts assess problem complexity before selecting solutions, we propose a novel two-component fine-tuning method, Adapting While Learning (AWL). In the first component, World Knowledge Learning (WKL), LLMs internalize scientific knowledge by learning from tool-generated solutions. In the second component, Tool Usage Adaptation (TUA), we categorize problems as easy or hard based on the model's accuracy, and train it to maintain direct reasoning for easy problems while switching to tools for hard ones. We validate our method on six scientific benchmark datasets across climate science, epidemiology, physics, and other domains. Compared to the original instruct model (8B), models post-trained with AWL achieve 29.11% higher answer accuracy and 12.72% better tool usage accuracy, even surpassing state-of-the-art models including GPT-4o and Claude-3.5 on four custom-created datasets. Our code is open-source at https://github.com/Rose-STL-Lab/Adapting-While-Learning.
comment: 37 pages, 16 figures
♻ ☆ When and How Does CLIP Enable Domain and Compositional Generalization? ICML 2025
The remarkable generalization performance of contrastive vision-language models like CLIP is often attributed to the diversity of their training distributions. However, key questions remain unanswered: Can CLIP generalize to an entirely unseen domain when trained on a diverse mixture of domains (domain generalization)? Can it generalize to unseen classes within partially seen domains (compositional generalization)? What factors affect such generalization? To answer these questions, we trained CLIP models on systematically constructed training distributions with controlled domain diversity and object class exposure. Our experiments show that domain diversity is essential for both domain and compositional generalization, yet compositional generalization can be surprisingly weaker than domain generalization when the training distribution contains a suboptimal subset of the test domain. Through data-centric and mechanistic analyses, we find that successful generalization requires the learning of sufficiently shared representations in intermediate layers and circuits.
comment: ICML 2025 (Spotlight)
♻ ☆ Boltzmann Classifier: A Thermodynamic-Inspired Approach to Supervised Learning
We present the Boltzmann classifier, a novel distance based probabilistic classification algorithm inspired by the Boltzmann distribution. Unlike traditional classifiers that produce hard decisions or uncalibrated probabilities, the Boltzmann classifier assigns class probabilities based on the average distance to the nearest neighbors within each class, providing interpretable, physically meaningful outputs. We evaluate the performance of the method across three application domains: molecular activity prediction, oxidation state classification of transition metal complexes, and breast cancer diagnosis. In the molecular activity task, the classifier achieved the highest accuracy in predicting active compounds against two protein targets, with strong correlations observed between the predicted probabilities and experimental pIC50 values. For metal complexes, the classifier accurately distinguished between oxidation states II and III for Fe, Mn, and Co, using only metal-ligand bond lengths extracted from crystallographic data, and demonstrated high consistency with known chemical trends. In the breast cancer dataset, the classifier achieved 97% accuracy, with low confidence predictions concentrated in inherently ambiguous cases. Across all tasks, the Boltzmann classifier performed competitively or better than standard models such as logistic regression, support vector machines, random forests, and k-nearest neighbors. Its probabilistic outputs were found to correlate with continuous physical or biological properties, highlighting its potential utility in both classification and regression contexts. The results suggest that the Boltzmann classifier is a robust and interpretable alternative to conventional machine learning approaches, particularly in scientific domains where underlying structure property relationships are important.
♻ ☆ CINNAMON: A hybrid approach to change point detection and parameter estimation in single-particle tracking data
Change point detection has become an important part of the analysis of the single-particle tracking data, as it allows one to identify moments, in which the motion patterns of observed particles undergo significant changes. The segmentation of diffusive trajectories based on those moments may provide insight into various phenomena in soft condensed matter and biological physics. In this paper, we propose CINNAMON, a hybrid approach to classifying single-particle tracking trajectories, detecting change points within them, and estimating diffusion parameters in the segments between the change points. Our method is based on a combination of neural networks, feature-based machine learning, and statistical techniques. It has been benchmarked in the second Anomalous Diffusion Challenge. The method offers a high level of interpretability due to its analytical and feature-based components. A potential use of features from topological data analysis is also discussed.
♻ ☆ DVFS-Aware DNN Inference on GPUs: Latency Modeling and Performance Analysis
The rapid development of deep neural networks (DNNs) is inherently accompanied by the problem of high computational costs. To tackle this challenge, dynamic voltage frequency scaling (DVFS) is emerging as a promising technology for balancing the latency and energy consumption of DNN inference by adjusting the computing frequency of processors. However, most existing models of DNN inference time are based on the CPU-DVFS technique, and directly applying the CPU-DVFS model to DNN inference on GPUs will lead to significant errors in optimizing latency and energy consumption. In this paper, we propose a DVFS-aware latency model to precisely characterize DNN inference time on GPUs. We first formulate the DNN inference time based on extensive experiment results for different devices and analyze the impact of fitting parameters. Then by dividing DNNs into multiple blocks and obtaining the actual inference time, the proposed model is further verified. Finally, we compare our proposed model with the CPU-DVFS model in two specific cases. Evaluation results demonstrate that local inference optimization with our proposed model achieves a reduction of no less than 66% and 69% in inference time and energy consumption respectively. In addition, cooperative inference with our proposed model can improve the partition policy and reduce the energy consumption compared to the CPU-DVFS model.
♻ ☆ Efficient but Vulnerable: Benchmarking and Defending LLM Batch Prompting Attack ACL
Batch prompting, which combines a batch of multiple queries sharing the same context in one inference, has emerged as a promising solution to reduce inference costs. However, our study reveals a significant security vulnerability in batch prompting: malicious users can inject attack instructions into a batch, leading to unwanted interference across all queries, which can result in the inclusion of harmful content, such as phishing links, or the disruption of logical reasoning. In this paper, we construct BATCHSAFEBENCH, a comprehensive benchmark comprising 150 attack instructions of two types and 8k batch instances, to study the batch prompting vulnerability systematically. Our evaluation of both closed-source and open-weight LLMs demonstrates that all LLMs are susceptible to batch-prompting attacks. We then explore multiple defending approaches. While the prompting-based defense shows limited effectiveness for smaller LLMs, the probing-based approach achieves about 95% accuracy in detecting attacks. Additionally, we perform a mechanistic analysis to understand the attack and identify attention heads that are responsible for it.
comment: Accepted to ACL Findings, 2025
♻ ☆ CodeV-R1: Reasoning-Enhanced Verilog Generation
Large language models (LLMs) trained via reinforcement learning with verifiable reward (RLVR) have achieved breakthroughs on tasks with explicit, automatable verification, such as software programming and mathematical problems. Extending RLVR to electronic design automation (EDA), especially automatically generating hardware description languages (HDLs) like Verilog from natural-language (NL) specifications, however, poses three key challenges: the lack of automated and accurate verification environments, the scarcity of high-quality NL-code pairs, and the prohibitive computation cost of RLVR. To this end, we introduce CodeV-R1, an RLVR framework for training Verilog generation LLMs. First, we develop a rule-based testbench generator that performs robust equivalence checking against golden references. Second, we propose a round-trip data synthesis method that pairs open-source Verilog snippets with LLM-generated NL descriptions, verifies code-NL-code consistency via the generated testbench, and filters out inequivalent examples to yield a high-quality dataset. Third, we employ a two-stage "distill-then-RL" training pipeline: distillation for the cold start of reasoning abilities, followed by adaptive DAPO, our novel RLVR algorithm that can reduce training cost by adaptively adjusting sampling rate. The resulting model, CodeV-R1-7B, achieves 68.6% and 72.9% pass@1 on VerilogEval v2 and RTLLM v1.1, respectively, surpassing prior state-of-the-art by 12~20%, while matching or even exceeding the performance of 671B DeepSeek-R1. We will release our model, training pipeline, and dataset to facilitate research in EDA and LLM communities.
♻ ☆ SSR-Zero: Simple Self-Rewarding Reinforcement Learning for Machine Translation
Large language models (LLMs) have recently demonstrated remarkable capabilities in machine translation (MT). However, most advanced MT-specific LLMs heavily rely on external supervision signals during training, such as human-annotated reference data or trained reward models (RMs), which are often expensive to obtain and challenging to scale. To overcome this limitation, we propose a Simple Self-Rewarding (SSR) Reinforcement Learning (RL) framework for MT that is reference-free, fully online, and relies solely on self-judging rewards. Training with SSR using 13K monolingual examples and Qwen-2.5-7B as the backbone, our model SSR-Zero-7B outperforms existing MT-specific LLMs, e.g., TowerInstruct-13B and GemmaX-28-9B, as well as larger general LLMs like Qwen2.5-32B-Instruct in English $\leftrightarrow$ Chinese translation tasks from WMT23, WMT24, and Flores200 benchmarks. Furthermore, by augmenting SSR with external supervision from COMET, our strongest model, SSR-X-Zero-7B, achieves state-of-the-art performance in English $\leftrightarrow$ Chinese translation, surpassing all existing open-source models under 72B parameters and even outperforming closed-source models, e.g., GPT-4o and Gemini 1.5 Pro. Our analysis highlights the effectiveness of the self-rewarding mechanism compared to the external LLM-as-a-judge approach in MT and demonstrates its complementary benefits when combined with trained RMs. Our findings provide valuable insight into the potential of self-improving RL methods. We have publicly released our code, data and models.
♻ ☆ Can We Detect Failures Without Failure Data? Uncertainty-Aware Runtime Failure Detection for Imitation Learning Policies
Recent years have witnessed impressive robotic manipulation systems driven by advances in imitation learning and generative modeling, such as diffusion- and flow-based approaches. As robot policy performance increases, so does the complexity and time horizon of achievable tasks, inducing unexpected and diverse failure modes that are difficult to predict a priori. To enable trustworthy policy deployment in safety-critical human environments, reliable runtime failure detection becomes important during policy inference. However, most existing failure detection approaches rely on prior knowledge of failure modes and require failure data during training, which imposes a significant challenge in practicality and scalability. In response to these limitations, we present FAIL-Detect, a modular two-stage approach for failure detection in imitation learning-based robotic manipulation. To accurately identify failures from successful training data alone, we frame the problem as sequential out-of-distribution (OOD) detection. We first distill policy inputs and outputs into scalar signals that correlate with policy failures and capture epistemic uncertainty. FAIL-Detect then employs conformal prediction (CP) as a versatile framework for uncertainty quantification with statistical guarantees. Empirically, we thoroughly investigate both learned and post-hoc scalar signal candidates on diverse robotic manipulation tasks. Our experiments show learned signals to be mostly consistently effective, particularly when using our novel flow-based density estimator. Furthermore, our method detects failures more accurately and faster than state-of-the-art (SOTA) failure detection baselines. These results highlight the potential of FAIL-Detect to enhance the safety and reliability of imitation learning-based robotic systems as they progress toward real-world deployment.
comment: Accepted by Robotics: Science and Systems 2025
♻ ☆ Knowledge Distillation Framework for Accelerating High-Accuracy Neural Network-Based Molecular Dynamics Simulations
Neural network potentials (NNPs) offer a powerful alternative to traditional force fields for molecular dynamics (MD) simulations. Accurate and stable MD simulations, crucial for evaluating material properties, require training data encompassing both low-energy stable structures and high-energy structures. Conventional knowledge distillation (KD) methods fine-tune a pre-trained NNP as a teacher model to generate training data for a student model. However, in material-specific models, this fine-tuning process increases energy barriers, making it difficult to create training data containing high-energy structures. To address this, we propose a novel KD framework that leverages a non-fine-tuned, off-the-shelf pre-trained NNP as a teacher. Its gentler energy landscape facilitates the exploration of a wider range of structures, including the high-energy structures crucial for stable MD simulations. Our framework employs a two-stage training process: first, the student NNP is trained with a dataset generated by the off-the-shelf teacher; then, it is fine-tuned with a smaller, high-accuracy density functional theory (DFT) dataset. We demonstrate the effectiveness of our framework by applying it to both organic (polyethylene glycol) and inorganic (L$_{10}$GeP$_{2}$S$_{12}$) materials, achieving comparable or superior accuracy in reproducing physical properties compared to existing methods. Importantly, our method reduces the number of expensive DFT calculations by 10x compared to existing NNP generation methods, without sacrificing accuracy. Furthermore, the resulting student NNP achieves up to 106x speedup in inference compared to the teacher NNP, enabling significantly faster and more efficient MD simulations.
♻ ☆ Nature Language Model: Deciphering the Language of Nature for Scientific Discovery
Foundation models have revolutionized natural language processing and artificial intelligence, significantly enhancing how machines comprehend and generate human languages. Inspired by the success of these foundation models, researchers have developed foundation models for individual scientific domains, including small molecules, materials, proteins, DNA, RNA and even cells. However, these models are typically trained in isolation, lacking the ability to integrate across different scientific domains. Recognizing that entities within these domains can all be represented as sequences, which together form the "language of nature", we introduce Nature Language Model (NatureLM), a sequence-based science foundation model designed for scientific discovery. Pre-trained with data from multiple scientific domains, NatureLM offers a unified, versatile model that enables various applications including: (i) generating and optimizing small molecules, proteins, RNA, and materials using text instructions; (ii) cross-domain generation/design, such as protein-to-molecule and protein-to-RNA generation; and (iii) top performance across different domains, matching or surpassing state-of-the-art specialist models. NatureLM offers a promising generalist approach for various scientific tasks, including drug discovery (hit generation/optimization, ADMET optimization, synthesis), novel material design, and the development of therapeutic proteins or nucleotides. We have developed NatureLM models in different sizes (1 billion, 8 billion, and 46.7 billion parameters) and observed a clear improvement in performance as the model size increases.
comment: 95 pages
♻ ☆ DeepSelective: Interpretable Prognosis Prediction via Feature Selection and Compression in EHR Data
The rapid accumulation of Electronic Health Records (EHRs) has transformed healthcare by providing valuable data that enhance clinical predictions and diagnoses. While conventional machine learning models have proven effective, they often lack robust representation learning and depend heavily on expert-crafted features. Although deep learning offers powerful solutions, it is often criticized for its lack of interpretability. To address these challenges, we propose DeepSelective, a novel end to end deep learning framework for predicting patient prognosis using EHR data, with a strong emphasis on enhancing model interpretability. DeepSelective combines data compression techniques with an innovative feature selection approach, integrating custom-designed modules that work together to improve both accuracy and interpretability. Our experiments demonstrate that DeepSelective not only enhances predictive accuracy but also significantly improves interpretability, making it a valuable tool for clinical decision-making. The source code is freely available at http://www.healthinformaticslab.org/supp/resources.php .
♻ ☆ Conformal Inference under High-Dimensional Covariate Shifts via Likelihood-Ratio Regularization
We consider the problem of conformal prediction under covariate shift. Given labeled data from a source domain and unlabeled data from a covariate shifted target domain, we seek to construct prediction sets with valid marginal coverage in the target domain. Most existing methods require estimating the unknown likelihood ratio function, which can be prohibitive for high-dimensional data such as images. To address this challenge, we introduce the likelihood ratio regularized quantile regression (LR-QR) algorithm, which combines the pinball loss with a novel choice of regularization in order to construct a threshold function without directly estimating the unknown likelihood ratio. We show that the LR-QR method has coverage at the desired level in the target domain, up to a small error term that we can control. Our proofs draw on a novel analysis of coverage via stability bounds from learning theory. Our experiments demonstrate that the LR-QR algorithm outperforms existing methods on high-dimensional prediction tasks, including a regression task for the Communities and Crime dataset, an image classification task from the WILDS repository, and an LLM question-answering task on the MMLU benchmark.
♻ ☆ Group-Level Data Selection for Efficient Pretraining
In this paper, we introduce Group-MATES, an efficient group-level data selection approach to optimize the speed-quality frontier of language model pretraining. Specifically, Group-MATES parameterizes costly group-level selection with a relational data influence model. To train this model, we sample training trajectories of the language model and collect oracle data influences alongside. The relational data influence model approximates the oracle data influence by weighting individual influence with relationships among training data. To enable efficient selection with our relational data influence model, we partition the dataset into small clusters using relationship weights and select data within each cluster independently. Experiments on DCLM 400M-4x, 1B-1x, and 3B-1x show that Group-MATES achieves 3.5%-9.4% relative performance gains over random selection across 22 downstream tasks, nearly doubling the improvements achieved by state-of-the-art individual data selection baselines. Furthermore, Group-MATES reduces the number of tokens required to reach a certain downstream performance by up to 1.75x, substantially elevating the speed-quality frontier. Further analyses highlight the critical role of relationship weights in the relational data influence model and the effectiveness of our cluster-based inference. Our code is open-sourced at https://github.com/facebookresearch/Group-MATES.
♻ ☆ Client-Centered Federated Learning for Heterogeneous EHRs: Use Fewer Participants to Achieve the Same Performance
The increasing volume of electronic health records (EHRs) presents the opportunity to improve the accuracy and robustness of models in clinical prediction tasks. Unlike traditional centralized approaches, federated learning enables training on data from multiple institutions while preserving patient privacy and complying with regulatory constraints. In practice, healthcare institutions (i.e., hosts) often need to build predictive models tailored to their specific needs using federated learning. In this scenario, two key challenges arise: (1) ensuring compatibility across heterogeneous EHR systems, and (2) managing federated learning costs within budget constraints. To address these challenges, we propose EHRFL, a federated learning framework designed for building a cost-effective, host-specific predictive model using patient EHR data. EHRFL consists of two components: (1) text-based EHR modeling, which facilitates cross-institution compatibility without costly data standardization, and (2) a participant selection strategy based on averaged patient embedding similarity to reduce the number of participants without degrading performance. Experiments on multiple open-source EHR datasets demonstrate the effectiveness of both components. We believe our framework offers a practical solution for enabling healthcare institutions to build institution-specific predictive models under budgetary constraints.
♻ ☆ Rewarding the Unlikely: Lifting GRPO Beyond Distribution Sharpening
Reinforcement learning is emerging as a primary driver for improving language model reasoning capabilities. A fundamental question is whether current reinforcement learning algorithms -- such as Group Relative Policy Optimization (GRPO), the de facto standard algorithm used to improve language model reasoning -- merely sharpen the base model's distribution around problems it can already solve. We investigate this question in the context of formal theorem proving, which has access to a perfect verifier. We identify a degenerate rank bias in GRPO in which highly probable trajectories are reinforced and rare ones are neglected. This results in distribution sharpening: the model can solve some problems with fewer samples, but underperforms simply sampling more solutions from the original model. To overcome GRPO's rank bias we introduce unlikeliness reward, a simple method for explicitly up-weighting rare but correct solutions. We show that unlikeliness reward mitigates rank bias and improves pass@$N$ across a large range of $N$ in both synthetic and real theorem proving settings. We also uncover an unexpected link between rank bias and a seemingly mundane hyperparameter -- the number of updates per batch -- that leads to a second, complementary mitigation. We combine our insights into a revised GRPO training recipe for formal theorem proving, yielding an open pipeline that achieves competitive performance to DeepSeek-Prover-V1.5-RL on the miniF2F-test benchmark. We release our implementation at https://github.com/AndreHe02/rewarding-unlikely-release
♻ ☆ Disentangling and Integrating Relational and Sensory Information in Transformer Architectures ICML 2025
Relational reasoning is a central component of generally intelligent systems, enabling robust and data-efficient inductive generalization. Recent empirical evidence shows that many existing neural architectures, including Transformers, struggle with tasks requiring relational reasoning. In this work, we distinguish between two types of information: sensory information about the properties of individual objects, and relational information about the relationships between objects. While neural attention provides a powerful mechanism for controlling the flow of sensory information between objects, the Transformer lacks an explicit computational mechanism for routing and processing relational information. To address this limitation, we propose an architectural extension of the Transformer framework that we call the Dual Attention Transformer (DAT), featuring two distinct attention mechanisms: sensory attention for directing the flow of sensory information, and a novel relational attention mechanism for directing the flow of relational information. We empirically evaluate DAT on a diverse set of tasks ranging from synthetic relational benchmarks to complex real-world tasks such as language modeling and visual processing. Our results demonstrate that integrating explicit relational computational mechanisms into the Transformer architecture leads to significant performance gains in terms of data efficiency and parameter efficiency.
comment: ICML 2025
♻ ☆ Automated Skill Discovery for Language Agents through Exploration and Iterative Feedback
Training large language model (LLM) agents to acquire necessary skills and perform diverse tasks within an environment is gaining interest as a means to enable open-endedness. However, creating the training dataset for their skill acquisition faces several challenges. Manual trajectory collection requires significant human effort. Another approach, where LLMs directly propose tasks to learn, is often invalid, as the LLMs lack knowledge of which tasks are actually feasible. Moreover, the generated data may not provide a meaningful learning signal, as agents often already perform well on the proposed tasks. To address this, we propose a novel automatic skill discovery framework EXIF for LLM-powered agents, designed to improve the feasibility of generated target behaviors while accounting for the agents' capabilities. Our method adopts an exploration-first strategy by employing an exploration agent (Alice) to train the target agent (Bob) to learn essential skills in the environment. Specifically, Alice first interacts with the environment to retrospectively generate a feasible, environment-grounded skill dataset, which is then used to train Bob. Crucially, we incorporate an iterative feedback loop, where Alice evaluates Bob's performance to identify areas for improvement. This feedback then guides Alice's next round of exploration, forming a closed-loop data generation process. Experiments on Webshop and Crafter demonstrate EXIF's ability to effectively discover meaningful skills and iteratively expand the capabilities of the trained agent without any human intervention, achieving substantial performance improvements. Interestingly, we observe that setting Alice to the same model as Bob also notably improves performance, demonstrating EXIF's potential for building a self-evolving system.
comment: Preprint, under review
♻ ☆ Revisiting Multi-Agent Debate as Test-Time Scaling: A Systematic Study of Conditional Effectiveness
The remarkable growth in large language model (LLM) capabilities has spurred exploration into multi-agent systems, with debate frameworks emerging as a promising avenue for enhanced problem-solving. These multi-agent debate (MAD) approaches, where agents collaboratively present, critique, and refine arguments, potentially offer improved reasoning, robustness, and diverse perspectives over monolithic models. Despite prior studies leveraging MAD, a systematic understanding of its effectiveness compared to self-agent methods, particularly under varying conditions, remains elusive. This paper seeks to fill this gap by conceptualizing MAD as a test-time computational scaling technique, distinguished by collaborative refinement and diverse exploration capabilities. We conduct a comprehensive empirical investigation comparing MAD with strong self-agent test-time scaling baselines on mathematical reasoning and safety-related tasks. Our study systematically examines the influence of task difficulty, model scale, and agent diversity on MAD's performance. Key findings reveal that, for mathematical reasoning, MAD offers limited advantages over self-agent scaling but becomes more effective with increased problem difficulty and decreased model capability, while agent diversity shows little benefit. Conversely, for safety tasks, MAD's collaborative refinement can increase vulnerability, but incorporating diverse agent configurations facilitates a gradual reduction in attack success through the collaborative refinement process. We believe our findings provide critical guidance for the future development of more effective and strategically deployed MAD systems.
comment: Preprint, under review
♻ ☆ Info-Coevolution: An Efficient Framework for Data Model Coevolution
Machine learning relies heavily on data, yet the continuous growth of real-world data poses challenges for efficient dataset construction and training. A fundamental yet unsolved question is: given our current model and data, does a new data (sample/batch) need annotation/learning? Conventional approaches retain all available data, leading to non-optimal data and training efficiency. Active learning aims to reduce data redundancy by selecting a subset of samples to annotate, while it increases pipeline complexity and introduces bias. In this work, we propose Info-Coevolution, a novel framework that efficiently enables models and data to coevolve through online selective annotation with no bias. Leveraging task-specific models (and open-source models), it selectively annotates and integrates online and web data to improve datasets efficiently. For real-world datasets like ImageNet-1K, Info-Coevolution reduces annotation and training costs by 32\% without performance loss. It is able to automatically give the saving ratio without tuning the ratio. It can further reduce the annotation ratio to 50\% with semi-supervised learning. We also explore retrieval-based dataset enhancement using unlabeled open-source data. Code is available at https://github.com/NUS-HPC-AI-Lab/Info-Coevolution/.
comment: V1
♻ ☆ Understanding and Reducing the Class-Dependent Effects of Data Augmentation with A Two-Player Game Approach
Data augmentation is widely applied and has shown its benefits in different machine learning tasks. However, as recently observed, it may have an unfair effect in multi-class classification. While data augmentation generally improves the overall performance (and therefore is beneficial for many classes), it can actually be detrimental for other classes, which can be problematic in some application domains. In this paper, to counteract this phenomenon, we propose CLAM, a CLAss-dependent Multiplicative-weights method. To derive it, we first formulate the training of a classifier as a non-linear optimization problem that aims at simultaneously maximizing the individual class performances and balancing them. By rewriting this optimization problem as an adversarial two-player game, we propose a novel multiplicative weight algorithm, for which we prove the convergence. Interestingly, our formulation also reveals that the class-dependent effects of data augmentation is not due to data augmentation only, but is in fact a general phenomenon. Our empirical results over six datasets demonstrate that the performance of learned classifiers is indeed more fairly distributed over classes, with only limited impact on the average accuracy.
♻ ☆ Open-Set Graph Anomaly Detection via Normal Structure Regularisation ICLR 2025
This paper considers an important Graph Anomaly Detection (GAD) task, namely open-set GAD, which aims to train a detection model using a small number of normal and anomaly nodes (referred to as seen anomalies) to detect both seen anomalies and unseen anomalies (i.e., anomalies that cannot be illustrated the training anomalies). Those labelled training data provide crucial prior knowledge about abnormalities for GAD models, enabling substantially reduced detection errors. However, current supervised GAD methods tend to over-emphasise fitting the seen anomalies, leading to many errors of detecting the unseen anomalies as normal nodes. Further, existing open-set AD models were introduced to handle Euclidean data, failing to effectively capture discriminative features from graph structure and node attributes for GAD. In this work, we propose a novel open-set GAD approach, namely normal structure regularisation (NSReg), to achieve generalised detection ability to unseen anomalies, while maintaining its effectiveness on detecting seen anomalies. The key idea in NSReg is to introduce a regularisation term that enforces the learning of compact, semantically-rich representations of normal nodes based on their structural relations to other nodes. When being optimised with supervised anomaly detection losses, the regularisation term helps incorporate strong normality into the modelling, and thus, it effectively avoids over-fitting the seen anomalies and learns a better normality decision boundary, largely reducing the false negatives of detecting unseen anomalies as normal. Extensive empirical results on seven real-world datasets show that NSReg significantly outperforms state-of-the-art competing methods by at least 14% AUC-ROC on the unseen anomaly classes and by 10% AUC-ROC on all anomaly classes.
comment: Accepted by ICLR 2025
♻ ☆ Kinetics: Rethinking Test-Time Scaling Laws
We rethink test-time scaling laws from a practical efficiency perspective, revealing that the effectiveness of smaller models is significantly overestimated. Prior work, grounded in compute-optimality, overlooks critical memory access bottlenecks introduced by inference-time strategies (e.g., Best-of-$N$, long CoTs). Our holistic analysis, spanning models from 0.6B to 32B parameters, reveals a new Kinetics Scaling Law that better guides resource allocation by incorporating both computation and memory access costs. Kinetics Scaling Law suggests that test-time compute is more effective when used on models above a threshold than smaller ones. A key reason is that in TTS, attention, rather than parameter count, emerges as the dominant cost factor. Motivated by this, we propose a new scaling paradigm centered on sparse attention, which lowers per-token cost and enables longer generations and more parallel samples within the same resource budget. Empirically, we show that sparse attention models consistently outperform dense counterparts, achieving over 60 points gains in low-cost regimes and over 5 points gains in high-cost regimes for problem-solving accuracy on AIME, encompassing evaluations on state-of-the-art MoEs. These results suggest that sparse attention is essential and increasingly important with more computing invested, for realizing the full potential of test-time scaling where, unlike training, accuracy has yet to saturate as a function of computation, and continues to improve through increased generation. The code is available at https://github.com/Infini-AI-Lab/Kinetics.
♻ ☆ RL2Grid: Benchmarking Reinforcement Learning in Power Grid Operations
Reinforcement learning (RL) can provide adaptive and scalable controllers essential for power grid decarbonization. However, RL methods struggle with power grids' complex dynamics, long-horizon goals, and hard physical constraints. For these reasons, we present RL2Grid, a benchmark designed in collaboration with power system operators to accelerate progress in grid control and foster RL maturity. Built on RTE France's power simulation framework, RL2Grid standardizes tasks, state and action spaces, and reward structures for a systematic evaluation and comparison of RL algorithms. Moreover, we integrate operational heuristics and design safety constraints based on human expertise to ensure alignment with physical requirements. By establishing reference performance metrics for classic RL baselines on RL2Grid's tasks, we highlight the need for novel methods capable of handling real systems and discuss future directions for RL-based grid control.
♻ ☆ Adaptive Guidance Accelerates Reinforcement Learning of Reasoning Models
We study the process through which reasoning models trained with reinforcement learning on verifiable rewards (RLVR) can learn to solve new problems. We find that RLVR drives performance in two main ways: (1) by compressing pass@$k$ into pass@1 and (2) via "capability gain" in which models learn to solve new problems that they previously could not solve even at high $k$. We find that while capability gain exists across model scales, learning to solve new problems is primarily driven through self-distillation. We demonstrate these findings across model scales ranging from 0.5B to 72B parameters on >500,000 reasoning problems with prompts and verifiable final answers across math, science, and code domains. We further show that we can significantly improve pass@$k$ rates by leveraging natural language guidance for the model to consider within context while still requiring the model to derive a solution chain from scratch. Based of these insights, we derive $\text{Guide}$ -- a new class of online training algorithms. $\text{Guide}$ adaptively incorporates hints into the model's context on problems for which all rollouts were initially incorrect and adjusts the importance sampling ratio for the "off-policy" trajectories in order to optimize the policy for contexts in which the hints are no longer present. We describe variants of $\text{Guide}$ for GRPO and PPO and empirically show that Guide-GRPO on 7B and 32B parameter models improves generalization over its vanilla counterpart with up to 4$\%$ macro-average improvement across math benchmarks. We include careful ablations to analyze $\text{Guide}$'s components and theoretically analyze Guide's learning efficiency.
♻ ☆ Near Optimal Decision Trees in a SPLIT Second ICML 2025
Decision tree optimization is fundamental to interpretable machine learning. The most popular approach is to greedily search for the best feature at every decision point, which is fast but provably suboptimal. Recent approaches find the global optimum using branch and bound with dynamic programming, showing substantial improvements in accuracy and sparsity at great cost to scalability. An ideal solution would have the accuracy of an optimal method and the scalability of a greedy method. We introduce a family of algorithms called SPLIT (SParse Lookahead for Interpretable Trees) that moves us significantly forward in achieving this ideal balance. We demonstrate that not all sub-problems need to be solved to optimality to find high quality trees; greediness suffices near the leaves. Since each depth adds an exponential number of possible trees, this change makes our algorithms orders of magnitude faster than existing optimal methods, with negligible loss in performance. We extend this algorithm to allow scalable computation of sets of near-optimal trees (i.e., the Rashomon set).
comment: Accepted to ICML 2025 (Oral)
Quantitative Methods 4
☆ EHCube4P: Learning Epistatic Patterns Through Hypercube Graph Convolution Neural Network for Protein Fitness Function Estimation
Understanding the relationship between protein sequences and their functions is fundamental to protein engineering, but this task is hindered by the combinatorially vast sequence space and the experimental noise inherent in fitness measurements. In this study, we present a novel framework that models the sequence landscape as a hypercube $H(k,2)$ and integrates wavelet-based signal denoising with a graph convolutional neural network (GCN) to predict protein fitness across rugged fitness landscapes. Using a dataset of 419 experimentally measured mutant sequences of the Tobacco 5-Epi-Aristolochene Synthase (TEAS) enzyme, we preprocess the fitness signals using a 1-D discrete wavelet transform with a Daubechies-3 basis to suppress experimental noise while preserving local epistatic patterns. Our model comprises two GCN layers, allowing for beyond pairwise aggregation, followed by a multi-layer perceptron (MLP). We show that our approach, EHCube4P, generalizes well across different enzyme activity datasets and effectively captures higher-order mutational interactions. Performance varies with the ruggedness of the fitness landscape, with smoother signals yielding higher test set $r^2$ scores. These results demonstrate that combining wavelet preprocessing with graph-based deep learning enhances the robustness and generalization of fitness prediction, particularly for sparse and noisy biological datasets. The approach provides a scalable and interpretable framework for protein fitness estimation applicable to a broad range of combinatorial biological systems.
comment: 12 pages, 4 figures, 1 table
☆ A practical identifiability criterion leveraging weak-form parameter estimation
In this work, we define a practical identifiability criterion, (e, q)-identifiability, based on a parameter e, reflecting the noise in observed variables, and a parameter q, reflecting the mean-square error of the parameter estimator. This criterion is better able to encompass changes in the quality of the parameter estimate due to increased noise in the data (compared to existing criteria based solely on average relative errors). Furthermore, we leverage a weak-form equation error-based method of parameter estimation for systems with unobserved variables to assess practical identifiability far more quickly in comparison to output error-based parameter estimation. We do so by generating weak-form input-output equations using differential algebra techniques, as previously proposed by Boulier et al [1], and then applying Weak form Estimation of Nonlinear Dynamics (WENDy) to obtain parameter estimates. This method is computationally efficient and robust to noise, as demonstrated through two classical biological modelling examples.
☆ An Uncertainty-Aware Dynamic Decision Framework for Progressive Multi-Omics Integration in Classification Tasks
Background and Objective: High-throughput multi-omics technologies have proven invaluable for elucidating disease mechanisms and enabling early diagnosis. However, the high cost of multi-omics profiling imposes a significant economic burden, with over reliance on full omics data potentially leading to unnecessary resource consumption. To address these issues, we propose an uncertainty-aware, multi-view dynamic decision framework for omics data classification that aims to achieve high diagnostic accuracy while minimizing testing costs. Methodology: At the single-omics level, we refine the activation functions of neural networks to generate Dirichlet distribution parameters, utilizing subjective logic to quantify both the belief masses and uncertainty mass of classification results. Belief mass reflects the support of a specific omics modality for a disease class, while the uncertainty parameter captures limitations in data quality and model discriminability, providing a more trustworthy basis for decision-making. At the multi omics level, we employ a fusion strategy based on Dempster-Shafer theory to integrate heterogeneous modalities, leveraging their complementarity to boost diagnostic accuracy and robustness. A dynamic decision mechanism is then applied that omics data are incrementally introduced for each patient until either all data sources are utilized or the model confidence exceeds a predefined threshold, potentially before all data sources are utilized. Results and Conclusion: We evaluate our approach on four benchmark multi-omics datasets, ROSMAP, LGG, BRCA, and KIPAN. In three datasets, over 50% of cases achieved accurate classification using a single omics modality, effectively reducing redundant testing. Meanwhile, our method maintains diagnostic performance comparable to full-omics models and preserves essential biological insights.
♻ ☆ CINNAMON: A hybrid approach to change point detection and parameter estimation in single-particle tracking data
Change point detection has become an important part of the analysis of the single-particle tracking data, as it allows one to identify moments, in which the motion patterns of observed particles undergo significant changes. The segmentation of diffusive trajectories based on those moments may provide insight into various phenomena in soft condensed matter and biological physics. In this paper, we propose CINNAMON, a hybrid approach to classifying single-particle tracking trajectories, detecting change points within them, and estimating diffusion parameters in the segments between the change points. Our method is based on a combination of neural networks, feature-based machine learning, and statistical techniques. It has been benchmarked in the second Anomalous Diffusion Challenge. The method offers a high level of interpretability due to its analytical and feature-based components. A potential use of features from topological data analysis is also discussed.
Cell Behavior 1
☆ Inferring Exocytosis Profiles from Cell Shapes Using a Dual-Configuration Model of Walled Cell Tip Growth
Tip growth in filamentous cells, such as root hairs, moss protonemata, and fungal hyphae, depends on coordinated cell wall extension driven by turgor pressure, wall mechanics, and exocytosis. We introduce a dual-configuration model that incorporates both turgid and unturgid states to describe cell wall growth as the combined effect of elastic deformation and irreversible extension. This framework infers exocytosis profiles directly from cell morphology and elastic stretches, formulated as an initial value problem based on the self-similarity condition. Applying the model to Medicago truncatula root hairs, moss Physcomitrium patens protonemata, and hyphoid-like shapes, we find that exocytosis peaks at the tip in tapered cells but shifts to an annular region away from the apex in flatter-tip cells beyond a threshold. The model generalizes previous fluid models and provides a mechanistic link between exocytosis distribution and cell shape, explaining observed variations in tip-growing cells across species.
Computation and Language 23
☆ Arch-Router: Aligning LLM Routing with Human Preferences
With the rapid proliferation of large language models (LLMs) -- each optimized for different strengths, style, or latency/cost profile -- routing has become an essential technique to operationalize the use of different models. However, existing LLM routing approaches are limited in two key ways: they evaluate performance using benchmarks that often fail to capture human preferences driven by subjective evaluation criteria, and they typically select from a limited pool of models. In this work, we propose a preference-aligned routing framework that guides model selection by matching queries to user-defined domains (e.g., travel) or action types (e.g., image editing) -- offering a practical mechanism to encode preferences in routing decisions. Specifically, we introduce \textbf{Arch-Router}, a compact 1.5B model that learns to map queries to domain-action preferences for model routing decisions. Our approach also supports seamlessly adding new models for routing without requiring retraining or architectural modifications. Experiments on conversational datasets demonstrate that our approach achieves state-of-the-art (SOTA) results in matching queries with human preferences, outperforming top proprietary models. Our approach captures subjective evaluation criteria and makes routing decisions more transparent and flexible. Our model is available at: \texttt{https://huggingface.co/katanemo/Arch-Router-1.5B}.
☆ Long-Context Generalization with Sparse Attention
Transformer-based architectures traditionally employ softmax to compute attention weights, which produces dense distributions over all tokens in a sequence. While effective in many settings, this density has been shown to be detrimental for tasks that demand precise focus on fixed-size patterns: as sequence length increases, non-informative tokens accumulate attention probability mass, leading to dispersion and representational collapse. We show in this paper that sparse attention mechanisms using $\alpha$-entmax can avoid these issues, due to their ability to assign exact zeros to irrelevant tokens. Furthermore, we introduce Adaptive-Scalable Entmax (ASEntmax), which endows $\alpha$-entmax with a learnable temperature parameter, allowing the attention distribution to interpolate between sparse (pattern-focused) and dense (softmax-like) regimes. Finally, we show that the ability to locate and generalize fixed-size patterns can be further improved through a careful design of position encodings, which impacts both dense and sparse attention methods. By integrating ASEntmax into standard transformer layers alongside proper positional encodings, we show that our models greatly outperform softmax, scalable softmax, and fixed-temperature $\alpha$-entmax baselines on long-context generalization.
☆ GeoGuess: Multimodal Reasoning based on Hierarchy of Visual Information in Street View
Multimodal reasoning is a process of understanding, integrating and inferring information across different data modalities. It has recently attracted surging academic attention as a benchmark for Artificial Intelligence (AI). Although there are various tasks for evaluating multimodal reasoning ability, they still have limitations. Lack of reasoning on hierarchical visual clues at different levels of granularity, e.g., local details and global context, is of little discussion, despite its frequent involvement in real scenarios. To bridge the gap, we introduce a novel and challenging task for multimodal reasoning, namely GeoGuess. Given a street view image, the task is to identify its location and provide a detailed explanation. A system that succeeds in GeoGuess should be able to detect tiny visual clues, perceive the broader landscape, and associate with vast geographic knowledge. Therefore, GeoGuess would require the ability to reason between hierarchical visual information and geographic knowledge. In this work, we establish a benchmark for GeoGuess by introducing a specially curated dataset GeoExplain which consists of panoramas-geocoordinates-explanation tuples. Additionally, we present a multimodal and multilevel reasoning method, namely SightSense which can make prediction and generate comprehensive explanation based on hierarchy of visual information and external knowledge. Our analysis and experiments demonstrate their outstanding performance in GeoGuess.
☆ Initial Investigation of LLM-Assisted Development of Rule-Based Clinical NLP System
Despite advances in machine learning (ML) and large language models (LLMs), rule-based natural language processing (NLP) systems remain active in clinical settings due to their interpretability and operational efficiency. However, their manual development and maintenance are labor-intensive, particularly in tasks with large linguistic variability. To overcome these limitations, we proposed a novel approach employing LLMs solely during the rule-based systems development phase. We conducted the initial experiments focusing on the first two steps of developing a rule-based NLP pipeline: find relevant snippets from the clinical note; extract informative keywords from the snippets for the rule-based named entity recognition (NER) component. Our experiments demonstrated exceptional recall in identifying clinically relevant text snippets (Deepseek: 0.98, Qwen: 0.99) and 1.0 in extracting key terms for NER. This study sheds light on a promising new direction for NLP development, enabling semi-automated or automated development of rule-based systems with significantly faster, more cost-effective, and transparent execution compared with deep learning model-based solutions.
☆ Modeling Public Perceptions of Science in Media
Effectively engaging the public with science is vital for fostering trust and understanding in our scientific community. Yet, with an ever-growing volume of information, science communicators struggle to anticipate how audiences will perceive and interact with scientific news. In this paper, we introduce a computational framework that models public perception across twelve dimensions, such as newsworthiness, importance, and surprisingness. Using this framework, we create a large-scale science news perception dataset with 10,489 annotations from 2,101 participants from diverse US and UK populations, providing valuable insights into public responses to scientific information across domains. We further develop NLP models that predict public perception scores with a strong performance. Leveraging the dataset and model, we examine public perception of science from two perspectives: (1) Perception as an outcome: What factors affect the public perception of scientific information? (2) Perception as a predictor: Can we use the estimated perceptions to predict public engagement with science? We find that individuals' frequency of science news consumption is the driver of perception, whereas demographic factors exert minimal influence. More importantly, through a large-scale analysis and carefully designed natural experiment on Reddit, we demonstrate that the estimated public perception of scientific information has direct connections with the final engagement pattern. Posts with more positive perception scores receive significantly more comments and upvotes, which is consistent across different scientific information and for the same science, but are framed differently. Overall, this research underscores the importance of nuanced perception modeling in science communication, offering new pathways to predict public interest and engagement with scientific content.
☆ A Scoping Review of Synthetic Data Generation for Biomedical Research and Applications
Synthetic data generation--mitigating data scarcity, privacy concerns, and data quality challenges in biomedical fields--has been facilitated by rapid advances of large language models (LLMs). This scoping review follows PRISMA-ScR guidelines and synthesizes 59 studies, published between 2020 and 2025 and collected from PubMed, ACM, Web of Science, and Google Scholar. The review systematically examines biomedical research and application trends in synthetic data generation, emphasizing clinical applications, methodologies, and evaluations. Our analysis identifies data modalities of unstructured texts (78.0%), tabular data (13.6%), and multimodal sources (8.4%); generation methods of prompting (72.9%), fine-tuning (22.0%) LLMs and specialized model (5.1%); and heterogeneous evaluations of intrinsic metrics (27.1%), human-in-the-loop assessments (55.9%), and LLM-based evaluations (13.6%). The analysis addresses current limitations in what, where, and how health professionals can leverage synthetic data generation for biomedical domains. Our review also highlights challenges in adaption across clinical domains, resource and model accessibility, and evaluation standardizations.
☆ Measuring (a Sufficient) World Model in LLMs: A Variance Decomposition Framework
Understanding whether large language models (LLMs) possess a world model-a structured understanding of the world that supports generalization beyond surface-level patterns-is central to assessing their reliability, especially in high-stakes applications. We propose a formal framework for evaluating whether an LLM exhibits a sufficiently robust world model, defined as producing consistent outputs across semantically equivalent prompts while distinguishing between prompts that express different intents. We introduce a new evaluation approach to measure this that decomposes model response variability into three components: variability due to user purpose, user articulation, and model instability. An LLM with a strong world model should attribute most of the variability in its responses to changes in foundational purpose rather than superficial changes in articulation. This approach allows us to quantify how much of a model's behavior is semantically grounded rather than driven by model instability or alternative wording. We apply this framework to evaluate LLMs across diverse domains. Our results show how larger models attribute a greater share of output variability to changes in user purpose, indicating a more robust world model. This improvement is not uniform, however: larger models do not consistently outperform smaller ones across all domains, and their advantage in robustness is often modest. These findings highlight the importance of moving beyond accuracy-based benchmarks toward semantic diagnostics that more directly assess the structure and stability of a model's internal understanding of the world.
☆ Streaming Non-Autoregressive Model for Accent Conversion and Pronunciation Improvement
We propose a first streaming accent conversion (AC) model that transforms non-native speech into a native-like accent while preserving speaker identity, prosody and improving pronunciation. Our approach enables stream processing by modifying a previous AC architecture with an Emformer encoder and an optimized inference mechanism. Additionally, we integrate a native text-to-speech (TTS) model to generate ideal ground-truth data for efficient training. Our streaming AC model achieves comparable performance to the top AC models while maintaining stable latency, making it the first AC system capable of streaming.
comment: Accepted to INTERSPEECH 2025
☆ Advancing Harmful Content Detection in Organizational Research: Integrating Large Language Models with Elo Rating System
Large language models (LLMs) offer promising opportunities for organizational research. However, their built-in moderation systems can create problems when researchers try to analyze harmful content, often refusing to follow certain instructions or producing overly cautious responses that undermine validity of the results. This is particularly problematic when analyzing organizational conflicts such as microaggressions or hate speech. This paper introduces an Elo rating-based method that significantly improves LLM performance for harmful content analysis In two datasets, one focused on microaggression detection and the other on hate speech, we find that our method outperforms traditional LLM prompting techniques and conventional machine learning models on key measures such as accuracy, precision, and F1 scores. Advantages include better reliability when analyzing harmful content, fewer false positives, and greater scalability for large-scale datasets. This approach supports organizational applications, including detecting workplace harassment, assessing toxic communication, and fostering safer and more inclusive work environments.
comment: Submitted for HICSS 2025 (Hawaii International Conference on System Sciences); under review
☆ Weight Factorization and Centralization for Continual Learning in Speech Recognition
Modern neural network based speech recognition models are required to continually absorb new data without re-training the whole system, especially in downstream applications using foundation models, having no access to the original training data. Continually training the models in a rehearsal-free, multilingual, and language agnostic condition, likely leads to catastrophic forgetting, when a seemingly insignificant disruption to the weights can destructively harm the quality of the models. Inspired by the ability of human brains to learn and consolidate knowledge through the waking-sleeping cycle, we propose a continual learning approach with two distinct phases: factorization and centralization, learning and merging knowledge accordingly. Our experiments on a sequence of varied code-switching datasets showed that the centralization stage can effectively prevent catastrophic forgetting by accumulating the knowledge in multiple scattering low-rank adapters.
comment: Accepted to INTERSPEECH 2025
☆ Automatic Speech Recognition Biases in Newcastle English: an Error Analysis
Automatic Speech Recognition (ASR) systems struggle with regional dialects due to biased training which favours mainstream varieties. While previous research has identified racial, age, and gender biases in ASR, regional bias remains underexamined. This study investigates ASR performance on Newcastle English, a well-documented regional dialect known to be challenging for ASR. A two-stage analysis was conducted: first, a manual error analysis on a subsample identified key phonological, lexical, and morphosyntactic errors behind ASR misrecognitions; second, a case study focused on the systematic analysis of ASR recognition of the regional pronouns ``yous'' and ``wor''. Results show that ASR errors directly correlate with regional dialectal features, while social factors play a lesser role in ASR mismatches. We advocate for greater dialectal diversity in ASR training data and highlight the value of sociolinguistic analysis in diagnosing and addressing regional biases.
comment: Submitted to Interspeech 2025
☆ Revela: Dense Retriever Learning via Language Modeling
Dense retrievers play a vital role in accessing external and specialized knowledge to augment language models (LMs). Training dense retrievers typically requires annotated query-document pairs, which are costly and hard to obtain in specialized domains such as code-motivating growing interest in self-supervised retriever learning. Since LMs are trained to capture token-level dependencies through a self-supervised learning objective (i.e., next-token prediction), we can analogously cast retrieval as learning dependencies among chunks of tokens. This analogy naturally leads to the question: How can we adapt self-supervised learning objectives in the spirit of language modeling to train retrievers? To answer this question, we introduce Revela, a unified and scalable training framework for self-supervised retriever learning via language modeling. Revela models semantic dependencies among documents by conditioning next-token prediction on both local and cross-document context through an in-batch attention mechanism. This attention is weighted by retriever-computed similarity scores, enabling the retriever to be optimized as part of language modeling. We evaluate Revela on both general-domain (BEIR) and domain-specific (CoIR) benchmarks across various retriever backbones. At a comparable parameter scale, Revela outperforms the previous best method with absolute improvements of 5.2 % (18.3 % relative) and 5.6 % (14.4 % relative) on NDCG@10, respectively, underscoring its effectiveness. Performance increases with model size, highlighting both the scalability of our approach and its promise for self-supervised retriever learning.
♻ ☆ Learning to Route LLMs with Confidence Tokens
Large language models (LLMs) have demonstrated impressive performance on several tasks and are increasingly deployed in real-world applications. However, especially in high-stakes settings, it becomes vital to know when the output of an LLM may be unreliable. Depending on whether an answer is trustworthy, a system can then choose to route the question to another expert, or otherwise fall back on a safe default behavior. In this work, we study the extent to which LLMs can reliably indicate confidence in their answers, and how this notion of confidence can translate into downstream accuracy gains. We propose Self-Reflection with Error-based Feedback (Self-REF), a lightweight training strategy to teach LLMs to express confidence in whether their answers are correct in a reliable manner. Self-REF introduces confidence tokens into the LLM, from which a confidence score can be extracted. Compared to conventional approaches such as verbalizing confidence and examining token probabilities, we demonstrate empirically that confidence tokens show significant improvements in downstream routing and rejection learning tasks.
♻ ☆ Layer-wise Alignment: Examining Safety Alignment Across Image Encoder Layers in Vision Language Models ICML 2025
Vision-language models (VLMs) have improved significantly in their capabilities, but their complex architecture makes their safety alignment challenging. In this paper, we reveal an uneven distribution of harmful information across the intermediate layers of the image encoder and show that skipping a certain set of layers and exiting early can increase the chance of the VLM generating harmful responses. We call it as "Image enCoder Early-exiT" based vulnerability (ICET). Our experiments across three VLMs: LLaVA-1.5, LLaVA-NeXT, and Llama 3.2, show that performing early exits from the image encoder significantly increases the likelihood of generating harmful outputs. To tackle this, we propose a simple yet effective modification of the Clipped-Proximal Policy Optimization (Clip-PPO) algorithm for performing layer-wise multi-modal RLHF for VLMs. We term this as Layer-Wise PPO (L-PPO). We evaluate our L-PPO algorithm across three multimodal datasets and show that it consistently reduces the harmfulness caused by early exits.
comment: Accepted by ICML 2025 as a spotlight poster
♻ ☆ Voice of a Continent: Mapping Africa's Speech Technology Frontier
Africa's rich linguistic diversity remains significantly underrepresented in speech technologies, creating barriers to digital inclusion. To alleviate this challenge, we systematically map the continent's speech space of datasets and technologies, leading to a new comprehensive benchmark SimbaBench for downstream African speech tasks. Using SimbaBench, we introduce the Simba family of models, achieving state-of-the-art performance across multiple African languages and speech tasks. Our benchmark analysis reveals critical patterns in resource availability, while our model evaluation demonstrates how dataset quality, domain diversity, and language family relationships influence performance across languages. Our work highlights the need for expanded speech technology resources that better reflect Africa's linguistic diversity and provides a solid foundation for future research and development efforts toward more inclusive speech technologies.
♻ ☆ From RAG to Memory: Non-Parametric Continual Learning for Large Language Models ICML 2025
Our ability to continuously acquire, organize, and leverage knowledge is a key feature of human intelligence that AI systems must approximate to unlock their full potential. Given the challenges in continual learning with large language models (LLMs), retrieval-augmented generation (RAG) has become the dominant way to introduce new information. However, its reliance on vector retrieval hinders its ability to mimic the dynamic and interconnected nature of human long-term memory. Recent RAG approaches augment vector embeddings with various structures like knowledge graphs to address some of these gaps, namely sense-making and associativity. However, their performance on more basic factual memory tasks drops considerably below standard RAG. We address this unintended deterioration and propose HippoRAG 2, a framework that outperforms standard RAG comprehensively on factual, sense-making, and associative memory tasks. HippoRAG 2 builds upon the Personalized PageRank algorithm used in HippoRAG and enhances it with deeper passage integration and more effective online use of an LLM. This combination pushes this RAG system closer to the effectiveness of human long-term memory, achieving a 7% improvement in associative memory tasks over the state-of-the-art embedding model while also exhibiting superior factual knowledge and sense-making memory capabilities. This work paves the way for non-parametric continual learning for LLMs. Code and data are available at https://github.com/OSU-NLP-Group/HippoRAG.
comment: ICML 2025. Code and data are available at: https://github.com/OSU-NLP-Group/HippoRAG
♻ ☆ A Survey of Automatic Hallucination Evaluation on Natural Language Generation
The proliferation of Large Language Models (LLMs) has introduced a critical challenge: accurate hallucination evaluation that ensures model reliability. While Automatic Hallucination Evaluation (AHE) has emerged as essential, the field suffers from methodological fragmentation, hindering both theoretical understanding and practical advancement. This survey addresses this critical gap through a comprehensive analysis of 74 evaluation methods, revealing that 74% specifically target LLMs, a paradigm shift that demands new evaluation frameworks. We formulate a unified evaluation pipeline encompassing datasets and benchmarks, evidence collection strategies, and comparison mechanisms, systematically documenting the evolution from pre-LLM to post-LLM methodologies. Beyond taxonomical organization, we identify fundamental limitations in current approaches and their implications for real-world deployment. To guide future research, we delineate key challenges and propose strategic directions, including enhanced interpretability mechanisms and integration of application-specific evaluation criteria, ultimately providing a roadmap for developing more robust and practical hallucination evaluation systems.
comment: 30 pages
♻ ☆ Learning to Refine with Fine-Grained Natural Language Feedback EMNLP 2024
Recent work has explored the capability of large language models (LLMs) to identify and correct errors in LLM-generated responses. These refinement approaches frequently evaluate what sizes of models are able to do refinement for what problems, but less attention is paid to what effective feedback for refinement looks like. In this work, we propose looking at refinement with feedback as a composition of three distinct LLM competencies: (1) detection of bad generations; (2) fine-grained natural language critique generation; (3) refining with fine-grained feedback. The first step can be implemented with a high-performing discriminative model and steps 2 and 3 can be implemented either via prompted or fine-tuned LLMs. A key property of the proposed Detect, Critique, Refine ("DCR") method is that the step 2 critique model can give fine-grained feedback about errors, made possible by offloading the discrimination to a separate model in step 1. We show that models of different capabilities benefit from refining with DCR on the task of improving factual consistency of document grounded summaries. Overall, DCR consistently outperforms existing end-to-end refinement approaches and current trained models not fine-tuned for factuality critiquing.
comment: Code and models available at: https://github.com/ManyaWadhwa/DCR; Findings of EMNLP 2024
♻ ☆ Using Natural Language Explanations to Rescale Human Judgments
The rise of large language models (LLMs) has brought a critical need for high-quality human-labeled data, particularly for processes like human feedback and evaluation. A common practice is to label data via consensus annotation over human judgments. However, annotators' judgments for subjective tasks can differ in many ways: they may reflect different qualitative judgments about an example, and they may be mapped to a labeling scheme in different ways. We show that these nuances can be captured by natural language explanations, and propose a method to rescale ordinal annotations and explanations using LLMs. Specifically, we feed annotators' Likert ratings and corresponding explanations into an LLM and prompt it to produce a numeric score anchored in a scoring rubric. These scores should reflect the annotators' underlying assessments of the example. The rubric can be designed or modified after annotation, and include distinctions that may not have been known when the original error taxonomy was devised. We explore our technique in the context of rating system outputs for a document-grounded question answering task, where LLMs achieve near-human performance. Our method rescales the raw judgments without impacting agreement and brings the scores closer to human judgments grounded in the same scoring rubric.
comment: Accepted to COLM 2024; code and data: https://github.com/ManyaWadhwa/explanation_based_rescaling
♻ ☆ A Implies B: Circuit Analysis in LLMs for Propositional Logical Reasoning
Due to the size and complexity of modern large language models (LLMs), it has proven challenging to uncover the underlying mechanisms that models use to solve reasoning problems. For instance, is their reasoning for a specific problem localized to certain parts of the network? Do they break down the reasoning problem into modular components that are then executed as sequential steps as we go deeper in the model? To better understand the reasoning capability of LLMs, we study a minimal propositional logic problem that requires combining multiple facts to arrive at a solution. By studying this problem on Mistral and Gemma models, up to 27B parameters, we illuminate the core components the models use to solve such logic problems. From a mechanistic interpretability point of view, we use causal mediation analysis to uncover the pathways and components of the LLMs' reasoning processes. Then, we offer fine-grained insights into the functions of attention heads in different layers. We not only find a sparse circuit that computes the answer, but we decompose it into sub-circuits that have four distinct and modular uses. Finally, we reveal that three distinct models -- Mistral-7B, Gemma-2-9B and Gemma-2-27B -- contain analogous but not identical mechanisms.
♻ ☆ MultiFinBen: A Multilingual, Multimodal, and Difficulty-Aware Benchmark for Financial LLM Evaluation
Recent advances in large language models (LLMs) have accelerated progress in financial NLP and applications, yet existing benchmarks remain limited to monolingual and unimodal settings, often over-relying on simple tasks and failing to reflect the complexity of real-world financial communication. We introduce MultiFinBen, the first multilingual and multimodal benchmark tailored to the global financial domain, evaluating LLMs across modalities (text, vision, audio) and linguistic settings (monolingual, bilingual, multilingual) on domain-specific tasks. We introduce two novel tasks, including PolyFiQA-Easy and PolyFiQA-Expert, the first multilingual financial benchmarks requiring models to perform complex reasoning over mixed-language inputs; and EnglishOCR and SpanishOCR, the first OCR-embedded financial QA tasks challenging models to extract and reason over information from visual-text financial documents. Moreover, we propose a dynamic, difficulty-aware selection mechanism and curate a compact, balanced benchmark rather than simple aggregation existing datasets. Extensive evaluation of 22 state-of-the-art models reveals that even the strongest models, despite their general multimodal and multilingual capabilities, struggle dramatically when faced with complex cross-lingual and multimodal tasks in financial domain. MultiFinBen is publicly released to foster transparent, reproducible, and inclusive progress in financial studies and applications.
♻ ☆ AutoPresent: Designing Structured Visuals from Scratch
Designing structured visuals such as presentation slides is essential for communicative needs, necessitating both content creation and visual planning skills. In this work, we tackle the challenge of automated slide generation, where models produce slide presentations from natural language (NL) instructions. We first introduce the SlidesBench benchmark, the first benchmark for slide generation with 7k training and 585 testing examples derived from 310 slide decks across 10 domains. SlidesBench supports evaluations that are (i)reference-based to measure similarity to a target slide, and (ii)reference-free to measure the design quality of generated slides alone. We benchmark end-to-end image generation and program generation methods with a variety of models, and find that programmatic methods produce higher-quality slides in user-interactable formats. Built on the success of program generation, we create AutoPresent, an 8B Llama-based model trained on 7k pairs of instructions paired with code for slide generation, and achieve results comparable to the closed-source model GPT-4o. We further explore iterative design refinement where the model is tasked to self-refine its own output, and we found that this process improves the slide's quality. We hope that our work will provide a basis for future work on generating structured visuals.
♻ ☆ Song Form-aware Full-Song Text-to-Lyrics Generation with Multi-Level Granularity Syllable Count Control
Lyrics generation presents unique challenges, particularly in achieving precise syllable control while adhering to song form structures such as verses and choruses. Conventional line-by-line approaches often lead to unnatural phrasing, underscoring the need for more granular syllable management. We propose a framework for lyrics generation that enables multi-level syllable control at the word, phrase, line, and paragraph levels, aware of song form. Our approach generates complete lyrics conditioned on input text and song form, ensuring alignment with specified syllable constraints. Generated lyrics samples are available at: https://tinyurl.com/lyrics9999
comment: Accepted to Interspeech 2025
Machine Learning 162
Relational Deep Learning: Challenges, Foundations and Next-Generation Architectures
Graph machine learning has led to a significant increase in the capabilities of models that learn on arbitrary graph-structured data and has been applied to molecules, social networks, recommendation systems, and transportation, among other domains. Data in multi-tabular relational databases can also be constructed as 'relational entity graphs' for Relational Deep Learning (RDL) - a new blueprint that enables end-to-end representation learning without traditional feature engineering. Compared to arbitrary graph-structured data, relational entity graphs have key properties: (i) their structure is defined by primary-foreign key relationships between entities in different tables, (ii) the structural connectivity is a function of the relational schema defining a database, and (iii) the graph connectivity is temporal and heterogeneous in nature. In this paper, we provide a comprehensive review of RDL by first introducing the representation of relational databases as relational entity graphs, and then reviewing public benchmark datasets that have been used to develop and evaluate recent GNN-based RDL models. We discuss key challenges including large-scale multi-table integration and the complexities of modeling temporal dynamics and heterogeneous data, while also surveying foundational neural network methods and recent architectural advances specialized for relational entity graphs. Finally, we explore opportunities to unify these distinct modeling challenges, highlighting how RDL converges multiple sub-fields in graph machine learning towards the design of foundation models that can transform the processing of relational data.
LLMs in Coding and their Impact on the Commercial Software Engineering Landscape
Large-language-model coding tools are now mainstream in software engineering. But as these same tools move human effort up the development stack, they present fresh dangers: 10% of real prompts leak private data, 42% of generated snippets hide security flaws, and the models can even ``agree'' with wrong ideas, a trait called sycophancy. We argue that firms must tag and review every AI-generated line of code, keep prompts and outputs inside private or on-premises deployments, obey emerging safety regulations, and add tests that catch sycophantic answers -- so they can gain speed without losing security and accuracy.
☆ CodeDiffuser: Attention-Enhanced Diffusion Policy via VLM-Generated Code for Instruction Ambiguity
Natural language instructions for robotic manipulation tasks often exhibit ambiguity and vagueness. For instance, the instruction "Hang a mug on the mug tree" may involve multiple valid actions if there are several mugs and branches to choose from. Existing language-conditioned policies typically rely on end-to-end models that jointly handle high-level semantic understanding and low-level action generation, which can result in suboptimal performance due to their lack of modularity and interpretability. To address these challenges, we introduce a novel robotic manipulation framework that can accomplish tasks specified by potentially ambiguous natural language. This framework employs a Vision-Language Model (VLM) to interpret abstract concepts in natural language instructions and generates task-specific code - an interpretable and executable intermediate representation. The generated code interfaces with the perception module to produce 3D attention maps that highlight task-relevant regions by integrating spatial and semantic information, effectively resolving ambiguities in instructions. Through extensive experiments, we identify key limitations of current imitation learning methods, such as poor adaptation to language and environmental variations. We show that our approach excels across challenging manipulation tasks involving language ambiguity, contact-rich manipulation, and multi-object interactions.
comment: Accepted to Robotics: Science and Systems (RSS) 2025. The first three authors contributed equally. Project Page: https://robopil.github.io/code-diffuser/
☆ A Distributional-Lifting Theorem for PAC Learning
The apparent difficulty of efficient distribution-free PAC learning has led to a large body of work on distribution-specific learning. Distributional assumptions facilitate the design of efficient algorithms but also limit their reach and relevance. Towards addressing this, we prove a distributional-lifting theorem: This upgrades a learner that succeeds with respect to a limited distribution family $\mathcal{D}$ to one that succeeds with respect to any distribution $D^\star$, with an efficiency overhead that scales with the complexity of expressing $D^\star$ as a mixture of distributions in $\mathcal{D}$. Recent work of Blanc, Lange, Malik, and Tan considered the special case of lifting uniform-distribution learners and designed a lifter that uses a conditional sample oracle for $D^\star$, a strong form of access not afforded by the standard PAC model. Their approach, which draws on ideas from semi-supervised learning, first learns $D^\star$ and then uses this information to lift. We show that their approach is information-theoretically intractable with access only to random examples, thereby giving formal justification for their use of the conditional sample oracle. We then take a different approach that sidesteps the need to learn $D^\star$, yielding a lifter that works in the standard PAC model and enjoys additional advantages: it works for all base distribution families, preserves the noise tolerance of learners, has better sample complexity, and is simpler.
comment: COLT 2025
☆ Semantic Outlier Removal with Embedding Models and LLMs ACL 2025
Modern text processing pipelines demand robust methods to remove extraneous content while preserving a document's core message. Traditional approaches such as HTML boilerplate extraction or keyword filters often fail in multilingual settings and struggle with context-sensitive nuances, whereas Large Language Models (LLMs) offer improved quality at high computational cost. We introduce SORE (Semantic Outlier Removal), a cost-effective, transparent method that leverages multilingual sentence embeddings and approximate nearest-neighbor search to identify and excise unwanted text segments. By first identifying core content via metadata embedding and then flagging segments that either closely match predefined outlier groups or deviate significantly from the core, SORE achieves near-LLM extraction precision at a fraction of the cost. Experiments on HTML datasets demonstrate that SORE outperforms structural methods and yield high precision in diverse scenarios. Our system is currently deployed in production, processing millions of documents daily across multiple languages while maintaining both efficiency and accuracy. To facilitate reproducibility and further research, we release our implementation and evaluation datasets.
comment: Accepted to the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025) Industry Track, 10 pages
☆ Latent Noise Injection for Private and Statistically Aligned Synthetic Data Generation
Synthetic Data Generation has become essential for scalable, privacy-preserving statistical analysis. While standard approaches based on generative models, such as Normalizing Flows, have been widely used, they often suffer from slow convergence in high-dimensional settings, frequently converging more slowly than the canonical $1/\sqrt{n}$ rate when approximating the true data distribution. To overcome these limitations, we propose a Latent Noise Injection method using Masked Autoregressive Flows (MAF). Instead of directly sampling from the trained model, our method perturbs each data point in the latent space and maps it back to the data domain. This construction preserves a one to one correspondence between observed and synthetic data, enabling synthetic outputs that closely reflect the underlying distribution, particularly in challenging high-dimensional regimes where traditional sampling struggles. Our procedure satisfies local $(\epsilon, \delta)$-differential privacy and introduces a single perturbation parameter to control the privacy-utility trade-off. Although estimators based on individual synthetic datasets may converge slowly, we show both theoretically and empirically that aggregating across $K$ studies in a meta analysis framework restores classical efficiency and yields consistent, reliable inference. We demonstrate that with a well-calibrated perturbation parameter, Latent Noise Injection achieves strong statistical alignment with the original data and robustness against membership inference attacks. These results position our method as a compelling alternative to conventional flow-based sampling for synthetic data sharing in decentralized and privacy-sensitive domains, such as biomedical research.
☆ Learning Causally Predictable Outcomes from Psychiatric Longitudinal Data
Causal inference in longitudinal biomedical data remains a central challenge, especially in psychiatry, where symptom heterogeneity and latent confounding frequently undermine classical estimators. Most existing methods for treatment effect estimation presuppose a fixed outcome variable and address confounding through observed covariate adjustment. However, the assumption of unconfoundedness may not hold for a fixed outcome in practice. To address this foundational limitation, we directly optimize the outcome definition to maximize causal identifiability. Our DEBIAS (Durable Effects with Backdoor-Invariant Aggregated Symptoms) algorithm learns non-negative, clinically interpretable weights for outcome aggregation, maximizing durable treatment effects and empirically minimizing both observed and latent confounding by leveraging the time-limited direct effects of prior treatments in psychiatric longitudinal data. The algorithm also furnishes an empirically verifiable test for outcome unconfoundedness. DEBIAS consistently outperforms state-of-the-art methods in recovering causal effects for clinically interpretable composite outcomes across comprehensive experiments in depression and schizophrenia.
comment: R code is available at github.com/ericstrobl/DEBIAS
☆ Initial Investigation of LLM-Assisted Development of Rule-Based Clinical NLP System
Despite advances in machine learning (ML) and large language models (LLMs), rule-based natural language processing (NLP) systems remain active in clinical settings due to their interpretability and operational efficiency. However, their manual development and maintenance are labor-intensive, particularly in tasks with large linguistic variability. To overcome these limitations, we proposed a novel approach employing LLMs solely during the rule-based systems development phase. We conducted the initial experiments focusing on the first two steps of developing a rule-based NLP pipeline: find relevant snippets from the clinical note; extract informative keywords from the snippets for the rule-based named entity recognition (NER) component. Our experiments demonstrated exceptional recall in identifying clinically relevant text snippets (Deepseek: 0.98, Qwen: 0.99) and 1.0 in extracting key terms for NER. This study sheds light on a promising new direction for NLP development, enabling semi-automated or automated development of rule-based systems with significantly faster, more cost-effective, and transparent execution compared with deep learning model-based solutions.
☆ FlatCAD: Fast Curvature Regularization of Neural SDFs for CAD Models
Neural signed-distance fields (SDFs) have become a versatile backbone for geometric learning, yet enforcing developable, CAD-style behavior still hinges on Gaussian curvature penalties that require full Hessian evaluation and second-order automatic differentiation, both of which are costly in memory and runtime. We present a curvature proxy that regularizes only the mixed second-order term (Weingarten term), allowing the two principal curvatures to adapt freely to data while suppressing unwanted warp. Two complementary instantiations realize this idea: (i) a finite-difference proxy that replaces each Hessian entry with four forward SDF evaluations and a single first-order gradient, and (ii) an autodiff proxy that computes the same mixed derivative via one Hessian-vector product, sidestepping explicit full Hessian assembly and remaining faster in practice. Both variants converge to the exact mixed second derivative, thus preserving the intended geometric bias without incurring full second-order graphs. On the ABC benchmarks, the proxies match or exceed the reconstruction fidelity of Hessian-based baselines while reducing GPU memory use and wall-clock time by a factor of two. Because the method is drop-in and framework-agnostic, it opens a practical path toward scalable, curvature-aware SDF learning for engineering-grade shape reconstruction.
comment: 12 page, 10 figures, preprint
☆ Distribution Parameter Actor-Critic: Shifting the Agent-Environment Boundary for Diverse Action Spaces
We introduce a novel reinforcement learning (RL) framework that treats distribution parameters as actions, redefining the boundary between agent and environment. This reparameterization makes the new action space continuous, regardless of the original action type (discrete, continuous, mixed, etc.). Under this new parameterization, we develop a generalized deterministic policy gradient estimator, Distribution Parameter Policy Gradient (DPPG), which has lower variance than the gradient in the original action space. Although learning the critic over distribution parameters poses new challenges, we introduce interpolated critic learning (ICL), a simple yet effective strategy to enhance learning, supported by insights from bandit settings. Building on TD3, a strong baseline for continuous control, we propose a practical DPPG-based actor-critic algorithm, Distribution Parameter Actor-Critic (DPAC). Empirically, DPAC outperforms TD3 in MuJoCo continuous control tasks from OpenAI Gym and DeepMind Control Suite, and demonstrates competitive performance on the same environments with discretized action spaces.
☆ SlepNet: Spectral Subgraph Representation Learning for Neural Dynamics
Graph neural networks have been useful in machine learning on graph-structured data, particularly for node classification and some types of graph classification tasks. However, they have had limited use in representing patterning of signals over graphs. Patterning of signals over graphs and in subgraphs carries important information in many domains including neuroscience. Neural signals are spatiotemporally patterned, high dimensional and difficult to decode. Graph signal processing and associated GCN models utilize the graph Fourier transform and are unable to efficiently represent spatially or spectrally localized signal patterning on graphs. Wavelet transforms have shown promise here, but offer non-canonical representations and cannot be tightly confined to subgraphs. Here we propose SlepNet, a novel GCN architecture that uses Slepian bases rather than graph Fourier harmonics. In SlepNet, the Slepian harmonics optimally concentrate signal energy on specifically relevant subgraphs that are automatically learned with a mask. Thus, they can produce canonical and highly resolved representations of neural activity, focusing energy of harmonics on areas of the brain which are activated. We evaluated SlepNet across three fMRI datasets, spanning cognitive and visual tasks, and two traffic dynamics datasets, comparing its performance against conventional GNNs and graph signal processing constructs. SlepNet outperforms the baselines in all datasets. Moreover, the extracted representations of signal patterns from SlepNet offers more resolution in distinguishing between similar patterns, and thus represent brain signaling transients as informative trajectories. Here we have shown that these extracted trajectory representations can be used for other downstream untrained tasks. Thus we establish that SlepNet is useful both for prediction and representation learning in spatiotemporal data.
☆ FLAME: Towards Federated Fine-Tuning Large Language Models Through Adaptive SMoE
Existing resource-adaptive LoRA federated fine-tuning methods enable clients to fine-tune models using compressed versions of global LoRA matrices, in order to accommodate various compute resources across clients. This compression requirement will lead to suboptimal performance due to information loss. To address this, we propose FLAME, a novel federated learning framework based on the Sparse Mixture-of-Experts (SMoE) architecture. Unlike prior approaches, FLAME retains full (uncompressed) global LoRA matrices and achieves client-side adaptability by varying the number of activated experts per client. However, incorporating SMoE into federated learning introduces unique challenges, specifically, the mismatch in output magnitude from partial expert activation and the imbalance in expert training quality across clients. FLAME tackles these challenges through a lightweight rescaling mechanism and an activation-aware aggregation scheme. Empirical results across diverse computational settings demonstrate that FLAME consistently outperforms existing methods, providing a robust and effective solution for resource-adaptive federated learning.
☆ Energy-Based Transfer for Reinforcement Learning
Reinforcement learning algorithms often suffer from poor sample efficiency, making them challenging to apply in multi-task or continual learning settings. Efficiency can be improved by transferring knowledge from a previously trained teacher policy to guide exploration in new but related tasks. However, if the new task sufficiently differs from the teacher's training task, the transferred guidance may be sub-optimal and bias exploration toward low-reward behaviors. We propose an energy-based transfer learning method that uses out-of-distribution detection to selectively issue guidance, enabling the teacher to intervene only in states within its training distribution. We theoretically show that energy scores reflect the teacher's state-visitation density and empirically demonstrate improved sample efficiency and performance across both single-task and multi-task settings.
☆ Measuring (a Sufficient) World Model in LLMs: A Variance Decomposition Framework
Understanding whether large language models (LLMs) possess a world model-a structured understanding of the world that supports generalization beyond surface-level patterns-is central to assessing their reliability, especially in high-stakes applications. We propose a formal framework for evaluating whether an LLM exhibits a sufficiently robust world model, defined as producing consistent outputs across semantically equivalent prompts while distinguishing between prompts that express different intents. We introduce a new evaluation approach to measure this that decomposes model response variability into three components: variability due to user purpose, user articulation, and model instability. An LLM with a strong world model should attribute most of the variability in its responses to changes in foundational purpose rather than superficial changes in articulation. This approach allows us to quantify how much of a model's behavior is semantically grounded rather than driven by model instability or alternative wording. We apply this framework to evaluate LLMs across diverse domains. Our results show how larger models attribute a greater share of output variability to changes in user purpose, indicating a more robust world model. This improvement is not uniform, however: larger models do not consistently outperform smaller ones across all domains, and their advantage in robustness is often modest. These findings highlight the importance of moving beyond accuracy-based benchmarks toward semantic diagnostics that more directly assess the structure and stability of a model's internal understanding of the world.
☆ From Semantic To Instance: A Semi-Self-Supervised Learning Approach
Instance segmentation is essential for applications such as automated monitoring of plant health, growth, and yield. However, extensive effort is required to create large-scale datasets with pixel-level annotations of each object instance for developing instance segmentation models that restrict the use of deep learning in these areas. This challenge is more significant in images with densely packed, self-occluded objects, which are common in agriculture. To address this challenge, we propose a semi-self-supervised learning approach that requires minimal manual annotation to develop a high-performing instance segmentation model. We design GLMask, an image-mask representation for the model to focus on shape, texture, and pattern while minimizing its dependence on color features. We develop a pipeline to generate semantic segmentation and then transform it into instance-level segmentation. The proposed approach substantially outperforms the conventional instance segmentation models, establishing a state-of-the-art wheat head instance segmentation model with mAP@50 of 98.5%. Additionally, we assessed the proposed methodology on the general-purpose Microsoft COCO dataset, achieving a significant performance improvement of over 12.6% mAP@50. This highlights that the utility of our proposed approach extends beyond precision agriculture and applies to other domains, specifically those with similar data characteristics.
☆ One Sample is Enough to Make Conformal Prediction Robust
Given any model, conformal prediction (CP) returns prediction sets guaranteed to include the true label with high adjustable probability. Robust CP (RCP) extends this to inputs with worst-case noise. A well-established approach is to use randomized smoothing for RCP since it is applicable to any black-box model and provides smaller sets compared to deterministic methods. However, current smoothing-based RCP requires many model forward passes per each input which is computationally expensive. We show that conformal prediction attains some robustness even with a forward pass on a single randomly perturbed input. Using any binary certificate we propose a single sample robust CP (RCP1). Our approach returns robust sets with smaller average set size compared to SOTA methods which use many (e.g. around 100) passes per input. Our key insight is to certify the conformal prediction procedure itself rather than individual scores. Our approach is agnostic to the setup (classification and regression). We further extend our approach to smoothing-based robust conformal risk control.
☆ A Free Probabilistic Framework for Analyzing the Transformer-based Language Models
We outline an operator-theoretic framework for analyzing transformer-based language models using the tools of free probability theory. By representing token embeddings and attention mechanisms as self-adjoint operators in a racial probability space, we reinterpret attention as a non-commutative convolution and view the layer-wise propagation of representations as an evolution governed by free additive convolution. This formalism reveals a spectral dynamical system underpinning deep transformer stacks and offers insight into their inductive biases, generalization behavior, and entropy dynamics. We derive a generalization bound based on free entropy and demonstrate that the spectral trace of transformer layers evolves predictably with depth. Our approach bridges neural architecture with non-commutative harmonic analysis, enabling principled analysis of information flow and structural complexity in large language models
☆ Mr. Snuffleupagus at SemEval-2025 Task 4: Unlearning Factual Knowledge from LLMs Using Adaptive RMU
Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation. However, their tendency to memorize training data raises concerns regarding privacy, copyright compliance, and security, particularly in cases involving Personally Identifiable Information (PII). Effective machine unlearning techniques are essential to mitigate these risks, yet existing methods remain underdeveloped for LLMs due to their open-ended output space. In this work, we apply the Adaptive Representation Misdirection Unlearning (RMU) technique to unlearn sensitive information from LLMs. Through extensive experiments, we analyze the effects of unlearning across different decoder layers to determine the most effective regions for sensitive information removal. Our technique ranked 4th on the official leaderboard of both 1B parameter and 7B parameter models.
comment: 7 pages, 2 figures, to be published in SemEval-2025
☆ BIDA: A Bi-level Interaction Decision-making Algorithm for Autonomous Vehicles in Dynamic Traffic Scenarios
In complex real-world traffic environments, autonomous vehicles (AVs) need to interact with other traffic participants while making real-time and safety-critical decisions accordingly. The unpredictability of human behaviors poses significant challenges, particularly in dynamic scenarios, such as multi-lane highways and unsignalized T-intersections. To address this gap, we design a bi-level interaction decision-making algorithm (BIDA) that integrates interactive Monte Carlo tree search (MCTS) with deep reinforcement learning (DRL), aiming to enhance interaction rationality, efficiency and safety of AVs in dynamic key traffic scenarios. Specifically, we adopt three types of DRL algorithms to construct a reliable value network and policy network, which guide the online deduction process of interactive MCTS by assisting in value update and node selection. Then, a dynamic trajectory planner and a trajectory tracking controller are designed and implemented in CARLA to ensure smooth execution of planned maneuvers. Experimental evaluations demonstrate that our BIDA not only enhances interactive deduction and reduces computational costs, but also outperforms other latest benchmarks, which exhibits superior safety, efficiency and interaction rationality under varying traffic conditions.
comment: 6 pages, 3 figures, 4 tables, accepted for IEEE Intelligent Vehicles (IV) Symposium 2025
☆ Aligning ASR Evaluation with Human and LLM Judgments: Intelligibility Metrics Using Phonetic, Semantic, and NLI Approaches
Traditional ASR metrics like WER and CER fail to capture intelligibility, especially for dysarthric and dysphonic speech, where semantic alignment matters more than exact word matches. ASR systems struggle with these speech types, often producing errors like phoneme repetitions and imprecise consonants, yet the meaning remains clear to human listeners. We identify two key challenges: (1) Existing metrics do not adequately reflect intelligibility, and (2) while LLMs can refine ASR output, their effectiveness in correcting ASR transcripts of dysarthric speech remains underexplored. To address this, we propose a novel metric integrating Natural Language Inference (NLI) scores, semantic similarity, and phonetic similarity. Our ASR evaluation metric achieves a 0.890 correlation with human judgments on Speech Accessibility Project data, surpassing traditional methods and emphasizing the need to prioritize intelligibility over error-based measures.
comment: 5 pages, 2 figures, Interspeech 2025
☆ Improvement of Nuclide Detection through Graph Spectroscopic Analysis Framework and its Application to Nuclear Facility Upset Detection
We present a method to improve the detection limit for radionuclides using spectroscopic radiation detectors and the arrival time of each detected radiation quantum. We enable this method using a neural network with an attention mechanism. We illustrate the method on the detection of Cesium release from a nuclear facility during an upset, and our method shows $2\times$ improvement over the traditional spectroscopic method. We hypothesize that our method achieves this performance increase by modulating its detection probability by the overall rate of probable detections, specifically by adapting detection thresholds based on temporal event distributions and local spectral features, and show evidence to this effect. We believe this method is applicable broadly and may be more successful for radionuclides with more complicated decay chains than Cesium; we also note that our method can generalize beyond the addition of arrival time and could integrate other data about each detection event, such as pulse quality, location in detector, or even combining the energy and time from detections in different detectors.
☆ Robust Reward Modeling via Causal Rubrics
Reward models (RMs) are fundamental to aligning Large Language Models (LLMs) via human feedback, yet they often suffer from reward hacking. They tend to latch on to superficial or spurious attributes, such as response length or formatting, mistaking these cues learned from correlations in training data for the true causal drivers of quality (e.g., factuality, relevance). This occurs because standard training objectives struggle to disentangle these factors, leading to brittle RMs and misaligned policies. We introduce Crome (Causally Robust Reward Modeling), a novel framework grounded in an explicit causal model designed to mitigate reward hacking. Crome employs the following synthetic targeted augmentations during training: (1) Causal Augmentations, which are pairs that differ along specific causal attributes, to enforce sensitivity along each causal attribute individually, and (2) Neutral Augmentations, which are tie-label pairs varying primarily in spurious attributes, to enforce invariance along spurious attributes. Notably, our augmentations are produced without any knowledge of spurious factors, via answer interventions only along causal rubrics, that are identified by querying an oracle LLM. Empirically, Crome significantly outperforms standard baselines on RewardBench, improving average accuracy by up to 5.4% and achieving gains of up to 13.2% and 7.2% in specific categories. The robustness of Crome is further testified by the consistent gains obtained in a Best-of-N inference setting across increasing N, across various benchmarks, including the popular RewardBench (covering chat, chat-hard, safety, and reasoning tasks), the safety-focused WildGuardTest, and the reasoning-specific GSM8k.
☆ Subspace-Boosted Model Merging
Model merging enables the combination of multiple specialized expert models into a single model capable of performing multiple tasks. However, the benefits of merging an increasing amount of specialized experts generally lead to diminishing returns and reduced overall performance gains. In this work, we offer an explanation and analysis from a task arithmetic perspective; revealing that as the merging process (across numerous existing merging methods) continues for more and more experts, the associated task vector space experiences rank collapse. To mitigate this issue, we introduce Subspace Boosting, which operates on the singular value decomposed task vector space and maintains task vector ranks. Subspace Boosting raises merging efficacy for up to 20 expert models by large margins of more than 10% when evaluated on vision benchmarks. Moreover, we propose employing Higher-Order Generalized Singular Value Decomposition to further quantify task similarity, offering a new interpretable perspective on model merging.
comment: 21 pages (main + supp)
☆ SparseLoRA: Accelerating LLM Fine-Tuning with Contextual Sparsity ICML 2025
Fine-tuning LLMs is both computationally and memory-intensive. While parameter-efficient fine-tuning methods, such as QLoRA and DoRA, reduce the number of trainable parameters and lower memory usage, they do not decrease computational cost. In some cases, they may even slow down fine-tuning. In this paper, we introduce SparseLoRA, a method that accelerates LLM fine-tuning through contextual sparsity. We propose a lightweight, training-free SVD sparsity estimator that dynamically selects a sparse subset of weights for loss and gradient computation. Also, we systematically analyze and address sensitivity across layers, tokens, and training steps. Our experimental results show that SparseLoRA reduces computational cost by up to 2.2 times and a measured speedup of up to 1.6 times while maintaining accuracy across various downstream tasks, including commonsense and arithmetic reasoning, code generation, and instruction following.
comment: ICML 2025. The first three authors contributed equally to this work. Project page: https://z-lab.ai/projects/sparselora
☆ ML-Master: Towards AI-for-AI via Integration of Exploration and Reasoning
As AI capabilities advance toward and potentially beyond human-level performance, a natural transition emerges where AI-driven development becomes more efficient than human-centric approaches. A promising pathway toward this transition lies in AI-for-AI (AI4AI), which leverages AI techniques to automate and optimize the design, training, and deployment of AI systems themselves. While LLM-based agents have shown the potential to realize AI4AI, they are often unable to fully leverage the experience accumulated by agents during the exploration of solutions in the reasoning process, leading to inefficiencies and suboptimal performance. To address this limitation, we propose ML-Master, a novel AI4AI agent that seamlessly integrates exploration and reasoning by employing a selectively scoped memory mechanism. This approach allows ML-Master to efficiently combine diverse insights from parallel solution trajectories with analytical reasoning, guiding further exploration without overwhelming the agent with excessive context. We evaluate ML-Master on the MLE-Bench, where it achieves a 29.3% average medal rate, significantly surpassing existing methods, particularly in medium-complexity tasks, while accomplishing this superior performance within a strict 12-hour time constraint-half the 24-hour limit used by previous baselines. These results demonstrate ML-Master's potential as a powerful tool for advancing AI4AI.
☆ Manifold Learning for Personalized and Label-Free Detection of Cardiac Arrhythmias
Electrocardiograms (ECGs) provide direct, non-invasive measurements of heart activity and are well-established tools for detecting and monitoring cardiovascular disease. However, manual ECG analysis can be time-consuming and prone to errors. Machine learning has emerged as a promising approach for automated heartbeat recognition and classification, but substantial variations in ECG signals make it challenging to develop generalizable models. ECG signals can vary widely across individuals and leads, while datasets often follow different labeling standards and may be biased, all of which greatly hinder supervised methods. Conventional unsupervised methods, e.g. principal component analysis, prioritize large (and often obvious) variances in the data and typically overlook subtle yet clinically relevant patterns. If labels are missing and/or variations are significant but small, both approaches fail. Here, we show that nonlinear dimensionality reduction (NLDR) can accommodate these issues and identify medically relevant features in ECG signals, with no need for training or prior information. Using the MLII and V1 leads of the MIT-BIH dataset, we demonstrate that t-distributed stochastic neighbor embedding and uniform manifold approximation and projection can discriminate individual recordings in mixed populations with >= 90% accuracy and distinguish different arrhythmias in individual patients with a median accuracy of 98.96% and a median F1-score of 91.02%. The results show that NLDR holds much promise for cardiac monitoring, including the limiting cases of single-lead ECG and the current 12-lead standard of care, and for personalized health care beyond cardiology.
☆ Towards Generalizable Generic Harmful Speech Datasets for Implicit Hate Speech Detection
Implicit hate speech has recently emerged as a critical challenge for social media platforms. While much of the research has traditionally focused on harmful speech in general, the need for generalizable techniques to detect veiled and subtle forms of hate has become increasingly pressing. Based on lexicon analysis, we hypothesize that implicit hate speech is already present in publicly available harmful speech datasets but may not have been explicitly recognized or labeled by annotators. Additionally, crowdsourced datasets are prone to mislabeling due to the complexity of the task and often influenced by annotators' subjective interpretations. In this paper, we propose an approach to address the detection of implicit hate speech and enhance generalizability across diverse datasets by leveraging existing harmful speech datasets. Our method comprises three key components: influential sample identification, reannotation, and augmentation using Llama-3 70B and GPT-4o. Experimental results demonstrate the effectiveness of our approach in improving implicit hate detection, achieving a +12.9-point F1 score improvement compared to the baseline.
☆ Human2LocoMan: Learning Versatile Quadrupedal Manipulation with Human Pretraining
Quadrupedal robots have demonstrated impressive locomotion capabilities in complex environments, but equipping them with autonomous versatile manipulation skills in a scalable way remains a significant challenge. In this work, we introduce a cross-embodiment imitation learning system for quadrupedal manipulation, leveraging data collected from both humans and LocoMan, a quadruped equipped with multiple manipulation modes. Specifically, we develop a teleoperation and data collection pipeline, which unifies and modularizes the observation and action spaces of the human and the robot. To effectively leverage the collected data, we propose an efficient modularized architecture that supports co-training and pretraining on structured modality-aligned data across different embodiments. Additionally, we construct the first manipulation dataset for the LocoMan robot, covering various household tasks in both unimanual and bimanual modes, supplemented by a corresponding human dataset. We validate our system on six real-world manipulation tasks, where it achieves an average success rate improvement of 41.9% overall and 79.7% under out-of-distribution (OOD) settings compared to the baseline. Pretraining with human data contributes a 38.6% success rate improvement overall and 82.7% under OOD settings, enabling consistently better performance with only half the amount of robot data. Our code, hardware, and data are open-sourced at: https://human2bots.github.io.
☆ Progressive Inference-Time Annealing of Diffusion Models for Sampling from Boltzmann Densities
Sampling efficiently from a target unnormalized probability density remains a core challenge, with relevance across countless high-impact scientific applications. A promising approach towards this challenge is the design of amortized samplers that borrow key ideas, such as probability path design, from state-of-the-art generative diffusion models. However, all existing diffusion-based samplers remain unable to draw samples from distributions at the scale of even simple molecular systems. In this paper, we propose Progressive Inference-Time Annealing (PITA), a novel framework to learn diffusion-based samplers that combines two complementary interpolation techniques: I.) Annealing of the Boltzmann distribution and II.) Diffusion smoothing. PITA trains a sequence of diffusion models from high to low temperatures by sequentially training each model at progressively higher temperatures, leveraging engineered easy access to samples of the temperature-annealed target density. In the subsequent step, PITA enables simulating the trained diffusion model to procure training samples at a lower temperature for the next diffusion model through inference-time annealing using a novel Feynman-Kac PDE combined with Sequential Monte Carlo. Empirically, PITA enables, for the first time, equilibrium sampling of N-body particle systems, Alanine Dipeptide, and tripeptides in Cartesian coordinates with dramatically lower energy function evaluations. Code available at: https://github.com/taraak/pita
☆ Black-Box Privacy Attacks on Shared Representations in Multitask Learning
Multitask learning (MTL) has emerged as a powerful paradigm that leverages similarities among multiple learning tasks, each with insufficient samples to train a standalone model, to solve them simultaneously while minimizing data sharing across users and organizations. MTL typically accomplishes this goal by learning a shared representation that captures common structure among the tasks by embedding data from all tasks into a common feature space. Despite being designed to be the smallest unit of shared information necessary to effectively learn patterns across multiple tasks, these shared representations can inadvertently leak sensitive information about the particular tasks they were trained on. In this work, we investigate what information is revealed by the shared representations through the lens of inference attacks. Towards this, we propose a novel, black-box task-inference threat model where the adversary, given the embedding vectors produced by querying the shared representation on samples from a particular task, aims to determine whether that task was present when training the shared representation. We develop efficient, purely black-box attacks on machine learning models that exploit the dependencies between embeddings from the same task without requiring shadow models or labeled reference data. We evaluate our attacks across vision and language domains for multiple use cases of MTL and demonstrate that even with access only to fresh task samples rather than training data, a black-box adversary can successfully infer a task's inclusion in training. To complement our experiments, we provide theoretical analysis of a simplified learning setting and show a strict separation between adversaries with training samples and fresh samples from the target task's distribution.
comment: 30 pages, 8 figures
☆ Joint Tensor-Train Parameterization for Efficient and Expressive Low-Rank Adaptation
Low-Rank Adaptation (LoRA) is widely recognized for its parameter-efficient fine-tuning of large-scale neural models. However, standard LoRA independently optimizes low-rank matrices, which inherently limits its expressivity and generalization capabilities. While classical tensor-train (TT) decomposition can be separately employed on individual LoRA matrices, this work demonstrates that the classical TT-based approach neither significantly improves parameter efficiency nor achieves substantial performance gains. This paper proposes TensorGuide, a novel tensor-train-guided adaptation framework to overcome these limitations. TensorGuide generates two correlated low-rank LoRA matrices through a unified TT structure driven by controlled Gaussian noise. The resulting joint TT representation inherently provides structured, low-rank adaptations, significantly enhancing expressivity, generalization, and parameter efficiency without increasing the number of trainable parameters. Theoretically, we justify these improvements through neural tangent kernel analyses, demonstrating superior optimization dynamics and enhanced generalization. Extensive experiments on quantum dot classification and GPT-2 fine-tuning benchmarks demonstrate that TensorGuide-based LoRA consistently outperforms standard LoRA and TT-LoRA, achieving improved accuracy and scalability with fewer parameters.
comment: Preprint. Under Review
☆ Consumer-friendly EEG-based Emotion Recognition System: A Multi-scale Convolutional Neural Network Approach
EEG is a non-invasive, safe, and low-risk method to record electrophysiological signals inside the brain. Especially with recent technology developments like dry electrodes, consumer-grade EEG devices, and rapid advances in machine learning, EEG is commonly used as a resource for automatic emotion recognition. With the aim to develop a deep learning model that can perform EEG-based emotion recognition in a real-life context, we propose a novel approach to utilize multi-scale convolutional neural networks to accomplish such tasks. By implementing feature extraction kernels with many ratio coefficients as well as a new type of kernel that learns key information from four separate areas of the brain, our model consistently outperforms the state-of-the-art TSception model in predicting valence, arousal, and dominance scores across many performance evaluation metrics.
comment: 29 pages, 10 figures
☆ Leveraging Influence Functions for Resampling Data in Physics-Informed Neural Networks
Physics-informed neural networks (PINNs) offer a powerful approach to solving partial differential equations (PDEs), which are ubiquitous in the quantitative sciences. Applied to both forward and inverse problems across various scientific domains, PINNs have recently emerged as a valuable tool in the field of scientific machine learning. A key aspect of their training is that the data -- spatio-temporal points sampled from the PDE's input domain -- are readily available. Influence functions, a tool from the field of explainable AI (XAI), approximate the effect of individual training points on the model, enhancing interpretability. In the present work, we explore the application of influence function-based sampling approaches for the training data. Our results indicate that such targeted resampling based on data attribution methods has the potential to enhance prediction accuracy in physics-informed neural networks, demonstrating a practical application of an XAI method in PINN training.
comment: This article was presented at "The 3rd World Conference on eXplainable Artificial Intelligence" (2025)
☆ An efficient neuromorphic approach for collision avoidance combining Stack-CNN with event cameras
Space debris poses a significant threat, driving research into active and passive mitigation strategies. This work presents an innovative collision avoidance system utilizing event-based cameras - a novel imaging technology well-suited for Space Situational Awareness (SSA) and Space Traffic Management (STM). The system, employing a Stack-CNN algorithm (previously used for meteor detection), analyzes real-time event-based camera data to detect faint moving objects. Testing on terrestrial data demonstrates the algorithm's ability to enhance signal-to-noise ratio, offering a promising approach for on-board space imaging and improving STM/SSA operations.
comment: 18th International Conference on Space Operations - Safety and sustainability of Space Operations (SSU)
Agentic Personalisation of Cross-Channel Marketing Experiences
Consumer applications provide ample opportunities to surface and communicate various forms of content to users. From promotional campaigns for new features or subscriptions, to evergreen nudges for engagement, or personalised recommendations; across e-mails, push notifications, and in-app surfaces. The conventional approach to orchestration for communication relies heavily on labour-intensive manual marketer work, and inhibits effective personalisation of content, timing, frequency, and copy-writing. We formulate this task under a sequential decision-making framework, where we aim to optimise a modular decision-making policy that maximises incremental engagement for any funnel event. Our approach leverages a Difference-in-Differences design for Individual Treatment Effect estimation, and Thompson sampling to balance the explore-exploit trade-off. We present results from a multi-service application, where our methodology has resulted in significant increases to a variety of goal events across several product features, and is currently deployed across 150 million users.
☆ EFormer: An Effective Edge-based Transformer for Vehicle Routing Problems
Recent neural heuristics for the Vehicle Routing Problem (VRP) primarily rely on node coordinates as input, which may be less effective in practical scenarios where real cost metrics-such as edge-based distances-are more relevant. To address this limitation, we introduce EFormer, an Edge-based Transformer model that uses edge as the sole input for VRPs. Our approach employs a precoder module with a mixed-score attention mechanism to convert edge information into temporary node embeddings. We also present a parallel encoding strategy characterized by a graph encoder and a node encoder, each responsible for processing graph and node embeddings in distinct feature spaces, respectively. This design yields a more comprehensive representation of the global relationships among edges. In the decoding phase, parallel context embedding and multi-query integration are used to compute separate attention mechanisms over the two encoded embeddings, facilitating efficient path construction. We train EFormer using reinforcement learning in an autoregressive manner. Extensive experiments on the Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) reveal that EFormer outperforms established baselines on synthetic datasets, including large-scale and diverse distributions. Moreover, EFormer demonstrates strong generalization on real-world instances from TSPLib and CVRPLib. These findings confirm the effectiveness of EFormer's core design in solving VRPs.
☆ Optimizing MoE Routers: Design, Implementation, and Evaluation in Transformer Models
Mixture of Experts (MoE) architectures increase large language model scalability, yet their performance depends on the router module that moves tokens to specialized experts. Bad routing can load imbalance and reduced accuracy. This project designed and implemented different router architectures within Transformer models to fix these limitations. We experimented with six distinct router variants Linear, Attention, Multi-Layer Perceptron (MLP), Hybrid, Hash, and our new MLP-Hadamard. We characterized these routers using BERT and the Qwen1.5-MoE model, looking at parameter efficiency, inference latency, routing entropy, and expert utilization patterns. Our evaluations showed distinct trade-offs: Linear routers offer speed, while MLP and Attention routers provide greater expressiveness. The MLP-Hadamard router shows a unique capability for structured, sparse routing. We successfully replaced and fine-tuned custom routers within the complex, quantized Qwen1.5-MoE model. This work provides a comparative analysis of MoE router designs and offers insights into optimizing their performance for efficient and effective large-scale model deployment.
comment: All authors contributed equally. 11 pages, 6 figures
☆ On Continuous Monitoring of Risk Violations under Unknown Shift
Machine learning systems deployed in the real world must operate under dynamic and often unpredictable distribution shifts. This challenges the validity of statistical safety assurances on the system's risk established beforehand. Common risk control frameworks rely on fixed assumptions and lack mechanisms to continuously monitor deployment reliability. In this work, we propose a general framework for the real-time monitoring of risk violations in evolving data streams. Leveraging the 'testing by betting' paradigm, we propose a sequential hypothesis testing procedure to detect violations of bounded risks associated with the model's decision-making mechanism, while ensuring control on the false alarm rate. Our method operates under minimal assumptions on the nature of encountered shifts, rendering it broadly applicable. We illustrate the effectiveness of our approach by monitoring risks in outlier detection and set prediction under a variety of shifts.
comment: AT and RV are joint first authors. Accepted at the Conference on Uncertainty in Artificial Intelligence (UAI 2025)
When Does Divide and Conquer Work for Long Context LLM? A Noise Decomposition Framework
We investigate the challenge of applying Large Language Models (LLMs) to long texts. We propose a theoretical framework that distinguishes the failure modes of long context tasks into three categories: cross-chunk dependence (task noise), confusion that grows with context size (model noise), and the imperfect integration of partial results (aggregator noise). Under this view, we analyze when it is effective to use multi-agent chunking, i.e., dividing a length sequence into smaller chunks and aggregating the processed results of each chunk. Our experiments on tasks such as retrieval, question answering, and summarization confirm both the theoretical analysis and the conditions that favor multi-agent chunking. By exploring superlinear model noise growth with input length, we also explain why, for large inputs, a weaker model configured with chunk-based processing can surpass a more advanced model like GPT4o applied in a single shot. Overall, we present a principled understanding framework and our results highlight a direct pathway to handling long contexts in LLMs with carefully managed chunking and aggregator strategies.
comment: under review
☆ Drag-and-Drop LLMs: Zero-Shot Prompt-to-Weights
Modern Parameter-Efficient Fine-Tuning (PEFT) methods such as low-rank adaptation (LoRA) reduce the cost of customizing large language models (LLMs), yet still require a separate optimization run for every downstream dataset. We introduce \textbf{Drag-and-Drop LLMs (\textit{DnD})}, a prompt-conditioned parameter generator that eliminates per-task training by mapping a handful of unlabeled task prompts directly to LoRA weight updates. A lightweight text encoder distills each prompt batch into condition embeddings, which are then transformed by a cascaded hyper-convolutional decoder into the full set of LoRA matrices. Once trained in a diverse collection of prompt-checkpoint pairs, DnD produces task-specific parameters in seconds, yielding i) up to \textbf{12,000$\times$} lower overhead than full fine-tuning, ii) average gains up to \textbf{30\%} in performance over the strongest training LoRAs on unseen common-sense reasoning, math, coding, and multimodal benchmarks, and iii) robust cross-domain generalization despite never seeing the target data or labels. Our results demonstrate that prompt-conditioned parameter generation is a viable alternative to gradient-based adaptation for rapidly specializing LLMs. Our project is available at \href{https://jerryliang24.github.io/DnD}{https://jerryliang24.github.io/DnD}.
comment: We propose a method that can generate LoRA parameters in seconds
☆ Generating Directed Graphs with Dual Attention and Asymmetric Encoding
Directed graphs naturally model systems with asymmetric, ordered relationships, essential to applications in biology, transportation, social networks, and visual understanding. Generating such graphs enables tasks such as simulation, data augmentation and novel instance discovery; however, directed graph generation remains underexplored. We identify two key factors limiting progress in this direction: first, modeling edge directionality introduces a substantially larger dependency space, making the underlying distribution harder to learn; second, the absence of standardized benchmarks hinders rigorous evaluation. Addressing the former requires more expressive models that are sensitive to directional topologies. We propose Directo, the first generative model for directed graphs built upon the discrete flow matching framework. Our approach combines: (i) principled positional encodings tailored to asymmetric pairwise relations, (ii) a dual-attention mechanism capturing both incoming and outgoing dependencies, and (iii) a robust, discrete generative framework. To support evaluation, we introduce a benchmark suite covering synthetic and real-world datasets. It shows that our method performs strongly across diverse settings and even competes with specialized models for particular classes, such as directed acyclic graphs. Our results highlight the effectiveness and generality of our approach, establishing a solid foundation for future research in directed graph generation.
☆ IS-Bench: Evaluating Interactive Safety of VLM-Driven Embodied Agents in Daily Household Tasks
Flawed planning from VLM-driven embodied agents poses significant safety hazards, hindering their deployment in real-world household tasks. However, existing static, non-interactive evaluation paradigms fail to adequately assess risks within these interactive environments, since they cannot simulate dynamic risks that emerge from an agent's actions and rely on unreliable post-hoc evaluations that ignore unsafe intermediate steps. To bridge this critical gap, we propose evaluating an agent's interactive safety: its ability to perceive emergent risks and execute mitigation steps in the correct procedural order. We thus present IS-Bench, the first multi-modal benchmark designed for interactive safety, featuring 161 challenging scenarios with 388 unique safety risks instantiated in a high-fidelity simulator. Crucially, it facilitates a novel process-oriented evaluation that verifies whether risk mitigation actions are performed before/after specific risk-prone steps. Extensive experiments on leading VLMs, including the GPT-4o and Gemini-2.5 series, reveal that current agents lack interactive safety awareness, and that while safety-aware Chain-of-Thought can improve performance, it often compromises task completion. By highlighting these critical limitations, IS-Bench provides a foundation for developing safer and more reliable embodied AI systems.
☆ GoalLadder: Incremental Goal Discovery with Vision-Language Models
Natural language can offer a concise and human-interpretable means of specifying reinforcement learning (RL) tasks. The ability to extract rewards from a language instruction can enable the development of robotic systems that can learn from human guidance; however, it remains a challenging problem, especially in visual environments. Existing approaches that employ large, pretrained language models either rely on non-visual environment representations, require prohibitively large amounts of feedback, or generate noisy, ill-shaped reward functions. In this paper, we propose a novel method, $\textbf{GoalLadder}$, that leverages vision-language models (VLMs) to train RL agents from a single language instruction in visual environments. GoalLadder works by incrementally discovering states that bring the agent closer to completing a task specified in natural language. To do so, it queries a VLM to identify states that represent an improvement in agent's task progress and to rank them using pairwise comparisons. Unlike prior work, GoalLadder does not trust VLM's feedback completely; instead, it uses it to rank potential goal states using an ELO-based rating system, thus reducing the detrimental effects of noisy VLM feedback. Over the course of training, the agent is tasked with minimising the distance to the top-ranked goal in a learned embedding space, which is trained on unlabelled visual data. This key feature allows us to bypass the need for abundant and accurate feedback typically required to train a well-shaped reward function. We demonstrate that GoalLadder outperforms existing related methods on classic control and robotic manipulation environments with the average final success rate of $\sim$95% compared to only $\sim$45% of the best competitor.
☆ Identifying Heterogeneity in Distributed Learning
We study methods for identifying heterogeneous parameter components in distributed M-estimation with minimal data transmission. One is based on a re-normalized Wald test, which is shown to be consistent as long as the number of distributed data blocks $K$ is of a smaller order of the minimum block sample size {and the level of heterogeneity is dense}. The second one is an extreme contrast test (ECT) based on the difference between the largest and smallest component-wise estimated parameters among data blocks. By introducing a sample splitting procedure, the ECT can avoid the bias accumulation arising from the M-estimation procedures, and exhibits consistency for $K$ being much larger than the sample size while the heterogeneity is sparse. The ECT procedure is easy to operate and communication-efficient. A combination of the Wald and the extreme contrast tests is formulated to attain more robust power under varying levels of sparsity of the heterogeneity. We also conduct intensive numerical experiments to compare the family-wise error rate (FWER) and the power of the proposed methods. Additionally, we conduct a case study to present the implementation and validity of the proposed methods.
☆ State-Space Kolmogorov Arnold Networks for Interpretable Nonlinear System Identification
While accurate, black-box system identification models lack interpretability of the underlying system dynamics. This paper proposes State-Space Kolmogorov-Arnold Networks (SS-KAN) to address this challenge by integrating Kolmogorov-Arnold Networks within a state-space framework. The proposed model is validated on two benchmark systems: the Silverbox and the Wiener-Hammerstein benchmarks. Results show that SS-KAN provides enhanced interpretability due to sparsity-promoting regularization and the direct visualization of its learned univariate functions, which reveal system nonlinearities at the cost of accuracy when compared to state-of-the-art black-box models, highlighting SS-KAN as a promising approach for interpretable nonlinear system identification, balancing accuracy and interpretability of nonlinear system dynamics.
comment: Accepted for IEEE Control Systems Letters
☆ CLIP-MG: Guiding Semantic Attention with Skeletal Pose Features and RGB Data for Micro-Gesture Recognition on the iMiGUE Dataset
Micro-gesture recognition is a challenging task in affective computing due to the subtle, involuntary nature of the gestures and their low movement amplitude. In this paper, we introduce a Pose-Guided Semantics-Aware CLIP-based architecture, or CLIP for Micro-Gesture recognition (CLIP-MG), a modified CLIP model tailored for micro-gesture classification on the iMiGUE dataset. CLIP-MG integrates human pose (skeleton) information into the CLIP-based recognition pipeline through pose-guided semantic query generation and a gated multi-modal fusion mechanism. The proposed model achieves a Top-1 accuracy of 61.82%. These results demonstrate both the potential of our approach and the remaining difficulty in fully adapting vision-language models like CLIP for micro-gesture recognition.
☆ Classification of Cattle Behavior and Detection of Heat (Estrus) using Sensor Data
This paper presents a novel system for monitoring cattle behavior and detecting estrus (heat) periods using sensor data and machine learning. We designed and deployed a low-cost Bluetooth-based neck collar equipped with accelerometer and gyroscope sensors to capture real-time behavioral data from real cows, which was synced to the cloud. A labeled dataset was created using synchronized CCTV footage to annotate behaviors such as feeding, rumination, lying, and others. We evaluated multiple machine learning models -- Support Vector Machines (SVM), Random Forests (RF), and Convolutional Neural Networks (CNN) -- for behavior classification. Additionally, we implemented a Long Short-Term Memory (LSTM) model for estrus detection using behavioral patterns and anomaly detection. Our system achieved over 93% behavior classification accuracy and 96% estrus detection accuracy on a limited test set. The approach offers a scalable and accessible solution for precision livestock monitoring, especially in resource-constrained environments.
comment: 6 pages, 5 figures. Druva Dhakshinamoorthy and Avikshit Jha contributed equally as co-first authors. Work conducted during a summer internship at CDAC Kolkata by students of BITS Pilani
☆ Data-Driven Policy Mapping for Safe RL-based Energy Management Systems
Increasing global energy demand and renewable integration complexity have placed buildings at the center of sustainable energy management. We present a three-step reinforcement learning(RL)-based Building Energy Management System (BEMS) that combines clustering, forecasting, and constrained policy learning to address scalability, adaptability, and safety challenges. First, we cluster non-shiftable load profiles to identify common consumption patterns, enabling policy generalization and transfer without retraining for each new building. Next, we integrate an LSTM based forecasting module to anticipate future states, improving the RL agents' responsiveness to dynamic conditions. Lastly, domain-informed action masking ensures safe exploration and operation, preventing harmful decisions. Evaluated on real-world data, our approach reduces operating costs by up to 15% for certain building types, maintains stable environmental performance, and quickly classifies and optimizes new buildings with limited data. It also adapts to stochastic tariff changes without retraining. Overall, this framework delivers scalable, robust, and cost-effective building energy management.
☆ Watermarking Autoregressive Image Generation
Watermarking the outputs of generative models has emerged as a promising approach for tracking their provenance. Despite significant interest in autoregressive image generation models and their potential for misuse, no prior work has attempted to watermark their outputs at the token level. In this work, we present the first such approach by adapting language model watermarking techniques to this setting. We identify a key challenge: the lack of reverse cycle-consistency (RCC), wherein re-tokenizing generated image tokens significantly alters the token sequence, effectively erasing the watermark. To address this and to make our method robust to common image transformations, neural compression, and removal attacks, we introduce (i) a custom tokenizer-detokenizer finetuning procedure that improves RCC, and (ii) a complementary watermark synchronization layer. As our experiments demonstrate, our approach enables reliable and robust watermark detection with theoretically grounded p-values.
comment: Code: https://github.com/facebookresearch/wmar
☆ Feedback-driven recurrent quantum neural network universality
Quantum reservoir computing uses the dynamics of quantum systems to process temporal data, making it particularly well-suited for learning with noisy intermediate-scale quantum devices. Early experimental proposals, such as the restarting and rewinding protocols, relied on repeating previous steps of the quantum map to avoid backaction. However, this approach compromises real-time processing and increases computational overhead. Recent developments have introduced alternative protocols that address these limitations. These include online, mid-circuit measurement, and feedback techniques, which enable real-time computation while preserving the input history. Among these, the feedback protocol stands out for its ability to process temporal information with comparatively fewer components. Despite this potential advantage, the theoretical foundations of feedback-based quantum reservoir computing remain underdeveloped, particularly with regard to the universality and the approximation capabilities of this approach. This paper addresses this issue by presenting a recurrent quantum neural network architecture that extends a class of existing feedforward models to a dynamic, feedback-driven reservoir setting. We provide theoretical guarantees for variational recurrent quantum neural networks, including approximation bounds and universality results. Notably, our analysis demonstrates that the model is universal with linear readouts, making it both powerful and experimentally accessible. These results pave the way for practical and theoretically grounded quantum reservoir computing with real-time processing capabilities.
comment: 31 pages
☆ Bayesian Optimization over Bounded Domains with the Beta Product Kernel
Bayesian optimization with Gaussian processes (GP) is commonly used to optimize black-box functions. The Mat\'ern and the Radial Basis Function (RBF) covariance functions are used frequently, but they do not make any assumptions about the domain of the function, which may limit their applicability in bounded domains. To address the limitation, we introduce the Beta kernel, a non-stationary kernel induced by a product of Beta distribution density functions. Such a formulation allows our kernel to naturally model functions on bounded domains. We present statistical evidence supporting the hypothesis that the kernel exhibits an exponential eigendecay rate, based on empirical analyses of its spectral properties across different settings. Our experimental results demonstrate the robustness of the Beta kernel in modeling functions with optima located near the faces or vertices of the unit hypercube. The experiments show that our kernel consistently outperforms a wide range of kernels, including the well-known Mat\'ern and RBF, in different problems, including synthetic function optimization and the compression of vision and language models.
comment: Accepted as a conference paper at UAI 2025
☆ Signatures to help interpretability of anomalies
Machine learning is often viewed as a black box when it comes to understanding its output, be it a decision or a score. Automatic anomaly detection is no exception to this rule, and quite often the astronomer is left to independently analyze the data in order to understand why a given event is tagged as an anomaly. We introduce here idea of anomaly signature, whose aim is to help the interpretability of anomalies by highlighting which features contributed to the decision.
comment: 7 pages, 3 figure, proceedings of the International Conference on Machine Learning for Astrophysics (ML4ASTRO2)
☆ Improved Exploration in GFlownets via Enhanced Epistemic Neural Networks ICML 2025
Efficiently identifying the right trajectories for training remains an open problem in GFlowNets. To address this, it is essential to prioritize exploration in regions of the state space where the reward distribution has not been sufficiently learned. This calls for uncertainty-driven exploration, in other words, the agent should be aware of what it does not know. This attribute can be measured by joint predictions, which are particularly important for combinatorial and sequential decision problems. In this research, we integrate epistemic neural networks (ENN) with the conventional architecture of GFlowNets to enable more efficient joint predictions and better uncertainty quantification, thereby improving exploration and the identification of optimal trajectories. Our proposed algorithm, ENN-GFN-Enhanced, is compared to the baseline method in GFlownets and evaluated in grid environments and structured sequence generation in various settings, demonstrating both its efficacy and efficiency.
comment: Accepted to the EXAIT Workshop at ICML 2025
☆ Optimizing Multilingual Text-To-Speech with Accents & Emotions
State-of-the-art text-to-speech (TTS) systems realize high naturalness in monolingual environments, synthesizing speech with correct multilingual accents (especially for Indic languages) and context-relevant emotions still poses difficulty owing to cultural nuance discrepancies in current frameworks. This paper introduces a new TTS architecture integrating accent along with preserving transliteration with multi-scale emotion modelling, in particularly tuned for Hindi and Indian English accent. Our approach extends the Parler-TTS model by integrating A language-specific phoneme alignment hybrid encoder-decoder architecture, and culture-sensitive emotion embedding layers trained on native speaker corpora, as well as incorporating a dynamic accent code switching with residual vector quantization. Quantitative tests demonstrate 23.7% improvement in accent accuracy (Word Error Rate reduction from 15.4% to 11.8%) and 85.3% emotion recognition accuracy from native listeners, surpassing METTS and VECL-TTS baselines. The novelty of the system is that it can mix code in real time - generating statements such as "Namaste, let's talk about " with uninterrupted accent shifts while preserving emotional consistency. Subjective evaluation with 200 users reported a mean opinion score (MOS) of 4.2/5 for cultural correctness, much better than existing multilingual systems (p<0.01). This research makes cross-lingual synthesis more feasible by showcasing scalable accent-emotion disentanglement, with direct application in South Asian EdTech and accessibility software.
comment: 12 pages, 8 figures
☆ SycnMapV2: Robust and Adaptive Unsupervised Segmentation
Human vision excels at segmenting visual cues without the need for explicit training, and it remains remarkably robust even as noise severity increases. In contrast, existing AI algorithms struggle to maintain accuracy under similar conditions. Here, we present SyncMapV2, the first to solve unsupervised segmentation with state-of-the-art robustness. SyncMapV2 exhibits a minimal drop in mIoU, only 0.01%, under digital corruption, compared to a 23.8% drop observed in SOTA methods.This superior performance extends across various types of corruption: noise (7.3% vs. 37.7%), weather (7.5% vs. 33.8%), and blur (7.0% vs. 29.5%). Notably, SyncMapV2 accomplishes this without any robust training, supervision, or loss functions. It is based on a learning paradigm that uses self-organizing dynamical equations combined with concepts from random networks. Moreover,unlike conventional methods that require re-initialization for each new input, SyncMapV2 adapts online, mimicking the continuous adaptability of human vision. Thus, we go beyond the accurate and robust results, and present the first algorithm that can do all the above online, adapting to input rather than re-initializing. In adaptability tests, SyncMapV2 demonstrates near-zero performance degradation, which motivates and fosters a new generation of robust and adaptive intelligence in the near future.
☆ The Condition Number as a Scale-Invariant Proxy for Information Encoding in Neural Units
This paper explores the relationship between the condition number of a neural network's weight tensor and the extent of information encoded by the associated processing unit, viewed through the lens of information theory. We argue that a high condition number, though not sufficient for effective knowledge encoding, may indicate that the unit has learned to selectively amplify and compress information. We formalize this intuition, particularly for linear units with Gaussian inputs, linking the condition number and the transformation's log-volume scaling factor to the characteristics of the output entropy and the geometric properties of the learned transformation. Our analysis demonstrates that for a fixed weight norm, a concentrated distribution of singular values (high condition number) corresponds to reduced overall information transfer, indicating a specialized and efficient encoding strategy. Furthermore, we present a practical case study where these principles are applied to guide selective fine-tuning of a multimodal Large Language Model, aiming to mitigate catastrophic forgetting during cross-modal adaptation. Unlike many existing catastrophic forgetting mitigation methods that rely on access to pre-training statistics, which are often unavailable, our selective fine-tuning approach offers a way to bypass this common requirement.
☆ Next-Token Prediction Should be Ambiguity-Sensitive: A Meta-Learning Perspective
The rapid adaptation ability of auto-regressive foundation models is often attributed to the diversity of their pre-training data. This is because, from a Bayesian standpoint, minimizing prediction error in such settings requires integrating over all plausible latent hypotheses consistent with observations. While this behavior is desirable in principle, it often proves too ambitious in practice: under high ambiguity, the number of plausible latent alternatives makes Bayes-optimal prediction computationally intractable. Cognitive science has long recognized this limitation, suggesting that under such conditions, heuristics or information-seeking strategies are preferable to exhaustive inference. Translating this insight to next-token prediction, we hypothesize that low- and high-ambiguity predictions pose different computational demands, making ambiguity-agnostic next-token prediction a detrimental inductive bias. To test this, we introduce MetaHMM, a synthetic sequence meta-learning benchmark with rich compositional structure and a tractable Bayesian oracle. We show that Transformers indeed struggle with high-ambiguity predictions across model sizes. Motivated by cognitive theories, we propose a method to convert pre-trained models into Monte Carlo predictors that decouple task inference from token prediction. Preliminary results show substantial gains in ambiguous contexts through improved capacity allocation and test-time scalable inference, though challenges remain.
☆ Random feature approximation for general spectral methods
Random feature approximation is arguably one of the most widely used techniques for kernel methods in large-scale learning algorithms. In this work, we analyze the generalization properties of random feature methods, extending previous results for Tikhonov regularization to a broad class of spectral regularization techniques. This includes not only explicit methods but also implicit schemes such as gradient descent and accelerated algorithms like the Heavy-Ball and Nesterov method. Through this framework, we enable a theoretical analysis of neural networks and neural operators through the lens of the Neural Tangent Kernel (NTK) approach trained via gradient descent. For our estimators we obtain optimal learning rates over regularity classes (even for classes that are not included in the reproducing kernel Hilbert space), which are defined through appropriate source conditions. This improves or completes previous results obtained in related settings for specific kernel algorithms.
comment: arXiv admin note: substantial text overlap with arXiv:2308.15434, arXiv:2412.17518
☆ Optimal Online Bookmaking for Any Number of Outcomes
We study the Online Bookmaking problem, where a bookmaker dynamically updates betting odds on the possible outcomes of an event. In each betting round, the bookmaker can adjust the odds based on the cumulative betting behavior of gamblers, aiming to maximize profit while mitigating potential loss. We show that for any event and any number of betting rounds, in a worst-case setting over all possible gamblers and outcome realizations, the bookmaker's optimal loss is the largest root of a simple polynomial. Our solution shows that bookmakers can be as fair as desired while avoiding financial risk, and the explicit characterization reveals an intriguing relation between the bookmaker's regret and Hermite polynomials. We develop an efficient algorithm that computes the optimal bookmaking strategy: when facing an optimal gambler, the algorithm achieves the optimal loss, and in rounds where the gambler is suboptimal, it reduces the achieved loss to the optimal opportunistic loss, a notion that is related to subgame perfect Nash equilibrium. The key technical contribution to achieve these results is an explicit characterization of the Bellman-Pareto frontier, which unifies the dynamic programming updates for Bellman's value function with the multi-criteria optimization framework of the Pareto frontier in the context of vector repeated games.
comment: Accepted for presentation at the Conference on Learning Theory (COLT) 2025
☆ Synthetic ALS-EEG Data Augmentation for ALS Diagnosis Using Conditional WGAN with Weight Clipping
Amyotrophic Lateral Sclerosis (ALS) is a rare neurodegenerative disease, and high-quality EEG data from ALS patients are scarce. This data scarcity, coupled with severe class imbalance between ALS and healthy control recordings, poses a challenge for training reliable machine learning classifiers. In this work, we address these issues by generating synthetic EEG signals for ALS patients using a Conditional Wasserstein Generative Adversarial Network (CWGAN). We train CWGAN on a private EEG dataset (ALS vs. non-ALS) to learn the distribution of ALS EEG signals and produce realistic synthetic samples. We preprocess and normalize EEG recordings, and train a CWGAN model to generate synthetic ALS signals. The CWGAN architecture and training routine are detailed, with key hyperparameters chosen for stable training. Qualitative evaluation of generated signals shows that they closely mimic real ALS EEG patterns. The CWGAN training converged with generator and discriminator loss curves stabilizing, indicating successful learning. The synthetic EEG signals appear realistic and have potential use as augmented data for training classifiers, helping to mitigate class imbalance and improve ALS detection accuracy. We discuss how this approach can facilitate data sharing and enhance diagnostic models.
comment: The code is available on GitHub: https://github.com/abdulvahapmutlu/als-synthetic-data-augmentation-wgan
☆ Active MRI Acquisition with Diffusion Guided Bayesian Experimental Design
A key challenge in maximizing the benefits of Magnetic Resonance Imaging (MRI) in clinical settings is to accelerate acquisition times without significantly degrading image quality. This objective requires a balance between under-sampling the raw k-space measurements for faster acquisitions and gathering sufficient raw information for high-fidelity image reconstruction and analysis tasks. To achieve this balance, we propose to use sequential Bayesian experimental design (BED) to provide an adaptive and task-dependent selection of the most informative measurements. Measurements are sequentially augmented with new samples selected to maximize information gain on a posterior distribution over target images. Selection is performed via a gradient-based optimization of a design parameter that defines a subsampling pattern. In this work, we introduce a new active BED procedure that leverages diffusion-based generative models to handle the high dimensionality of the images and employs stochastic optimization to select among a variety of patterns while meeting the acquisition process constraints and budget. So doing, we show how our setting can optimize, not only standard image reconstruction, but also any associated image analysis task. The versatility and performance of our approach are demonstrated on several MRI acquisitions.
☆ Think Global, Act Local: Bayesian Causal Discovery with Language Models in Sequential Data
Causal discovery from observational data typically assumes full access to data and availability of domain experts. In practice, data often arrive in batches, and expert knowledge is scarce. Language Models (LMs) offer a surrogate but come with their own issues-hallucinations, inconsistencies, and bias. We present BLANCE (Bayesian LM-Augmented Causal Estimation)-a hybrid Bayesian framework that bridges these gaps by adaptively integrating sequential batch data with LM-derived noisy, expert knowledge while accounting for both data-induced and LM-induced biases. Our proposed representation shift from Directed Acyclic Graph (DAG) to Partial Ancestral Graph (PAG) accommodates ambiguities within a coherent Bayesian framework, allowing grounding the global LM knowledge in local observational data. To guide LM interaction, we use a sequential optimization scheme that adaptively queries the most informative edges. Across varied datasets, BLANCE outperforms prior work in structural accuracy and extends to Bayesian parameter estimation, showing robustness to LM noise.
comment: 24 pages, preprint
☆ Can AI Dream of Unseen Galaxies? Conditional Diffusion Model for Galaxy Morphology Augmentation
Observational astronomy relies on visual feature identification to detect critical astrophysical phenomena. While machine learning (ML) increasingly automates this process, models often struggle with generalization in large-scale surveys due to the limited representativeness of labeled datasets -- whether from simulations or human annotation -- a challenge pronounced for rare yet scientifically valuable objects. To address this, we propose a conditional diffusion model to synthesize realistic galaxy images for augmenting ML training data. Leveraging the Galaxy Zoo 2 dataset which contains visual feature -- galaxy image pairs from volunteer annotation, we demonstrate that our model generates diverse, high-fidelity galaxy images closely adhere to the specified morphological feature conditions. Moreover, this model enables generative extrapolation to project well-annotated data into unseen domains and advancing rare object detection. Integrating synthesized images into ML pipelines improves performance in standard morphology classification, boosting completeness and purity by up to 30\% across key metrics. For rare object detection, using early-type galaxies with prominent dust lane features ( $\sim$0.1\% in GZ2 dataset) as a test case, our approach doubled the number of detected instances from 352 to 872, compared to previous studies based on visual inspection. This study highlights the power of generative models to bridge gaps between scarce labeled data and the vast, uncharted parameter space of observational astronomy and sheds insight for future astrophysical foundation model developments. Our project homepage is available at https://galaxysd-webpage.streamlit.app/.
comment: We have submitted to AAS journals. See another independent work for further reference -- Category-based Galaxy Image Generation via Diffusion Models (Fan, Tang et al.). Comments are welcome
☆ Malware Classification Leveraging NLP & Machine Learning for Enhanced Accuracy
This paper investigates the application of natural language processing (NLP)-based n-gram analysis and machine learning techniques to enhance malware classification. We explore how NLP can be used to extract and analyze textual features from malware samples through n-grams, contiguous string or API call sequences. This approach effectively captures distinctive linguistic patterns among malware and benign families, enabling finer-grained classification. We delve into n-gram size selection, feature representation, and classification algorithms. While evaluating our proposed method on real-world malware samples, we observe significantly improved accuracy compared to the traditional methods. By implementing our n-gram approach, we achieved an accuracy of 99.02% across various machine learning algorithms by using hybrid feature selection technique to address high dimensionality. Hybrid feature selection technique reduces the feature set to only 1.6% of the original features.
☆ From Pixels to CSI: Distilling Latent Dynamics For Efficient Wireless Resource Management
In this work, we aim to optimize the radio resource management of a communication system between a remote controller and its device, whose state is represented through image frames, without compromising the performance of the control task. We propose a novel machine learning (ML) technique to jointly model and predict the dynamics of the control system as well as the wireless propagation environment in latent space. Our method leverages two coupled joint-embedding predictive architectures (JEPAs): a control JEPA models the control dynamics and guides the predictions of a wireless JEPA, which captures the dynamics of the device's channel state information (CSI) through cross-modal conditioning. We then train a deep reinforcement learning (RL) algorithm to derive a control policy from latent control dynamics and a power predictor to estimate scheduling intervals with favorable channel conditions based on latent CSI representations. As such, the controller minimizes the usage of radio resources by utilizing the coupled JEPA networks to imagine the device's trajectory in latent space. We present simulation results on synthetic multimodal data and show that our proposed approach reduces transmit power by over 50% while maintaining control performance comparable to baseline methods that do not account for wireless optimization.
☆ VideoGAN-based Trajectory Proposal for Automated Vehicles
Being able to generate realistic trajectory options is at the core of increasing the degree of automation of road vehicles. While model-driven, rule-based, and classical learning-based methods are widely used to tackle these tasks at present, they can struggle to effectively capture the complex, multimodal distributions of future trajectories. In this paper we investigate whether a generative adversarial network (GAN) trained on videos of bird's-eye view (BEV) traffic scenarios can generate statistically accurate trajectories that correctly capture spatial relationships between the agents. To this end, we propose a pipeline that uses low-resolution BEV occupancy grid videos as training data for a video generative model. From the generated videos of traffic scenarios we extract abstract trajectory data using single-frame object detection and frame-to-frame object matching. We particularly choose a GAN architecture for the fast training and inference times with respect to diffusion models. We obtain our best results within 100 GPU hours of training, with inference times under 20\,ms. We demonstrate the physical realism of the proposed trajectories in terms of distribution alignment of spatial and dynamic parameters with respect to the ground truth videos from the Waymo Open Motion Dataset.
☆ Efficient and Privacy-Preserving Soft Prompt Transfer for LLMs ICML2025
Prompting has become a dominant paradigm for adapting large language models (LLMs). While discrete (textual) prompts are widely used for their interpretability, soft (parameter) prompts have recently gained traction in APIs. This is because they can encode information from more training samples while minimizing the user's token usage, leaving more space in the context window for task-specific input. However, soft prompts are tightly coupled to the LLM they are tuned on, limiting their generalization to other LLMs. This constraint is particularly problematic for efficiency and privacy: (1) tuning prompts on each LLM incurs high computational costs, especially as LLMs continue to grow in size. Additionally, (2) when the LLM is hosted externally, soft prompt tuning often requires sharing private data with the LLM provider. For instance, this is the case with the NVIDIA NeMo API. To address these issues, we propose POST (Privacy Of Soft prompt Transfer), a framework that enables private tuning of soft prompts on a small model and subsequently transfers these prompts to a larger LLM. POST uses knowledge distillation to derive a small model directly from the large LLM to improve prompt transferability, tunes the soft prompt locally, optionally with differential privacy guarantees, and transfers it back to the larger LLM using a small public dataset. Our experiments show that POST reduces computational costs, preserves privacy, and effectively transfers high-utility soft prompts.
comment: Accepted at ICML2025
☆ CP$^2$: Leveraging Geometry for Conformal Prediction via Canonicalization
We study the problem of conformal prediction (CP) under geometric data shifts, where data samples are susceptible to transformations such as rotations or flips. While CP endows prediction models with post-hoc uncertainty quantification and formal coverage guarantees, their practicality breaks under distribution shifts that deteriorate model performance. To address this issue, we propose integrating geometric information--such as geometric pose--into the conformal procedure to reinstate its guarantees and ensure robustness under geometric shifts. In particular, we explore recent advancements on pose canonicalization as a suitable information extractor for this purpose. Evaluating the combined approach across discrete and continuous shifts and against equivariant and augmentation-based baselines, we find that integrating geometric information with CP yields a principled way to address geometric shifts while maintaining broad applicability to black-box predictors.
comment: 17 pages, 7 figures, 9 tables (including appendix); published at UAI 2025
☆ Hallucination Level of Artificial Intelligence Whisperer: Case Speech Recognizing Pantterinousut Rap Song
All languages are peculiar. Some of them are considered more challenging to understand than others. The Finnish Language is known to be a complex language. Also, when languages are used by artists, the pronunciation and meaning might be more tricky to understand. Therefore, we are putting AI to a fun, yet challenging trial: translating a Finnish rap song to text. We will compare the Faster Whisperer algorithm and YouTube's internal speech-to-text functionality. The reference truth will be Finnish rap lyrics, which the main author's little brother, Mc Timo, has written. Transcribing the lyrics will be challenging because the artist raps over synth music player by Syntikka Janne. The hallucination level and mishearing of AI speech-to-text extractions will be measured by comparing errors made against the original Finnish lyrics. The error function is informal but still works for our case.
comment: 15 pages, 10 figures
☆ From Teacher to Student: Tracking Memorization Through Model Distillation ACL 2025
Large language models (LLMs) are known to memorize parts of their training data, raising important concerns around privacy and security. While previous research has focused on studying memorization in pre-trained models, much less is known about how knowledge distillation (KD) affects memorization.In this study, we explore how different KD methods influence the memorization of fine-tuned task data when a large teacher model is distilled into smaller student variants.This study demonstrates that distilling a larger teacher model, fine-tuned on a dataset, into a smaller variant not only lowers computational costs and model size but also significantly reduces the memorization risks compared to standard fine-tuning approaches.
comment: 5 pages, in-proceedings L2M2 @ ACL 2025
☆ Geometric Learning in Black-Box Optimization: A GNN Framework for Algorithm Performance Prediction
Automated algorithm performance prediction in numerical blackbox optimization often relies on problem characterizations, such as exploratory landscape analysis features. These features are typically used as inputs to machine learning models and are represented in a tabular format. However, such approaches often overlook algorithm configurations, a key factor influencing performance. The relationships between algorithm operators, parameters, problem characteristics, and performance outcomes form a complex structure best represented as a graph. This work explores the use of heterogeneous graph data structures and graph neural networks to predict the performance of optimization algorithms by capturing the complex dependencies between problems, algorithm configurations, and performance outcomes. We focus on two modular frameworks, modCMA-ES and modDE, which decompose two widely used derivative-free optimization algorithms: the covariance matrix adaptation evolution strategy (CMA-ES) and differential evolution (DE). We evaluate 324 modCMA-ES and 576 modDE variants on 24 BBOB problems across six runtime budgets and two problem dimensions. Achieving up to 36.6% improvement in MSE over traditional tabular-based methods, this work highlights the potential of geometric learning in black-box optimization.
☆ GRPO-CARE: Consistency-Aware Reinforcement Learning for Multimodal Reasoning
Recent reinforcement learning approaches, such as outcome-supervised GRPO, have advanced Chain-of-Thought reasoning in large language models (LLMs), yet their adaptation to multimodal LLMs (MLLMs) is unexplored. To address the lack of rigorous evaluation for MLLM post-training methods, we introduce SEED-Bench-R1, a benchmark with complex real-world videos requiring balanced perception and reasoning. It offers a large training set and evaluates generalization across three escalating challenges: in-distribution, cross-environment, and cross-environment-task scenarios. Using SEED-Bench-R1, we find that standard GRPO, while improving answer accuracy, often reduces logical coherence between reasoning steps and answers, with only a 57.9% consistency rate. This stems from reward signals focusing solely on final answers, encouraging shortcuts, and strict KL penalties limiting exploration.To address this, we propose GRPO-CARE, a consistency-aware RL framework optimizing both answer correctness and reasoning coherence without explicit supervision. GRPO-CARE introduces a two-tiered reward: (1) a base reward for answer correctness, and (2) an adaptive consistency bonus, computed by comparing the model's reasoning-to-answer likelihood (via a slowly-evolving reference model) against group peers.This dual mechanism amplifies rewards for reasoning paths that are both correct and logically consistent. Replacing KL penalties with this adaptive bonus, GRPO-CARE outperforms standard GRPO on SEED-Bench-R1, achieving a 6.7% performance gain on the hardest evaluation level and a 24.5% improvement in consistency. It also shows strong transferability, improving model performance across diverse video understanding benchmarks. Our work contributes a systematically designed benchmark and a generalizable post-training framework, advancing the development of more interpretable and robust MLLMs.
comment: Code released at: https://github.com/TencentARC/GRPO-CARE
☆ Solving Zero-Sum Convex Markov Games ICML 2025
We contribute the first provable guarantees of global convergence to Nash equilibria (NE) in two-player zero-sum convex Markov games (cMGs) by using independent policy gradient methods. Convex Markov games, recently defined by Gemp et al. (2024), extend Markov decision processes to multi-agent settings with preferences that are convex over occupancy measures, offering a broad framework for modeling generic strategic interactions. However, even the fundamental min-max case of cMGs presents significant challenges, including inherent nonconvexity, the absence of Bellman consistency, and the complexity of the infinite horizon. We follow a two-step approach. First, leveraging properties of hidden-convex--hidden-concave functions, we show that a simple nonconvex regularization transforms the min-max optimization problem into a nonconvex-proximal Polyak-Lojasiewicz (NC-pPL) objective. Crucially, this regularization can stabilize the iterates of independent policy gradient methods and ultimately lead them to converge to equilibria. Second, building on this reduction, we address the general constrained min-max problems under NC-pPL and two-sided pPL conditions, providing the first global convergence guarantees for stochastic nested and alternating gradient descent-ascent methods, which we believe may be of independent interest.
comment: To appear in the Proceedings of the 2025 International Conference on Machine Learning (ICML 2025)
☆ Mitigating Over-Squashing in Graph Neural Networks by Spectrum-Preserving Sparsification ICML 2025
The message-passing paradigm of Graph Neural Networks often struggles with exchanging information across distant nodes typically due to structural bottlenecks in certain graph regions, a limitation known as \textit{over-squashing}. To reduce such bottlenecks, \textit{graph rewiring}, which modifies graph topology, has been widely used. However, existing graph rewiring techniques often overlook the need to preserve critical properties of the original graph, e.g., \textit{spectral properties}. Moreover, many approaches rely on increasing edge count to improve connectivity, which introduces significant computational overhead and exacerbates the risk of over-smoothing. In this paper, we propose a novel graph rewiring method that leverages \textit{spectrum-preserving} graph \textit{sparsification}, for mitigating over-squashing. Our method generates graphs with enhanced connectivity while maintaining sparsity and largely preserving the original graph spectrum, effectively balancing structural bottleneck reduction and graph property preservation. Experimental results validate the effectiveness of our approach, demonstrating its superiority over strong baseline methods in classification accuracy and retention of the Laplacian spectrum.
comment: Published as a conference paper at ICML 2025
☆ A Brain-to-Population Graph Learning Framework for Diagnosing Brain Disorders
Recent developed graph-based methods for diagnosing brain disorders using functional connectivity highly rely on predefined brain atlases, but overlook the rich information embedded within atlases and the confounding effects of site and phenotype variability. To address these challenges, we propose a two-stage Brain-to-Population Graph Learning (B2P-GL) framework that integrates the semantic similarity of brain regions and condition-based population graph modeling. In the first stage, termed brain representation learning, we leverage brain atlas knowledge from GPT-4 to enrich the graph representation and refine the brain graph through an adaptive node reassignment graph attention network. In the second stage, termed population disorder diagnosis, phenotypic data is incorporated into population graph construction and feature fusion to mitigate confounding effects and enhance diagnosis performance. Experiments on the ABIDE I, ADHD-200, and Rest-meta-MDD datasets show that B2P-GL outperforms state-of-the-art methods in prediction accuracy while enhancing interpretability. Overall, our proposed framework offers a reliable and personalized approach to brain disorder diagnosis, advancing clinical applicability.
comment: 16 pages, 7 figures, 13 tables; this paper has been submitted for possible publication
☆ Diffusion-Based Hypothesis Testing and Change-Point Detection
Score-based methods have recently seen increasing popularity in modeling and generation. Methods have been constructed to perform hypothesis testing and change-point detection with score functions, but these methods are in general not as powerful as their likelihood-based peers. Recent works consider generalizing the score-based Fisher divergence into a diffusion-divergence by transforming score functions via multiplication with a matrix-valued function or a weight matrix. In this paper, we extend the score-based hypothesis test and change-point detection stopping rule into their diffusion-based analogs. Additionally, we theoretically quantify the performance of these diffusion-based algorithms and study scenarios where optimal performance is achievable. We propose a method of numerically optimizing the weight matrix and present numerical simulations to illustrate the advantages of diffusion-based algorithms.
☆ Investigating Lagrangian Neural Networks for Infinite Horizon Planning in Quadrupedal Locomotion
Lagrangian Neural Networks (LNNs) present a principled and interpretable framework for learning the system dynamics by utilizing inductive biases. While traditional dynamics models struggle with compounding errors over long horizons, LNNs intrinsically preserve the physical laws governing any system, enabling accurate and stable predictions essential for sustainable locomotion. This work evaluates LNNs for infinite horizon planning in quadrupedal robots through four dynamics models: (1) full-order forward dynamics (FD) training and inference, (2) diagonalized representation of Mass Matrix in full order FD, (3) full-order inverse dynamics (ID) training with FD inference, (4) reduced-order modeling via torso centre-of-mass (CoM) dynamics. Experiments demonstrate that LNNs bring improvements in sample efficiency (10x) and superior prediction accuracy (up to 2-10x) compared to baseline methods. Notably, the diagonalization approach of LNNs reduces computational complexity while retaining some interpretability, enabling real-time receding horizon control. These findings highlight the advantages of LNNs in capturing the underlying structure of system dynamics in quadrupeds, leading to improved performance and efficiency in locomotion planning and control. Additionally, our approach achieves a higher control frequency than previous LNN methods, demonstrating its potential for real-world deployment on quadrupeds.
comment: 6 pages, 5 figures, Accepted at Advances in Robotics (AIR) Conference 2025
Probing the Robustness of Large Language Models Safety to Latent Perturbations
Safety alignment is a key requirement for building reliable Artificial General Intelligence. Despite significant advances in safety alignment, we observe that minor latent shifts can still trigger unsafe responses in aligned models. We argue that this stems from the shallow nature of existing alignment methods, which focus on surface-level refusal behaviors without sufficiently altering internal representations. Consequently, small shifts in hidden activations can re-trigger harmful behaviors embedded in the latent space. To explore the robustness of safety alignment to latent perturbations, we introduce a probing method that measures the Negative Log-Likelihood of the original response generated by the model. This probe quantifies local sensitivity in the latent space, serving as a diagnostic tool for identifying vulnerable directions. Based on this signal, we construct effective jailbreak trajectories, giving rise to the Activation Steering Attack (ASA). More importantly, these insights offer a principled foundation for improving alignment robustness. To this end, we introduce Layer-wise Adversarial Patch Training~(LAPT), a fine-tuning strategy that inject controlled perturbations into hidden representations during training. Experimental results highlight that LAPT strengthen alignment robustness without compromising general capabilities. Our findings reveal fundamental flaws in current alignment paradigms and call for representation-level training strategies that move beyond surface-level behavior supervision. Codes and results are available at https://github.com/Carol-gutianle/LatentSafety.
☆ Joint User Priority and Power Scheduling for QoS-Aware WMMSE Precoding: A Constrained-Actor Attentive-Critic Approach
6G wireless networks are expected to support diverse quality-of-service (QoS) demands while maintaining high energy efficiency. Weighted Minimum Mean Square Error (WMMSE) precoding with fixed user priorities and transmit power is widely recognized for enhancing overall system performance but lacks flexibility to adapt to user-specific QoS requirements and time-varying channel conditions. To address this, we propose a novel constrained reinforcement learning (CRL) algorithm, Constrained-Actor Attentive-Critic (CAAC), which uses a policy network to dynamically allocate user priorities and power for WMMSE precoding. Specifically, CAAC integrates a Constrained Stochastic Successive Convex Approximation (CSSCA) method to optimize the policy, enabling more effective handling of energy efficiency goals and satisfaction of stochastic non-convex QoS constraints compared to traditional and existing CRL methods. Moreover, CAAC employs lightweight attention-enhanced Q-networks to evaluate policy updates without prior environment model knowledge. The network architecture not only enhances representational capacity but also boosts learning efficiency. Simulation results show that CAAC outperforms baselines in both energy efficiency and QoS satisfaction.
☆ A Lightweight RL-Driven Deep Unfolding Network for Robust WMMSE Precoding in Massive MU-MIMO-OFDM Systems
Weighted Minimum Mean Square Error (WMMSE) precoding is widely recognized for its near-optimal weighted sum rate performance. However, its practical deployment in massive multi-user (MU) multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) systems is hindered by the assumption of perfect channel state information (CSI) and high computational complexity. To address these issues, we first develop a wideband stochastic WMMSE (SWMMSE) algorithm that iteratively maximizes the ergodic weighted sum-rate (EWSR) under imperfect CSI. Building on this, we propose a lightweight reinforcement learning (RL)-driven deep unfolding (DU) network (RLDDU-Net), where each SWMMSE iteration is mapped to a network layer. Specifically, its DU module integrates approximation techniques and leverages beam-domain sparsity as well as frequency-domain subcarrier correlation, significantly accelerating convergence and reducing computational overhead. Furthermore, the RL module adaptively adjusts the network depth and generates compensation matrices to mitigate approximation errors. Simulation results under imperfect CSI demonstrate that RLDDU-Net outperforms existing baselines in EWSR performance while offering superior computational and convergence efficiency.
☆ Floating-Point Neural Networks Are Provably Robust Universal Approximators
The classical universal approximation (UA) theorem for neural networks establishes mild conditions under which a feedforward neural network can approximate a continuous function $f$ with arbitrary accuracy. A recent result shows that neural networks also enjoy a more general interval universal approximation (IUA) theorem, in the sense that the abstract interpretation semantics of the network using the interval domain can approximate the direct image map of $f$ (i.e., the result of applying $f$ to a set of inputs) with arbitrary accuracy. These theorems, however, rest on the unrealistic assumption that the neural network computes over infinitely precise real numbers, whereas their software implementations in practice compute over finite-precision floating-point numbers. An open question is whether the IUA theorem still holds in the floating-point setting. This paper introduces the first IUA theorem for floating-point neural networks that proves their remarkable ability to perfectly capture the direct image map of any rounded target function $f$, showing no limits exist on their expressiveness. Our IUA theorem in the floating-point setting exhibits material differences from the real-valued setting, which reflects the fundamental distinctions between these two computational models. This theorem also implies surprising corollaries, which include (i) the existence of provably robust floating-point neural networks; and (ii) the computational completeness of the class of straight-line programs that use only floating-point additions and multiplications for the class of all floating-point programs that halt.
comment: 70 pages, 4 figures. Appearing in CAV 2025
☆ CRIA: A Cross-View Interaction and Instance-Adapted Pre-training Framework for Generalizable EEG Representations
The difficulty of extracting deep features from EEG data and effectively integrating information from multiple views presents significant challenges for developing a generalizable pretraining framework for EEG representation learning. However, most existing pre-training methods rely solely on the contextual semantics of a single view, failing to capture the complex and synergistic interactions among different perspectives, limiting the expressiveness and generalization of learned representations. To address these issues, this paper proposes CRIA, an adaptive framework that utilizes variable-length and variable-channel coding to achieve a unified representation of EEG data across different datasets. In this work, we define cross-view information as the integrated representation that emerges from the interaction among temporal, spectral, and spatial views of EEG signals. The model employs a cross-attention mechanism to fuse temporal, spectral, and spatial features effectively, and combines an attention matrix masking strategy based on the information bottleneck principle with a novel viewpoint masking pre-training scheme. Experimental results on the Temple University EEG corpus and the CHB-MIT dataset show that CRIA outperforms existing methods with the same pre-training conditions, achieving a balanced accuracy of 57.02% for multi-class event classification and 80.03% for anomaly detection, highlighting its strong generalization ability.
☆ From Data to Decision: Data-Centric Infrastructure for Reproducible ML in Collaborative eScience
Reproducibility remains a central challenge in machine learning (ML), especially in collaborative eScience projects where teams iterate over data, features, and models. Current ML workflows are often dynamic yet fragmented, relying on informal data sharing, ad hoc scripts, and loosely connected tools. This fragmentation impedes transparency, reproducibility, and the adaptability of experiments over time. This paper introduces a data-centric framework for lifecycle-aware reproducibility, centered around six structured artifacts: Dataset, Feature, Workflow, Execution, Asset, and Controlled Vocabulary. These artifacts formalize the relationships between data, code, and decisions, enabling ML experiments to be versioned, interpretable, and traceable over time. The approach is demonstrated through a clinical ML use case of glaucoma detection, illustrating how the system supports iterative exploration, improves reproducibility, and preserves the provenance of collaborative decisions across the ML lifecycle.
☆ DynScaling: Efficient Verifier-free Inference Scaling via Dynamic and Integrated Sampling
Inference-time scaling has proven effective in boosting large language model (LLM) performance through increased test-time computation. Yet, its practical application is often hindered by reliance on external verifiers or a lack of optimization for realistic computational constraints. We propose DynScaling, which addresses these limitations through two primary innovations: an integrated parallel-sequential sampling strategy and a bandit-based dynamic budget allocation framework. The integrated sampling strategy unifies parallel and sequential sampling by constructing synthetic sequential reasoning chains from initially independent parallel responses, promoting diverse and coherent reasoning trajectories. The dynamic budget allocation framework formulates the allocation of computational resources as a multi-armed bandit problem, adaptively distributing the inference budget across queries based on the uncertainty of previously sampled responses, thereby maximizing computational efficiency. By combining these components, DynScaling effectively improves LLM performance under practical resource constraints without the need for external verifiers. Experimental results demonstrate that DynScaling consistently surpasses existing verifier-free inference scaling baselines in both task performance and computational cost.
☆ OSWorld-Human: Benchmarking the Efficiency of Computer-Use Agents
Generative AI is being leveraged to solve a variety of computer-use tasks involving desktop applications. State-of-the-art systems have focused solely on improving accuracy on leading benchmarks. However, these systems are practically unusable due to extremely high end-to-end latency (e.g., tens of minutes) for tasks that typically take humans just a few minutes to complete. To understand the cause behind this and to guide future developments of computer agents, we conduct the first study on the temporal performance of computer-use agents on OSWorld, the flagship benchmark in computer-use AI. We find that large model calls for planning and reflection account for the majority of the overall latency, and as an agent uses more steps to complete a task, each successive step can take 3x longer than steps at the beginning of a task. We then construct OSWorld-Human, a manually annotated version of the original OSWorld dataset that contains a human-determined trajectory for each task. We evaluate 16 agents on their efficiency using OSWorld-Human and found that even the highest-scoring agents on OSWorld take 1.4-2.7x more steps than necessary.
☆ Enhancing Document-Level Question Answering via Multi-Hop Retrieval-Augmented Generation with LLaMA 3
This paper presents a novel Retrieval-Augmented Generation (RAG) framework tailored for complex question answering tasks, addressing challenges in multi-hop reasoning and contextual understanding across lengthy documents. Built upon LLaMA 3, the framework integrates a dense retrieval module with advanced context fusion and multi-hop reasoning mechanisms, enabling more accurate and coherent response generation. A joint optimization strategy combining retrieval likelihood and generation cross-entropy improves the model's robustness and adaptability. Experimental results show that the proposed system outperforms existing retrieval-augmented and generative baselines, confirming its effectiveness in delivering precise, contextually grounded answers.
☆ Vision-Guided Chunking Is All You Need: Enhancing RAG with Multimodal Document Understanding
Retrieval-Augmented Generation (RAG) systems have revolutionized information retrieval and question answering, but traditional text-based chunking methods struggle with complex document structures, multi-page tables, embedded figures, and contextual dependencies across page boundaries. We present a novel multimodal document chunking approach that leverages Large Multimodal Models (LMMs) to process PDF documents in batches while maintaining semantic coherence and structural integrity. Our method processes documents in configurable page batches with cross-batch context preservation, enabling accurate handling of tables spanning multiple pages, embedded visual elements, and procedural content. We evaluate our approach on a curated dataset of PDF documents with manually crafted queries, demonstrating improvements in chunk quality and downstream RAG performance. Our vision-guided approach achieves better accuracy compared to traditional vanilla RAG systems, with qualitative analysis showing superior preservation of document structure and semantic coherence.
comment: 11 pages, 1 Figure, 1 Table
♻ ☆ Integrating Dynamical Systems Learning with Foundational Models: A Meta-Evolutionary AI Framework for Clinical Trials
Artificial intelligence (AI) has evolved into an ecosystem of specialized "species," each with unique strengths. We analyze two: DeepSeek-V3, a 671-billion-parameter Mixture of Experts large language model (LLM) exemplifying scale-driven generality, and NetraAI, a dynamical system-based framework engineered for stability and interpretability on small clinical trial datasets. We formalize NetraAI's foundations, combining contraction mappings, information geometry, and evolutionary algorithms to identify predictive patient cohorts. Features are embedded in a metric space and iteratively contracted toward stable attractors that define latent subgroups. A pseudo-temporal embedding and long-range memory enable exploration of higher-order feature interactions, while an internal evolutionary loop selects compact, explainable 2-4-variable bundles ("Personas"). To guide discovery, we introduce an LLM Strategist as a meta-evolutionary layer that observes Persona outputs, prioritizes promising variables, injects domain knowledge, and assesses robustness. This two-tier architecture mirrors the human scientific process: NetraAI as experimentalist, the LLM as theorist, forming a self-improving loop. In case studies (schizophrenia, depression, pancreatic cancer), NetraAI uncovered small, high-effect-size subpopulations that transformed weak baseline models (AUC ~0.50-0.68) into near-perfect classifiers using only a few features. We position NetraAI at the intersection of dynamical systems, information geometry, and evolutionary learning, aligned with emerging concept-level reasoning paradigms such as LeCun's Joint Embedding Predictive Architecture (JEPA). By prioritizing reliable, explainable knowledge, NetraAI offers a new generation of adaptive, self-reflective AI to accelerate clinical discovery.
comment: 27 pages
♻ ☆ Distributional Adversarial Loss
We initiate the study of a new notion of adversarial loss which we call distributional adversarial loss. In this notion, we assume for each original example, the allowed adversarial perturbation set is a family of distributions, and the adversarial loss over each example is the maximum loss over all the associated distributions. The goal is to minimize the overall adversarial loss. We show sample complexity bounds in the PAC-learning setting for our notion of adversarial loss. Our notion of adversarial loss contrasts the prior work on robust learning that considers a set of points, not distributions, as the perturbation set of each clean example. As an application of our approach, we show how to unify the two lines of work on randomized smoothing and robust learning in the PAC-learning setting and derive sample complexity bounds for randomized smoothing methods. Furthermore, we investigate the role of randomness in achieving robustness against adversarial attacks. We show a general derandomization technique that preserves the extent of a randomized classifier's robustness against adversarial attacks and show its effectiveness empirically.
♻ ☆ Learning to Route LLMs with Confidence Tokens
Large language models (LLMs) have demonstrated impressive performance on several tasks and are increasingly deployed in real-world applications. However, especially in high-stakes settings, it becomes vital to know when the output of an LLM may be unreliable. Depending on whether an answer is trustworthy, a system can then choose to route the question to another expert, or otherwise fall back on a safe default behavior. In this work, we study the extent to which LLMs can reliably indicate confidence in their answers, and how this notion of confidence can translate into downstream accuracy gains. We propose Self-Reflection with Error-based Feedback (Self-REF), a lightweight training strategy to teach LLMs to express confidence in whether their answers are correct in a reliable manner. Self-REF introduces confidence tokens into the LLM, from which a confidence score can be extracted. Compared to conventional approaches such as verbalizing confidence and examining token probabilities, we demonstrate empirically that confidence tokens show significant improvements in downstream routing and rejection learning tasks.
♻ ☆ Low-Resource Video Super-Resolution using Memory, Wavelets, and Deformable Convolutions
The tradeoff between reconstruction quality and compute required for video super-resolution (VSR) remains a formidable challenge in its adoption for deployment on resource-constrained edge devices. While transformer-based VSR models have set new benchmarks for reconstruction quality in recent years, these require substantial computational resources. On the other hand, lightweight models that have been introduced even recently struggle to deliver state-of-the-art reconstruction. We propose a novel lightweight and parameter-efficient neural architecture for VSR that achieves state-of-the-art reconstruction accuracy with just 2.3 million parameters. Our model enhances information utilization based on several architectural attributes. Firstly, it uses 2D wavelet decompositions strategically interlayered with learnable convolutional layers to utilize the inductive prior of spatial sparsity of edges in visual data. Secondly, it uses a single memory tensor to capture inter-frame temporal information while avoiding the computational cost of previous memory-based schemes. Thirdly, it uses residual deformable convolutions for implicit inter-frame object alignment that improve upon deformable convolutions by enhancing spatial information in inter-frame feature differences. Architectural insights from our model can pave the way for real-time VSR on the edge, such as display devices for streaming data.
♻ ☆ Lion Secretly Solves Constrained Optimization: As Lyapunov Predicts ICLR 2024
Lion (Evolved Sign Momentum), a new optimizer discovered through program search, has shown promising results in training large AI models. It performs comparably or favorably to AdamW but with greater memory efficiency. As we can expect from the results of a random search program, Lion incorporates elements from several existing algorithms, including signed momentum, decoupled weight decay, Polak, and Nesterov momentum, but does not fit into any existing category of theoretically grounded optimizers. Thus, even though Lion appears to perform well as a general-purpose optimizer for a wide range of tasks, its theoretical basis remains uncertain. This lack of theoretical clarity limits opportunities to further enhance and expand Lion's efficacy. This work aims to demystify Lion. Based on both continuous-time and discrete-time analysis, we demonstrate that Lion is a theoretically novel and principled approach for minimizing a general loss function $f(x)$ while enforcing a bound constraint $\|x\|_\infty \leq 1/\lambda$. Lion achieves this through the incorporation of decoupled weight decay, where $\lambda$ represents the weight decay coefficient. Our analysis is made possible by the development of a new Lyapunov function for the Lion updates. It applies to a broader family of Lion-$\kappa$ algorithms, where the $\text{sign}(\cdot)$ operator in Lion is replaced by the subgradient of a convex function $\kappa$, leading to the solution of a general composite optimization problem of $\min_x f(x) + \kappa^*(x)$. Our findings provide valuable insights into the dynamics of Lion and pave the way for further improvements and extensions of Lion-related algorithms.
comment: ICLR 2024 Spotlight
♻ ☆ Harmonizing Safety and Speed: A Human-Algorithm Approach to Enhance the FDA's Medical Device Clearance Policy
The United States Food and Drug Administration's (FDA's) Premarket Notification 510(k) pathway allows manufacturers to gain approval for a medical device by demonstrating its substantial equivalence to another legally marketed device. However, the inherent ambiguity of this regulatory procedure has led to high recall rates for many devices cleared through this pathway. This trend has raised significant concerns regarding the efficacy of the FDA's current approach, prompting a reassessment of the 510(k) regulatory framework. In this paper, we develop a combined human-algorithm approach to assist the FDA in improving its 510(k) medical device clearance process by reducing the risk of recalls and the workload imposed on the FDA. We first develop machine learning methods to estimate the risk of recall of 510(k) medical devices based on the information available at submission time. We then propose a data-driven clearance policy that recommends acceptance, rejection, or deferral to FDA's committees for in-depth evaluation. We conduct an empirical study using a unique large-scale dataset of over 31,000 medical devices that we assembled based on data sources from the FDA and Centers for Medicare and Medicaid Service (CMS). A conservative evaluation of our proposed policy based on this data shows a 32.9% improvement in the recall rate and a 40.5% reduction in the FDA's workload. Our analyses also indicate that implementing our policy could result in significant annual cost savings of $1.7 billion, which highlights the value of using a holistic and data-driven approach to improve the FDA's current 510(k) medical device evaluation pathway.
♻ ☆ MonoSOWA: Scalable monocular 3D Object detector Without human Annotations
Inferring object 3D position and orientation from a single RGB camera is a foundational task in computer vision with many important applications. Traditionally, 3D object detection methods are trained in a fully-supervised setup, requiring LiDAR and vast amounts of human annotations, which are laborious, costly, and do not scale well with the ever-increasing amounts of data being captured. We present a novel method to train a 3D object detector from a single RGB camera without domain-specific human annotations, making orders of magnitude more data available for training. The method uses newly proposed Local Object Motion Model to disentangle object movement source between subsequent frames, is approximately 700 times faster than previous work and compensates camera focal length differences to aggregate multiple datasets. The method is evaluated on three public datasets, where despite using no human labels, it outperforms prior work by a significant margin. It also shows its versatility as a pre-training tool for fully-supervised training and shows that combining pseudo-labels from multiple datasets can achieve comparable accuracy to using human labels from a single dataset. The source code and model are available at https://github.com/jskvrna/MonoSOWA.
♻ ☆ A Implies B: Circuit Analysis in LLMs for Propositional Logical Reasoning
Due to the size and complexity of modern large language models (LLMs), it has proven challenging to uncover the underlying mechanisms that models use to solve reasoning problems. For instance, is their reasoning for a specific problem localized to certain parts of the network? Do they break down the reasoning problem into modular components that are then executed as sequential steps as we go deeper in the model? To better understand the reasoning capability of LLMs, we study a minimal propositional logic problem that requires combining multiple facts to arrive at a solution. By studying this problem on Mistral and Gemma models, up to 27B parameters, we illuminate the core components the models use to solve such logic problems. From a mechanistic interpretability point of view, we use causal mediation analysis to uncover the pathways and components of the LLMs' reasoning processes. Then, we offer fine-grained insights into the functions of attention heads in different layers. We not only find a sparse circuit that computes the answer, but we decompose it into sub-circuits that have four distinct and modular uses. Finally, we reveal that three distinct models -- Mistral-7B, Gemma-2-9B and Gemma-2-27B -- contain analogous but not identical mechanisms.
♻ ☆ ChatDBG: Augmenting Debugging with Large Language Models
Debugging is a critical but challenging task for programmers. This paper proposes ChatDBG, an AI-powered debugging assistant. ChatDBG integrates large language models (LLMs) to significantly enhance the capabilities and user-friendliness of conventional debuggers. ChatDBG lets programmers engage in a collaborative dialogue with the debugger, allowing them to pose complex questions about program state, perform root cause analysis for crashes or assertion failures, and explore open-ended queries like "why is x null?". To handle these queries, ChatDBG grants the LLM autonomy to "take the wheel": it can act as an independent agent capable of querying and controlling the debugger to navigate through stacks and inspect program state. It then reports its findings and yields back control to the programmer. By leveraging the real-world knowledge embedded in LLMs, ChatDBG can diagnose issues identifiable only through the use of domain-specific reasoning. Our ChatDBG prototype integrates with standard debuggers including LLDB and GDB for native code and Pdb for Python. Our evaluation across a diverse set of code, including C/C++ code with known bugs and a suite of Python code including standalone scripts and Jupyter notebooks, demonstrates that ChatDBG can successfully analyze root causes, explain bugs, and generate accurate fixes for a wide range of real-world errors. For the Python programs, a single query led to an actionable bug fix 67% of the time; one additional follow-up query increased the success rate to 85%. ChatDBG has seen rapid uptake; it has already been downloaded more than 75,000 times.
comment: 22 pages, https://doi.org/10.1145/3729355
♻ ☆ ScaleGNN: Towards Scalable Graph Neural Networks via Adaptive High-order Neighboring Feature Fusion
Graph Neural Networks (GNNs) have demonstrated impressive performance across diverse graph-based tasks by leveraging message passing to capture complex node relationships. However, when applied to large-scale real-world graphs, GNNs face two major challenges: First, it becomes increasingly difficult to ensure both scalability and efficiency, as the repeated aggregation of large neighborhoods leads to significant computational overhead; Second, the over-smoothing problem arises, where excessive or deep propagation makes node representations indistinguishable, severely hindering model expressiveness. To tackle these issues, we propose ScaleGNN, a novel framework that adaptively fuses multi-level graph features for both scalable and effective graph learning. ScaleGNN first constructs per-order neighbor matrices that capture only the exclusive structural information at each hop, avoiding the redundancy of conventional aggregation. A learnable fusion module then selectively integrates these features, emphasizing the most informative high-order neighbors. To further reduce redundancy and over-smoothing, we introduce a Local Contribution Score (LCS)-based masking mechanism to filter out less relevant high-order neighbors, ensuring that only the most meaningful information is aggregated. In addition, a task-aware feature fusion strategy dynamically balances low- and high-order information, preserving both local detail and global context without incurring excessive complexity. Extensive experiments on real-world datasets demonstrate that ScaleGNN consistently outperforms state-of-the-art GNNs in both predictive accuracy and computational efficiency, highlighting its practical value for large-scale graph learning.
♻ ☆ Essential-Web v1.0: 24T tokens of organized web data
Data plays the most prominent role in how language models acquire skills and knowledge. The lack of massive, well-organized pre-training datasets results in costly and inaccessible data pipelines. We present Essential-Web v1.0, a 24-trillion-token dataset in which every document is annotated with a twelve-category taxonomy covering topic, format, content complexity, and quality. Taxonomy labels are produced by EAI-Distill-0.5b, a fine-tuned 0.5b-parameter model that achieves an annotator agreement within 3% of Qwen2.5-32B-Instruct. With nothing more than SQL-style filters, we obtain competitive web-curated datasets in math (-8.0% relative to SOTA), web code (+14.3%), STEM (+24.5%) and medical (+8.6%). Essential-Web v1.0 is available on HuggingFace: https://huggingface.co/datasets/EssentialAI/essential-web-v1.0
comment: include MegaMath-Web-Pro
♻ ☆ On the Robustness of Decision-Focused Learning
Decision-Focused Learning (DFL) is an emerging learning paradigm that tackles the task of training a machine learning (ML) model to predict missing parameters of an incomplete optimization problem, where the missing parameters are predicted. DFL trains an ML model in an end-to-end system, by integrating the prediction and optimization tasks, providing better alignment of the training and testing objectives. DFL has shown a lot of promise and holds the capacity to revolutionize decision-making in many real-world applications. However, very little is known about the performance of these models under adversarial attacks. We adopt ten unique DFL methods and benchmark their performance under two distinctly focused attacks adapted towards the Predict-then-Optimize problem setting. Our study proposes the hypothesis that the robustness of a model is highly correlated with its ability to find predictions that lead to optimal decisions without deviating from the ground-truth label. Furthermore, we provide insight into how to target the models that violate this condition and show how these models respond differently depending on the achieved optimality at the end of their training cycles.
comment: 17 pages, 45 figures
♻ ☆ QG-SMS: Enhancing Test Item Analysis via Student Modeling and Simulation ACL 2025
While the Question Generation (QG) task has been increasingly adopted in educational assessments, its evaluation remains limited by approaches that lack a clear connection to the educational values of test items. In this work, we introduce test item analysis, a method frequently used by educators to assess test question quality, into QG evaluation. Specifically, we construct pairs of candidate questions that differ in quality across dimensions such as topic coverage, item difficulty, item discrimination, and distractor efficiency. We then examine whether existing QG evaluation approaches can effectively distinguish these differences. Our findings reveal significant shortcomings in these approaches with respect to accurately assessing test item quality in relation to student performance. To address this gap, we propose a novel QG evaluation framework, QG-SMS, which leverages Large Language Model for Student Modeling and Simulation to perform test item analysis. As demonstrated in our extensive experiments and human evaluation study, the additional perspectives introduced by the simulated student profiles lead to a more effective and robust assessment of test items.
comment: Camera Ready - ACL 2025 Main
♻ ☆ Competing Bandits in Decentralized Contextual Matching Markets
Sequential learning in a multi-agent resource constrained matching market has received significant interest in the past few years. We study decentralized learning in two-sided matching markets where the demand side (aka players or agents) competes for the supply side (aka arms) with potentially time-varying preferences to obtain a stable match. Motivated by the linear contextual bandit framework, we assume that for each agent, an arm-mean may be represented by a linear function of a known feature vector and an unknown (agent-specific) parameter. Moreover, the preferences over arms depend on a latent environment in each round, where the latent environment varies across rounds in a non-stationary manner. We propose learning algorithms to identify the latent environment and obtain stable matchings simultaneously. Our proposed algorithms achieve instance-dependent logarithmic regret, scaling independently of the number of arms, and hence applicable for a large market.
♻ ☆ Boosting multi-demographic federated learning for chest radiograph analysis using general-purpose self-supervised representations
Reliable artificial intelligence (AI) models for medical image analysis often depend on large and diverse labeled datasets. Federated learning (FL) offers a decentralized and privacy-preserving approach to training but struggles in highly non-independent and identically distributed (non-IID) settings, where institutions with more representative data may experience degraded performance. Moreover, existing large-scale FL studies have been limited to adult datasets, neglecting the unique challenges posed by pediatric data, which introduces additional non-IID variability. To address these limitations, we analyzed n=398,523 adult chest radiographs from diverse institutions across multiple countries and n=9,125 pediatric images, leveraging transfer learning from general-purpose self-supervised image representations to classify pneumonia and cases with no abnormality. Using state-of-the-art vision transformers, we found that FL improved performance only for smaller adult datasets (P<0.001) but degraded performance for larger datasets (P<0.064) and pediatric cases (P=0.242). However, equipping FL with self-supervised weights significantly enhanced outcomes across pediatric cases (P=0.031) and most adult datasets (P<0.008), except the largest dataset (P=0.052). These findings underscore the potential of easily deployable general-purpose self-supervised image representations to address non-IID challenges in clinical FL applications and highlight their promise for enhancing patient outcomes and advancing pediatric healthcare, where data scarcity and variability remain persistent obstacles.
comment: Published in European Journal of Radiology Artificial Intelligence
♻ ☆ AlphaTrans: A Neuro-Symbolic Compositional Approach for Repository-Level Code Translation and Validation
Code translation transforms programs from one programming language (PL) to another. Several rule-based transpilers have been designed to automate code translation between different pairs of PLs. However, the rules can become obsolete as the PLs evolve and cannot generalize to other PLs. Recent studies have explored the automation of code translation using Large Language Models (LLMs). One key observation is that such techniques may work well for crafted benchmarks but fail to generalize to the scale and complexity of real-world projects with dependencies, custom types, PL-specific features, etc. We propose AlphaTrans, a neuro-symbolic approach to automate repository-level code translation. AlphaTrans translates both source and test code, and employs multiple levels of validation to ensure the translation preserves the functionality of the source program. To break down the problem for LLMs, AlphaTrans leverages program analysis to decompose the program into fragments and translates them in the reverse call order. We leveraged AlphaTrans to translate ten real-world open-source projects consisting of <836, 8575, 2719> classes, methods, and tests. AlphaTrans breaks down these projects into 17874 fragments and translates the entire repository. 96.40% of the translated fragments are syntactically correct, and AlphaTrans validates the translations' runtime behavior and functional correctness for 27.03% and 25.14% of fragments. On average, the integrated translation and validation take 34 hours to translate a project, showing its scalability in practice. For the incorrect translations, AlphaTrans generates a report including existing translation, stack trace, test errors, or assertion failures. We provided these artifacts to two developers to fix the translation bugs in four projects. They were able to fix the issues in 20.1 hours on average and achieve all passing tests.
comment: Published in FSE 2025
♻ ☆ Human-like Forgetting Curves in Deep Neural Networks
This study bridges cognitive science and neural network design by examining whether artificial models exhibit human-like forgetting curves. Drawing upon Ebbinghaus' seminal work on memory decay and principles of spaced repetition, we propose a quantitative framework to measure information retention in neural networks. Our approach computes the recall probability by evaluating the similarity between a network's current hidden state and previously stored prototype representations. This retention metric facilitates the scheduling of review sessions, thereby mitigating catastrophic forgetting during deployment and enhancing training efficiency by prompting targeted reviews. Our experiments with Multi-Layer Perceptrons reveal human-like forgetting curves, with knowledge becoming increasingly robust through scheduled reviews. This alignment between neural network forgetting curves and established human memory models identifies neural networks as an architecture that naturally emulates human memory decay and can inform state-of-the-art continual learning algorithms.
♻ ☆ PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding
Vision-language models are integral to computer vision research, yet many high-performing models remain closed-source, obscuring their data, design and training recipe. The research community has responded by using distillation from black-box models to label training data, achieving strong benchmark results, at the cost of measurable scientific progress. However, without knowing the details of the teacher model and its data sources, scientific progress remains difficult to measure. In this paper, we study building a Perception Language Model (PLM) in a fully open and reproducible framework for transparent research in image and video understanding. We analyze standard training pipelines without distillation from proprietary models and explore large-scale synthetic data to identify critical data gaps, particularly in detailed video understanding. To bridge these gaps, we release 2.8M human-labeled instances of fine-grained video question-answer pairs and spatio-temporally grounded video captions. Additionally, we introduce PLM-VideoBench, a suite for evaluating challenging video understanding tasks focusing on the ability to reason about "what", "where", "when", and "how" of a video. We make our work fully reproducible by providing data, training recipes, code & models. https://github.com/facebookresearch/perception_models
comment: Technical Report
♻ ☆ Quantifying artificial intelligence through algorithmic generalization
The rapid development of artificial intelligence (AI) systems has created an urgent need for their scientific quantification. While their fluency across a variety of domains is impressive, AI systems fall short on tests requiring algorithmic reasoning -- a glaring limitation given the necessity for interpretable and reliable technology. Despite a surge of reasoning benchmarks emerging from the academic community, no theoretical framework exists to quantify algorithmic reasoning in AI systems. Here, we adopt a framework from computational complexity theory to quantify algorithmic generalization using algebraic expressions: algebraic circuit complexity. Algebraic circuit complexity theory -- the study of algebraic expressions as circuit models -- is a natural framework to study the complexity of algorithmic computation. Algebraic circuit complexity enables the study of generalization by defining benchmarks in terms of the computational requirements to solve a problem. Moreover, algebraic circuits are generic mathematical objects; an arbitrarily large number of samples can be generated for a specified circuit, making it an ideal experimental sandbox for the data-hungry models that are used today. In this Perspective, we adopt tools from algebraic circuit complexity, apply them to formalize a science of algorithmic generalization, and address key challenges for its successful application to AI science.
♻ ☆ ALTA: Compiler-Based Analysis of Transformers
We propose a new programming language called ALTA and a compiler that can map ALTA programs to Transformer weights. ALTA is inspired by RASP, a language proposed by Weiss et al. (2021), and Tracr (Lindner et al., 2023), a compiler from RASP programs to Transformer weights. ALTA complements and extends this prior work, offering the ability to express loops and to compile programs to Universal Transformers, among other advantages. ALTA allows us to constructively show how Transformers can represent length-invariant algorithms for computing parity and addition, as well as a solution to the SCAN benchmark of compositional generalization tasks, without requiring intermediate scratchpad decoding steps. We also propose tools to analyze cases where the expressibility of an algorithm is established, but end-to-end training on a given training set fails to induce behavior consistent with the desired algorithm. To this end, we explore training from ALTA execution traces as a more fine-grained supervision signal. This enables additional experiments and theoretical analyses relating the learnability of various algorithms to data availability and modeling decisions, such as positional encodings. We make the ALTA framework -- language specification, symbolic interpreter, and weight compiler -- available to the community to enable further applications and insights.
comment: TMLR 2025
♻ ☆ Breaking the Compression Ceiling: Data-Free Pipeline for Ultra-Efficient Delta Compression
With the rise of the fine-tuned--pretrained paradigm, storing numerous fine-tuned models for multi-tasking creates significant storage overhead. Delta compression alleviates this by storing only the pretrained model and the highly compressed delta weights (the differences between fine-tuned and pretrained model weights). However, existing methods fail to maintain both high compression and performance, and often rely on data. To address these challenges, we propose UltraDelta, the first data-free delta compression pipeline that achieves both ultra-high compression and strong performance. UltraDelta is designed to minimize redundancy, maximize information, and stabilize performance across inter-layer, intra-layer, and global dimensions, using three key components: (1) Variance-Based Mixed Sparsity Allocation assigns sparsity based on variance, giving lower sparsity to high-variance layers to preserve inter-layer information. (2) Distribution-Aware Compression applies uniform quantization and then groups parameters by value, followed by group-wise pruning, to better preserve intra-layer distribution. (3) Trace-Norm-Guided Rescaling uses the trace norm of delta weights to estimate a global rescaling factor, improving model stability under higher compression. Extensive experiments across (a) large language models (fine-tuned on LLaMA-2 7B and 13B) with up to 133x, (b) general NLP models (RoBERTa-base, T5-base) with up to 800x, (c) vision models (ViT-B/32, ViT-L/14) with up to 400x, and (d) multi-modal models (BEiT-3) with 40x compression ratio, demonstrate that UltraDelta consistently outperforms existing methods, especially under ultra-high compression.
♻ ☆ Patch-based learning of adaptive Total Variation parameter maps for blind image denoising
We consider a patch-based learning approach defined in terms of neural networks to estimate spatially adaptive regularisation parameter maps for image denoising with weighted Total Variation (TV) and test it to situations when the noise distribution is unknown. As an example, we consider situations where noise could be either Gaussian or Poisson and perform preliminary model selection by a standard binary classification network. Then, we define a patch-based approach where at each image pixel an optimal weighting between TV regularisation and the corresponding data fidelity is learned in a supervised way using reference natural image patches upon optimisation of SSIM and in a sliding window fashion. Extensive numerical results are reported for both noise models, showing significant improvement w.r.t. results obtained by means of optimal scalar regularisation.
♻ ☆ Hopfield-Fenchel-Young Networks: A Unified Framework for Associative Memory Retrieval
Associative memory models, such as Hopfield networks and their modern variants, have garnered renewed interest due to advancements in memory capacity and connections with self-attention in transformers. In this work, we introduce a unified framework-Hopfield-Fenchel-Young networks-which generalizes these models to a broader family of energy functions. Our energies are formulated as the difference between two Fenchel-Young losses: one, parameterized by a generalized entropy, defines the Hopfield scoring mechanism, while the other applies a post-transformation to the Hopfield output. By utilizing Tsallis and norm entropies, we derive end-to-end differentiable update rules that enable sparse transformations, uncovering new connections between loss margins, sparsity, and exact retrieval of single memory patterns. We further extend this framework to structured Hopfield networks using the SparseMAP transformation, allowing the retrieval of pattern associations rather than a single pattern. Our framework unifies and extends traditional and modern Hopfield networks and provides an energy minimization perspective for widely used post-transformations like $\ell_2$-normalization and layer normalization-all through suitable choices of Fenchel-Young losses and by using convex analysis as a building block. Finally, we validate our Hopfield-Fenchel-Young networks on diverse memory recall tasks, including free and sequential recall. Experiments on simulated data, image retrieval, multiple instance learning, and text rationalization demonstrate the effectiveness of our approach.
comment: 49 pages, 14 figures. arXiv admin note: text overlap with arXiv:2402.13725
♻ ☆ Celo: Training Versatile Learned Optimizers on a Compute Diet
Learned optimization has emerged as a promising alternative to hand-crafted optimizers, with the potential to discover stronger learned update rules that enable faster, hyperparameter-free training of neural networks. A critical element for practically useful learned optimizers, that can be used off-the-shelf after meta-training, is strong meta-generalization: the ability to apply the optimizers to new tasks. Recent state-of-the-art work in learned optimizers, VeLO (Metz et al., 2022), requires a large number of highly diverse meta-training tasks along with massive computational resources, 4000 TPU months, to achieve meta-generalization. This makes further improvements to such learned optimizers impractical. In this work, we identify several key elements in learned optimizer architectures and meta-training procedures that can lead to strong meta-generalization. We also propose evaluation metrics to reliably assess quantitative performance of an optimizer at scale on a set of evaluation tasks. Our proposed approach, Celo, makes a significant leap in improving the meta-generalization performance of learned optimizers and also outperforms tuned state-of-the-art optimizers on a diverse set of out-of-distribution tasks, despite being meta-trained for just 24 GPU hours.
♻ ☆ WebXAII: an open-source web framework to study human-XAI interaction
This article introduces WebXAII, an open-source web framework designed to facilitate research on human interaction with eXplainable Artificial Intelligence (XAI) systems. The field of XAI is rapidly expanding, driven by the growing societal implications of the widespread adoption of AI (and in particular machine learning) across diverse applications. Researchers who study the interaction between humans and XAI techniques typically develop ad hoc interfaces in order to conduct their studies. These interfaces are usually not shared alongside the results of the studies, which limits their reusability and the reproducibility of experiments. In response, we design and implement WebXAII, a web-based platform that can embody full experimental protocols, meaning that it can present all aspects of the experiment to human participants and record their responses. The experimental protocols are translated into a composite architecture of generic views and modules, which offers a lot of flexibility. The architecture is defined in a structured configuration file, so that protocols can be implemented with minimal programming skills. We demonstrate that WebXAII can effectively embody relevant protocols, by reproducing the protocol of a state-of-the-art study of the literature.
♻ ☆ Variance-Based Defense Against Blended Backdoor Attacks KDD 2025
Backdoor attacks represent a subtle yet effective class of cyberattacks targeting AI models, primarily due to their stealthy nature. The model behaves normally on clean data but exhibits malicious behavior only when the attacker embeds a specific trigger into the input. This attack is performed during the training phase, where the adversary corrupts a small subset of the training data by embedding a pattern and modifying the labels to a chosen target. The objective is to make the model associate the pattern with the target label while maintaining normal performance on unaltered data. Several defense mechanisms have been proposed to sanitize training data-sets. However, these methods often rely on the availability of a clean dataset to compute statistical anomalies, which may not always be feasible in real-world scenarios where datasets can be unavailable or compromised. To address this limitation, we propose a novel defense method that trains a model on the given dataset, detects poisoned classes, and extracts the critical part of the attack trigger before identifying the poisoned instances. This approach enhances explainability by explicitly revealing the harmful part of the trigger. The effectiveness of our method is demonstrated through experimental evaluations on well-known image datasets and comparative analysis against three state-of-the-art algorithms: SCAn, ABL, and AGPD.
comment: This paper has been accepted at ECML PKDD 2025
♻ ☆ Adaptive Experimental Design for Policy Learning
This study investigates the contextual best arm identification (BAI) problem, aiming to design an adaptive experiment to identify the best treatment arm conditioned on contextual information (covariates). We consider a decision-maker who assigns treatment arms to experimental units during an experiment and recommends the estimated best treatment arm based on the contexts at the end of the experiment. The decision-maker uses a policy for recommendations, which is a function that provides the estimated best treatment arm given the contexts. In our evaluation, we focus on the worst-case expected regret, a relative measure between the expected outcomes of an optimal policy and our proposed policy. We derive a lower bound for the expected simple regret and then propose a strategy called Adaptive Sampling-Policy Learning (PLAS). We prove that this strategy is minimax rate-optimal in the sense that its leading factor in the regret upper bound matches the lower bound as the number of experimental units increases.
comment: arXiv admin note: text overlap with arXiv:2302.02988
♻ ☆ Quantum-Informed Contrastive Learning with Dynamic Mixup Augmentation for Class-Imbalanced Expert Systems
Expert systems often operate in domains characterized by class-imbalanced tabular data, where detecting rare but critical instances is essential for safety and reliability. While conventional approaches, such as cost-sensitive learning, oversampling, and graph neural networks, provide partial solutions, they suffer from drawbacks like overfitting, label noise, and poor generalization in low-density regions. To address these challenges, we propose QCL-MixNet, a novel Quantum-Informed Contrastive Learning framework augmented with k-nearest neighbor (kNN) guided dynamic mixup for robust classification under imbalance. QCL-MixNet integrates three core innovations: (i) a Quantum Entanglement-inspired layer that models complex feature interactions through sinusoidal transformations and gated attention, (ii) a sample-aware mixup strategy that adaptively interpolates feature representations of semantically similar instances to enhance minority class representation, and (iii) a hybrid loss function that unifies focal reweighting, supervised contrastive learning, triplet margin loss, and variance regularization to improve both intra-class compactness and inter-class separability. Extensive experiments on 18 real-world imbalanced datasets (binary and multi-class) demonstrate that QCL-MixNet consistently outperforms 20 state-of-the-art machine learning, deep learning, and GNN-based baselines in macro-F1 and recall, often by substantial margins. Ablation studies further validate the critical role of each architectural component. Our results establish QCL-MixNet as a new benchmark for tabular imbalance handling in expert systems. Theoretical analyses reinforce its expressiveness, generalization, and optimization robustness.
♻ ☆ Sustainable Greenhouse Microclimate Modeling: A Comparative Analysis of Recurrent and Graph Neural Networks
The integration of photovoltaic (PV) systems into greenhouses not only optimizes land use but also enhances sustainable agricultural practices by enabling dual benefits of food production and renewable energy generation. However, accurate prediction of internal environmental conditions is crucial to ensure optimal crop growth while maximizing energy production. This study introduces a novel application of Spatio-Temporal Graph Neural Networks (STGNNs) to greenhouse microclimate modeling, comparing their performance with traditional Recurrent Neural Networks (RNNs). While RNNs excel at temporal pattern recognition, they cannot explicitly model the directional relationships between environmental variables. Our STGNN approach addresses this limitation by representing these relationships as directed graphs, enabling the model to capture both environmental dependencies and their directionality. We benchmark RNNs against directed STGNNs on two 15-min-resolution datasets from Volos (Greece): a six-variable 2020 installation and a more complex eight-variable greenhouse monitored in autumn 2024. In the simpler 2020 case the RNN attains near-perfect accuracy, outperforming the STGNN. When additional drivers are available in 2024, the STGNN overtakes the RNN ($R^{2}=0.905$ vs $0.740$), demonstrating that explicitly modelling directional dependencies becomes critical as interaction complexity grows. These findings indicate when graph-based models are warranted and provide a stepping-stone toward digital twins that jointly optimise crop yield and PV power in agrivoltaic greenhouses.
♻ ☆ Incentivize Contribution and Learn Parameters Too: Federated Learning with Strategic Data Owners
Classical federated learning (FL) assumes that the clients have a limited amount of noisy data with which they voluntarily participate and contribute towards learning a global, more accurate model in a principled manner. The learning happens in a distributed fashion without sharing the data with the center. However, these methods do not consider the incentive of an agent for participating and contributing to the process, given that data collection and running a distributed algorithm is costly for the clients. The question of rationality of contribution has been asked recently in the literature and some results exist that consider this problem. This paper addresses the question of simultaneous parameter learning and incentivizing contribution, which distinguishes it from the extant literature. Our first mechanism incentivizes each client to contribute to the FL process at a Nash equilibrium and simultaneously learn the model parameters. However, this equilibrium outcome can be away from the optimal, where clients contribute with their full data and the algorithm learns the optimal parameters. We propose a second mechanism with monetary transfers that is budget balanced and enables the full data contribution along with optimal parameter learning. Large scale experiments with real (federated) datasets (CIFAR-10, FeMNIST, and Twitter) show that these algorithms converge quite fast in practice, yield good welfare guarantees, and better model performance for all agents.
comment: 19 pages, 12 figures, under review
♻ ☆ SimBank: from Simulation to Solution in Prescriptive Process Monitoring
Prescriptive Process Monitoring (PresPM) is an emerging area within Process Mining, focused on optimizing processes through real-time interventions for effective decision-making. PresPM holds significant promise for organizations seeking enhanced operational performance. However, the current literature faces two key limitations: a lack of extensive comparisons between techniques and insufficient evaluation approaches. To address these gaps, we introduce SimBank: a simulator designed for accurate benchmarking of PresPM methods. Modeled after a bank's loan application process, SimBank enables extensive comparisons of both online and offline PresPM methods. It incorporates a variety of intervention optimization problems with differing levels of complexity and supports experiments on key causal machine learning challenges, such as assessing a method's robustness to confounding in data. SimBank additionally offers a comprehensive evaluation capability: for each test case, it can generate the true outcome under each intervention action, which is not possible using recorded datasets. The simulator incorporates parallel activities and loops, drawing from common logs to generate cases that closely resemble real-life process instances. Our proof of concept demonstrates SimBank's benchmarking capabilities through experiments with various PresPM methods across different interventions, highlighting its value as a publicly available simulator for advancing research and practice in PresPM.
♻ ☆ Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation
Gradient-based optimization has been a cornerstone of machine learning that enabled the vast advances of Artificial Intelligence (AI) development over the past decades. However, this type of optimization requires differentiation, and with recent evidence of the benefits of non-differentiable (e.g. neuromorphic) architectures over classical models w.r.t. efficiency, such constraints can become limiting in the future. We present Layer-wise Feedback Propagation (LFP), a novel training principle for neural network-like predictors that utilizes methods from the domain of explainability to decompose a reward to individual neurons based on their respective contributions. Leveraging these neuron-wise rewards, our method then implements a greedy approach reinforcing helpful parts of the network and weakening harmful ones. While having comparable computational complexity to gradient descent, LFP does not require gradient computation and generates sparse and thereby memory- and energy-efficient parameter updates and models. We establish the convergence of LFP theoretically and empirically, demonstrating its effectiveness on various models and datasets. Via two applications - neural network pruning and the approximation-free training of Spiking Neural Networks (SNNs) - we demonstrate that LFP combines increased efficiency in terms of computation and representation with flexibility w.r.t. choice of model architecture and objective function. Our code is available at https://github.com/leanderweber/layerwise-feedback-propagation.
♻ ☆ Neural Guided Diffusion Bridges
We propose a novel method for simulating conditioned diffusion processes (diffusion bridges) in Euclidean spaces. By training a neural network to approximate bridge dynamics, our approach eliminates the need for computationally intensive Markov Chain Monte Carlo (MCMC) methods or score modeling. Compared to existing methods, it offers greater robustness across various diffusion specifications and conditioning scenarios. This applies in particular to rare events and multimodal distributions, which pose challenges for score-learning- and MCMC-based approaches. We introduce a flexible variational family, partially specified by a neural network, for approximating the diffusion bridge path measure. Once trained, it enables efficient sampling of independent bridges at a cost comparable to sampling the unconditioned (forward) process.
♻ ☆ AlignDistil: Token-Level Language Model Alignment as Adaptive Policy Distillation ACL 2025
In modern large language models (LLMs), LLM alignment is of crucial importance and is typically achieved through methods such as reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO). However, in most existing methods for LLM alignment, all tokens in the response are optimized using a sparse, response-level reward or preference annotation. The ignorance of token-level rewards may erroneously punish high-quality tokens or encourage low-quality tokens, resulting in suboptimal performance and slow convergence speed. To address this issue, we propose AlignDistil, an RLHF-equivalent distillation method for token-level reward optimization. Specifically, we introduce the reward learned by DPO into the RLHF objective and theoretically prove the equivalence between this objective and a token-level distillation process, where the teacher distribution linearly combines the logits from the DPO model and a reference model. On this basis, we further bridge the accuracy gap between the reward from the DPO model and the pure reward model, by building a contrastive DPO reward with a normal and a reverse DPO model. Moreover, to avoid under- and over-optimization on different tokens, we design a token adaptive logit extrapolation mechanism to construct an appropriate teacher distribution for each token. Experimental results demonstrate the superiority of our AlignDistil over existing methods and showcase fast convergence due to its token-level distributional reward optimization.
comment: ACL 2025 Main Conference, code available at: https://github.com/songmzhang/AlignDistil
♻ ☆ LLM-Guided Indoor Navigation with Multimodal Map Understanding
Indoor navigation presents unique challenges due to complex layouts and the unavailability of GNSS signals. Existing solutions often struggle with contextual adaptation, and typically require dedicated hardware. In this work, we explore the potential of a Large Language Model (LLM), i.e., ChatGPT, to generate natural, context-aware navigation instructions from indoor map images. We design and evaluate test cases across different real-world environments, analyzing the effectiveness of LLMs in interpreting spatial layouts, handling user constraints, and planning efficient routes. Our findings demonstrate the potential of LLMs for supporting personalized indoor navigation, with an average of 86.59% correct indications and a maximum of 97.14%. The proposed system achieves high accuracy and reasoning performance. These results have key implications for AI-driven navigation and assistive technologies.
comment: 7 pages, 3 figures, 5 tables
♻ ☆ Harnessing omnipresent oscillator networks as computational resource
Nature is pervaded with oscillatory dynamics. In networks of coupled oscillators patterns can arise when the system synchronizes to an external input. Hence, these networks provide processing and memory of input. We present a universal framework for harnessing oscillator networks as computational resource. This computing framework is introduced by the ubiquitous model for phase-locking, the Kuramoto model. We force the Kuramoto model by a nonlinear target-system, then after substituting the target-system with a trained feedback-loop it emulates the target-system. Our results are two-fold. Firstly, the trained network inherits performance properties of the Kuramoto model, where all-to-all coupling is performed in linear time with respect to the number of nodes and parameters for synchronization are abundant. The latter implies that the network is generically successful since the system learns via sychronization. Secondly, the learning capabilities of the oscillator network, which describe a type of collective intelligence, can be explained using Kuramoto model's order parameter. In summary, this work provides the foundation for utilizing nature's oscillator networks as a new class of information processing systems.
♻ ☆ The Exploration of Error Bounds in Classification with Noisy Labels
Numerous studies have shown that label noise can lead to poor generalization performance, negatively affecting classification accuracy. Therefore, understanding the effectiveness of classifiers trained using deep neural networks in the presence of noisy labels is of considerable practical significance. In this paper, we focus on the error bounds of excess risks for classification problems with noisy labels within deep learning frameworks. We derive error bounds for the excess risk, decomposing it into statistical error and approximation error. To handle statistical dependencies (e.g., mixing sequences), we employ an independent block construction to bound the error, leveraging techniques for dependent processes. For the approximation error, we establish these theoretical results to the vector-valued setting, where the output space consists of $K$-dimensional unit vectors. Finally, under the low-dimensional manifold hypothesis, we further refine the approximation error to mitigate the impact of high-dimensional input spaces.
comment: 21 pages
♻ ☆ Serving Large Language Models on Huawei CloudMatrix384
The rapid evolution of large language models (LLMs), driven by growing parameter scales, adoption of mixture-of-experts (MoE) architectures, and expanding context lengths, imposes unprecedented demands on AI infrastructure. Traditional AI clusters face limitations in compute intensity, memory bandwidth, inter-chip communication, and latency, compounded by variable workloads and strict service-level objectives. Addressing these issues requires fundamentally redesigned hardware-software integration. This paper introduces Huawei CloudMatrix, a next-generation AI datacenter architecture, realized in the production-grade CloudMatrix384 supernode. It integrates 384 Ascend 910 NPUs and 192 Kunpeng CPUs interconnected via an ultra-high-bandwidth Unified Bus (UB) network, enabling direct all-to-all communication and dynamic pooling of resources. These features optimize performance for communication-intensive operations, such as large-scale MoE expert parallelism and distributed key-value cache access. To fully leverage CloudMatrix384, we propose CloudMatrix-Infer, an advanced LLM serving solution incorporating three core innovations: a peer-to-peer serving architecture that independently scales prefill, decode, and caching; a large-scale expert parallelism strategy supporting EP320 via efficient UB-based token dispatch; and hardware-aware optimizations including specialized operators, microbatch-based pipelining, and INT8 quantization. Evaluation with the DeepSeek-R1 model shows CloudMatrix-Infer achieves state-of-the-art efficiency: prefill throughput of 6,688 tokens/s per NPU and decode throughput of 1,943 tokens/s per NPU (<50 ms TPOT). It effectively balances throughput and latency, sustaining 538 tokens/s per NPU even under stringent 15 ms latency constraints, while INT8 quantization maintains model accuracy across benchmarks.
comment: 59 pages, 24 figures
♻ ☆ Guaranteed prediction sets for functional surrogate models
We propose a method for obtaining statistically guaranteed prediction sets for functional machine learning methods: surrogate models which map between function spaces, motivated by the need to build reliable PDE emulators. The method constructs nested prediction sets on a low-dimensional representation (an SVD) of the surrogate model's error, and then maps these sets to the prediction space using set-propagation techniques. This results in prediction sets for functional surrogate models with conformal prediction coverage guarantees. We use zonotopes as basis of the set construction, which allow an exact linear propagation and are closed under Cartesian products, making them well-suited to this high-dimensional problem. The method is model agnostic and can thus be applied to complex Sci-ML models, including Neural Operators, but also in simpler settings. We also introduce a technique to capture the truncation error of the SVD, preserving the guarantees of the method.
♻ ☆ Uniform Mean Estimation for Heavy-Tailed Distributions via Median-of-Means
The Median of Means (MoM) is a mean estimator that has gained popularity in the context of heavy-tailed data. In this work, we analyze its performance in the task of simultaneously estimating the mean of each function in a class $\mathcal{F}$ when the data distribution possesses only the first $p$ moments for $p \in (1,2]$. We prove a new sample complexity bound using a novel symmetrization technique that may be of independent interest. Additionally, we present applications of our result to $k$-means clustering with unbounded inputs and linear regression with general losses, improving upon existing works.
♻ ☆ Interventions Against Machine-Assisted Statistical Discrimination
I study statistical discrimination driven by verifiable beliefs, such as those generated by machine learning, rather than by humans. When beliefs are verifiable, interventions against statistical discrimination can move beyond simple, belief-free designs like affirmative action, to more sophisticated ones, that constrain decision makers based on what they are thinking. I design a belief-contingent intervention I call common identity. I show that it is effective at eliminating equilibrium statistical discrimination, even when training data exhibit the various statistical biases that often plague algorithmic decision problems.
♻ ☆ Multi-Preference Optimization: Generalizing DPO via Set-Level Contrasts
Direct Preference Optimization (DPO) has become a popular approach for aligning language models using pairwise preferences. However, in practical post-training pipelines, on-policy generation typically yields multiple candidate responses per prompt, which are scored by a reward model to guide learning. In this setting, we propose $\textbf{Multi-Preference Optimization (MPO)}$, a generalization of DPO that optimizes over entire sets of responses by extending the Bradley-Terry model to groupwise comparisons between chosen and rejected sets. To further enhance learning, MPO employs deviation-based weighting, which emphasizes outlier responses that deviate most from the mean reward, effectively inducing a self-paced curriculum. We theoretically prove that MPO reduces alignment bias at a rate of $\mathcal{O}\left(\frac{1}{\sqrt{n}}\right)$ with respect to the number of responses per query. Empirically, MPO achieves state-of-the-art performance on the UltraFeedback benchmark and yields up to $\sim 17.5\%$ improvement over the state-of-the-art baseline in length-controlled win rate on AlpacaEval2, establishing a new baseline for preference-based alignment
♻ ☆ Learning Dynamics in Continual Pre-Training for Large Language Models ICML2025
Continual Pre-Training (CPT) has become a popular and effective method to apply strong foundation models to specific downstream tasks. In this work, we explore the learning dynamics throughout the CPT process for large language models. We specifically focus on how general and downstream domain performance evolves at each training step, with domain performance measured via validation losses. We have observed that the CPT loss curve fundamentally characterizes the transition from one curve to another hidden curve, and could be described by decoupling the effects of distribution shift and learning rate annealing. We derive a CPT scaling law that combines the two factors, enabling the prediction of loss at any (continual) training steps and across learning rate schedules (LRS) in CPT. Our formulation presents a comprehensive understanding of several critical factors in CPT, including loss potential, peak learning rate, training steps, replay ratio, etc. Moreover, our approach can be adapted to customize training hyper-parameters to different CPT goals such as balancing general and domain-specific performance. Extensive experiments demonstrate that our scaling law holds across various CPT datasets and training hyper-parameters.
comment: Accepted to ICML2025 (Oral)
♻ ☆ Federated Learning for MRI-based BrainAGE: a multicenter study on post-stroke functional outcome prediction
$\textbf{Objective:}$ Brain-predicted age difference (BrainAGE) is a neuroimaging biomarker reflecting brain health. However, training robust BrainAGE models requires large datasets, often restricted by privacy concerns. This study evaluates the performance of federated learning (FL) for BrainAGE estimation in ischemic stroke patients treated with mechanical thrombectomy, and investigates its association with clinical phenotypes and functional outcomes. $\textbf{Methods:}$ We used FLAIR brain images from 1674 stroke patients across 16 hospital centers. We implemented standard machine learning and deep learning models for BrainAGE estimates under three data management strategies: centralized learning (pooled data), FL (local training at each site), and single-site learning. We reported prediction errors and examined associations between BrainAGE and vascular risk factors (e.g., diabetes mellitus, hypertension, smoking), as well as functional outcomes at three months post-stroke. Logistic regression evaluated BrainAGE's predictive value for these outcomes, adjusting for age, sex, vascular risk factors, stroke severity, time between MRI and arterial puncture, prior intravenous thrombolysis, and recanalisation outcome. $\textbf{Results:}$ While centralized learning yielded the most accurate predictions, FL consistently outperformed single-site models. BrainAGE was significantly higher in patients with diabetes mellitus across all models. Comparisons between patients with good and poor functional outcomes, and multivariate predictions of these outcomes showed the significance of the association between BrainAGE and post-stroke recovery. $\textbf{Conclusion:}$ FL enables accurate age predictions without data centralization. The strong association between BrainAGE, vascular risk factors, and post-stroke recovery highlights its potential for prognostic modeling in stroke care.
♻ ☆ Hierarchical Multi-Positive Contrastive Learning for Patent Image Retrieval
Patent images are technical drawings that convey information about a patent's innovation. Patent image retrieval systems aim to search in vast collections and retrieve the most relevant images. Despite recent advances in information retrieval, patent images still pose significant challenges due to their technical intricacies and complex semantic information, requiring efficient fine-tuning for domain adaptation. Current methods neglect patents' hierarchical relationships, such as those defined by the Locarno International Classification (LIC) system, which groups broad categories (e.g., "furnishing") into subclasses (e.g., "seats" and "beds") and further into specific patent designs. In this work, we introduce a hierarchical multi-positive contrastive loss that leverages the LIC's taxonomy to induce such relations in the retrieval process. Our approach assigns multiple positive pairs to each patent image within a batch, with varying similarity scores based on the hierarchical taxonomy. Our experimental analysis with various vision and multimodal models on the DeepPatent2 dataset shows that the proposed method enhances the retrieval results. Notably, our method is effective with low-parameter models, which require fewer computational resources and can be deployed on environments with limited hardware.
comment: 5 pages, 3 figures, Accepted as a short paper at the 6th Workshop on Patent Text Mining and Semantic Technologies (PatentSemTech 2025), co-located with SIGIR 2025
♻ ☆ Robust Hallucination Detection in LLMs via Adaptive Token Selection
Hallucinations in large language models (LLMs) pose significant safety concerns that impede their broader deployment. Recent research in hallucination detection has demonstrated that LLMs' internal representations contain truthfulness hints, which can be harnessed for detector training. However, the performance of these detectors is heavily dependent on the internal representations of predetermined tokens, fluctuating considerably when working on free-form generations with varying lengths and sparse distributions of hallucinated entities. To address this, we propose HaMI, a novel approach that enables robust detection of hallucinations through adaptive selection and learning of critical tokens that are most indicative of hallucinations. We achieve this robustness by an innovative formulation of the Hallucination detection task as Multiple Instance (HaMI) learning over token-level representations within a sequence, thereby facilitating a joint optimisation of token selection and hallucination detection on generation sequences of diverse forms. Comprehensive experimental results on four hallucination benchmarks show that HaMI significantly outperforms existing state-of-the-art approaches.
♻ ☆ Sheaf Hypergraph Networks NeurIPS 2023
Higher-order relations are widespread in nature, with numerous phenomena involving complex interactions that extend beyond simple pairwise connections. As a result, advancements in higher-order processing can accelerate the growth of various fields requiring structured data. Current approaches typically represent these interactions using hypergraphs. We enhance this representation by introducing cellular sheaves for hypergraphs, a mathematical construction that adds extra structure to the conventional hypergraph while maintaining their local, higherorder connectivity. Drawing inspiration from existing Laplacians in the literature, we develop two unique formulations of sheaf hypergraph Laplacians: linear and non-linear. Our theoretical analysis demonstrates that incorporating sheaves into the hypergraph Laplacian provides a more expressive inductive bias than standard hypergraph diffusion, creating a powerful instrument for effectively modelling complex data structures. We employ these sheaf hypergraph Laplacians to design two categories of models: Sheaf Hypergraph Neural Networks and Sheaf Hypergraph Convolutional Networks. These models generalize classical Hypergraph Networks often found in the literature. Through extensive experimentation, we show that this generalization significantly improves performance, achieving top results on multiple benchmark datasets for hypergraph node classification.
comment: Accepted at Neural Information Processing Systems (NeurIPS 2023)
♻ ☆ Representation Learning with Mutual Influence of Modalities for Node Classification in Multi-Modal Heterogeneous Networks
Nowadays, numerous online platforms can be described as multi-modal heterogeneous networks (MMHNs), such as Douban's movie networks and Amazon's product review networks. Accurately categorizing nodes within these networks is crucial for analyzing the corresponding entities, which requires effective representation learning on nodes. However, existing multi-modal fusion methods often adopt either early fusion strategies which may lose the unique characteristics of individual modalities, or late fusion approaches overlooking the cross-modal guidance in GNN-based information propagation. In this paper, we propose a novel model for node classification in MMHNs, named Heterogeneous Graph Neural Network with Inter-Modal Attention (HGNN-IMA). It learns node representations by capturing the mutual influence of multiple modalities during the information propagation process, within the framework of heterogeneous graph transformer. Specifically, a nested inter-modal attention mechanism is integrated into the inter-node attention to achieve adaptive multi-modal fusion, and modality alignment is also taken into account to encourage the propagation among nodes with consistent similarities across all modalities. Moreover, an attention loss is augmented to mitigate the impact of missing modalities. Extensive experiments validate the superiority of the model in the node classification task, providing an innovative view to handle multi-modal data, especially when accompanied with network structures.
♻ ☆ Performance of Rank-One Tensor Approximation on Incomplete Data
We are interested in the estimation of a rank-one tensor signal when only a portion $\varepsilon$ of its noisy observation is available. We show that the study of this problem can be reduced to that of a random matrix model whose spectral analysis gives access to the reconstruction performance. These results shed light on and specify the loss of performance induced by an artificial reduction of the memory cost of a tensor via the deletion of a random part of its entries.
♻ ☆ Return-Aligned Decision Transformer
Traditional approaches in offline reinforcement learning aim to learn the optimal policy that maximizes the cumulative reward, also known as return. It is increasingly important to adjust the performance of AI agents to meet human requirements, for example, in applications like video games and education tools. Decision Transformer (DT) optimizes a policy that generates actions conditioned on the target return through supervised learning and includes a mechanism to control the agent's performance using the target return. However, the action generation is hardly influenced by the target return because DT's self-attention allocates scarce attention scores to the return tokens. In this paper, we propose Return-Aligned Decision Transformer (RADT), designed to more effectively align the actual return with the target return. RADT leverages features extracted by paying attention solely to the return, enabling action generation to consistently depend on the target return. Extensive experiments show that RADT significantly reduces the discrepancies between the actual return and the target return compared to DT-based methods. Our code is available at https://github.com/CyberAgentAILab/radt
♻ ☆ DeltaProduct: Improving State-Tracking in Linear RNNs via Householder Products
Linear Recurrent Neural Networks (linear RNNs) have emerged as competitive alternatives to Transformers for sequence modeling, offering efficient training and linear-time inference. However, existing architectures face a fundamental trade-off between expressivity and efficiency, dictated by the structure of their state-transition matrices. Diagonal matrices, used in models such as Mamba, GLA, or mLSTM, yield fast runtime but have limited expressivity. To address this, recent architectures such as DeltaNet and RWKV-7 adopted a diagonal plus rank-1 structure, which allows simultaneous token and channel mixing, improving associative recall and, as recently shown, state-tracking when allowing negative eigenvalues in the state-transition matrices. Building on the interpretation of DeltaNet's recurrence as performing one step of online gradient descent per token on an associative recall loss, we introduce DeltaProduct, which instead takes multiple ($n_h$) steps per token. This naturally leads to diagonal plus rank-$n_h$ state-transition matrices, formed as products of $n_h$ generalized Householder transformations, providing a tunable mechanism to balance expressivity and efficiency. We provide a detailed theoretical characterization of the state-tracking capability of DeltaProduct in finite precision, showing how it improves by increasing $n_h$. Our extensive experiments demonstrate that DeltaProduct outperforms DeltaNet in both state-tracking and language modeling, while also showing significantly improved length extrapolation capabilities.
comment: v5: Characterization of DeltaProduct's state-tracking ability. Analysis of hidden state's effective rank. Improved scaling analysis. v6: Added analysis for products of RWKV-7 matrices
♻ ☆ Deep learning joint extremes of metocean variables using the SPAR model
This paper presents a novel deep learning framework for estimating multivariate joint extremes of metocean variables, based on the Semi-Parametric Angular-Radial (SPAR) model. When considered in polar coordinates, the problem of modelling multivariate extremes is transformed to one of modelling an angular density, and the tail of a univariate radial variable conditioned on angle. In the SPAR approach, the tail of the radial variable is modelled using a generalised Pareto (GP) distribution, providing a natural extension of univariate extreme value theory to the multivariate setting. In this work, we show how the method can be applied in higher dimensions, using a case study for five metocean variables: wind speed, wind direction, wave height, wave period, and wave direction. The angular variable is modelled using a kernel density method, while the parameters of the GP model are approximated using fully-connected deep neural networks. Our approach provides great flexibility in the dependence structures that can be represented, together with computationally efficient routines for training the model. Furthermore, the application of the method requires fewer assumptions about the underlying distribution(s) compared to existing approaches, and an asymptotically justified means for extrapolating outside the range of observations. Using various diagnostic plots, we show that the fitted models provide a good description of the joint extremes of the metocean variables considered.
♻ ☆ ReinFlow: Fine-tuning Flow Matching Policy with Online Reinforcement Learning
We propose ReinFlow, a simple yet effective online reinforcement learning (RL) framework that fine-tunes a family of flow matching policies for continuous robotic control. Derived from rigorous RL theory, ReinFlow injects learnable noise into a flow policy's deterministic path, converting the flow into a discrete-time Markov Process for exact and straightforward likelihood computation. This conversion facilitates exploration and ensures training stability, enabling ReinFlow to fine-tune diverse flow model variants, including Rectified Flow [35] and Shortcut Models [19], particularly at very few or even one denoising step. We benchmark ReinFlow in representative locomotion and manipulation tasks, including long-horizon planning with visual input and sparse reward. The episode reward of Rectified Flow policies obtained an average net growth of 135.36% after fine-tuning in challenging legged locomotion tasks while saving denoising steps and 82.63% of wall time compared to state-of-the-art diffusion RL fine-tuning method DPPO [43]. The success rate of the Shortcut Model policies in state and visual manipulation tasks achieved an average net increase of 40.34% after fine-tuning with ReinFlow at four or even one denoising step, whose performance is comparable to fine-tuned DDIM policies while saving computation time for an average of 23.20%. Project webpage: https://reinflow.github.io/
comment: 31 pages, 13 figures, 10 tables
♻ ☆ Flow Matching: Markov Kernels, Stochastic Processes and Transport Plans
Among generative neural models, flow matching techniques stand out for their simple applicability and good scaling properties. Here, velocity fields of curves connecting a simple latent and a target distribution are learned. Then the corresponding ordinary differential equation can be used to sample from a target distribution, starting in samples from the latent one. This paper reviews from a mathematical point of view different techniques to learn the velocity fields of absolutely continuous curves in the Wasserstein geometry. We show how the velocity fields can be characterized and learned via i) transport plans (couplings) between latent and target distributions, ii) Markov kernels and iii) stochastic processes, where the latter two include the coupling approach, but are in general broader. Besides this main goal, we show how flow matching can be used for solving Bayesian inverse problems, where the definition of conditional Wasserstein distances plays a central role. Finally, we briefly address continuous normalizing flows and score matching techniques, which approach the learning of velocity fields of curves from other directions.
♻ ☆ Semantic-Aware Spectrum Sharing in Internet of Vehicles Based on Deep Reinforcement Learning
This work aims to investigate semantic communication in high-speed mobile Internet of vehicles (IoV) environments, with a focus on the spectrum sharing between vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. We specifically address spectrum scarcity and network traffic and then propose a semantic-aware spectrum sharing algorithm (SSS) based on the deep reinforcement learning (DRL) soft actor-critic (SAC) approach. Firstly, we delve into the extraction of semantic information. Secondly, we redefine metrics for semantic information in V2V and V2I spectrum sharing in IoV environments, introducing high-speed semantic spectrum efficiency (HSSE) and semantic transmission rate (HSR). Finally, we employ the SAC algorithm for decision optimization in V2V and V2I spectrum sharing based on semantic information. This optimization encompasses the optimal link of V2V and V2I sharing strategies, the transmission power for vehicles sending semantic information and the length of transmitted semantic symbols, aiming at maximizing HSSE of V2I and enhancing success rate of effective semantic information transmission (SRS) of V2V. Experimental results demonstrate that the SSS algorithm outperforms other baseline algorithms, including other traditional-communication-based spectrum sharing algorithms and spectrum sharing algorithm using other reinforcement learning approaches. The SSS algorithm exhibits a 15% increase in HSSE and approximately a 7% increase in SRS.
comment: This paper has been accepted by IEEE Internet of Things Journal. The source code has been released at: https://github.com/qiongwu86/Semantic-Aware-Spectrum-Sharing-in-Internet-of-Vehicles-Based-on-Deep-Reinforcement-Learning
♻ ☆ Reconfigurable Intelligent Surface Assisted VEC Based on Multi-Agent Reinforcement Learning
Vehicular edge computing (VEC) is an emerging technology that enables vehicles to perform high-intensity tasks by executing tasks locally or offloading them to nearby edge devices. However, obstacles such as buildings may degrade the communications and incur communication interruptions, and thus the vehicle may not meet the requirement for task offloading. Reconfigurable intelligent surfaces (RIS) is introduced to support vehicle communication and provide an alternative communication path. The system performance can be improved by flexibly adjusting the phase-shift of the RIS. For RIS-assisted VEC system where tasks arrive randomly, we design a control scheme that considers offloading power, local power allocation and phase-shift optimization. To solve this non-convex problem, we propose a new deep reinforcement learning (DRL) framework that employs modified multi-agent deep deterministic policy gradient (MADDPG) approach to optimize the power allocation for vehicle users (VUs) and block coordinate descent (BCD) algorithm to optimize the phase-shift of the RIS. Simulation results show that our proposed scheme outperforms the centralized deep deterministic policy gradient (DDPG) scheme and random scheme.
comment: This paper has been accepted by IEEE communications letters. The source code has been released at: https://github.com/qiongwu86/RIS-VEC-MARL.git
♻ ☆ On the Limits of Language Generation: Trade-Offs Between Hallucination and Mode Collapse
Specifying all desirable properties of a language model is challenging, but certain requirements seem essential. Given samples from an unknown language, the trained model should produce valid strings not seen in training and be expressive enough to capture the language's full richness. Otherwise, outputting invalid strings constitutes "hallucination," and failing to capture the full range leads to "mode collapse." We ask if a language model can meet both requirements. We investigate this within a statistical language generation setting building on Gold and Angluin. Here, the model receives random samples from a distribution over an unknown language K, which belongs to a possibly infinite collection of languages. The goal is to generate unseen strings from K. We say the model generates from K with consistency and breadth if, as training size increases, its output converges to all unseen strings in K. Kleinberg and Mullainathan [KM24] asked if consistency and breadth in language generation are possible. We answer this negatively: for a large class of language models, including next-token prediction models, this is impossible for most collections of candidate languages. This contrasts with [KM24]'s result, showing consistent generation without breadth is possible for any countable collection of languages. Our finding highlights that generation with breadth fundamentally differs from generation without breadth. As a byproduct, we establish near-tight bounds on the number of samples needed for generation with or without breadth. Finally, our results offer hope: consistent generation with breadth is achievable for any countable collection of languages when negative examples (strings outside K) are available alongside positive ones. This suggests that post-training feedback, which encodes negative examples, can be crucial in reducing hallucinations while limiting mode collapse.
comment: Accepted for presentation at the 57th Symposium on Theory of Computing (STOC 2025)
♻ ☆ Deep-Reinforcement-Learning-Based AoI-Aware Resource Allocation for RIS-Aided IoV Networks
Reconfigurable Intelligent Surface (RIS) is a pivotal technology in communication, offering an alternative path that significantly enhances the link quality in wireless communication environments. In this paper, we propose a RIS-assisted internet of vehicles (IoV) network, considering the vehicle-to-everything (V2X) communication method. In addition, in order to improve the timeliness of vehicle-to-infrastructure (V2I) links and the stability of vehicle-to-vehicle (V2V) links, we introduce the age of information (AoI) model and the payload transmission probability model. Therefore, with the objective of minimizing the AoI of V2I links and prioritizing transmission of V2V links payload, we construct this optimization problem as an Markov decision process (MDP) problem in which the BS serves as an agent to allocate resources and control phase-shift for the vehicles using the soft actor-critic (SAC) algorithm, which gradually converges and maintains a high stability. A AoI-aware joint vehicular resource allocation and RIS phase-shift control scheme based on SAC algorithm is proposed and simulation results show that its convergence speed, cumulative reward, AoI performance, and payload transmission probability outperforms those of proximal policy optimization (PPO), deep deterministic policy gradient (DDPG), twin delayed deep deterministic policy gradient (TD3) and stochastic algorithms.
comment: This paper has been accepted by IEEE Transactions on Vehicular Technology. The source code has been released at https://github.com/qiongwu86/RIS-RB-AoI-V2X-DRL.git
♻ ☆ Temporal horizons in forecasting: a performance-learnability trade-off
When training autoregressive models to forecast dynamical systems, a critical question arises: how far into the future should the model be trained to predict? Too short a horizon may miss long-term trends, while too long a horizon can impede convergence due to accumulating prediction errors. In this work, we formalize this trade-off by analyzing how the geometry of the loss landscape depends on the training horizon. We prove that for chaotic systems, the loss landscape's roughness grows exponentially with the training horizon, while for limit cycles, it grows linearly, making long-horizon training inherently challenging. However, we also show that models trained on long horizons generalize well to short-term forecasts, whereas those trained on short horizons suffer exponentially (resp. linearly) worse long-term predictions in chaotic (resp. periodic) systems. We validate our theory through numerical experiments and discuss practical implications for selecting training horizons. Our results provide a principled foundation for hyperparameter optimization in autoregressive forecasting models.
comment: 33 pages, 12 figures
♻ ☆ Resource Allocation for Twin Maintenance and Computing Task Processing in Digital Twin Vehicular Edge Computing Network
As a promising technology, vehicular edge computing (VEC) can provide computing and caching services by deploying VEC servers near vehicles. However, VEC networks still face challenges such as high vehicle mobility. Digital twin (DT), an emerging technology, can predict, estimate, and analyze real-time states by digitally modeling objects in the physical world. By integrating DT with VEC, a virtual vehicle DT can be created in the VEC server to monitor the real-time operating status of vehicles. However, maintaining the vehicle DT model requires ongoing attention from the VEC server, which also needs to offer computing services for the vehicles. Therefore, effective allocation and scheduling of VEC server resources are crucial. This study focuses on a general VEC network with a single VEC service and multiple vehicles, examining the two types of delays caused by twin maintenance and computational processing within the network. By transforming the problem using satisfaction functions, we propose an optimization problem aimed at maximizing each vehicle's resource utility to determine the optimal resource allocation strategy. Given the non-convex nature of the issue, we employ multi-agent Markov decision processes to reformulate the problem. Subsequently, we propose the twin maintenance and computing task processing resource collaborative scheduling (MADRL-CSTC) algorithm, which leverages multi-agent deep reinforcement learning. Through experimental comparisons with alternative algorithms, it demonstrates that our proposed approach is effective in terms of resource allocation.
comment: This paper has been accepted by IEEE Internet of Things Journal. The source code has been released at:https://github.com/qiongwu86/Resource-allocation-for-twin-maintenance-and-computing-tasks-in-digital-twin-mobile-edge-network
♻ ☆ Mobility-Aware Federated Self-supervised Learning in Vehicular Network
Federated Learning (FL) is an advanced distributed machine learning approach, that protects the privacy of each vehicle by allowing the model to be trained on multiple devices simultaneously without the need to upload all data to a road side unit (RSU). This enables FL to handle scenarios with sensitive or widely distributed data. However, in these fields, it is well known that the labeling costs can be a significant expense, and models relying on labels are not suitable for these rapidly evolving fields especially in vehicular networks, or mobile internet of things (MIoT), where new data emerges constantly. To handle this issue, the self-supervised learning paves the way for training without labels. Additionally, for vehicles with high velocity, owing to blurred images, simple aggregation not only impacts the accuracy of the aggregated model but also reduces the convergence speed of FL. This paper proposes a FL algorithm based on image blur level to aggregation, called FLSimCo, which does not require labels and serves as a pre-training stage for self-supervised learning in the vehicular environment. Simulation results demonstrate that the proposed algorithm exhibits fast and stable convergence.
comment: This paper has been accepted by urban lifeline. The source code has been released at: The source code has been released at: https://github.com/qiongwu86/FLSimCo
♻ ☆ HSTU-BLaIR: Lightweight Contrastive Text Embedding for Generative Recommender KDD 2025
Recent advances in recommender systems have underscored the complementary strengths of generative modeling and pretrained language models. We propose HSTU-BLaIR, a hybrid framework that augments the Hierarchical Sequential Transduction Unit (HSTU)-based generative recommender with BLaIR, a lightweight contrastive text embedding model. This integration enriches item representations with semantic signals from textual metadata while preserving HSTU's powerful sequence modeling capabilities. We evaluate HSTU-BLaIR on two e-commerce datasets: three subsets from the Amazon Reviews 2023 dataset and the Steam dataset. We compare its performance against both the original HSTU-based recommender and a variant augmented with embeddings from OpenAI's state-of-the-art \texttt{text-embedding-3-large} model. Despite the latter being trained on a substantially larger corpus with significantly more parameters, our lightweight BLaIR-enhanced approach -- pretrained on domain-specific data -- achieves better performance in nearly all cases. Specifically, HSTU-BLaIR outperforms the OpenAI embedding-based variant on all but one metric, where it is marginally lower, and matches it on another. These findings highlight the effectiveness of contrastive text embeddings in compute-efficient recommendation settings.
comment: Accepted at the Workshop on Large Language Models for E-Commerce, KDD 2025. Code available at https://www.github.com/snapfinger/HSTU-BLaIR
♻ ☆ Faster Stochastic Optimization with Arbitrary Delays via Asynchronous Mini-Batching
We consider the problem of asynchronous stochastic optimization, where an optimization algorithm makes updates based on stale stochastic gradients of the objective that are subject to an arbitrary (possibly adversarial) sequence of delays. We present a procedure which, for any given $q \in (0,1]$, transforms any standard stochastic first-order method to an asynchronous method with convergence guarantee depending on the $q$-quantile delay of the sequence. This approach leads to convergence rates of the form $O(\tau_q/qT+\sigma/\sqrt{qT})$ for non-convex and $O(\tau_q^2/(q T)^2+\sigma/\sqrt{qT})$ for convex smooth problems, where $\tau_q$ is the $q$-quantile delay, generalizing and improving on existing results that depend on the average delay. We further show a method that automatically adapts to all quantiles simultaneously, without any prior knowledge of the delays, achieving convergence rates of the form $O(\inf_{q} \tau_q/qT+\sigma/\sqrt{qT})$ for non-convex and $O(\inf_{q} \tau_q^2/(q T)^2+\sigma/\sqrt{qT})$ for convex smooth problems. Our technique is based on asynchronous mini-batching with a careful batch-size selection and filtering of stale gradients.
comment: 22 pages
♻ ☆ KCES: Training-Free Defense for Robust Graph Neural Networks via Kernel Complexity
Graph Neural Networks (GNNs) have achieved impressive success across a wide range of graph-based tasks, yet they remain highly vulnerable to small, imperceptible perturbations and adversarial attacks. Although numerous defense methods have been proposed to address these vulnerabilities, many rely on heuristic metrics, overfit to specific attack patterns, and suffer from high computational complexity. In this paper, we propose Kernel Complexity-Based Edge Sanitization (KCES), a training-free, model-agnostic defense framework. KCES leverages Graph Kernel Complexity (GKC), a novel metric derived from the graph's Gram matrix that characterizes GNN generalization via its test error bound. Building on GKC, we define a KC score for each edge, measuring the change in GKC when the edge is removed. Edges with high KC scores, typically introduced by adversarial perturbations, are pruned to mitigate their harmful effects, thereby enhancing GNNs' robustness. KCES can also be seamlessly integrated with existing defense strategies as a plug-and-play module without requiring training. Theoretical analysis and extensive experiments demonstrate that KCES consistently enhances GNN robustness, outperforms state-of-the-art baselines, and amplifies the effectiveness of existing defenses, offering a principled and efficient solution for securing GNNs.
♻ ☆ Provably Efficient Online RLHF with One-Pass Reward Modeling
Reinforcement Learning from Human Feedback (RLHF) has shown remarkable success in aligning Large Language Models (LLMs) with human preferences. Traditional RLHF approaches rely on a fixed dataset, which often suffers from limited coverage. To this end, online RLHF has emerged as a promising direction, enabling iterative data collection and model improvement. Despite its potential, this paradigm faces a key bottleneck: the requirement to continuously integrate new data into the historical dataset and re-optimize the model from scratch at each iteration, resulting in computational and storage costs that grow linearly with the number of iterations. In this work, we address this challenge by proposing a one-pass reward modeling method that does not require storing the historical data and can be computed in constant time. Specifically, we first formalize RLHF as a contextual preference bandit problem and design an online mirror descent algorithm with a tailored local norm to replace the standard maximum likelihood estimation for reward modeling. We then apply our method to various online RLHF settings, including passive data collection, active data collection, and deployment-time adaptation. We provide theoretical guarantees showing that our method improves both statistical and computational efficiency. Finally, we provide practical algorithms and conduct experiments using Llama-3-8B-Instruct and Qwen2.5-7B-Instruct models on the Ultrafeedback-binarized and Mixture2 datasets, validating the effectiveness of our proposed method.
comment: The first two authors contributed equally
♻ ☆ Complexity of Injectivity and Verification of ReLU Neural Networks
Neural networks with ReLU activation play a key role in modern machine learning. Understanding the functions represented by ReLU networks is a major topic in current research as this enables a better interpretability of learning processes. Injectivity of a function computed by a ReLU network, that is, the question if different inputs to the network always lead to different outputs, plays a crucial role whenever invertibility of the function is required, such as, e.g., for inverse problems or generative models. The exact computational complexity of deciding injectivity was recently posed as an open problem (Puthawala et al. [JMLR 2022]). We answer this question by proving coNP-completeness. On the positive side, we show that the problem for a single ReLU-layer is still tractable for small input dimension; more precisely, we present a parameterized algorithm which yields fixed-parameter tractability with respect to the input dimension. In addition, we study the network verification problem which is to verify that certain inputs only yield specific outputs. This is of great importance since neural networks are increasingly used in safety-critical systems. We prove that network verification is coNP-hard for a general class of input domains. Our results also exclude constant-factor polynomial-time approximations for the maximum of a function computed by a ReLU network. In this context, we also characterize surjectivity of functions computed by ReLU networks with one-dimensional output which turns out to be the complement of a basic network verification task. We reveal interesting connections to computational convexity by formulating the surjectivity problem as a zonotope containment problem
comment: 26 pages, Accepted for presentation at the Conference on Learning Theory (COLT) 2025
♻ ☆ Code Graph Model (CGM): A Graph-Integrated Large Language Model for Repository-Level Software Engineering Tasks
Recent advances in Large Language Models (LLMs) have shown promise in function-level code generation, yet repository-level software engineering tasks remain challenging. Current solutions predominantly rely on proprietary LLM agents, which introduce unpredictability and limit accessibility, raising concerns about data privacy and model customization. This paper investigates whether open-source LLMs can effectively address repository-level tasks without requiring agent-based approaches. We demonstrate this is possible by enabling LLMs to comprehend functions and files within codebases through their semantic information and structural dependencies. To this end, we introduce Code Graph Models (CGMs), which integrate repository code graph structures into the LLM's attention mechanism and map node attributes to the LLM's input space using a specialized adapter. When combined with an agentless graph RAG framework, our approach achieves a 43.00% resolution rate on the SWE-bench Lite benchmark using the open-source Qwen2.5-72B model. This performance ranks first among open weight models, second among methods with open-source systems, and eighth overall, surpassing the previous best open-source model-based method by 12.33%.
comment: 35 pages, 10 figures
♻ ☆ DRL-Based Federated Self-Supervised Learning for Task Offloading and Resource Allocation in ISAC-Enabled Vehicle Edge Computing
Intelligent Transportation Systems (ITS) leverage Integrated Sensing and Communications (ISAC) to enhance data exchange between vehicles and infrastructure in the Internet of Vehicles (IoV). This integration inevitably increases computing demands, risking real-time system stability. Vehicle Edge Computing (VEC) addresses this by offloading tasks to Road Side Unit (RSU), ensuring timely services. Our previous work FLSimCo algorithm, which uses local resources for Federated Self-Supervised Learning (SSL), though vehicles often can't complete all iterations task. Our improved algorithm offloads partial task to RSU and optimizes energy consumption by adjusting transmission power, CPU frequency, and task assignment ratios, balancing local and RSU-based training. Meanwhile, setting an offloading threshold further prevents inefficiencies. Simulation results show that the enhanced algorithm reduces energy consumption, improves offloading efficiency and the accuracy of Federated SSL.
comment: This paper has been accepted by Digital Communications and Networks. The source code has been released at: https://github.com/qiongwu86/Federated-SSL-task-offloading-and-resource-allocation
♻ ☆ Membership Inference Attack Should Move On to Distributional Statistics for Distilled Generative Models
To detect unauthorized data usage in training large-scale generative models (e.g., ChatGPT or Midjourney), membership inference attacks (MIA) have proven effective in distinguishing a single training instance (a member) from a single non-training instance (a non-member). This success is mainly credited to a memorization effect: models tend to perform better on a member than a non-member. However, we find that standard MIAs fail against distilled generative models (i.e., student models) that are increasingly deployed in practice for efficiency (e.g., ChatGPT 4o-mini). Trained exclusively on data generated from a large-scale model (a teacher model), the student model lacks direct exposure to any members (teacher's training data), nullifying the memorization effect that standard MIAs rely on. This finding reveals a serious privacy loophole, where generation-service providers could deploy a student model whose teacher was potentially trained on unauthorized data, yet claim the deployed model is clean because it was not directly trained on such data. Hence, are distilled models inherently unauditable for upstream privacy violations, and should we discard them when we care about privacy? We contend no, as we uncover a memory chain connecting the student and teacher's member data: the distribution of student-generated data aligns more closely with the distribution of the teacher's members than with non-members, thus we can detect unauthorized data usage even when direct instance-level memorization is absent. This leads us to posit that MIAs on distilled generative models should shift from instance-level scores to distribution-level statistics. We further propose three principles of distribution-based MIAs for detecting unauthorized training data through distilled generative models, and validate our position through an exemplar framework. We lastly discuss the implications of our position.
♻ ☆ A Sparse Tensor Generator with Efficient Feature Extraction
Sparse tensor operations are increasingly important in diverse applications such as social networks, deep learning, diagnosis, crime, and review analysis. However, a major obstacle in sparse tensor research is the lack of large-scale sparse tensor datasets. Another challenge lies in analyzing sparse tensor features, which are essential not only for understanding the nonzero pattern but also for selecting the most suitable storage format, decomposition algorithm, and reordering methods. However, due to the large size of real-world tensors, even extracting these features can be computationally expensive without careful optimization. To address these limitations, we have developed a smart sparse tensor generator that replicates key characteristics of real sparse tensors. Additionally, we propose efficient methods for extracting a comprehensive set of sparse tensor features. The effectiveness of our generator is validated through the quality of extracted features and the performance of decomposition on the generated tensors. Both the sparse tensor feature extractor and the tensor generator are open source with all the artifacts available at https://github.com/sparcityeu/FeaTensor and https://github.com/sparcityeu/GenTensor, respectively.
comment: 22 pages, 4 figures, 7 tables
♻ ☆ LabTOP: A Unified Model for Lab Test Outcome Prediction on Electronic Health Records
Lab tests are fundamental for diagnosing diseases and monitoring patient conditions. However, frequent testing can be burdensome for patients, and test results may not always be immediately available. To address these challenges, we propose LabTOP, a unified model that predicts lab test outcomes by leveraging a language modeling approach on EHR data. Unlike conventional methods that estimate only a subset of lab tests or classify discrete value ranges, LabTOP performs continuous numerical predictions for a diverse range of lab items. We evaluate LabTOP on three publicly available EHR datasets and demonstrate that it outperforms existing methods, including traditional machine learning models and state-of-the-art large language models. We also conduct extensive ablation studies to confirm the effectiveness of our design choices. We believe that LabTOP will serve as an accurate and generalizable framework for lab test outcome prediction, with potential applications in clinical decision support and early detection of critical conditions.
comment: 11 pages for main text, 13 pages for appendix
♻ ☆ From Experts to a Generalist: Toward General Whole-Body Control for Humanoid Robots
Achieving general agile whole-body control on humanoid robots remains a major challenge due to diverse motion demands and data conflicts. While existing frameworks excel in training single motion-specific policies, they struggle to generalize across highly varied behaviors due to conflicting control requirements and mismatched data distributions. In this work, we propose BumbleBee (BB), an expert-generalist learning framework that combines motion clustering and sim-to-real adaptation to overcome these challenges. BB first leverages an autoencoder-based clustering method to group behaviorally similar motions using motion features and motion descriptions. Expert policies are then trained within each cluster and refined with real-world data through iterative delta action modeling to bridge the sim-to-real gap. Finally, these experts are distilled into a unified generalist controller that preserves agility and robustness across all motion types. Experiments on two simulations and a real humanoid robot demonstrate that BB achieves state-of-the-art general whole-body control, setting a new benchmark for agile, robust, and generalizable humanoid performance in the real world.
♻ ☆ Ladder-residual: parallelism-aware architecture for accelerating large model inference with communication overlapping ICML 2025
Large language model inference is both memory-intensive and time-consuming, often requiring distributed algorithms to efficiently scale. Various model parallelism strategies are used in multi-gpu training and inference to partition computation across multiple devices, reducing memory load and computation time. However, using model parallelism necessitates communication of information between GPUs, which has been a major bottleneck and limits the gains obtained by scaling up the number of devices. We introduce Ladder Residual, a simple architectural modification applicable to all residual-based models that enables straightforward overlapping that effectively hides the latency of communication. Our insight is that in addition to systems optimization, one can also redesign the model architecture to decouple communication from computation. While Ladder Residual can allow communication-computation decoupling in conventional parallelism patterns, we focus on Tensor Parallelism in this paper, which is particularly bottlenecked by its heavy communication. For a Transformer model with 70B parameters, applying Ladder Residual to all its layers can achieve 29% end-to-end wall clock speed up at inference time with TP sharding over 8 devices. We refer the resulting Transformer model as the Ladder Transformer. We train a 1B and 3B Ladder Transformer from scratch and observe comparable performance to a standard dense transformer baseline. We also show that it is possible to convert parts of the Llama-3.1 8B model to our Ladder Residual architecture with minimal accuracy degradation by only retraining for 3B tokens. We release our code for training and inference for easier replication of experiments.
comment: ICML 2025
♻ ☆ FALCON: Feedback-driven Adaptive Long/short-term memory reinforced Coding Optimization system
Recently, large language models (LLMs) have achieved significant progress in automated code generation. Despite their strong instruction-following capabilities, these models frequently struggled to align with user intent in coding scenarios. In particular, they were hampered by datasets that lacked diversity and failed to address specialized tasks or edge cases. Furthermore, challenges in supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF) led to failures in generating precise, human-intent-aligned code. To tackle these challenges and improve the code generation performance for automated programming systems, we propose Feedback-driven Adaptive Long/short-term memory reinforced Coding Optimization (i.e., FALCON). FALCON is structured into two hierarchical levels. From the global level, long-term memory improves code quality by retaining and applying learned knowledge. At the local level, short-term memory allows for the incorporation of immediate feedback from compilers and AI systems. Additionally, we introduce meta-reinforcement learning with feedback rewards to solve the global-local bi-level optimization problem and enhance the model's adaptability across diverse code generation tasks. Extensive experiments demonstrate that our technique achieves state-of-the-art performance, leading other reinforcement learning methods by more than 4.5 percentage points on the MBPP benchmark and 6.1 percentage points on the Humaneval benchmark. The open-sourced code is publicly available at https://github.com/titurte/FALCON.
comment: 20 pages, 7 figures
♻ ☆ DeepGDel: Deep Learning-based Gene Deletion Prediction Framework for Growth-Coupled Production in Genome-Scale Metabolic Models
In genome-scale constraint-based metabolic models, gene deletion strategies are crucial for achieving growth-coupled production, where cell growth and target metabolite production are simultaneously achieved. While computational methods for calculating gene deletions have been widely explored and contribute to developing gene deletion strategy databases, current approaches are limited in leveraging new data-driven paradigms, such as machine learning, for more efficient strain design. Therefore, it is necessary to propose a fundamental framework for this objective. In this study, we first formulate the problem of gene deletion strategy prediction and then propose a framework for predicting gene deletion strategies for growth-coupled production in genome-scale metabolic models. The proposed framework leverages deep learning algorithms to learn and integrate sequential gene and metabolite data representation, enabling the automatic gene deletion strategy prediction. Computational experiment results demonstrate the feasibility of the proposed framework, showing substantial improvements over baseline methods. Specifically, the proposed framework achieves a 14.69%, 22.52%, and 13.03% increase in overall accuracy across three metabolic models of different scales under study, while maintaining balanced precision and recall in predicting gene deletion statuses. The source code and examples for the framework are publicly available at https://github.com/MetNetComp/DeepGDel.
Quantitative Methods 9
☆ Learning Causally Predictable Outcomes from Psychiatric Longitudinal Data
Causal inference in longitudinal biomedical data remains a central challenge, especially in psychiatry, where symptom heterogeneity and latent confounding frequently undermine classical estimators. Most existing methods for treatment effect estimation presuppose a fixed outcome variable and address confounding through observed covariate adjustment. However, the assumption of unconfoundedness may not hold for a fixed outcome in practice. To address this foundational limitation, we directly optimize the outcome definition to maximize causal identifiability. Our DEBIAS (Durable Effects with Backdoor-Invariant Aggregated Symptoms) algorithm learns non-negative, clinically interpretable weights for outcome aggregation, maximizing durable treatment effects and empirically minimizing both observed and latent confounding by leveraging the time-limited direct effects of prior treatments in psychiatric longitudinal data. The algorithm also furnishes an empirically verifiable test for outcome unconfoundedness. DEBIAS consistently outperforms state-of-the-art methods in recovering causal effects for clinically interpretable composite outcomes across comprehensive experiments in depression and schizophrenia.
comment: R code is available at github.com/ericstrobl/DEBIAS
☆ SHREC and PHEONA: Using Large Language Models to Advance Next-Generation Computational Phenotyping
Objective: Computational phenotyping is a central informatics activity with resulting cohorts supporting a wide variety of applications. However, it is time-intensive because of manual data review, limited automation, and difficulties in adapting algorithms across sources. Since LLMs have demonstrated promising capabilities for text classification, comprehension, and generation, we posit they will perform well at repetitive manual review tasks traditionally performed by human experts. To support next-generation computational phenotyping methods, we developed SHREC, a framework for comprehensive integration of LLMs into end-to-end phenotyping pipelines. Materials and Methods: We applied and tested the ability of three lightweight LLMs (Gemma2 27 billion, Mistral Small 24 billion, and Phi-4 14 billion) to classify concepts and phenotype patients using previously developed phenotypes for ARF respiratory support therapies. Results: All models performed well on concept classification, with the best model (Mistral) achieving an AUROC of 0.896 across all relevant concepts. For phenotyping, models demonstrated near-perfect specificity for all phenotypes, and the top-performing model (Mistral) reached an average AUROC of 0.853 for single-therapy phenotypes, despite lower performance on multi-therapy phenotypes. Discussion: There are several advantages of LLMs that support their application to computational phenotyping, such as their ability to adapt to new tasks with prompt engineering alone and their ability to incorporate raw EHR data. Future steps to advance next-generation phenotyping methods include determining optimal strategies for integrating biomedical data, exploring how LLMs reason, and advancing generative model methods. Conclusion: Current lightweight LLMs can feasibly assist researchers with resource-intensive phenotyping tasks such as manual data review.
comment: Submitted to Journal of the American Medical Informatics Association
☆ Geometric deep learning assists protein engineering. Opportunities and Challenges
Protein engineering is experiencing a paradigmatic shift through the integration of geometric deep learning into computational design workflows. While traditional strategies, such as rational design and directed evolution, have enabled relevant advances, they remain limited by the complexity of sequence space and the cost of experimental validation. Geometric deep learning addresses these limitations by operating on non-Euclidean domains, capturing spatial, topological, and physicochemical features essential to protein function. This perspective outlines the current applications of GDL across stability prediction, functional annotation, molecular interaction modeling, and de novo protein design. We highlight recent methodological advances in model generalization, interpretability, and robustness, particularly under data-scarce conditions. A unified framework is proposed that integrates GDL with explainable AI and structure-based validation to support transparent, autonomous design. As GDL converges with generative modeling and high-throughput experimentation, it is emerging as a central technology in next-generation protein engineering and synthetic biology.
☆ Quantification of Information Flow by Dual Reporter System and Its Application to Bacterial Chemotaxis
Mutual information is a theoretically grounded metric for quantifying cellular signaling pathways. However, its measurement demands characterization of both input and output distributions, limiting practical applications. Here, we present alternative method that alleviates this requirement using dual reporter systems. By extending extrinsic-intrinsic noise analysis, we derive a mutual information estimator that eliminates the need to measure input distribution. We demonstrate our method by analyzing the bacterial chemotactic pathway, regarding multiple flagellar motors as natural dual reporters. We show the biological relevance of the measured information flow by comparing it with theoretical bounds on sensory information. This framework opens new possibilities for quantifying information flow in cellular signaling pathways.
comment: 6 pages, 2 figures
☆ AutomataGPT: Forecasting and Ruleset Inference for Two-Dimensional Cellular Automata
Cellular automata (CA) provide a minimal formalism for investigating how simple local interactions generate rich spatiotemporal behavior in domains as diverse as traffic flow, ecology, tissue morphogenesis and crystal growth. However, automatically discovering the local update rules for a given phenomenon and using them for quantitative prediction remains challenging. Here we present AutomataGPT, a decoder-only transformer pretrained on around 1 million simulated trajectories that span 100 distinct two-dimensional binary deterministic CA rules on toroidal grids. When evaluated on previously unseen rules drawn from the same CA family, AutomataGPT attains 98.5% perfect one-step forecasts and reconstructs the governing update rule with up to 96% functional (application) accuracy and 82% exact rule-matrix match. These results demonstrate that large-scale pretraining over wider regions of rule space yields substantial generalization in both the forward (state forecasting) and inverse (rule inference) problems, without hand-crafted priors. By showing that transformer models can faithfully infer and execute CA dynamics from data alone, our work lays the groundwork for abstracting real-world dynamical phenomena into data-efficient CA surrogates, opening avenues in biology, tissue engineering, physics and AI-driven scientific discovery.
♻ ☆ Integrating Dynamical Systems Learning with Foundational Models: A Meta-Evolutionary AI Framework for Clinical Trials
Artificial intelligence (AI) has evolved into an ecosystem of specialized "species," each with unique strengths. We analyze two: DeepSeek-V3, a 671-billion-parameter Mixture of Experts large language model (LLM) exemplifying scale-driven generality, and NetraAI, a dynamical system-based framework engineered for stability and interpretability on small clinical trial datasets. We formalize NetraAI's foundations, combining contraction mappings, information geometry, and evolutionary algorithms to identify predictive patient cohorts. Features are embedded in a metric space and iteratively contracted toward stable attractors that define latent subgroups. A pseudo-temporal embedding and long-range memory enable exploration of higher-order feature interactions, while an internal evolutionary loop selects compact, explainable 2-4-variable bundles ("Personas"). To guide discovery, we introduce an LLM Strategist as a meta-evolutionary layer that observes Persona outputs, prioritizes promising variables, injects domain knowledge, and assesses robustness. This two-tier architecture mirrors the human scientific process: NetraAI as experimentalist, the LLM as theorist, forming a self-improving loop. In case studies (schizophrenia, depression, pancreatic cancer), NetraAI uncovered small, high-effect-size subpopulations that transformed weak baseline models (AUC ~0.50-0.68) into near-perfect classifiers using only a few features. We position NetraAI at the intersection of dynamical systems, information geometry, and evolutionary learning, aligned with emerging concept-level reasoning paradigms such as LeCun's Joint Embedding Predictive Architecture (JEPA). By prioritizing reliable, explainable knowledge, NetraAI offers a new generation of adaptive, self-reflective AI to accelerate clinical discovery.
comment: 27 pages
♻ ☆ Data-driven modeling and prediction of microglial cell dynamics in the ischemic penumbra
Neuroinflammation immediately follows the onset of ischemic stroke. During this process, microglial cells are activated in and recruited to the tissue surrounding the irreversibly injured infarct core, referred to as the penumbra. Microglial cells can be activated into two distinct phenotypes; however, the dynamics between the detrimental M1 phenotype and beneficial M2 phenotype are not fully understood. Using phenotype-specific cell count data obtained from experimental studies on middle cerebral artery occlusion-induced stroke in mice, we employ sparsity-promoting system identification techniques combined with Bayesian statistical methods for uncertainty quantification to generate continuous and discrete-time predictive models of the M1 and M2 microglial cell dynamics. The resulting data-driven models include constant and linear terms but do not include nonlinear interactions between the cells. Results emphasize an initial M2 dominance followed by a takeover of M1 cells, capture potential long-term dynamics of microglial cells, and suggest a persistent inflammatory response.
comment: 25 pages, 14 figures. Updated full-length article; initial results are presented in the conference proceedings paper (see version 1)
♻ ☆ EchoNet-Quality: Denoising Echocardiograms via Deep Generative Modeling of Ultrasound Noise
Echocardiography (echo), or cardiac ultrasound, is the most widely used imaging modality for cardiac form and function due to its relatively low cost, rapid acquisition time, and non-invasive nature. However, ultrasound acquisitions are often limited by artifacts and noise that hinder diagnostic interpretation in clinical settings. Existing methodologies for denoising echos consist solely of traditional filtering-based algorithms or deep learning methods developed on radio-frequency (RF) signals which prevents clinical applicability and scalability. To address these limitations, we introduce the first deep generative model capable of simulating ultrasound noise developed on B-mode data. Using this generative model, we develop a synthetic dataset of paired clean and noisy echo images to train a downstream model for real-world image denoising and demonstrate state-of-the-art performance in both internal and external experiments. In both held-out test sets, our method results in echo images with higher gCNR in comparison to noisy image counterparts and images derived from a comparable method which is consistent with provided visual comparisons. Our experiments showcase the potential of our method for future clinical use to improve the quality of echo acquisitions. To encourage further research into the field, we release our source code and model weights at https://github.com/echonet/image_quality.
♻ ☆ DeepGDel: Deep Learning-based Gene Deletion Prediction Framework for Growth-Coupled Production in Genome-Scale Metabolic Models
In genome-scale constraint-based metabolic models, gene deletion strategies are crucial for achieving growth-coupled production, where cell growth and target metabolite production are simultaneously achieved. While computational methods for calculating gene deletions have been widely explored and contribute to developing gene deletion strategy databases, current approaches are limited in leveraging new data-driven paradigms, such as machine learning, for more efficient strain design. Therefore, it is necessary to propose a fundamental framework for this objective. In this study, we first formulate the problem of gene deletion strategy prediction and then propose a framework for predicting gene deletion strategies for growth-coupled production in genome-scale metabolic models. The proposed framework leverages deep learning algorithms to learn and integrate sequential gene and metabolite data representation, enabling the automatic gene deletion strategy prediction. Computational experiment results demonstrate the feasibility of the proposed framework, showing substantial improvements over baseline methods. Specifically, the proposed framework achieves a 14.69%, 22.52%, and 13.03% increase in overall accuracy across three metabolic models of different scales under study, while maintaining balanced precision and recall in predicting gene deletion statuses. The source code and examples for the framework are publicly available at https://github.com/MetNetComp/DeepGDel.
Cell Behavior 2
☆ Quantification of Information Flow by Dual Reporter System and Its Application to Bacterial Chemotaxis
Mutual information is a theoretically grounded metric for quantifying cellular signaling pathways. However, its measurement demands characterization of both input and output distributions, limiting practical applications. Here, we present alternative method that alleviates this requirement using dual reporter systems. By extending extrinsic-intrinsic noise analysis, we derive a mutual information estimator that eliminates the need to measure input distribution. We demonstrate our method by analyzing the bacterial chemotactic pathway, regarding multiple flagellar motors as natural dual reporters. We show the biological relevance of the measured information flow by comparing it with theoretical bounds on sensory information. This framework opens new possibilities for quantifying information flow in cellular signaling pathways.
comment: 6 pages, 2 figures
♻ ☆ Data-driven modeling and prediction of microglial cell dynamics in the ischemic penumbra
Neuroinflammation immediately follows the onset of ischemic stroke. During this process, microglial cells are activated in and recruited to the tissue surrounding the irreversibly injured infarct core, referred to as the penumbra. Microglial cells can be activated into two distinct phenotypes; however, the dynamics between the detrimental M1 phenotype and beneficial M2 phenotype are not fully understood. Using phenotype-specific cell count data obtained from experimental studies on middle cerebral artery occlusion-induced stroke in mice, we employ sparsity-promoting system identification techniques combined with Bayesian statistical methods for uncertainty quantification to generate continuous and discrete-time predictive models of the M1 and M2 microglial cell dynamics. The resulting data-driven models include constant and linear terms but do not include nonlinear interactions between the cells. Results emphasize an initial M2 dominance followed by a takeover of M1 cells, capture potential long-term dynamics of microglial cells, and suggest a persistent inflammatory response.
comment: 25 pages, 14 figures. Updated full-length article; initial results are presented in the conference proceedings paper (see version 1)